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AMANDA E. WAKEFIELD 

Boston University Graduate School of Arts and Sciences, 2022 

Major Professor: Sandor Vajda, Professor of Biomedical Engineering, 
Chemistry, and Systems Engineering 

ABSTRACT 

Protein-small molecule interactions play a central role in various aspects of the 

structural and functional organization of the cell and are therefore integral for drug 

discovery. The most comprehensive structural characterization of small molecule binding 

sites is provided by X-ray crystallography. However, it is often time-consuming and 

challenging to perform direct experimental analysis. Therefore, it is necessary to have 

computational methods that can predict binding site locations on unbound structures with 

accuracy close to that provided by X-ray crystallography. This thesis details four projects 

which involve the development of a fragment benchmark set, evaluation of allosteric sites 

in G Protein-Coupled Receptors (GPCRs), computational modeling of binding pocket 

dynamics, and the development of an Application Program Interface (API) framework for 

High-Performance Computing (HPC) centers. 

The first project provides a benchmark set for testing hot spot identification 

methods, emphasizing application to fragment-based drug discovery. Using the solvent 

mapping server, FTMap, which finds small molecule binding hot spots on proteins, we 

compared our benchmark set to an existing benchmark set that with a different method of 
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construction. The second project details the effort to identify allosteric binding sites on 

GPCRs. We demonstrate that FTMap successfully identifies structurally determined 

allosteric sites in bound crystal structures and unbound structures. The project was further 

expanded to evaluate the conservation of allosteric sites across different classes, families, 

and types of GPCRs. The third project provides a structure-based analysis of cryptic site 

openings. Cryptic sites are pockets formed in ligand-bound proteins but not observed in 

unbound protein structures. Through analysis of crystal structures supplemented by 

molecular dynamics (MD) with enhanced sampling techniques, it was shown that cryptic 

sites can be grouped into three types: 1) “genuine” cryptic sites, which do not form 

without ligand binding, 2) spontaneously forming cryptic sites, and 3) cryptic sites 

impacted by mutations or off-site ligand binding. The fourth project presents an API 

framework for increasing the accessibility of HPC resources.  

 

  





viii 

2.2.4 Identification of Hydrogen Bonding Residues ................................................ 15	

2.3 Results and Discussion ........................................................................................... 16	

2.3.1 Acpharis Benchmark Sets of Proteins with Fragment and Ligand Binding .... 16	

2.3.2 FTMap Analysis of the Achparis Set ............................................................... 21	

2.3.3 Hot Spot Analysis of The Achparis Benchmark Set Using Unbound Protein 

Structures .................................................................................................................. 25	

2.3.4 Analysis of the Astex Bound and Unbound Benchmark Sets .......................... 26	

2.3.5 Comparing the Astex and Achparis Sets ......................................................... 27	

2.4 Conclusion .............................................................................................................. 36	

CHAPTER 3 Allostery in G Protein-Coupled Receptors ................................................. 38	

3.1 Introduction ............................................................................................................. 39	

3.2 Methods .................................................................................................................. 45	

3.2.1 Collection of structural data and models ......................................................... 45	

3.2.2 Collection of allosteric ligand data .................................................................. 46	

3.2.3 Identification of allosteric sites by FTMap ...................................................... 46	

3.2.4 Determination of pocket descriptors by Fpocket ............................................. 47	

3.2.5 Docking ............................................................................................................ 49	

3.3 Results and Discussion ........................................................................................... 49	

3.3.1 FTMap identifies allosteric sites in GPCRs with bound ligands ..................... 49	

3.3.2 Retrospective analysis of allosteric sites .......................................................... 52	

3.3.3 Intrahelical allosteric sites. ............................................................................... 54	

3.3.4 Allosteric conformational locks ....................................................................... 58	



ix 

3.3.5 Intracellular allosteric sites. ............................................................................. 61	

3.3.6 Prospective identification of allosteric sites .................................................... 63	

3.3.7 Beta2 adrenergic receptor ................................................................................ 64	

3.3.8 Muscarinic M2 receptor. .................................................................................. 67	

3.3.9 Free fatty acid receptor 1 (GPR40). ................................................................. 67	

3.3.10 Purinergic P2Y1 receptor. .............................................................................. 68	

3.3.11 Validating FTMap on GPCRs models and an unbound structure .................. 71	

3.3.12 Clustering of allosteric site locations in GPCRs ............................................ 74	

3.3.13 Extending the analysis to all GPCRs structures ............................................. 79	

3.3.14 Site conservation within a specific GPCR subtype: Muscarinic acetylcholine 

receptors .................................................................................................................... 83	

3.3.15 Site conservation across a GPCR family: chemokine receptors .................... 85	

3.3.16 Site conservation across GPCR classes: Class A C-X-C motif chemokine 

receptor 4 (CXCR4) .................................................................................................. 89	

3.3.17 Site conservation across GPCR classes: Class B corticotropin-releasing factor 

receptor 1 (CRF1) ..................................................................................................... 91	

3.3.18 Known allosteric ligands show limited overlap on GPCR targets ................. 93	

3.4 Conclusion .............................................................................................................. 96	

CHAPTER 4 Structure-Based Analysis of Cryptic-Site Opening .................................. 100	

4.1 Introduction ........................................................................................................... 101	

4.2 Methods ................................................................................................................ 105	

4.2.1 Adiabatic Biased Molecular Dynamics ......................................................... 105	



 x 

4.2.2 Data Set .......................................................................................................... 107	

4.2.3 Identification of binding pockets using the Fpocket program ....................... 108	

4.2.4 Calculation of the Fpocket druggability scores ............................................. 109	

4.3 Results ................................................................................................................... 109	

4.3.1 Proteins in the CryptoSite set ......................................................................... 109	

4.3.2 Group 1: Proteins that require ligand binding for forming a pocket at the 

cryptic site ............................................................................................................... 110	

4.3.3 Group 2: Proteins with spontaneously forming pockets at cryptic sites ........ 117	

4.3.4 Group 3: Proteins with cryptic site opening impacted by mutations or off-site 

binding .................................................................................................................... 121	

4.4 Discussion and Conclusions ................................................................................. 131	

CHAPTER 5 API Development Increases Access to Shared Computing Resources .... 134	

5.1 Introduction ........................................................................................................... 135	

5.2 Design and Development ...................................................................................... 136	

5.3 Architecture .......................................................................................................... 138	

5.3.1 SHABU/SCC Connection .............................................................................. 139	

5.3.2 Identity Access Management ......................................................................... 140	

5.3.3 API ................................................................................................................. 141	

5.3.4 Job Management ............................................................................................ 141	

5.4 Maintenance .......................................................................................................... 142	

5.4.1 Allocating jobs ............................................................................................... 142	

5.4.2 Poll job ........................................................................................................... 143	





 xii 

LIST OF TABLES 

Table 2.1. Fragment and Ligand Bound Structures, Fragment IDs, and Molecular 

Weights in the Acpharis Benchmark Set. ................................................................. 17	

Table 2.2. Detailed mapping results for the fragment-bound protein with UniProt ID 

P00918 bound by fragment 1SA (PDB 2HNC) ........................................................ 23	

Table 2.3. Detailed mapping results for the unbound protein with UniProt ID P00918 

(PDB 3KS3) .............................................................................................................. 26	

Table 2.4. Percentages of proteins with any hot spots or the top hot spot with 13+ or 16+ 

probe clusters and at least 50% or 80% coverage of the fragment binding site in the 

Acpharis and Astex benchmark sets. Overall probe density is also shown. ............. 28	

Table 2.5. Detailed mapping results for the third protein (PDB 2VCQ, chain B) in the 

Astex set and the corresponding unbound structure (PDB 3EE2, chain B) in the 

unbound Astex set. .................................................................................................... 30	

Table 2.6. Pocket volumes in the benchmark sets, Å3 ...................................................... 32	

Table 3.1. High-resolution X-ray structures of GPCRs co-crystallized with small 

molecule allosteric ligands ........................................................................................ 50	

Table 3.2. GPCR structures with strong binding sites located at bound allosteric ligands

................................................................................................................................... 51	

Table 3.3. FTMap and FTSite results obtained for the orthosteric and allosteric pairs of 

GPCR complexes. ..................................................................................................... 64	

Table 3.4. GPCR structures with strong binding sites located at bound allosteric ligands

................................................................................................................................... 72	



 xiii 

Table 3.5. Analysis of structures with probe atoms overlapping the ligand PAM in the 

muscarinic acetylcholine receptor 2, PDB ID 4MQT [103] ..................................... 84	

Table 3.6. Conservation of the allosteric site within the class A chemokine receptor 

CCR5, PDB ID 4MBS [104] .................................................................................... 86	

Table 3.7. Top 10 GPCR structures with the highest number of probe atoms overlapping 

the ligand ITD in the Class A allosteric protein glutamate metabotropic receptor 1, 

PDB 3ODU [105] ..................................................................................................... 89	

Table 3.8. Analysis of the ten protein structures with the highest number of overlapping 

probe atoms to the 1Q5 ligand in the allosteric corticotropin-releasing factor 

receptor 1 protein, PDB 4K5Y [132]. ....................................................................... 92	

Table 5.1. Endpoints provided by the API ...................................................................... 138	

Table B.1. Bound and Unbound Structures in the Acpharis Benchmark Set, and Strongest 

Hot Spots at the Fragment Binding Sites in Both Bound and Unbound Structures.

................................................................................................................................. 163	

Table B.2. All bound structures for the Acpharis benchmark set by PDB ID/chain. 

Fragment PDB and fragment MW are the PDB ID/chain and molecular weight for 

the fragment and the structure containing the fragment. Maximum PDB/MW are the 

PDB ID/chain and molecular weight for the largest (by molecular weight) ligand and 

the structure containing the “maximum” ligand. The structures binding additional 

ligands are also shown. ........................................................................................... 164	

Table B.3. All unbound structures for the Acpharis benchmark set by PDB ID/chain. For 

each protein the structure mapped is shown in bold. .............................................. 167	



 xiv 

Table B.4. All bound structures for the Astex set by PDB ID/chain. Fragment PDB and 

fragment MW are the PDB ID/chain and molecular weight for the fragment and the 

structure from which the fragment was sourced. Maximum PDB and maximum MW 

are the PDB ID/chain and molecular weight for the largest (by molecular weight) 

ligand and its associated structure. .......................................................................... 173	

Table B.5. All unbound structures for the Astex set by PDB ID/chain. For each protein, 

the structure mapped is shown in bold. ................................................................... 176	

Table B.6. FBLD target proteins and pocket volumes .................................................... 179	

Table B.7. Quality measures of predicting hydrogen bonding residues in the fragment 

binding pocket in the bound proteins of the Acpharis seta ..................................... 180	

Table B.8. Quality measures of predicting hydrogen bonding residues in the fragment 

binding pocket in the unbound proteins of the Acpharis seta ................................. 182	

Table B.9. Quality measures of predicting hydrogen bonding residues in the fragment 

binding pocket in the bound proteins of the Astex seta ........................................... 183	

Table B.10. Quality measures of predicting hydrogen bonding residues in the fragment 

binding pocket in the unbound proteins of the Astex seta ....................................... 184	

Table C.1. Characterization of the ligand binding sites in orthosteric and allosteric pairs 

of GPCR complexes by FPocket ............................................................................. 187	

Table C.2. Overlapping probe atoms among the allosteric sites of the 21 GPCR structures 

with ligand and strong hot spot ............................................................................... 188	



 xv 

Table C.3. The 10 proteins with the highest level of hot spot overlap with the allosteric 

ligand bound to 21 GPCRs with strong hot spots at the ligand binding site. Each of 

the 21 “parent” structures with the bound ligand listed in bold. ............................. 189	

Table D.1. Proteins with cryptic sides studied ................................................................ 198	

cNumber of structures considered. ................................................................................. 199	

Table D.2.  TEM β-lactamase structures, druggability scores, mutations, and melting 

temperatures ............................................................................................................ 199	

 

 

  



 xvi 

LIST OF FIGURES 

Figure 2.1. The fragments’ chemical structures and PDB ligand ID codes in the newly 

created Acpharis benchmark set. .............................................................................. 20	

Figure 2.2. Fragment 1LQ and ligands that contain the fragment as a substructure. ....... 23	

Figure 2.3. Demonstration of fragment and ligand coverage by a hot spot in ligand-bound 

and unbound structures. ............................................................................................ 24	

Figure 2.4. Mapping of 4PFJ, the first protein in the Astex set. ....................................... 29	

Figure 2.5. Mapping the third protein, prostaglandin D2 synthase, of the Astex set. ...... 30	

Figure 2.6. Distributions of pocket volumes and success rates of identifying hydrogen 

bonding residues in Astex and Acpharis benchmark sets. ........................................ 35	

Figure 3.1. Experimentally validated allosteric sites in GPCRs. ...................................... 51	

Figure 3.2. Hot spots and allosteric ligand binding sites predicted by (a) FTMap and (b) 

FTSite for PDB 5X7D. ............................................................................................. 54	

Figure 3.3. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the mGluR5-mavoglurant structure (PDB: 4OO9) and by (c) FTMap 

and (d) FTSite for the mGluR5-HTL14242 structure (PDB: 5CGD). ...................... 56	

Figure 3.4. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the FFA1-TAK-875 structure (PDB: 4PHU) and by (c) FTMap and 

(d) FTSite for the FFA1-AP8 structure (PDB: 5TZY). ............................................ 60	

Figure 3.5. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the CCR9-vercirnon structure (PDB: 5LWE). ................................... 63	



 xvii 

Figure 3.6. Hot spots and ligand binding sites predicted by FTMap and by FTSite for the 

orthosteric complexes of (a) beta2 (PDB:2RH1), (b) M2 (PDB:4MQS), (c) FFAR2 

(PDB:5TZR) and (d) P2Y1 (PDB:4XNW) receptors. .............................................. 66	

Figure 3.7. FTMap site prediction (mesh) matches the recently validated UCB compound 

(cyan) binding location on the D2 receptor (PDB ID 6CM4). Key residues from the 

D2 receptor are represented as sticks. ....................................................................... 74	

Figure 3.8. Locations of allosteric sites in structures co-crystallized with ligands. ......... 78	

Figure 3.9. Examples of allosteric ligand clusters. PDB IDs are shown in parenthesis. .. 79	

Figure 3.10. Examples of FTMap site prediction (mesh) in proteins (gray) without co-

crystallized allosteric ligands. ................................................................................... 81	

Figure 3.11. Distribution of the number of druggable sites in the clusters defined by the 

21 GPCRs co-crystallized with allosteric ligands. .................................................... 82	

Figure 3.12. Phylogenetic tree of proteins in the muscarinic acetylcholine receptor family, 

colored from yellow to dark purple based on the number of probe atoms overlapping 

with the allosteric ligand 2CU bound in the PDB structure 4MQT after 

superimposing the structures. .................................................................................... 85	

Figure 3.13. Phylogenetic tree of proteins in the chemokine family, colored from yellow 

to dark purple, based on the number of probe atoms overlapping with the allosteric 

ligand Maraviroc (MRV) bound in the PDB structure 4MBS of the CCR5 protein 

after superimposing the structures. ........................................................................... 87	

Figure 3.14. Mapping of class A chemokine receptors. ................................................... 88	

Figure 3.15. Mapping of Class A C-X-C motif chemokine receptors. ............................. 91	



 xviii 

Figure 3.16. Mapping of Class B corticotropin-releasing factor receptor. ....................... 93	

Figure 4.1. Forming the pocket at the site of high affinity phosphotyrosine binding in 

PTP1B. .................................................................................................................... 112	

Figure 4.2. Conformational change and a snapshot from the ABMD simulation of protein 

tyrosine phosphatase 1B (PTP1B). All structures are shown in cartoon 

representation. ......................................................................................................... 114	

Figure 4.3. Druggability scores (DSs) of unliganded structures of proteins with DS 

distributions skewed toward the unbound state. ..................................................... 115	

Figure 4.4. Forming the cryptic ligand binding site in beta-secretase 1 (BACE-1). ...... 119	

Figure 4.5. Druggability scores (DSs) of unliganded structures of proteins with a cryptic 

site that is frequently well formed. ......................................................................... 121	

Figure 4.6. Opening the cryptic allosteric site in TEM-1 β-lactamase. .......................... 123	

Figure 4.7. Conformational change and a snapshot from the ABMD simulation of TEM-1 

β-lactamase. All structures are shown in cartoon representation. ........................... 124	

Figure 4.8. Druggability scores (DSs) of unliganded structures of proteins with cryptic 

sites impacted by mutations or binding at distant sites. .......................................... 128	

Figure 5.1. Information flow generated by the user. ....................................................... 139	

Figure 5.2. Workflow of user interactions. ..................................................................... 144	

Figure 5.3. Looking up a Job with the Swagger UI documentation for the 

“/apis/jobs/<id>/” endpoint. The Swagger UI provides a webpage for users to 

explore the API interactively. ................................................................................. 145	



 xix 

Figure 5.4. Result of looking up a Job using the Swagger UI. The results were obtained 

after querying the “/apis/jobs/<id>/” API endpoint. The response body section 

shows the JSON response received from the API, and the response headers section 

shows the HTTP headers from the received request. .............................................. 146	

Figure A.1. Mapping of KRAS. ...................................................................................... 161	

Figure C.1. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the MGLU5-CMPD-25 (PDB: 5CGC). ........................................... 186	

Figure C.2. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the mGluR5-M-MPEP structure (PDB: 6FFI). ................................ 186	

Figure C.3. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and 

(b) FTSite for the mGluR5-fenobam structure (PDB: 6FFH). ............................... 187	

Figure D.1. Distributions of DS values for proteins not included in the main text. Dark, 

light, and medium blue bars represent DS of unbound structures, complexes, and 

mutants, respectively. .............................................................................................. 196	

Figure D.2. Distributions of DS values for proteins not included in the main text. Dark, 

light, and medium blue bars represent DS of unbound structures, complexes, and 

mutants, respectively. .............................................................................................. 197	

 

 
 
  



 xx 

LIST OF ABBREVIATIONS 

AWS Amazon Web Services 

CL Conformational lock 

CLI Command line interface 

DS Druggability score 

EC Extracellular side 

EH Extra-helical 

FBDD Fragment Based Drug Discovery 

FBLD Fragment Based Ligand Discovery 

GPCRs G protein-coupled receptors 

GPUs Graphical Processing Units 

HC Intrahelical 

HPC High-Performance Computing 

IC Intracellular side 

MCC Matthew Correlation Coefficient 

MD Molecular Dynamics 

MSCS Multiple Solvent Crystal Structures 

MSMD Mixed Solvent Molecular Dynamics 

MW Molar Weight (g/mol) 

NMR Nuclear Magnetic Resonance 

NSF Network file system 

PDB Protein Data Bank 



 xxi 

REST Representational State Transfer 

SAR Structure-Activity Relationship  

SCC Shared Computing Center  

SCC Sun Grid Engine  

SI Signaling Interface 

TM Transmembrane  

TP True Positive  

 



 

 
1 

 
CHAPTER 1 Introduction to Computational Chemistry Tools and Methods for 

Structure-Based Drug Discovery 

1.1 Motivation 

 The importance of binding hot spots is well established in the literature on 

protein-ligand binding and drug discovery. The concept was proposed by Clackson and 

Wells to describe their finding that certain small regions at the interface between two 

interacting proteins contribute disproportionately to the binding free energy [1]. A similar 

notion was introduced in drug discovery to describe the specific regions of proteins that, 

due to their potentially high contribution to the binding free energy, have a high 

propensity to bind small molecules [2]. In this latter context, hot spots were generally 

associated with regions of the protein that bind low molecular weight compounds 

commonly called “fragments.” Ringe and coworkers introduced the Multiple Solvent 

Crystal Structures (MSCS) method, which involves determining X-ray structures of a 

target protein in aqueous solutions containing high concentrations of organic co-solvents 

and then superimposing the structures to find consensus binding sites that accommodate a 

variety of the organic probes [3, 4]. It was shown that such consensus sites identify hot 

spots that are the most critical regions for binding. Early protein soaking experiments 

were also carried out by Hubbard and coworkers [5, 6]. About the same time, Fesik and 

colleagues published the first results using their Structure-Activity Relationship by 

Nuclear Magnetic Resonance (SAR by NMR) method, which screens large libraries of 

fragment-sized organic compounds for binding to target proteins using NMR [7]. They 
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showed that the fragments cluster at ligand binding sites and described such regions as 

“hot spots on protein surfaces” [8]. 

Both MSCS and SAR by NMR use fragment-sized small molecules to identify hot 

spots and can be considered early examples of fragment-based ligand discovery (FBLD), 

which has been refined into a practical tool by several pharmaceutical companies, 

including Astex [9-13]. FBLD is based on screening libraries of low molecular weight 

(<300 Da) compounds, frequently using X-ray crystallography or NMR. The structures of 

bound fragments are then used as starting points for drug discovery. Experimental 

methods for finding hot spots have significant challenges, however. Fragment screening 

by X-ray crystallography is based on the soaking of cocktails of fragments into 

preformed crystals of the target protein. Preparing the proteins and screening extensive 

fragment collections require considerable infrastructure, and a relatively high fraction of 

the experiments fail [14, 15]. NMR methods provide an alternative, but gaining structural 

information on the location and orientation of fragment binding requires complete 

spectral assignment using isotopically labeled proteins [16].  

Computational fragment mapping approaches offer somewhat less reliable but 

much less expensive alternatives to experimental protein mapping and can provide useful 

information in the early stages of drug discovery. Such methods can be used to address 

three interrelated problems. First, predicting the existence and location of fragment 

binding sites on a protein of interest is an excellent first step in rational fragment-based 

drug discovery. Second, the methods should provide some estimate of the affinity of the 

site for fragment binding. Third, it is useful to predict the position and orientation of the 
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bound fragment since FBDD relies on the premise that the fragments’ binding site and 

binding mode are conserved as the fragment is grown into a full-sized lead. Several 

computational tools have been developed to address these challenges. Examples are the 

classical methods GRID [17] and Multiple Copy Simultaneous Search (MCSS) [18], 

which explore the landscape of interaction energy between the protein and individual 

atoms or very small functional groups to generate maps of favorable positions 

corresponding to energy minima. As a disadvantage, it has been noted that both methods 

tend to generate too many local minima, resulting in the identification of a large number 

of candidate binding sites, among which are the few sites that are truly useful for ligand 

discovery [4]. The program FTMap employs a set of slightly larger molecules to probe 

the target protein surface. It identifies the binding hot spots as sites where multiple probe 

molecules cluster, thereby reducing the occurrence of false positives [19]. It has also been 

shown that the number of probes that make up an FTMap consensus site provides a 

measure of the energetic strength of the hot spot [20, 21]. FTMap has also been used to 

address the third problem, the likely conservation of fragment binding modes, as 

fragments overlapping with strong hot spots tend to retain their location in chemically 

distinct ligands [22]. More recently, mixed molecular dynamics (MD) simulation 

methods have used fragments as probes among explicit water molecules, accounting for 

protein flexibility [23-27].  

1.2 Solvent Mapping with FTMap and FTSite 

 FTMap has been developed as a close computational analog of the X-ray 

crystallography or NMR-based experimental fragment screening methods [19]. The 
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approach distributes small organic probe molecules of varying size, shape, and polarity 

on the protein surface, finds the most favorable positions for each probe type, then 

clusters the probes and ranks the clusters based on their average energy. Given a protein 

structure, for each probe, the algorithm places the tens of thousands of copies all over the 

surface based on dense rotational and translational grids, retains the most favorable probe 

positions by energy and refines their orientations, then clusters the probe molecules by 

location and ranks them by their average energy. The lowest energy probe clusters of 

each probe type are retained, and clustering is performed once more on clusters of all 

probe types to form the consensus sites, which are ranked by their population of probe 

clusters. Consensus sites identify the locations of binding hot spots on the protein surface, 

and their rank corresponds to the relative strength and importance of the associated hot 

spot. 

Binding energy hot spots are regions that bind probe clusters for multiple different 

probes. Although this method is less direct than validation by binding experiments, the 

exhaustive docking of fragments by FTMap is based on a physics-based scoring function 

and hence has some thermodynamic validity [19]. It was previously shown that the hot 

spots predicted by FTMap agree well with pockets that bind multiple probes in X-ray 

soaking experiments [28-30], and that the number of probe clusters binding at a hot spot 

predicts the druggability of the site [20]. Specifically, a consensus site containing at least 

16 probe clusters can bind appropriately selected ligands with low micromolar or higher 

affinity. In contrast, at least 13 probe clusters are required even for high micromolar or 

millimolar binding. 
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1.3 Fpocket 

 Fpocket is an open source pocket detection package [31, 32] and contains a 

subprogram, Dpocket. The method is based on the concept of alpha spheres which are 

spheres that contact four atoms on their boundary and contains no internal atom. In a 

typical protein, smaller spheres are located within the protein, larger spheres at the 

exterior, and cavities and clefts correspond to spheres of intermediate radii. Therefore, it 

is possible to filter the ensemble of alpha spheres defined from the atoms of a protein 

according to some minimal and maximal radii values to address pocket detection. 

Accordingly, the Fpocket algorithm includes three steps. The first step involves 

determining the ensemble of alpha spheres based on the protein structure and Fpocket 

returns a pre-filtered collection of spheres. The second step consists of identifying 

clusters of spheres in close proximity, to identify pockets, and to remove clusters of low 

interest or value. During the third step, Fpocket calculates properties from the atoms of 

the pocket, in order to score each pocket [31, 32].   

The Fpocket druggability score (DS) is a numerical value between 0 and 1 

associated to each pocket [33]. This score intends to assess the likeliness of the pocket to 

bind a small drug like molecule. A low score indicates that drug like molecules are not 

likely to bind to this pocket. A druggability score of DS = 0.5 (the threshold) indicates 

that binding of prodrugs or druglike molecules can be possible. DS = 1 indicates that 

binding of druglike molecules is very likely. The descriptors for calculating the DS value 

for a pocket are the normalized mean local hydrophobic density, a hydrophobicity score 
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based on a residue based hydrophobicity scale, and a normalized polarity score [33]. 

Fpocket results will be presented in Chapter 4 of this work. 

The Fpocket subprogram, dpocket, provides the describing features of a pocket 

around a specified ligand. The resulting pocket descriptions include the pocket and ligand 

volumes, scores on hydrophobicity, polarity, solvent accessible surface area, charges, 

flexibility and a breakdown of the types of residues in the pocket. The application of 

dpocket will be further discussed in Chapter 3. 

 

1.4 Molecular Dynamic Simulations 

Molecular dynamics (MD) simulations are not new technologies; the first MD 

simulation of a protein was published in 1977 [34, 35]. The underlying basic principles 

are Newton’s laws of motion. To start the simulation, one is given the positions of all 

atoms in a biomolecular system, and then the forces exerted by all other atoms are 

calculated. The output is the predicted spatial position of each atom as a function of time. 

The result is the MD trajectory, which is essentially a movie showing the physical 

movements of all atoms in the biomolecular system. In recent years, MD simulations 

have become more popular and routinely used by both computational and experimental 

scientists due to several reasons. First, with the breakthroughs in structural biology 

techniques such as cryo-EM, the number of solved experimental structures has increased 

tremendously, including historically difficult classes such as ion channels, G protein-

coupled receptors (GPCRs), etc. Since the success of molecular dynamics depends on the 

availability of the initial structure at an atomic level of details, the increase in the amount 
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of deposited structural data plays an important role in promoting applications of MD 

simulations [34]. Second, computer hardware and MD software have become much more 

powerful and accessible. For example, the new technology graphics processing units 

(GPUs) now enable the completion of a microsecond simulation in a couple of days. 

Much effort has also been put into lowering the learning curve for conducting MD 

simulations; many MD software packages also support a graphical interface with 

simplified system preparation protocols, improving user experience [34].  Accordingly, 

the number of publications featuring MD simulations in the top 250 journals (ranked by 

impact factor) has increased from ~400 to ~1000 from 2007 to 2017 [34]. 

MD simulations can provide a wide range of information. For example, one can 

observe the physical transformation of a protein by viewing an MD trajectory, which can 

then reveal the dynamic behavior of that protein and supply answers to biologically 

relevant questions [34]. Chapter 4 in this thesis will discuss the usage of MD to form 

cryptic pockets, and the conditions of such MD simulations provide qualitative 

explanations for the energetics of pocket formation.  

It is important to note that many biologically relevant processes need relatively 

long timescales. Even with today's technologies, such experiments can become too 

computationally expensive in unguided MD simulations. Fortunately, many enhanced 

sampling techniques are available for capturing long-timescale processes [34]. The 

application of a strategy of biasing one protein conformation to another known as 

adiabatic biased molecular dynamics (ABMD) [36-38], will be discussed in Chapter 4. 
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1.5 Alternative Methods 

The computational tools for identifying binding pockets are not limited to the 

afore mentioned methods. Therefore, a comprehensive review of the computational 

methods available for identifying cryptic pockets is presented in Appendix A [39].  
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CHAPTER 2 Exploring Benchmark Sets to Test Methods of Binding Hot Spot 

Identification 
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2.1 Introduction 

 Binding hot spots are integral to protein-ligand binding and drug discovery. 

Computational methods to identify and characterize binding energy hot spots are 

continuously improved to provide better information for structure-based drug discovery 

[40-43], and we expect that further efforts will be made. Method development and testing 

generally requires benchmark or validation sets, preferably ones that are well accepted 

and widely used. For example, the publication of a protein-protein docking benchmark 

enabled the evaluation of different methods and had a major impact on the field of 

protein docking [44]. Benchmark sets are also available to test the docking of small 

ligands to proteins [45, 46].  

This work aims to develop a benchmark set for testing hot spot identification 

methods, emphasizing application to fragment-based drug discovery. To construct the 

benchmark set, we selected proteins from the Protein Data Bank (PDB) that bind both 

fragments and larger ligands with strict conservation of the starting fragment as a 

substructure [47]. This selection method enabled us to generate a set of 62 entries, each 

binding a fragment with molecular weight (MW) under 200 g/mol and with one or more 

ligands with MW > 250 g/mol. This set will be referred to as the Acpharis set since it has 

been developed in a collaboration between the small company Acpharis and the Vajda 

lab at Boston University. We note that Kellenberger and co-workers also constructed a 

set of proteins binding both fragments and larger ligands [48]. However, most entries in 

the Kellenberger set showed no strict conservation of the starting fragment, and the goal 

of the project was to study the conservation of the binding mode, defined in terms of the 
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protein residues interacting with the ligands. In contrast, in our new Acpharis set, the 

chemical structure of the fragments is strictly conserved upon elaboration into larger 

ligands. As will be shown, the positions and orientations of the fragments are also well 

conserved in this process. In addition to the benchmark set of fragment-bound structures, 

we also constructed a benchmark set that included the protein’s unliganded structures 

whenever such structures were available. The motivation for this set is that finding hot 

spots of proteins without known ligand binding sites is a more realistic problem than 

considering structures with bound ligands.  

The fragment binding sites in the bound and unbound benchmark sets were 

explored using the FTMap program. FTMap has been developed as a close computational 

analog of the X-ray crystallography or NMR-based experimental fragment screening 

methods [19]. The approach distributes small organic probe molecules of varying size, 

shape, and polarity on the protein surface, finds the most favorable positions for each 

probe type, then clusters the probes and ranks the clusters based on their average energy. 

Binding energy hot spots are regions that bind probe clusters for multiple different 

probes. Although this method is less direct than validation by binding experiments, the 

exhaustive docking of fragments by FTMap is based on a physics-based scoring function 

and hence has some thermodynamic validity [19]. It was previously shown that the hot 

spots predicted by FTMap agree well with pockets that bind multiple probes in X-ray 

soaking experiments [28-30], and that the number of probe clusters binding at a hot spot 

predicts the druggability of the site [20].  
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Verdonk and co-workers of Astex have published a somewhat similar set of 

proteins. The motivation for the work was validation of hot and “warm” spots rather than 

testing computational methods of identifying the hot spots. In addition, it was constructed 

by using a very different approach [14]. They searched the PDB [47] for proteins that 

bind several ligands containing the same moiety as a substructure and assumed that if 

such a moiety is placed in the same binding subpocket in multiple structures, then the 

subpocket likely represents a hot or warm spot. The sites were categorized as either hot or 

warm based on the fraction of unique ligands in the PDB that occupy each position 

within the binding site; highly occupied regions were classified as “hot,” whereas less 

frequently occupied regions were classified as “warm.” The analysis resulted in a set of 

52 diverse examples of fragment binding “hot” and “warm” spots [14]. For simplicity, we 

refer to this set as the Astex set.  For comparison, we also constructed a benchmark set of 

the unliganded structures of the proteins in the Astex set and applied FTMap to the 

structures in both sets. As will be discussed, considering all hot spots generated by 

FTMap, we observed similar success rates of finding the fragment binding sites in the 

Acpharis and Astex sets, despite the very different construction methods.  However, we 

have seen major differences when focusing on the strongest hots spots. In the case of the 

Acpharis set, mapping results for fragment-bound and unliganded protein structures are 

generally close since the binding of fragments introduces at most moderate 

conformational changes. In contrast, since the proteins in the original Astex set have been 

co-crystallized with larger ligands, the strongest hot spots frequently shift away from the 

site of the pocket that binds the selected fragment, and the FTMap success rate is lower 
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for these structures than for the unliganded structures of the same proteins. We also show 

that the selected fragments and the hot spots are slightly larger in the Acpharis set than in 

the Astex set and discuss some potential implications.   

2.2 Methods 

2.2.1 Characterization of Hot Spots by FTMap 

The structures were mapped using the aforementioned FTMap algorithm. For the 

Acpharis and Astex sets we applied the FTMap program, implemented in the FTMap 

server [19, 28], to the fragment-bound, maximum ligand-bound, and unbound structures 

listed respectively in columns 4,7, and 10 of Table 2.1 and columns 2 and 4 of Table B.4 

and column 2 bold in Table B.5. The server considers only the protein structure, as all 

hetero atoms, including water molecules, included in the structure file, are removed prior 

to mapping. 

2.2.2 Calculation of Overlap Percentages 

The percent spatial overlap of the fragment binding site by a hot spot was defined 

as OF = 100%*(NF/NFT), where NFT  denotes the total number of non-hydrogen atoms of 

the fragment. NF is the number of such fragment atoms within 2 Å from any non-

hydrogen atom of any probe in the hot spot. Conversely, the percent spatial overlap of a 

hot spot by a fragment was defined as OHS = 100%*(NHS/NHST), where NHST denotes the 

total number of atoms of all probes in the hot spot. NHS is the number of such atoms 

within 2 Å from any non-hydrogen atom of the fragment. Similar definitions were used to 
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measure the spatial overlap of the ligand binding site by a hot spot and the spatial overlap 

of the hot spot by the ligand.  

2.2.3 Calculation of Pocket Volumes 

We have used the dpocket option of the Fpocket program for determining the 

volumes of fragment binding pockets.[31, 32] Fpocket is based on the concept of alpha 

spheres. Each alpha sphere is a sphere that contacts four atoms on its boundary and 

contains no internal atom. For a protein, very small spheres are located within the protein, 

large spheres at the exterior, and clefts and cavities correspond to spheres of intermediate 

radii. The ensemble of alpha spheres defined from the atoms of a protein was filtered 

using the default minimal and maximal radii values in Fpocket. Once the alpha spheres 

are selected, to calculate pocket volume, the dpocket algorithm defines a box containing 

all atoms and vertices situated within 4Å of the fragment, which is the default value. The 

pocket volume is calculated using a Monte Carlo algorithm. The algorithm picks a 

random point in the space within the box, checks if it is included in any alpha sphere, and 

stores this status. This is repeated N=2500 times, and the pocket volume is estimated as 

the number of hits divided by 2500, scaled by the size of the box. For calculating pocket 

volumes in an unbound structure, the structure is superimposed on the bound structure 

co-crystallized with the fragment to determine the position of the fragment binding 

pocket.  
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2.2.4 Identification of Hydrogen Bonding Residues  

We selected the residues of the fragment binding pocket using the distance 

threshold of 4Å between any protein atom and an atom of the bound fragment. In the 

unbound structures, the residues were selected after copying the fragment from the bound 

structure. For each protein in the benchmark sets, we determined the hydrogen bonding 

residue in all ligand-bound structures of the protein with at least 95% sequence identity 

using the HBPLUs program [49]. Binding site residues that formed a hydrogen bond in 

any of these structures were considered the “true” hydrogen bonding residues. The 

FTMap server determines the hydrogen bonds between all atoms of the probes and the 

individual protein residues using the HBPLUS program [49], and we selected the 

fragment binding residues among the hydrogen bonding residues provided by the server 

as the predictions. To describe the quality of predicting the hydrogen bonding residues in 

the fragment binding site, we counted the numbers of true positives (TP), true negatives 

(TN), false positives (FP), and false negatives (FN). These values are shown in Tables 

B6, B7, B8, and B9 for the bound and unbound Acpharis and the bound and unbound 

Astex sets. According to these tables, the number of residues that form hydrogen bonds 

with some ligand varies between 5 and 23. We also calculate the precision P = 

TP/(TP+FP), recall R = TP/(TP+FN), the F score defined by the expression F = 2 

PxR/(P+R), and the Matthew ‘s correlation coefficient defined by the formula MCC = 

[(TPxTN) – (FPxFN)] / [(TP+FP)x(TP+FN)x(TN+FP)x(TN+FN)]1/2. These values are 

also shown in Tables B1 through B9 as well as in the supplementary information 

published with this project [50]. We note that TN+FN = 0, which happens for several 
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proteins, implies that the denominator is 0 in the expression of MCC. Therefore, we use 

the F scores as the overall measure of prediction quality and show their distributions in 

Figures 2.6c and 2.6d. 

2.3 Results and Discussion 

2.3.1 Acpharis Benchmark Sets of Proteins with Fragment and Ligand Binding 

To build the benchmark set of target proteins, potential “fragment”-type ligands 

were found by searching the PDB for small molecules with molecular weights between 

80 and 200 g/mol. Extremely common species appearing in over 20 structures were 

excluded. For the remaining fragments, examples of them being grown into larger 

compounds were then found by using the substructure search function in the PDB. We 

included ligands that (1) bind to the same protein as the fragment, (2) bind in a similar 

orientation and location as the fragment, and (3) are significantly larger than the fragment 

(at least one ligand must have molecular weight ≥ 250 g/mol). Whether a ligand was 

considered to bind in a similar orientation as a fragment was determined by first 

superimposing the PDB structures containing the ligand and fragment in PyMOL, then 

calculating the RMSD between the fragment atoms the portion of the ligand that matched 

the fragment. The fragment and ligand were considered a match if RMSD < 2 Å, or if the 

“scaled RMSD,” defined as the RMSD divided by the average distance between all atoms 

in the fragment, was < 0.7. After applying these criteria, the benchmark set contained 62 

fragment-protein pairs, with 48 unique proteins and 52 unique fragments, the latter shown 

in Figure 2.1. We note that 25 of these 62 cases are also in the Kellenberger set 

containing 359 fragment-ligand substructure pairs.[48] However, only these 25 pairs 
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satisfy the condition of strict fragment conservations and hence are included in the 

Acpharis benchmark set. The remaining cases in the Kellenberger set have similar but not 

identical substructures and were therefore excluded. In contrast, the fragments in the 

Acpharis set have structures that are strictly conserved when forming larger ligands. 

Figure 2.2 demonstrates this level of conservation for 1LQ, the first fragment in Figure 

2.1.  

In Table 2.1, we list the Uniprot IDs of the selected proteins, the three-character 

PDB IDs of the unbound proteins that the fragments were co-crystallized with, the PDB 

ID of the fragment-bound protein with the chain ID included, the molecular weight of the 

fragment, the number of additional larger ligands of the protein in the benchmark set, the 

PDB ID of the protein with the largest bound ligand, and the molecular weight of that 

largest ligand. We also show the RMSD between the fragment when bound alone versus 

the position of the corresponding atoms in the largest bound ligand. The table has 

additional columns that will be discussed below. All proteins with bound ligands are 

listed in Table B.2. As shown, 20 of the fragment-protein pairs have only a single bound 

ligand, in addition to the bound fragment. Still, for the other 42 pairs, X-ray structures 

exist of the protein with various bound compounds that contain the fragment as part of 

their chemical structure.  

Table 2.1. Fragment and Ligand Bound Structures, Fragment IDs, and Molecular Weights in the Acpharis Benchmark 
Set. 

No. 
UniProt 

ID 
Frag. 

ID 
FRAG. 

PDB IDa 
FRAG. 

MW 
No. 
Lig.b 

Max lig. 
PDB 
IDc 

Max 
lig. 

MWd 
Max 

RMSDe 
Unbound 
PDB IDf 

1 P55201 12Q 5T4U_A 159.19 1 5T4V 383.42 0.47 4LC2_A 
2 Q92831 12Q 5FE1_A 159.19 1 5FE9 266.32 0.27 5FE6_B 
3 P11142 1LQ 5AQP_E 145.16 3 5AQV 381.43 0.52 5AQM_A 
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4 P00918 1SA 2HNC_A 180.21 4 3MHC 342.44 0.75 3KS3_A 
5 P07900 2AE 2YE6_A 136.15 8 4AWO 503.64 0.43 5J80_A 
6 P56817 2AQ 2OHL_A 144.17 4 3RVI 443.62 0.67 3TPJ_A 
7 O60885 3PF 4DON_A 162.19 5 4E96 347.39 1.5 4LYI_A 
8 P07900 42C 3HZ1_A 163.18 1 3HZ5 351.41 0.32 5J80_A 
9 Q13526 4BX 3KAC_A 190.2 1 3KAH 389.41 0.91 2ZQT_A 

10 P08709 7XM 5PAW_B 159.19 16 5TQG 681.72 0.58 1JBU_H 
11 P56817 8AP 2OHM_A 199.25 2 2OHU 421.49 2.26 3TPJ_A 
12 O95696 8T1 5POE_A 174.2 1 5POC 283.08 0.54 5PQI_B 
13 P25440 A9P 4ALH_A 173.21 3 4ALG 415.44 0.52 5IBN_A 
14 B9MKT4 ADA 4YZ0_B 194.14 1 4EW9 352.25 0.36 3T9G_A 
15 P00720 ALE 4LDO_A 183.2 2 4QKX 379.47 0.66 5NDD_A 
16 Q7N561 AMG 5ODU_C 194.18 2 5OFI 614.62 0.21 5OFZ_B 
17 P28720 AQO 1S39_A 161.16 43 4FR1 545.68 0.8 4Q8M_A 
18 P08709 AX7 5PAR_C 133.15 4 5PAI 501.5 1.1 1JBU_H 
19 P00734 BEN 3P70_H 120.15 6 4BAK 470.61 0.43 2UUF_B 
20 P9WIL5 BZ3 3IMC_A 147.17 2 3IUB 345.37 0.43 3COV_B 
21 P28482 CAQ 4ZXT_A 110.11 1 3SA0 260.2 0.77 4S31_A 
22 P47228 CAQ 1KND_A 110.11 3 1LKD 255.1 0.25 1HAN_A 
23 P80188 CAQ 3FW4_C 110.11 11 5KID 746.76 0.94 None 
24 Q3JRA0 CYT 3MBM_A 111.1 4 3K2X 353.11 0.27 None 
25 Q63T71 CYT 3IKE_B 111.1 2 3IEW 483.16 0.48 None 
26 P15555 DAL 1IKI_A 89.09 1 1PW1 429.47 1.61 None 
27 P56817 EV0 3HVG_A 153.18 1 3VV8 331.41 1.96 3TPJ_A 
28 P00918 EVJ 4N0X_B 163.22 3 1I8Z 471.57 0.34 3KS3_A 
29 P00918 FB2 2WEJ_A 157.19 43 3M96 460.75 0.9 3KS3_A 
30 P68400 GAB 5CSV_A 137.14 2 5MO8 479.95 0.56 5CVG_A 
31 P54818 GAL 4CCE_A 180.16 1 4CCC 301.25 0.24 None 
32 A0A083Z GLA 6EQ0_B 180.16 4 6EQ1 666.58 0.22 None 
33 P32890 GLA 1DJR_G 180.16 5 1PZI 556.56 0.24 1LTS_D 
34 P42592 GLA 3W7U_B 180.16 1 3W7X 342.3 0.73 3D3I_B 
35 Q57193 GLA 5ELB_D 180.16 4 1PZK 621.75 0.24 5LZJ_B 
36 Q9ALJ4 GLA 4FNU_B 180.16 1 4FNT 504.44 0.49 4FNQ_A 
37 P39900 HAE 1OS2_D 75.07 5 1JIZ 393.46 1.77 2MLR_A 
38 Q9H2K2 JPZ 4PNN_B 146.15 36 5FPG 477.51 0.26 4PNT_D 
39 P24941 LZ1 2VTA_A 118.14 8 2R64 453.56 1.28 4EK3_A 
40 P24941 LZ5 2VTL_A 187.2 3 2VTP 360.29 0.55 4EK3_A 
41 P24941 LZM 2VTM_A 144.13 1 2VTS 313.4 0.92 4EK3_A 
42 P00918 M3T 4Q9Y_A 124.2 6 3M96 460.75 1.86 3KS3_A 
43 P39900 M4S 3LKA_A 187.22 4 1JIZ 393.46 0.79 2MLR_A 
44 P09874 MEW 4GV7_B 160.17 1 1UK0 377.45 0.32 4XHU_A 
45 P29477 MR1 2ORQ_A 151.16 2 1DD7 479.49 1.74 None 
46 P29477 MSR 2ORQ_A 160.17 3 2ORS 388.38 0.3 None 
47 Q10588 NCA 1ISM_A 122.12 1 1ISJ 335.23 0.91 1ISF_B 
48 Q05603 NIO 1L4N_A 123.11 1 1L4L 335.2 0.12 None 
49 Q08638 NOJ 1OIM_A 163.17 1 2WBG 316.39 0.49 5OSS_A 
50 Q4D3W2 ORO 2E6A_B 156.1 6 3W2U 396.24 0.49 None 
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51 P0ABQ4 Q24 3QYO_A 160.18 1 3KFY 302.78 1.03 1RA9_A 
52 P00918 RCO 4E49_A 110.11 2 4FIK 282.33 0.32 5DSR_A 
53 P19491 SHI 1MS7_A 172.14 2 1N0T 322.25 0.53 None 
54 P06820 ST3 1IVE_A 194.19 2 1INH 252.25 0.96 4H53_D 
55 Q6PL18 TDR 4QSU_A 126.11 3 4QSW 258.23 0.33 4QSQ_A 
56 Q6TFC6 TDR 3FS8_B 126.11 2 3FSB 547.35 0.48 None 
57 Q8K4Z3 TDR 3RO7_A 126.11 2 3ROG 322.21 0.85 None 
58 P25440 TVP 4A9H_A 189.25 1 4UYF 434.92 0.19 5IBN_A 
59 Q92793 TYL 4A9K_B 151.16 1 5I83 296.36 2.16 5KTU_B 
60 P07900 XQ0 2YEC_A 148.16 7 5ODX 493.56 0.59 5J80_A 
61 Q9WYE2 ZWZ 2ZWZ_A 176.21 5 2ZX5 347.41 0.31 1HL8_B 
62 P16083 ZXZ 3NHW_A 173.21 2 3NHK 263.29 0.94 None 

aPDB ID and chain ID of the structure with bound fragment. bNumber of ligands binding to the 
protein and containing the fragment as the substructure. cPDB ID of the protein in complex with 
the largest ligand. dMolecular weight of the largest ligand. eMaximum RMSD between the 
fragment and the corresponding atoms as the substructure in any of the ligands. fPDB ID and 
chain ID of the unbound structure. “None” indicates that no unbound structure is available in the 
PDB.  
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2.3.2 FTMap Analysis of the Achparis Set 

We applied the FTMap program to the fragment-bound structures listed in column 

4 of Table 2.1. FTMap was able to detect the fragment binding pocket in nearly every 

case, as the vast majority of such pockets contained at least one significant consensus site 

(see Methods). A consensus site was considered to overlap with a fragment if any atom of 

any probe in the consensus site was located within 2 Å of any atom of the fragment. For 

each entry in the benchmark set, comprising a fragment with a given ID bound to a 

protein of given by the Uniprot ID, our analysis returned five lines of results, capturing 

the number and strength of the hot spots (consensus sites) identified by FTMap, the 

degree of overlap between each consensus site and the small fragment ligand, and the 

corresponding degree of hot spot overlap for the largest ligand that contains the fragment 

as a substructure. 

