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“To have the ultimate even if idealistic objective of fusing the shattered fragments [of 

ecosystem science] into the original unity is of great scientific and practical importance; 

practical because so many problems in nature are problems of ecosystem rather than of 

soil, animals, or plants, and scientific because it is our primary business to understand.” 

- Alex S. Watt, Pattern and process in the plant community 

	
“The scope and complexity of some modern land surface models have reached the point 

that no individuals are able to comprehensively understand all facets of any one model” 

- Rosie Fisher & Charles Koven, Perspectives on the Future of Land Surface 

Models and the Challenges of Representing Complex Terrestrial Systems 
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ABSTRACT 

 Society requires better insights into how disturbances will alter the global carbon 

cycle. Ecosystem models help us understand the carbon cycle and make predictions about 

how the terrestrial land sink will change under future climate regimes. Disturbances drive 

ecosystem cycling, but modeling disturbances has unique challenges, particularly in 

incorporating heterogeneity and parameter uncertainty. In this dissertation, I explore two 

questions. 1) How can we capture disturbance ecology in models?, which I explore in my 

first and second chapters, and 2) How can we use those models to make projections for 

the Southeastern US?, which I explore in my third and fourth chapters.    

Both my first and second chapters point to the practical trade-offs in model 

structure and realism. In my first chapter, I found that representing spatially implicit 

contagious disturbances in terms of shape and frequency accurately captured structural 

changes over time and separated the disturbance regimes of different regions. 

Representing spatially implicit disturbances in terms of shape and frequency sacrificed 

the specificity of a space-based approach but may be more computationally efficient. In 

my second chapter, I developed a framework for calibrating models based on an iterative 
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cycle between uncertainty analysis and literature synthesis, targeted field campaigns, and 

statistical constraint. I found that targeted field work and statistical constraint reduced 

parameter uncertainty until structural uncertainty began to dominate. 

Models that capture disturbance dynamics can help us anticipate effects of global 

change factors like climate change and invasive species. In my third chapter, I found that 

elevated temperatures reduce cogongrass biomass, and that cogongrass facilitates pine 

dominance over oaks in a mixed pine-oak stand. This suggests that cogongrass mediates 

inter-species competition at an ecosystem scale. Prescribed burns are a management 

technique used to suppress cogongrass and has an add-on benefit of reducing tick 

populations. However, climate change may threaten how frequently prescribed fires can 

be safely deployed. In my fourth chapter, I found that tick populations are most sensitive 

to leaf litter and humidity, which allows for management strategies as an alternative to 

prescribed burns. 
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INTRODUCTION 

Definition of Southeastern United States 

In this dissertation, I refer to the Southeastern United States as a region that 

roughly ecompasses the states of North Carolina, South Carolina, Georgia, Florida, 

Alabama and Mississippi. State-borders do not necessarily map onto ecological systems. 

Here, when we generalize to the “Southeast” we refer to the southeastern plains that 

contain areas of the piedmont, flat plains, and coastal plains (McMahon et al., 2001). We 

exclude the Appalachian mountains, subtropical forests like the Everglades, and tidal 

estuaries and marshes. The soils of  Southeast can range  from xeric sandhills to poorly 

drained flatwoods. These areas are known for open-canopy pine forests, and mixed pine-

hardwood forests, with understory vegetation like bluestem grasses, wiregrass, and saw-

palmetto (Jose et al., 2006; Allan et al., 2021). 

A History of Anthropogenically Mediated Disturbances Across the Southeast 

Humans have controlled the disturbance regime of the Southeast for hundreds of 

years, usually through fire. Fire has been a part of the southeastern landscape from before 

European settlement. In the 1500’s longleaf pine was the dominant tree species, and its 

dominance was maintained by a combination of lightning ignition, and girdle-and-burn 

agriculture practiced by native populations (Carroll et al., 2002; Delcourt & Delcourt, 

2004; Mitchell et al., 2014; Rother et al., 2020). The southeastern US hosted a native 

population of ~1.5-2 million that used fire to maintain an open savanna system for 

hunting and agriculture. By the 1700’s European settlement and disease reduced native 
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populations by 90-95% (Carroll et al., 2002). Use of fire-management declined, and 

forests became denser and less open (Carroll et al., 2002).  

Concurrently, forests along the east coast were being settled, developed, and 

transitioned to agricultural use, aided by slave labor. By 1860 47% of Virginian forest 

was cleared for growing cotton and tobacco (Fox et al., 2007). From the 1600’s through 

the colonial period, longleaf pine resin was used for the production of  naval stores: 

turpentine, tar, rosin, and pitch (Fox et al., 2007; Frost, 1993; Vollmers, 2003). Much of 

the 92 million acres of longleaf pine was consumed by Southeast’s growing timber 

industry, and replaced with faster-growing species of pine, like loblolly pine and slash 

pine.  

Today, the Southeast supplies most of the timber used by the United States, and 

less than 4% of  original longleaf pine archeage remains (Allen et al., 2005; Fox et al., 

2007; Kirkman et al., 2017). This loss has led to conservation efforts from diverse groups 

to restore longleaf pine, including Department of Defense bases. Prescribed burns are a 

central tool for this restoration (Addington et al., 2015; Aschenbach et al., 2010; Holland 

et al., 2019; Martin, 2019; McIntyre et al., 2022). The southeast is subject to frequent 

low-intensity burns that are anthropogenically mediated. People and fire are so tightly 

coupled in the southeast that satellites tracking fires saw a dropoff of fire activity during 

the Covid-19 2020 shutdown (Voiland, A., 2020). However, the season when prescribed 

burns can be safely lit may be narrowing, as climate change raises temperatures and 

lengthens droughts (Flannigan et al., 2009; Mitchell et al., 2014; Platt et al., 2015). 
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Climate change, and society’s response to it, will undoubtedly influence future 

disturbance regimes across the Southeast.  

Cogongrass in the Southeastern United States 

 Invasive species can negatively affect ecosystem biodiversity and functioning 

(Vilà et al., 2011; Vitousek et al., 1996). Longleaf pine savannas have some of the 

highest species richness outside of the tropics (Hiatt & Flory, 2020; Jose et al., 2006). 

Imperata cylindrica, (cogongrass) is an invasive perennial C4 grass listed as a federal 

noxious weed (MacDonald, 2004; Noxious Weed Regulations, 2022). After two 1900’s 

introductions into the United States, cogongrass has spread to 10 southeastern states, 

including remaining longleaf forests (EDDMapS, 2022; Estrada & Flory, 2015). In 

cogongrass’ native ranges in Africa and Asia, cogongrass is used in traditional medicine, 

and has been studied for its potential anti-cancer treatment potential, and used for 

aggregating heavy metals in contaminated sites (Jung & Shin, 2021; Shaltout et al., 

2016).  

In the Southeastern US, when cogongrass invades it forms a dense monoculture 

with a thick layer of thatch that shades-out competing understory species (Alba et al., 

2017; Fahey et al., 2018). Cogongrass is a tall grass that grows up to a meter and a half 

high, forms thick rhizomatous root networks, and can reproduce from seed or small 

sections of rhizome (Estrada et al., 2016). Cogognrass spreads quickly in disturbed areas 

and along transportation networks (Estrada et al., 2017; Yager et al., 2009). Cogongrass 

is managed with a combination of herbicides and prescribed fire (Emery et al., 2013; 



	

 
 

	

4	

Lucardi et al., 2020). Cogongrass has been shown to reduce understory species diversity 

in longleaf pine stands (Brewer, 2008).  

Cogongrass’ negative effect on southeastern US biodiversity is clear. Cogongrass’ 

other potential effects on the landscape are less clear; few experiments have looked at 

how cogongrass affects ecosystem cycling, or ecosystem structure. In 2-4 year 

experiments, cogongrass has been shown to reduce longleaf seedling survival and 

primary productivity (Daneshgar et al., 2008; NeSmith et al., 2018). If cogongrass 

suppresses saplings, then over 10-100 year scales, cogongrass could change ecosystem 

structure. Cogongrass’s effects on a landscape may be limited to changing biodiversity: 

but cogongrass establishment could have wider-ranging consequences in how the 

southeastern US forests function.  

Another open question is if cogongrass’ unique combination of traits make 

cogongrass a successful invader. Cogognrass is just one of many introduced grasses on 

the southeastern landscape, and not all have spread as extensively (Overholt & Franck, 

2017).  Knowing cogongrass’ traits would guide comparisons to other grasses, and would 

allow us to better anticipate how cogongrass could affect the landscape. 