Table 2.2 and Figure 2.3 shows an example of these results for the protein human 

carbonic anhydrase II (Uniprot ID P00918, PDB structure 2HNC) binding to the 

fragment 5-amino-1,3,4-thiadiazole-2-sulfonamide (PDB ligand code 1SA), which is 

entry 4 in Table 2.1. Table 2.2, line 1 lists the consensus sites identified by FTMap from 

strongest to weakest, denoted as 00 to 06, the convention we use in the FTMap server 

[19]. The number in parenthesis indicates the number of probe clusters at each consensus 

site; thus, 00(25) means that the strongest consensus site 00 binds 25 probe clusters. We 

have described previously that a hot spot with at least 13 probe clusters indicates a site 

capable of binding drug-sized molecules with millimolar or better affinity, whereas 16 or 

more probe clusters predict a druggable site with the potential of low micromolar or 
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better binding [20]. Thus, the consensus cluster 00(25) in 2HNC chain A predicts a strong 

binding hot spot. The protein has two additional well-defined but weaker hot spots, 

03(12) and 04(09), that interact with the fragment 1SA. Line 2 in Table 2.2, labeled as 

“frag_hs”, shows the percentage of the fragment covered by the hot spot. This overlap 

measure is defined as the number of nonhydrogen atoms of the fragment within 2 Å of 

any atom of any probe in the consensus cluster, divided by the total number of 

nonhydrogen fragment atoms, and multiplied by 100 to get the percent overlap [22].  

Thus, 00(25), shown in cyan in Figure 2.3a, covers 100% of the atoms in fragment 1SA, 

and the consensus clusters 03(12) and 04(09), shown in salmon and white, respectively, 

partially overlap with 1SA. We note that FTMap generates and clusters 2000 poses for 

each probe type, but in the figures, we show only the probe pose at the center of the low 

energy clusters that define each consensus site. Thus, the probes overlap with the 

fragment better than shown in the figures but including all probes would make the 

fragment entirely covered and not visible. Line 3, labeled “hs_frag,” indicates the inverse 

relationship, i.e., what percentage of each hot spot is occupied by the fragment. 

Accordingly, this measure is defined as the number of probe atoms in the consensus 

cluster within 2 Å of any nonhydrogen fragment atom, divided by the number of probe 

atoms in the consensus cluster. These two overlap measures usually have similar values 

but may differ if the hot spot is substantially smaller or larger than the fragment. As 

shown in Table 2.2, the percent coverage of the fragment 1SA by the top hot spot 00(25) 

and the percent coverage of the hot spot 00(25) by the fragment 1SA are 100% and 60%, 
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respectively, as the hot spot is larger than the fragment, leaving 40% of the probe atoms 

>2Å distant from any atom of the fragment.  

 

Figure 2.2. Fragment 1LQ and ligands that contain the fragment as a substructure.  
The fragment and the ligands, all bound to the HSP70 protein, are from the PDB structures 5AQP (chain E), 5AQT 
(chain A), 5AQU (chain A), and 5AQV (chain A).  
 
Table 2.2. Detailed mapping results for the fragment-bound protein with UniProt ID 
P00918 bound by fragment 1SA (PDB 2HNC) 

PDB 
IDa,b Overlapc 

Hot Spotsd 

0 1 2 3 4 5 6 
2HNC_A map 00(25) 01(16) 02(12) 03(12) 04(09) 05(08) 06(04) 
2HNC_A frag_hs 100% - 10% 70% 30% - - 
2HNC_A hs_frag 60% - 1% 97% 10% - - 
2HNC_A max_hs 68% - 5% 32% 68% - 14% 
2HNC_A max_lig 68% - 1% 97% 88% - 26% 
a Fragment ID and Uniprot ID of the protein  
b PDB ID and chain ID of the protein in complex with the fragment that was mapped 
by FTMap 
c Mapping results: map – hot spots ranking, with the number of probe clusters in 
parenthesis; frag-hs - percentage of the fragment covered by the hot spot; frag – 
percentage of hot spot covered by the fragment; max_hs - percent coverage of the 
largest ligand by the hot spot; max_lig - percent coverage of the hot spot by the largest 
ligand. d The 7 hot spots with the highest number of probe clusters. 

 

The last two lines in the data table describe the extent of the hot spot overlapping 

with the largest ligand that contains the fragment as a substructure. In the example shown 

in Table 2.2 we consider chain A of the liganded carbonic anhydrase protein structure 

3MHC, which contains the largest ligand, (3S,5S,7S)-N-(5-sulfamoyl-1,3,4-thiadiazol-2-

yl)tricyclo[3.3.1.1~3,7~]decane-1-carboxamide (PDB ligand ID ARZ), that includes 1SA 
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as a substructure (Figure 2.3b). Line 4 in Table 2.2, labeled “max_hs”, measures the 

percent coverage of the largest ligand by each hot spot, calculated as the fraction of the 

nonhydrogen ligand atoms within 2 Å of the probe atoms in the consensus cluster. As 

shown in Figure 3b, the hot spot 04(09), shown in white, and even 06(04), shown in 

orange, overlap with the ligand, with 68% and 14% coverage, respectively. Finally, line 5 

in Table 2.2, labeled “max_lig”, shows the percent coverage of each hot spot by the 

ligand, which is at least as great as the coverage of the hot spot by the fragment, and 

sometimes greater. As shown in Table 2.2 and in Figure 2.3b, the ligand ARZ covers the 

88%, of the hot spot 04(09), whereas the fragment covers only 19% of this hot spot 

(Figure 2.3a). Mapping results for all 62 liganded structures of the Acpharis benchmark 

can be found in the Supplementary Infromation of the published work [50].  

 
Figure 2.3. Demonstration of fragment and ligand coverage by a hot spot in ligand-bound and unbound 
structures.  
(a) The fragment 1SA, bound to human carbonic anhydrase II (2HNC, chain A), is 100% encompassed by the strongest 
hot spot 00(25), shown in cyan. Other hot spots that interact with the fragment are 03(12) and 04(09), shown in salmon 
and white, respectively. The fragment covers 60% of the consensus cluster 00(25), and 97% of 03(12). (b) The hot spot 
00(25) covers only 68% of the largest ligand ARZ that incorporates fragment 1SA as a substructure. However, the 
ligand also overlaps with the hot spot 06(04), shown in orange, that is far from the fragment. (c) Mapping the unbound 
structure of carbonic anhydrase II (3KS3, chain A) places the strongest hot spot, 00(16), in a similar location on the 
protein, but the shape and position of the hot spot are slightly altered so that now it covers only 70% of the pocket that 
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corresponds to the fragment binding location. However, there is a new hot spot, 02(15), shown in yellow, which covers 
90% of the fragment, copied into the unbound structure from the bound structure 2HNC. (d) The hot spot 00(16) covers 
only 36% of the largest ligand. However, the ligand also interacts with the hot spot 06(08), shown in orange. 
 

2.3.3 Hot Spot Analysis of The Achparis Benchmark Set Using Unbound Protein 

Structures 

The goal of hot spot analysis is to find ligand binding sites on proteins that in 

most cases have no known ligand, and hence a more realistic test of such methods 

requires a benchmark set of unbound protein structures. Table B.3 shows all unbound 

structures for the proteins included in the Acpharis benchmark set. Unbound structures 

were found only for 44 proteins representing 48 of the protein/fragment pairs in the 

liganded benchmark set. Some of these proteins have many deposited unbound structures, 

and in such cases, we selected the structure with the highest resolution for the benchmark 

set of unbound protein structures. If several structures had the same resolution, the one 

with better sequence coverage was selected. The PDB IDs of structures in the resulting 

unbound benchmark set are shown in bold in Table B.3. The fragment binding site in 

each unbound structure was determined by superimposing it on the fragment bound 

structure of the same protein shown in Table 2.1. Detailed results for the selected 

unbound structures can be found in the supplementary material of the published work 

[50], and as an example, the results for the unbound structure of human carbonic 

anhydrase II are shown in Table 2.3. The mapping results for the fragment-bound 

structure of the same protein (Uniprot ID P00918) were shown in Table 2.2.  
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Table 2.3. Detailed mapping results for the unbound protein with UniProt ID P00918 
(PDB 3KS3) 

PDB 
IDa,b Overlapc 

Hot Spotsd 

0 1 2 3 4 5 6 
3KS3_A map 00(16) 01(16) 02(15) 03(12) 04(08) 05(08) 06(08) 
3KS3_A frag_hs 70% - 90% 80% 100% - - 
3KS3_A hs_frag 45% - 20% 94% 74% - - 
3KS3_A max_hs 36% - 36% 36% 50% - 50% 
3KS3_A max_lig 45% - 20% 94% 72% - 94% 
a Footnotes are the same as for Table 2.2. 

 

As shown in Table 2.3, the strongest hot spot of the unbound protein with PDB ID 

3KS3_A is 00(16), thus substantially weaker than the main hot spot 00(25) of the 

fragment-bound structure shown in Table 2.2, and this hot spot covers 70% of the 

location of the fragment 1SA (Figure 2.3c).  Conversely, the fragment covers only 45% 

of this hot spot. The hot spot 02(15), shown in yellow, covers 90% of the fragment, 

copied into the unbound structure from the bound structure 2HNC. (Figure 2.3d) The hot 

spot 00(16) covers only 36% of the largest ligand that incorporates the fragment 1SA as a 

substructure, but the ligand also interacts with the hot spot 06(08), shown in orange. 

 

2.3.4 Analysis of the Astex Bound and Unbound Benchmark Sets 

We also used FTMap to assess the correspondence between binding energy hot 

spots and fragment binding sites for the proteins in the Astex set. Table B.4 lists the 

ligand-bound PDB structures included in the Astex set by Verdonk and co-workers.[14] 

Column 2 of the table lists the PDB ID and chain ID of the representative protein-

fragment complex shown in Table 1 of the Rathi paper [14]. FTMap was applied to these 

structures to identify the hot spots present in the bound structures, with detailed results 

presented in the supplementary material of the published work [50]. We then looked for 

unbound structures in the PDB. Unbound structures were found for 39 of the 52 proteins 
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from the original Astex set, most of which have many such structures deposited (Table 

B.5), similarly to the Acpharis set. In the published supplementary material, we show 

results for the unbound structures with the highest resolution, shown in bold in Table B.5.  

2.3.5 Comparing the Astex and Achparis Sets 

While the four coverage measures, including the overlap of each hot spot with the 

fragment as well as with the largest ligand, were shown for carbonic anhydrase II in 

Tables 2.2 and 2.3, we introduced a more straightforward measure for the overall 

comparison of the benchmark sets. The goal of the benchmark sets is to test hot spot 

identification methods, and thus we primarily want to know whether any of the strong hot 

spots overlap with the fragment binding site. To assess this feature, we arbitrarily 

selected 50% and 80% thresholds as the extent to which a hot spot must cover a fragment 

to count as positive identification of the fragment binding site. The last two columns in 

Table 2.1 list, for each protein-fragment combination in the Acpharis benchmark set, the 

strongest hot spot with ≥ 50% coverage of the fragment, and the number of probe clusters 

in the hot spot. As previously shown, a hot spot with 13 or more probe clusters predicts a 

site capable of ligand binding, whereas a hot spot with 16 or more clusters is predicted to 

be druggable [20]. Therefore, in Table 2.4, we list percentages of proteins that have hot 

spots with 13 or more probe clusters and at least 50% or 80% coverage, as well as the 

percentage of proteins in which a hot spot with 16 or more probe clusters covers at least 

50% of the fragment binding site. We first show the percentage of proteins that have any 

hot spot with these properties and then the percentage of proteins in which the strongest 

hot spot 00 satisfies these conditions. 
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Table 2.4. Percentages of proteins with any hot spots or the top hot spot with 13+ or 16+ 
probe clusters and at least 50% or 80% coverage of the fragment binding site in the 
Acpharis and Astex benchmark sets. Overall probe density is also shown. 

Benchmark 
Set Type N 

Any hot spot, % Top hot spot, % Average 
Number 
of Probes 

Probe 
Density 13+ 

50%  
13+ 
80%  

16+ 
50% 

13+ 
50%  

13+ 
80%  

16+ 
50% 

Acpharis 
Bound 62 77.4 69.3 70.9 56.5 50.0 56.5 31.1 0.055 

Unbound 48 77.1 62.5 62.5 56.3 43.7 56.3 34.2 0.059 

Astex 
Bound 52 78.8 69.2 62.5 42.3 36.5 40.4 27.3 0.062 

Unbound 39 74.3 66.6 66.6 53.8 48.7 53.8 24.0 0.057 

 

Considering any hot spot and 50% or 80% coverage with 13+ probe clusters, 

FTMap finds the fragment binding sites in essentially the same fraction of proteins in the 

Acpharis and the Astex sets. When restricting consideration to hot spots with 16+ probe 

clusters, the fraction of correct sites is somewhat higher for the fragment-bound 

structures in the Acpharis set than in the Astex set. We also note that the success rates are 

higher for the bound forms than for the unbound structures in almost all cases. This 

agrees with the observation that it is generally easier to dock back a ligand into the bound 

structure than into an unbound structure [51-53]. However, according to Table 2.4, 

considering any hot spot, the differences between bound and unbound structures are 

relatively small, in agreement with a similar recent observation concerning the 

identification of ligand binding sites [54].  

Restricting consideration to the top hot spot 00 always reduces the success rate as 

expected and creates a noticeable difference between the two benchmark sets. In the 

Acpharis set, FTMap finds the fragment binding sites in more fragment-bound structures 

than unliganded pairs. In contrast, in the Astex set, the success rates are substantially 
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higher for the unbound than for the bound structures. The explanation is that the latter 

structures have been co-crystallized with larger ligands rather than with fragments as in 

the Acpharis bound set. The binding of such ligands is likely to open up regions of the 

site farther away from the fragment binding pocket, which is considered the hot or the 

warm hot spot. For example, in the very first protein of the Astex set (PDB 4PFJ), the hot 

spot is considered to overlap with an adenine fragment. The protein structure 4PFJ given 

by Rathi et al. [14] is an adenosylhomocysteinase that binds an adenosine molecule. The 

top hot spot 00(19), shown in cyan in Figure 2.4a, overlaps only with 18% of the 

fragment, whereas the second hot spot, 01(13), shown in purple, has 100% overlap. 

However, 4PFJ binds an adenosine molecule rather than only the adenine fragment. 

Considering the entire ligand reveals that the strongest hot spot 00(19) finds the sugar-

binding rather than the adenine binding pocket (Figure 2.4b).  

 
Figure 2.4. Mapping of 4PFJ, the first protein in the Astex set.  
The adenine fragment is shown as green sticks. (a). The second hot spot, 01(13), shown in purple, overlaps with the 
fragment, but the top hot spot, 00(19), shown in cyan, does not. (b) The top hot spot 00(19) is at the location binding 
the sugar moiety of the adenosine ligand co-crystallized with the protein in 4PFJ.  
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Table 2.5. Detailed mapping results for the third protein (PDB 2VCQ, chain B) in the Astex set and the 
corresponding unbound structure (PDB 3EE2, chain B) in the unbound Astex set. 

PDB 
IDa,b Overlapc 

Hot Spotsd 
0 1 2 3 4 5 6 

2VCQ_B map 00(15) 01(13) 02(11) 03(10) 04(08) 05(07) 06(06) 
2VCQ_B frag_hs - - 67% 17% - - 100% 
2VCQ_B hs_frag - - 35% 2% - - 57% 
2VCQ_B max_hs - 9% 29% 41% - - 21% 
2VCQ_B max_lig - 6% 80% 55% - - 67% 
3EE2_B map 00(33) 01(20) 02(19) 03(11) 04(04) 05(03) 06(02) 
3EE2_B frag_hs 100% - - - - - - 
3EE2_B hs_frag 61% - - - - - - 
3EE2_B max_hs 35% 9% - 21% - - - 
3EE2_B max_lig 82% 5% - 46% - - - 
a Footnotes are the same as for Table 2.2. 

 

 
Figure 2.5. Mapping the third protein, prostaglandin D2 synthase, of the Astex set.  
The fragment, benzene, is shown as green sticks. (a) Mapping the ligand-bound structure 2VCQ in the benchmark set. 
The only hot spot overlapping with the benzene fragment is 06(06), shown in orange. (b) The hot spot 02(11), shown in 
yellow, overlaps with the isoxazole moiety of the ligand. (c) The second strongest hot spot, 01(13), from mapping 
2VCQ and shown in purple, overlaps with a larger inhibitor in the structure 1V40. (d) Mapping the ligand-free structure 
yields the single hot spot 00(33), which 100% covers the fragment binding site.  

 

As another example, we consider the mapping of the third protein in the Astex set, 

prostaglandin D2 synthase (PDB 2VCQ), because it has a ligand-free structure (PDB 
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3EE2). Table 2.5 shows the FTMap results extracted from data available in the 

supplementary material of the published work [50]. Based on Rathi et al., the fragment 

binding at the hot spot of 2VCQ is a benzene molecule [14]. However, mapping 2VCQ 

places only the very week hot spot 06(06), shown in orange, at the benzene binding site, 

and another week hot spot, 02(11), partially overlapping with the site (Figure 2.5a). 

2VCQ is the structure of the prostaglandin D2 synthase co-crystallized with 3-phenyl-5-

(1H-pyrazol-3-yl)isoxazole, and considering the ligand shows that 02(11), shown in 

yellow,  actually overlaps with the isoxazole moiety (Figure 2.5b). A stronger hot spot, 

01(13), shown in purple, is further away. The top hot spot, 00(15), is an entirely different 

pocket, and is not shown in Figures 2.5a-c. We note that prostaglandin D2 synthase also 

binds a larger inhibitor, 3-(1,3-benzothiazol-2-yl)-2-(1,4-dioxo-1,2,3,4-

tetrahydrophthalazin-6-yl)-5-[(e)-2-phenylvinyl]-3h-tetraazol-2-ium (PDB 1V40), and 

the hot spot 01(13) overlaps with this ligand (Figure 2.5c). While mapping the ligand-

bound structure yields four relatively weak hot spots (see Table 2.5), mapping the 

unliganded prostaglandin D2 synthase (PDB 3EE2) finds only one very strong hot spot 

00(33). Since the latter overlaps with the benzene moiety, it confirms that the benzene 

binding pocket is indeed the most important hot spot. However, this result was obtained 

only when mapping a ligand-free structure, demonstrating that such structures provide a 

better benchmark set fort testing hot spot identification methods. Therefore, we consider 

it important that we have added unliganded structures for proteins in both the Acpharis 

and Astex sets. As shown in Table 2.4, the unbound structures for the two sets exhibit 

similar properties, both when considering any hot spot or only the strongest one. The 
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2VCQ example demonstrates that mapping ligand-bound structures may provide 

information how ligand binding affects the arrangement of hot spots, but the location of 

the strongest hot spot may be lost.  

As shown in Table 2.4, the differences between the proteins in the Acpharis and 

Astex sets are moderate if we consider the overlap of the fragment with any hot spot. 

Thus, the conformational changes due to ligand binding tend to affect only the location of 

the strongest hot spot, rather than the overall coverage of the fragment binding site. To 

confirm this observation, in Table 2.4 we show the total number of probe clusters at the 

fragment binding site, averaged over the proteins in each set. Table 2.4 also includes 

probe densities, obtained by dividing the average number of probe clusters in the 

fragment binding site by the volume of the site. Although the proteins in the Acpharis set 

tend to bind more probe clusters than the ones in the Astex set, the volumes of fragment 

binding pockets are also larger (Table 2.6), and the average probe density is actually the 

highest in the original (ligand-bound) Astex set. Thus, many probes still cluster at the 

fragment binding site, but in some of the ligand-bound structures FTMap finds even 

stronger hot spots in other regions of the ligand binding site.  

 

Table 2.6. Pocket volumes in the benchmark sets, Å3 

Set 
Unbound Bound 

Mean STDEV Mean STD 

Astex 428.34 140.83 433.02 150.77 
Acpharis 577.48 161.46 566.76 208.43 
Ichihara 660.64 229.77 599.50 152.17 

FBLD 637.10 256.85 618.50 212.52 
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As shown in Table 2.6, the average volumes of the fragment binding pockets are 

larger in the Acpharis set than in the Astex set, and the differences are significant for both 

bound and unbound structures (p < 0.01). The distribution of volumes is shifted to larger 

values for the unbound Acpharis proteins (Figure 2.6a), and while the two distributions 

become more similar for the bound structures, the distribution is wider for the Acpharis 

set (Figure 2.6b). This partly occurs due to differences in the average fragment size, 120 

g/mol and 154 g/mol in the Astex and Acpharis sets, respectively. Since we calculate 

pocket volumes using the dpocket algorithm [32, 33], which defines the pocket by the 

atoms within 4Å of the fragment, larger fragments by definition result in larger pockets, 

even for unliganded structures. However, the difference in pocket volumes does not 

affect the FTMap success rates when considering the unbound structures (Table 2.4). In 

Table 2.6 we also show fragment pocket volumes for the drug target-fragment pairs 

collected by Ichihara et al. [55] from FBLD campaigns. The same pairs were also studied 

by Radoux et al. [41], who added an unliganded structure to each protein. The fragments 

in the Ichihara set have the average molecular weight of 182.14 g/mol, thus are even 

larger than the fragments in the Acpharis set. Since the Ichihara set includes only 21 

protein-fragment pairs, we added 53 fragment-bound structures, listed in Table B.6, also 

from papers describing FBLD experiments, and identified a total of 3144 unbound 

structures for the 53 proteins. The average pocket volumes for both bound and unbound 

structures are comparable to the volumes seen for the Acpharis and Ichihara sets (Table 

2.6), thus the FBLD screens also use larger fragments than the fragments selected by 



 

 
34 

Rathi et al. [14]. The smaller hot spots identified for the Astex set suggest that it could be 

possible to use smaller fragment for FBLD screens. In fact, Astex reported good results 

using ultra-low-molecular-weight ligands called “minifrags” to guide drug design [56]. 

So far, we focused only on the question of how well the location of hot spots can 

be identified. However, several studies emphasize that the hot spots intersperse 

hydrophobic patches with hydrogen bonding residues [19, 40, 55]. The FTMap server 

also provides information on hydrogen bonds between the probe molecules and protein 

residues [19].  We extracted this information for the residues in the fragment binding 

pockets and compared the results to the hydrogen bonds seen in X-ray structures. To 

obtain the “true” hydrogen bonding residues we collected all ligands binding to each 

protein and identified all residues in the pocket that formed a hydrogen bond with any 

ligand. To describe the quality of predictions we calculated several measures, namely true 

positives, true negatives, false positives, false negatives, precision, recall, F scores, and 

Matthew correlation coefficient (MCC). Detailed results are provided in tables B.7 and 

B.8. As shown in Figures 2.6c and 2.6d, the F1 values are very similar for all sets. The 

average F scores for unbound and bound structures are 0.78 and 0.77 for the Astex set, 

and 0.80 and 0.82 for the Acpharis set, demonstrating fairly high success rates for all four 

sets.  
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Figure 2.6. Distributions of pocket volumes and success rates of identifying hydrogen bonding residues in Astex 
and Acpharis benchmark sets.  
(a) Volumes of fragment binding pockets in the ligand-free protein structures. (b)  Volumes of fragment binding 
pockets in the fragment-bound (Acpharis set) and ligand-bound (Astex set) protein structures. (c) F scores of predicting 
hydrogen bonding residues in the fragment binding pockets of unbound protein structures. (d) F scores of predicting 
hydrogen bonding residues in the fragment binding pockets of bound protein structures. 
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2.4 Conclusion 

We have selected 62 proteins to form a benchmark set, referred to here as the 

Acpharis set, for testing hot spot identification methods. Each protein has multiple 

structures in the PDB. The first structure binds a fragment-size ligand, which is extended 

into larger ligands in other structures. For comparison we also discussed the properties of 

a set of proteins, we call here the Astex set, that was constructed for the validation of hot 

and warm spots for fragment binding.  Unbound protein structures were selected for the 

proteins in both the Acpharis and Astex sets. All four sets (Acpharis bound and unbound, 

and Astex bound and unbound) were tested using the FTMap server. FTMap is a 

computational analog of the protein soaking experiments Indeed, it was shown for many 

proteins that the FTMap results agree well with the results of the experimental methods 

by Ringe et al. called MSCS (Multiple Solvent Crystal Structures) that lead to the 

classical definition of hot spots. 

We first considered the coverage of the fragment binding sites by any of the hot 

spots identified by FTMap and found the Acpharis and Astex sets to be similar, despite 

the very different methods of construction. Thus, our results confirm the assumption by 

Verdonk and co-workers that a fragment moiety that occurs in multiple ligands at the 

same position in a protein predicts a binding hot spot. Next, we explored whether the 

strongest hot spot provided by FTMap finds the fragment binding site. The success rates 

fell to around 50%, and the results were similar for the ligand-free versions of the 

Acpharis and Astex sets, and for the fragment-bound proteins of the Acpharis set. 

However, in many ligand-bound structures of the original Astex set, FTMap does not 
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place the strongest hot spot in the pocket that accommodates the selected fragment 

moiety and is considered the hot or the warm hot spot by Rathi et al. [14]. The most 

likely explanation is that since the structures in the Astex set have been co-crystallized by 

larger ligands rather than only fragments, the binding of the ligand opens up regions of 

the site away from the fragment binding pocket, creating additional hot spots. Thus, while 

the moiety common to multiple ligands identifies a hot spot in the proteins of the Astex 

set, finding such hot spots is a challenge for FTMap or similar methods based on 

fragment binding. However, this problem is eliminated when considering the sets of 

ligand-free proteins we have developed here for both the Acpharis and Astex sets. 

FTMap places the strongest hot spot at the fragment binding site only in about 50% of the 

proteins in any of the two benchmarks, and hence it is likely that better-performing 

computational methods can be developed.  Motivating the development of such methods 

has been the primary purpose of this work.  
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CHAPTER 3 Allostery in G Protein-Coupled Receptors 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work presented in this chapter is included in the following published article: 
Wakefield, A. E., J. S. Mason, S. Vajda and G. M. Keseru (2019). "Analysis of tractable 
allosteric sites in G protein-coupled receptors." Sci Rep 9(1): 6180. Data curation, 
analysis and writing were completed by Amanda Wakefield with the guidance of Sandor 
Vajda, Johnathan Mason and György Keserű. Additionally, Dávid Bajusz completed the 
ligand data collection and analysis. 
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3.1 Introduction 

G protein-coupled receptors (GPCRs) are one of the most populated groups of 

transmembrane proteins encoded by more than 1000 human genes [57, 58]. GPCRs play a 

significant role in mediating cellular response to different endogenous ligands by 

translating extracellular signals into the cell. Ligand binding at the extracellular side of a 

GPCR results in conformational changes in the seven-transmembrane (7TM) helices that 

rearrange the intracellular interface used by G protein and   b-arrestin type signaling 

proteins. Endogenous ligands bind at the orthosteric binding site that serves as a potential 

site for therapeutic interventions, including the activation (by full or partial agonists) or 

blocking (by inverse agonists or antagonists) the receptor function. Almost 500 drugs 

targeting more than 100 different GPCRs are in current clinical use representing about 35% 

of all drugs approved by the FDA [59]. Although most of these drugs target the 

corresponding orthosteric binding site, developing new therapies acting at these sites might 

be challenging due to multiple factors. First is the limited selectivity and potential side 

effects connected to the conserved nature of homologous receptor orthosteric sites. Second, 

many peptides binding to peptidergic GPCRs do not overlap spatially with the orthosteric 

site of small-molecule ligands. Finally, targeting the same orthosteric site used by the 

endogenous ligands might interrupt physiological signaling patterns.  

Allosteric modulation of G protein-coupled receptors represents an alternative 

mechanism of pharmacological intervention and has been extensively studied [60-63]. By 

definition, allosteric modulators (AMs) bind to binding pockets different from the 
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orthosteric site; however, they can impact the functional activity of the receptor in the 

presence of the endogenous ligand. Positive allosteric modulators (PAMs) potentiate while 

negative allosteric modulators (NAMs) suppress the functional response of the receptor to 

the endogenous ligand. In contrast, neutral allosteric ligands (NALs) bind to an allosteric 

site but have no impact on receptor signaling. Allosteric sites have less conserved amino 

acid sequences, which increases the chance to identify selective ligands with potentially 

fewer side effects. In addition, allosteric modulators with no inherent activity would only 

function in the presence of the endogenous agonist without disrupting endogenous 

signaling patterns.  

The Allosteric Database (ASD) lists over 14,000 allosteric ligands binding to 

GPCRs [64]; however, up to now, only a few have reached the market. This reflects the 

challenges associated with optimizing allosteric ligands that prompted the use of structural 

information in drug discovery programs. Experimentally, Wells and co-workers developed 

the tethering method and discovered an allosteric site in the caspase family [65, 66]. 

Allosteric sites can also be detected by high-throughput screening [67, 68]. Structure-based 

approaches have been applied successfully to design allosteric inhibitors targeting 

transcription factors [69] and GPCRs [70]. During the last couple of years, the number of 

GPCR X-ray structures also increased, and by September 2020 reached 394 [71]. 

However, crystallization of GPCRs is still a challenging task due to the 

conformational flexibility and instability of the proteins removed from the membrane. 

Stabilization of GPCRs can be achieved by multiple strategies that include the introduction 

of specific mutations (e.g., StaR® technology) [72], stabilizing their flexible loops by 
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fusion proteins (e.g., T4 lysozyme) [73], or antibody fragments (nanobodies) [74]. 

Unfortunately, even these conditions do not allow crystallizing apo proteins. Therefore, all 

the GPCR structures deposited in the PDB contain (i) orthosteric ligand or (ii) allosteric 

ligand, or (iii) both. Since the structure-activity relationships for allosteric ligands are often 

flat or steep [75], and minor structural changes could result in mode switching [76], 

structural information was found to be crucial for the identification of viable candidates. 

From the available 39 X-ray structures with co-crystallized allosteric ligands, it is evident 

that allosteric sites are widely distributed, including along protein surfaces. Furthermore, 

their plasticity and induced fit effects should be considered in drug design. Some of the 

allosteric sites are located in the TM bundle. These include extracellular ligand entry sites 

(secondary binding pockets or extracellular vestibule) that bind the orthosteric ligands 

temporarily upon their route to the orthosteric site or ancestral sites that are evolutionally 

abandoned orthosteric sites within the transmembrane domain. Another type of allosteric 

site is conformational lock, wherein the bound ligands can stabilize the active or inactive 

state of the receptor to facilitate or prevent receptor signalling. These sites can be within 

the hydrophobic core or located in extrahelical positions within the membrane-binding 

region. Finally, allosteric ligands can interact at the intracellular signalling protein interface 

stabilizing or preventing the binding of signalling molecules such as G proteins. 

Substantial efforts have been devoted to the development of computational 

methods capable of identifying allosteric binding sites. A variety of computational 

methods of binding site identification have been used for finding allosteric sites, 

including Allosite [77], Fpocket [31, 32], LIGSITEcs [78], ExProSE [79], AlloFinder 
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[80], GRID [17], SiteMap [81], and molecular dynamics based mixed solvent methods 

[82]. A site detection method that has already been applied to GPCRs [83-86] is the 

protein mapping tool FTMap [19, 28].  

McCammon and co-workers used FTMap for the prediction of potential allosteric 

sites in several GPCRs [83-86]. In their earliest work they mapped a variety of 

conformations of the b1AR and b2AR adrenergic receptors obtained by molecular 

dynamics (MD) simulations totaling approximately 0.5 µs [86], and identified series of 

five potentially druggable allosteric sites for both molecules. A similar approach was 

later used to study the M2 muscaranic receptor [83]. Long-timescale accelerated 

molecular dynamics (aMD) simulations revealed distinct inactive, intermediate, and 

active conformers of the receptor. FTMap found seven prospective allosteric binding 

sites, distributed in the solvent-exposed extracellular and intracellular mouth regions, as 

well as the lipid-exposed pockets formed by the transmembrane a-helices [83]. Recently 

an application of the same protocol resulted in the prediction of five non-orthosteric sites 

on the A2A adenosine receptor [85].  

While the results by the McCammon group indicate that FTMap and FTSite can 

be used to detect allosteric sites of GPCRs, their analysis was restricted to four different 

types of targets, all belonging to the Class A group of GPCRs. Due to the recent progress 

in X-ray crystallography, structures are now available for many additional proteins, and 

here we report systematic testing of the two programs by mapping 39 structures of 20 

different GPCRs covering Classes A, B, C, and F (Table 3.1).  These proteins include a 

wide variety of allosteric binding sites across topographically distinct regions of GPCRs. 
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In most cases the structures are of the GPCR protein co-crystallized with an allosteric 

ligand. Using these structures, we tested whether FTMap and FTSite can identify these 

preformed allosteric pockets as top-scoring binding sites (retrospective validation). There 

are, however, pairs of structures with liganded and unliganded allosteric sites that 

allowed us to predict the allosteric binding pockets prospectively. Some of the sites are 

partially hidden and are not fully formed in crystal structures without a bound allosteric 

ligand.  

Our motivations substantially differ from those of the previous studies. First, 

while McCammon and co-workers used MD simulations to generate conformational 

ensembles to predict potential novel allosteric sites, we study how reliable FTMap can 

identify the known sites that bind allosteric ligands. This question is far from trivial 

because most GPCRs have a variety of sites that bind orthosteric modulators, lipids, and 

possibly a variety of crystallization additives. Thus, it is important to determine the 

ranking of the allosteric site among all these various pockets. Second, we also study how 

strong these sites are, as the strength of the hot spots relates to their druggability [20]. 

Third, FTMap has been developed for mapping soluble globular proteins. Apart from 

work by the McCammon group on four GPCRs, the only transmembrane protein mapped 

by the program was the influenza M2 proton channel [30, 87]. Although we succeeded in 

capturing the potential inhibitor binding sites both inside and outside of the four-helix 

bundle of the channel, the general applicability of the method to GPCRs was 

questionable. As will be discussed, the program's ability to detect intrahelical allosteric 

sites confirms that the region is likely to be well solvated. However, the druggability 
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criteria developed for soluble proteins may not fully apply, indicating potential 

differences in the mechanism of ligand recognition.  

For soluble proteins, mapping ligand-bound structures (after removing the ligand) 

is generally followed by mapping ligand-free structures of the same protein. However, we 

have only four GPCRs crystallized both with and without an allosteric ligand. As an 

alternative approach to validation, we have mapped models of the proteins generated by 

Alphafold2 [88, 89]. This deep neural network-based program was shown to predict protein 

structures with very high accuracy from the amino acid sequence. As will be discussed, 

assuming that the models represent ligand-free conformations this approach shows that the 

presence of bound ligands is not required for finding the binding sites.  

We then asked whether the known allosteric binding sites identified in specific 

receptor X-ray structures are conserved between receptors. This comparative approach can 

be illustrated by the smallest example of two GPCR proteins that both have a strong binding 

hot spot at the same location, but only one protein has a known allosteric ligand binding at 

the hot spot. Our basic hypothesis is that the same hot spot in the other protein is also 

capable of binding allosteric ligands, and that ligand binding will – in most cases – have 

some modulatory effect. To explore this idea, we mapped the 394 GPCR structures 

available in September 2020, and checked whether they have strong binding hot spots at 

the locations observed in any of the 21 structures co-crystallized with allosteric ligands. 

For each of the 21 structures we identified a set of structures that have such hot spots and 

thus predicted ligand binding sites at the same location as the “parent” structure. The 

GPCRs within such clusters include proteins from the same family, but also proteins that 
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are not closely related, with sequence identities below 60% and RMSD values greater than 

5Å. In some cases, the clusters include even GPCRs from different classes. As will be 

described, the sites in all these structures essentially map to n distinct consensus sites that 

predicted to bind a large variety of allosteric ligands in different GPCRs. The mapping also 

revealed that most individual GPCRs have only three or fewer sites that are predicted to be 

capable of binding a ligand with high affinity, and that these locations are among the nine 

sites we identified in the vast majority of GPCRs. However, the ligands binding at the same 

location in different GPCRs generally show little or no similarity, and the amino acid 

residues interacting with these ligands generally also differ.  

3.2 Methods 

3.2.1 Collection of structural data and models 

GPCR structures and corresponding data were downloaded from the GPCRDB 

database [71]. At the time of downloading (August 31, 2020), there were 394 published 

X-ray crystallography structures, including 39 that have been co-crystallized with ligands 

binding at allosteric sites within the 7TM domain (Table 3.1). The 7TM region of each 

structure was determined by using the Protein Domain Parser. [90] PyMOL (Schrödinger, 

LLC.) was used to perform structure-based alignments and to calculate root mean square 

deviations (RMSDs). Sequence similarities were calculated using the sequence similarity 

method from the OEChem Toolkit (OpenEye Scientific Software). AlphaFold2 models 

were downloaded from the AlphaFold Protein Structure Database [88, 89].  
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3.2.2 Collection of allosteric ligand data 

Receptor complexes containing allosteric ligands were collected based on the 

GPCRDB database [71] and from primary scientific literature. The Allosteric Database 

(ASD) [64, 91, 92] was used for collecting data on allosteric modulators: briefly, the offline 

version of the database was downloaded and parsed with custom Python scripts. Ligands 

with less than six heavy atoms were ignored, and those with a molecular weight over 800 

Da were considered to be peptides. Adapting the ligand similarity analysis developed for 

GPCR ligands [93], we identified pairs of “similar” ligands if the Tanimoto similarity of 

MACCS or Morgan [94] fingerprints was over 0.8 or 0.4, respectively. The RDKit package 

was used for fingerprint and similarity calculations [95, 96]. Data on the effects of 

mutations on allosteric ligand binding/affinity were looked up from the GPCRDB database 

[71]. 

3.2.3 Identification of allosteric sites by FTMap 

The 7TM domain of each structure was mapped using the FTMap algorithm, 

implemented in the FTMap server [19, 28]. The server considers only the protein structure, 

as all hetero atoms, including water molecules, included in the structure file, are removed 

prior to mapping. We note that we have used the command line implementation of the 

FTMap algorithm called ATLAS [97], which in some cases yields slightly different results 

from those produced by the FTMap server [19]. The original set of GPCRs with co-

crystallized allosteric ligands was filtered into a subset of 21 proteins where FTMap was 

able to predict a strong binding site for the ligand. For comparison of the FTMap results 
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for the 394 proteins and the 21 allosteric sites, the protein structures with the predicted hot 

spots were aligned to the protein structures co-crystallized with allosteric ligands. To 

determine binding site conservation, we counted the number of probe atoms within 3 Å of 

the ligand.  

Based on our results, for each GPCR co-crystallized with an allosteric ligand we 

searched for structures that had strong hot spots overlapping with the ligand copied from 

the “parent” structure. In previous findings, FTMap hot spots that contained 16 or more 

probe clusters were shown to be likely druggable, with sufficiently high affinity for ligand 

binding [19, 20, 98]. The average FTMap probe molecule has 5.25 heavy atoms. Therefore, 

site conservation was defined by 5.25 x 16 ≈ 84 or more probe atoms overlapping with the 

ligand from the “parent” structure [20]. For each structure we also determined the number 

of binding sites predicted to be druggable, and the results were visualized with a histogram. 

FTMap results underwent an additional round of clustering with a radius of 0.7 Å prior to 

the counting of druggable sites. The Clustal Omega tool, Multiple Sequence Alignment 

[99], was used to create a phylogenetic tree based on the 7TM domains of the GPCR 

structures. The tree was converted to graphml and visualized with Cytoscape [100]. 

3.2.4 Determination of pocket descriptors by Fpocket  

Pocket volumes and descriptors were also calculated for each GPCR using the 

dpocket algorithm from the fpocket suite [31]. The ensemble of alpha spheres defined from 

the atoms of a protein were filtered using the default minimal and maximal radii values in 

fpocket. Once the alpha spheres are selected, to calculate pocket volume the dpocket 
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algorithm defines a box containing all atoms and vertices situated within 4Å of the 

reference ligand. Each of the 21 co-crystallized allosteric ligands was used as the reference 

ligand. The pocket volume was calculated using a Monte Carlo algorithm. The default 

settings were used except for the number of iterations performed when running the Monte 

Carlo algorithm (–v) option which was set to 500,000.  

The dpocket program was also used to extract 15 pocket descriptors, including the 

number of alpha spheres, the density of the cavity, the polarity score, the mean local 

hydrophobic density, the proportion of apolar alpha spheres, the maximum distance 

between two alpha spheres,  the hydrophobicity score, the charge score, the volume 

score, and the pocket volume [33]. We ran dpocket on a total of 21 x 394 pockets. This 

resulted in 21 separate tables which each contained 15 dpocket descriptor columns and 

394 rows. The absolute difference between the “parent” allosteric protein's pocket 

descriptors and each of the 394 protein pocket descriptors were calculated. This resulted 

in 21 separate difference tables, each with 15 columns of pocket descriptors and 394 rows 

with the absolute difference between protein's pocket and the allosteric protein's pocket. 

Then, the differences for each pocket descriptor were scaled from 0 to 1 by subtracting 

the minimum descriptor value for that column and dividing by the maximum descriptor 

value for that column. This resulted in 21 separate tables containing 15 x 394 scaled 

differences. The 15 values in each row were added together to get a single difference in 

pockets (maximum value of 15), which resulted in 21 tables containing 394 differences. 

The difference column was then scaled from 0 to 1 for the final dpocket similarity score. 
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3.2.5 Docking 

AutoDock Vina was used to place the UCB compound within the D2 structure. The 

box used for docking was created by creating a box around the FTMap probe atoms located 

near the approximate location of the allosteric binding site. 

3.3 Results and Discussion 

3.3.1 FTMap identifies allosteric sites in GPCRs with bound ligands 

We first applied FTMap to the 39 structures co-crystallized with allosteric ligands 

(Table 3.1). All non-protein atoms have been removed before the mapping that identified 

strong binding sites within 21 structures shown in Table 3.2. Among these 21 structures, 

there were proteins from each GPCR class, representing 15 unique receptors. As shown in 

Figure 3.1, the receptors covered the range of allosteric binding sites, including intra-

helical and extra-helical regions. Analyzing these results, one should consider the present 

limitation of FTMap that it cannot identify allosteric sites located at the protein-membrane 

interface due to its current parametrization based on complexes of small organic molecules 

with soluble proteins [101].  
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Table 3.1. High-resolution X-ray structures of GPCRs co-crystallized with small molecule 
allosteric ligands 

Target Ligand 
ID 

Ligand name PDB ID Site typea Site locationb 

Class A      
A2A  8D1 Cmpd-1 5UIG HC TM-EC 
β2 8VS CMPD-15PA 5X7D SI IC 
β2 KBY Compound-6FA 6N48 CL EH-IC 
β2 M3J AS408 6OBA CL EH 
C5a1 9P2 NDT9513727 5O9H CL EH 
C5a1 9P2 NDT9513727 6C1Q CL EH 
C5a1 EFD Avacopan 6C1R CL EH 
CCR2 VT5 CCR2-RA-[R] 5T1A SI IC 
CCR5 MRV Maraviroc 4MBS HC TM-EC 
CCR7 JLW Cmp2105  6QZH SI/CL IC 
CCR9 79K Vercirnon 5LWE SI IC 
CB1 9GL ORG27569 6KQI CL EH 
CXCR4 ITD IT1t 3ODU HC TM-EC 
CXCR4 PRD CVX15 3OE0 HC TM-EC 
FFA1 2YB TAK-875 4PHU CL EH-EC-TM 
FFA1 6XQ Compound 1 5KW2 CL EH 
FFA1 MK6 MK-8666 5TZR CL EH-EC-TM 
FFA1 7OS AP8 5TZY CL EH 
GPR52 EN6 C17 6LI0 CL TM-EC 
M2 2CU LY2119620 4MQT HC TM-EC 
P2Y1 BUR BPTU 4XNV CL EH-EC 
PAR2 8TZ AZ8838 5NDD HC/CL TM 
PAR2 8UN AZ3451 5NDZ HC/CL EH 
Class B      
CRF1 1Q5 CP-376395 4K5Y CL TM (IC) 
GLP-1 97Y PF-0637222 5VEW SI EH-IC 
GLP-1 97V NNC0640 5VEX SI EH-IC 
GLP-1 97Y NNC0640 6KJV SI EH-IC 
GLP-1 97Y NNC0640 6KK7 SI EH-IC 
GLP-1 97Y NNC0640 6LN2 SI EH-IC 
GCGR 5MV MK-0893 5EE7 CL EH-IC 
GCGR 97V NNC0640 5XEZ CL EH-IC 
Class C      
mGlu1 FM9 FITM 4OR2 HC TM 
mGlu5 2U8 Mavoglurant 4OO9 HC TM 
mGlu5 51D CMPD-25 5CGC HC TM 
mGlu5 51E HTL14242 5CGD HC TM 
mGlu5 D7W Fenobam 6FFH HC TM 
mGlu5 D8B M-MPEP 6FFI HC TM 
Class F      
SMO SNT SANT-1 4N4W HC/CL EC-TM 
SMO VIS Vismodegib 5L7I HC/CL EC-TM 
aSite types are assigned as intrahelical – HC, conformational lock – CL, signalling interface – SI. bSite 
location is indicated as transmembrane helical bundle – TM, extra-helical – EH, extracellular side – EC, 
intracellular side – IC. 
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Figure 3.1. Experimentally validated allosteric sites in 
GPCRs.  
As reference shown is a Class A orthosteric antagonist ligand in 
grey CPK with protein in yellow ribbon (Adenosine A2A, 
triazine ligand PDB:3UZA) then from bottom to top: 
Intracellular Class A antagonist for CCR9 (vercinon ligand in 
orange CPK, PDB:5LWE); Extra-helical Class A ago-PAM for 
GPR40 (ligand AP8 in fuchsia CPK, PDB:5TZY); Extra-helical 
Class A inverse agonist for complement C5a (NDT9513727 
ligand in light green CPK, PDB:5O9H); Extra-helical Class B 
allosteric antagonist GCGR (MK0893 ligand in pink, 
PDB:5EE7); Allosteric Class B antagonist CRF1 (CP376395 
ligand in brown CPK, PDB:4K5Y); Extra-helical Class A 
antagonist for PAR2 (AZ3451 ligand in dark grey CPK, 
PDB:5NDZ); Allosteric Class C NAM for mGlu5 (M-MPEP in 
cyan CPK, PDB: Extra-helical Class A antagonist P2Y1 (BPTU 
ligand in green CPK, PDB:4XNV); Intra-helical Class A 
allosteric partial agonist (MK-8666 ligand in lilac, PDB:5TZR); 
Intra-helical Class A allosteric agonist (TAK-875 ligand in 
purple, PDB:4PHU); Allosteric Class A antagonist for PAR2 
(AZ8838 ligand in blue CPK, PDB:5NDD). 
 

 

 

 
 
 
 

Table 3.2. GPCR structures with strong binding sites located at bound allosteric ligands 

Target PDB 
ID 

# 
FTMap 
Clusters 

FTMap Clusters   within 5 Å of the 
allosteric site 

FTMap 
Rank 

FTSite 
Rank 

 
Class A    

A2A 5UIG 10 1(14), 2(10), 3(9), 4(9), 6(8), 7(6) 2 1  

β2 5X7D 7 0(18), 5(7) 1 2  

CCR2 5T1A 7 1(16), 2(15), 4(8) 2 3  

CCR5 4MBS 7 0(19), 1(16), 2(15), 4(9), 5(9) 1 1  

CCR7 6QZH 12 1(10), 3(10), 5(8), 6(7), 10(4) 2 3  

CCR9 5LWE 7 1(13), 2(13), 4(11), 5(6) 2 1  

CXCR4 3ODU 9 0(22), 1(14), 2(12), 3(10), 5(6), 6(5), 7(5) 1 1  

CXCR4 3OE0 10 0(17), 3(8), 4(8), 5(6), 6(6), 7(5) 1 1  
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FFA1 4PHU 7 2(13), 3(10) 3 3  

FFA1 5KW2 7 0(23), 2(14), 3(12), 4(11), 5(10) 1 1  

FFA1 5TZR 6 0(20), 5(10) 1 1  

FFA1 5TZY 10 0(16), 3(9), 9(5) 1 3  

GPR52 6LI0 12 0(17), 5(7), 7(5), 8(4), 9(3) 1 3  

M2 4MQT 9 1(14), 2(12), 4(7) 2 1  

PAR2 5NDD 9 0(17), 1(11) 1 2  

PAR2 5NDZ 10 0(17) 1 3 
 

Class B      
 

CRF1 4K5Y 14 1(11), 2(11), 3(10), 4(7), 5(7), 11(3) 2 2  

Class C      
 

mGlu1 4OR2 11 1(13), 2(11), 3(10), 4(10), 5(9) 2 1  

mGlu5 4OO9 15 4(8), 5(7), 8(5), 9(4), 10(3), 11(3) 5 2  

Class F      
 

SMO 4N4W 8 0(20), 4(8), 6(6) 1 2  

SMO 5L7I 8 0(16), 1(16), 2(11), 3(11), 6(7) 1 1  

 

3.3.2 Retrospective analysis of allosteric sites 

Crystal structures of GPCRs complexed with small molecule allosteric 

modulators were collected from the PDB[47]. The 39 structures available at the time of 

our analysis (September 2020) cover four classes, including 23 Class A, 8 Class B, 6 

Class C, and 2 Class F GPCRs (Table 3.1). Experimentally validated allosteric sites were 

assigned by their type (intrahelical – HC, conformational lock – CL, signalling interface 

– SI) and location (extracellular side – EC, helical bundle – TM, intracellular side – IC). 

Next, we used FTMap and FTSite to explore the potential binding sites using the pseudo-

apo structures generated after removing the small molecule modulator (Table 3.2). In 

these cases, our objective tests whether FTMap and FTSite can identify the preformed 

allosteric pocket within the top-scoring binding sites. For each structure mapped, Table 

3.2 shows the number of consensus sites within 5 Å of the allosteric site and lists the sites 
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with the number of probe clusters at each site indicated in parenthesis. The consensus 

sites are ranked based on the number of probe clusters contained. Accordingly, the 

FTMap rank in Table 3.2 indicates the highest rank of any consensus site (hot spot) 

located at the allosteric site. Based on the notation established in the FTMap server, the 

consensus sites are numbered starting from 0, with the number of probe clusters at the 

consensus site shown in parenthesis.  

For example, results for the structure 5X7D (see Figure 3.2) at the top of Table 

3.2 reveal that the allosteric site of B2 within 5 Å of the allosteric modulator 8VS (see 

Table 3.1) includes the strongest consensus site 0(18) formed by 18 probe clusters, and 

the 6th strongest consensus site 5(7) formed by 7 probe clusters. Since the allosteric site 

includes the strongest consensus site, its FTMap rank is 1. As mentioned in the 

Introduction, FTSite ranks the predicted binding sites based on the total number of 

contacts between the protein and all probes within a specific site and, using this 

definition, the allosteric site in 5X7D has the FTSite rank 2 rather than 1 (Table 3.2). 

Thus, FTMap and FTSite measure somewhat different properties. The two results show 

that in 5X7D the allosteric site has the strongest hot spot (consensus site), indicating a 

surface patch with a high level of binding propensity, which was shown to relate to 

druggability[20]. However, based on FTSite, which measures the total number of probes 

binding in a region that generally includes several adjacent hot spots, there is a site with 

more probes than the allosteric site. This site with the FTSite rank 1 (see Table 3.2) is 

formed by the consensus clusters 1(14), 2(13), 3(10), and 6(5), and it binds the orthosteric 

antagonist carazolol. Thus, these results show a competition between allosteric and 
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orthosteric sites for the binding of non-specific probes and indicate that the allosteric site 

presents the strongest hot spot with the highest density of bound molecular probes, 

despite the existence of a strong orthosteric site in the same structure. The following 

section discusses the results, shown in Table 3.2 for the various types of allosteric sites. 

 

Figure 3.2. Hot spots and allosteric 
ligand binding sites predicted by (a) 
FTMap and (b) FTSite for PDB 
5X7D.   
Also shown are the hot spots and 
orthosteric ligand binding site by (c) 
FTMap and (d) FTSite. We note that in 
this and all following figures, each 
probe cluster is represented by the 
structure of a single probe at the cluster 
center. Green sticks represent both 
ligands. The FTMap hot spots, shown 
as lines, are colored by rank in the 
following order: cyan, hot pink, yellow, 
light pink, white, blue, and orange. The 
FTSite sites, shown as mesh, are 
colored, by rank, in the following order: 
pink, green, and purple. 

 

3.3.3 Intrahelical allosteric sites.  

These sites are located between the transmembrane helices. We have divided our 

intrahelical allosteric sites into two subclasses as ligand entry and ancestral sites. The 

only target showing the allosteric ligand entry site is M2 [102, 103]. For this receptor, 

FTMap found nine significantly populated consensus clusters out of which 1(14), 2(12), 

and 4(7) were found to be overlapped with the allosteric binding site and form the 

highest-ranked FTSite site. Interestingly the strongest consensus cluster, 0(15), was 

located at the other end of the transmembrane domain, at the site that binds a nanobody in 
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the X-ray structure 4MQS. The consensus clusters 5(6) and 6(5) were located at the site 

that binds the orthosteric agonist iperoxo in both structures.  

The other subclass of intrahelical sites are considered ancestral and exemplified 

by A2A (1 structure), CCR5 (1 structure) [104], CXCR4 (2 structures) [105], mGluR1 (1 

structure) [106], mGluR5 (5 structures) [107-109], SMO (2 structures) [110, 111], and 

PAR2 (2 structures) [112]. For the chemokine receptors (CXCR4 and CCR5), SMO and 

PAR2, the allosteric site is located at the extracellular side close to the ligand entry site. 

In contrast, the ancestral site in mGlu receptors is located deeper in the helical bundle. 

Out of the 14 structures with ancestral intrahelical allosteric sites, nine of the structures’ 

ligands were predicted by one of the top three FTMap consensus sites. FTMap worked 

extremely well for the adenosine and chemokine structures and resulted in many top-

ranked consensus clusters overlapping with the respective allosteric binding sites. For 

CXCR4 structures, most consensus clusters, including the strongest ones, were in close 

proximity to the crystallographic ligand pose. This finding and the large number of probe 

clusters in these consensus clusters indicate that the allosteric site is a very strong binding 

site. FTMap showed similar performance on two SMO structures, 5L7I and 4N4W. In 

both structures, 5NDD and 5NDZ of the PAR2 receptor FTMap placed the strongest 

consensus clusters at the allosteric site. FTMap predicted the allosteric site at the mGluR1 

with high confidence (Table 3.2). Interestingly, the two lower-ranked sites (4th and 6th) 

overlapped with similar ligands from mGluR5 structures. We have a high number of X-

ray structures available for mGluR5; here, 4OO9 contains mavoglurant that represents the 

classical acetylenic negative allosteric modulators [108], while in 5CGD, there is a 
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tricyclic structure (HTL14242) co-crystallized [107]. FTMap identified nine significant 

consensus clusters in the mavoglurant structure, out of which 1(11) and 4(6) were found 

to be overlapped with the position of the ligand (Figure 3.3a). If we combine the hot spot 

4(6) with the adjacent consensus clusters 10(3) and 11(3), then we get a consensus cluster 

with ten probe clusters that now rank second instead of fourth. Combining all consensus 

clusters within 5 Å of the ligands, we get a consensus cluster with 21 probe clusters, thus 

representing the highest-ranked hot spot. In line with this observation, FTSite correctly 

identified the allosteric binding site as the top-ranked site (Figure 3.3b).  

 

 
 
Figure 3.3. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
mGluR5-mavoglurant structure (PDB: 4OO9) and by (c) FTMap and (d) FTSite for the mGluR5-HTL14242 
structure (PDB: 5CGD).  
Green sticks represent the allosteric ligand mavoglurant. The FTMap hot spots are shown as lines, 1(11) in yellow and 
4(6) in green. The second-ranked site, predicted by FTSite, is shown as green mesh. Green sticks represent the 
allosteric ligand HTL14242. A blue sphere represents HOH4115. The FTMap hot spots, shown as lines, are colored as 
follows: 3(8) in white and 7(5) in teal. The third-ranked FTSite site is shown as purple mesh. 
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In contrast to mavoglurant, ligands in 5CGD and 5CGC do not contain the 

acetylenic linker, and the induced fit effects make the overall shape of the ligands 

markedly different [107]. For 5CGD, FTMap found eight consensus clusters, two of 

which, 3(8) and 7(5), overlapped with the allosteric ligand (Figure 3.3c). These clusters 

were also less populated and were ranked 4th; however, combining the two clusters would 

increase the site’s ranking to the third strongest. Like the 4OO9 structure, FTSite 

provided a better result, ranking the experimental allosteric site as the third most 

significant (Figure 3.3d). Mapping 5CGC [107] with an analog of HTL14242 we 

obtained a similar result. For 5CGC, FTMap found one consensus site to be overlapped 

with the ligand. FTSite’s third-ranked site predicted the allosteric binding site.  This 

cluster was found to be less populated and was ranked 6th out of the seven clusters 

identified (see Figure C.1).  

The most recent mGluR5 structures co-crystallized with M-MPEP and fenobam 

(6FFI and 6FFH) show similar helical organization as seen with other ligands [109]. The 

allosteric pocket's location and general architecture closely resemble the Heptares 

structures (5CGC and 5CGD). For 6FFI, FTMap identified eight consensus clusters, out 

of which two, 1(17) and 5(5), were located at the allosteric site (see Figure C.2). When 

combined, the two consensus clusters within the allosteric binding site ranked as the top 

site. These results were similar to the mavoglurant structure. For the fenobam bound 

structure (6FFH), FTMap predicted seven consensus clusters, two of which, 3(10) and 

7(5), were found in the allosteric pocket (see Figure C.3). FTSite could not detect the 
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deep allosteric site, but FTSite’s top-ranked sites made up a large, intrahelical site close 

to the intrahelical side. 

3.3.4 Allosteric conformational locks  

In contrast to compounds recognized by intrahelical sites at or adjacent to the 

orthosteric ligands, allosteric ligands might bind to other sites that contribute to the 

stabilization of the active (positive modulator, agonist) or the inactive (negative 

modulator, antagonist) conformational state of the GPCR and therefore changing receptor 

signalling. Targets with this mechanism of action are CRF1 [113], P2Y1 co-crystallized 

with BPTU [114], C5A [115] (one structure for each), GCGR [116, 117] (2 structures), 

and FFA1 [118-120] (4 structures). These crystal structures with bound allosteric ligands 

were subjected to FTMap and FTSite analysis. Both methods predicted four out of the six 

allosteric binding sites in the bound structures. FTMap identified several hot spots for 

each of the receptors, and for CRF1R, C5a, and FFA1, the allosteric site was primarily 

ranked among the first three predicted binding sites. The highest number of overlapping 

consensus clusters was observed for CRF1 (4 out of 8); it was reasonably large for the 

FFA1 structures (2 of 7, 3 of 10, and 2 of 6) and lower for C5a (1 of 8). Most 

importantly, however, at least one of the overlapping consensus clusters showed 

reasonably high numbers of probe clusters that confirmed the strength of the allosteric 

site. Both FTMap and FTSite failed to predict the binding sites for GCGR and P2Y1 

located at the receptor's external surface. As already mentioned, the present version of 

FTMap and FTSite is not parameterized for lipids and therefore could not predict sites at 

the receptor-membrane interface.  
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FFA1 has three complexes available in the PDB. FTMap analysis of 4PHU [118] 

identified seven consensus sites out of which the adjacent consensus clusters 3(9) and 

4(9) were located deep in the allosteric pocket (Figure 3.4a). FTMap’s strongest cluster 

corresponded to the binding site of 1-Oleoyl-R-glycerol.  However, the centers of the 

consensus clusters 3(9) and 4(9) are less than 5Å from each other and combining the two 

clusters would yield the strongest hot spot. Similar to FTMap, FTSite predicted the 

binding site of a lipid component, 1-oleoyl-R-glycerol, as Site 1 and the allosteric site as 

Site 3. FTSite’s second-ranked site, Site 2, overlaps with the binding site (Figure 3.4b). 

Please note, however, that a significant part of the ligand is positioned outside the helical 

bundle and forms direct interactions with membrane lipids. FTMap and FTSite could not 

deal with this part of the binding pocket. 
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Figure 3.4. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
FFA1-TAK-875 structure (PDB: 4PHU) and by (c) FTMap and (d) FTSite for the FFA1-AP8 structure (PDB: 
5TZY).  
Green sticks represent the allosteric ligand TAK-875. The FTMap hot spots, shown as lines, are 2(13) in light pink and 
3(10) in white. The third-ranked FTSite site is shown as purple mesh. Green sticks represent the allosteric ligand AP8. 
The FTMap hot spots, shown as lines, are 0(16) in pink, 3(9) in white, and 9(5) in yellow. The third-ranked FTSite site 
is shown as purple mesh. 
 

In the FFA1-MK-8666 structure, 5TZR FTMap predicted six consensus sites 

altogether, out of which two were identified within the allosteric binding site with 

particularly high probe numbers. Both FTMap and FTSite predicted the allosteric site as 

the top-ranked site.  

Application of FTMap to the FFA1 structure 5TZY yielded ten consensus 

clusters, with 0(16), 3(9), and 9(5) located in the allosteric site, thus including the 

strongest hot spot.  Despite the very strong hot spots in the allosteric site, FTSite ranked 

the experimental allosteric pocket as Site 3 (see Figure 3.4d).  In contrast to TAK-875 
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(PDB: 4PHU) and MK-8666 (PDB: 5TZR), AP8 is a full allosteric agonist (AgoPAM) of 

FFA1 (PDB:5TZY), and its allosteric binding site is entirely different from that found for 

the partial agonists. The AP8 binding site is formed by helices II−V and ICL2 [119]. The 

carboxylate group of the ligand forms hydrogen bonds Tyr44, Ser123, and Tyr114. The 

cyclopropyl group is accommodated in a hydrophobic pocket of Leu106, Tyr114, 

Phe117, and Tyr122. The chroman core forms hydrophobic interactions with Ala99, 

Ala102, Val126, and Ile197, while the terminal trifluoromethoxyphenyl ring is 

surrounded in a hydrophobic cavity with Ile130, Leu133, Val134, Leu190, and Leu193.  

3.3.5 Intracellular allosteric sites.  

Although GPCR targets’ popularity was typically associated with their tractable 

deep extracellular binding sites, recent results highlighted that targeting them from the 

intracellular side is also feasible. Crystal structures with allosteric modulators revealed 

that the intracellular signalling surface of GPCRs is available for small molecule binding 

with a potential of modulating the receptor function and signalling. The targets for 

intracellular allosteric sites included BETA2 [121], CCR2 [122],  CCR7 [123], CCR9 

[124] (one structure for each) and GLP1 with five structures [125-127].  FTMap 

accurately predicted the allosteric binding sites in all targets except for the GLP1 

structures. In 5VEW (GLP1), there is a modified cysteine (S-(2-amino-2-oxoethyl)-l-

cysteine) that restricts the movement of the intracellular tip of helix VI. FTMap predicts 

the site of this modified residue as the third strongest binding site 2(16) within the 

protein.  The mutated residue was changed back to cysteine for mapping in both GLP1 

structures. The second GLP1 structure, 5VEX, has a weak hot spot 5(5) that overlaps 
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with the allosteric site. However, the modified cysteine residue overlaps with the fourth-

ranked cluster 3(12). In 5VEW, FTSite’s top-ranked site identified the modified residue, 

CSD. The FTSite results from the second GLP1 structure, 5VEX, show the third-ranked 

binding site around the CSD region. FTMap identified the allosteric site of 6KK7 with a 

weak hot spot, 5(7), which overlaps with the allosteric site. Mapping results for 6KJV 

identified the allosteric site with hot spot 6(6). FTMap was unable to detect the allosteric 

site for 6LN2.  

In the case of CCR2, FTMap identified seven hot spots, out of which three were 

overlapped with the allosteric site that was ranked 2nd. In this case, the top-ranked hot 

spot overlapped with the orthosteric binding site of 73R. For the B2 structure (5X7D), 

FTMap predicted seven sites in total, two of which, including the top-ranked site, 

overlapped with the experimental binding. FTSite could not improve these predictions 

and showed the experimental binding site ranked as the second and third strongest sites. 

For the CCR9-vercirnon complex (5LWE) [124], FTMap predicted seven consensus 

sites, and 1(13), 2(13), 4(11), and 5(6) were found in the experimentally validated 

allosteric pocket (Figure 3.5a). These results indicated a large pocket at the allosteric site. 

The top-ranked hot spot 0(15) overlapped with the binding site of a lipid component, 1-

oleoyl-R-glycerol, but this hot spot was isolated. In contrast, the four hot spots in the 

allosteric site are close to each other, and it becomes the top-ranked site when the 

adjacent hot spots are combined. Accordingly, FTSite identified the allosteric site as its 

top-ranked predicted site (Figure 3.5b). 
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Figure 3.5. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
CCR9-vercirnon structure (PDB: 5LWE).  
The allosteric ligand vercirnon is represented by green sticks. The FTMap hot spots are shown as lines, 1(13) in yellow, 
2(13) in light pink, 4(11) in blue, and 5(6) in orange. The highest-ranked FTSite site is shown by pink mesh.  

3.3.6 Prospective identification of allosteric sites 

Hidden and partially hidden allosteric sites are invisible or only partly visible in X-

ray structures crystallized without allosteric ligands. These sites, therefore, represent a true 

challenge for prediction algorithms and are well suited to investigate the performance of 

FTMap and FTSite. Four pairs of GPCR structures are available in the PDB for muscarinic 

M2, adrenergic B2, FFA1, and P2Y1 receptors (Table 3.3). The first structure binds only an 

orthosteric ligand in each pair, and the second binds both the same orthosteric one and an 

allosteric ligand. We were specifically interested in whether FTMap and FTSite would be 

able to predict the experimentally validated allosteric sites based on the structure of the 

complex with only orthosteric ligand and hence mapped both structures.   
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Table 3.3. FTMap and FTSite results obtained for the orthosteric and allosteric pairs of GPCR complexes.   

Target Ligand type Ligand name PDB 
FTMap 

allosteric 
rank 

FTSite 
allosteric 

rank 

Β2 
orthosteric Carazolol 2RH1 2 3 
allosteric Carazolol and 

Cmpd-15PA 5X7D 1 2 

M2 
orthosteric Iperoxo 4MQS 1 1 
allosteric Iperoxo and 

LY2119620 4MQT 2 1 

FFA1 
orthosteric MK-8666 5TZR 1 2 
allosteric MK-8666 and 

AP8 5TZY 1 3 

P2Y1 
orthosteric MRS2500 4XNW - - 
allosteric BPTU 4XNV - - 

 
 

Allosteric binding is usually accompanied by conformational changes; therefore, 

orthosteric and allosteric pairs were first subjected to comparative binding site analysis 

using Fpocket [31, 32]. First, we used Fpocket to characterize binding pockets and 

analyze conformational changes around the orthosteric and allosteric pockets (see details 

in Table C.1). Next, we used FTMap and FTSite on the orthosteric structures to predict 

the allosteric site confirmed by the corresponding allosteric structure. 

3.3.7 Beta2 adrenergic receptor 

Comparative Fpocket analysis revealed significant structural changes between the 

bound [121] and unbound [128] allosteric site pocket. Phe332, Phe336, and Arg63 are 

pushed out of the pocket to make room for the allosteric ligand. Asp331 also shifted a bit 

out of the pocket to form interactions with Lys267 that moves in to form favorable 

interaction with Asp331.  The orthosteric site has minor changes between the structures. 

The pocket volume of the orthosteric site and the druggability score decrease when the 
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allosteric ligand is present (Table C.1). However, the allosteric site’s volume and 

druggability score increase upon binding of the allosteric ligand. 

Mapping results obtained for the X-ray structure 5X7D binding both the 

orthosteric antagonist carazolol and the intracellular allosteric antagonist compound-

15PA [121] were already discussed, and we compared these to binding hot spots 

identified by FTMap and FTSite for the orthosteric carazolol-only structure (2RH1). 

FTMap was able to identify the allosteric site partially hidden in this structure with its 

second-ranked consensus site 1(12). FTSite was unable to predict the allosteric site in the 

unbound orthosteric complex. In fact, the FTMap results for 2RH1 reveal that the 

orthosteric site is extremely strong and includes the hot spots 0(18), 2(11), 3(10), 4(9), 

5(8), and 6(6), and FTSite places all three predicted sites at this location (Figure 3.6a). 

Despite the very strong orthosteric site, mapping the structure without any allosteric 

ligands still identifies the allosteric site as the second strongest hot spot.  
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Figure 3.6. Hot spots and ligand binding sites predicted by FTMap and by FTSite for the orthosteric complexes 
of (a) beta2 (PDB:2RH1), (b) M2 (PDB:4MQS), (c) FFAR2 (PDB:5TZR) and (d) P2Y1 (PDB:4XNW) receptors.  
Green sticks represent the allosteric ligands. The FTMap hot spots, shown as lines, are colored are colored by rank in 
the following order: cyan, hot pink, yellow, light pink, white, blue, and orange. The FTSite sites, shown as mesh, are 
colored, by rank, in the following order: pink, green, and purple. 
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3.3.8 Muscarinic M2 receptor.  

Comparing the orthosteric and allosteric structures of the M2 receptor revealed 

only minor changes at both sites. At the allosteric only Trp422 rotates to have its ring 

structures align in parallel with the rings in the allosteric ligand. At the orthosteric site, 

we found very minor changes in side-chain orientations. For the allosteric structure 

(4MQT), Fpocket detected only one combined binding site filled by the orthosteric and 

the allosteric ligands. Comparing orthosteric and allosteric pocket volumes calculated for 

both structures showed that no significant new pocket was formed upon the binding of 

the allosteric ligand. Interestingly, however, the druggability of the combined allosteric 

pocket has increased significantly (Table C.1).  

Mappineg results obtained for the agonist bound iperoxo structure (4MQS) [102] 

were compared to the previously described PAM complex of LY2119620 (4MQT) [102] 

that had both the allosteric modulator and iperoxo. As shown in Table 3.3, both FTMap 

and FTSite predicted the hidden allosteric site in the orthosteric complex as the top-

ranked site (Figure 3.6b). Interestingly, mapping the structure 4QMS without an allosteric 

ligand, the allosteric site had a stronger hot spot, 0(19), than mapping 4MQT that had 

bound ligands at both orthosteric and allosteric sites.  This confirms the presence of a 

well-formed strong allosteric site.  

3.3.9 Free fatty acid receptor 1 (GPR40).  

The other pair of homologs studied consisted of the GPR40 structure with the 

partial agonist MK-8666 and the positive allosteric modulator AP8 with agonist activity 

(5TZY), and the GPR40 structure co-crystallized only with the orthosteric ligand MK-
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8666 (5TZR) [119]. Fpocket analysis of the orthosteric and allosteric structures revealed 

that the allosteric site has a pocket that opens up slightly to accommodate the allosteric 

ligand. Pro40, Ile130, and Leu190 move out of the pocket while Ser123 moves into the 

pocket to form polar interactions with the ligand. Comparing the orthosteric sites, we 

found that the ligand (MK6) adopts a slightly different orientation, especially around the 

sulfate functional group when the allosteric modulator is bound. LEU 158 moves into the 

site, which causes MK6 to shift slightly outwards. Pocket volumes of the orthosteric and 

allosteric sites increase upon the allosteric ligand binding. The druggability score of the 

orthosteric site decreases while it is increased for the allosteric site upon binding of the 

allosteric ligand (Table C.1). 

The allosteric sites of 5TZY and its unbound homolog, 5TZR, were predicted by 

FTMap’s top-ranked sites (Figure 3.6c). Again, mapping the structure 5TZR without an 

allosteric ligand placed a stronger hot spot, 0(20), at the hidden allosteric site than 

mapping the structure 5TZY with both allosteric and orthosteric ligands. FTSite ranked 

the allosteric site second in 5TZR and third in 5TZY. The predicted sites are in a large 

open pocket near the membrane-intercellular interface. An additional pair of structures of 

the P2Y1 receptor with an orthosteric and allosteric ligand proved a challenge to FTMap, 

as the allosteric site was extrahelical in the membrane-binding region.  

3.3.10 Purinergic P2Y1 receptor.  

In the case of this receptor, we found that the allosteric pocket tightens up around 

the bound allosteric ligand. Phe119 moves into the binding site to form hydrophobic 

interactions with the ligand. Leu102 sidechain flips slightly away from the pocket to 
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create more room for the ligand. Interestingly, Fpocket could not detect the allosteric 

binding site in the bound conformation. Although identifying the preformed allosteric site 

seems trivial, this failure highlights the importance of retrospective validation. 

Comparing the orthosteric sites, we found the unbound site much more open. Lys41 and 

Arg287 shift out of the binding site to accommodate the ligand. Leu44 sidechain shifts 

into the pocket to form hydrophobic interactions with the ligand while Gln40, Lys46, 

Arg195, and Tyr110 shift into the pocket to form polar interactions with the phosphate 

group. The pocket volume and the druggability score of the orthosteric site increase in the 

bound structure (Table C.1). 

In the orthosteric 4XNW structure, the ligand MRS2500 is bound within the 

seven-transmembrane bundle. FTMap predicted the MRS2500 binding site with its top 

and third-ranked hot spots 0(21) and 2(16). These hot spots were very strong and indicate 

that this is a druggable site. Indeed, MRS2500 has a Ki value of 0.8 nM.  FTSite’s top-

ranked site also predicted the binding site of MRS2500. Notice that the mapping of the 

allosteric complex 4XNV of P2Y1R finds the same strong site that binds MRS2500. 

However, in 4XNV the p,rotein is co-crystallized with the non-nucleotide antagonist 

BPTU, which binds to an allosteric pocket on the external receptor interface with the 

lipid bilayer, entirely outside of the helical bundle. Note that FTMap failed whether or 

not the structure was co-crystallized with the allosteric ligand. The orthosteric sites held 

the majority of top-ranked consensus sites, which indicates that the orthosteric site is 

much stronger than the allosteric site (Figure 3.6d). FTSite’s first and second-ranked sites 

aligned with the orthosteric sites for 4XNV [114]. The third site was in the protein-
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membrane interface where a cholesterol hemisuccinate molecule was bound. For 4XNW 

[114], FTSite’s first and third sites overlapped with the orthosteric site, and the second 

site was within the protein-membrane interface. While the failure to predict the BPTU 

allosteric site was disappointing, it can be explained by the limitations of mapping tools 

parameterized to find hot spots and binding sites of globular proteins. Prediction of this 

allosteric site based on the orthosteric structure is even more challenging as the site is 

induced by the ligand and hardly visible in the structure with the orthosteric ligand. 

However, it was very exciting that FTMap could predict all intra-helical allosteric sites 

even in the absence of allosteric ligands in the crystal structures. 

We emphasize that the structures 2RH1 of B2, 4MQS of M2, and 5TZR of GPR40 

have been determined without a bound allosteric ligand, yet FTMap placed the strongest 

or second strongest hot spot at the allosteric site. While these predictions are not 

genuinely prospective, the FTMap server has been publicly available since 2009 and has 

been applied to these structures without any adjustment in the algorithm or the 

parameters. Thus, the results were not affected by the fact that the inhibitor-bound 

structures were known. However, we must also note that false positives may occur when 

the strongest hot spot is not located at the allosteric site. In some structures, such strong 

hot spots identify the orthosteric site (e.g., in 5T1A, 5LWE, and 4PHU). In contrast, the 

allosteric site is only the second or third strongest hot spot in 5O9H, 4K5Y, and 6FFI, 

and none of the strong hot spots are at the allosteric site in the GLP1 and GCGR 

structures, as well as in most structures of MGLU5. 
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3.3.11 Validating FTMap on GPCRs models and an unbound structure 

To further validate that FTMap predicts the allosteric sites without the presence of 

a ligand, we applied FTMap to AlphaFold2 generated models of the 15 proteins represented 

by the 21 structures. These calculations are motivated by the assumption that the high 

accuracy models obtained by AlphaFold2 provide a good representation of the unbound 

structures.  Each of the models, on average, had 132 probe atoms overlapping with the 

ligand of the “parent” structure.  As shown in Table 3.4, FTMap could not detect 2 of the 

allosteric sites within the AlphaFold2 models. For the case of the mGlu5 structure (PDB 

ID 4OO9), the AlphaFold2 model places TRP 785 directly into the allosteric site, limiting 

access of probe atoms. The AlphaFold2 model for the CRF1 protein (PDB ID 4K5Y) shows 

a low per-residue confidence score for TM2. TM2 and TM3 define the allosteric binding 

site, so it is apparent that the low accuracy of the homology model distorted the allosteric 

site location beyond recognition by FTMap. The AlphaFold2 model mapping results of the 

PAR2 protein (PDB ID 5NDD) indicated a weak site (18 probe atoms) in the allosteric 

pocket. Although not strong enough to be considered a site, it is interesting to note that 

FTMap still placed some probes in the allosteric pocket.  
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Table 3.4. GPCR structures with strong binding sites located at bound allosteric ligands 

Target PDB ID 
Number of 
overlapping 
probe atoms a 

Number of 
overlapping 
probe atoms 
with AF2 
model b 

Structures with 
≥ 84 
overlapping 
probe atoms c 

Maximum  
number of 
overlapping 
probe atoms d 

Class A  

A2A 5UIG 170 144 283 263 
β2 5X7D 129 76 34 178 
CCR2 5T1A 194 129 20 194 
CCR5 4MBS 339 320 320 384 
CCR7 6QZH 180 116 11 180 
CCR9 5LWE 169 76 47 186 
CXCR4 3ODU 213 110 233 329 
CXCR4 3OE0 279 262 321 340 
FFA1 4PHU 104 87 13 149 
FFA1 5KW2 296 174 47 296 
FFA1 5TZR 149 81 14 149 
FFA1 5TZY 178 174 49 286 
GPR52 6LI0 157 128 95 264 
M2 4MQT 204 128 127 217 
PAR2 5NDD 97 18 190 251 
PAR2e 5NDZ 70 92 1 95 
Class B      

CRF1 4K5Y 169 0 6 169 
Class C      

mGlu1 4OR2 191 171 191 263 
mGlu5 4OO9 102 0 146 244 
Class F      

SMO 4N4W 152 51 196 289 
SMO 5L7I 213 177 49 243 
a Number of probe atoms within 3Å of the ligand from mapping the target after removing the ligand. 
b Number of probe atoms within 3Å of the ligand from mapping the AF2 model of the protein. 
c Number of GPCR structures with a strong hot spot (with over 84 probe atoms) within 3Å of the ligand 
copied from the target structure. 
d Maximum number of probe atoms overlapping with the ligand copied from the target structure among 
all GPCR structures. 
e Mapping of 5NDZ yields fewer than 84 probe atoms, but the threshold is exceeded when mapping the 
AF2 model.  
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In addition to the above studies, we have considered identifying the binding site 

of the positive allosteric modulator (PAM) UCB compound within the dopamine D2 

receptor. This example is interesting because it was featured in a recent paper describing 

a novel algorithm developed explicitly to identify GPCR allosteric sites [129]. The 

method is based on molecular dynamics simulation with a mixture of explicit water and a 

specific set of probes derived from GPCR allosteric ligand structures. The simulations 

applied a harmonic wall potential to enhance the sampling of probe molecules in a 

selected area of a GPCR while preventing membrane distortion.  The protocol was next 

validated prospectively to locate the binding site of a UCB compound at the D2 

dopamine receptor, and subsequent mutagenesis confirmed the prediction. As there are 

currently no x-ray structures of the D2 receptor bound to an allosteric ligand, we decided 

to map the unbound D2 receptor (PDB ID 6CM4) using FTMap. The result shown in 

Figure 3.7 is consistent with the experimentally identified site, despite the simplicity of 

our mapping approach.  Additionally, we used the location based on the mapping results 

to successfully dock the UCB compound into the known allosteric site.  
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Figure 3.7. FTMap site prediction (mesh) matches the recently validated UCB compound (cyan) binding location 
on the D2 receptor (PDB ID 6CM4). Key residues from the D2 receptor are represented as sticks.  
The UCB compound was docked using the FTMap probes as the box for Autodock Vina. 
 

3.3.12 Clustering of allosteric site locations in GPCRs 

As shown, each location in the 21 structures with a bound ligand and strong binding 

site serves as a potential allosteric site in a large number of additional GPCRs. Here we 

investigate how the locations of the hot spots that define the 21 sites relate to each other. 

To determine the similarities, we considered each structure with its ligand, superimposed 

all mapped structures with the probes from the mapping included, and for each structure, 

counted the number of probe atoms overlapping with the ligand. Results are shown in Table 

C.2. The second column of the table lists the 21 mapped structures; to save space, each is 

identified by a number 1 through 21. In each row of the table, we show the number of probe 

atoms obtained by the mapping when considerations are restricted to probes within 3 Å of 

the ligand copied from the structure identified by the number of the particular column.  For 

example, all numbers in the first row of Table C.2 are based on the mapping of the structure 
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3ODU (also identified as structure 1). The number 213 in column 3 of this row shows that 

213 probes overlap with the ligand (ITD) bound in 3ODU. 

The next number, 172, shows that 172 probe atoms placed by the mapping of 3ODU 

overlap with the ligand PRD copied from structure 2 (3OE0) after superposing the 

structures. The number 16 in the next column shows that the 3ODU hot spot includes only 

16 probe atoms that overlap with the ligand 1Q5 from the structure 4K5Y, identified as 

structure number 3. According to the next column in the same row, the overlap between 

the 3ODU hot spot and the ligand MRV from structure 4 (4MBS) includes 262 probes. 

Thus, based on these results, we can conclude that the hot spots of 3ODU overlap not only 

with its bound ligand but also with the ligands copied from 3OE0 and 4MBS. However, 

the hot spot of 3ODU barely overlaps with the ligand bound to 4K5Y. Conversely, the 

numbers in the third column of Table C.2 show the overlap between the hot spots of each 

of the 21 structures and the ligand copied from 3ODU identified as structure 1. This column 

reveals that the hot spots in structures 3ODU, 3OE0, and 4BMS all have many probes 

overlapping with the ligand from 3ODU, and hence we conclude that these structures have 

overlapping binding hot spots at the site binding the allosteric ligand in 3ODU. As shown 

in Table 3.1, in all three structures, the allosteric site is intrahelical (HC) and is in the 

transmembrane region on the extracellular side (TM_EC).  

The similarity measure based on the overlap of probes with the ligand from a 

different GPCR structure is not commutative. For example, while the mapping of 3ODU 

yields 262 probe atoms that overlap with the ligand from 4MBS, the mapping of 4MBS 
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yields only 83 probe atoms that overlap with the ligand from 3ODU. In fact, the ligand in 

3ODU (PDB code ITD) is much smaller than the ligand Maraviroc (PDB code MRV) 

bound to 4MBS. More generally, if we regard Table C.2 as a 21x21 matrix A, then A(i,j) 

 ¹ A(j,i). Therefore we assumed that the mapping results suggest overlapping ligand 

binding sites only when both A(i,j)  > 84 and A(j,i) > 84; thus, the site in each structure 

substantially overlaps with the ligand from the other structure. For such sites, we calculate 

the measure of overlap as [A(i,j) +A(j,i)]/2, thereby making the overlap matrix symmetric. 

The graph in Figure 8 shows the 21 structures as nodes, with two nodes connected if the 

binding sites in the two structures overlap. As shown in Figure 3.8a, based on this overlap 

measure, the sites in structures 3ODU, 5UIG, 4MQT, 3OE0, and 4MBS are close to each 

other and form one cluster we identify as Cluster 1. Although this overlap is predicted 

based on the hot spots, according to Figure 3.9.A the ligands in these structures indeed 

overlap. (We note that the ligand in 3OE0 is a cyclic peptide much larger than the ligands 

in the other four structures and is not shown in Figure 3.9A). The site predicted for 4OR2 

is further apart from these five, although the ligands still overlap, and the site in 4OO9 is 

even further away, overlapping only with the ligand of 4OR2 (Figure 3.9A). In fact, the 

sites in these two structures are classified as being in the transmembrane helical bundle 

(TM) rather than in the transmembrane helical bundle on the extracellular side (EC-TM) 

as the other five structures in Cluster 1. Based on probe overlap, the second-largest cluster 

(Cluster 2, shown in Figure 3.10B) is formed by the sites in the structures 5T1A, 6QZH, 

5X7D, and 6LWE that all have a site at the signaling interface (SI) on the intracellular side 

(IC). In addition to these clusters, the mapping predicts strong sites in three pairs of 
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structures. The first pair consists of 5L71 and 4N4W (identified as Cluster 3 in Figure 3.9c), 

both having sites at the conformational lock at an intrahelical site (HC/CL); the second pair 

is 5TZR and 4PHU (Cluster 4 in Figure 3.9D) with sites that are classified as extrahelical, 

extracellular and transmembrane (EH-EC-TM). The third pair is 5KW2 and 5TZY, both 

with extra-helical sites (EH). Finally, structures 6LI0, 5NDZ, 5NDD, and 4K5Y have 

binding sites that differ from the other sites and hence are not in any of the clusters. We 

note that both 5NDZ and 5NDD are PAR2 structures but include allosteric ligands that 

bind at very different sites. We conclude that the strong hot spots in the 21 structures 

considered here map into nine distinct sites, each represented as a colored mesh in Figure 

3.8B. These 21 sites are strong hot spots and thus potential allosteric ligand binding sites 

in many additional GPCR structures with no bound allosteric modulators.  
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Figure 3.8. Locations of allosteric sites in structures co-crystallized with ligands.  
A. Similarity-based clustering of the allosteric sites in the 21 structures with bound ligands and strong hot spots. The 
length of the edges connecting the nodes represents the level of similarity based on the measure of probe overlap, with 
smaller distances indicating higher numbers of overlapping probes. As shown, the 21 sites map to 9 consensus 
locations. B. The 9 consensus binding sites defined by the clusters shown in A. The color-coding of the mesh 
representations is as follows: purple – Cluster 1 (3ODU, 4MQT, 4MBS, 5UIG, 3OE0, 4OR2, and 4OO9); blue – 
Cluster 2 (5T1A, 6QZH, 5LWE, and 5X7D); cyan – Cluster 3 (5L7I and 4N4W); pink – Cluster 4 (5TZR and 4PHU); 
red - Cluster 5 (5KW2 and 5TZY); orange - 4K5Y; green - 6LI0; yellow - 5NDZ; and brown - 5NDD. 
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Figure 3.9. Examples of allosteric ligand clusters. PDB IDs are shown in parenthesis.  
A. Cluster 1: 2CU green (4MQT), ITD cyan (3ODU); FM9 yellow (4OR2), 8D1 orange (5UIG), 2U8 pink (4OO9). 
The grey cartoon represents the protein structure 4MQT. B. Cluster 2: VT5 green (5T1A), 8VS pink (5X7D), JLW 
cyan (6QZH), and 79K orange (5LWE). The cartoon shows the protein structure 5T1A. C. Cluster 3: VIS (5L7I) green, 
and SNT (4N4W) cyan. The cartoon shows the protein structure 5L7I. D. Cluster 4: MK6 green (5TZR), and 2YB cyan 
(4PHU). The protein structure shown is 5TZR.  
 

3.3.13 Extending the analysis to all GPCRs structures 

We considered 394 X-ray crystallographic structures representing 77 distinct 

GPCRs. Most crystallized proteins belong to Class A (360); rhodopsin, adenosine A2A, and 

beta-adrenergic receptor structures cover almost 44% of the published structures. Receptor 

structures from other classes (B-F) show more balanced distributions. There were 15 Class 

B structures from four different receptors. Class C had a total of 6 structures from 2 



 
 

 
80 

receptors. Of the 13 Class F structures (Frizzled) included in our set, 77% of structures 

were Smoothened Homolog (SMO) proteins. 

After demonstrating FTMap’s ability to detect allosteric sites in unbound 

experimental and AlphaFold2 generated GPCR structures, we applied FTMap to the 

remaining 373 structures. For each of the 21 “parent” structures with a bound allosteric 

ligand, we identified all structures that had a strong hot spot overlapping with the “parent” 

ligand. Each of the 21 “parent” structures, on average, had 117 structures that had a strong 

hot spot (with ≥ 84 probe atoms) overlapping with the ligand in the “parent” structure. For 

each of the 21 structures, Table C.3. 

 lists the 10 PDB IDs of the proteins that, after superimposing the structures, have 

the highest number of hot spot atoms overlapping with the ligand. Analysis of the GPCRs 

with strong hotspots at the same location as an allosteric ligand-binding site revealed that 

site locations could be conserved across families and classes of GPCRs. We emphasize that 

the hot spots in many GPCRs overlap with ligands in several of the 21 “parent” structures. 

As we discussed, the 21 structures map only to nine distinct sites, so all the sites found by 

FTMap must be located at one of these nine sites. However, even ligands that bind at 

overlapping hot spots may only partially overlap (see Figures 3.9C and 3.9D for examples). 

Considering all 21 “parent” structures rather than the nine consensus sites provides better-

defined measures of site similarity. We also emphasize that for each of the 21 structures, 

we collect GPCR structures with hot spots overlapping with the ligand in the “parent” 

structure. Since some of these ligands are very large, they may overlap with hot spots from 

different proteins that do not overlap, increasing the number of GPCRs for the “parent” 
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structure. Thus, while a strong hot spot in such proteins is really located at a site that binds 

the ligand in the “parent” protein, it does not necessarily overlap with the strongest hot spot 

in the latter structure. 

 

 
Figure 3.10. Examples of FTMap site prediction (mesh) in proteins (gray) without co-crystallized allosteric 
ligands.  
Binding site predictions were determined by selecting FTMap probe atoms within 3 Å of an allosteric ligand (green 
sticks) placed by structural alignment. a. Predicted binding pocket in the A2A protein (PDB 3REY) overlayed with the 
allosteric ligand IT1t from the CXCR4 protein (PDB 3ODU). b. Predicted binding pocket in the GPR52 protein (PDB 
6LI1) overlayed with the allosteric ligand C17 from the CCR2 protein (PDB 5T1A). c. Predicted binding pocket in the 
DRD2 protein (PDB 6CM4) overlayed with the allosteric ligand SANT-1 from the SMO protein (PDB 4N4W). d. 
Predicted binding pocket in the LPAR1 protein (PDB 4Z34) overlayed with the allosteric ligand TAK-875 from the 
FFAR1 protein (PDB 4PHU). e. Predicted binding pocket in the P2Y12 protein (PDB 4PXZ) overlayed with the 
allosteric ligand Compound 1 from the FFAR1 protein (PDB 5KW2). f. Predicted binding pocket in the GLR protein 
(PDB 5YQZ) overlayed with the allosteric ligand CP-376395 from the CRFR1 protein (PDB 4K5Y). g. Predicted 
binding pocket in the AGTR1 protein (PDB 4YAY) overlayed with the allosteric ligand C17 from the FFAR1 GPR52 
(PDB 6LI0). h. Predicted binding pocket in the PE2R3 protein (PDB 6AK3) overlayed with the allosteric ligand 
AZ3451 from the PAR2 protein (PDB 5NDZ).  i. Predicted binding pocket in the CXCR4 protein (PDB 3OE8) 
overlayed with the allosteric ligand AZ8838 from the PAR2 protein (PDB 5NDD).   
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The large number of GPCRs that have sites overlapping with each of the 21 known 

sites might suggest that each GPCR has many potential ligand-binding sites. However, the 

mapping results also show that most GPCRs have three or fewer sites that are predicted to 

be capable of binding a ligand with high affinity (Figure 3.11). As we argued, in a large 

variety of GPCRs, these sites are located at one of the nine locations we have identified in 

the previous section. Thus, despite their structural complexity and dynamical nature, it 

appears that GPCRs have only a limited number of locations that can serve as ligand-

binding sites and that the same sites exist in many GPCRs, including receptors with low 

sequence similarity/homology. However, as mentioned, some of the allosteric ligands are 

very large and may bridge multiple binding sites. In the remainder of this section, we 

discuss a few specific groups of structures that are related due to having strong hot spots 

overlapping with the same known allosteric site. 

 
 
Figure 3.11. Distribution of the number of druggable sites in the clusters defined by the 21 GPCRs co-
crystallized with allosteric ligands.  
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3.3.14 Site conservation within a specific GPCR subtype: Muscarinic acetylcholine 

receptors 

We started by evaluating the conservation of allosteric sites within a specific GPCR family. 

For this, we first looked at the class A muscarinic acetylcholine receptor family. Although 

in the family only one M2 structure (PDB ID 4MQT) is co-crystallized with an allosteric 

modulator [103], it is assumed that both the orthosteric and allosteric site locations are 

conserved for M1 through M5 [130]. Table 3.5 lists the structures with the most conserved 

allosteric sites among the muscarinic acetylcholine receptor proteins and shows that the 

site is indeed conserved in all family members. For each structure, we show the root mean 

square deviation (RMSD) from 4MQT, sequence similarity, and pocket volume calculated 

by the dpocket option of the fpocket program [31, 33]. In addition, we use dpocket to 

extract several pocket descriptors and form a similarity score ranging from similar (0) to 

dissimilar (1).  
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We also created a phylogenetic tree of the 18 different muscarinic acetylcholine receptor 

structures based on sequence similarity and colored the nodes to represent the level of the 

conservation, based on whether the hot spots are close to the ligand bound in 4MQT (Figure 

3.12).  The colors vary from light yellow to dark purple to show increasing site overlap 

with the ligand 2CU bound to “parent” protein 4MQT. Interestingly, the structures with 

the most conserved sites, represented by darker colors on the tree, are not necessarily the 

structures closest in sequence similarity to 4MQT. The GPCR with the strongest allosteric 

site conservation (M3 receptor, PDB ID 4U14) [73] has relatively low sequence similarity 

to 4MQT. There is no evidence that RMSD, sequence similarity, or dpocket similarity 

measures can be used to predict the conservation of an allosteric site accurately. 