 
Modeling Ecological Disturbances and the role of Dynamic Vegetation Models 

 
 Disturbances have enormous effects on forest structure and biogeochemical fluxes 

(Bormann & Likens, 1979). The need to predict disturbance effects has never been 

higher. Ecosystem disturbances could change how ecosystems store carbon, and could 
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change what is presently a terrestrial land carbon sink into a source of carbon (IPCC, 

2014). Earth system models are key tools to predict future effects on ecosystems. 

However, contrasting philosophies govern ecological models. In Chapters 1-3 of this 

dissertation, I focus on “process based” models, also called “mechanistic models” or 

“computational models” (Bonan, 2008). This class of models explicitly represents the 

components of a system it predicts. This contrasts to “empirical” models, also called 

“statistical”, “regression” or “machine-learning” models. Empirical models use statistical 

relationships between variables and observations to make predictions (Chapter 4). 

Empirical models can be faster to implement than process-based models and can  identify 

novel processes, but can also make predictions that are not physically interpretable, or 

find associations that do not persist through time (Roundy, 2015). In ecosystem science, 

empirical and process-based models are both widely used for carbon cycle quantification 

and prediction (Dai & Fung, 1993; Xiao et al., 2019). Process-based models can be 

particularly useful for modeling disturbances, because they can simulate systems under 

novel conditions, and can test hypotheses inherent in model structures (Dietze, 2017; 

Medlyn et al., 2015). 

 In Chapters 1-3, I focus on a specific class of process model called a “dynamic 

vegetation model” (Fisher & Koven, 2020).  Dynamic vegetation models grew out of a 

need to incorporate vegetation into models of the earth-system, and can represent plants 

in terms of their physiology. The level of detail can vary – plants can be abstracted to 

climate-grid-scale level or simulated individually, as in forest gap models and individual-
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based models (Fisher et al., 2018). The model I use, The Ecosystem Demography 2 

model, is a cohort-based model, which allows for competition without representing 

individual plants (Moorcroft et al., 2001). Dynamic vegetation models are appropriate for 

disturbance modeling because they capture processes that mediate disturbance effects on 

an ecosystem;  like succession, resource competition, regrowth, and climate effects 

(Fisher et al., 2018).  

Many aspects of ecological disturbances have only been incorporated into earth 

system models in the last two decades. Dynamic vegetation and carbon cycles were 

incorporated in the 2000’s, and the effects of land-use change, urbanization, and 

agriculture in the 2010’s. Today, challenges to representing disturbances include 

representing heterogeneity, and understanding parametric dynamics in models (Fisher & 

Koven, 2020). Representing heterogeneity – or representing ecosystem processes and 

features that cannot be aggregated vertically (ie canopies, atmospheric profiles) or 

horizontally (ie urban development, topography, lakes), is a challenge for land surface 

models. Heterogeneity happening at small scales can have large effects. Models need to 

represent heterogeneity with enough detail to simulate how they mediate environmental 

conditions, and then apply that information to the scale of interest. Disturbances pose an 

additional challenge because they can create and respond to heterogeneity: forest 

structures can change how a wildfire spreads, and then the wildfire scare may create new 

forest structures. We need techniques to resolve heterogeneity on disturbance-scales to 

capture the effects of disturbances.   
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Model parameters - or the values describing a system incorporated into model 

simulations - can be difficult to set. Communities modeling novel systems, or systems 

that are underrepresented in the literature, may have to use uncertain parameters to 

describe the system, and produce uncertain predictions. This is an acute issue for 

disturbance modeling because disturbances introduce novelty  into a system. Typically, 

including more data into estimates of model parameters reduces uncertainty, but it can be 

difficult or impossible to incorporate new data. We need tools that help us understand 

parameter uncertainty and flexible options to systematically reduce parameter 

uncertainty.  

 

Structure of this Dissertation 

This dissertation is organized around two questions: “How can we capture 

disturbance ecology in models?” and “How can we use those models to make projections 

for the Southeastern US?”.  Under my first question, my first and second chapters 

struggle with two issues in disturbance modeling - heterogeneity and parameter 

uncertainty. In my first chapter, I explore if we can simulate disturbances and the 

heterogeneity of a landscape in a way simple enough to be incorporated into a dynamic 

vegetation model. In my second chapter, I introduce a workflow for systematically 

reducing parameter uncertainty. In my third chapter,  I look at how cogongrass invasions 

affect pine-oak savannas, and how it may change under climate change. Finally, in my 
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fourth chapter, I look at how prescribed burning, climate change, and vegetation interact 

to control tick populations. 
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CHAPTER ONE: SCALING CONTAGIOUS DISTURBANCE: A SPATIALLY-

IMPLICIT DYNAMIC MODEL 

Tempest McCabe1*, Michael C. Dietze1 

1Department of Earth & Environment, Boston University, Boston, MA, USA 

Keywords: landscape ecology, fire regime, heterogeneity, adjacency, fragmentation, 
LANDFIRE 

Abstract 

Spatial processes often drive ecosystem processes, biogeochemical cycles, and land-

atmosphere feedbacks at the landscape-scale. Climate-sensitive disturbances such as fire, 

land-use change, pests, and pathogens, often spread contagiously across the landscape. 

While the climate-change implications of these factors are often discussed, none of these 

processes are incorporated into earth system models as contagious disturbances because 

they occur at a spatial scale well below model resolution. Here we present a novel 

second-order spatially-implicit scheme for representing the size distribution of spatially 

contagious disturbances. We demonstrate a means for dynamically evolving spatial 

adjacency through time in response to disturbance. Our scheme shows that contagious 

disturbance types can be characterized as a function of their size and edge-to-interior 

ratio. This emergent disturbance characterization allows for description of disturbance 

across scales. This scheme lays the ground for a more realistic global-scale exploration of 

how spatially-complex disturbances interact with climate-change drivers, and forwards 

theoretical understanding of spatial and temporal evolution of disturbance. 
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1. Introduction 

Disturbances pose a fundamental scaling problem because disturbances both 

create and respond to spatial heterogeneity in the environment (Turner, 2010). Seminal 

theoretical and experimental work in scaling explored how disturbances introduce 

heterogeneity in ecosystem at varying scales: patch-dynamics of Pickett and White, the 

“shifting-mosaic” of Bormann and Likens, and Turner’s landscape equilibrium all 

attempt to resolve the issue of how disturbances on a range of scales interact to create 

ecosystem-level patterns (Bormann & Likens, 1979; Turner, Romme, & Gardner, 1997; 

White & Pickett, 1985). 

Among disturbance types, contagious disturbances such as fire are particularly 

important ecologically as they are not only large in total area, but can have large impacts 

on spatial pattern, process, and heterogeneity. Contagious disturbances mediate 

biogeochemical fluxes, are drivers of landscape ecology, and contribute uncertainty to 

understanding consequences of anthropogenic climate change. At the end of the 20th 

century on average 608 Mha burned per year globally, affecting nutrient cycles, 

community composition, and altering local energy budgets (Dannenmann et al., 2018; 

Marlon et al., 2012; Mouillot & Field, 2005; Parks et al., 2016). Anthropogenic land-use-

change also often follows a contagious pattern, beyond its total area and carbon impact, it 

is a major driver of habitat fragmentation, with 75% of forests globally located < 1km 

from an edge (Haddad et al., 2015). Forest insects and pathogens also frequently spread 

as a spatially contagious process and impact a greater area in North America than fire and 

forestry combined (Hicke et al., 2012). Similarly, the spread of invasive species can alter 
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nutrient cycling and change ecosystem composition by outcompeting local populations 

(Vitousek et al., 1996). Many of the disturbances listed here interact with one another, for 

example invasive plants and forest pests can alter the flammability of an ecosystem 

(D’Antonio & Vitousek, 1992), while land use creates breaks that alter fire regimes and 

other contagious disturbances (Carmo, Moreira, Casimiro, & Vaz, 2011). In addition, 

most contagious disturbances are sensitive to climate - suggesting that anthropogenic 

climate change could cause novel behavior or interactions (Harris, Remenyi, Williamson, 

Bindoff, & Bowman, 2016; Mitchell et al., 2014a). Contagious disturbances are a central 

component of understanding an ecosystem, and to understand how ecosystems will 

behave in the future we need an understanding of how to predict contagious disturbances. 