Table 3.5. Analysis of structures with probe atoms overlapping the ligand PAM in the muscarinic 
acetylcholine receptor 2, PDB ID 4MQT [103] 

Receptor PDB ID 
Overlapping 
probe atoms 

Pocket 
volume, Å3 RMSD, Å 

Sequence 
Similarity, % 

Similarity 
score 

M2 4MQT 204 275.3    

M3  4U14 136 128.0 1.35 87.3 0.267 
M5  6OL9 124 160.9 1.13 85.7 0.191 
M2  5ZKC 110 141.5 1.53 99.3 0.203 
M3  5ZHP 95 81.2 1.31 87.3 0.158 
M1  6WJC 95 123.3 1.88 83.6 0.349 
M3  4U15 93 147.5 1.46 87.2 0.205 
M2  5ZK3 91 134.9 1.55 98.9 0.188 
M4  5DSG 84 117.7 1.14 95.1 0.238 
M2  5YC8 84 89.9 1.50 99.3 0.180 
M3  4DAJ 80 108.0 1.28 87.3 0.183 
M2  4MQS 79 78.0 0.20 99.6 0.135 
M1  5CXV 79 98.3 1.71 84.0 0.290 
M2  3UON 72 62.9 1.46 99.3 0.220 



 
 

 
85 

 
Figure 3.12. Phylogenetic tree of proteins in the muscarinic acetylcholine receptor family, colored from yellow to 
dark purple based on the number of probe atoms overlapping with the allosteric ligand 2CU bound in the PDB 
structure 4MQT after superimposing the structures. 

 

3.3.15 Site conservation across a GPCR family: chemokine receptors 

Next, we branched out to determine if allosteric sites are conserved across an entire 

family of proteins. We chose the allosteric structure with the strongest site determined by 

FTMap. The site of the ligand Maraviroc in the class A chemokine receptor CCR5 structure 

4MBS [104] had 339 overlapping probe atoms, indicating a very strong site. After 

overlapping the mapped structures with 4MBS, we have found 320 structures that had 84 

or more probe atoms overlapping with the bound Maraviroc. Initially, we focused the 

evaluation of site conservation on the 14 additional chemokine receptor structures shown 

in Table 3.6. The chemokine receptor branch of the GPCR phylogenetic tree, shown in 
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Figure 3.13, contains 14 different chemokine receptor structures, colored from light yellow 

to dark purple, based on the level of site conservation. In 13 of the 14 structures, strong site 

conservation was observed. Unlike the muscarinic acetylcholine receptors, the chemokine 

allosteric site conservation within the family is generally correlated with sequence 

similarity. This is exemplified by the darkest colored nodes being on the same branch. 

Additionally, four of the five CCR5 structures contain the highest numbers of overlapping 

probe atoms. Nine of the 14 chemokine receptor structures contain one of the four unique 

ligands co-crystallized with the protein in the region of the allosteric site. 

 

Table 3.6. Conservation of the allosteric site within the class A chemokine receptor CCR5, PDB ID 
4MBS [104] 

IUPHAR 
Namea 

PDB 
ID 

Ligand 
ID 

Overlapping 
probe atoms 

Pocket  
volume, Å3 

Sequence 
similarity, % 

RMSD, 
Å 

Similarity 
score 

CCR5 4MBS MRV 339 839.8    
CCR5 6AKY A4X 384 796.0 100.0 0.42 0.169 
CCR5 5UIW  339 651.9 100.0 0.74 0.161 
CCR2 6GPX F7N 317 574.0 92.0 0.79 0.286 
CCR5 6AKX A4R 313 747.6 100.0 0.25 0.060 
CXCR4 3OE8 ITD 287 574.9 69.7 1.44 0.323 
CXCR4 3ODU ITD 262 667.1 68.2 1.99 0.296 
CXCR4 3OE0  248 624.5 68.1 1.31 0.334 
CXCR4 3OE6 ITD 226 558.9 70.0 1.86 0.229 
CCR2 6GPS F7N 218 579.0 93.1 0.85 0.272 
CXCR4 4RWS  217 599.2 67.6 2.69 0.234 
CXCR4 3OE9 ITD 173 301.1 69.6 1.67 0.271 
CCR2 5T1A 73R 157 363.4 89.0 0.93 0.261 
CCR7 6QZH  93 131.9 72.4 1.71 0.321 
CCR9 5LWE  53 212.6 68.3 2.89 0.474 
aResults for the 13 additional chemokine receptor structures are included for comparison. 
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Figure 3.13. Phylogenetic tree of proteins in the chemokine family, colored from yellow to dark purple, based on 
the number of probe atoms overlapping with the allosteric ligand Maraviroc (MRV) bound in the PDB structure 
4MBS of the CCR5 protein after superimposing the structures. 

 

A mesh representation of the predicted allosteric binding pocket was created by 

encapsulating all FTMap probe atoms from consensus clusters within 3Å of the allosteric 

ligand, Maraviroc (MRV). As shown in Figure 3.14a, the results of mapping the CCR5 

structure 6AKX are consistent with the binding site of the allosteric ligand MRV from 

4MBS. 6AKX is one of the nine chemokine receptor structures. As shown in Figure 3.14b, 

6AKX is co-crystallized with the ligand A4R that overlaps with the binding pocket in 

4MBS. A4R shows an example of what can be assumed to be another allosteric ligand that 

is highly similar to the allosteric ligand MRV bound in the “parent” CCR5 structure 4MBS. 

Although A4R is a structural analog of Maraviroc, due to a lack of pharmacological 

profiling, 6AKX is not included in the list of 39 allosteric proteins co-crystallized with 
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allosteric ligands. Mapping results for the CCR2 structure 5T1A, shown in Figure 3.14c, 

also indicate a biding pocket at the MRV site. Additionally, 5T1A contains a co-

crystallized ligand, 73R, partially overlapping with the allosteric site (Figure 3.14d). 

Interestingly, mapping reveals an allosteric site as large as the site binding Maraviroc in 

4MBS, although the allosteric ligand 73R that binds to the 5T1A structure is much smaller.  

 

Figure 3.14. Mapping of class A chemokine receptors.  
(a.) Results of mapping the CCR5 structure 6AKX (gray), shown as a mesh, superimposed with the allosteric ligand 
Maraviroc (MRV, shown as green sticks) from the allosteric CCR5 structure 4MBS. (b.) The ligand A4R (cyan sticks), 
co-crystallized with the 6AKX protein, binds in the location consistent with the mapping results and the MRV binding 
site. (c.) Results of mapping the CCR2 structure 5T1A (gray), shown as mesh superimposed with the allosteric ligand 
MRV (green sticks) from 4MBS. Thus, the mapping results for 5T1A are consistent with the known allosteric binding 
site of MRV. (d.) The structure 5T1A contains a co-crystallized ligand, 73R (pink sticks). Note that the mapping of 
5T1A reveals a binding site that is large enough to accommodate a ligand of the size of MRV, although the actual 
ligand, 73R, is much smaller. 
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3.3.16 Site conservation across GPCR classes: Class A C-X-C motif chemokine receptor 

4 (CXCR4) 

To extend our study of allosteric site conservation, we chose a C-X-C motif 

chemokine receptor 4 (CXCR4) structure (PDB ID 3ODU [105]), co-crystallized with the 

allosteric ligand ITD. As shown in Table 3.7, FTMap strongly detected the binding site of 

allosteric ligand ITD; there were 213 probe atoms overlapping with the ligand. In total, 232 

structures had at least 84 probe atoms overlapping with the ligand copied into the other 

structures after superposition. These structures included proteins from multiple families, 

including Class A (representing 96% of structures), Class B, Class C, and Frizzled GPCRs. 

Over half of the 270 structures came from only four groups of proteins: 51 adenosines 

receptors, 48 adrenoceptors, 11 opioid receptors, and 20 orexin receptors. 

 

The two prostaglandin D2 Receptor 2 (DP2 receptor) structures, 6D26 and 6D27 

[131], show high levels of site conservation with 329 and 286 probe atoms overlapping 

with the ligand ITD bound to 3ODU (Table 3.7 and Figure 3.15). Despite low overall 

Table 3.7. Top 10 GPCR structures with the highest number of probe atoms overlapping the 
ligand ITD in the Class A allosteric protein glutamate metabotropic receptor 1, PDB 3ODU [105] 

Class IUPHAR 
name PDB ID Overlapping 

probe atoms 
Volume, 

Å3 
RMSD, 

Å 
Sequence 

similarity, % 
Similarity 

score 
A CXCR4 3ODU 213 403.5    
A DP2 6D26 329 380.2 1.8 57.4 0.368 
A DP2 6D27 286 409.4 1.8 56.0 0.410 
A A2A 3REY 253 362.7 5.7 52.3 0.465 
A OX1 4ZJ8 248 416.8 2.6 58.8 0.159 
A A2A 3VG9 226 266.5 5.7 49.8 0.406 
A D4 6IQL 219 340.3 6.1 55.2 0.327 
A OX1 6TP3 218 446.5 2.8 59.2 0.328 
A OX2 5WS3 217 436.8 2.1 57.8 0.232 
A A1 5UEN 214 345.7 4.6 50.5 0.349 
A CXCR4 3OE8 211 253.5 0.6 99.3 0.170 
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sequence similarities (average of 56.7 %), three of the 10 residues that comprise the 

allosteric site are conserved in both DP2 receptors. The conserved residues are Trp 

102(3ODU)/97, Arg 183/179, and Cys 186/182 (Figures 3.15b and 3.15d). Although the 

two DP2 structures have co-crystallized ligands in the ITD pocket, no pharmacological data 

were available to confirm that this is an allosteric site, and hence the DP2 structures were 

also excluded from our list of GPCR structures with bound allosteric modulators. The 

RMSD between the 7TM domains of 3ODU and 6D26 is 1.75 Å and the RMSD between 

the 7TM domains of 3ODU and 6D27 is 1.80 Å, and thus the structures are not very similar. 

More generally, RMSD, sequence similarity, or dpocket similarity all seem to be somewhat 

poor predictors of allosteric site conservation. 
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Figure 3.15. Mapping of Class A C-X-C motif chemokine receptors.  
(a.) Mapping results, represented as blue mesh, for the Class A Prostaglandin D2 Receptor 2 (DP2receptor) (PDB ID 
6D26) (orange) superimposed with the allosteric ligand IT1t (PDB ID ITD) (green sticks) from Class A allosteric 
protein C-X-C motif chemokine receptor 4 (PDB ID 3ODU). (b.) 6D26 with co-crystallized ligand (PDB code FSY) 
(blue) superimposed with the allosteric protein, 3ODU (gray). Also shown are stick representations of three residues 
from the ITD binding pocket in 3ODU that were conserved in the 6D26 structure.  (c.) Mapping results, represented as 
pink mesh, for the DP2 receptor structure 6D27 (cyan) with the allosteric ligand ITD (green sticks) from 3ODU. (d.) 
6D27with co-crystallized ligand FT4 (pink sticks) superimposed with 3ODU (gray) and co-crystallized ligand ITD 
(green sticks). Also shown are the three residues from 3ODU’s ITD binding pocket that were conserved in the 6D27 
structure. 
 

3.3.17 Site conservation across GPCR classes: Class B corticotropin-releasing factor 

receptor 1 (CRF1) 

The structure 4K5Y [132] of the class B (secretin) corticotropin-releasing factor 

receptor 1 (CRF1) protein is co-crystallized with the allosteric ligand 1Q5. As shown in 

Table 3.8, FTMap identified the binding site with 169 probe atoms placed within 3 Å of 
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the allosteric ligand 1Q5 in the 4K5Y structure. Based on our criteria, the site predicted by 

FTMap is a strong site. Five structures (excluding 4K5Y) had 84 or more probe atoms 

within 3 Å of the superimposed allosteric ligand 1Q5. There were two Class A and three 

Class B structures within the five structures with significant site conservation, as indicated 

by probe overlap. The Class A protein with the highest number of overlapping probe atoms 

was the C-X-C motif chemokine receptor 4 (CXCR4) structure 3OE9 [105] (Figure 3.16a). 

As shown in Figure 3.16b, 4K5Y and 3OE9 share the following conserved residues within 

the allosteric site: Leu280/208, Leu 287/216, and Tyr 327/256. Mapping results strongly 

indicate that the 1Q5 binding site is a highly conserved allosteric site despite a low 

sequence similarity of 53.4% with a high structural RMSD of 6 Å. Additionally, the 

dpocket similarity score was 0.218, not indicating a substantial similarity between the 

binding pockets. 

 
Table 3.8. Analysis of the ten protein structures with the highest number of overlapping probe 
atoms to the 1Q5 ligand in the allosteric corticotropin-releasing factor receptor 1 protein, PDB 
4K5Y [132]. 

Class 
IUPHAR 

Name 
PDB 
ID 

Overlapping 
Probe Atoms 

Volume, 
Å3 

RMSD, 
Å 

Sequence 
Similarity, % 

Similarity 
score 

B CRF1 4K5Y 169 325.2    
B Glucagon  5YQZ 147 121.6 3.3 64.4 0.257 
B CRF1  4Z9G 113 247.3 0.8 100.0 0.091 
A CXCR4 3OE9 103 152.2 6.0 53.4 0.218 
B GLP-1  5NX2 89 113.7 4.2 63.6 0.234 
A Rhodopsin 6FKA 85 49.5 5.1 50.6 0.239 
A Rhodopsin 6FKC 70 27.3 4.9 50.6 0.243 
A Rhodopsin 6FK6 63 36.6 5.1 50.6 0.302 
A D2  6LUQ 60 95.6 6.4 50.2 0.418 
A Rhodopsin 6FK8 57 21.0 5.0 50.6 0.258 
A D2  6CM4 56 111.7 5.4 49.4 0.280 
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Figure 3.16. Mapping of Class B corticotropin-releasing factor receptor.  
(a.) Results of mapping the Class A C-X-C motif chemokine receptor 4, CXCR1 (PDB ID 3OE9) (blue), shown as a 
yellow mesh. For reference, the allosteric ligand 1QW (green) from Class B corticotropin-releasing factor receptor 1, 
CRFR1 (PDB ID 4K5Y), is shown. (b.) Conserved residues (gray) of 4K5Y that are part of the 1QW binding site. 
 

3.3.18 Known allosteric ligands show limited overlap on GPCR targets 

To get an overall picture of the structural and ligand coverage of the GPCR 

allosteric sites, we have analyzed metadata from the GPCRDB database [71] as well as the 

entries of the Allosteric Database (ASD) [64, 91, 92] adapting the methodology of Vass et 

al. [93]. Currently, 43 experimental structures with a bound allosteric ligand exist, for a 

total of 21 GPCRs, containing 38 unique ligands (37 small molecules and one peptide). For 

this study, we were only interested in allosteric sites located in the 7TM domain; therefore, 

we removed Smoothened Homolog protein from our set, resulting in 39 allosteric structures 

co-crystallized with an allosteric ligand. By comparison, the total number of structures is 

183 for these 21 receptors, and according to GPCRDB, the current (2020 September) 

number of all GPCR X-ray structures is 394 for 77 unique receptors. Thus, although 

slightly less than 10% of all GPCR structures contain an allosteric ligand, close to 30% of 

the structurally explored receptors have at least one PDB entry with an allosteric ligand 
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bound. These numbers hint at the generality of allosteric modulation among GPCRs, 

despite the respective structural efforts still being at a relatively early stage (the most well-

studied receptor, mGluR5, has five available structures with allosteric modulators, while 

the typical case for the rest of the receptors is one single structure). 

The Allosteric Database (ASD) [64] is, to our knowledge, the most comprehensive 

collection of allosteric ligands, merging reported experimental results from web resources 

like IUPHAR [133] and Drugbank [134] as well as patent files. Here, ASD has constituted 

the basis for retrieving allosteric ligand information for the respective GPCRs; the results 

are summarized in Table 3.7. For the 21 GPCRs, there are 14,158 unique ligands in total, 

out of which 145 are peptides. This set also covers weak binders since there is currently no 

option in ASD to filter the ligands based on binding affinity or bioactivity. Notably, over 

80% (11,817) of these ligands are reported for three GPCRs: cannabinoid receptor 1 (CB1), 

GABA receptor type B (GABAB), and metabotropic glutamate receptor 5 (mGluR5). Many 

of these entries come from patents, without an exact bioactivity value reported. In addition, 

over 100 allosteric ligands are reported for the M2, GLP-1R, GCGR, mGluR1, and 

Smoothened receptors (Table 3.7). Interestingly, a very small number of ASD ligands (274 

ligands, representing less than 2% of the dataset) are chemically similar to the co-

crystallized ligands of the respective receptors, suggesting a large chemical space available 

for targeting the allosteric sites. Similarly, there is very little overlap between the ligand 

sets of different receptors (472 ligands, less than 4% of the dataset). Most notably, the 

glucagon receptor GCGR and the glucagon-like peptide receptor GLP-1R share 135 

allosteric ligands (31%), while 28 allosteric modulators are shared between metabotropic 
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glutamate receptors 1 and 5 (14%). Most of the overlaps are with closely related receptors, 

e.g., bioactivities of the 75 M2 ligands (28%) are, without exception, on other muscarinic 

acetylcholine receptors. Since allosteric sites are generally more specific than orthosteric 

pockets, the limited overlap of ligand chemotypes is not unexpected. Consequently, we can 

conclude that not much information can be retrieved or implied from the allosteric ligand 

data regarding the conservation of allosteric sites. 

 

Table 3.7. Coverage of GPCRs in terms of the number of reported allosteric ligands (ASD 
database), experimental structures containing allosteric ligands (GPCRDB), as well as the overlap 
between the respective ligand sets, quantified according to various criteria 
Receptor Structures

a 
Allo. 
ligands 
(Xray)b 

Allo. 
ligands 
(ASD)c 

Allo. 
ligands 
(ASD) 
similar to 
X-ray 
ligandsd 

Allo. ligands 
(ASD) 
similar to X-
ray ligands of 
other GPCRse 

Allo. ligands 
(ASD) of 
other GPCRs 
similar to X-
ray ligandsf 

Allo. 
ligands 
active at 
other 
GPCRs 
(ASD) 

All (21/419) 223 36 (1) 
14158 
(145)     

Class A 
(14/299) 150 22 (1) 2447 (78)     
Aminergic 
(2/37) 45 5 292 (23)     
M2 11 2 269 (11) 4 0 62 75 
β2 34 3 23 (12) 2 0 4 1 
Peptide 
(2/77) 6 4 4     
C5a1 3 2 3 0 0 3 1 
PAR2 3 2 1 0 0 0 0 
Protein 
(5/29) 28 6 (1) 92 (54)     
CCR2 3 1 1 0 0 0 0 
CCR5 13 1 34 0 1 13 2 
CCR7 1 1 0 0 0 0 0 
CCR9 1 1 1 0 0 0 0 
CXCR4 10 2 (1) 56 (54) 0 0 0 2 
Lipid (2/37) 15 4 1961 (1)     
CB1 11 1 1944 (1) 57 1 32 6 
FFA1 4 3 17 1 0 37 0 
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3.4 Conclusion 

We used the protein mapping programs FTMap and FTSite to identify binding hot 

spots in GPCRs, i.e., energetically important regions capable of ligand binding. Our goal 

has been to investigate potential allosteric sites. For soluble proteins, such analysis 

generally involves benchmark sets that include both the ligand-bound and ligand-free 

structures of the proteins. Mapping is applied to both, and the expectation is that the ligand-

binding site is also found in the ligand-free structure. The bound structures can be used to 

validate the results, as the predicted hot spots should overlap with the bound ligand. 

Nucleotide 
(2/12) 52 2 98     
A2A 49 1 42 0 0 2 3 
P2Y1 3 1 56 8 0 1 1 
Orphan 
(1/81) 4 1 0     
GPR52 4 1 0 0 0 0 0 
Class B 
(3/21) 36 5 937 (67)     
CRF1 6 1 68 (63) 1 0 0 0 
GLP-1R 19 3 435 (4) 101 3 156 136 
GCGR 11 1 434 48 159 0 135 
Class C 
(3/23) 26 8 10638     
GABAB 13 2 1284 3 2 0 2 
mGluR1 2 1 765 16 1 29 109 
mGluR5 11 5 8589 33 22 30 166 
Class F 
(1/11) 11 1 136     
Smoothened 11 1 136 0 0 26 0 
a X-ray, electron microscopy and NMR structures according to GPCRDB and ASD. b Unique allosteric 
ligands appearing in at least one structure. Peptide ligands (MW > 800 Da) are indicated in brackets. c 
Unique allosteric ligands in ASD. Peptide ligands (MW > 800 Da) are indicated in brackets. d ASD 
ligands that are similar (≥ 0.4 ECFP4 or ≥ 0.8 MACCS Tanimoto similarity) to at least one of the X-ray 
ligands of the same receptor. e ASD ligands of the specific receptor that are similar (≥ 0.4 ECFP4 or ≥ 0.8 
MACCS Tanimoto similarity) to at least one of the X-ray ligands of other receptors. f ASD ligands of 
other GPCRs that are similar (≥ 0.4 ECFP4 or ≥ 0.8 MACCS Tanimoto similarity) to at least one of the 
X-ray ligands of the specific receptor. 



 
 

 
97 

However, no such benchmark can be obtained for GPCRs. Although the number of GPCR 

structures has been increasing, only 39 structures include allosteric ligands, and only in 

four cases has the same GPCR been solved with and without an allosteric ligand. We first 

applied FTMap to the 39 structures after removing the ligands and found the allosteric sites 

strong enough to be considered druggable in 21 cases. However, in contrast to soluble 

proteins, we cannot show that the method can also identify the sites in ligand-free structures 

of the same proteins since such structures are not available. Instead, we set out to 

investigate whether the same locations have strong ligand binding sites in other GPCRs, 

FTMap was applied to all 394 GPCRs with available X-ray structures.  

The analysis revealed that for each of the 21 structures with strong sites with bound 

allosteric ligands, there are several GPCR structures with a strong site at the same location. 

As expected, most such additional structures belong to the same GPCR type. However, 

sites at the same location can also be found for GPCRs of different types or even belong to 

different families. This result would not be surprising if each GPCR had many different 

sites capable of ligand binding. However, our results also show that this is not the case, as 

most GPCR structures have at most three but most frequently only two strong binding sites. 

Thus, despite the complexity of the GPCR structure with seven transmembrane helices and 

many areas that can be expected to accommodate drug-sized molecules, in each GPCR, the 

number of locations that are suitable for binding ligands with relatively high affinity is very 

small. Such locations are conserved among many GPCRs, sometimes with very moderate 

structure and sequence similarity. The analysis of ligands known to bind to such GPCRs 

reveals that having allosteric sites at the same location implies neither the similarity of the 
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ligands nor the similarity of the residues forming the sites, although in some cases the same 

residues may occur in both.  Thus, these sites are not identifiable based strictly on sequence 

similarity, RMSD, or ligand similarities.  

It is interesting to note that very similar conclusions have been reached in a recent paper 

concerning cholesterol binding sites in GPCRs [135]. Analyzing the available GPCR 

structures in the PDB it was shown that the vast majority of bound cholesterol molecules 

are found in 12 spatially distinct allosteric binding pockets that, however, lack consensus 

cholesterol-binding geometry or residues. Given the diversity of the residue composition 

across receptor space, these locations might serve as targetable sites for receptor-specific 

therapeutics and pharmacological tools for studying the allosteric modulation of receptors 

in vivo [135]. Our results seem to generalize these observations from cholesterol to all 

allosteric ligands as we identify nine consensus binding sites that occur in the vast 

majority of GPCRs but lack any significant residue conservation, enabling specific 

targeting for allosteric modulation.  

We admit that our analysis has three important caveats. First, our findings are 

based on the analysis of the available X-ray structures, and no attempts were made to 

account for conformational changes by running molecular dynamics (MD) simulations. 

Long enough MD simulations may generate conformational diversity creating binding 

sites that are not among the nine identified in the X-ray structures [83, 86]. In particular, 

the available structures do not account for the possibility of cryptic allosteric sites, 

although the mapping generally finds hot spots near such sites even without well-formed 

pockets [136]. Second, some of the allosteric ligands co-crystallized with GPCRs are 
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very large and may overlap with distinct hot spots in multiple proteins that themselves do 

not overlap. Despite these caveats, the nine distinct sites we identified are clearly 

important and accommodate allosteric ligands in many different GPCRs. Third, some of 

the GPCR structures have low resolution, which may affect the accuracy of the mapping 

results and even the exact location of the ligands. While these limitations may somewhat 

impact the exact results presented in this project, we are confident that the major 

conclusions remain unchanged. 
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CHAPTER 4 Structure-Based Analysis of Cryptic-Site Opening 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work presented in this chapter is included in the following published article: 
Sun, Z.*, A. E. Wakefield*, I. Kolossvary, D. Beglov and S. Vajda (2020). "Structure- 
Based Analysis of Cryptic-Site Opening." Structure 28(2): 223-235 e222. *authors 
contributed equally to this work.  Istvan Kolossvary designed, and Julie Sun ran the MD 
simulations. Dmitri Beglov developed the modified Cryptic Site benchmark set. Amanda 
Wakefield ran the Fpocket calculations and created the histograms. Data analysis and 
visualization were completed by Amanda Wakefield and Julie Sun. Writing was 
completed by Sandor Vajda, Istvan Kolossvary, Julie Sun, Amanda Wakefield and Dmitri 
Beglov.  
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4.1 Introduction 

The binding of proteins to small molecules is central to various biological 

functions, including enzyme catalysis, receptor activation, and drug action, and thus 

detection, comparison, and analysis of binding pockets are pivotal to structure-based drug 

design [137]. In many proteins, significant differences in protein conformation exist 

between the unbound and bound states, and in some cases, the binding site is not even 

detectable in ligand-free structures. These so-called cryptic sites can be important for 

drug discovery because they can provide previously undescribed pockets and thus enable 

the targeting of proteins that would otherwise be considered undruggable. For example, it 

was predicted that considering cryptic sites of the structurally characterized proteins 

increases the size of the potentially “druggable” disease-associated human proteome from 

~40% to ~78% [138]. Thus, targeting cryptic binding sites represents an attractive and 

underexplored approach for modulating protein function with small molecules [138, 139].  

An important related question is whether the pockets are already present in some of the 

unliganded structures since this information affects the choice of methods used to identify 

such sites.  

The search for cryptic sites has been intensified with the improving performance 

of molecular dynamics (MD) simulation methods that have a history of successful 

applications [140-144].  More recently, the development of Markov state models (MSMs) 

provided an even more powerful tool and stronger motivation for discovering cryptic 

sites  [145-149]. MSMs are built from extensive MD simulations to describe a protein’s 

intrinsic dynamics and provide a reduced view of the ensemble of spontaneous 
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fluctuations the molecule undergoes at equilibrium, thereby identifying transient pockets 

and their probabilities [145]. Recent MSM simulations revealed that formation of ligand 

binding pockets at cryptic sites requires large cooperative changes to the surface of the 

protein, and that this property helps to identify such sites [148].  

The goal of this project is to consider a set of proteins with validated cryptic sites, 

and to study whether the sites always remain cryptic without ligand binding, or pockets 

already form in some of the structures. To answer this question with some generality we 

want to study a substantial number of proteins rather than only a few. Despite advances in 

methodology and computer speed, MD or MSM simulations are computationally still too 

demanding for a large-scale study, so we primarily investigate X-ray structures from the 

Protein Data Bank (PDB). However, for three proteins the results of the empirical 

analysis are supported by performing adiabatic biased molecular dynamics (ABMD) 

simulations [150-152].   

The starting point of our analysis is the CryptoSite set of protein pairs developed 

for benchmarking cryptic site detection algorithms [138].  Each of the of 93 bound-

unbound pairs in this set included an unbound structure without a well-formed pocket and 

another structure co-crystallized with a biologically relevant ligand bound at the same 

location. A limitation of the CryptoSite set is that each pair contained only a single 

unbound structure, although to determine whether a site can be considered genuinely 

cryptic it is important to consider the full range of ligand-free conformations available to 

the protein. Therefore, in our previous work we extended the set by adding all structures 

in the Protein Data Bank having at least 95% sequence identity and no ligand bound 
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within the 5 Å neighborhood of the cryptic site [136]. All structures in this extended set 

were mapped using the FTMap program [19], and it was shown that the vicinity of the 

cryptic site included a strong binding hot spot in some of the unbound structures for over 

90% of the 93 proteins [136]. Since binding hot spots disproportionately contribute to the 

binding free energy of any ligand [153, 154], and some attractive forces are clearly 

required for ligand binding, this result was not unexpected. However, binding hot spots 

can be located both in relatively flat surface regions and in crevices that are too tight to 

accommodate drug-sized ligands, and we did not investigate whether appropriate pockets 

were formed in any of the unbound structures.  In fact, FTMap is not even suitable for 

such analysis, since its results are relatively invariant to conformational changes [19, 155]  

To examine the statistics of pockets before ligand binding, we considered the 

proteins in the CryptoSite set that had at least 10 apo structures in the Protein Data Bank 

(PDB). To characterize the pockets in the structures we calculated a druggability score 

(DS) at the cryptic site using the Fpocket program [31, 32]. Fpocket is more sensitive to 

conformational changes than FTMap. The Fpocket DS values depend on shape, size, and 

polarity of the pocket (see Chapter 1.4) and vary between zero (no pocket) and 1.0 

(pocket ideal for binding druglike small molecules). The number of structures for each 

protein is generally much higher than 10, and having multiple ligand-free X-ray 

structures enabled us to generate histograms of Fpocket druggability scores [33]. We 

considered DS = 0.5 as the lower threshold for a well-formed pocket and disregarded any 

protein if the cryptic pocket had DS < 0.5 in the ligand-bound structure. We also omitted 

any protein if none of its unliganded structures satisfied the FTMap druggability 
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conditions [20]. These selection criteria reduced the number of proteins considered in this 

study to 32.  

As will be shown [156], the 32 proteins (Table C.1) can be grouped into the three 

different types. The first group includes eight proteins with cryptic sites that, based on the 

available X-ray structures, can be considered “genuine” since the pocket at the site does 

not form without ligand binding. In contrast, the apo structures of six proteins in the 

second group exhibit binding pockets that seem to spontaneously form in a substantial 

fraction of structures. Finally, in the largest group of 18 proteins forming of a pocket is 

impacted by off-site mutations or ligand binding, thus emphasizing the role of allosteric 

communication in the opening of the cryptic site. We assume that the X-ray structure of a 

protein correspond to the free energy minimum of the crystal under the condition of 

crystallization. However, the protein has an ensemble of slightly higher energy 

conformations [157-159], and changes in the conditions of crystallization, introducing 

site directed mutations, or mutating some residues all perturb the free energy landscape 

and thereby can alter the X-ray structure. While analyzing the unliganded structures in 

the PDB provides some chance for capturing alternative structures, some possibly with 

better-formed pockets, we readily admit that this approach is far from systematic. 

However, we will demonstrate that the results show the substantial information available 

in the PDB on the opening of cryptic sites.   

To further explore how cryptic sites are formed, we selected one typical protein 

from each of the three groups and applied adiabatic biased molecular dynamics (ABMD) 
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simulations [150-152]. The simulations use a biasing force to guide the proteins from 

their ligand-free structures to ligand-bound conformations. ABMD is similar to targeted 

molecular dynamics [160], but it is more gentle because the biasing force is only applied 

when the system is diverging from its path towards the target structure. Guiding the 

structures toward well-formed pockets enables rigorous sampling the transitions between 

the two states, generating a distribution of druggability scores of the pocket located at the 

cryptic site. By varying the value of a force constant, we can assess the extent of how 

energetically demanding such conformational transitions are. As mentioned, the three 

proteins studied by ABMD represent different pocket opening mechanisms. From the 

first group we consider the higher affinity phosphotyrosine (pTyr) binding pocket of 

protein tyrosine phosphatase 1B (PTP1B), which seemingly does not form without 

binding a charged ligand. Accordingly, considerable force is needed in the simulation to 

guide the structure toward the ligand-bound conformation. In contrast, the active site of 

beta-secretase 1 (BACE1) is defined by a loop that essentially opens and closes on its 

own, therefore not much force is needed to move it between the two states. The third 

protein we study is TEM-1 β-lactamase, in which the cryptic allosteric site is formed by 

moving two helices apart. As will be shown, the results of these simulations confirm the 

trends of pocket formation observed in the X-ray structures. 

4.2 Methods 

4.2.1 Adiabatic Biased Molecular Dynamics 

We applied adiabatic biased molecular dynamics (ABMD) simulations to three 

proteins, PTP1B, beta-secretase 1, and TEM-1 β-lactamase, all with well-validated 
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cryptic sites. The simulations were performed using the GPU version of Desmond  [161] 

running on Nvidia GTX 1080 graphics cards on a 4-GPU desktop computer. We used the 

OPLSAA_2005 force field and SPC water in our simulations. Every simulation started 

with an equilibration protocol including the following steps: (1)  Brownian dynamics 

NVT, T = 10 K, ∆t = 1 fs, restraints on solute heavy atoms, t = 100 ps, (2)  NVT, T = 10 

K, ∆t = 1 fs, restraints on solute heavy atoms, t = 12 ps, (3)  NPT, T = 10 K, restraints on 

solute heavy atoms, t = 12ps, (4)  NPT, T = 310 K, ∆t = 2.5 fs, restraints on solute heavy 

atoms, t = 12ps, and (5)  NPT, T = 310 K, ∆t = 2.5 fs, no restraints, t = 24 ps. The 

production runs were configured NPT using Nose-Hoover chain with a 1 ps relaxation 

time for thermostat (single temperature group), and Martyna-Tobias-Klein barostat with 2 

ps relaxation time and isotropic coupling. We utilized a RESPA integrator with ∆t = 2.5 

fs for bonded and near nonbonded interactions and ∆t = 7.5 fs for far nonbonded 

interactions. The particle-mesh Ewald algorithm was used with periodic boundary 

conditions to compute long-range electrostatic interactions with the real space cutoff set 

to 9 Å for both electrostatic and van der Waals interactions. Water molecules were 

constrained with SHAKE. 

The ABMD simulations were used to guide a protein molecule from apo to holo 

structure [37, 152, 162]. ABMD is similar to targeted molecular dynamics (TMD) [163], 

but it is gentler because the biasing force is only applied when the system is diverging 

from its path towards the target structure. The “distance” from the target ligand-bound 

conformation is measured by RMSD and when the system moves toward the target 
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autonomously, no force is applied. The time dependent ABMD/RMSD biasing potential, 

U is a function of the conformation of the protein, R, and at a time, t, is given by: 

 

U (R, t) = ½ k H(X(R, t)) [X(R, t)]2 

  

where H is a Heaviside function (H(X) = 1 if X > 0 and H(X) = 0 otherwise), k is a force 

constant and X(R, t) is: 

X(R, t) = d(R(t), RT) − mint’<t d(R(t’), RT) 

 

d(R1, R2 ) denotes the RMSD between conformations R1 and R2, RT is the target structure. 

By varying the value of the force constant k we were able to assess, qualitatively, the 

extent of how energetically challenged different conformational transitions were. For 

each system we ran three independent, short ABMD simulations (20 ns each, seeded with 

different initial random velocities). Values were recorded at 40 ps intervals, resulting in 

502 frames for each trajectory. Frames from all 3 trajectories were combined for analysis. 

4.2.2 Data Set  

The starting point of this work is a representative set of X-ray structures of 

proteins with validated cryptic binding sites. This set was originally selected for training 

and testing the CryptoSite cryptic site prediction protocol [138], and hence is referred 

here as the CryptoSite set. Considering 504,647 candidate pairs of ligand-bound 

structures with their unbound counterparts, Cimermancic et al. used pocket detection 

algorithms to retain only pairs with a small pocket score in the unbound form and a 
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substantially larger score in the bound form. Manual inspection of the structures resulted 

in a dataset of 93 bound-unbound pairs in which each unbound structure had a site 

considered cryptic due to its low pocket score, and each bound structure had a 

biologically relevant ligand bound at the site. While the original CryptoSite set included 

only one unbound structure in each pair, to study the information provided by different 

unbound structures of a given protein, for each bound structure in the set we added all 

unbound structures with at least 95% sequence identity that were available in the Protein 

Data Bank [136]. Structures determined by NMR or cryo-EM, as well as X-ray structures 

with lower than 3.5 Å resolution were excluded. The structures were superimposed on the 

ligand-bound structure and structures with any ligand within 5 Å of the cryptic site ligand 

were also excluded. Finally, we removed all proteins that had less than 10 structures 

satisfying the above criteria. The number of such unbound structures varied from 10 to 

249 per protein. 

4.2.3 Identification of binding pockets using the Fpocket program 

The Fpocket program[31, 32] was used with default parameter to identify the 

ligand binding pockets of the ligand-bound and all unbound X-ray structures of the 

proteins in the data set. Fpocket was also used to determine the pockets of the structures 

generated along the trajectories of the ABMD simulations of PTP1B, beta-secretase 1, 

and TEM-1 β-lactamase. For each value of the force constants k, the program was applied 

to each of the 1506 frames collected for each of the three proteins. Fpocket generally 

identifies multiple ligand binding pockets. All pockets within 5 Å of the ligand 

superimposed from the bound structure were retained for further analysis.  
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4.2.4 Calculation of the Fpocket druggability scores 

Druggability scores were calculated for the pockets identified by Fpocket in the 

X-ray structures and structures generated by the ABMD simulations as described in the 

previous section. The calculations were restricted to pockets found within 5 Å of the 

ligand superimposed from the bound structure. For each structure, the pocket with the 

maximum DS value was selected as the predicted ligand binding site, and this maximal 

DS value was used to create the histograms throughout this section. All DS values are 

reported in the published Data S1 file. 

4.3 Results  

4.3.1 Proteins in the CryptoSite set 

The increasing number of X-ray structures determined under different conditions 

for the same proteins enabled us to study conformational variations, including the 

potential opening of cryptic pockets, in a large set of proteins, and thus arrive at 

conclusions that may have some level of generality. As previously mentioned, the starting 

point of our study is the CryptoSite set of X-ray structures of proteins with validated 

cryptic binding sites [138]. For each bound structure in this set we added all unbound 

structures with at least 95% sequence identity in the Protein Data Bank that had nothing 

bound within the 5 Å neighborhood of the cryptic site [136]. The extended CryptoSite set 

was filtered to consider only good quality X-ray structures for the analysis of druggability 

score histograms. Structures with a resolution lower than 3.5 Å and all structures that 

were determined by cryo-EM or NMR were discarded (see Methods). In addition, we 

restricted the analysis to 32 proteins that had at least 10 unbound structures satisfying the 
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above criteria (Table D.1). The number of retained unbound structures per protein varied 

from 10 to 249.  

Table D.1 shows the Protein Data Bank (PDB) IDs of the unbound and bound 

structures, the three letter PDB code of the ligand bound at the cryptic site and considered 

in the CryptoSite set [138], the name of the protein, the number of unliganded structures 

in the extended set that satisfy our selection criteria, the figure that shows the DS 

histogram,  and a short comment.  Since we studied 32 proteins, detailed discussion had 

to be limited. However, we provide extended comments (Table D.1), DS histograms that 

are not shown in the main text (Figures D.1 and D.2), and the complete list of selected 

ligand free structures and their calculated DS values for all 32 proteins which can be 

found in the supplementary information of the published work [164]. 

4.3.2 Group 1: Proteins that require ligand binding for forming a pocket at the cryptic 

site  

A binding site can be considered genuinely cryptic if the binding pocket never 

forms without a bound ligand, and thus the DS distribution is strongly skewed toward 

small values, i.e., DS < 0.5 in all structures. Based on the X-ray structures of the 32 

proteins considered, it appears that such proteins are relatively rare. In addition, even for 

these proteins there generally exist a limited number of exceptions. As will be discussed, 

proteins that have no detectable pockets in almost all unbound structures still may have 

such pockets due to either a mutation or ligand binding at a distant site that led to opening 

the cryptic site without a bound ligand. Therefore, we indicate if the protein is a mutant 
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or if it is a complex with a ligand or protein binding at a distant (non-cryptic) site. It is 

generally helpful that the structures in the PDB are supplemented by publications that 

provide information on the origins of cryptic site properties and help to explain why the 

exception may occur.   

To demonstrate that some proteins are unlikely to form a pocket at the cryptic site 

without ligand binding we selected protein tyrosine phosphatase 1B (PTP1B), an 

extremely well-studied protein, in which the most important subsite of the active site is 

cryptic. This pocket is known as the site of the high affinity phosphotyrosine binding 

[165]. In the CryptoSite set this site is represented by the unbound structure 2CM2 and by 

the structure 2H4K, co-crystallized with a small inhibitor. In Figure 4.1A we copied the 

inhibitor from the bound structure into the unbound one to show that in the latter the 

binding site is broad and open rather than a drug-sized cavity. Such cavity forms in the 

inhibitor-bound structure (Figure 4.1B). Without ligand the binding site is open because 

loop 179 – 188 turns away from the site (Figure 4.2A). The loop moves closer to the site 

and forms a tight pocket in all bound structures, with the side chain of F182 acting as the 

lid (Figures 4.1B and 4.2A). The monocyclic thiophene inhibitor in 2H4K has low 

affinity (Ki = 1300- 3200 nM), but the same pocket binds an inhibitor with Ki = 4 nM in 

the PDB structure 2QBP. Although the pocket is very important for binding active site 

inhibitors and the phosphotyrosine moiety of substrates, it has a druggability score DS > 

0.1 only in two unbound structures. The first is the C215D mutant (PDB ID 1PA1, DS = 

0.468) and the second is the low-resolution structure 2HNP (DS = 0.338). We note that 

some of the 19 “unliganded” PTP1B structures in the PDB are mutants or have inhibitors 
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binding far from the active site, but the pocket remains too open in all such structures. 

 

Figure 4.1. Forming the pocket at the site of high affinity phosphotyrosine binding in PTP1B.  
A. Unbound PTP1B structure 2CM2 shown as grey surface. The inhibitor 509 from the ligand-bound structure 2H4K 
(cyan sticks) is shown for refence, demonstrating that the site is too open. B. In the ligand-bound structure 2H4K the 
pocket binding the inhibitor 509 is well formed. The protein is shown as partially transparent surface for improved 
visibility. C. Druggability scores (DSs) of unliganded PTP1B structures in the PDB. The distribution of DS values is 
shown in dark, light, and medium blue, respectively, for unbound structures, complexes, and mutants. Here “complex” 
means a protein or ligand binding at a distant site. D. Distribution of druggability score (DS) values obtained by 
adiabatic biased molecular dynamics (ABMD) simulations of unliganded PTP1B at k=1.0 (kcal/mol)/Å2. E. 
Distribution of DS values obtained by ABMD simulations of PTP1B at k=10.0 (kcal/mol)/Å2. F. Distribution of DS 
values obtained by ABMD simulations of PTP1B at k=60.0 (kcal/mol)/Å2. 
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Since the move of loop 179-188 to form the pocket without ligand binding was 

observed only in one of the 19 structures, the conformational transition may require 

overcoming some energy barriers. To test this hypothesis, we used adiabatic biased 

molecular dynamics (ABMD) simulations to guide the protein from its unbound to its 

ligand-bound state (See Methods). The biasing force was proportional to the distance 

from the target structure and was only applied when the system was diverging from its 

path towards this target structure. The “distance” was measured by the mean squared 

distance (MSD) from the bound conformation. With each biasing force we ran three 

independent 20 ns ABMD simulations seeded with different initial random velocities. 

Values were recorded at 40 ps intervals, resulting in 502 frames for each trajectory. 

Frames from all 3 trajectories were combined for analysis. Since small transitional 

pockets may be formed in this process, druggabilty scores (DSs) were calculated for all 

pockets within 5 Å of the ligand superimposed from the bound structure, and the 

maximum DS value was reported.  Figures 4.1D-F show the distributions of DS values 

from the simulations with the biasing force constants k=1.0 kcal/mol/Å2, k=10.0 

kcal/mol/Å2, and k=60.0 kcal/mol/Å2, respectively (see Methods). At both k=1.0 

kcal/mol/Å2 and k=10.0 kcal/mol/Å2 the distributions are heavily skewed toward low DS 

values, and the pocket is getting formed in a small fraction of snapshots only when the 

much larger force, k=60.0 kcal/mol/Å2, is applied.  Figure 4.2B shows a snapshot at 12 ns 

from the latter simulation, attesting that loop 179-188 moves toward its position in the 

ligand-bound structure.   
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Figure 4.2. Conformational change and a snapshot from the ABMD simulation of protein tyrosine phosphatase 
1B (PTP1B). All structures are shown in cartoon representation.  
A. Loop 179 – 188 in the unbound structure 2CM2 (grey) and in the inhibitor-bound structure 2H4K (orange). B. Loop 
179 – 188 from a snapshot at t = 12 ns of the ABMD simulations with k = 60.0 kcal/mol/Å2 (blue). 

 

We show DS distributions for six more proteins with cryptic sites that almost 

never form without bound ligands (Figure 4.3). Pyruvate kinase from Leishmania 

Mexicana functions as a homotetramer, each subunit with substantial hinge motion 

between two domains. The active site of the enzyme has DS < 0.5 in all known ligand-

free structures (Figure 4.3A).  Similarly to PTP1B, the site is too open in these structures, 

and becomes well defined only upon binding to ATP and a substrate that cause the 

closing of a lid-like domain onto the site. We note that pyruvate kinase also has an 

allosteric site, which binds FDP (fructose 2,6 bisphosphate), almost 40 Å away from the 

active site, and some of the structures considered in Figure 4.3A have FDP bound at the 

allosteric site. Although FDP is known to act as an allosteric effector that increases the 

rate of the phosphorylation sevenfold [166], Figure 4.3A reveals that binding at the 

allosteric site does not affect the DS at the active site. In fact, the increase in the reaction 

rate is due to stabilization of the tetramer by FDP binding. In agreement with this result, 

pyruvate kinase is a known  example of allostery without conformational change [166].  
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Figure 4.3. Druggability scores (DSs) of unliganded structures of proteins with DS distributions skewed toward 
the unbound state.  
The distributions of DS values are shown in dark, light, and medium blue, respectively, for unbound structures, 
complexes, and mutants. The label shows the 3-letter code of the ligand bound at the cryptic site, and the name of the 
ligand is shown in parenthesis here. A. Pyruvate kinase (ATP plus oxalate). B. Ricin (pteroic acid). C. Ribonuclease A 
(NADPH). D. Hepatitis C virus RNA polymerase NS5B (indole-based allosteric inhibitor binding at the thumb 
domain). E. Protein tyrosine phosphatase 1B (allosteric inhibitor binding at the C-end). F. Fructose-1,6-bisphosphate 
aldolase enzyme from rabbit muscle (naphthol AS-E phosphate, a competitive inhibitor.). 
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The active site of ricin (Figure 4.3B) is closed in most unbound structures because 

the side chain of Y80 protrudes into the site, stabilized with H-bond to the backbone O of 

G121. However, the pocket can be affected by antibody binding at a distant site (PDB ID 

4KUC), leading to DS > 0.5 in a few structures (Figure 4.3B).  In ribonuclease A the 

cryptic site binds NADPH (PDB ID 2W5K), but in most apo structures the side chain of 

H119 protrudes into the site. The only structures with DS > 0.5 are 3EV3, crystallized in 

70% t-butanol (DS = 0.547) and 3EIC (DS = 0.697), which is the F120A mutant. The 

CryptoSite set includes three cryptic allosteric sites of the hepatitis C virus polymerase 

NS5B. The first site is occupied by a small alpha-helix in the unbound structure 3CJ0 at 

the tip of the N-terminal loop that connects the fingers and thumb domains. Inhibitors 

binding at the site displace the helix and prevent intramolecular contacts between the two 

domains, thereby precluding their coordinated movements during RNA synthesis. Such 

conformational change does not occur in unliganded structures or, with the exception of a 

single complex (PDB ID 3BSC), in structures with inhibitors bound at the other two 

allosteric sites (Figure 4.3D). In contrast, it appears that inhibitor binding at this first site 

affects the pockets at the other two allosteric sites, and hence those will be discussed in 

the third group of proteins.  