Contagious disturbances pose a particular challenge to scaling as they not only 

create and respond to heterogeneity at a local scale, but they also respond to 

heterogeneity in neighboring locations, and in the process create larger scale spatial 

pattern. To date, most efforts at modeling contagious disturbance have focused on 

spatially-explicit simulations (Seidl et al., 2011). In such models, rules are implemented 

that govern when and where a disturbance is initiated and whether it spreads contagiously 

to adjacent locations. Such rules are easy to formulate, typically invoking properties of 

the disturbance (e.g. fire intensity), adjacent locations (e.g. fuel load), and some degree of 

stochasticity, and are well known for their ability to generate complex spatial pattern and 

temporal dynamics (Keane et al., 2004; Wolfram, 2017). While such simulation models 

have provided considerable insight into contagious disturbance, they have two critical 

limitations when it comes to scaling up disturbance. First, there are basic computational 
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challenges to simulation at large scales. While contagious disturbance processes are 

common in landscape-scale models, they are absent from dynamic global vegetation 

models (DGVMs) because it is not currently possibly to run global models at the fine 

spatial resolution required to represent contagion, which has impacts on estimates of the 

carbon sink (Melton & Arora, 2014). Second, simulation models don’t provide the same 

general theoretical insight found in analytical models. 

The goal of this paper is to explore the development of a general, analytically-

tractable, and spatially-implicit approach to modeling the scaling of contagious 

disturbance. This framework is general in the sense that it aims to capture a wide range of 

different disturbance types (including non-spreading disturbance as a special case) to 

provide a common framework for understanding their emergent scaling behaviors. It is 

spatially-implicit because we make the simplifying assumption that, when viewed from a 

large scale, the exact spatial locations of disturbances do not matter but rather their 

aggregate statistical properties. In moving up scales we are not focusing on the spread of 

individual disturbance events, but the broader distribution of disturbance sizes and shapes 

that characterizes a disturbance regime spatially. 

In developing this approach, we separate the problem of spatial scaling into two 

components, heterogeneity and spatial arrangement. Problems characterized by spatial 

heterogeneity are conceptually easier to scale. If an ecological process is only responding 

to its local environment, then even if those responses are nonlinear, the emergent “whole” 

behavior at a larger scale is just the sum of all the local “parts”. In this case spatial 

arrangement doesn’t matter, just the frequency distribution of the different environmental 
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conditions. This approach has been applied successfully to the upscaling of many key 

ecological processes, such as carbon and water fluxes, even when the heterogeneity of the 

process (e.g. distribution of vegetation stand ages) is evolving dynamically through time 

(Fisher et al., 2018; Moorcroft, Hurtt, & Pacala, 2001). In practice such approaches are 

typically modeled discretely, e.g. a finite number of age classes each with some fractional 

area on the landscape.   

Ecological processes that depend on spatial arrangement are conceptually harder 

to scale, however we argue that not all spatial arrangement problems have to be spatially-

explicit, as many only depend on relative spatial context. Herein we take the approach of 

focusing specifically on approximating the well-established landscape ecology concept of 

spatial adjacency, which is a key driver of many spatial processes. Similar to how we 

represent heterogeneity with a probability distribution, at a large scale we can likewise 

represent spatial adjacency with the probability that any two conditions will be adjacent 

to each other. And like with heterogeneity, this will typically be modeled discretely, in 

this case with a spatial adjacency matrix. If a vector of fractional abundances provides a 

first-order approximation of spatial variability, the combination of a vector of abundances 

and matrix of adjacencies thus provides a second-order model. Not all spatial processes 

can be approximated via adjacency, as sometimes higher-order shape and arrangement 

does matter, but we posit that this is a useful framework for considering contagious 

disturbance and spatial processes of adjacency or of dynamically evolving adjacency. 

For processes where the heterogeneity in the landscape is fixed on ecological 

timescales (e.g. elevation, soils), fractional area and adjacency are likewise fixed and can 
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be precomputed (e.g. in GIS). Spatial processes, such as movement across a landscape, 

can then be approximated based on adjacency (e.g. what’s the probability of moving from 

class A to class C directly vs indirectly via B). The challenge with contagious disturbance 

arises because it not only responds to heterogeneity and adjacency, but it also alters both 

dynamically. Therefore, a successful approach to scaling contagious disturbance requires 

a means of updating both fractional areas and adjacencies in response to disturbances. 

This paper examines three questions: First, how do we take advantage of 

adjacency to approximate spatial disturbance spread?  Second, given that disturbance, 

how do we update the fractional areas and adjacencies (i.e. how do we make it dynamic)? 

Finally, given our ability to simulate disturbances in a spatially implicit manner, how 

does this theory compare to observations? Specifically, our spatially implicit disturbances 

model suggests that different disturbance regimes can be characterized by two metrics: 

(1) the size distribution of disturbances; and (2) the relationship between disturbance size 

and disturbance interior adjacency scaling. These two metrics were examined for 

different disturbance types and ecoregions for two contrasting locations, the states of 

Florida and Oregon, USA. We hypothesize: (1) that our metrics will distinguish between 

different disturbance types and different states; (2) our metrics will reflect the nested 

structure of the ecoregions, with ecoregions from the same state being more similar than 

comparisons across states. While many different configuration-based landscape metrics 

and indices exist and are used in management, evaluation of landscape change, and 

habitat analysis (Uuemaa, Antrop, & Marja, 2009), the strength of our metrics is that they 

are derived directly from a theoretical understanding of contagious disturbances, thus 
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giving us an ability to predict how changes in either metric will translate into changes in 

future ecosystem processes, heterogeneity, and adjacency in both the short and long term. 

2. Methods 

2.1    Simulating Disturbance Spread 

Before diving into how to approximate spatially-explicit models of contagious 

disturbance analytically, we first illustrate simple versions of these spatial models so as to 

clarify their key features. Arguably the simplest disturbance process is gap dynamics (e.g. 

mortality of individual canopy trees), which is often approximated as a stochastic process 

disturbing individual patches on a grid at random. If we simulate this process through 

time (Figure 1.1 top left), keeping track of the age of each patch (time since disturbance) 

and running the simulation until the stand age distribution reaches steady state, we see 

that this age distribution converges to a geometric (discrete exponential) distribution 

(Figure 1.1 mid left). Furthermore, since disturbance is random and doesn’t depend on 

patch age or neighborhood, the spatial neighborhood of each patch is just a sample from 

this same geometric distribution. This can be shown by calculating an adjacency matrix, 

which tallies the probability that one age class is adjacent to another (Figure 1.1 bottom 

left). 

 Compare this gap dynamics model with a simple model of a contagious 

disturbance (e.g. fire, insects, land use), which is described first by a probability of 

disturbance initiation and second, conditional on initiation, a probability of spread to 

adjacent patches. In more complex versions of such models both these probabilities can 

vary with age and environmental conditions (Mann, Scott Rupp, Olson, & Duffy, 2012). 
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However, even in the simplest case, when both probabilities are fixed and disturbances 

are random, the model generates much more complex spatial patterns characterized by 

larger, contiguous disturbance patches (Figure 1.1 right). As before, the overall stand age 

distribution remains geometric (Figure 1.1 mid right), however the pattern of spatial 

adjacency is more complicated (Figure 1.1 bottom right). First, most newly disturbed 

patches (age class 0) are adjacent to other newly disturbed patches (60% in the example 

simulation). As we move along the diagonal of the adjacency matrix, patches in a given 

age class continue to remain adjacent to other patches of the same age through time (i.e. 

larger even-aged patches remain), but this adjacency decays geometrically as new 

disturbances chip away at even aged patches, leaving them adjacent to younger 

disturbances. Above the diagonal we see a pattern similar to gap dynamics, where each 

age class has some probability of being adjacent to newly disturbed patches (which in this 

simple class is equal for all age classes) and then this adjacency decays equally for each 

age class. Matrix elements that are below the diagonal, which represent the probability 

that a patch is adjacent to a patch older than it, age classes likewise decay geometrically, 

but each age class is along a different curve because of the different cumulative 

probabilities. In other words, because the elements along the diagonal differ for each age 

class, and because the cumulative probabilities must sum to 1, the remaining cumulative 

probability is different for each age class. 

 

 Armed with a basic understanding for the patterns spatially explicit simulations 

can produce, let’s next consider how to develop a spatially implicit model to approximate 
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the spread of contagious disturbance. As in the simulation, let’s start by assuming an age 

or stage structured approach with n discrete age classes. Next, let’s assume that the 

disturbance has some initiation probability, 𝑝", that is a vector with the same length as the 

number of age classes, n. In other words, the initiation probability could vary by age 

class. In this general derivation, our timestep or “t” represents any discrete timestep 

(annually, monthly, etc). Because disturbance is simulated discretely in time, the 

probabilities map to that timestep and can be time varying (e.g. functions of 

environmental conditions) without loss of generality.  

 Given this initiation probability, the initial disturbance area (for disturbances with 

size = 1 patch) is given by 𝐼% = 𝑝" ⋅ 𝑎 , where 𝑎 is a vector of the fractional areas of each 

age class and ∘	denotes element-wise (Hadamard) multiplication. Next, let’s assume that 

we know the current adjacency matrix, 𝐴,, that describes the probability that a patch of a 

given age/stage class is adjacent to patches of the same or other age/stage classes at time 

t. Individual elements within 𝐴, are probabilities, and thus must be between 0 and 1, and 

all patches must be adjacent to some other patch so each row represents a discrete 

probability distribution whose elements must sum to 1. However, 𝐴, does not need to be 

symmetric (e.g. Figure 1.1 bottom right). In practice the specification of these 

probabilities will depend on the spatial grain of the analysis (i.e. patch size) but this 

doesn’t affect the mathematical derivation. Also, in practice the initial adjacency, 𝐴", 

would need to be derived from some sort of empirical GIS analysis or some steady-state 

assumption but this does not affect the derivation. Finally, except when deriving the 
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dynamics of updating 𝐴,-% given 𝐴, we will drop the time subscript for simplicity, as we 

are not considering changes in A during a disturbance event.  

To allow contagious disturbances to spread we also need to introduce a 

probability of spread, 𝑝., given initiation, which similar to 𝐼% is grain and timestep 

dependent and could be time varying. In the general case we will assume 𝑝. is a 𝑛 × 𝑛 

matrix describing the probability of spreading from one class into any other class, but in 

practice 𝑝. could be a scalar or set to only vary by row (dependent on the class the 

disturbance is spreading from) or column (dependent on the class being spread into). It 

should also be noted that 𝑝. does not need to be symmetric – the probability of spreading 

from one patch type into another (e.g. new regeneration into old-growth) need not be the 

same as the probability of spreading back. Given this framework we can next derive the 

probability of a disturbance spreading to a second patch as depending on initiation, 

probability of spread, and adjacency: 

𝐼1 = (𝑝. ∘ 𝐴)𝐼%	

Furthermore, we can see that 𝐼4 = (𝑝. ∘ 𝐴)𝐼1 and so on leading to the more general 

recursion describing the probability of spreading to h+1 patches given that the 

disturbance has already spread to h patches. 

𝐼5-% = (𝑝. ∘ 𝐴)𝐼5 = 𝑆𝐼5 = 𝑆5𝐼%	

Where 𝑆 = 𝑝.𝐴. Note that in this derivation the matrix A is fixed as it describes the 

adjacencies among the undisturbed age classes; the ongoing disturbance is not an explicit 
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row/column in A and thus spread only occurs outward into undisturbed area and there’s 

no need to account for the spread of a disturbance backward into patches that were just 

disturbed. We also make the simplifying assumption that we are operating on a 

sufficiently larger scale that no single disturbance event changes the adjacency among 

undisturbed patches enough to invalidate this approximation (and require updating A 

during a disturbance event). That said, adjacency does need to be updated on our coarser 

model timestep as what we generally see is small year-to-year changes that gradually 

accumulate to appreciable landscape-scale adjacency shifts over longer time (e.g. 

decades). 

Accumulating the spread over different disturbance sizes leads to to an overall 

disturbance rate of 

𝐷 =8
9

5:%

𝐼5	

where D is a vector by class. Overall, while there is slight underestimation of disturbance 

extent at high spread probabilities (Figure 1.2), the analytical approximation performs 

well and incurs a tiny computational cost relative to spatially explicit models. Also note 

that this general forward model has an important special case, 𝑝. = 0, which corresponds 

to non-contagious disturbances, such as our initial gap dynamics simulation. 

 In practice an infinite sum is not actually computable, but the result will 

asymptotically approach the analytical result and thus can be approximated with a finite 

sum. Furthermore, the relative proportions of the different age/stage classes within the ith 
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iteration in the sum (i.e. disturbance of size i), 𝐼<, will rapidly approach a steady-state 

distribution. If 𝐼</∑𝐼< ≈
@ABC
∑@ABC

 then we approximate 𝐼<-% = 𝐼<𝑆	with 𝐼<-% = 𝐼<𝜆 where 𝜆	is 

the dominant eigenvalue of 𝐴. The remainder of the summation ∑95:<-% 𝐼5	can thus be 

approximated as 𝐼< ∑95:<-% 𝜆5E<. This is just a geometric series, which has the 

analytical solution 𝐼<𝜆(1 − 𝜆)E%. Therefore our strategy is to solve the first i terms 

explicitly and analytically approximate the tail of the distribution 

𝐷 =8
<

5:%

𝐼5 + 𝐼<𝜆(1 − 𝜆)E%	

As can be seen in Figure 1.3, this allows the full analytical model to be accurately 

approximated with only a small number of matrix multiplications (~5 in this scenario) 
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bare ground, but rather we are using age 0 to semantically indicate zero years since last 

disturbance. Following this assumption, the new fractional area in age class 0 at time t+1 

is simply the sum of the disturbance rates in each age class times the current fractional 

area in each of those age classes, 𝑎",,-% = ∑KM:" 𝑎M,,𝐷M,,. Next, for all other age 

classes, each age class ages by one year and is reduced by the amount of disturbance that 

occured in that class 

𝑎M,,-% = 𝑎ME%,,(1 − 𝐷ME%,,)	

Finally, the oldest age class is a special case, representing all stand equal or greater than 

the specified age, and thus is created by fusing the existing area in that class with the next 

youngest age class, minus the disturbance occurring in each 

𝑎K,,-% = 𝑎KE%,,(1 − 𝐷KE%,,) + 𝑎K,,(1 − 𝐷K,,)	

2.2.2. Adjacency of newly disturbed patches  

 In addition to updating the fractional areas in different age classes we also need to 

be able to update their adjacencies. This updating is done after the disturbance events of a 

given time-step, not as part of the disturbance simulation itself. This distinction means 

that the adjacency at a timestep (𝐴,) is not tied to a disturbance but rather represents the 

cumulative effects of disturbance on the landscape over a timestep.  

 Let’s start by focusing on the adjacency of the newly disturbed age class, 𝑎", with 

itself, which we’ll denote as 𝐴"". If we were assessing this adjacency in a spatially-

explicit gridded dataset or simulation, we would estimate the probability of adjacency in 

terms of the frequency with which disturbed patches are adjacent to other disturbed 
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patches versus non-disturbed patches.  For example, for a disturbance of size 1, all four 

edges are facing non-disturbed patches, so the adjacency is 0/4 = 0 (Figure 4). With a 

disturbance of size 2, the two patches have a total of eight edges, two of which are on the 

interior of the disturbance (disturbed patch adjacent to disturbed patch) and six external 

edges that are along the perimeter of the disturbance, giving an adjacency of 2/8 = 0.25. 

At size 3 there are two possible disturbance configurations (in a line or an L), but both 

cases have a total of four interior edges and eight external edges, giving an adjacency of 

4/12. At size 4 there are five possible configurations, and the different configurations do 

not all have the same perimeter – the square configuration has an adjacency of 8/16 while 

all other configurations have an adjacency of 6/16. If disturbance shapes are completely 

random then we could work through the combinatorics of how often each shape is likely 

to occur (squares occur 20% of the time) and calculate a weighted average (0.4). More 

generally, if we look at the whole map across disturbances of different sizes the overall 

mean adjacency of disturbed patches will be 

𝐴"" =
∑𝐼𝑛𝑡

∑𝐼𝑛𝑡 + ∑𝐸𝑥𝑡	

where Int are interior edges and Ext are external edges. 

 Thus far we’ve seen that the adjacency (interior/total edges) has tended to 

increase as the size of the disturbance increases. We could continue calculating this 

pattern to larger disturbances with more complex shapes and harder combinatorics 

(e.g. for a size 5 disturbance there are 372 possible spread scenarios that produces 

thirteen possible shapes). However, at this point it’s worth noting that different types of 
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disturbance may be more likely to produce certain disturbance shapes than others. For 

example, some disturbances may tend to produce shapes that tend to be round (wildfire) 

while others might tend to be linear or dendritic (urban development, riverine systems). 