We have already discussed the cryptic pocket in the active site of PTP1B. The 

protein also has a cryptic allosteric site located under its C-terminal helix, which is 

partially unstructured in the inhibitor bound structure (PDB ID 1T49). The inhibitor binds 

in a very narrow hydrophobic pocket formed by L192, F196 and F280, more than 20 Å 

away from the active site [167]. Binding at the active site does not affect the allosteric 
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site that is closed in the unliganded structures with the C-terminal helix intact. The pocket 

is partially accessible only in two ligand-free structures, both with a bound Mg2+ ion 

(Figure 4.3E). We place two more proteins into the group with genuine cryptic sites, 

fructose-1,6-bisphosphate aldolase (Figure 4.3F) and the Rho ADP-ribosylating 

Clostridium botulinum C3 exoenzyme (Figure D.1), with details given in the published 

supplementary data [156]. 

4.3.3 Group 2: Proteins with spontaneously forming pockets at cryptic sites 

As the other extreme we were looking for proteins with sites that were considered 

cryptic in CryptoSite but have pockets that seem to spontaneously form in some of the 

ligand-free structures. Such behavior is seen in beta-secretase 1 (BACE1), represented by 

unbound and bound structures 1W50 and 3IXJ in the CryptoSite set. In the unbound 

structures the loop comprising residues 71-74 is turned away from the site, making the 

pocket too open to score as druggable (Figures 4.4A and 4.4E). The loop is closing down 

on the inhibitor in the bound structure 3IXJ (Figures 4.4B and 4.4E), resulting in a well-

formed pocket that binds the isophthalamide ligand with high affinity  [168]. The analysis 

of unbound BACE1 structures shows a broad distribution of druggability scores between 

conformations resembling the unbound and bound forms (Figure 4.4C), with 39% of 

structures with DS > 0.5. Apart from a single complex with an antibody bound far from 

the active site, all BACE1 structures in the PDB are of the wildtype human protein, and 

the various X-ray structures differ only in the crystal form and the conditions of 

crystallization. The overall root mean square deviation (RMSD) of many unbound 

structures with DS > 0.5 is less than 0.5 Å from the bound structure 3IXJ. Thus, the 
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variation in DS values seems to be the consequence of the variation in loop conformation, 

indicating significant conformational selection as part of the pocket opening. This 

hypothesis is supported by the results of biased molecular dynamics simulations. Indeed, 

simulation at k=1.0 kcal/mol/Å2 and started from the apo state shows that the distribution 

of DS values is already somewhat skewed to the right, i.e., toward a well-formed binding 

pocket (Figure 4.4D), and loop 71-74 is getting close to its position in the ligand-bound 

state as shown by a snapshot at t = 12 ns (Figure 4.4F). 
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Figure 4.4. Forming the cryptic ligand binding site in beta-secretase 1 (BACE-1).  
A. Unbound structure 1W50 (partially transparent grey surface). The inhibitor 586 from the ligand-bound structure 
3IXJ of BACE-1 is shown for reference (cyan sticks). The flexible loop 71–74 is shown as blue cartoon. B. Structure 
3IXJ of BACE-1 (grey surface), co-crystallized with the inhibitor (cyan sticks). The flexible loop 71–74 is shown as 
blue cartoon. Based on the surface representation, the loop provides the lid of the inhibitor-binding pocket. C. 
Druggability scores (DSs) of unliganded BACE-1 structures in the PDB. The distributions of DS values are shown in 
dark and light blue, respectively, for unbound structures and complexes. All structures are of the wildtype protein, and 
apart from a single structure with an exosite-binding antibody have no ligand bound. D. Distribution of druggability 
score (DS) values obtained by adiabatic biased molecular dynamics (ABMD) simulations of BACE-1 at k=1.0 
(kcal/mol)/Å2. E. Conformational change of BACE-1 upon ligand binding. Loop 71–74 is shown in the unbound 
structure 1W50 (grey) and in the inhibitor-bound structure 3IXJ (orange). F. Also shown is loop 71–74 from a snapshot 
at t = 12 ns of the ABMD simulations with k = 1.0 kcal/mol/Å2 (blue). 
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We have found only five other proteins with similar properties among the 32 

studied.  The first is bovine beta-lactoglobulin, which binds retinol in the middle of a  b-

barrel (PDB ID 1GX8). In a few unbound structures loop 84 to 90 acts as a lid that 

prevents access to the large and well-formed binding site. However, in most structures 

the flexible loop is open enough to provide access to the site (Figure 4.5A). Notice that 

many of the beta-lactoglobulins in the PDB are from other species rather than bovine, but 

the mutations do not affect the conclusion that the pocket is almost always well formed. 

Similarly, in several apo structures of human thrombin, such as chain E of 1HAG (which 

is a prothrombin), the active site is too open but becomes well-formed in many apo 

structures. Although there are mutant thrombins within the 95% sequence identity as well 

as complexes with ligands binding at distant sites, their impacts do not change the 

conclusion that the active site of thrombin can form spontaneously before any ligands 

bind (Figure 4.5B). The fourth protein in the CryptoSite set that does not seem to have a 

genuine cryptic site is the ligand-binding domain of the alpha-L integrin lymphocyte 

function-associated antigen-1 (LFA-1). The cryptic site of LFA-1 binds an allosteric 

inhibitor (PDB ID 3BQM). In some structures without this inhibitor, the disordered 

carboxyl end protrudes into the site, but in others the binding pocket is well-formed 

(Figure 4.5C). The fifth and sixth proteins in this group are the glutamate receptor 2 

protein (Figure 4.5D) and the complex formed by the transforming protein RhoA and 

RhoGAP (Figure D.1), with details given in the published supplementary data [156]. 
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Figure 4.5. Druggability scores (DSs) of unliganded structures of proteins with a cryptic site that is frequently 
well formed.  
The ligand bound at the cryptic site is shown in the label and is listed in parenthesis here. The distributions of DS 
values are shown in dark, light, and medium blue, respectively, for unbound structures, complexes, and mutants. A. 
Bovine beta-lactoglobulin (retinol). B. Thrombin (active site inhibitor 121). C. Integrin lymphocyte function-associated 
antigen-1 (LFA-1) ligand binding (I) domain (inhibitor BQM). D. Glutamate receptor 2 (competitive antagonist ATPO 
binding to the core of the receptor).  

 

4.3.4 Group 3: Proteins with cryptic site opening impacted by mutations or off-site 

binding 

In the remaining 18 proteins, the druggability score at the cryptic site substantially 

depends on mutations and/or on the binding of ligands or proteins at distant sites. Before 

discussing the other proteins, we focus on the impact of mutations on the opening of the 

cryptic site in TEM-1 β-lactamase, which is a textbook case of cryptic allosteric sites 
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[169]. The active site of TEM-1, with the catalytic residues S70, K73, and K234, is 

located between the two domains of the protein. In the unbound structures such as 1JWP, 

helices H11 (residues 218–230) and H12 (residues 271–289), located above the active 

site on different domains, are close to each other (Figure 4.6A). The X-ray structure 

1PZO showed two small inhibitors bound to this region by forcing apart the two helixes 

(Figures 4.6B and 4.7A).  Although the center of this cryptic site is 16 Å from the center 

of the enzyme’s active site, one of the inhibitors has a second binding mode that partly 

occludes the active site near residues S235, G245, and G236 [169]. However, it appears 

that binding to this second site would only be possible to a structure formed by inhibitor 

binding to the first core site. This “opening” of the secondary structure results in major 

backbone and side-chain rearrangement that exposes mainly hydrophobic surface to the 

compound.  
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Figure 4.6. Opening the cryptic allosteric site in TEM-1 β-lactamase.  
A. Unbound structure 1JWP of TEM-1 β-lactamase (grey cartoon). Two small allosteric inhibitors from the structure 
1PZO are shown for reference (cyan sticks). B. Inhibitor-bound structure 1PZO with two allosteric inhibitors, 
demonstrating that the two helices lining the allosteric site move apart. C. Druggability scores (DSs) of unliganded 
TEM-1 β-lactamase structures in the PDB. The distributions of DS values are shown in dark, light, and medium blue, 
respectively, for unbound structures, complexes, and mutants. Here “complex” means a protein or ligand binding at a 
distant site. D. Distribution of druggability score (DS) values obtained by adiabatic biased molecular dynamics 
(ABMD) simulations of TEM-1 β-lactamase at k=1.0 (kcal/mol)/Å2. E. Distribution of DS values obtained by ABMD 
simulations of TEM-1 β-lactamase at k=10.0 (kcal/mol)/Å2. F. Distribution of DS values obtained by ABMD 
simulations of TEM-1 β-lactamase at k=30.0 (kcal/mol)/Å2. 
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Figure 4.7. Conformational change and a snapshot from the ABMD simulation of TEM-1 β-lactamase. All 
structures are shown in cartoon representation.  
A. Unbound structure 1JWP (grey), superimposed with the bound structure 1PZO (orange). The two allosteric 
inhibitors bound to 1PZO are shown in cyan. B. Helix H11 from a snapshot at t = 20 ns of the ABMD simulations of 
TEM-1 β-lactamase with k = 30.0 kcal/mol/Å2 (blue). H11 partially unfolds to open a small but druggable pocket for 
the binding of ligands. 
 

As shown in Figure 4.6C, the pocket at the cryptic site is deemed druggable (DS > 

0.5) by Fpocket in over 50% of the unliganded lactamase structures. However, 19 of the 

21 apo structures have some mutated amino acid residues. Introducing mutations 

represents the main mechanism by which opportunistic and pathogenic bacteria become 

resistant to β-lactam antibiotics, and hence many mutants have been generated.  A 

substantial number of studies examined how these mutations affect antibiotic resistance 

and stability [170-181]. Here we consider a different question and study how the 

mutations affect the druggability of the allosteric site. In Table D.2, we list the mutations, 

the DS value, and the melting temperature Tm if available in the literature. These results 

reveal that the allosteric site is essentially closed, resulting in small DS values in the 

TEM β-lactamase variants with the most stabilizing mutations. These variants include the 

so-called stabilized v.13 version with mutations A42G, N52A, I84V, R120G, M182T, 



 
 

 
125 

L201A, and T265M (PDB ID 4IBX) [172], and a second stabilized variant with the 

mutations P62S, V80I, E147G, M182T, L201P, A224V, I247V, and R275R (PDB ID 

3DTM) [173], both resulting in a melting temperature Tm around 69oC. We did not find 

data for the variant with the mutations M182T and V184A, but M182T alone yields Tm = 

63.2oC. For comparison, the melting temperature of the wildtype TEM-1 (PDB ID 1ZG4) 

is Tm = 58.5oC. We did not find the Tm value for S70G, but the removal of catalytic 

residues is known to increase the stability [182]. All these stabilized mutants have 

druggability scores DS < 0.2. The other mutants in Table D.2 have both destabilizing and 

stabilizing mutations that keep Tm in the 52oC to 59oC range [182]. It is known that 

mutations improving antibiotic resistance activity are generally destabilizing, but these 

proteins also acquire additional mutations that restore stability [180, 183, 184]. Such 

mutants include TEM-76, TEM-84, and TEM-52. The pocket in these proteins tends to be 

more open, with DS > 0.2, increasing to DS > 0.8 in the very unstable mutant L201P.  

Note that the two wildtype TEM-1 structures in Table D.2, 1ZG4 and chain E of 4OQG, 

have very different druggability values.  For 1ZG4 the value DS = 0.390 is in good 

agreement with the melting temperature Tm = 58.5oC, but DS = 0.629 calculated for 

4OQG is too high.  In fact, the unit cell for 4OQG includes six chains, and five of the 

chains have an inhibitor bound at the active sites. Although no bound inhibitor is seen in 

chain E considered in Table D.2, it is very likely that the pocket is still affected, and 

hence the high DS value is an error. Thus, it appears that the mutations that reduce 

stability generally also yield a more open allosteric pocket. Since the allosteric site is 

located between the two domains of the protein, and the interactions between the domains 
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affect both the protein’s stability and the cryptic site's volume, this observation is not 

difficult to explain.  

Since only two structures are available for the unliganded wild-type TEM-1 β-

lactamase, simple inspection does not provide information on the forces needed to open 

the site and performing MD simulations is particularly important. Markov state models 

(MSMs) built from hundreds of microseconds of MD simulations have shown that the 

allosteric pocket was at least partially open for 53% of the simulation time [145]. The 

cryptic pocket identified by the MSM simulations was also used for the design of 

allosteric modulators [149]. In contrast, MD simulations of the same protein by Gervasio 

and co-workers [185] using parallel tempering failed to show appreciable opening of the 

site when starting from the apo crystal structure. To reliably capture the conformational 

transition from the closed to open allosteric site, we applied the ABMD method to the 

M182T variant of the β-lactamase. Simulations at k=1.0 kcal/mol/Å2 show that the 

pocket is already formed in some fraction of conformations, in good agreement with the 

MSM results [145]. However, the pockets are only partially open, with the peak DS value 

around 0.6 (Figure 4.6D). Interestingly, the site has a “binary” behavior having either 

closed or partially open states with limited intermediate conformations. This contrasts 

with the site in BACE1, which has an almost flat distribution of DS values (Figure 4.4D). 

Increasing to biasing force to k=10.0 kcal/mol/Å2 and then to k=30.0 kcal/mol/Å2 

increases the fraction of partially open sites (Figures 4.6E and 4.6F). However, even a 

high DS value does not necessarily mean that the allosteric site is fully open. For 

example, Figure 4.7B shows a snapshot at t = 20 ns from the simulation with k=30.0 
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kcal/mol/Å2. Although this structure has a pocket with DS = 0.8 close to the site that 

binds the allosteric inhibitors, the pocket is created by some unfolding of the amino end 

of helix H11, and it can only partially accommodate one of the inhibitors.  

Table D.1 shows 17 more proteins with cryptic sites that seem to form in some 

structures due to mutation, binding of ligands or proteins at locations distant from the 

cryptic site, or simply due to changes in the conditions of crystallization. Here we 

describe for six of these proteins why forming the cryptic site depends on such additional 

factors. 

(1) The first example is AMPc beta-lactamase with a mechanism of cryptic site 

opening that is similar to that of TEM-1 beta-lactamase, although the two proteins exhibit 

limited sequence or structure similarity. In many unbound structures of the AMPc beta-

lactamase residues 289-293 form a small helix protruding into the site. In the presence of 

fragment-sized inhibitors the same residues form a loop allowing for ligand binding 

(PDB ID 3GQZ). Although the active site is more than 8 Å from the allosteric site, the 

two sites are in the same crevice, and binding of active site inhibitors seems to affect the 

opening of the allosteric site, which can also be impacted by mutations (Figure 4.8A).  
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Figure 4.8. Druggability scores (DSs) of unliganded structures of proteins with cryptic sites impacted by 
mutations or binding at distant sites.  
The ligand bound at the cryptic site shown in parenthesis. The distributions of DS values are shown in dark, light, and 
medium blue, respectively, for unbound structures, complexes, and mutants. A. AMPc beta-lactamase (Inhibitor GF7). 
B. Human pyruvate dehydrogenase kinase (Allosteric inhibitor TF1). C. Hepatitis C virus RNA polymerase NS5B 
(Inhibitor 79Z binding near the active site). D. Exodeoxyribonuclease I (Inhibitor BCBP). E. Dengue 2 virus envelope 
protein (Detergent n-octyl--D-glucoside). F. Myosin II (inhibitor blebbistatin). 
 

(2) The second protein in this group is human pyruvate dehydrogenase kinase, 

which has a non-competitive (allosteric) inhibitor site, 33 Å from the ADP binding site 
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(PDB ID 2BU2). Upon binding by the inhibitor TF1, the helix alpha-2 shifts by a hinge 

motion. The loop of residues 34-37 is found to be very flexible in all structures 

determined to date. This may be necessary to facilitate the hinge movement of the helix. 

Despite the large distance, the opening of the cryptic site is clearly affected by binding at 

the ADP site, since DS<0.3 in all ADP-bound structures but DS>0.7 in all structures with 

bound ADP-competitive inhibitors, and thus the binding of the inhibitors helps to open 

the allosteric site (Figure 4.8B).  

(3) We have already discussed one allosteric site of the hepatitis C virus 

polymerase NS5B located between the fingers and thumb domains (PDB ID 2BRL). A 

second site is near the polymerase active site in an elongated, predominantly hydrophobic 

pocket, between the primer grip motif (residues 364 –369) and the central sheet (strands 

214–219, 319–325, and 310–316), in the core of the palm domain (PDB ID 3FQK). 

Inhibitor binding at the third site (PDB ID 2GIR) causes a slight shift of residue L419 and 

a significant rotamer change for M423 relative to the apo-enzyme conformation [186]. 

Although the DS distributions for both sites are skewed toward low values (Figures 4.7C 

and C.1), it seems that opening is somewhat affected by inhibitor binding at the first site, 

and the pockets are already formed in several structures.  

(4) At its cryptic site exodeoxyribonuclease I (ExoI) binds BCBP (PDB ID 

3HL8), which inhibits its interaction with bacterial single-stranded DNA-binding 

proteins. In many unbound structures W245 protrudes into the weak surface site. The 

pocket is generally not well formed, but there are a few exceptions.  Almost all structures 
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are co-crystallized with various oligonucleotides, and such interactions affect the cryptic 

site, but the highest DS value occurs in a ligand-free structure (Figure 4.8D).  

(5) The cryptic site in the Dengue 2 virus envelope protein is located between two 

domains and binds the detergent n-octyl--D-glucoside (PDB ID 1OKE). Spontaneous 

variations may occur between open and closed states. The key change is the local 

rearrangement of the hairpin formed by residues 268–280, and the concomitant opening 

of a hydrophobic pocket. The most open pockets occur in unbound structures, whereas 

DS is reduced by the binding of antibodies at distant sites (Figure 4.8E), motivating the 

placement of the protein in this category.  

(6) In Myosin II the cryptic site binds the inhibitor blebbistatin in a very narrow 

cavity. In the unbound structures the side chains of L262 and Y634 protrude into the 

pocket. Changes in backbone are small. Many structures bind nucleotides at a location far 

from the cryptic site.  In addition, the protein has a different (allosteric) inhibitor binding 

site closer to the surface. The binding of these ligands is likely to affect the blebbistatin 

binding pocket deep in the protein (Figure 4.8F).  

The other 11 proteins in this group are monomeric actin, fructose 1,6-

bisphosphatase, maltodextrin/maltose binding protein, the MurA dead-end complex, acid-

beta-glucosidase, biotin carboxylase, glutamate receptor 2, androgen receptor, p38 map 

kinase, and aspartate transcarbamylase. Details for these proteins are given in Table D.1, 

and the DS histograms are shown in Figures D.1 and D.2 all related to Table D.1 and 

Figure 4.8.  
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4.4 Discussion and Conclusions  

 

The binding of a ligand molecule is often accompanied by conformational 

changes of the protein. This is the case if the binding site is cryptic, thus it is not 

detectable in the unliganded protein. A central question is whether the ligand induces the 

conformational change via induced-fit, or rather selects and stabilizes a complementary 

conformation from a pre-existing equilibrium of ground and excited states of the protein 

via conformational selection  [187]. Since the binding proceeds from the free energy 

minimum of the separate target protein to the free energy minimum of the receptor-ligand 

complex, the distinction is kinetic rather than thermodynamic. However, the free energy 

landscape of the protein determines the pathway of the association. In fact, the unbound 

state is always an ensemble of conformations [188].  If conformations without the pocket 

formed are at deep free energy minima, then the probability of pocket formation without 

ligand binding is small. On the other extreme, if the landscape includes minima leading to 

conformations with pockets formed, then the binding site is most likely cryptic only in a 

certain fraction of the conformational ensemble. 

Molecular dynamics (MD) is increasingly considered as a valuable tool to 

characterize conformational ensembles of macromolecules.  One of the major strengths of 

this approach is that it provides both thermodynamic and kinetic information [147]. 

However, as discussed for TEM-1 β-lactamase, the results of simulations depend on a 

multiplicity of factors [145, 185], including the force field parameters [189] and the 

strategy of sampling [190]. In addition, each timestep is on the order of a femtosecond, 
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while many of the biological processes of interest take a millisecond or longer. 

Performing over 1012 iterations is computationally expensive and limits the applicability 

of the method. The use of Markov state models (MSMs) enables ultra-long MD 

simulations [191], and helps to elucidate functional conformational changes [80, 192]. In 

spite of recent development, MSMs still require substantial computational resources and 

have been applied only to a few proteins for the analysis of cryptic site opening [145, 

147, 148, 193].  

The main goal of this project was to consider unliganded X-ray structures of 

proteins with validated cryptic sites and to study whether the sites remain always cryptic 

without ligand binding, or pockets already form in some of the structures. The simple 

approach of documenting the druggability of pockets at cryptic sites in 32 proteins 

enabled us to arrive at some general conclusions. First, we have shown that few proteins 

have even approximately “genuine” cryptic pockets that are unlikely to form without 

ligand binding. Second, proteins on the other extreme, with spontaneously opening and 

closing cryptic sites, are also rare. The largest group includes proteins that, under some 

conditions, have a cryptic pocket with very low druggability, but easily form a more 

druggable pocket if the conditions change. This behavior is in good agreement with the 

assumptions that the native state of the protein is defined by an ensemble of 

conformational states at free energy minima with similar energy levels [188]. Even 

moderate perturbations can change the free energy landscape and thereby impact the 

distribution of residence probabilities at the various states, also affecting the druggability 

of pocket at the cryptic site. The practical implication of this finding is that to discover 
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cryptic allosteric site it is always advisable to investigate all homologous proteins, As 

shown for TEM-1 β-lactamase, it is particularly useful to study slightly destabilized 

versions of a protein. The conclusions from the analysis of X-ray structures were 

confirmed by adiabatic biased molecular dynamics (ABMD) simulations [150-152], 

applied to one protein from each of the three groups. 
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CHAPTER 5 API Development Increases Access to Shared Computing Resources 
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5.1 Introduction  

Increases in computational resources have contributed enormously to the progress 

of science and engineering through the ability to generate, interpret, utilize, and share 

data quickly and cost-effectively. Over the last two decades, the development of High-

Performance Computing (HPC) capabilities has been driven by the need for more 

powerful systems and applications. Significant improvements in technology have pushed 

the limits of HPC and have brought about large changes in scientific discovery. 

Specifically, it is now standard practice to include large-scale computational studies to 

assess if a theory is consistent with experimental results, question a large collection of 

data, or understand mechanisms through high precision simulations. 

With the constant development of new algorithms and applications, it becomes 

imperative that users and applications can easily access computing resources, especially 

HPC resources [194]. Many academic institutions, including Boston University (BU), 

provide HPC resources in the form of Shared Computing Centers (SCC) that enable 

students, staff, and faculty to run resource-intensive calculations vital for S&E. Increases 

in the types of users, including individuals and webservers, necessitate improved access 

to SCC resources. Before this work, access to the SCC at BU was limited to SSH/SCP 

protocols and required two-factor authentication of users. This created challenges for 

developing and maintaining S&E web servers that utilize the SCC computing resources. 

Web Application Programming Interfaces (Web API) [195], a set of rules for how 

applications connect and communicate, provides developers with frameworks for 
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building HTTP-based services accessible by software applications. Current Web API 

development tends towards the Representational State Transfer (REST) [196-200] 

architectural style, which provides a high level of flexibility. RESTful API is a software 

design pattern that specifies a uniform and predefined collection of stateless operations. 

RESTful Web APIs have become a building block of web-based software development 

due to their interoperability between applications and systems over the web. 

This work describes the SHared API at Boston University (SHABU) framework 

for creating REST-ful web APIs for high-performance computing (HPC) centers. The 

API generated by the SHABU framework provides an interface through which web 

servers can access HPC resources on the SCC. We set out to create a framework to meet 

the growing demands without causing delays for servers relying on the BU SCC for 

computing, interrupting normal user activities, or compromising security. To have 

broadly accessible computational resources, as scientists and engineers require for 

effective works and collaborations, a system must accommodate various inputs and 

perform necessary calculations. We have developed a customizable framework that can 

be deployed at HPC centers to enable access to various backend resources and services 

through a common web API. This effort aims to create an easily extendable service that 

can be plugged into multiple backend resources. 

 

5.2 Design and Development 

The recent addition of several servers using SCC resources combined with increases 

in the usage of existing servers has led to a number of problems. Historically, 
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communications between servers and the SCC, including submissions, file transfers, and 

monitoring, were handled with SSH/SCP protocols. Increases in the number and usage of 

servers have led to substantial growth in the number of queries submitted to the SCC, 

which has created slowdown issues and connection issues. As a result, jobs consistently 

fail due to timeouts and longer than normal run times. In addition, recently improved 

security protocols for SCC users, including the introduction of two-factor authentication, 

hamper the functions of the servers. Currently, this is worked around by reducing security 

measures from specific IP addresses; however, this undermines the security efforts. To 

comply with the new regulations and ensure proper server functioning, we decided to 

introduce an API for submission, management, and monitoring of computing jobs from 

servers utilizing SCC resources. 

We decided that an API would be the best option for enhancing access to computing 

resources on the SCC by servers at BU. To start this project, we searched existing open-

source projects and code to find an API compatible with the software and architecture of 

the SCC. Despite the availability of several resource-sharing platforms [201-204], there 

are no out-of-the-box solutions that meet the needs of the servers reliant upon the SCC. 

Therefore, we designed a framework, SHABU, for a centralized method for 

communicating with the SCC, which many servers can use hosted from any number of 

locations. SHABU must meet the following requirements: 

1. Receive a job workflow and submit it to the queue, monitor the status until 

completion, and return the results to the server.   

2. Easily incorporate additional servers and job workflows. 
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3. Handle multi-part workflows.   

4. Allow for testing and development.   

5. Maintain the security of the SCC. 

Django, a Python-based web framework, was selected because it supports all required 

functionalities [205]. The connection between the API and the SCC was developed as a 

Docker volume to provide seamless security and access to resources [206]. Celery was 

used as an asynchronous job handler because it works well with Django in a Docker 

environment, and it can accommodate variability in the size and number of jobs [207]. 

 

5.3 Architecture  

SHABU provides users with web-based API endpoints, shown in Table 5.1, to 

access resources on the SCC. To achieve this, SHABU converts HTTP requests into 

workflows on the SCC. In the process of doing so, it requires data movement, user 

authentication, job management, and additional operations. The job object is core to 

SHABU’s functioning, and most of the architecture revolves around the management of 

proper resources, authentication, and handling of the jobs submitted. The job 

management system is outlined in Figure 5.1. SHABU is built using multiple open-source 

tools such as Django, Redis, Celery, Caddy, and Postgres [208-212]. The following 

subsections will present the SHABU/SCC connection, identity access management, API, 

job management, maintenance, and job execution. 

  
Table 5.1. Endpoints provided by the API 
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which SCC uses, and the NFS docker volume, the working directory was first made NFS 

accessible. The volume contains the SCC user authentication and was designed to 

provide a stable connection to SCC resources. 

5.3.2 Identity Access Management  

Identity access management (IAM) protocols have been set up to ensure the 

proper users have access to running commands on SCC. SHABU is designed to be an 

interface used for open access servers. The user setup and API restrictions put into place 

are designed to allow designated servers access. Restrictions fall into two main 

categories: user-based and SCC-based.   

User restrictions are based on user accounts created on the SHABU site. Anyone 

on the SHABU site can create an account; however, to submit jobs to the API, a request 

must be made to add the user into an access group. Entry into the access group will allow 

the user to create an access token. These tokens are created using the 

rest_framework.authtoken module for Django. Once a token is created for a user, they 

can register an IP address where the server will be located. The IP address and token 

combination will allow users to access the server from the registered IP address. 

SCC-based restrictions are based on SCC user accessibility. SHABU runs all 

SCC-based code through a single user with limited access. If a specific workflow requires 

libraries or executables to be made available, the user can contact the administrator. 

Environments can be created which cater to specific workflows. 
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5.3.3 API 

SHABU provides a secure way to interface with job management services via an 

API. The API is hosted in a web-facing Docker container. Interactions with the API are 

verified using tokens and IP information. Once this verification process is complete, the 

request information is processed to ensure valid requests. A verified request is then 

passed to the corresponding service. The API is built using Django REST Framework. 

Swagger provides documentation for the API. 

5.3.4 Job Management 

SHABU’s job management interactions, as outlined in Figure 5.2, include job 

submission, deletion, status check, and modification.   

Job submission 

When a user submits a job request to the API, the user is verified via their token 

and IP address. Verified requests generate an asynchronous task that completes the 

processing of the request. This task is submitted to the Celery worker queue and 

subsequently executed using Celery workers. The task creates a unique directory on the 

SCC using the NFS volume mount and unpacks the request methodology and supporting 

files into this directory. The request methodology is submitted to the SCC SGE queue to 

be run. The asynchronous task captures the SGE associated job id number and records it 

in the database. 

 

Job deletion 
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When a user deletes a job, the API request is verified via the token and IP address 

of the user. Verified requests result in an asynchronous task submitted to the Celery 

queue. The deletion task removes the job folder on the SCC and removes any jobs from 

the SGE queue. The status of the job will also be modified to “Deleted.” 

 

Job status 

The request is first verified when a user sends a job status query to the API. 

Verified requests return a JSON package that contains details of the job. These details 

include the status of the job on the SHABU queue, the job status on the SGE queue, and 

the SGE id. 

Job modification 

When a user sends a job modification query to the API, it is first verified. A 

request will include the job SHABU id and modifications to the job parameters. Once the 

request is verified, the job’s details will be updated using the supplied information. 

 

5.4 Maintenance  

The job submission task is complete once the job is submitted to the SGE queue. 

The task of updating jobs relies on periodic tasks, which can be classified under 

maintenance. The maintenance tasks are run using Celery Beats. 

5.4.1 Allocating jobs 

This task queries the database to see if there are any jobs in the SHABU queue 

and how many jobs are active. If there are jobs in the queue and the number of jobs active 
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is less than the set maximum number of jobs, this task will activate jobs in the queue. 

This activation starts the asynchronous task, which runs the job methodology outlined in 

job management.   

5.4.2 Poll job 

This task periodically queries the SGE queue to get the status of jobs running on 

the SCC.  The SGE queue is queried using qstat for user-specific jobs. The task iterates 

through the jobs in the SHABU queue; if the sge_id is in the SGE query results, the SGE 

status of the job is updated.  If a job is no longer found in the SGE queue, the status in the 

SHABU queue is updated to complete.  

5.4.3 Capture job output 

This task periodically checks the jobs on SHABU to see if jobs have been 

completed or failed. This task creates an output file package using tar for jobs that meet 

this criterion. Each of the webserver API users have a webhook address that is used to 

send the output files to the corresponding server. This task will create an output tar file; 

once the output file is created, the working files on the SCC are deleted. A webhook is 

then sent to the specified address to send the output files to the server. 

5.4.4 Cleaning 

This task will remove jobs that are older than the specified retention date. This 

task sets the database status to DELETED for each expired job and removes all job-

related files from the SCC NFS.   
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Figure 5.2. Workflow of user interactions.   
All users interact with the API (blue) to run commands based on API input (light blue).  These commands generate 
tasks to run using celery (green) which interacts with the SCC (yellow), specifically the jobs directory and the SGE. 
 

5.5 Deployment 

The final step in software development is deployment. Effortless and accurate 

deployment is imperative for the usefulness of the software. Deployment involves 

provisioning the production environment with the required operating system, packages, 

libraries, and configuration files and brings all these components together to work as one 

unified system.  

We have chosen to deploy SHABU with Docker. Docker enables the packaging 

of required dependencies, including configuration files and libraries in clean, 

redistributable Docker containers. The execution of these containers reproduces the exact 
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production environment on a user’s machine. We provide four separate docker containers 

for the RESTful API, Redis, Celery, and Celery Beats. This allows us to isolate the 

components and choose the appropriate software stack for each component.  

The API documentation is provided via the Swagger API documentation tool. The 

Swagger user interface (UI) allows users to explore the API and run test queries. For 

example, as seen in Figure 5.3, the UI can be used to look up a job by its id. Figure 5.4 

shows the JSON response code and headers returned by the server.  

Figure 5.3. Looking up a Job with the Swagger UI documentation for the “/apis/jobs/<id>/” endpoint. The 
Swagger UI provides a webpage for users to explore the API interactively. 
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5.6.1 Predicting protein-protein binding poses  

ClusPro is a web server that uses rigid-body docking to find energetically 

favorable poses for submitted proteins [213]. Protein-protein interactions (PPI) allow for 

the basic functioning of cells, and they are also essential in larger biological systems. X-

ray crystallography is the gold standard for understanding and confirming PPIs; however, 

the method is complicated and time-consuming [214]. Protein docking is a computational 

tool that provides a low-cost method of generating potential poses for PPIs that can be 

validated experimentally [215]. ClusPro provides a means to dock submitted proteins.   

 The main utility of ClusPro is to dock two user-defined protein structures. The 

main workflow involves taking in the user-defined structures, preparing and docking the 

structures, and generating the results for the user. These steps can be modified and must 

be flexible to fit the desired needs. To provide flexibility, ClusPro creates a workflow 

based on user input. This workflow was previously run using SSH/SCP protocols to 

transfer files to and from the SCC and check on the status of the job. Before SHABU, 

each job required periodic queries to the SCC to check the status. This system did not 

scale well as the jobs were monitored on an individual basis and became more 

problematic as the number of submitted jobs continued to increase. This system led to 

slowdowns on both the ClusPro server and the SCC. Switching the ClusPro server from 

using the SSH/SCP protocols to using the API provided by the SHABU framework has 

drastically reduced the slowdowns on the server and the SCC.   

ClusPro packages a workflow and the necessary support files and sends the file 

via a POST request to the API. The API receives the package and submits the workflow 



 
 

 
148 

to the SCC queue. ClusPro can query SHABU to inform the user of the status of the job; 

however, SHABU asynchronous tasks monitor the status of all jobs and update the 

ClusPro database when there are changes to the status. Once a job has been completed, 

the resulting files are compressed and sent to the ClusPro server to be made available to 

the ClusPro user. 

5.6.2 Identifying hot spots on proteins 

Protein-small molecule interactions are central to biological processes; therefore 

understanding these interactions is an important research topic [3]. It is well established 

that regions of proteins that are capable of binding multiple, fragment-sized molecules, 

often referred to as hot spots, are the regions that contribute most significantly to protein-

ligand binding energetics. Therefore, detection of binding sites on proteins allows for 

insight into which interactions contribute the most favorably to binding [50]. 

Computational hot spot detection methods such as FTMove, identify protein hot spots via 

the docking of molecular fragments to the protein [216].  

FTMove is a web server that identifies protein hot spots by utilizing structural 

information gained from homology models of a submitted structure [10]. This allows for 

identifying dynamic sites, such as allosteric or cryptic, that can be overlooked if only a 

single structure is analyzed. Prior to accessing the SCC resources via an API, FTMove 

jobs were run by submitting individual jobs to the SCC for each docking process 

followed by post-processing on the FTMove server; job monitoring was also done 

individually. The individual submission and monitoring of jobs are problematic. Besides 

the problems previously mentioned with the ClusPro server, FTMove has to transfer 
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significantly more files to and from the SCC. Post-processing is therefore completed 

locally on the FTMove server. However, using the API allows for an array job to be 

submitted which runs all the docking jobs, compiles the results, and returns a single 

results file regardless of the number of homology models provided by the user. This helps 

keep the FTMove server independent of the FTMove algorithm, as is best practice. 

5.7 Conclusions and Future Work 

In this work, we present SHABU, a RESTful Web API framework that allows 

access to High-Performance Computing resources and services available from the Shared 

Computing Center at Boston University. We intend to use SHABU with the use cases 

presented in this paper. As new use cases emerge, new requirements will be requested for 

SHABU. There are plans to expand the framework to work across many High-

Performance computing platforms, including Stony Brook University’s SeaWulf center 

and cloud-based services such as Amazon Web Services (AWS).   
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APPENDIX A: SUPPLEMENTAL METHODS FOR THE MAPPING OF 

CHALLENGING DRUG TARGETS 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The work presented in this appendix is included in the following published article: 
A.E. Wakefield, D. Kozakov, S. Vajda (2022) “Mapping the binding sites of challenging 
drug targets” Current Opinion in Structural Biology. 75: p. 102396 
The project was conceptualized and designed by Sandor Vajda and Dima Kozakov. The 
paper was written by Amanda Wakefield. Guidance was provided by Sandor Vajda.    
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Introduction 

Genome-scale CRISPR knockout screens can discover many novel and 

medically important drug targets [217], but it is predicted that traditional small-molecule 

drugs may not be used to modulate about half of these proteins [218], because they 

have binding sites that are either too large or too small, are highly lipophilic or highly 

polar, or are simply featureless. Given the properties of the binding site, one could 

frequently predict that the standard methods of drug discovery by experimental or 

computational high throughput screening of libraries of druglike small molecules are 

unlikely to work. Nevertheless, in the recent past, substantial efforts have been devoted 

to large-scale screenings for some targets with at most moderate success.  Examples 

include targeting ZipA pockets in the interface with FtsZ [219] and the SI/II pocket 

between switch I and switch II of KRAS in the interface with SOS [220, 221]. Although 

such targets are frequently considered undruggable [221, 222], in some cases they can 

be successfully modulated by new chemical modalities including larger (beyond-the-rule-

of-five, bRo5) compounds [223, 224], macrocycles [225, 226], cyclic or stapled peptides, 

or peptoid macrocycles [227, 228]. Other possible approaches are finding allosteric sites 

[229], covalent inhibitors [230], or combinations of the two [230]. 

To determine whether a particular target needs a non-druglike chemical modality 

and if it does, which one, it is generally useful to determine the binding properties of the 

protein, particularly the geometry and chemistry of its binding sites. It is now well 

established that the binding sites of proteins include binding hot spots, defined as small 

regions where binding of ligands makes major contributions to the binding free energy 

[4, 8]. As argued in this review, the main value of understanding the hot spot structure of 
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a target protein is that it yields information on the methods that are reasonable choices 

to target the site [19]. Hot spots can be determined by screening sets of small organic 

probe molecules for binding to the target protein by X-ray crystallography [4] or NMR [8]. 

The Multiple Solvent Crystal Structures (MSCS) method involves determining the X-ray 

structure of the protein in aqueous solutions of various probe compounds [4]. The 

protein structures with bound organic molecules are then superimposed to derive a 

consensus X-ray structure. It was shown that the consensus clusters formed by 

overlapping probe clusters define consensus sites that are the binding hot spots. Similar 

results can be obtained by NMR based screening of small organic molecules against the 

15N-labeled target protein [8]. It was shown that the consensus clusters formed by 

multiple probe molecules indicate binding hot spots, and that the number of different 

probes in the consensus cluster predicts the importance of the site.  

Computational mapping of protein binding sites 

Since using experimental techniques for determining binding hot spots is 

generally costly and can be limited by physical constraints such as the solubility of probe 

molecules, several computational methods have also been developed.  The FTMap 

algorithm [19] and the mixed solvent molecular dynamics (MSMD) approach [23, 231-

233] are both computational analogs of the MSCS or NMR based fragment screening 

experiments. FTMap exhaustively docks the molecular probes to the protein exploring 

billions of positions for each probe, selects favorable positions using empirical energy 

functions, and refines the selected poses by minimizing a more accurate energy function 

that includes molecular mechanics and structure-based terms. The energy landscape is 

efficiently sampled using a fast Fourier transform (FFT) based algorithm. The selected 

probe positions are refined by accounting for probe and limited protein flexibility. To 
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determine the hot spots FTMap finds the consensus sites and ranks the strength of 

these sites in terms of the number of overlapping probe clusters [19]. The strength and 

arrangement of hot spots show whether the protein is suitable for binding small druglike 

ligands, or it is a challenging target and hence needs other type of modalities [19]. 

MSMD is an alternative hot spot mapping technique based on molecular dynamics (MD) 

simulations of proteins in binary solvent mixtures. Similar to FTMap, the technique can 

capture preferred binding sites of fragment-sized organic compounds.  The best known 

methods are MixMD [232] and SILCS (Site-Identification by Ligand Competitive 

Saturation) [234]. Additional hot spot detection methods, including MDMix [235], MXMD 

[27], CAT (Cosolvent Analysis Toolkit) [236], and using chlorobenzene as a probe 

molecule [237], have demonstrated considerable success in identifying small molecule 

binding sites. Furthermore, pharmacophore and thermodynamic profiles have 

successfully been obtained with the SILCS-Pharm [238] method and MixMD [239] 

respectively. Advantages are that MSMD allows for protein flexibility and accounts for 

the competition between the probe molecules and water. In contrast, apart from minor 

side chain motion, FTMap assumes a rigid protein and uses continuum solvation 

models, thereby missing specific protein-water and probe-water interactions. However, 

the advantage of FTMap is that the method is much faster than mixed MD, and therefore 

can be used with a much larger variety of molecular probes and can be applied to large 

sets of proteins. In particular, it is frequently useful to consider all X-ray structures 

available for a protein to explore the impact of large conformational changes that would 

be difficult to model using MD.  

Detecting the need for beyond rule of five (bRo5) compounds 
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Lipinski’s rule of five (Ro5) was developed to define the chemical space of orally 

bioavailable compounds. However, the concept is too restrictive [240], as over 30% of 

approved kinase inhibitors and around 50% of protein-protein inhibitors discussed in the 

scientific literature are beyond the rule of five (bRo5) compounds [240]. The need for 

using a bRo5 compound to target a protein can be effectively determined by mapping of 

the binding hot spots [224]. Targets can benefit from bRo5 drugs if they have complex 

hot spot structures with four or more binding hots spots, including some strong ones. 

Although such targets are conventionally druggable using molecules that are bRo5 

compliant, reaching additional hot spots improves binding affinity, which creates options 

for improving pharmaceutical properties by adding or replacing some functional groups 

that otherwise would be detrimental to binding. For example, the only FDA approved 

nonpeptidic direct thrombin inhibitor Argatroban extends to all five hot spots in the 

binding site and has a molecular weight of just over 500 Da [224]. Although some lower 

molecular weight thrombin inhibitors also have high affinity, they turned out to have 

problems, including but not limited to poor selectivity, weak oral bioavailability, poor 

metabolic stability, innate liver toxicity, rapid elimination from the blood, high-plasma 

protein binding, and low anticoagulant activity. Therefore, it may be reasonable to 

consider as many hot spots as possible in drug design, despite the increase in molecular 

weight.  Many protein kinases also have multiple strong hot spots, but bRo5 inhibitors 

were generally designed to improve selectivity rather than affinity [224]. Interestingly, 

targets that have simple hot spot structures with less than four hot spots that are too 

weak to provide conventional druggability also must use larger compounds that can form 

interactions with surfaces outside the hot spot region to reach acceptable affinity [224]. 
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More recent studies focus on the pharmaceutical properties of novel bRo5 modalities 

such as peptidomimetics, with particular emphasis on membrane permeability [241]. 

Identification of protein-protein inhibitor binding sites 

Intercellular protein-protein interaction (PPI) interfaces are challenging targets 

because the cavities available for binding druglike molecules are generally less defined 

than the pockets of traditional drug target proteins [242]. In addition, ligand binding may 

depend on the flexibility of the pocket, therefore potential conformational changes must 

be considered. Fragment based methods have been important for developing PPI 

inhibitors [243]. Computational fragment screening by FTMap [155] and SILCS [234] was 

shown to identify binding hot spots amenable to inhibitor binding based on mapping the 

structures of the interacting proteins.  A more complex method involving molecular 

dynamics simulations and protein docking gave similar results [244]. Frequently, the hot 

spot residues in protein-protein interfaces, identified by alanine scanning, extend into 

binding hot spots of the partner protein, thus the two hot spot concepts are related [245]. 

Many recent studies search for hot spots residues to find targetable sites [246], primarily 

with application to cancer [247]. Based on the outcome of drug discovery campaigns, it 

appears that high affinity inhibitors bind to pockets that are at least partially formed in the 

protein-protein complex [155], and the tractability of such sites can be reliably 

determined by mapping either unbound or protein-bound structures [155, 244]. In many 

cases the protein interacting with the target can be reduced to a peptide, most frequently 

an alpha-helix [248], but beta-turn structures also occur [249]. These secondary 

structures can be then stabilized to form cyclic peptides or peptidomimetic inhibitors 

[248].  
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Searching for allosteric sites 

In some medically important proteins targeting the main orthosteric site is 

challenging, because the site may not provide sufficient selectivity and the inhibitor must 

compete with the endogenous ligands. For example, high affinity active site inhibitors of 

tyrosine phosphatases would need to emulate the charged nature of the phosphorylated 

substrate and achieving selectivity may require fairly large compounds due to the 

similarity of residues directly surrounding the site [250]. For such targets, allosteric drugs 

may provide a critical advantage due to non-competitive and highly specific regulation 

[229]. Identification of allosteric sites involves two aspects, first finding an appropriate 

site, and second showing allosteric communication to the orthosteric site. Consideration 

was restricted to the first aspect as it appears to be critical, and don’t discuss specialized 

algorithms such as Allosite [77],  AlloFinder [80], ESSA [251], and others [252-255]. 

 

The mapping methods SILCS [233], MixMD [82, 231], CAT [236], and FTMap 

[101, 256] were all used to identify allosteric binding sites. SILCS was shown to detect 

more potential sites than FTMap, but several such sites appear to be false positives 

[233]. Most applications focused on kinases and GPCRs, two important target families 

whose allosteric sites have been extensively studied. Although the majority of currently 

approved kinase inhibitors target the ATP binding site, there is substantial interest in 

allosteric sites and allosteric drugs [257]. While type II and type III allosteric inhibitors 

bind at or near the ATP binding site, the literature identifies ten regions that have been 

reported as regulatory hot spots and are therefore potential target sites for type IV 

inhibitors. Kinase Atlas, a collection of binding hot spots located at each of the ten 

allosteric sites was constructed using the FTMap results for all kinase structures in the 
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PDB. Kinase Atlas https://kinase-atlas.bu.edu) displays summarized results including the 

presence of binding sites and their druggability for all structures of a particular kinase. 

Additionally, users may view hot spot information for individual kinase structures [256].  

 

Allosteric modulators represent a very important strategy against GPCR targets. 