These different shapes will tend to produce different characteristic interior/total ratios 

(i.e. different adjacencies). However, it is not the overall mean adjacency (interior/total) 

that characterizes a disturbance, nor any of the many other landscape metrics in use 

(e.g. Hesselbarth, Sciaini, and Nowosad 2018), but the functional relationship between 

disturbance size and adjacency, adj(size). For example, Figure 1.5 shows the 

adjacency/size curves for three important cases: random spread (purple), the minimum 

adjacency (blue) achieved through linear disturbances, and the maximum adjacency (red) 

achieved by circular disturbances that minimize the edge:area ratio. 

 To get the overall 𝐴"" for the spatially implicit model, we next replace 

𝐴"" =
∑𝐼𝑛𝑡

∑𝐼𝑛𝑡 + ∑𝐸𝑥𝑡	

which sums over individual disturbances, with 

𝐴"" =
∑.<QR 𝐼𝑛𝑡(𝑠𝑖𝑧𝑒)𝑝(𝑠𝑖𝑧𝑒)

∑.<QR 𝐼𝑛𝑡(𝑠𝑖𝑧𝑒)𝑝(𝑠𝑖𝑧𝑒) + ∑.<QR 𝐸𝑥𝑡(𝑠𝑖𝑧𝑒)𝑝(𝑠𝑖𝑧𝑒)
	

which instead sums over each disturbance size. In this approximation, 𝐼𝑛𝑡(𝑠𝑖𝑧𝑒) and 

𝐸𝑥𝑡(𝑠𝑖𝑧𝑒) returns the expected number of interior and exterior edges while 𝑝(𝑠𝑖𝑧𝑒) is the 

probability of a disturbance of that size. In the denominator we can combine terms as 

∑.<QR (𝐼𝑛𝑡(𝑠𝑖𝑧𝑒) + 𝐸𝑥𝑡(𝑠𝑖𝑧𝑒))𝑝(𝑠𝑖𝑧𝑒) = ∑.<QR 4 ⋅ 𝑠𝑖𝑧𝑒 ⋅ 𝑝(𝑠𝑖𝑧𝑒) where the 4 arises 
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from the assumption that patches are 4 sided. The size distribution itself can be calculated 

from the series of 𝐼M , 𝑝(ℎ) = (𝐼5 − 𝐼5-%) ⋅ ℎ, because Ih represents the probability of 

observing a disturbance of size greater or equal to size h+1. Differencing gives us the 

probability of a disturbance size h occurring, which is then multiplied by the disturbance 

size to give us the probability of encountering a disturbance of that size (e.g. the 

disturbances that stayed size 1 are the subset of disturbances that were initiated but didn’t 

spread to another grid cell). Finally, just as we truncated the calculation of D in section 

2.1, the tail of this distribution can be approximated by noting that the geometric series 

implies a geometric parameter distribution function with rate 𝜆. In the numerator we can 

use our previously discussed relationship between adjacency and size class, 𝑎𝑑𝑗(𝑠𝑖𝑧𝑒) to 

calculate 𝐼𝑛𝑡(𝑠𝑖𝑧𝑒) = 4 ⋅ 𝑠𝑖𝑧𝑒 ⋅ 𝑎𝑑𝑗(𝑠𝑖𝑧𝑒). Putting these together we see that the 

assumption about the number of sides to a patch cancels out leaving us with just the mean 

adjacency weighted by disturbance size and the disturbance size probability distribution 

𝐴"" =
∑.<QR 𝑎𝑑𝑗(𝑠𝑖𝑧𝑒) ⋅ 𝑠𝑖𝑧𝑒 ⋅ 𝑝(𝑠𝑖𝑧𝑒)

∑.<QR 𝑠𝑖𝑧𝑒 ⋅ 𝑝(𝑠𝑖𝑧𝑒)
	

 This derivation makes sense because large disturbances should contribute more to 

the adjacency, but usually occur at lower probability. Our derivation states that the 

second-order spatial scaling of any disturbance regime can thus be understood in terms of 

its size distribution and 𝑎𝑑𝑗(𝑠𝑖𝑧𝑒). In the analysis of empirical disturbances section, we 

will evaluate these two components empirically for different disturbance types and 

ecoregions in Florida and Oregon. In evaluating this approach against simple simulation 

models, we discovered an important inconsistency in the model, as independent 
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adjacency, A, and spread, ps, at every disturbance size, 𝐼, and age class, k.  Doing so 

would come the expense of considerably more complicated accounting and notational 

complexity, and thus this is left to future work. 

 For the first case of disturbances adjacent to non-disturbances, we want to 

normalize D by its sum to generate the probability that the disturbance was in that age 

class. As with the age-class distribution, we also want to shift the age classes by 1, to 

account for aging, and sum the final two elements in this vector to account for age-class 

fusion. Next, because rows sum to zero this vector of probabilities needs to be reduced by 

1 − 𝐴"", giving 

𝐴"M,,-% =
𝐷ME%
∑𝐷 (1 − 𝐴"",,-%)	

Next, consider the case of non-disturbed patches adjacent to other non-disturbed patches. 

Here the adjacency should be reduced by the amount of disturbance in that age class, 

which is the disturbance rate normalized by the fractional area.  

𝐴[,M,,-% = 𝐴[E%,ME%,,(1 − 𝐷[E%/𝑎[E%)	

As before, age classes are shifted by 1 and the final two classes are merged, however in 

this case the merge is an average (weighted by fractional area), rather than a sum. 

Finally, because rows sum to 1, the adjacency of non-disturbed to newly disturbed 

patches is one minus the sum of the other elements in the row 
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𝐴[,",,-% = 1 −8
M:%

𝐴[,M,,-%	

 To test the performance of the analytical adjacency approximation, we compared 

the adjacency matrix predicted by this model to that generated by a fully spatial 

stochastic simulation, analogous to the one shown in the right column of Figure 1 but 

with a disturbance initiation probability of 1% and a spread probability of 10%. In both 

the analytical model and stochastic simulation we initiated the landscape from bare 

ground (age = 0) and ran the model for 1000 years to reach a steady-state.  

2.3 Analysis of empirical disturbances  

2.3.1 Data description 

Our analysis looked at disturbances in Oregon and Florida from the LANDFIRE 

Disturbance product (Earth Resources Observation and Science Center, U.S. Geological 

Survey) for 2014, the most recent year available. Florida and Oregon were chosen as 

contrasting disturbance regimes because they are both areas with fire-based disturbance 

regimes and a large timber industry (Fox, Jokela, & Allen, 2007; Marlon et al., 2012; 

Mitchell et al., 2014b). The LANDFIRE disturbance product is a 30 x 30 m resolution 

gridded raster covering the entire US, with each disturbed cell assigned one of twenty 

different disturbance types. Disturbances were determined by a combination of 

LANDSAT satellite imagery, MODIS satellite imagery, vegetation change detection 

techniques, and a database of disturbance events detected by other federal agencies 

(Rollins, 2009; Vogelmann et al., 2011). Specifically, the 2014 LANDFIRE Disturbance 
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dataset was constructed with best-pixel composite imagery, other composite imagery, or 

majority focal filling to account for missing data after the decommissioning of 

LANDSAT 5. In our analysis we treated the LANDFIRE Disturbance product as given, 

and did not consider associated levels of uncertainty within different disturbance types 

and pixels.  

We downloaded US state data from the LANDFIRE repository, available at 

https://landfire.cr.usgs.gov/disturbance_2.php. The authors then subset Disturbance 

dataset for each US state based on and Environmental Protection Agency level II 

Ecoregion boundaries (Ecoregions; McMahon et al., 2001). Subsetting was done using 

with the R raster and rgdal packages (Bivand et al., 2018; Hijmans et al., 2018). We 

subset the US state-level rasters to focus on the two forested level II ecoregions within 

each state: Mississippi Alluvial and Southeast Coastal Plains (8.5) and the Southeastern 

USA Plains (8.3) in Florida; and the Western Cordilleras (6.2) and Marine West Coast 

Forest (7.1) in Oregon. In Oregon we excluded the Cold Deserts ecoregion (10.1) and in 

Florida we excluded the Everglades (15.4) (Figure 1.7). The resulting four rasters then 

had adjacency calculations done on all of the disturbance clumps within each raster (see 

below).  
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Figure 1.7: Visualization of data subsetting and model hierarchies. Colored regions show 
what portions of Oregon and Florida were used in analyses. Cutout shows a sample of 
LANDFIRE raster file with disturbances in green. Model hierarchies show the different 
models compared, and the data used to make each curve. 
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2.3.2	Calculation	of	Metrics		

The analysis of empirical disturbances focused on the two metrics that emerged 

from our theoretical model: disturbance size distribution and the relationship between 

interior ratio and disturbance size. Analysis began by identifying individual disturbances 

that were surrounded on all sides by non-disturbance pixels. Adjacency was determined 

using the four cardinal “Rook’s Case” pixels (for two pixels to be adjacent they had to 

share a side). For each disturbance we then identified the disturbance class and calculated 

the disturbance area and interior ratio (number of interior edges / total number of edges, 

Figure 1.4). After processing the four rasters, we ended up with a table of each 

disturbance event in Florida and Oregon, with a record of its type, size, interior/ total 

ratio, eco region and US state. This table is the basis of all further empirical calculations 

and is publicly available along with the scripts used to generate it on Github at 

https://github.com/mccabete/SpatialAdjacency. This analysis has no way of 

distinguishing distinct but adjacent disturbance events that occurred at different times 

within a year, therefore these distinct but adjacent disturbance events were considered the 

same clump. This analysis also did not account for relative area of different disturbance 

types mixed within a single clump. Clumps of mixed disturbance types accounted for a 

small number of disturbance events (1%), but a large fraction of disturbance area (56 %) 

(Figure 1.9; Table S1.1). We treat Mixed disturbance as a separate class of disturbance in 

our comparison of size distributions. For calculating interior ratios curves these mixed 

disturbances were removed. Many of the disturbances most frequently co-occurring 

within mixed disturbances are represented in our curve fits (Figure S1.2). 
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2.3.3	Assessing	Statistical	Significance	

We used two different statistical tests for the two different disturbance metrics. 

For the size distributions, we compared the size distributions of disturbance type, US 

states, and ecoregions using a two-sided Kolmogorov–Smirnov test. We corrected the P-

values using a Bonferroni correction (Bland & Altman, 1995; Massey, 1951). We 

compared size distributions of all disturbance types present within Florida and Oregon 

that had 20 or more disturbance events. This excluded biological and disease disturbance 

classes (N = 4, N = 6; Table S1.1). We made 66 pairwise comparisons among 12 

disturbance types, and 3 comparisons among state and two ecoregions. After correction, 

our alpha value was 0.000725 (Table S1.2).  

For the interior to total ratio, we fit and statistically compared curves 

corresponding to null models and different hierarchy levels. The curves were fitted using 

a modified Michaelis- Menten curves of the form 𝑦 = ]^_

`-^_
 using a maximum-likelihood 

approach assuming Gaussian error (Michaelis & Menten, 1913). The form was chosen 

based on visual agreement with the data and maximum likelihood after comparison with 

six other functional forms (Figure S1.1; Table S1.3). Different curves were compared 

using a likelihood ratio test. Comparing the curves meant comparing different 

hierarchical levels (Figure 1.7). We fit two hierarchies, one starting at the US state level, 

and one at the disturbance-type level (Figure 1.7). In the US state hierarchy, an all-data 

null model was compared to a model where Oregon and Florida were fit separately. The 

US state-model was then compared to a model where each ecoregion was fit separately. 

In the second hierarchy, an all-data null model was compared to a model where each 
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disturbance type was fit separately. The disturbance-model was then compared to a 

disturbance-by- US state model (Figure 1.7 ; Table S1.4). We also separately compared a 

one-curve-Florida model to a two-curve-ecoregion model, and a one-curve-Oregon model 

to a two-ecoregion-curve model. We did this to see if the differences between ecoregions 

within Florida would be significant in isolation of the differences between Oregonian 

ecoregions (Table S1.4). Because all single-pixel, double-pixel, and triple-pixel 

configurations produce the same interior ratio (Figure 1.4), curves were fit only to 

disturbances over 3 pixels (0.27 ha) large. To meet requirements of likelihood ratio tests, 

the data was subset to include only the disturbance types that were common amongst all 

ecoregions. Disturbance types included: clearcut, herbicide, other mechanical, prescribed 

fire, thinning, wildfire, and unknown. The distinction between wildfire, and prescribed 

fire is that a wildfire is an unplanned fire, prescribed fires are intentionally set and 

managed fires (LANDFIRE Disturbance, 2016). To contextualize modeled curves, we 

included hexagonal density plots, representing the spread and overall shape of all the data 

used to generate curves (ggplot2, 3.0.0; Wickham et al., 2018). To aid in interpretation, 

the upper and lower bounds for the interior ratio were also visualized based on 

calculations of the theoretical minimum (linear disturbance) and maximum (round 

disturbance) interior ratios for a given disturbance size. All analyses were performed in R 

(3.5.0; R Core Team, 2018)) with adjacency calculations performed using the raster 

library (2.6-7; Hijmans, 2018). 
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3 Results 

3.1 Dynamic adjacency updating 

The analytical model for calculating disturbance spread and dynamically updating 

landscape adjacency was assessed by comparing the analytical model to a spatially-

explicit stochastic simulation. In both cases the landscape was initiated from bare ground 

(age = 0) and run 1000 years to reach a steady-state. Figure 1.8 shows that the steady-

state adjacency predicted by both models had the same structural features, as summarized 

in section 2.1: patches within an age class tended to be more self-adjacent, but that self-

adjacency decays geometrically with age; there is also a geometric decay along rows, but 

with greater adjacency above the diagonal. Numerically, the predicted adjacencies were 

also very similar, though with the analytical model slightly overpredicting 𝐴",". Because 

so many of the other rates in the adjacency matrix decay from 𝐴",", there are slight biases 

elsewhere. However, the error propagation from 𝐴"," is consistent with having the 

underlying structure for updating the matrix correct, because it means that structural 

elements are preserved as the landscape ages. 

This impact of errors in 𝐴"," on the overall adjacency calculation was tested with 

a third model (Figure 1.8 bottom left), where the analytical model was run using the 𝐴"," 

derived from the numerical simulation. Overall this model improved the overall pattern in 

the adjacency matrix, especially along the main diagonal. The remaining error (Figure 1.8 

bottom right) is largely concentrated in two places. First, there is greater adjacency with 

the oldest ‘absorbing’ age class than observed in the simulation (left hand column). 
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Second, because of this the bottom left corner (adjacency of old age classes to young 

classes) is a bit lower than observed. Matrix rows have a sum-to-one constraint, so some 

of these errors are inevitable compensating errors. It is also worth noting that in nudging 

𝐴"," directly we are not nudging the underlying terms used to calculate 𝐴"," (I, D, a), 

which are also used in update the rest of A, meaning this test is not strictly internally 

consistent. An open question is how much of the remaining error in the adjacency matrix 

updating is in the underlying analytical simulation of disturbance spread (I, D, a) versus 

approximations in the updating of A. This is something we hope to investigate further in 

the future. 
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3.2 Disturbance Size Distribution 

 Our Kolmogorov–Smirnov pairwise comparison of disturbance type size 

distributions found that the majority of disturbance types had significantly distinct 

distributions (p << 0.001) (Figure 1.9; Table S1.2). The three exceptions were clearcut, 

wildland fire, and harvest, which had non-significant differences with roughly half of the 

disturbance classes. Finally, mastication had no significant difference between wildfire or 

chemical (Table S1.2). The size distributions of Florida and Oregon were significantly 

different, as well as the two ecoregions nested within Oregon (p < 0.001; Table S1.4). 

The two ecoregions size distributions nested within Florida were not found to be 

significantly different. However, in other size distributions significant differences were 

found despite visual similarity in part due to large sample sizes. The size distributions 

have a large range in sample sizes. US state-level size distributions were based on very 

large sample sizes (Oregon N = 27137, Florida N = 20329). Disturbance sample sizes 

range from harvest with N = 22 to unknown N = 34560 (Table S1.1). Unknown 

disturbances accounted for the majority of disturbance events in the overall dataset, and a 

large proportion of the area (20%). All four ecoregions had a similarly shaped size 

distribution, with peaks at single-pixel (0.09 ha) disturbances and at 7 ha disturbances. 

The 7 ha peak aligns with disturbance peaks in the disturbance categories unknown, 

thinning, wildland fire, mixed, harvest and wildfire. Within Oregon, the Western 

Cordillera ecoregion has more small and mid-level size disturbances than the Marine 

West Coast Forest, the Western Cordillera also had both considerably more disturbance 

events than the Marine West Coast Forest, and a larger area of disturbance (75%). 
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Disturbance plots show more varied patterns, Wildfire and prescribed fire have a long 

tails, reflecting the influence of rare but large disturbances. In contrast, thinning and 

mastication have distinct peaks and sharper drop-offs, suggesting more standardized 

anthropogenic disturbances and smaller sizes. Mixed disturbance has the longest tail, and 

no peak at small disturbances. Herbicide and other mechanical have visually similar 

distributions, but were found to be significantly different (Herbicide N = 4655, Other 

Mechanical N = 3546). Within mixed disturbances, herbicide and other mechanical co-

occurred most frequently (Figure S1.2). 
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ecoregion contains the respective disturbance. Sample sizes associated with density plots 
can be found in Table S1.1.  