Despite the growing number of GPCR structures, only 39 have been co-crystallized with 

allosteric inhibitors, and thus identification of allosteric sites is important. FTMap has 

been applied to several GPCRs by the McCammon group [83, 85]. More recently the 

method was shown to successfully identify allosteric sites within the seven-membrane 

region of GPCRs [101]. However, FTMap is parameterized for analysis of soluble 

proteins and may fail to identify allosteric sites in receptor-lipid interfaces. A recent probe 

confined dynamic mapping protocol developed for GPCRs predicts the location of 

allosteric sites at both intracellular and extracellular regions and within the receptor-lipid 

interface [129]. The method enhances sampling of probe molecules within a defined 

region of a GPCR and prevents membrane distortion during molecular dynamics 

simulations by applying a harmonic wall potential. In addition, the method uses a set of 

probes derived from structures of GPCR allosteric ligands [129]. Another recent study 

used exhaustive docking of small molecular probes, considering the different 

electrostatics of the transmembrane and solvent-exposed parts of the receptors, 

resulting in the “pocketome” of G protein-coupled receptors [258]. 

 

How useful are cryptic sites for drug discovery? 

Some proteins have binding sites that are difficult to detect in ligand-free 

structures and only become apparent after ligand binding [259]. This is frequently the 
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case for allosteric sites. Attempts to find alternative ways to drug challenging targets 

lead to the development of computational methods for the identification and analysis of 

such cryptic sites [138, 259]. Cimermancic et al. [138] created a benchmark set of 93 

ligand-free and ligand-bound pairs of proteins from the PDB with cryptic binding sites 

which they also used to build a machine learning model (CryptoSite) to predict cryptic 

sites in the apo structures. The original CryptoSite data set was expanded by Beglov et 

al. [136] by adding all ligand-free structures in the PDB for each of the 93 proteins. 

Mapping of apo structures by FTMap revealed that cryptic binding sites are generally 

located near a strong binding hot spot and that the sites exhibit above-average flexibility 

[136]. While the FTMap results were in good agreement with those of CryptoSite, both 

methods account only for the limited flexibility of the proteins. There is no question that 

more realistic simulations that reveal the multiplicity of potential conformational states 

help to identify cryptic sites. Both MixMD, and MxMD were able to identify cryptic and 

allosteric sites in ligand-free structures of some proteins that were not found by FTMap 

[27, 82, 232]. 

Markov state models, MSMD simulations, and collective variable enhanced 

sampling methods were shown to open transitional pockets [185, 260]. The problem is 

that the number of pockets that are open in more than 10% of the simulation time can be 

very high [145]. However, based on FTMap results, proteins generally have only three 

different sites with substantial ligand binding capability [136], and hence most of the 

newly created pockets are too weak for drug discovery. Results supporting this 

observation were reported by Bowman et al. [146], who identified multiple hidden 

allosteric sites in TEM-b lactamase using Markov state models. Although small 
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compounds covalently bound at some of these sites were shown to have an allosteric 

effect [146], non-covalent modulators designed for the site had only moderate impact 

[149]. In particular, it was observed that pockets that open solely by the movement of 

some side chains can bind ligands with at most high micromolar affinity [136], most likely 

because the side chains protruding into the site compete with the ligands for binding. 

Since the side chains are always at the site, their local concentration is very high, 

resulting in substantial competition.  

An example: Mapping of KRAS 

 

The mapping of KRAS structures provides valuable information on the relative 

tractability of the binding sites. Figure A.1a shows the results of mapping a KRAS 

structure (PDB ID 6MBT [261]), which has no bound ligand apart from ADP and Mg2+ 

that are removed before the mapping. Three ligands superimposed from bound 

structures are added in Figure A.1b. The strongest consensus site that includes 36 

probe clusters binds the GDP molecule. The second strongest consensus site is located 

close to residue 12, in a pocket that accommodates the covalent G12C inhibitor AMG 

510 in the structure 6OIM [262]. The site binds 17 probe clusters suggesting limited 

druggability and the need for a covalent drug [20]. Finally, the third consensus site is in 

the extensively targeted shallow polar pocket between switch I and switch II (SI/II 

pocket) in the KRAS-SOS interface. This consensus site includes only 9 probe clusters, 

which suggests that the site is too weak to bind druglike molecules with high affinity [20]. 

In fact, the site binds the small inhibitor, developed by the Fesik group in 2012 with only 

Kd = 420  µM [220].  This inhibitor was co-crystallized with KRAS, and the resulting 



 
 

 
160 

structure 4EPW was also mapped by FTMap after removing the ligands. While the 

strongest consensus site is still at the GDP binding pocket (Figure A.1c), the binding of 

the inhibitor slightly expands the SI/II pocket, which now binds 16 probe clusters. In 

addition, ligand binding induces a second hot spot with 10 probe clusters in the SI/II 

pocket (Figure A.1c), and the inhibitor binds to both hot spots (Figure A.1d). In 

collaboration with Boehringer Ingelheim, the Fesik group recently developed a larger 

inhibitor (MW = 512 g/mol) that binds to the SI/II pocket with Kd = 750 nM [221]. Given 

the limited druggability of the SI/II site [20] this is an extraordinary achievement, and the 

compound, shown in Figure A.1b can be used as a chemical probe. However, based on 

the mapping results it is unlikely that any small druglike compound binding at the SI/II 

site can be developed into a drug, emphasizing the importance of the covalent allosteric 

inhibitors binding at the G12C site [262, 263]. Interestingly, the binding of an inhibitor at 

the SI/II pocket weakens the hot spot at the allosteric site that binds the covalent 

inhibitor, suggesting bidirectional allosteric communication between the SI/II pocket and 

the G12C site. 

 

Mapping was completed for the 282 KRAS structures in the PDB with < 90% 

sequence identity to 4EPW and determined the consensus clusters formed by all 

mapping results. Interestingly the large-scale mapping provided the same top sites 

obtained by mapping only the unbound structure 6MBT and the inhibitor bound structure 

4EPW. The strongest consensus site, located at the GDP binding site, on average binds 

17.4 ± 6.1	probe clusters. The second consensus site is in the SI/II pocket, with 8.8 ±

6.8	probe clusters, and the third consensus site is at the pocket that binds the G12C 

inhibitors and includes 8.6 ± 6.1 probe clusters. These results reveal that the SI/II 
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pockets and the G12C site have almost the same strength, but both have limited 

druggability [20]. Therefore. the ability of AMG 510 to covalently bind to the cystine 

residue at position 12 in the G12C mutant is crucial. Unfortunately, the weakness of the 

site implies that extending the approach to other G12 oncogenic mutants will be very 

challenging.  

Figure A.1. Mapping of KRAS.  

(a) Hot spots on the wild-type KRAS bound to GDP and Mg2+ (PDB ID 6MBT). All ligands are removed prior to 

mapping. Only probes at cluster centers are shown, represented as lines. The consensus sites define the binding hot 
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spots. The most important consensus site (cyan) includes 36 probe clusters. The second site (blue) and the third site 

(magenta) bind 17 and 9 probe clusters, respectively. (b) Same as (a) with ligand superimposed from bound structures. 

The ligands are shown as sticks. The GDP molecule (orange) binds at the strongest consensus site. The covalent 

inhibitor AMG 510 bound to G12C from PDB ID 6OIM (blue) binds at the second strongest site [129]. The third site 

(with 9 probe clusters) is in the SI/II pocket and binds both the inhibitor developed by the Fesik group in 2012 (Kd = 

420  µM from PDB ID 4EPW, yellow) [220] and the more recent direct inhibitor in the same pocket (Kd = 750 nM 

from PDB ID 6GJ7, green) [221]. (c) Mapping the KRAS structure co-crystallized with the low affinity inhibitor 

(PDB ID 4EPW) following the removal of the inhibitor. The most important consensus site (cyan) now includes only 

22 probe clusters. The second consensus site (orange) and the third one (magenta) bind 16 and 10 probe clusters, 

respectively. The fourth site (blue) also has 10 probe clusters. (d) The top site (cyan) still binds the GDP as in (b). 

However, the SI/II pocket now includes the second and third consensus sites, both interacting with the inhibitor from 

4EPW, shown as yellow sticks. The fourth consensus site is located at the binding site of the covalent inhibitor at 

KRAS G12C.  
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APPENDIX B: SUPPLEMENTAL TABLES/FIGURES FOR BENCHMARK SETS 

TO TEST METHODS OF BINDING HOT SPOT IDENTIFICATION 

 

Table B.1. Bound and Unbound Structures in the Acpharis Benchmark Set, and Strongest Hot Spots at the 
Fragment Binding Sites in Both Bound and Unbound Structures. 

No. UniProt ID 
FRAG. PDB 

ID 
Unbound 
PDB ID 

Strongest Hot Spot 
Bound Unbound 

1 P55201 5T4U_A 4LC2_A 00(19) 00(22) 
2 Q92831 5FE1_A 5FE6_B 00(21) 00(24) 
3 P11142 5AQP_E 5AQM_A 04(10) None 
4 P00918 2HNC_A 3KS3_A 00(25) 00(16) 
5 P07900 2YE6_A 5J80_A 01(14) 00(22) 
6 P56817 2OHL_A 3TPJ_A 00(16) 01(20) 
7 O60885 4DON_A 4LYI_A 00(26) 00(27) 
8 P07900 3HZ1_A 5J80_A 00(22) 00(22) 
9 Q13526 3KAC_A 2ZQT_A 00(20) 00(17) 

10 P08709 5PAW_B 1JBU_H 00(20) None 
11 P56817 2OHM_A 3TPJ_A 00(29) 00(21) 
12 O95696 5POE_A 5PQI_B 03(10) 00(24) 
13 P25440 4ALH_A 5IBN_A 00(29) 00(27) 
14 B9MKT4 4YZ0_B 3T9G_A None None 
15 P00720 4LDO_A 5NDD_A 04(09) None 
16 Q7N561 5ODU_C 5OFZ_B 01(15) 03(13) 
17 P28720 1S39_A 4Q8M_A 08(02) 00(22) 
18 P08709 5PAR_C 1JBU_H 00(28) None 
19 P00734 3P70_H 2UUF_B 01(16) 00(22) 
20 P9WIL5 3IMC_A 3COV_B 01(19) 00(26) 
21 P28482 4ZXT_A 4S31_A 00(21) 02(13) 
22 P47228 1KND_A 1HAN_A 00(31) 01(15) 
23 P80188 3FW4_C None 00(22) − 
24 Q3JRA0 3MBM_A None 10(03) − 
25 Q63T71 3IKE_B None 03(12) − 
26 P15555 1IKI_A None 00(22) − 
27 P56817 3HVG_A 3TPJ_A 00(24) 00(21) 
28 P00918 4N0X_B 3KS3_A 00(26) 00(16) 
29 P00918 2WEJ_A 3KS3_A 00(23) 00(16) 
30 P68400 5CSV_A 5CVG_A 01(19) 07(04) 
31 P54818 4CCE_A None 00(24) − 
32 A0A083Z 6EQ0_B None 00(21) − 
33 P32890 1DJR_G 1LTS_D 01(18) 02(15) 
34 P42592 3W7U_B 3D3I_B 00(18) 01(17) 
35 Q57193 5ELB_D 5LZJ_B 04(11) 03(14) 
36 Q9ALJ4 4FNU_B 4FNQ_A 00(17) 01(13) 
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37 P39900 1OS2_D 2MLR_A 00(17) None 
38 Q9H2K2 4PNN_B 4PNT_D 01(16) None 
39 P24941 2VTA_A 4EK3_A 00(22) 00(29) 
40 P24941 2VTL_A 4EK3_A 00(25) 00(29) 
41 P24941 2VTM_A 4EK3_A 00(17) 00(29) 
42 P00918 4Q9Y_A 3KS3_A 02(15) 00(16) 
43 P39900 3LKA_A 2MLR_A 00(17) 03(09) 
44 P09874 4GV7_B 4XHU_A 05(09) 02(13) 
45 P29477 2ORQ_A None None − 
46 P29477 2ORQ_A None 01(16) − 
47 Q10588 1ISM_A 1ISF_B 00(25) 00(19) 
48 Q05603 1L4N_A None 04(08) − 
49 Q08638 1OIM_A 5OSS_A 02(18) 01(17) 
50 Q4D3W2 2E6A_B None 01(16) − 
51 P0ABQ4 3QYO_A 1RA9_A 00(19) 00(32) 
52 P00918 4E49_A 5DSR_A 02(16) None 
53 P19491 1MS7_A None 04(11) − 
54 P06820 1IVE_A 4H53_D 00(29) None 
55 Q6PL18 4QSU_A 4QSQ_A 01(21) 00(23) 
56 Q6TFC6 3FS8_B None None − 
57 Q8K4Z3 3RO7_A None 00(22) − 
58 P25440 4A9H_A 5IBN_A 00(24) 00(27) 
59 Q92793 4A9K_B 5KTU_B 00(26) 00(25) 
60 P07900 2YEC_A 5J80_A 00(28) 00(22) 
61 Q9WYE2 2ZWZ_A 1HL8_B 02(13) 00(28) 
62 P16083 3NHW_A None None − 

 
 
 
 
Table B.2. All bound structures for the Acpharis benchmark set by PDB ID/chain. Fragment PDB and fragment 
MW are the PDB ID/chain and molecular weight for the fragment and the structure containing the fragment. 
Maximum PDB/MW are the PDB ID/chain and molecular weight for the largest (by molecular weight) ligand 
and the structure containing the “maximum” ligand. The structures binding additional ligands are also shown. 

Entry Fragment 
PDB 

Fragment 
MW 

Maximum 
PDB 

Maximum 
MW 

Additional Structures 

12Q_P55201 5T4U_A 159.19 5T4V_A 383.42  

12Q_Q92831 5FE1_A 159.19 5FE9_B 266.32  

1LQ_P11142 5AQP_E 145.16 5AQV_A 381.43 5AQT_A, 5AQU_A 

1SA_P00918 2HNC_A 180.21 3MHC_A 342.44 3HS4_A, 4IWZ_A, 3D8W_A 

2AE_P07900 2YE6_A 136.15 4AWO_B 503.64 3D0B_A, 4NH8_A, 3QTF_A, 3R92_A, 
3R91_A, 3MNR_P, 3RKZ_A 

2AQ_P56817 2OHL_A 144.17 3RVI_A 443.62 3RTH_A, 3RTN_A, 3RSV_A 
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3PF_O60885 4DON_A 162.19 4E96_A 347.39 4HBW_A, 4HBX_A, 4HBY_A, 
4A9L_A 

42C_P07900 3HZ1_A 163.18 3HZ5_A 351.41  

4BX_Q13526 3KAC_A 190.2 3KAH_A 389.41  

7XM_P08709 5PAW_B 159.19 5TQG_H 681.72 5PAJ_B, 4ZXY_H, 5PAM_B, 
5PAQ_B, 4JYU_H, 5I46_H, 4JZE_H, 
4NG9_H, 5TQF_H, 5TQE_H, 
4ZXX_H, 4NGA_H, 5L30_H, 
5L2Y_H, 5L2Z_H 

8AP_P56817 2OHM_A 199.25 2OHU_A 421.49 2OHT_A 

8T1_O95696 5POE_A 174.2 5POC_A 283.08  

A9P_P25440 4ALH_A 173.21 4ALG_A 415.44 4A9N_B, 4A9M_B 

ADA_B9MKT4 4YZ0_B 194.14 4EW9_A 352.25  

ALE_P00720 4LDO_A 183.2 4QKX_A 379.47 4LDL_A 

AMG_Q7N561 5ODU_C 194.18 5OFI_D 614.62 5OFX_H 

AQO_P28720 1S39_A 161.16 4FR1_A 545.68 1S38_A, 2BBF_A, 2Z7K_A, 4PUK_A, 
3RR4_A, 3TLL_A, 1K4H_A, 3GC5_A, 
3EOU_A, 1K4G_A, 1Q65_A, 
5JGM_A, 1Y5V_A, 4Q4S_A, 1Q66_A, 
5JGO_A, 1Y5W_A, 4Q8T_A, 
4Q4O_A, 4PUJ_A, 1Y5X_D, 4Q8V_A, 
5I00_A, 2QZR_A, 3GC4_A, 4Q8W_A, 
5JXQ_A, 5I02_A, 4Q8U_A, 4LEQ_A, 
5JSV_A, 4KWO_A, 4LBU_A, 
5LPO_A, 4FPS_A, 5LPP_A, 4GKT_A, 
4GI4_A, 5JSW_A, 4GIY_A, 5LPS_A, 
4FR6_A 

AX7_P08709 5PAR_C 133.15 5PAI_B 501.5 5PAT_B, 5PAU_C, 5PAF_B 

BEN_P00734 3P70_H 120.15 4BAK_B 470.61 4BAO_B, 4BAH_B, 4BAN_B, 
4BAQ_B, 4BAM_B 

BZ3_P9WIL5 3IMC_A 147.17 3IUB_A 345.37 3ISJ_A 

CAQ_P28482 4ZXT_A 110.11 3SA0_A 260.2  

CAQ_P47228 1KND_A 110.11 1LKD_A 255.1 1KMY_A, 1LGT_A 

CAQ_P80188 3FW4_C 110.11 5KID_C 746.76 1X71_C, 3CBC_C, 4ZHD_C, 3T1D_A, 
3HWE_A, 3K3L_C, 4ZHC_C, 
4K19_B, 4ZFX_A, 3I0A_C 

CYT_Q3JRA0 3MBM_A 111.1 3K2X_A 353.11 3QHD_A, 3IEQ_A, 3F0G_C 

CYT_Q63T71 3IKE_B 111.1 3IEW_B 483.16 3Q8H_A 

DAL_P15555 1IKI_A 89.09 1PW1_A 429.47  
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EV0_P56817 3HVG_A 153.18 3VV8_A 331.41  

EVJ_P00918 4N0X_B 163.22 1I8Z_A 471.57 4M2R_A, 1I91_A 

FB2_P00918 2WEJ_A 157.19 3M96_A 460.75 4YXI_A, 2WEO_A, 2WEG_A, 
4YXO_A, 2WEH_A, 1IF6_A, 1IF5_A, 
3RYV_B, 3RYY_A, 5EKH_A, 
3RZ0_B, 3RZ5_A, 4ITP_A, 1G1D_A, 
3N4B_A, 3SBI_A, 3OY0_A, 3R17_B, 
2POW_A, 3MHI_A, 1G52_A, 
3B4F_A, 3RYX_B, 3N2P_A, 4PZH_A, 
3MHL_A, 4KNJ_A, 3MMF_A, 
3M98_A, 4DZ7_A, 3M2N_A, 
3QYK_A, 3MHO_A, 3BL1_A, 
4HT0_A, 3S9T_A, 4KNI_A, 3SAX_A, 
3M5E_A, 3N0N_A, 3RZ1_B, 
3MYQ_A 

GAB_P68400 5CSV_A 137.14 5MO8_B 479.95 5CU4_A 

GAL_P54818 4CCE_A 180.16 4CCC_A 301.25  

GLA_A0A083ZM57 6EQ0_B 180.16 6EQ1_B 666.58 6EPZ_B, 6EQ8_A, 6EPY_A 

GLA_P32890 1DJR_G 180.16 1PZI_G 556.56 1EFI_E, 1LT6_E, 1FD7_H, 1JQY_E 

GLA_P42592 3W7U_B 180.16 3W7X_A 342.3  

GLA_Q57193 5ELB_D 180.16 1PZK_H 621.75 1EEI_E, 1LLR_F, 1PZJ_F 

GLA_Q9ALJ4 4FNU_B 180.16 4FNT_C 504.44  

HAE_P39900 1OS2_D 75.07 1JIZ_B 393.46 3LK8_A, 3NX7_A, 3N2V_A, 4H76_A 

JPZ_Q9H2K2 4PNN_B 146.15 5FPG_B 477.51 4BU3_B, 4UHG_A, 4BU6_B, 
4BU5_B, 4UFY_A, 4UI7_A, 4BU9_A, 
5NSX_A, 4BUF_A, 4UI5_A, 5NVE_A, 
4BUA_A, 5AKU_B, 4BUI_A, 
5NUT_A, 4UI3_A, 5NWD_A, 
5NWB_A, 4BUS_B, 5NVF_A, 
4BU7_A, 4BUT_A, 4UFU_B, 
5NVH_A, 4UI8_A, 4BUW_B, 
5NT4_A, 4BUU_A, 4UI6_A, 4BUE_B, 
5NWG_A, 4BUX_A, 5OWS_B, 
4BUV_A, 4UI4_A 

LZ1_P24941 2VTA_A 118.14 2R64_A 453.56 3LFS_A, 3LFQ_A, 2VTI_A, 2BKZ_C, 
3LFN_A, 3EZV_A, 3EZR_A 

LZ5_P24941 2VTL_A 187.2 2VTP_A 360.29 2VTI_A, 2VTO_A 

LZM_P24941 2VTM_A 144.13 2VTS_A 313.4  

M3T_P00918 4Q9Y_A 124.2 3M96_A 460.75 3M98_A, 3BL1_A, 3S9T_A, 3SAX_A, 
3MYQ_A 



 
 

 
167 

M4S_P39900 3LKA_A 187.22 1JIZ_B 393.46 3LK8_A, 3NX7_A, 3F15_A 

MEW_P09874 4GV7_B 160.17 1UK0_B 377.45  

MR1_P29477 2ORQ_A 151.16 1DD7_A 479.49 2ORT_A 

MSR_P29477 2ORQ_A 160.17 2ORS_A 388.38 2ORR_A, 2ORT_A 

NCA_Q10588 1ISM_A 122.12 1ISJ_A 335.23  

NIO_Q05603 1L4N_A 123.11 1L4L_A 335.2  

NOJ_Q08638 1OIM_A 163.17 2WBG_C 316.39  

ORO_Q4D3W2 2E6A_B 156.1 3W2U_B 396.24 3W22_B, 3W1T_B, 3W2N_B, 
3W2M_B, 3W3O_B 

Q24_P0ABQ4 3QYO_A 160.18 3KFY_A 302.78  

RCO_P00918 4E49_A 110.11 4FIK_A 282.33 4FIK_A 

SHI_P19491 1MS7_A 172.14 1N0T_A 322.25 1MY2_A 

ST3_P06820 1IVE_A 194.19 1INH_A 252.25 1ING_A 

TDR_Q6PL18 4QSU_A 126.11 4QSW_A 258.23 4QSX_A, 4QSV_A 

TDR_Q6TFC6 3FS8_B 126.11 3FSB_A 547.35 3FSC_A 

TDR_Q8K4Z3 3RO7_A 126.11 3ROG_A 322.21 3ROE_F 

TVP_P25440 4A9H_A 189.25 4UYF_A 434.92  
TYL_Q92793 4A9K_B 151.16 5I83_A 296.36  

XQ0_P07900 2YEC_A 148.16 5ODX_A 493.56 4EFT_A, 4EFU_A, 6EY8_A, 6EYA_A, 
6EY9_A, 5OCI_A 

ZWZ_Q9WYE2 2ZWZ_A 176.21 2ZX5_A 347.41 2ZXA_A, 2ZX7_A, 2ZX8_A, 2ZX6_A 

ZXZ_P16083 3NHW_A 173.21 3NHK_A 263.29 3NFR_A 

 

 

Table B.3. All unbound structures for the Acpharis benchmark set by PDB ID/chain. For each protein the 
structure mapped is shown in bold. 

Entry Apo Structures 

12Q_P55201 4LC2_A 

12Q_Q92831 1N72_A, 3GG3_A, 3GG3_B, 5FE5_A, 5FE6_B, 5FE7_B, 5FE8_B, 5LVQ_B, 
5LVR_B 

1LQ_P11142 1HX1_A, 2QW9_A, 2QW9_B, 3CQX_A, 3CQX_B, 4H5N_A, 4H5N_B, 4H5R_A, 
4H5R_B, 4H5V_A, 4H5W_A, 4H5W_B, 4HWI_A, 5AQL_A, 5AQL_C, 5AQM_A, 
5AQM_C 
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1SA_P00918 12CA_A, 1AM6_A, 1BIC_A, 1CA2_A, 1CA3_A, 1CAH_A, 1CAI_A, 1CAJ_A, 
1CAK_A, 1CAL_A, 1CAM_A, 1CAN_A, 1CAO_A, 1CAY_A, 1CAZ_A, 1CCS_A, 
1CCT_A, 1CCU_A, 1CNC_A, 1CNG_A, 1CNH_A, 1CNI_A, 1CNJ_A, 1CNK_A, 
1CRA_A, 1CVA_A, 1CVB_A, 1CVC_A, 1CVD_A, 1CVE_A, 1CVF_A, 1CVH_A, 
1DCA_A, 1DCB_A, 1FQL_A, 1FQM_A, 1FQN_A, 1FQR_A, 1FR4_A, 1FR7_A, 
1FR7_B, 1FSN_A, 1FSN_B, 1FSQ_A, 1FSQ_B, 1FSR_A, 1FSR_B, 1G0E_A, 
1G0F_A, 1G3Z_A, 1G6V_A, 1H4N_A, 1H9N_A, 1H9Q_A, 1HCA_A, 1HEA_A, 
1HEB_A, 1HEC_A, 1HED_A, 1HVA_A, 1LG6_A, 1LGD_A, 1LZV_A, 1MOO_A, 
1MUA_A, 1RAY_A, 1RAZ_A, 1RZA_A, 1RZB_A, 1RZC_A, 1RZD_A, 1RZE_A, 
1T9N_A, 1TBT_X, 1TEQ_X, 1TEU_X, 1TG3_A, 1TG9_A, 1TH9_A, 1THK_A, 
1UGA_A, 1UGB_A, 1UGC_A, 1UGD_A, 1UGE_A, 1UGF_A, 1UGG_A, 1XEG_A, 
1XEV_A, 1XEV_B, 1XEV_C, 1XEV_D, 1YDC_A, 1YO0_A, 1YO1_A, 1YO2_A, 
1ZSA_A, 1ZSC_A, 2AX2_A, 2CA2_A, 2CBA_A, 2CBB_A, 2CBC_A, 2CBD_A, 
2CBE_A, 2FNK_A, 2FNM_A, 2GEH_A, 2ILI_A, 2NWO_A, 2NWP_A, 2NWY_A, 
2NWZ_A, 2NXR_A, 2NXS_A, 2NXT_A, 2VVA_X, 2VVB_X, 3D92_A, 3D93_A, 
3DC9_A, 3DV7_A, 3DVB_A, 3DVC_A, 3DVD_A, 3EFI_A, 3GZ0_A, 3K7K_A, 
3KOI_A, 3KOK_A, 3KON_A, 3KS3_A, 3KWA_A, 3M1J_A, 3M1Q_A, 3M1W_A, 
3M2Z_A, 3M5S_A, 3MWO_A, 3MWO_B, 3PJJ_A, 3RG3_A, 3RG4_A, 3RGE_A, 
3RLD_A, 3TVN_X, 3TVO_X, 3U3A_X, 3U45_X, 3U47_A, 3U7C_A, 3V3F_A, 
3V3G_B, 3V3H_B, 3V3I_B, 3V3J_A, 4CA2_A, 4CAC_A, 4E5Q_A, 4GL1_X, 
4HBA_A, 4HF3_A, 4IDR_X, 4JS6_A, 4JSW_A, 4L5U_A, 4L5V_A, 4L5W_A, 
4QEF_A, 4QK1_A, 4QK2_A, 4QK3_A, 4QY3_A, 4YGK_A, 4YGL_A, 4YVY_A, 
4ZAO_A, 5BRW_A, 5CA2_A, 5CAC_A, 5DSI_A, 5DSJ_A, 5DSK_A, 5DSL_A, 
5DSM_A, 5DSN_A, 5DSO_A, 5DSP_A, 5DSQ_A, 5DSR_A, 5EOI_A, 5G0B_A, 
5G0C_A, 5THI_A, 5Y2R_A, 5Y2S_A, 5ZXW_A, 6B00_A, 6CA2_A, 7CA2_A, 
8CA2_A, 9CA2_A 

2AE_P07900 1UYL_A, 1YER_A, 1YES_A, 2K5B_A, 2QFO_B, 2YEG_A, 3B26_B, 3T0H_A, 
5J2V_A, 5J80_A 

2AQ_P56817 1SGZ_A, 1SGZ_B, 1SGZ_C, 1SGZ_D, 1W50_A, 1XN3_A, 1XN3_B, 1XN3_D, 
2ZHS_A, 2ZHT_A, 2ZHU_A, 2ZHV_A, 3HVG_C, 3L59_B, 3R1G_B, 3TPJ_A, 
3TPL_A, 3TPL_B, 3TPL_C 

3PF_O60885 2OSS_A, 3JVJ_A, 4IOR_A, 4LYI_A, 6BN8_C, 6BN9_C 

42C_P07900 1UYL_A, 1YER_A, 1YES_A, 2K5B_A, 2QFO_B, 2YEG_A, 3B26_B, 3T0H_A, 
5J2V_A, 5J80_A 

4BX_Q13526 1F8A_B, 1NMV_A, 1NMW_A, 1ZCN_A, 2F21_A, 2RUC_A, 2RUD_A, 2RUQ_A, 
2RUR_A, 2ZQS_A, 2ZQT_A, 2ZQU_A, 2ZQV_A, 2ZR4_A, 2ZR5_A, 2ZR6_A, 
3IK8_A, 3IK8_B, 3OOB_A, 4QIB_A, 4U84_A, 4U85_A, 4U86_A, 5GPH_A 

7XM_P08709 1JBU_H, 1KLJ_H 

8AP_P56817 1SGZ_A, 1SGZ_B, 1SGZ_C, 1SGZ_D, 1W50_A, 1XN3_A, 1XN3_B, 1XN3_D, 
2ZHS_A, 2ZHT_A, 2ZHU_A, 2ZHV_A, 3HVG_C, 3L59_B, 3R1G_B, 3TPJ_A, 
3TPL_A, 3TPL_B, 3TPL_C 

8T1_O95696 5PNX_B, 5PNY_A, 5PNY_B, 5PNZ_A, 5PNZ_B, 5PO0_B, 5PO1_A, 5PO2_B, 
5PO3_A, 5PO4_A, 5PO4_B, 5PO5_A, 5PO5_B, 5PO6_B, 5POA_A, 5POA_B, 
5POC_B, 5POT_B, 5POU_A, 5POX_B, 5POZ_B, 5PP0_A, 5PP1_A, 5PP1_B, 
5PP2_A, 5PP2_B, 5PP3_A, 5PP3_B, 5PP4_A, 5PP4_B, 5PP5_A, 5PP5_B, 5PP6_A, 
5PP6_B, 5PP7_A, 5PP7_B, 5PP8_A, 5PP8_B, 5PP9_A, 5PP9_B, 5PPA_A, 5PPA_B, 
5PPB_A, 5PPB_B, 5PPC_A, 5PPC_B, 5PPD_A, 5PPD_B, 5PPE_A, 5PPE_B, 
5PPF_A, 5PPF_B, 5PPG_A, 5PPG_B, 5PPH_A, 5PPH_B, 5PPI_A, 5PPI_B, 5PPJ_A, 



 
 

 
169 

5PPJ_B, 5PPK_A, 5PPK_B, 5PPL_A, 5PPL_B, 5PPM_A, 5PPM_B, 5PPN_A, 
5PPN_B, 5PPO_A, 5PPO_B, 5PPP_A, 5PPP_B, 5PPQ_A, 5PPQ_B, 5PPR_A, 
5PPR_B, 5PPS_A, 5PPS_B, 5PPT_A, 5PPT_B, 5PPU_A, 5PPU_B, 5PPV_A, 
5PPV_B, 5PPW_A, 5PPW_B, 5PPX_A, 5PPX_B, 5PPY_A, 5PPY_B, 5PPZ_A, 
5PPZ_B, 5PQ0_A, 5PQ0_B, 5PQ1_A, 5PQ1_B, 5PQ2_A, 5PQ2_B, 5PQ3_A, 
5PQ3_B, 5PQ4_A, 5PQ4_B, 5PQ5_A, 5PQ5_B, 5PQ6_A, 5PQ6_B, 5PQ7_A, 
5PQ7_B, 5PQ8_A, 5PQ8_B, 5PQ9_A, 5PQ9_B, 5PQA_A, 5PQA_B, 5PQB_A, 
5PQB_B, 5PQC_A, 5PQC_B, 5PQD_A, 5PQD_B, 5PQE_A, 5PQE_B, 5PQF_A, 
5PQF_B, 5PQG_A, 5PQG_B, 5PQH_A, 5PQH_B, 5PQI_A, 5PQI_B, 5PQJ_A, 
5PQJ_B, 5PQK_A, 5PQK_B, 5PQL_A, 5PQL_B, 5PQM_A, 5PQM_B, 5PQN_A, 
5PQN_B, 5PQO_A, 5PQO_B, 5PQP_A, 5PQP_B, 5PQQ_A, 5PQQ_B, 5PQR_A, 
5PQR_B, 5PQS_A, 5PQS_B, 5PQT_A, 5PQT_B, 5PQU_A, 5PQU_B, 5PQV_A, 
5PQV_B, 5PQW_A, 5PQW_B, 5PQX_A, 5PQX_B, 5PQY_A, 5PQY_B, 5PQZ_A, 
5PQZ_B, 5PR0_A, 5PR0_B, 5PR1_A, 5PR1_B, 5PR2_A, 5PR2_B, 5PR4_A, 5PR4_B, 
5PR5_A, 5PR5_B, 5PR6_A, 5PR6_B, 5PR7_A, 5PR7_B, 5PR8_A, 5PR8_B, 5PR9_A, 
5PR9_B, 5PRA_A, 5PRA_B, 5PRB_A, 5PRB_B, 5PRD_A, 5PRD_B, 5PRE_A, 
5PRE_B, 5PRF_A, 5PRF_B, 5PRG_A, 5PRG_B, 5PRH_A, 5PRH_B, 5PRI_A, 
5PRI_B, 5PRJ_A, 5PRJ_B, 5PRK_A, 5PRK_B, 5PRL_A, 5PRL_B, 5PRM_A, 
5PRM_B, 5PRO_A, 5PRO_B, 5PRP_A, 5PRP_B, 5PRQ_A, 5PRQ_B, 5PRR_A, 
5PRR_B, 5PRS_A, 5PRS_B, 5PRT_A, 5PRT_B, 5PRU_A, 5PRU_B, 5PRV_A, 
5PRV_B, 5PRW_A, 5PRW_B, 5PRX_A, 5PRX_B, 5PRY_A, 5PRY_B, 5PRZ_A, 
5PRZ_B, 5PS0_A, 5PS0_B, 5PS1_A, 5PS1_B, 5PS2_A, 5PS2_B, 5PS3_A, 5PS3_B, 
5PS4_A, 5PS4_B, 5PS5_A, 5PS5_B, 5PS6_A, 5PS6_B, 5PS7_A, 5PS7_B, 5PS8_A, 
5PS8_B, 5PS9_A, 5PS9_B, 5PSA_A, 5PSA_B, 5PSB_A, 5PSB_B, 5PSC_A, 5PSC_B, 
5PSD_A, 5PSD_B, 5PSE_A, 5PSE_B, 5PSF_A, 5PSF_B, 5PSG_A, 5PSG_B, 
5PSH_A, 5PSH_B, 5PSI_A, 5PSI_B, 5PSJ_A, 5PSJ_B, 5PSK_A, 5PSK_B, 5PSL_A, 
5PSL_B, 5PSM_A, 5PSM_B, 5PSN_A, 5PSN_B, 5PSO_A, 5PSO_B, 5PSP_A, 
5PSP_B, 5PSQ_A, 5PSQ_B, 5PSR_A, 5PSR_B, 5PSS_A, 5PSS_B, 5PST_A, 5PST_B, 
5PSU_A, 5PSU_B, 5PSV_A, 5PSV_B, 5PSW_A, 5PSW_B, 5PSX_A, 5PSX_B, 
5PSY_A, 5PSY_B, 5PSZ_A, 5PSZ_B, 5PT0_A, 5PT0_B, 5PT1_A, 5PT1_B, 5PT2_A, 
5PT2_B, 5PT3_A, 5PT3_B, 5PT4_A, 5PT4_B, 5PT5_A, 5PT5_B, 5PT6_A, 5PT6_B, 
5PT7_A, 5PT7_B, 5PT8_A, 5PT8_B, 5PT9_A, 5PT9_B, 5PTA_A, 5PTA_B, 5PTB_A, 
5PTB_B, 5PTC_A, 5PTC_B, 5PTE_A, 5PTE_B, 5PTF_A, 5PTF_B, 5PTG_A, 
5PTG_B, 5PTH_A, 5PTH_B, 5PTJ_A, 5PTJ_B, 5PTK_A, 5PTK_B, 5PTL_A, 
5PTL_B, 5PTM_A, 5PTM_B, 5PTN_A, 5PTN_B, 5PTO_A, 5PTO_B, 5PTQ_A, 
5PTQ_B, 5PTR_A, 5PTR_B, 5PTS_A, 5PTS_B, 5PTT_A, 5PTT_B, 5PTU_A, 
5PTU_B, 5PTV_A, 5PTV_B, 5PTW_A, 5PTW_B, 5PTX_A, 5PTX_B, 5PTY_A, 
5PTY_B, 5PTZ_A, 5PTZ_B, 5PU0_A, 5PU0_B, 5PU1_A, 5PU1_B, 5PU2_A, 
5PU2_B, 5PU3_A, 5PU3_B, 5PU4_A, 5PU4_B, 5PU5_A, 5PU5_B, 5PU6_A, 
5PU6_B, 5PU7_A, 5PU7_B, 5PU8_A, 5PU8_B, 5PU9_A, 5PU9_B, 5PUA_A, 
5PUA_B, 5PUB_A, 5PUB_B, 5PUC_A, 5PUC_B, 5PUD_A, 5PUD_B, 5PUE_A, 
5PUE_B, 5PUF_A, 5PUF_B, 5PUG_A, 5PUG_B, 5PUH_A, 5PUH_B, 5PUI_A, 
5PUI_B, 5PUJ_A, 5PUJ_B, 5PUK_A, 5PUK_B, 5PUL_A, 5PUL_B, 5PUM_A, 
5PUM_B, 5PUN_A, 5PUN_B, 5PUO_A, 5PUO_B, 5PUP_A, 5PUP_B, 5PUQ_A, 
5PUQ_B, 5PUR_A, 5PUR_B, 5PUS_A, 5PUS_B, 5PUT_A, 5PUT_B, 5PUU_A, 
5PUU_B, 5PUV_A, 5PUV_B, 5PUW_A, 5PUW_B, 5PUX_A, 5PUX_B, 5PUY_A, 
5PUY_B, 5PUZ_A, 5PUZ_B, 5PV0_A, 5PV0_B, 5PV1_A, 5PV1_B, 5PV2_A, 
5PV2_B, 5PV3_A, 5PV3_B, 5PV4_A, 5PV4_B, 5PV5_A, 5PV5_B, 5PV6_A, 
5PV6_B, 5PV7_A, 5PV7_B, 5PV8_A, 5PV8_B, 5PV9_A, 5PV9_B, 5PVA_A, 
5PVA_B, 5PVB_A, 5PVB_B, 5PVC_A, 5PVC_B, 5PVD_A, 5PVD_B, 5PVE_A, 
5PVE_B, 5PVF_A, 5PVF_B, 5PVG_A, 5PVG_B, 5PVH_A, 5PVH_B, 5PVI_A, 
5PVI_B, 5PVJ_A, 5PVJ_B, 5PVK_A, 5PVK_B, 5PVL_A, 5PVL_B, 5PVM_A, 
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5PVM_B, 5PVN_A, 5PVN_B, 5PVO_A, 5PVO_B, 5PVP_A, 5PVP_B, 5PVQ_A, 
5PVQ_B, 5PVR_A, 5PVR_B, 5PVS_A, 5PVS_B, 5PVT_A, 5PVT_B, 5PVU_A, 
5PVU_B, 5PVV_A, 5PVV_B, 5PVW_A, 5PVW_B, 5PVX_A, 5PVX_B, 5PVY_A, 
5PVY_B, 5PVZ_A, 5PVZ_B, 5PW0_A, 5PW0_B, 5PW1_A, 5PW1_B, 5PW2_A, 
5PW2_B, 5PW3_A, 5PW3_B, 5PW4_A, 5PW4_B, 5PW5_A, 5PW5_B, 5PW6_A, 
5PW6_B, 5PW7_A, 5PW7_B, 5PW8_A, 5PW8_B, 5PW9_A, 5PW9_B, 5PWA_A, 
5PWA_B, 5PWB_A, 5PWB_B 

A9P_P25440 2DVQ_C, 2DVR_C, 2DVS_C, 2E3K_A, 2G4A_A, 3AQA_B, 3AQA_C, 4QEU_A, 
5DFB_A, 5HEL_A, 5HEN_A, 5HEN_B, 5HEN_C, 5HFQ_A, 5IBN_A 

ADA_B9MKT4 3T9G_A, 4Z05_A, 4Z05_B 

ALE_P00720 5NDD_A 

AMG_Q7N561 5OFZ_A, 5OFZ_B, 5OFZ_D 

AQO_P28720 1OZM_A, 1P0D_A, 1PUD_A, 1Q2S_B, 1Q2S_D, 1WKD_A, 1WKE_A, 1WKF_A, 
2NSO_A, 2OKO_A, 2Z1V_A, 3BL3_A, 3HFY_A, 3UNT_A, 3UVI_A, 4DXX_A, 
4DY1_A, 4GD0_A, 4H6E_A, 4HTB_A, 4IPP_A, 4JBR_A, 4L56_A, 4PUN_A, 
4Q8M_A, 4Q8N_A 

AX7_P08709 1JBU_H, 1KLJ_H 

BEN_P00734 1C5L_H, 1HAG_E, 1HAH_H, 1HGT_H, 1HXE_H, 1HXF_H, 1JOU_D, 1JOU_F, 
1MH0_A, 1MH0_B, 1SG8_B, 1SG8_E, 1SGI_B, 1SGI_E, 1THR_H, 1THS_H, 
1TQ0_D, 1TWX_B, 1VR1_H, 2A0Q_D, 2B5T_B, 2B5T_D, 2GP9_B, 2HWL_B, 
2HWL_D, 2PGB_B, 2UUF_B, 3BEF_B, 3BEF_E, 3BEI_B, 3D49_H, 3EE0_B, 
3GIC_B, 3GIS_B, 3GIS_D, 3GIS_F, 3HKJ_B, 3HKJ_E, 3JZ1_B, 3JZ2_B, 3K65_B, 
3QGN_B, 3R3G_B, 3S7H_B, 3S7K_B, 3S7K_D, 3SQE_E, 3SQH_E, 3U69_H, 
4BOH_A, 4H6S_B, 4H6T_A, 4RKJ_B, 5JDU_B, 5JDU_D 

BZ3_P9WIL5 1MOP_A, 1MOP_B, 1N2J_A, 1N2J_B, 1N2O_A, 1N2O_B, 2A88_A, 3COV_A, 
3COV_B, 3IVG_A, 4EFK_A, 4EFK_B, 4FZJ_A 

CAQ_P28482 1ERK_A, 2ERK_A, 2FYS_A, 2FYS_B, 2GPH_A, 3O71_A, 3R63_A, 3ZU7_A, 
3ZUV_C, 4GSB_A, 4IZ7_A, 4IZ7_C, 4IZA_A, 4IZA_C, 4QP2_B, 4S2Z_A, 4S30_A, 
4S31_A, 5UMO_A 

CAQ_P47228 1HAN_A, 1KMY_A, 1KND_A, 1KNF_A 

EV0_P56817 1SGZ_A, 1SGZ_B, 1SGZ_C, 1SGZ_D, 1W50_A, 1XN3_A, 1XN3_B, 1XN3_D, 
2ZHS_A, 2ZHT_A, 2ZHU_A, 2ZHV_A, 3HVG_C, 3L59_B, 3R1G_B, 3TPJ_A, 
3TPL_A, 3TPL_B, 3TPL_C 

EVJ_P00918 12CA_A, 1AM6_A, 1BIC_A, 1CA2_A, 1CA3_A, 1CAH_A, 1CAI_A, 1CAJ_A, 
1CAK_A, 1CAL_A, 1CAM_A, 1CAN_A, 1CAO_A, 1CAY_A, 1CAZ_A, 1CCS_A, 
1CCT_A, 1CCU_A, 1CNC_A, 1CNG_A, 1CNH_A, 1CNI_A, 1CNJ_A, 1CNK_A, 
1CRA_A, 1CVA_A, 1CVB_A, 1CVC_A, 1CVD_A, 1CVE_A, 1CVF_A, 1CVH_A, 
1DCA_A, 1DCB_A, 1FQL_A, 1FQM_A, 1FQN_A, 1FQR_A, 1FR4_A, 1FR7_A, 
1FR7_B, 1FSN_A, 1FSN_B, 1FSQ_A, 1FSQ_B, 1FSR_A, 1FSR_B, 1G0E_A, 
1G0F_A, 1G3Z_A, 1G6V_A, 1H4N_A, 1H9N_A, 1H9Q_A, 1HCA_A, 1HEA_A, 
1HEB_A, 1HEC_A, 1HED_A, 1HVA_A, 1LG6_A, 1LGD_A, 1LZV_A, 1MOO_A, 
1MUA_A, 1RAY_A, 1RAZ_A, 1RZA_A, 1RZB_A, 1RZC_A, 1RZD_A, 1RZE_A, 
1T9N_A, 1TBT_X, 1TEQ_X, 1TEU_X, 1TG3_A, 1TG9_A, 1TH9_A, 1THK_A, 
1UGA_A, 1UGB_A, 1UGC_A, 1UGD_A, 1UGE_A, 1UGF_A, 1UGG_A, 1XEG_A, 
1XEV_A, 1XEV_B, 1XEV_C, 1XEV_D, 1YDC_A, 1YO0_A, 1YO1_A, 1YO2_A, 
1ZSA_A, 1ZSC_A, 2AX2_A, 2CA2_A, 2CBA_A, 2CBB_A, 2CBC_A, 2CBD_A, 
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2CBE_A, 2FNK_A, 2FNM_A, 2GEH_A, 2ILI_A, 2NWO_A, 2NWP_A, 2NWY_A, 
2NWZ_A, 2NXR_A, 2NXS_A, 2NXT_A, 2VVA_X, 2VVB_X, 3D92_A, 3D93_A, 
3DC9_A, 3DV7_A, 3DVB_A, 3DVC_A, 3DVD_A, 3EFI_A, 3GZ0_A, 3K7K_A, 
3KOI_A, 3KOK_A, 3KON_A, 3KS3_A, 3KWA_A, 3M1J_A, 3M1Q_A, 3M1W_A, 
3M2Z_A, 3M5S_A, 3MWO_A, 3MWO_B, 3PJJ_A, 3RG3_A, 3RG4_A, 3RGE_A, 
3RLD_A, 3TVN_X, 3TVO_X, 3U3A_X, 3U45_X, 3U47_A, 3U7C_A, 3V3F_A, 
3V3G_B, 3V3H_B, 3V3I_B, 3V3J_A, 4CA2_A, 4CAC_A, 4E5Q_A, 4GL1_X, 
4HBA_A, 4HF3_A, 4IDR_X, 4JS6_A, 4JSW_A, 4L5U_A, 4L5V_A, 4L5W_A, 
4QEF_A, 4QK1_A, 4QK2_A, 4QK3_A, 4QY3_A, 4YGK_A, 4YGL_A, 4YVY_A, 
4ZAO_A, 5BRW_A, 5CA2_A, 5CAC_A, 5DSI_A, 5DSJ_A, 5DSK_A, 5DSL_A, 
5DSM_A, 5DSN_A, 5DSO_A, 5DSP_A, 5DSQ_A, 5DSR_A, 5EOI_A, 5G0B_A, 
5G0C_A, 5THI_A, 5Y2R_A, 5Y2S_A, 5ZXW_A, 6B00_A, 6CA2_A, 7CA2_A, 
8CA2_A, 9CA2_A 