3.3 Disturbance Interior Ratio Curves  

 We found a significant effect of US state (p < 0.001) and ecoregion nested within 

state (p < 0.01). Oregon had a wider range of interior ratios, with a higher occurrence of 

linear disturbances than Florida (Figure 1.10). Florida and Oregon have similar numbers 

of overall disturbance occurrence, but Oregon disturbances have a larger proportion of 

the total area of disturbances (%79). Within Oregon, small disturbances were more 

compact in Marine West Coast forests than in the Western Cordillera small disturbances, 

but this relationship crosses, such that Marine West Coast disturbances were less round at 

large disturbance sizes. The curves fit for the two ecoregions in Florida are nearly 

identical (Figure 1.10). Despite visual similarity, the two ecoregion curves were found to 

be significantly different even when compared to just a Florida curve model. Best fit 

parameters for all curves are in Table S1.5. 

 In our second hierarchy, there was a significant effect of disturbance type (p < 

0.0001), but not US state nested within disturbance (p > 0.1). Herbicide is the most 

distinctively linear, followed by other mechanical, and then unknown. Fire disturbance 

types (prescribed and wildfire) were closer to the maximum interior ratio curve, 

suggesting that fires tended to be compact and burned pixels were predominantly 

adjacent to other burned pixels (Figure 1.11). Disturbance-level curves show that 

prescribed fires are less compact at smaller sizes and larger sizes than natural fires, but at 

the most frequent size are similarly shaped. Thinning resembles other compact 



 
	

 45	

disturbances, but begins to become more linear at large sizes relative to wildfire. Clearcut 

follows a similarly compact pattern to wildfire.  
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Figure 1.10: Mean trends of Ecoregion within State. Curves match Ecoregion model 
curves referenced in Figure 1.7. Gray hexes correspond to binned-counts of number of 
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4. Discussion 

4.1 Theoretical Framework 

Our framework for scaling spatially-implicit contagious disturbances is reasonably 

accurate, computationally efficient, and theoretically provocative. Our framework was 

able to estimate the fraction of the landscape that was disturbed as a function of 

disturbance initiation, adjacency, and spread probabilities (Figure 1.2). We were able to 

show that disturbance initiated in one age class would spread into stands of different ages 

based on their relative adjacencies (Figure 1.3). We demonstrated not only the ability to 

predict the self-adjacency of newly-disturbed areas (Figure 1.5), but also the adjacency of 

newly-disturbed areas to non-disturbed areas and the ability to update the adjacency of 

non-disturbed areas to each other in light of new disturbance. While the corrected self-

adjacency predictions perform well (Figure 1.8), improving this correction is a useful 

area for future research, for example by accounting for the size of disturbed patches in 

calculating the probability that they will merge. In addition, it is important to note that 

when simulating disturbance using empirical 𝑎𝑑𝑗 functions that this correction term does 

not need to be included unless distinct, but adjacent, disturbances occurring during the 

same time step, were separated in the original data (usually this is not possible). We were 

able to successfully update adjacency over 1000 years within a reasonable level of 

accumulated error and capture the major emergent features of contagious disturbance 

adjacency (Figure 1.8), such as the geometric decay of self-adjacency as even-aged 

stands mature and the geometric decay of adjacency within an age class (greater 
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probability of being adjacent to newer disturbances) with greater adjacency above the 

diagonal (young) than old. That said, if older age classes are aggregated (bottom row) 

then considerable self-adjacency among old-growth stands can develop.  

There are a number of important applications where this modeling framework can 

be immediately applied and expanded upon. At the top of this list is improving the 

incorporation of sub-grid scale disturbance processes within regional and global scale 

models, such as Dynamic Global Vegetation Models (DGVMs), Dynamic Vegetation 

Models (DVMs, Fisher et al. 2018), and coupled Earth System Models. These models 

operate at a scale where spatially-explicit approaches are not computationally feasible– a 

typical landscape model operating at LANDSAT (30x30m) resolution would require 

simulating hundreds of billions of grid cells to capture the Earth’s land surface. As a 

result, disturbances that we know to be spatially contagious are either absent from these 

models altogether (e.g. insects and pathogens; Dietze & Matthes, 2014; Hicke et al., 

2012) or represented using much simpler zeroth-order (spatially homogeneous) or first-

order (fractional area) approximations (e.g. fire, land use). By using these simpler 

approximations, existing models miss important ecological phenomena, such as the 

spread of disturbance initiated in one age class or vegetation type into other vegetation 

within that grid cell. Depending on whether these models assume fractional areas are 

completely independent or randomly-distributed, these approaches will systematically 

either over- or underestimate (respectively) the degree of spatial adjacency occurring on 

the landscape. This will potentially bias estimates of dispersal limitation, lateral shading, 

microclimate, and lateral hydrologic and biogeochemical fluxes (Melton & Arora, 2014).  
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Even where spatially-explicit models are computable (e.g. landscape-scale models 

of vegetation communities and biogeochemistry), there is often considerable uncertainty 

in the initial conditions. Spatially explicit models require state variables to be estimated at 

a fine spatial resolution (Shifley, Thompson, Dijak, & Fan, 2008), which is very data 

intensive and frequently underconstrained. Furthermore, the errors in spatial maps of 

initial conditions are not independent, so the uncertainties do not simply average out with 

the number of grid cells. In contrast, with spatially-implicit models we can often generate 

estimates of the probability distributions of age classes and their adjacency with much 

greater confidence (law of large numbers) than we can map explicitly. For example, I 

may be able to estimate the fraction of a landscape that’s a certain age class (e.g. 10-20 

year old) much more precisely than I can estimate the age of a specific 30x30m pixel. 

Because of this, the total predictive uncertainty in a spatially explicit model could be 

larger than a spatially-implicit approximation, for example if the initial condition 

uncertainties of the spatial model outweigh the approximation errors of the implicit 

model (Dietze, 2017). Without detailed inventory data, initializing a spatially explicit 

model presents a trade-off between feasibility and accuracy.  

Beyond the global and vegetation modeling communities, our derivation can act 

as a null model for spatial processes like arrangement, location dependence, and absolute 

distance dependence. Arrangement can have an effect on certain contagious disturbances: 

for example, corridors can differentially affect seed dispersal dependent on angle relative 

to prevailing wind direction (Damschen et al., 2014). Habitat fragmentation can correlate 

with overall abundance of habitat, raising questions about the separability of 
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configuration from size in occupancy modeling (Fahrig, 2002; Prugh, Hodges, Sinclair, 

& Brashares, 2008; With & King, 2018). Absolute distance dependence is common in 

invasion ecology, where rare dispersal events over long distances can have a large effect 

on the subsequent colonization rates (Nathan, Cronin, Strand, & Cain, 2003). While some 

processes have spatial dependence that cannot be captured in our framework, the 

assumptions of our approach allow it to act as a nontrivial null-model to separate those 

effects (Rosindell, Hubbell, & Etienne, 2011). Explicitly accounting for size with 

adjacency is useful for disentangling the effects of size and arrangement, which often co-

occur and can lead to misattribution (Prugh et al., 2008). 

	

4.2 Empirical analysis  

In this analysis we characterized Oregon’s and Florida’s disturbance regimes 

based on their size distributions and the relationship between disturbance size and interior 

ratio. We hypothesized that these metrics would differentiate between contrasting US 

state-wide disturbance regimes and disturbance types, and would reflect the nested 

structure of ecoregions. Broadly, we found this to be true. Our interior ratio curves were 

able to significantly differentiate between US state, ecoregion, and disturbance types 

(Table S1.4). In particular, different disturbances had characteristic interior ratios curves. 

Fire disturbances had compact configurations while several anthropogenically controlled 

classes (herbicide and other mechanical) spread dendritically. Relative to other 

mechanical and herbicide thinning spread in a compact way, but notably spread more 

dendritically at large disturbance sizes. This could indicate that thinning management 
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strategies are fragmenting landscapes compared to natural disturbances. That said, the 

hierarchical structure of our analysis did not capture all possible permutations of lumping 

and splitting disturbance types, so similar curves (ie Clearcut and Wildfire; Figure 1.11) 

might have been lumped if evaluated independent of other disturbance classes. Overall, 

these results suggest that our metric captures the major features of the regions’ 

disturbance regimes, and highlights the effects of anthropogenically mediated 

disturbances.  