FB2_P00918 12CA_A, 1AM6_A, 1BIC_A, 1CA2_A, 1CA3_A, 1CAH_A, 1CAI_A, 1CAJ_A, 
1CAK_A, 1CAL_A, 1CAM_A, 1CAN_A, 1CAO_A, 1CAY_A, 1CAZ_A, 1CCS_A, 
1CCT_A, 1CCU_A, 1CNC_A, 1CNG_A, 1CNH_A, 1CNI_A, 1CNJ_A, 1CNK_A, 
1CRA_A, 1CVA_A, 1CVB_A, 1CVC_A, 1CVD_A, 1CVE_A, 1CVF_A, 1CVH_A, 
1DCA_A, 1DCB_A, 1FQL_A, 1FQM_A, 1FQN_A, 1FQR_A, 1FR4_A, 1FR7_A, 
1FR7_B, 1FSN_A, 1FSN_B, 1FSQ_A, 1FSQ_B, 1FSR_A, 1FSR_B, 1G0E_A, 
1G0F_A, 1G3Z_A, 1G6V_A, 1H4N_A, 1H9N_A, 1H9Q_A, 1HCA_A, 1HEA_A, 
1HEB_A, 1HEC_A, 1HED_A, 1HVA_A, 1LG6_A, 1LGD_A, 1LZV_A, 1MOO_A, 
1MUA_A, 1RAY_A, 1RAZ_A, 1RZA_A, 1RZB_A, 1RZC_A, 1RZD_A, 1RZE_A, 
1T9N_A, 1TBT_X, 1TEQ_X, 1TEU_X, 1TG3_A, 1TG9_A, 1TH9_A, 1THK_A, 
1UGA_A, 1UGB_A, 1UGC_A, 1UGD_A, 1UGE_A, 1UGF_A, 1UGG_A, 1XEG_A, 
1XEV_A, 1XEV_B, 1XEV_C, 1XEV_D, 1YDC_A, 1YO0_A, 1YO1_A, 1YO2_A, 
1ZSA_A, 1ZSC_A, 2AX2_A, 2CA2_A, 2CBA_A, 2CBB_A, 2CBC_A, 2CBD_A, 
2CBE_A, 2FNK_A, 2FNM_A, 2GEH_A, 2ILI_A, 2NWO_A, 2NWP_A, 2NWY_A, 
2NWZ_A, 2NXR_A, 2NXS_A, 2NXT_A, 2VVA_X, 2VVB_X, 3D92_A, 3D93_A, 
3DC9_A, 3DV7_A, 3DVB_A, 3DVC_A, 3DVD_A, 3EFI_A, 3GZ0_A, 3K7K_A, 
3KOI_A, 3KOK_A, 3KON_A, 3KS3_A, 3KWA_A, 3M1J_A, 3M1Q_A, 3M1W_A, 
3M2Z_A, 3M5S_A, 3MWO_A, 3MWO_B, 3PJJ_A, 3RG3_A, 3RG4_A, 3RGE_A, 
3RLD_A, 3TVN_X, 3TVO_X, 3U3A_X, 3U45_X, 3U47_A, 3U7C_A, 3V3F_A, 
3V3G_B, 3V3H_B, 3V3I_B, 3V3J_A, 4CA2_A, 4CAC_A, 4E5Q_A, 4GL1_X, 
4HBA_A, 4HF3_A, 4IDR_X, 4JS6_A, 4JSW_A, 4L5U_A, 4L5V_A, 4L5W_A, 
4QEF_A, 4QK1_A, 4QK2_A, 4QK3_A, 4QY3_A, 4YGK_A, 4YGL_A, 4YVY_A, 
4ZAO_A, 5BRW_A, 5CA2_A, 5CAC_A, 5DSI_A, 5DSJ_A, 5DSK_A, 5DSL_A, 
5DSM_A, 5DSN_A, 5DSO_A, 5DSP_A, 5DSQ_A, 5DSR_A, 5EOI_A, 5G0B_A, 
5G0C_A, 5THI_A, 5Y2R_A, 5Y2S_A, 5ZXW_A, 6B00_A, 6CA2_A, 7CA2_A, 
8CA2_A, 9CA2_A 

GAB_P68400 1JWH_B, 1NA7_A, 2R7I_A, 2R7I_B, 2R7I_C, 2R7I_D, 3AT2_A, 3FWQ_B, 
3Q04_A, 3QA0_A, 3QA0_B, 3RPS_B, 3W8L_A, 3W8L_B, 4DGL_C, 4DGL_D, 
4IB5_A, 4IB5_B, 4IB5_C, 4MD9_E, 4MD9_F, 4MD9_G, 4MD9_H, 4MD9_K, 
4MD9_L, 4MD9_M, 4MD9_P, 5CS6_A, 5CS6_B, 5CT0_A, 5CT0_B, 5CVG_A, 
5MMF_A, 5MMF_B, 5MMR_B, 5MO5_B, 5MO6_A, 5MO6_B, 5MO7_B, 5MOD_A, 
5MOD_B, 5MOW_B, 5MPJ_B, 5ORH_A, 5ORH_B, 5OT6_B, 5OTZ_A, 5OUM_B, 
6GIH_A 

GLA_P32890 1HTL_D, 1HTL_E, 1HTL_F, 1HTL_G, 1JQY_N, 1LTB_D, 1LTB_E, 1LTB_F, 
1LTB_G, 1LTB_H, 1LTG_D, 1LTG_E, 1LTG_F, 1LTG_G, 1LTG_H, 1LTI_F, 
1LTR_D, 1LTR_E, 1LTR_F, 1LTR_G, 1LTR_H, 1LTS_D, 1LTS_E, 1LTS_F, 
1LTS_G, 1LTS_H, 2O2L_D, 2O2L_E, 2O2L_F, 2O2L_G, 2O2L_H, 2O2L_I, 2O2L_J, 
2O2L_K, 2O2L_L, 2O2L_M 
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GLA_P42592 3D3I_A, 3D3I_B 

GLA_Q57193 1CHP_F, 1CHP_G, 1CHQ_D, 1CHQ_E, 1CHQ_F, 1CHQ_G, 1CHQ_H, 1CT1_D, 
1CT1_E, 1CT1_H, 1FGB_F, 1FGB_G, 1FGB_H, 1G8Z_E, 1MD2_G, 1MD2_H, 
1S5B_D, 1S5B_E, 1S5B_G, 1S5B_H, 1S5C_D, 1S5C_E, 1S5C_F, 1S5C_G, 1S5C_H, 
1S5E_E, 1S5E_F, 1S5E_G, 1S5E_H, 1S5E_K, 1S5E_L, 1S5E_M, 1S5E_N, 1XTC_D, 
1XTC_E, 1XTC_F, 1XTC_G, 5ELC_B, 5ELC_C, 5ELC_D, 5ELC_E, 5ELC_F, 
5ELC_G, 5ELC_H, 5ELC_I, 5ELC_J, 5ELD_B, 5ELD_D, 5ELE_A, 5ELE_B, 
5ELE_C, 5ELE_F, 5ELE_G, 5ELE_H, 5ELE_I, 5ELE_J, 5ELF_A, 5ELF_B, 5ELF_C, 
5ELF_D, 5ELF_F, 5ELF_G, 5ELF_H, 5ELF_I, 5ELF_J, 5LZJ_A, 5LZJ_B, 5LZJ_E 

GLA_Q9ALJ4 4FNQ_A 

HAE_P39900 2MLR_A 

JPZ_Q9H2K2 3KR7_A, 4PNN_D, 4PNQ_D, 4PNR_D, 4PNS_D, 4PNT_D, 4TJW_D, 4TJY_D, 
4TK0_D 

LZ1_P24941 1BUH_A, 1F5Q_A, 1F5Q_C, 1H24_A, 1H24_C, 1H25_A, 1H25_C, 1H26_A, 
1H26_C, 1H27_A, 1H27_C, 1H28_A, 1H28_C, 1HCL_A, 1OKV_A, 1OKV_C, 
1OKW_A, 1OKW_C, 1OL1_A, 1OL1_C, 1OL2_A, 1OL2_C, 1PW2_A, 1URC_A, 
1URC_C, 1W98_A, 2JGZ_A, 2V22_A, 2V22_C, 2WFY_A, 2WFY_C, 2WHB_A, 
2WHB_C, 2WMA_A, 2WMA_C, 2WMB_C, 3EID_C, 3PXF_A, 3PXR_A, 4EK3_A, 
5ANO_A, 5IF1_A, 5IF1_C, 5OO0_A, 5OSJ_A, 5UQ1_A, 5UQ1_C, 5UQ2_A 

LZ5_P24941 1BUH_A, 1F5Q_A, 1F5Q_C, 1H24_A, 1H24_C, 1H25_A, 1H25_C, 1H26_A, 
1H26_C, 1H27_A, 1H27_C, 1H28_A, 1H28_C, 1HCL_A, 1OKV_A, 1OKV_C, 
1OKW_A, 1OKW_C, 1OL1_A, 1OL1_C, 1OL2_A, 1OL2_C, 1PW2_A, 1URC_A, 
1URC_C, 1W98_A, 2JGZ_A, 2V22_A, 2V22_C, 2WFY_A, 2WFY_C, 2WHB_A, 
2WHB_C, 2WMA_A, 2WMA_C, 2WMB_A, 2WMB_C, 3EID_C, 3PXF_A, 3PXR_A, 
4EK3_A, 5ANO_A, 5IF1_A, 5IF1_C, 5OO0_A, 5OSJ_A, 5UQ1_A, 5UQ1_C, 
5UQ2_A 

LZM_P24941 1BUH_A, 1F5Q_A, 1F5Q_C, 1H24_A, 1H24_C, 1H25_A, 1H25_C, 1H26_A, 
1H26_C, 1H27_A, 1H27_C, 1H28_A, 1H28_C, 1HCL_A, 1OKV_A, 1OKV_C, 
1OKW_A, 1OKW_C, 1OL1_A, 1OL1_C, 1OL2_A, 1OL2_C, 1PW2_A, 1URC_A, 
1URC_C, 1W98_A, 2JGZ_A, 2V22_A, 2V22_C, 2WFY_A, 2WFY_C, 2WHB_A, 
2WHB_C, 2WMA_A, 2WMA_C, 2WMB_A, 2WMB_C, 3EID_C, 3PXF_A, 3PXR_A, 
4EK3_A, 5ANO_A, 5IF1_A, 5IF1_C, 5OO0_A, 5OSJ_A, 5UQ1_A, 5UQ1_C, 
5UQ2_A 

M3T_P00918 12CA_A, 1AM6_A, 1BIC_A, 1CA2_A, 1CA3_A, 1CAH_A, 1CAI_A, 1CAJ_A, 
1CAK_A, 1CAL_A, 1CAM_A, 1CAN_A, 1CAO_A, 1CAY_A, 1CAZ_A, 1CCS_A, 
1CCT_A, 1CCU_A, 1CNC_A, 1CNG_A, 1CNH_A, 1CNI_A, 1CNJ_A, 1CNK_A, 
1CRA_A, 1CVA_A, 1CVB_A, 1CVC_A, 1CVD_A, 1CVE_A, 1CVF_A, 1CVH_A, 
1DCA_A, 1DCB_A, 1FQL_A, 1FQM_A, 1FQN_A, 1FQR_A, 1FR4_A, 1FR7_A, 
1FR7_B, 1FSN_A, 1FSN_B, 1FSQ_A, 1FSQ_B, 1FSR_A, 1FSR_B, 1G0E_A, 
1G0F_A, 1G3Z_A, 1G6V_A, 1H4N_A, 1H9N_A, 1H9Q_A, 1HCA_A, 1HEA_A, 
1HEB_A, 1HEC_A, 1HED_A, 1HVA_A, 1LG6_A, 1LGD_A, 1LZV_A, 1MOO_A, 
1MUA_A, 1RAY_A, 1RAZ_A, 1RZA_A, 1RZB_A, 1RZC_A, 1RZD_A, 1RZE_A, 
1T9N_A, 1TBT_X, 1TEQ_X, 1TEU_X, 1TG3_A, 1TG9_A, 1TH9_A, 1THK_A, 
1UGA_A, 1UGB_A, 1UGC_A, 1UGD_A, 1UGE_A, 1UGF_A, 1UGG_A, 1XEG_A, 
1XEV_A, 1XEV_B, 1XEV_C, 1XEV_D, 1YDC_A, 1YO0_A, 1YO1_A, 1YO2_A, 
1ZSA_A, 1ZSC_A, 2AX2_A, 2CA2_A, 2CBA_A, 2CBB_A, 2CBC_A, 2CBD_A, 
2CBE_A, 2FNK_A, 2FNM_A, 2GEH_A, 2ILI_A, 2NWO_A, 2NWP_A, 2NWY_A, 
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2NWZ_A, 2NXR_A, 2NXS_A, 2NXT_A, 2VVA_X, 2VVB_X, 3D92_A, 3D93_A, 
3DC9_A, 3DV7_A, 3DVB_A, 3DVC_A, 3DVD_A, 3EFI_A, 3GZ0_A, 3K7K_A, 
3KOI_A, 3KOK_A, 3KON_A, 3KS3_A, 3KWA_A, 3M1J_A, 3M1Q_A, 3M1W_A, 
3M2Z_A, 3M5S_A, 3MWO_A, 3MWO_B, 3PJJ_A, 3RG3_A, 3RG4_A, 3RGE_A, 
3RLD_A, 3TVN_X, 3TVO_X, 3U3A_X, 3U45_X, 3U47_A, 3U7C_A, 3V3F_A, 
3V3G_B, 3V3H_B, 3V3I_B, 3V3J_A, 4CA2_A, 4CAC_A, 4E5Q_A, 4GL1_X, 
4HBA_A, 4HF3_A, 4IDR_X, 4JS6_A, 4JSW_A, 4L5U_A, 4L5V_A, 4L5W_A, 
4QEF_A, 4QK1_A, 4QK2_A, 4QK3_A, 4QY3_A, 4YGK_A, 4YGL_A, 4YVY_A, 
4ZAO_A, 5BRW_A, 5CA2_A, 5CAC_A, 5DSI_A, 5DSJ_A, 5DSK_A, 5DSL_A, 
5DSM_A, 5DSN_A, 5DSO_A, 5DSP_A, 5DSQ_A, 5DSR_A, 5EOI_A, 5G0B_A, 
5G0C_A, 5THI_A, 5Y2R_A, 5Y2S_A, 5ZXW_A, 6B00_A, 6CA2_A, 7CA2_A, 
8CA2_A, 9CA2_A 

M4S_P39900 2MLR_A 

MEW_P09874 4RV6_C, 4RV6_D, 4XHU_A, 4XHU_C, 5HA9_A 

NCA_Q10588 1ISF_A, 1ISF_B 

NOJ_Q08638 1OD0_B, 5OSS_A 

Q24_P0ABQ4 1RA1_A, 1RA9_A, 3K74_A, 4EIZ_A, 4EIZ_B, 5DFR_A 

RCO_P00918 1CVF_A, 1FQN_A, 1FSN_A, 1FSN_B, 1HVA_A, 1ZSA_A, 2CBE_A, 5DSP_A, 
5DSQ_A, 5DSR_A 

ST3_P06820 1IVG_A, 1IVG_B, 1NN2_A, 4H53_D, 4K1H_A, 4K1H_B 

TDR_Q6PL18 3DAI_A, 4QSQ_A, 4QSR_A, 4TT4_A, 4TT4_B, 4TT6_A, 4TU6_A, 4TU6_B, 
4TU6_C, 4TU6_D 

TVP_P25440 2DVQ_C, 2DVR_C, 2DVS_C, 2E3K_A, 2G4A_A, 3AQA_B, 3AQA_C, 4QEU_A, 
5DFB_A, 5HEL_A, 5HEN_A, 5HEN_B, 5HEN_C, 5HFQ_A, 5IBN_A 

TYL_Q92793 3DWY_A, 3DWY_B, 3I3J_B, 3I3J_E, 3I3J_L, 3P1E_A, 3P1E_B, 4OUF_A, 4OUF_B, 
5EIC_A, 5KTU_B 

XQ0_P07900 1UYL_A, 1YER_A, 1YES_A, 2K5B_A, 2QFO_B, 2YEG_A, 3B26_B, 3T0H_A, 
5J2V_A, 5J80_A 

ZWZ_Q9WYE2 1HL8_A, 1HL8_B, 2ZWY_A, 2ZWY_B 

 

 

 
 
Table B.4. All bound structures for the Astex set by PDB ID/chain. Fragment PDB and fragment MW are the 
PDB ID/chain and molecular weight for the fragment and the structure from which the fragment was sourced. 
Maximum PDB and maximum MW are the PDB ID/chain and molecular weight for the largest (by molecular 
weight) ligand and its associated structure. 

Complex Fragment 
PDB 

Fragment 
MW 

Maximum 
PDB 

Maximum 
MW 

Additional Structures 
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1 4PFJ_B 149.15 3NJ4_C 279.227 1LI4_A 

2 2F6V_A 78.11 2FJM_B 603.552 2QBR_A, 2VEX_A, 2VEY_A 

3 2VCQ_B 78.11 1V40_B 466.495 2CVD_A, 2VCW_B, 2VCX_D 

4 3FGD_A 78.11 1QF2_A 412.502 1HYT_A 

5 3GEP_A 164.14 4RAC_C 438.27 4IJQ_A, 4RAN_D 

6 3GBA_A 75.07 3S2V_A 395.41 2WKY_A, 4DLD_A 

7 3ARA_A 125.11 3ARA_A 469.553 3ARN_A, 3EHW_A 

8 4AP7_A 94.11 3ZZE_A 359.807 3CCN_A 

9 4MGA_A 94.11 2IOG_A 525.681 1X7E_A, 2B1V_A, 2FAI_B, 2G44_A, 
2POG_A, 2QA8_B, 2QGW_A, 2QH6_A, 
2QR9_B, 2QSE_B, 3Q97_A, 3UU7_A, 
3UUA_A, 4DMA_A, 4MG9_A, 4MGD_A, 
4PPS_A, 4TV1_B 

10 4WRB_A 94.11 4WRB_A 362.382 1LJT_A, 3IJJ_A 

11 2X7C_B 94.11 2X7E_B 376.42 1Q0B_A, 1YRS_B, 2X7D_A, 3K3B_A, 
3K5E_A, 4BBG_A 

12 1C83_A 75.07 1GFY_A 287.312 1C84_A, 1C85_A, 1C87_A 

13 4F9Y_A 79.1 1WBT_A 444.501 1WBS_A, 3HVC_A, 4EH6_A 

14 2W0B_A 79.1 2CIB_A 425.484 2CI0_A, 2W0A_A 

15 4N8E_A 112.56 3H0C_B 478.004 3G0C_C 

16 4OGN_A 112.56 3W69_B 696.729 4ERE_B, 4JVE_A, 4ODF_A 

17 4AXA_A 112.56 2VO3_A 355.864 2UW7_A, 2VO6_A 

18 4MXC_A 96.1 4MXC_A 593.601 3C1X_A, 4EEV_A 

19 4JYG_A 122.12 4JYG_A 397.466 4DM6_A, 4JYH_A 

20 3UWE_A 122.12 4FAM_A 317.36 3R43_A, 4DBS_A 

21 3KVK_A 122.12 4LS1_A 357.814 3KVM_A 

22 3N5S_A 108.14 4CWY_A 383.53 3N5P_B, 3NLH_A, 4C3A_A, 4IMX_A, 
4JSL_A, 4JSM_A, 4K5I_B, 4K5J_A, 4K5K_A 

23 2O7N_A 147 2ICA_A 555.432 3M6F_A 

24 4EPV_A 116.14 4EPY_A 359.424 4EPW_A 

25 3RAL_A 157.19 1YKR_A 461.321 1JSV_A, 1OIT_A, 2C6T_A, 2IW9_C, 2VTI_A, 
3QRT_A 

26 3N3J_A 157.19 2F14_A 589.639 1I9M_A, 1LUG_A, 1OQ5_A, 1ZE8_A, 
1ZFK_A, 2AW1_A, 2FOS_A, 2HD6_A, 
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2HL4_A, 2NNV_A, 2Q1Q_A, 3M3X_A, 
3MHI_A, 3MHM_A, 3MHO_A, 3ML2_A, 
3MNA_A, 3MZC_A, 3OY0_A, 3OYS_A, 
3P55_A, 3QYK_A, 3R16_A, 3RYY_A, 
3RYZ_A, 3RZ5_A, 3RZ8_A, 3SBH_A, 
3V5G_A, 4ILX_A, 4ITO_A, 4ITP_A, 4Q6D_A, 
4QSB_A 

27 4BAK_B 120.15 2BDY_A 502.585 2PKS_C 

28 3FMK_A 114.09 2QD9_A 550.513 1OUY_A, 3FI4_A, 3FMN_A, 3KF7_A, 
3ROC_A, 3ZSI_A 

29 1LDO_A 144.19 1IJ8_A 364.419 1LDQ_A 

30 4GB9_A 101.15 3IBE_A 604.662 3APC_A, 3TL5_A, 4EZJ_A 

31 4CWO_A 110.11 4CWO_A 307.307 2YJW_A, 3EKR_A, 3K99_A, 3OW6_A 

32 2X8Z_A 129.16 1J36_A 405.488 2X90_A, 3ZQZ_A 

33 3E51_A 95.12 3H59_A 563.661 4MK9_A, 4MKA_A, 4MKB_A 

34 4OP1_A 94.11 4OP3_A 515.508 4OHM_A, 4OP2_B 

35 2J94_A 98.17 2VH0_A 526.047 2J95_A, 2P95_A, 2UWO_A, 2VVV_A, 
2VWN_A, 2W26_A, 2Y5F_A, 2Y5G_A, 
3TK6_A 

36 4BW4_A 97.12 4BW4_A 471.389 3SVF_A, 3ZYU_A, 4BW1_A, 4BW2_A, 
4BW3_A, 4GPJ_A, 4NR8_A, 4WIV_A 

37 4HOF_A 124.14 4HOF_A 358.436 3QLR_A, 3QLS_A 

38 2VTS_A 99.17 1Y91_A 471.619 1G5S_A 

39 3T4Q_A 148.15 3T4K_A 225.249 3T4O_B 

40 4MSG_A 145.14 4MSG_A 475.563 4LI6_A, 4MSK_A 

41 4KZA_A 128.15 4JXW_A 369.413 1L2S_A, 4JXS_B, 4JXV_B 

42 3CJO_A 114.09 3CJO_A 459.504 2FL2_A, 2G1Q_A 

43 4DCH_A 114.17 4ISF_A 416.469 4ISG_A 

44 3OIA_A 136.23 3OIA_A 849.175 1RF9_A, 3P6O_A, 3P6P_A 

45 4PCS_A 117.15 4PEE_C 260.292 4J28_A, 4JFU_A 

46 4GV1_A 118.12 4GV1_A 428.915 3CQU_A, 3OCB_B 

47 1W1Y_A 154.17 1W1Y_A 260.288 1W1T_A, 1W1V_A 

48 3GXL_A 93.13 3GXL_A 352.392 1RW8_A, 1VJY_A 

49 3FFI_A 129.59 3FFI_A 462.928 2YNI_A, 4NCG_A 

50 4FRS_A 143.19 4FRS_A 372.872 3WB5_A, 4FS4_A 
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51 3B25_A 109.13 2QG2_A 321.333 3B26_A, 3RLP_A 

52 3A4P_A 164.99 4KNB_A 490.357 2WGJ_A 

 
 
 
Table B.5. All unbound structures for the Astex set by PDB ID/chain. For each protein, the structure mapped is 
shown in bold. 

 
Complex Apo Structures 

2 1JF7_A, 1OEM_X, 1OES_A, 1SUG_A, 1T48_A, 1T49_A, 1T4J_A, 2B4S_A, 2B4S_C, 
2CM2_A, 2CM3_A, 2CM3_B, 2HNP_A, 3A5J_A, 3A5K_A, 3QKP_A, 3SME_A, 3ZV2_A, 
4BJO_A, 4BJO_B, 4QAH_A, 4QAP_A, 4QBE_A, 4QBW_A, 5KA4_A, 6B8E_A, 6B8T_A, 
6B8X_A, 6B8Z_A, 6B90_A, 6B95_A, 6BAI_A 

3 2VCW_C, 2VD0_C, 3EE2_B, 5AIX_A, 5AIX_D 

4 3FB0_A 

5 1Z7G_A, 1Z7G_B, 1Z7G_C, 1Z7G_D 

8 1R1W_A, 2G15_A, 3Q6U_A 

9 2B23_A, 2B23_B, 4Q13_A, 4Q13_B 

10 4GRO_A, 4GRO_G, 4GUM_B, 4GUM_C, 4GUM_E, 4GUM_G 

11 1II6_A, 1II6_B, 3HQD_A, 3HQD_B, 3WPN_A, 4A1Z_A, 4A1Z_B, 4A28_A, 4A28_B, 
4B7B_A, 4ZCA_A, 4ZCA_B, 4ZHI_A 

12 1I57_A, 1JF7_A, 1OEM_X, 1OES_A, 1PA1_A, 1SUG_A, 1T48_A, 1T49_A, 1T4J_A, 
2B4S_A, 2B4S_C, 2CM2_A, 2CM3_A, 2CM3_B, 2HNP_A, 3A5J_A, 3A5K_A, 3QKP_A, 
3SME_A, 3ZV2_A, 4BJO_A, 4BJO_B, 4QAH_A, 4QAP_A, 4QBE_A, 4QBW_A, 5KA4_A, 
6B8E_A, 6B8T_A, 6B8X_A, 6B8Z_A, 6B90_A, 6B95_A, 6BAI_A 

13 1LEW_A, 1LEZ_A, 1R39_A, 1R3C_A, 1WFC_A, 2FSL_X, 2FSM_X, 2FSO_X, 2FST_X, 
2LGC_A, 2NPQ_A, 2OKR_A, 2OKR_D, 2ONL_A, 2ONL_B, 2OZA_B, 2Y8O_A, 3MGY_A, 
3MH0_A, 3MH1_A, 3MH2_A, 3MH3_A, 3NEW_A, 3OD6_X, 3ODY_X, 3ODZ_X, 3OEF_X, 
3P4K_A, 3PY3_A, 3TG1_A, 4DLI_A, 4E5A_X, 4E5B_A, 4E6A_A, 4E6C_A, 4E8A_A, 
4EH9_A, 4EHV_A, 4GEO_A, 4KA3_A, 5ETA_A, 5ETA_B, 5ETC_A, 5ETF_A, 5ETI_A, 
5N63_A, 5N64_A, 5N67_A, 5N68_A, 5O8U_A, 5O8V_A, 5UOJ_A 

15 1J2E_A, 1J2E_B, 1NU6_A, 1NU6_B, 1NU8_A, 1PFQ_A, 1PFQ_B, 1R9M_A, 1R9M_B, 
1R9M_C, 1R9M_D, 1TK3_A, 1TK3_B, 1U8E_A, 1U8E_B, 1W1I_A, 1W1I_B, 1W1I_C, 
1W1I_D, 2G5P_B, 2G5T_B, 2G63_A, 2G63_C, 2G63_D, 2I03_A, 2I03_C, 2I03_D, 2I78_A, 
2I78_C, 2I78_D, 2OAG_A, 2OAG_C, 2OAG_D, 2OQI_A, 2OQI_C, 2OQI_D, 2OQV_B, 
4DSA_B, 4KR0_A, 4L72_A, 4QZV_A, 4QZV_C 

16 1Z1M_A 

17 1J3H_A, 1J3H_B, 1Q62_A, 1SMH_A, 1SYK_A, 1SYK_B, 2GNG_A, 3AG9_A, 3J4Q_D, 
3J4R_D, 3J4R_E, 3MVJ_B, 3O7L_D, 3TNP_C, 3TNP_F, 4AE6_A, 4AE6_B, 4AE9_A, 
4AE9_B, 4DFY_A, 4DFY_E, 4DFZ_E, 4DG2_E, 4NTS_A, 4NTS_B, 4WIH_A, 4X6Q_C, 
5N1G_A, 5N1N_A, 5N3I_A, 5N3K_A, 5N3M_A, 5N3N_A, 5N3R_A, 5N3T_A, 5NTJ_A 
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18 1R1W_A, 2G15_A, 3Q6U_A 

23 1DGQ_A, 1LFA_A, 1LFA_B, 1MJN_A, 1MQ8_B, 1MQ8_D, 1MQ9_A, 1MQA_A, 1T0P_A, 
1XUO_B, 1ZON_A, 3BN3_A, 3EOA_I, 3EOA_J, 3EOB_I, 3EOB_J, 3F74_C, 3F78_C, 
3HI6_A, 3HI6_B, 3TCX_B, 3TCX_D, 3TCX_F, 3TCX_H, 3TCX_J, 3TCX_L, 3TCX_N, 
3TCX_P, 3TCX_R, 3TCX_T, 3TCX_V, 3TCX_X, 3TCX_Z 

24 1BUH_A, 1F5Q_A, 1F5Q_C, 1H24_A, 1H24_C, 1H25_A, 1H25_C, 1H26_A, 1H26_C, 
1H27_A, 1H27_C, 1H28_A, 1H28_C, 1HCL_A, 1OKV_A, 1OKV_C, 1OKW_A, 1OKW_C, 
1OL1_A, 1OL1_C, 1OL2_A, 1OL2_C, 1PW2_A, 1URC_A, 1URC_C, 1W98_A, 2JGZ_A, 
2MSC_B, 2V22_A, 2V22_C, 2WFY_A, 2WFY_C, 2WHB_A, 2WHB_C, 2WMA_A, 
2WMA_C, 2WMB_C, 3EID_C, 3GFT_B, 3GFT_C, 3GFT_D, 3GFT_E, 3GFT_F, 3PXF_A, 
3PXR_A, 4DSN_A, 4EK3_A, 4EPR_A, 4L8G_A, 4LDJ_A, 4LPK_A, 4LPK_B, 4LRW_A, 
4LRW_B, 4LUC_A, 4LUC_B, 4LV6_A, 4LV6_B, 4LYF_A, 4LYF_C, 4LYH_A, 4LYJ_A, 
4M1O_A, 4M1O_C, 4M1S_A, 4M1S_B, 4M1S_C, 4M1T_A, 4M1T_C, 4M1W_A, 4M1W_C, 
4M1Y_A, 4M1Y_C, 4M21_A, 4M21_C, 4M22_B, 4M22_C, 4NMM_A, 4OBE_A, 4OBE_B, 
4QL3_A, 4TQ9_A, 4TQ9_B, 4TQA_A, 4TQA_B, 4WA7_A, 5ANO_A, 5F2E_A, 5IF1_A, 
5IF1_C, 5KYK_A, 5KYK_B, 5KYK_C, 5OO0_A, 5OSJ_A, 5TAR_A, 5TB5_A, 5TB5_C, 
5UFQ_B, 5UK9_A, 5UK9_B, 5UQ1_A, 5UQ1_C, 5UQ2_A, 5UQW_A, 5UQW_B, 5US4_A, 
5US4_B, 5USJ_B, 5V6S_A, 5V6V_A, 5V6V_B, 5V71_A, 5V71_C, 5V71_D, 5V71_E, 
5V71_F, 5V9L_A, 5V9L_B, 5V9L_C, 5V9O_A, 5V9U_A, 5V9U_B, 5VBM_A, 5VP7_A, 
5VP7_F, 5VPI_A, 5VPI_B, 5VPY_A, 5VPY_B, 5VPZ_A, 5VPZ_B, 5VQ0_A, 5VQ0_B, 
5VQ1_A, 5VQ1_B, 5VQ2_A, 5VQ2_B, 5VQ6_A, 5VQ6_B, 5VQ8_A, 5VQ8_B, 5W22_A, 
5W22_B, 5WHD_A, 5WHD_C, 5XCO_A, 5YXZ_A, 5YY1_A, 6ARK_A, 6ASA_A, 6ASE_A, 
6B0V_A, 6B0V_B, 6B0Y_A, 6B0Y_B, 6BP1_A 

25 4EK3_A, 3PXR_A, 5ANO_A, 1PW2_A, 1HCL_A, 5OSJ_A, 5OO0_A, 1BUH_A, 1F5Q_C, 
3PXF_A, 1F5Q_A, 1W98_A, 5IF1_A, 1H26_A, 2WMA_A, 1H28_A, 5UQ1_A, 1H24_A, 
1H25_A, 2WMB_C, 1OL2_C, 1H28_C, 2V22_C, 5UQ2_A, 1URC_C, 1OKW_C, 1H26_C, 
2JGZ_A, 1OL1_C, 1H27_A, 2WFY_C, 2WFY_A, 1OKW_A, 1OKV_C, 1OL2_A, 1URC_A, 
2WHB_A, 2WHB_C, 5IF1_C, 2V22_A, 3EID_C, 1H25_C, 1H27_C, 1H24_C, 1OL1_A, 
5UQ1_C, 1OKV_A, 2WMA_C 

26 1CVF_A, 1FQN_A, 1FSN_A, 1FSN_B, 1HVA_A, 1ZSA_A, 2CBE_A, 5DSP_A, 5DSQ_A, 
5DSR_A 

27 1C5L_H, 1HAG_E, 1HAH_H, 1HGT_H, 1HXE_H, 1HXF_H, 1JOU_D, 1JOU_F, 1MH0_A, 
1MH0_B, 1SG8_B, 1SG8_E, 1SGI_B, 1SGI_E, 1THR_H, 1THS_H, 1TQ0_D, 1TWX_B, 
1VR1_H, 2A0Q_D, 2B5T_B, 2B5T_D, 2GP9_B, 2HWL_B, 2PGB_B, 2UUF_B, 3BEF_B, 
3BEF_E, 3BEI_B, 3D49_H, 3EE0_B, 3GIC_B, 3GIS_B, 3GIS_D, 3GIS_F, 3HKJ_B, 3HKJ_E, 
3JZ1_B, 3JZ2_B, 3K65_B, 3QGN_B, 3R3G_B, 3S7H_B, 3S7K_B, 3S7K_D, 3SQE_E, 
3SQH_E, 3U69_H, 4BOH_A, 4H6S_B, 4H6T_A, 4RKJ_B, 5JDU_B, 5JDU_D 

28 1LEW_A, 1LEZ_A, 1R39_A, 1R3C_A, 1WFC_A, 2FSL_X, 2FSM_X, 2FSO_X, 2FST_X, 
2LGC_A, 2NPQ_A, 2OKR_A, 2OKR_D, 2Y8O_A, 3MGY_A, 3MH0_A, 3MH1_A, 3MH2_A, 
3MH3_A, 3NEW_A, 3OD6_X, 3ODY_X, 3ODZ_X, 3OEF_X, 3P4K_A, 3PY3_A, 3TG1_A, 
4DLI_A, 4E5A_X, 4E5B_A, 4E6A_A, 4E6C_A, 4E8A_A, 4EH9_A, 4EHV_A, 4GEO_A, 
4KA3_A, 5ETA_A, 5ETA_B, 5ETC_A, 5ETF_A, 5ETI_A, 5N63_A, 5N64_A, 5N67_A, 
5N68_A, 5O8U_A, 5O8V_A, 5UOJ_A 

29 1AVE_A, 1AVE_B, 1NQN_A, 1NQN_B, 1RAV_A, 1RAV_B, 1VYO_A, 1VYO_B, 2A5B_B, 
2A8G_A, 2CAM_A, 2CAM_B 

30 1E8Y_A, 1HE8_A 

31 1UYL_A, 1YER_A, 1YES_A, 2K5B_A, 2QFO_B, 2YEG_A, 3B26_B, 3T0H_A, 5J2V_A, 
5J80_A 
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33 1NB4_A, 1NB4_B, 1NHU_A, 1NHU_B, 1NHV_A, 1NHV_B, 1OS5_A, 1QUV_A, 2BRK_A, 
2BRL_A, 2D3U_A, 2D3U_B, 2D3Z_A, 2D3Z_B, 2D41_A, 2D41_B, 2DXS_A, 2DXS_B, 
2GIR_A, 2GIR_B, 2HWH_A, 2HWH_B, 2HWI_A, 2HWI_B, 2I1R_A, 2I1R_B, 2O5D_A, 
2O5D_B, 2QE5_B, 2QE5_C, 2QE5_D, 2WCX_A, 2WHO_A, 2WHO_B, 2WRM_A, 2XHU_A, 
2XHU_B, 2XHV_A, 2XHV_B, 2XHW_A, 2XWY_A, 2ZKU_A, 2ZKU_B, 2ZKU_C, 
2ZKU_D, 3CIZ_A, 3CIZ_B, 3CJ0_A, 3CJ0_B, 3CJ2_A, 3CJ2_B, 3CJ3_A, 3CJ3_B, 3CJ4_A, 
3CJ4_B, 3CJ5_A, 3CJ5_B, 3FRZ_A, 3MF5_A, 3MF5_B, 3MWV_A, 3MWV_B, 3MWW_A, 
3MWW_B, 3PHE_A, 3PHE_B, 3PHE_C, 3PHE_D, 3Q0Z_A, 3Q0Z_B, 3QGD_A, 3QGE_A, 
3UDL_A, 3UDL_B, 3UDL_C, 3UDL_D, 4DRU_A, 4DRU_B, 4EO6_A, 4EO6_B, 4EO8_A, 
4EO8_B, 4GMC_A, 4GMC_B, 4IZ0_B, 4J02_A, 4J02_B, 4J06_A, 4J06_B, 4J08_A, 4J08_B, 
4J0A_A, 4J0A_B, 4JJS_A, 4JJS_B, 4JJU_A, 4JJU_B, 4JTW_A, 4JTW_B, 4JTY_A, 4JTY_B, 
4JTZ_A, 4JTZ_B, 4JU1_A, 4JU1_B, 4JU2_A, 4JU2_B, 4JU3_A, 4JU3_B, 4JU4_A, 4JU4_B, 
4JU6_A, 4JU6_B, 4JU7_A, 4JU7_B, 4JVQ_A, 4JVQ_B, 4JY1_A, 4JY1_B, 4OOW_A, 
4OOW_B, 4RY4_A, 4RY4_B, 4RY6_A, 4RY6_B, 4RY7_A, 4RY7_B, 4TN2_A, 4TY8_C, 
4TY8_D, 4TY9_A, 4TY9_B, 4TY9_C, 4TY9_D, 5CZB_A, 5CZB_B, 5PZM_A, 5TWN_A 

34 4BB9_A, 4BBA_A 

35 1C5M_D, 1HCG_A, 5VOE_H 

36 2OSS_A, 3JVJ_A, 4IOR_A, 4LYI_A, 6DJC_B 

38 1BUH_A, 1F5Q_A, 1F5Q_C, 1H24_A, 1H24_C, 1H25_A, 1H25_C, 1H26_A, 1H26_C, 
1H27_A, 1H27_C, 1H28_A, 1H28_C, 1HCL_A, 1OKV_A, 1OKV_C, 1OKW_A, 1OKW_C, 
1OL1_A, 1OL1_C, 1OL2_A, 1OL2_C, 1PW2_A, 1URC_A, 1URC_C, 1W98_A, 2JGZ_A, 
2V22_A, 2V22_C, 2WFY_A, 2WFY_C, 2WHB_A, 2WHB_C, 2WMA_A, 2WMA_C, 
2WMB_C, 3EID_C, 3PXR_A, 4EK3_A, 5ANO_A, 5IF1_A, 5IF1_C, 5OO0_A, 5OSJ_A, 
5UQ1_A, 5UQ1_C, 5UQ2_A 

40 4TOS_B, 5ECE_D 

41 1KE4_A, 1KE4_B, 1KVM_A, 1L0D_A, 1L0D_B, 1L0E_A, 1L0E_B, 1L0F_A, 1L0F_B, 
1L0G_B, 1LL9_A, 1LLB_A, 1XGI_A, 2BLS_A, 2BLS_B, 2HDS_B, 2P9V_B, 2ZJ9_A, 
2ZJ9_B, 3FKW_A, 3FKW_B, 3GQZ_B, 3GR2_B, 3GRJ_A, 3GVB_B, 3IWI_A, 3IWI_B, 
3IWO_A, 3IWO_B, 3IWQ_A, 3IWQ_B, 3IXD_A, 3IXD_B, 3IXG_A, 3IXH_A, 4JXS_A, 
4KG6_A, 4KG6_B, 4KG6_C, 4KG6_D, 4KZ4_A, 4KZ6_A, 4KZ9_A, 4KZ9_B, 4OKP_A, 
4OKP_B, 5GGW_A, 5GGW_B, 5JOC_A, 5JOC_B 

42 1II6_A, 1II6_B, 3HQD_A, 3HQD_B, 3WPN_A, 4A1Z_A, 4A1Z_B, 4A28_A, 4A28_B, 
4B7B_A, 4ZCA_A, 4ZCA_B, 4ZHI_A 

43 1V4T_A, 3FGU_A, 3IDH_A, 3QIC_A, 4LC9_B 

45 2WVV_A, 2WVV_B, 2WVV_C, 2WVV_D, 4J27_A, 4J27_B, 4WSK_D 

47 1E15_A, 1E15_B, 1E6P_A, 1E6P_B, 1GOI_A, 1GOI_B, 1GPF_A, 1GPF_B, 1OGB_A, 
1OGB_B, 3WD0_A 

48 1B6C_B, 1B6C_D, 1B6C_F, 1B6C_H, 1IAS_A, 1IAS_B, 1IAS_C, 1IAS_D, 1IAS_E, 
4X2N_A, 5E8S_A, 5E8T_A, 5E8U_A 

49 1DLO_A, 1HMV_A, 1HMV_C, 1HMV_E, 1HMV_G, 1HQE_A, 1HVU_A, 1HVU_D, 
1HVU_G, 1HVU_J, 1HYS_A, 1J5O_A, 1N5Y_A, 1N6Q_A, 1QE1_A, 1R0A_A, 1RTD_A, 
1RTD_C, 1RTJ_A, 1T03_A, 1T05_A, 2HMI_A, 2JLE_B, 3DLK_A, 3IG1_A, 3ISN_C, 
3ITH_A, 3ITH_C, 3JSM_A, 3JYT_A, 3KJV_A, 3KK1_A, 3KK2_A, 3KK3_A, 3KLE_A, 
3KLE_E, 3KLE_I, 3KLE_M, 3KLF_A, 3KLF_E, 3KLF_I, 3KLF_M, 3KLG_A, 3KLG_E, 
3KLH_A, 3KLI_A, 3LAK_B, 3LAL_B, 3LAM_B, 3LAN_B, 3T19_B, 3T1A_B, 3V4I_A, 
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3V4I_C, 3V6D_A, 3V6D_C, 4B3P_A, 4DG1_A, 4PQU_A, 4PQU_C, 4R5P_A, 4R5P_C, 
4ZHR_A, 5D3G_A, 5D3G_C, 5HLF_A, 5HLF_C, 5HP1_A, 5HP1_C, 5HRO_A, 5HRO_C, 
5I3U_A, 5I3U_C, 5I42_A, 5I42_C, 5J1E_A, 5J1E_C, 5J2M_A, 5J2N_A, 5J2P_A, 5J2Q_A, 
5TXL_A, 5TXL_C, 5TXM_A, 5TXM_C, 5TXN_A, 5TXN_C, 5TXO_A, 5TXO_C, 5TXP_A, 
5TXP_C, 5UV5_A, 5UV5_C, 5XN0_A, 5XN0_C, 5XN1_A, 5XN1_C, 5XN2_A, 5XN2_C, 
6B19_A 

50 1SGZ_A, 1SGZ_B, 1SGZ_C, 1SGZ_D, 1W50_A, 1XN3_A, 1XN3_B, 1XN3_D, 2ZHS_A, 
2ZHT_A, 2ZHU_A, 2ZHV_A, 3HVG_C, 3L59_B, 3R1G_B, 3TPJ_A, 3TPL_A, 3TPL_B, 
3TPL_C 

51 1UYL_A, 1YER_A, 1YES_A, 2K5B_A, 2QFO_B, 2YEG_A, 3B26_B, 3T0H_A, 5J2V_A, 
5J80_A 

52 1R1W_A, 2G15_A, 3Q6U_A 

 
Table B.6. FBLD target proteins and pocket volumes 

PDB ID Chain ID Fragment ID Pocket Volume 
1WBG_B L03 569.01 
1WBO A 2CH 335.64 
1WBU_A WBU 610.62 
1WCC_A CIG 350.09 
2C8Z B C2A 451.84 
4B2I_A LZ1 370.15 
4B2L_A TR7 817.76 
4B32_A 03V 626.58 
4B33_A 1NP 318.33 
4B34 A ABV 285.1 
4B35_A 4ME 591.55 
4B3C_A 5H1 562.29 
4B3D A 5MI 548.67 
4DDH_A MS0 507.77 
4DDK A 0HN 558.19 
4DDM_A 0HO 631.7 
4DE5_A 0JD 583.67 
4EF6 A I2E 557.82 
4FZJ_A 0W1 857.88 
4G5F A 15N 541.35 
4G5Y_A 0OC 390.24 
4LKQ_A 1XM 559.57 
4LLJ A 1XN 465.63 
4LLK_A MEW 494.41 
4LLP A 4ZE 560.19 
4LLX_A 5ZE 497.57 
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4LM0_A 5NI 941.72 
4LM1 A 7ZE 572.69 
4LM2_A 8ZE 511.11 
4LM3 A 9ZE 419.22 
4LM4_A JPZ 533.2 
4MRW_A MRW 496.2 
4MRZ A 2ZV 530.33 
4MS0_A 2ZX 408.16 
4MSA_A 2ZM 1161.92 
4MSH_A 2D0 591.69 
4MSN_A 2ZQ 580.24 
4TXS A 3AQ 962.91 
4TY8_A 3AV 1089.97 
4TY9_A 3B0 523.15 
4TYA A 3AE 1025.81 
5C0L_A 4WJ 631.2 
5C3H A 4XE 665.74 
5C3K_A 4XF 679.29 
5C7B_A 4YD 893.65 
5MOD A 86L 602.11 
5MOH_A YTX 464.32 
5MOT A HBD 1177.95 
5MOV_A HC4 583.05 
5NGR_A 8WT 513.18 
5WIC B FOA 1063.11 
5WII_A AO4 706.8 
5WIP A XXO 678.21 
6D9X_A FZM 751.9 

 
 
Table B.7. Quality measures of predicting hydrogen bonding residues in the fragment binding pocket in the 
bound proteins of the Acpharis seta 

PDB ID TP TN FP FN Precision Recall F score MCCb 
5T4U_A 3 4 0 1 1 0.75 0.86 0.77 
2HNC_A 5 4 0 0 1 1 1 1 
5FE1_A 5 2 0 0 1 1 1 1 
2YE6_A 5 2 2 0 0.71 1 0.83 0.6 
5AQP_E 5 1 0 0 1 1 1 1 
2OHL_A 9 1 0 0 1 1 1 1 
4DON_A 1 2 3 0 0.25 1 0.4 0.32 
3HZ1_A 5 1 2 0 0.71 1 0.83 0.49 
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3KAC_A 5 3 1 0 0.83 1 0.91 0.79 
5PAW_B 8 3 1 0 0.89 1 0.94 0.82 
2OHM_A 7 2 0 0 1 1 1 1 
5POE_A 2 2 1 0 0.67 1 0.8 0.67 
4ALH_A 1 3 3 0 0.25 1 0.4 0.35 
4YZ0_B 5 0 4 2 0.56 0.71 0.63 -0.36 
4LDO_A 6 3 2 0 0.75 1 0.86 0.67 
5ODU_C 5 1 3 0 0.62 1 0.77 0.4 
1S39_A 7 2 2 1 0.78 0.88 0.82 0.41 
5PAR_C 10 7 2 0 0.83 1 0.91 0.81 
3P70_H 9 2 0 0 1 1 1 1 
3IMC_A 10 2 0 0 1 1 1 1 
4ZXT_A 4 4 1 1 0.8 0.8 0.8 0.6 
1KND_A 5 2 4 0 0.56 1 0.71 0.43 
3FW4_C 2 2 2 0 0.5 1 0.67 0.5 
3MBM_A 5 0 0 3 1 0.62 0.77 99999.99 
3IKE_B 7 0 0 1 1 0.88 0.93 99999.99 
1IKI_A 5 1 1 0 0.83 1 0.91 0.65 
3HVG_A 8 3 0 1 1 0.89 0.94 0.82 
4N0X_B 6 4 0 2 1 0.75 0.86 0.71 
2WEJ_A 6 4 0 0 1 1 1 1 
5CSV_A 2 6 0 2 1 0.5 0.67 0.61 
4CCE_A 9 2 2 0 0.82 1 0.9 0.64 
6EQ0_B 8 1 2 0 0.8 1 0.89 0.52 
1DJR_G 5 0 2 0 0.71 1 0.83 99999.99 
3W7U_B 4 1 1 0 0.8 1 0.89 0.63 
5ELB_D 6 0 1 0 0.86 1 0.92 99999.99 
4FNU_B 10 1 2 0 0.83 1 0.91 0.53 
1OS2_D 5 0 0 1 1 0.83 0.91 99999.99 
4PNN_B 6 1 3 0 0.67 1 0.8 0.41 
2VTA_A 4 2 0 0 1 1 1 1 
2VTL_A 6 3 0 3 1 0.67 0.8 0.58 
2VTM_A 6 4 0 1 1 0.86 0.92 0.83 
4Q9Y_A 6 3 0 0 1 1 1 1 
3LKA_A 7 1 2 0 0.78 1 0.88 0.51 
4GV7_B 6 0 2 0 0.75 1 0.86 99999.99 
2ORQ_A 3 0 5 0 0.38 1 0.55 99999.99 
2ORQ_A 1 0 7 0 0.12 1 0.22 99999.99 
1ISM_A 4 0 5 0 0.44 1 0.62 99999.99 
1L4N_A 5 1 4 1 0.56 0.83 0.67 0.04 
1OIM_A 8 2 2 0 0.8 1 0.89 0.63 
2E6A_B 10 1 1 1 0.91 0.91 0.91 0.41 
3QYO_A 6 1 3 0 0.67 1 0.8 0.41 
4E49_A 5 6 0 5 1 0.5 0.67 0.52 
1MS7_A 7 3 1 2 0.88 0.78 0.82 0.5 
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1IVE_A 7 0 2 0 0.78 1 0.88 99999.99 
4QSU_A 4 1 1 0 0.8 1 0.89 0.63 
3FS8_B 1 2 1 0 0.5 1 0.67 0.58 
3RO7_A 4 1 3 0 0.57 1 0.73 0.38 
4A9H_A 1 2 4 0 0.2 1 0.33 0.26 
4A9K_B 6 0 0 1 1 0.86 0.92 99999.99 
2YEC_A 5 1 2 0 0.71 1 0.83 0.49 
2ZWZ_A 10 1 2 0 0.83 1 0.91 0.53 
3NHW_A 7 3 0 0 1 1 1 1 

a TP – true positives, TN – true negatives, FP – false positives, FN – false negatives 
b Matthew Correlation Coefficient; MCC = 99999.99 means that the denominator is 0. 

 

Table B.8. Quality measures of predicting hydrogen bonding residues in the fragment binding pocket in the 
unbound proteins of the Acpharis seta 

PDB ID TP TN FP FN Precision Recall F score MCCb 
4LC2_A 3 3 1 1 0.75 0.75 0.75 0.5 
3KS3_A 5 4 0 0 1 1 1 1 
5FE6_B 5 1 1 0 0.83 1 0.91 0.65 
5J80_A 5 2 2 0 0.71 1 0.83 0.6 
5AQM_A 4 1 0 1 1 0.8 0.89 0.63 
3TPJ_A 7 1 0 2 1 0.78 0.88 0.51 
4LYI_A 1 2 3 0 0.25 1 0.4 0.32 
5J80_A 5 1 2 0 0.71 1 0.83 0.49 
2ZQT_A 5 2 2 0 0.71 1 0.83 0.6 
1JBU_H 5 2 2 3 0.71 0.62 0.67 0.12 
3TPJ_A 7 2 0 0 1 1 1 1 
5PQI_B 2 2 1 0 0.67 1 0.8 0.67 
5IBN_A 1 3 3 0 0.25 1 0.4 0.35 
3T9G_A 4 0 4 3 0.5 0.57 0.53 -0.46 
5NDD_A 1 5 0 5 1 0.17 0.29 0.29 
5OFZ_B 5 1 3 0 0.62 1 0.77 0.4 
4Q8M_A 8 2 2 0 0.8 1 0.89 0.63 
1JBU_H 6 6 3 4 0.67 0.6 0.63 0.27 
2UUF_B 9 2 0 0 1 1 1 1 
3COV_B 10 2 0 0 1 1 1 1 
4S31_A 5 5 0 0 1 1 1 1 
1HAN_A 5 2 4 0 0.56 1 0.71 0.43 
3TPJ_A 9 2 1 0 0.9 1 0.95 0.77 
3KS3_A 6 4 0 2 1 0.75 0.86 0.71 
3KS3_A 6 4 0 0 1 1 1 1 
5CVG_A 2 5 1 2 0.67 0.5 0.57 0.36 
1LTS_D 5 0 2 0 0.71 1 0.83 99999.99 
3D3I_B 4 1 1 0 0.8 1 0.89 0.63 
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5LZJ_B 6 0 1 0 0.86 1 0.92 99999.99 
4FNQ_A 10 0 3 0 0.77 1 0.87 99999.99 
2MLR_A 5 0 0 1 1 0.83 0.91 99999.99 
4PNT_D 5 3 1 1 0.83 0.83 0.83 0.58 
4EK3_A 3 2 0 1 1 0.75 0.86 0.71 
4EK3_A 8 3 0 1 1 0.89 0.94 0.82 
4EK3_A 6 4 0 1 1 0.86 0.92 0.83 
3KS3_A 6 3 0 0 1 1 1 1 
2MLR_A 6 1 2 1 0.75 0.86 0.8 0.22 
4XHU_A 5 0 2 1 0.71 0.83 0.77 -0.22 
1ISF_B 4 0 5 0 0.44 1 0.62 99999.99 
5OSS_A 8 2 2 0 0.8 1 0.89 0.63 
1RA9_A 6 1 3 0 0.67 1 0.8 0.41 
5DSR_A 5 6 0 5 1 0.5 0.67 0.52 
4H53_D 7 0 2 0 0.78 1 0.88 99999.99 
4QSQ_A 4 0 2 0 0.67 1 0.8 99999.99 
5IBN_A 1 2 4 0 0.2 1 0.33 0.26 
5KTU_B 6 0 0 1 1 0.86 0.92 99999.99 
5J80_A 5 1 2 0 0.71 1 0.83 0.49 
1HL8_B 10 2 1 0 0.91 1 0.95 0.78 

a TP – true positives, TN – true negatives, FP – false positives, FN – false negatives 
b Matthew Correlation Coefficient; MCC = 99999.99 means that the denominator is 0. 

 

Table B.9. Quality measures of predicting hydrogen bonding residues in the fragment binding pocket in the 
bound proteins of the Astex seta 

PDB ID TP TN FP FN Precision Recall F score MCCb 
4PFJ_B 12 5 5 1 0.71 0.92 0.8 0.48 
2F6V A 10 1 2 2 0.83 0.83 0.83 0.17 
2VCQ_B 3 1 3 0 0.5 1 0.67 0.35 
3FGD A 10 2 2 0 0.83 1 0.91 0.65 
3GEP_A 9 4 0 0 1 1 1 1 
3GBA A 11 3 1 0 0.92 1 0.96 0.83 
3ARA_A 3 5 7 0 0.3 1 0.46 0.35 
4AP7 A 8 5 2 0 0.8 1 0.89 0.76 
4MGA_A 3 3 2 1 0.6 0.75 0.67 0.35 
4WRB A 4 4 1 1 0.8 0.8 0.8 0.6 
2X7C_B 4 5 3 1 0.57 0.8 0.67 0.41 
1C83 A 8 1 1 2 0.89 0.8 0.84 0.26 
4F9Y_A 7 6 1 0 0.88 1 0.93 0.87 
2W0B A 5 5 3 0 0.62 1 0.77 0.62 
4N8E_A 9 3 2 0 0.82 1 0.9 0.7 
4OGN A 4 5 4 1 0.5 0.8 0.62 0.34 
4AXA_A 12 3 4 2 0.75 0.86 0.8 0.32 
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4MXC A 9 9 5 0 0.64 1 0.78 0.64 
4JYG_A 3 10 6 0 0.33 1 0.5 0.46 
3UWE_A 8 2 2 0 0.8 1 0.89 0.63 
3KVK_A 3 2 6 2 0.33 0.6 0.43 -0.16 
3N5S A 7 2 5 0 0.58 1 0.74 0.41 
2O7N_A 3 6 2 1 0.6 0.75 0.67 0.48 
4EPV_A 5 3 0 2 1 0.71 0.83 0.65 
3RAL_A 11 4 0 3 1 0.79 0.88 0.67 
3N3J A 8 5 0 3 1 0.73 0.84 0.67 
4BAK_B 12 3 2 2 0.86 0.86 0.86 0.46 
3FMK_A 6 7 2 3 0.75 0.67 0.71 0.45 
1LDO_A 9 3 1 0 0.9 1 0.95 0.82 
4GB9 A 7 5 3 2 0.7 0.78 0.74 0.41 
4CWO_A 9 1 4 0 0.69 1 0.82 0.37 
2X8Z_A 11 1 0 0 1 1 1 1 
3E51_A 11 5 3 1 0.79 0.92 0.85 0.58 
4OP1 A 5 3 10 0 0.33 1 0.5 0.28 
2J94_A 10 4 4 0 0.71 1 0.83 0.6 
4BW4_A 5 1 2 2 0.71 0.71 0.71 0.05 
4HOF_A 6 6 3 0 0.67 1 0.8 0.67 
2VTS A 13 4 0 2 1 0.87 0.93 0.76 
3T4Q_A 3 5 5 0 0.38 1 0.55 0.43 
4MSG_A 9 7 3 3 0.75 0.75 0.75 0.45 
4KZA_A 8 14 1 8 0.89 0.5 0.64 0.48 
3CJO A 5 7 2 1 0.71 0.83 0.77 0.6 
4DCH_A 5 3 4 0 0.56 1 0.71 0.49 
3OIA_A 4 4 7 1 0.36 0.8 0.5 0.16 
4PCS_A 7 0 2 0 0.78 1 0.88 99999.99 
4GV1 A 7 8 7 0 0.5 1 0.67 0.52 
1W1Y_A 15 3 3 2 0.83 0.88 0.86 0.41 
3GXL_A 8 3 4 1 0.67 0.89 0.76 0.36 
3FFI_A 7 8 2 3 0.78 0.7 0.74 0.5 
4FRS A 12 2 2 1 0.86 0.92 0.89 0.47 
3B25_A 8 2 2 0 0.8 1 0.89 0.63 
3A4P_A 6 7 2 1 0.75 0.86 0.8 0.63 

a TP – true positives, TN – true negatives, FP – false positives, FN – false negatives 
b Matthew Correlation Coefficient; MCC = 99999.99 means that the denominator is 0. 

 

Table B.10. Quality measures of predicting hydrogen bonding residues in the fragment binding pocket in the 
unbound proteins of the Astex seta 

PDB ID TP TN FP FN Precision Recall F score MCCb 
2CM2 A 11 2 1 1 0.92 0.92 0.92 0.58 
3EE2_B 2 0 4 1 0.33 0.67 0.44 -0.47 
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3FB0 A 10 4 0 0 1 1 1 1 
1Z7G_A 7 1 3 2 0.7 0.78 0.74 0.03 
3Q6U_A 8 5 2 0 0.8 1 0.89 0.76 
2B23_A 3 5 0 1 1 0.75 0.86 0.79 
4GRO G 4 3 2 1 0.67 0.8 0.73 0.41 
1II6_B 5 6 2 0 0.71 1 0.83 0.73 
2CM2_A 9 1 1 1 0.9 0.9 0.9 0.4 
2FST_X 6 5 2 1 0.75 0.86 0.8 0.58 
1PFQ B 9 3 2 0 0.82 1 0.9 0.7 
1Z1M_A 4 6 3 1 0.57 0.8 0.67 0.45 
4WIH_A 11 6 1 3 0.92 0.79 0.85 0.61 
3Q6U_A 9 12 2 0 0.82 1 0.9 0.84 
1MJN A 2 6 2 2 0.5 0.5 0.5 0.25 
4QL3_A 7 3 0 0 1 1 1 1 
4EK3_A 12 4 0 2 1 0.86 0.92 0.76 
5DSR_A 7 5 0 4 1 0.64 0.78 0.59 
2UUF B 11 2 3 3 0.79 0.79 0.79 0.19 
2FST_X 5 6 3 4 0.62 0.56 0.59 0.22 
1VYO_B 9 3 1 0 0.9 1 0.95 0.82 
1E8Y_A 6 6 2 3 0.75 0.67 0.71 0.42 
5J80 A 6 2 3 3 0.67 0.67 0.67 0.07 
3CJ2_B 12 7 1 0 0.92 1 0.96 0.9 
4BB9_A 5 5 8 0 0.38 1 0.56 0.38 
1C5M_D 10 4 4 0 0.71 1 0.83 0.6 
4LYI A 5 1 2 2 0.71 0.71 0.71 0.05 
4EK3_A 14 4 0 1 1 0.93 0.97 0.86 
4TOS_B 9 7 3 3 0.75 0.75 0.75 0.45 
2HDS_B 10 14 1 6 0.91 0.62 0.74 0.58 
1II6 A 6 8 1 0 0.86 1 0.92 0.87 
3IDH_A 3 4 3 2 0.5 0.6 0.55 0.17 
4J27_B 7 1 1 0 0.88 1 0.93 0.66 
1GOI_B 13 4 2 4 0.87 0.76 0.81 0.4 
5E8S A 8 4 3 1 0.73 0.89 0.8 0.49 
3DLK_A 1 9 1 9 0.5 0.1 0.17 0 
3TPJ_A 10 3 1 3 0.91 0.77 0.83 0.46 
5J80_A 6 2 2 2 0.75 0.75 0.75 0.25 
3Q6U A 6 6 3 1 0.67 0.86 0.75 0.52 

a TP – true positives, TN – true negatives, FP – false positives, FN – false negatives 
b Matthew Correlation Coefficient; MCC = 99999.99 means that the denominator is 0. 
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APPENDIX C: SUPPLEMENTAL TABLES/FIGURES FOR GPCRS 

 

Figure C.1. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
MGLU5-CMPD-25 (PDB: 5CGC).  
The allosteric ligand CMPD-25 is represented by green sticks. The FTMap hot spot 5(7) is shown in orange. The third 
ranked site predicted by FTSite, represented as purple mesh, overlapped with the ligand binding site. 
 
 

 
Figure C.2. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
mGluR5-M-MPEP structure (PDB: 6FFI).  
The allosteric ligand M-MPEP is represented by green sticks. The FTMap hot spots, shown as lines, are 1(17) shown in 
pink and 5(5) shown in blue. The sites predicted by FTSite did not overlap with the ligand binding site.  
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Figure C.3. Hot spots and ligand binding sites predicted, respectively, by (a) FTMap and (b) FTSite for the 
mGluR5-fenobam structure (PDB: 6FFH).  
The allosteric ligand fenobam is represented by green sticks. The FTMap hot spots, 3(10) shown in light pink lines and 
7(5) shown in purple lines. The sites predicted by FTSite did not overlap with the ligand binding site. 
 
Table C.1. Characterization of the ligand binding sites in orthosteric and allosteric pairs of GPCR complexes by 
FPocket 

Structure ID Pockets identified Orthosteric 
site volume 

Allosteric 
site 

volume 

Orthosteric 
site 

druggability 

Allosteric site 
druggability 

2RH1 Pocket 1 overlaps 
with the CAU 
orthosteric site, 
pocket 2 overlaps 
with the allosteric 
ligand site 

2871.183 1306.119 0.751 0.3 

5X7D Pocket 1 overlaps 
with the CAU 
orthosteric site, 
pockets 2 and 
11overlap with the 
allosteric ligand site 

1486.681 1325.743 + 
431.368 

0.544 0.416 + 0.015 

4MQS Pocket 3 overlaps 
with the IX0 
orthosteric site. 
Pocket 2 overlaps 
with the 2CU 
allosteric ligand site. 

411.602 1308.812 0.521 0.062 

4MQT Pocket 1 overlaps 
with both the 
orthosteric and 
allosteric sites. 

1808.916 0.795 

5TZR Pocket 1 overlaps 
with the orthosteric 
MK6 site. Pocket 16 

531.095 584.646 0.908 0.159 



 
 

 
188 

overlaps with the 
70S allosteric site. 

5TZY Pocket 1 overlaps 
with the orthosteric 
MK6 site. Pocket 5 
overlaps with the 
70S allosteric site. 

715.106 1207.94 0.812 0.267 

4XNW Pocket 1 overlaps 
with the orthosteric 
2ID site. Pocket 10 
overlaps with the 
BUR allosteric site. 

1160.696 522.432 0.162 0.198 

4XNV No pocket overlaps 
with BUR. The 
orthosteric site is 
unbound but the 2ID 
ligand from 4XNW 
overlaps with pocket 
1 

1798.08 N/A 0.306 N/A 

 

 
Table C.2. Overlapping probe atoms among the allosteric sites of the 21 GPCR structures with ligand and 
strong hot spot 

 
  1 2 3 4 5 6 7 8 9 10 11 

1 3ODU 213 172 16 262 107 97 52 92 5 0 18 
2 3OE0 143 279 0 248 93 43 54 101 31 16 66 
3 4K5Y 48 24 169 13 0 69 71 65 9 0 1 
4 4MBS 83 119 14 339 16 107 140 85 17 47 22 
5 4MQT 162 230 2 181 204 25 25 74 34 0 10 
6 4N4W 30 197 38 75 56 152 57 31 0 52 212 
7 4OO9 78 84 6 63 30 36 102 122 48 40 2 
8 4OR2 107 150 28 63 23 44 97 191 58 0 34 
9 4PHU 1 19 0 3 0 0 18 20 104 202 0 

10 5KW2 0 0 0 0 0 0 0 0 0 296 0 
11 5L7I 6 215 0 26 23 99 20 1 0 45 213 
12 5LWE 23 68 0 53 21 0 26 16 18 87 10 
13 5NDD 62 69 0 81 40 40 0 12 0 50 56 
14 5NDZ 77 54 5 78 33 44 0 6 0 69 53 
15 5T1A 100 86 16 157 9 44 43 52 20 55 19 
16 5TZR 6 26 0 5 11 8 26 31 149 135 6 
17 5TZY 0 46 0 20 18 0 23 25 83 178 6 
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18 5UIG 143 158 0 122 100 97 19 70 44 0 51 
19 5X7D 88 128 3 187 61 115 57 69 20 0 39 
20 6LI0 47 21 0 33 41 29 0 0 0 163 41 
21 6QZH 48 95 10 93 95 14 0 3 0 0 67 

 
Table C.2. continued 
  12 13 14 15 16 17 18 19 20 21 

1 3ODU 0 191 0 0 6 0 116 0 88 0 
2 3OE0 0 126 0 0 11 16 189 0 95 0 
3 4K5Y 0 47 12 0 20 0 0 0 35 0 
4 4MBS 0 130 0 0 16 47 47 0 89 0 
5 4MQT 22 67 0 19 31 0 178 15 21 24 
6 4N4W 0 55 6 37 0 51 67 23 16 38 
7 4OO9 0 57 11 0 50 18 28 0 0 18 
8 4OR2 0 0 6 0 58 0 0 0 44 0 
9 4PHU 0 0 0 0 104 204 0 29 0 4 

10 5KW2 0 0 20 0 0 286 0 0 0 4 
11 5L7I 8 34 2 0 0 48 25 29 44 46 
12 5LWE 169 22 0 128 17 85 42 130 23 115 
13 5NDD 0 97 49 0 0 64 26 0 49 0 
14 5NDZ 0 101 70 0 0 69 38 0 54 0 
15 5T1A 186 96 0 194 24 55 24 178 24 168 
16 5TZR 0 7 0 0 149 140 13 27 15 0 
17 5TZY 63 0 0 42 83 178 0 52 0 55 
18 5UIG 100 118 0 16 38 5 170 56 39 15 
19 5X7D 133 88 0 123 20 0 124 129 63 128 
20 6LI0 10 52 50 9 0 160 47 7 157 10 
21 6QZH 170 72 0 143 0 0 79 123 122 180 

 
 
 
 
Table C.3. The 10 proteins with the highest level of hot spot overlap with the allosteric ligand bound to 21 
GPCRs with strong hot spots at the ligand binding site. Each of the 21 “parent” structures with the bound 
ligand listed in bold. 

Class Uniprot PDB Overlap Volume RMSD Sequence sim. dpocket 
A aa2ar_human 5UIG 170 344.4    
A 5ht2b_human 6DRZ 260 366.9 2.7 60.6 0.257 
A agtr1_human 4ZUD 252 511.9 6.4 52 0.302 
A 5ht2b_human 5TUD 241 378.4 3 60.6 0.242 
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A aa2ar_human 5WF6 235 346.6 1.4 99.6 0.167 
A aa2ar_human 3QAK 231 359.9 1.6 99.3 0.198 
A apj_human 5VBL 231 317.5 6.5 49.3 0.226 
A oprd_human 4N6H 230 273.1 2.7 59 0.256 
A 5ht2b_human 6DRY 222 340.5 2.8 59.5 0.284 
A aa2ar_human 3VG9 219 330.5 0.9 98.6 0.168 
A 5ht2c_human 6BQG 218 473.8 2.4 61.9 0.245 
A 5ht2b_human 6DRX 218 459.6 4.3 59.8 0.278 

        
A adrb2_human 5X7D 129 69    
A ccr2_human 5T1A 178 188.1 3.6 56.3 0.251 
A gpr52_human 6LI1 147 139.3 1.8 55 0.257 
A aa2ar_human 3PWH 143 176.7 1.6 57.7 0.264 
A ccr9_human 5LWE 130 175.8 3.5 52.8 0.233 
A aa2ar_human 5OLV 121 146.5 1.5 58.1 0.253 
A aa2ar_human 3UZA 119 170.2 1.7 57.7 0.254 
A aa2ar_human 5OLG 114 117.1 1.5 58.1 0.247 
A aa2ar_human 5IUB 108 131.7 1.5 58.1 0.251 
A aa1r_human 5N2S 107 95.5 1.8 54.5 0.285 
A adrb2_human 2R4R 106 57.3 0.8 91.7 0.176 
A adrb2_human 3KJ6 105 66.9 0.7 92.3 0.194 

        
A ccr2_human 5T1A 194 235.6    
A ccr7_human 6QZH 143 156.8 2 69.4 0.159 
A gpr52_human 6LI1 137 111.4 2.6 51.8 0.231 
A ccr9_human 5LWE 128 196.6 2.4 66.1 0.262 
A adrb2_human 5X7D 123 57.7 3.6 56.3 0.180 
A aa2ar_human 5OLV 107 115.7 3.7 52.7 0.359 
A ednrb_human 6IGL 103 47.2 4.2 56.2 0.427 
A ntr1_rat 4BUO 102 135.2 2.9 58.3 0.364 
A aa2ar_human 5OM4 99 58.9 3.7 52.3 0.361 
A aa2ar_human 5IUB 96 114.9 3.6 52.7 0.333 
F smo_human 4QIM 94 70.8 7.1 48.8 0.332 
A aa2ar_human 5OLZ 93 103.4 3.8 52.7 0.368 

        
A ccr5_human 4MBS 339 839.8    
A ccr5_human 6AKY 384 796 0.4 100 0.169 
A ccr5_human 6MEO 346 702.8 0.9 98.6 0.141 
A ccr5_human 6MET 340 694.9 0.9 98.6 0.140 
A ccr5_human 5UIW 339 651.9 0.7 100 0.161 
A adrb1_melga 2VT4 333 564.2 1.9 58.2 0.373 
A ccr2_human 6GPX 317 574 0.8 92 0.279 
B glp1r_human 6LN2 317 586.5 7.4 50.7 0.277 
A ccr5_human 6AKX 313 747.6 0.2 100 0.059 
A 5ht2b_human 5TUD 299 643.1 3.6 54.1 0.212 
A oprx_human 4EA3 294 622.3 1.8 63.3 0.229 
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A ccr7_human 6QZH 180 300    
A ccr2_human 5T1A 168 183.9 2 69.4 0.212 
A gpr52_human 6LI1 141 130.9 4.9 52.6 0.247 
A adrb2_human 5X7D 128 132.9 4.4 51.9 0.180 
A adrb2_human 6OBA 116 180.5 2.3 53 0.235 
A ccr9_human 5LWE 115 153.6 2.4 65.7 0.245 
A ntr1_rat 4BUO 110 181.1 3.7 57.5 0.227 
A ednrb_human 6IGL 107 50.2 3.9 57.8 0.415 
A ntr1_rat 3ZEV 97 199.7 3 57.5 0.249 
A adrb1_melga 2YCY 86 76.9 3.6 53.7 0.247 
F smo_human 4QIM 83 63.6 7.6 50.4 0.226 
A adrb2_human 3NY9 83 59.6 4.5 53.4 0.355 

        
A ccr9_human 5LWE 169 277.5    
A ccr2_human 5T1A 186 205.9 2.4 66.1 0.292 
A ccr7_human 6QZH 170 265 2.4 65.7 0.199 
A gpr52_human 6LI1 139 116.4 3.4 49.8 0.298 
A aa2ar_human 5OM4 137 114.8 4.8 52 0.245 
A lpar1_human 4Z36 134 240.6 16.9 51.7 0.171 
A adrb2_human 5X7D 133 105.7 3.5 52.8 0.268 
A ntr1_rat 3ZEV 129 211.7 4.5 57.6 0.300 
A aa2ar_human 5OLV 129 95.1 4.8 51.7 0.249 
A ntr1_rat 4BUO 126 265 6.3 57.6 0.253 
A aa2ar_human 5IUA 122 94.2 4.3 51.3 0.255 
A aa2ar_human 5OLH 122 102.7 4.3 51.7 0.230 

        
A cxcr4_human 3ODU 213 403.5    
A pd2r2_human 6D26 329 380.2 1.8 57.4 0.368 
A pd2r2_human 6D27 286 409.4 1.8 56 0.409 
A aa2ar_human 3REY 253 362.7 5.7 52.3 0.465 
A ox1r_human 4ZJ8 248 416.8 2.6 58.8 0.159 
A aa2ar_human 3VG9 226 266.5 5.7 49.8 0.406 
A acm2_human 6OIK 222 231.4 6.6 51.3 0.576 
A ox2r_human 5WS3 217 436.8 2.1 57.8 0.232 
A aa1r_human 5UEN 214 345.7 4.6 50.5 0.350 
A cxcr4_human 3OE8 211 353.5 0.6 99.3 0.170 
A ox1r_human 4ZJC 209 472.5 2.5 58.8 0.219 
A drd4_human 5WIU 200 302.1 7.2 51.5 0.272 

        
A cxcr4_human 3OE0 279 1149.8    
A ntr1_rat 4XEE 318 634.3 4 55.3 0.422 
A apj_human 5VBL 312 876.2 1.3 60.8 0.340 
A ntr1_rat 4XES 299 566.4 4.2 55.7 0.362 
A ntr1_rat 4GRV 299 660.4 3.7 54.9 0.408 
A lpar1_human 4Z34 292 475 6.1 51.3 0.433 
A adrb1_melga 2YCZ 290 687.8 5.3 50.5 0.441 
A adrb1_melga 2Y03 286 596.6 3.3 50.5 0.429 
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A lpar1_human 4Z36 280 486.1 6.2 47.6 0.423 
A adrb1_melga 2Y02 279 670.7 4.4 50.9 0.458 
A aa2ar_human 5WF6 276 462.5 5.7 48.7 0.490 
A adrb2_human 2RH1 275 758.9 4.7 53.8 0.416 
A adrb1_melga 2Y00 271 650.7 5.5 50.9 0.564 
A adrb1_melga 3ZPQ 271 610.1 5.6 50.9 0.548 

        
A par2_human 5NDD 97 119.8    
A cxcr4_human 3OE8 251 278.7 2.4 60.1 0.401 
A cxcr4_human 3OE9 222 283.8 2.6 58.6 0.356 
A ccr2_human 6GPX 221 206.1 2.2 59.9 0.236 
A cxcr4_human 3OE6 217 200.8 3.9 60.4 0.375 
A pd2r2_human 6D26 217 228.8 2.3 58 0.222 
A aa2ar_human 3VG9 210 176.1 5.1 51.2 0.245 
A agtr1_human 4YAY 198 212 3.1 59.4 0.201 
A cxcr4_human 3ODU 191 212.3 3.9 58.1 0.280 
A ox1r_human 4ZJ8 190 163.1 4.3 56.6 0.238 
A adrb1_melga 2VT4 189 201.9 5 53.2 0.385 
A pd2r2_human 6D27 184 243.2 2.4 58 0.214 

        
A par2_human 5NDZ 70 26.1    
A par1_human 3VW7 95 49.1 1 67.7 0.140 
A p2ry1_human 4XNW 81 31 2.1 59.9 0.113 
A pe2r3_human 6AK3 79 87 5.2 56.4 0.225 
A gpr52_human 6LI2 67 32.3 5.6 47.7 0.291 
A opsd_bovin 2I37 65 36.4 4.6 52.2 0.393 
A opsd_bovin 2I36 53 9 4.2 52.5 0.288 
A par2_human 5NJ6 51 16.5 0.2 100 0.138 
A pe2r4_human 5YWY 50 13.2 4.5 50.7 0.155 
A gpr52_human 6LI0 50 14.8 5.2 48.4 0.380 
A adrb2_human 3KJ6 49 10 4.7 53.6 0.293 
A par2_human 5NDD 49 21.8 0.2 100 0.082 

        
A ffar1_human 4PHU 104 178.4    
A ffar1_human 5TZR 149 246.3 0.2 99.6 0.073 
A adrb2_human 3SN6 129 98.3 3.7 45.9 0.337 
A lpar1_human 4Z34 110 190.2 4.2 42.2 0.343 
B glp1r_human 5VEX 110 139 7.4 46.9 0.263 
A cxcr4_human 3OE6 100 65.4 4.6 48.8 0.344 
B pth1r_human 6FJ3 95 73.7 5.6 47.4 0.247 
A lpar1_human 4Z35 90 197 3.8 42.2 0.369 
A lpar1_human 4Z36 84 152.2 4.1 45.6 0.320 
A ffar1_human 5TZY 83 98.4 1 98.1 0.240 
A acm2_human 5ZKC 80 46.6 3.1 50 0.380 

        
A ffar1_human 5KW2 296 407.2    
A ffar1_human 4PHU 202 236 1.2 96.8 0.208 
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A gpr52_human 6LI1 183 246.9 3.7 47.4 0.412 
A ffar1_human 5TZY 178 253.3 1.1 99.6 0.132 
A gpr52_human 6LI0 163 247.5 3.9 51.4 0.388 
A gpr52_human 6LI2 161 252 3.4 48.6 0.319 
A p2y12_human 4PXZ 160 212.3 3.6 49 0.319 
A hrh1_human 3RZE 156 125.4 3.3 49.4 0.284 
A aa2ar_human 3VGA 144 175.7 3.2 54.7 0.249 
A p2y12_human 4PY0 138 97.1 3.6 49 0.324 
A ffar1_human 5TZR 135 80.3 1.2 96.8 0.218 

        
A ffar1_human 5TZR 149 242.2    
B glr_human 5XF1 124 61.5 6.4 49.5 0.442 
A adrb2_human 3SN6 119 83.9 5 46.2 0.538 
B glp1r_human 5VEX 115 188.1 6.9 46.6 0.322 
A lpar1_human 4Z34 107 154.7 4.1 41.8 0.357 
A ffar1_human 4PHU 104 172.5 0.2 99.6 0.142 
A cxcr4_human 3OE6 99 62.7 4.6 48.5 0.408 
A ptafr_human 5ZKP 93 139.5 3.3 49.8 0.374 
A lpar1_human 4Z35 90 198.8 3.6 41.4 0.442 
A lpar1_human 4Z36 89 169.9 4.3 45.4 0.383 
A ffar1_human 5TZY 83 98.4 1 97.1 0.285 
B pth1r_human 6FJ3 78 55.5 6.3 48.2 0.362 

        
A ffar1_human 5TZY 178 253.3    
A ffar1_human 5KW2 286 399.1 1.1 99.6 0.144 
A ffar1_human 4PHU 204 249.7 1 98.1 0.237 
A gpr52_human 6LI1 176 231.1 4.2 45.3 0.292 
A p2y12_human 4PXZ 166 250.3 4.8 47.4 0.278 
A gpr52_human 6LI2 162 228.9 4.8 44.2 0.319 
A gpr52_human 6LI0 160 242.7 5.7 47.1 0.295 
A p2y12_human 4PY0 144 100 4.8 47.1 0.212 
A ffar1_human 5TZR 140 97.7 1 97.1 0.238 
A hrh1_human 3RZE 132 84.4 2.8 48.1 0.302 
A aa2ar_human 3VGA 127 137.4 4.6 50.4 0.207 

        
A gpr52_human 6LI0 157 473.9    
A agtr1_human 4YAY 264 304.9 5.3 51.6 0.301 
A agtr1_human 4ZUD 205 194.2 4.1 51.3 0.316 
A q80km9_hcmv 5WB1 164 276.5 4.9 53.4 0.438 
A agtr2_human 5UNG 162 183 5.9 54.1 0.447 
A ccr2_human 6GPX 158 215 2.5 54.2 0.525 
A apj_human 5VBL 155 161.1 6 49.1 0.438 
A ccr2_human 6GPS 140 248.6 5 51.8 0.419 
A pe2r3_human 6M9T 132 90.5 3.7 45.8 0.447 
A ntr1_rat 5T04 127 147.5 4.7 48 0.492 
A ntr1_rat 4XEE 126 84.2 5.2 47.3 0.422 
A agtr2_human 5UNF 125 150.6 5.7 52 0.531 
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B glr_human 5XEZ 125 210.3 5 44.1 0.554 
        

A acm2_human 4MQT 204 275.3    
A p2ry1_human 4XNV 217 314.2 4.1 49.8 0.307 
A acm2_human 6OIK 216 298.2 0.8 99.6 0.152 
A ntr1_rat 4XES 204 299.5 3.1 56.7 0.205 
A ntr1_rat 5T04 195 430.4 2.5 55.6 0.168 
A ntr1_rat 4XEE 178 322.6 3.6 55.3 0.195 
A ntr1_rat 4GRV 174 273.8 2.9 53.5 0.228 
A apj_human 5VBL 165 304.9 3.6 54.5 0.295 
A ntr1_rat 4BUO 162 330.5 2.4 56.4 0.234 
A ntr1_rat 3ZEV 161 312.3 2.8 56.7 0.183 
F smo_human 4O9R 160 324.3 5.1 49.5 0.214 
A ntr1_rat 4BV0 157 243.1 4.6 57.5 0.205 
A cxcr4_human 3OE8 155 321 5.9 51.7 0.314 
F smo_human 4QIN 154 204.7 3.9 49.5 0.218 

        
B crfr1_human 4K5Y 169 325.2    
B glr_human 5YQZ 147 121.6 3.3 64.4 0.254 
B crfr1_human 4Z9G 113 247.3 0.8 100 0.090 
A cxcr4_human 3OE9 103 152.2 6 53.4 0.219 
B glp1r_human 5NX2 89 113.7 4.2 63.6 0.233 
A opsd_bovin 6FKA 85 49.5 5.1 50.6 0.239 
A opsd_bovin 6FKC 70 27.3 4.9 50.6 0.240 
A opsd_bovin 6FK6 63 36.6 5.1 50.6 0.300 
A opsd_bovin 6FK8 57 21 5 50.6 0.258 
A drd2_human 6CM4 56 111.7 5.4 49.4 0.277 
A opsd_bovin 6FK7 53 20.6 5.1 50.6 0.233 

        
C grm1_human 4OR2 191 411    
B pth1r_human 6FJ3 263 368 5.6 46.6 0.237 
A acm2_human 5ZK8 262 381 4.9 43.9 0.205 
A opsd_bovin 5TE5 243 238.9 6.8 50.2 0.292 
A acm3_rat 5ZHP 224 330.5 7.4 47.5 0.154 
A oprd_human 4N6H 202 185 6.3 48.2 0.276 
A oprd_human 4RWA 200 246.2 5.7 47.5 0.241 
A acm3_rat 4U14 198 338.2 5.7 47.5 0.206 
A opsd_bovin 6FK6 198 475 6.3 49.8 0.263 
A oprd_mouse 4EJ4 191 201.4 5.4 47.1 0.200 
A ox1r_human 4ZJC 191 313.8 6.2 52.9 0.214 
A acm2_human 5ZKC 191 266.7 5.2 46.7 0.162 

        
C grm5_human 4OO9 102 250.2    
C gabr2_human 7C7Q 230 464.7 3.9 58.4 0.187 
A oprm_mouse 6DDE 228 192.9 7 50.6 0.232 
A oprm_mouse 6DDF 226 259.6 7.7 50.6 0.135 
A oprd_mouse 4EJ4 224 180.3 6.5 48.2 0.133 
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A oprm_mouse 4DKL 218 294 5.8 51 0.184 
B g1sgd4_rabit 5VAI 217 279.3 9 46.5 0.365 
B pth1r_human 6FJ3 216 204.5 5.6 43.3 0.245 
A oprd_human 4N6H 213 164.2 6.8 49 0.163 
A lpar1_human 4Z36 206 231.6 10.4 49.8 0.180 
A acm2_human 5ZKC 203 279.2 6.5 47.8 0.175 
B glp1r_human 6B3J 200 186 10.3 46.9 0.310 
A oprd_human 4RWA 194 127.6 5.6 49.8 0.148 
C gabr2_human 6UO8 190 371.9 3.6 57.6 0.360 

        
F smo_human 4N4W 152 273.5    
A drd2_human 6CM4 220 393.8 5.1 49.8 0.312 
A agtr1_human 4YAY 203 359.4 7.3 46.9 0.324 
F fzd4_human 6BD4 197 309.4 1.3 58.8 0.263 
A opsd_bovin 5TE5 195 189.5 4.6 45.4 0.487 
A 5ht2b_human 5TUD 188 335.8 8.3 53.4 0.244 
A lpar1_human 4Z34 186 345.6 6.3 50.7 0.274 
A lpar1_human 4Z35 181 291.3 6.2 51.2 0.350 
A lpar1_human 4Z36 180 305.2 6.3 52.2 0.298 
A opsd_bovin 6FKA 179 661.9 4.8 53.7 0.347 
A acm3_rat 4DAJ 179 239.8 5.6 48.2 0.218 
A opsd_bovin 6FK6 172 663.2 4.4 48.2 0.376 
A opsd_bovin 6FK7 169 607.4 5.2 48.2 0.455 

        
F smo_human 5L7I 213 530.1    
F smo_human 4QIN 243 367.3 0.6 98.8 0.147 
F smo_human 4O9R 234 475.8 0.7 98.8 0.163 
F smo_human 5V56 217 445.8 1.1 99.4 0.144 
F smo_human 4JKV 215 412.2 0.6 98.1 0.117 
F smo_human 4N4W 212 487.7 0.5 98.8 0.080 
F smo_human 5V57 212 435.2 1.1 98.4 0.110 
F smo_human 5L7D 184 374.9 1.9 96.4 0.123 
A aa2ar_human 3QAK 166 257.4 4.6 48.2 0.280 
F smo_human 4QIM 162 339.2 0.7 99.7 0.120 
F fzd4_human 6BD4 160 393.5 1 56.2 0.313 
A p2ry1_human 4XNV 149 413.7 5.9 46.2 0.415 
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APPENDIX D: SUPPLEMENTAL TABLES/FIGURES FOR CRYPTIC SITES 

 

 
Figure D.1. Distributions of DS values for proteins not included in the main text. Dark, light, and medium blue 
bars represent DS of unbound structures, complexes, and mutants, respectively. 
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Figure D.2. Distributions of DS values for proteins not included in the main text. Dark, light, and medium blue 
bars represent DS of unbound structures, complexes, and mutants, respectively. 
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Table D.1. Proteins with cryptic sides studied 

Apoa Holoa Ligb Name Nc Site 

2CM2_A 2H4K_A 509 PTP1B 19 Stronger pTyr binding site.  
1PKL_B 3HQP_P ATP Pyruvate kinase 

enzyme 
10 ATP+Oxalate binding site.  

1RTC_A 1BR6_A PT1 Ricin 23 Pteroic acid binding at the active site. 
1RHB_A 2W5K_B NDP Ribonuclease A.  83 NADPH binding at the active site. 
3CJ0_A 2BRL_A POO HCV polymerase 

NS5B 
249 Between fingers and thumb domains. 

2F6V_A 1T49_A 892 PTP1B 108 Allosteric site under C-terminal helix. 
1ZAH_B 2OT1_D N3P Fructose aldolase  36 Competitive inhibitor binding site. 
1G24_D 1GZF_C NIR Rho ADP-Ribosyl. 

Enz.  
15 Structure also contains NAD and ADP.  

1W50_A 3IXJ_C 586 BACE-1 protease 19 Active site, too open in apo structure.  
1BSQ_A 1GX8_A RTL Bovine Beta-

lactoglobulin 
34 Retinol binding in the central cavity. 

1HAG_E 1GHY_H 121 Thrombin 52 Pocket is too open with flexible loops. 
3F74_C 3BQM_C BQM Alpha-L (Integrin) 

domain 
25 Active site with disordered C terminus.  

1MY0_B 1N0T_D AT1 Glutamate receptor 2 26 Stabilizes the open form of the 
receptor.  

1XCG_B 1OW3_B GDP Transforming protein  12 GDP interacts only with RhoA. 

1JWP_A 1PZO_A CBT TEM β-lactamase 21 Allosteric site between two helixes. 
2BLS_B 3GQZ_A GF7 AMPc beta-lactamase 35 Weak peripheral allosteric site. 
2BU8_A 2BU2_A TF1 Pyruvate dehyd. 

kinase 
11 Allosteric inhibitor site. 

3CJ0_A 3FQK_B 79Z HCV polymerase 
NS5B 

143 Binding near the active site.  

2BRK_A 2GIR_B NN3 HCV polymerase 
NS5B 

186 Non-nucleotide inhibitor (thumb) site. 

1FXX_A 3HL8_A BBP Exodeoxyribonuclease 
I  

14 BBP prevents Exol/SSB interactions. 

1OK8_A 1OKE_B BOG Dengue 2 virus 
envelope  

15 Site is between two domains. 

2AKA_A 1YV3_A BIT Myosin II 30 Narrow planar ligand binding site. 
3MN9_A 3EKS_A CY9 Monomer. actin with 

toxin  
36 Binding to the barbed end of filaments.  

1NUW_A 1EYJ_B AMP Fruct. 1,6-
bisphosphatase  

25 AMP binding site. 

3PUW_E 1FQC_A GLO Maltodextrin/maltose 
BP 

19 Interdomain binding. 

3KQA_B 3LTH_A UD1 MurA dead-end 
complex  

13 Interdomain binding. 

3GXD_B 2WCG_A MT5 Acid-beta-glucosidase 26 Active site . 
1BNC_B 2V5A_A LZL Biotin carboxylase 18 ATP competitive inhibitor site. 
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1MY1_C 1FTL_A DNQ Glutamate receptor 2 26 Interdomain binding. 
2AX9_A 2PIQ_A RB1 Androgen receptor 23 Allosteric inhibitor binds on surface. 
2ZB1_A 2NPQ_A BOG P38 MAP kinase 144 Helix 253-261 moves outward. 
2AIR_H 1ZA1_D CTP Aspartate 

transcarbamylase 
60 Binds CTP at the flexible N-terminal. 

aPDB ID of the apo and holo structures in the CryptoSite database  
bName of the ligand binding at the cryptic site  
cNumber of structures considered

Table D.2.  TEM β-lactamase structures, druggability scores, mutations, and melting temperatures 

PDB ID DSa Tb Mutation (E. Coli) 
4MEZ_B 0.032 M (M68L, M69T) 
4MEZ_A 0.037 M (M68L, M69T) 
4IBX_E 0.057 M TEM v.13 (A42G, N52A, I84V, R120G, M182T, L201A, T265M), 

Tm = 69.0oC 
1ZG6_A 0.076 M (S70G) Catalytic residue mutation expected to improve stability 
3DTM_A 0.129 M (P62S, V80I, E147G, M182T, L201P, A224V, I247V, R275R), Tm = 

69.2 oC 
1JWP_A 0.186 M (M182T, V184A) Strong stabilization, M182T alone yields Tm = 

63.2oC 
1YT4_A 0.237 M TEM-76 (S130G), Tm = 52.3 oC 
1CK3_A 0.325 M TEM-84 (N276D), Tm = 58.0 oC 
1ZG4_A 0.390 U None, WT TEM1 beta lactamase, Tm = 58.5 oC 
4GKU_A 0.418 M (I84V, V184A), V184A on its own yields Tm = 58.1 oC 
3TOI_B 0.541 M First 15 residues removed & (I56V, R120G, M182T, T195S, I208M, 

A224V, R241H, T265M), Tm = 59.0 oC 
1HTZ_E 0.571 M TEM52 (E104K, M182T, G238S), Tm = 55.6 oC 
1HTZ_C 0.599 M TEM52 (E104K, M182T, G238S), Tm = 55.6 oC 
1HTZ_B 0.612 M TEM52 (E104K, M182T, G238S), Tm = 55.6 oC 
4OQG_E 0.629 U None, WT TEM-1 beta-lactamase: no ligand in chain E, Tm = 58.5 

oC 
1HTZ_A 0.640 M TEM52 (E104K, M182T, G238S), Tm = 55.6 oC 
1HTZ_D 0.640 M TEM52 (E104K, M182T, G238S), Tm = 55.6 oC 
3TOI_A 0.669 M First 15 residues removed & (I56V, R120G, M182T, T195S, I208M, 

A224V, R241H,T265M), Tm = 59.0 oC 
1LI9_A 0.698 M TEM-34 (M69V), Tm almost identical to or greater than that of 

TEM-1 
1LHY_A 0.718 M TEM-30 (R244S), Destabilizing 
3CMZ_A 0.849 M (L201P), Tm = 53.4 oC 
aDruggability score. 
bType: M – mutant, U – unbound wild type protein. 
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