Size distributions of disturbances were generally distinct, but not sufficient to 

differentiate all disturbance types. That said, ecoregion-level size distributions had 

similar shapes (Figure 1.9). The consistent shape of the size distributions could be an 

artifact of the LANDFIRE disturbance attribution (Unknowns were the largest class of 

disturbance events) and could reflect the dominance of fire and thinning in both Florida 

and Oregon. Visually and statistically, the ecoregion size distributions support the nesting 

structure of the ecoregions: Florida ecoregions are more similar to each other than they 

are to the Oregon ecoregions (Figure 1.9; Table S1.2). Disturbances reflect that high 

spreading probability creates larger disturbances: prescribed fire, wildland fire, and 

wildfire are the most long-tailed distributions (Figure 1.9).  

Overall, a strength of this empirical analysis is that it describes disturbances in 

terms of size and of configuration separately, which contrasts with many spatial metrics 

which convolve the two (e.g. mean interior/total). That different sources of disturbance 

have different spatial patterns in disturbances alone is not an unexpected result. 

Intuitively, different disturbance mechanisms have different spatial signatures. A 
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roadway-construction is smaller and narrower than a typical commercial thinning. These 

findings take that intuition a step farther and explore the patterns that emerge at larger 

scales. When an ecosystem’s disturbance regime is changing, that change will manifest as 

changes to disturbance size, or disturbance configuration (the interior ratio curve), or 

both. In the future, if we characterize more disturbance regimes in terms of these metrics, 

and better understand what factors drive their variability in time and across large spatial 

scales, it should be possible to use these relationships to forecast the spatial scaling of 

changing disturbance.  

As an example, consider a shift in disturbance regime that doesn’t change the 

disturbance size, but shifts the shape from dendritic to compact. Dendritic disturbances 

create corridors through the landscape, which effects the demography of the ecosystem 

by changing migration, favoring certain dispersal mechanisms, and increasing the 

propagule pressure of certain areas. Size and shape of patch plays a role in the success of 

invaders (Fahrig, 2002; McConnaughay & Bazzaz, 1987). Dendritic disturbances alter 

the abiotic properties of a system through the creation of edges. Edge-effects have been 

found in forest systems to increase carbon uptake, increase available light, and increase 

nutrient deposition (Reinmann & Hutyra, 2017). At the other extreme, more compact 

disturbances could cause more evenly aged composition and introduce more within-patch 

homogeneity by having a larger fraction of the disturbed pixels “sheltered” from 

surrounding areas.  

Many contagious disturbances are projected to change in magnitude, severity, and 

location with climate change (Bradley, Wilcove, & Oppenheimer, 2010; Flannigan, 



 
	

 54	

Stocks, & Wotton, 2000; Mitchell et al., 2014a; Parks et al., 2016). Ultimately, these 

metrics will help us make concrete predictions of how to scale up these disturbances’ 

regime changes. To be able to do this the variability within these metrics needs to be 

explored: How do they change year-to-year and place-to-place? How is this variability 

related to changes in weather, climate, and characteristics of the biotic and abiotic 

environment? This analysis demonstrates that interior ratio curves have the potential to 

communicate unique information about contagious processes and we encourage 

evaluating its utility in future work. 

4.3 Opportunities and Challenges in Future Implementation  

Implementing this spatially-implicit framework in real-world models requires a 

number of inputs be to derived through empirical analysis. First, the initial condition for 

adjacency, 𝐴,:", needs to be estimated for every large-scale grid cell. Given maps of 

current vegetation, this is computationally intensive but a relatively straightforward 

operation either within GIS or scripting languages with geospatial libraries (e.g. R). Next, 

users need to then decide whether to forward simulate disturbances and interior ratios 

based on initiation probability and spread probability (Section 2.1), or to rely on 

empirically observed size distributions and interior ratios (Sections 3.2 and 3.3). For 

short-term simulations, relying on empirically-derived statistics, such as those derived 

here for Florida and Oregon, is probably the easiest way to implement a wide range of 

different disturbance types. The empirical analyses conducted here could be further 

broken down using empirical covariates, such as weather, to capture changes interannual 

variability in disturbance size and shape (Hu et al., 2010). For longer-term simulation, 



 
	

 55	

forward simulations have the advantage of being able to extrapolate to new conditions. In 

the simplest simulations explored so far, the initiation and spread probabilities were 

typically held constant through time, for different age classes, and as a function of 

disturbance size, but as discussed earlier all of these can be made to vary based on either 

mechanistic models (e.g. fire ignition and spread; Kitzberger, Aráoz, Gowda, Mermoz, & 

Morales, 2012) or empirical observations. In these cases, there is a well-established body 

of literature deriving such relationships for spatially-explicit landscape models that 

should be directly translatable to inform spatially-implicit approaches (Mann et al., 2012; 

Seidl et al., 2011). 

Once the concept of dynamic adjacency is in place within large-scale models, this 

opens the door for improving the representation of many other ecological processes 

within large-scale models. First and foremost is probably the addition of edge effects, 

such as lateral light penetration versus shading, as 75% of forests globally located < 1km 

from an edge (Haddad et al., 2015). Depending on the default assumption, which varies 

from model to model, current approaches are either massively underestimating how 

bright large disturbances are, or treating small disturbances as receiving full sun. Edge 

effects are known to have large impacts on microclimate (temperature, humidity, wind, 

etc.), which will have impacts on all aspects of modeled ecosystem function 

(productivity, biogeochemistry, hydrology, carbon storage, etc.). In addition to edges, 

adjacency can also be used to improve representations of dispersal limitation within large 

scale models, which typically assume seed is equally available at all points within a large 

grid cell, using the same approach of iterative multiplication of an adjacency matrix that 
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we used here to simulate contagious spread. This could also be particularly useful for 

representing invasive species in large-scale models. Finally, adjacency could also be used 

to improve the representation of other lateral fluxes, such as hydrologic or nutrient flows. 

 We have argued that our size distribution and interior/total ratio metrics describe 

disturbance regimes in a way that forwards our fundamental understanding of 

disturbances. However, for a metric to be useful it has to be practical to measure. How 

difficult are these metrics to estimate empirically? Potential challenges arise depending 

on the scale of interest. At scales where spatial data is common (remote-sensing products, 

GIS analyses) calibration is straightforward. More work needs to be done to see how 

these metrics vary with environmental variables and time to clarify exactly how much 

data is required to fully characterize a disturbance regime. However, our results suggest 

that these metrics capture nuanced information about a disturbance regime. Measuring 

these metrics across landscapes presents the dual opportunity to model disturbance and 

probe theoretical implications of these metrics. 

5. Conclusion 

 In this paper we lay out a theoretical derivation for spatially implicit scaling of 

disturbances, and explore the descriptive capacity of metrics that emerge from our 

derivation. We found that we were able to capture how different spread probabilities alter 

a landscape, and could update adjacency dynamically with new disturbances and stand 

age. We note the implications of this technique apply widely to multiple problems in 
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scaling through the improvement of ecosystem models, development of null models and 

characterization of disturbance regimes. 
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CHAPTER TWO: A WORKFLOW FOR ITERATIVELY CONSTRAINING 

PARAMETER UNCERTAINTY IN PROCESS-BASED MODELS  

 
Abstract  

In process-based models, parameter uncertainty can dominate overall uncertainty, 

especially in novel circumstances. We introduce an iterative workflow for reducing 

parametric uncertainty that we demonstrate by calibrating a vegetation demographic 

model, the Ecosystem Demography model v2.2 (ED2), for the invasive grass cogongrass. 

Our workflow suggests using uncertainty analyses to iteratively progress through three 

different forms of constraint: 1) synthesis of literature data, 2) targeted field work, and 3) 

statistical constraint. For cogongrass, few literature values existed, so we used the results 

of an uncertainty analysis to design a target field season, followed by a round of 

statistical constraint to fit parameters not directly estimateable from field data. From our 

field collection, we found that cogongrass had a lower quantum efficiency than average 

C4 grasses, and a higher stomatal slope. This suggests cogongrass is adapted to low-

water and high-heat situations, but may be light limited. We found that our targeted field 

data reduced parameter uncertainty and output uncertainty, allowing model-specific 

parameters to dominate output uncertainty. Finally, statistical constraint further reduced 

parameter uncertainty, but did not reduce output uncertainty, as model structural error 

began to dominate.   

Introduction 

Predictions of future ecosystem trends allow society to anticipate environmental 

challenges, design policy, and adapt to climate change. Models that simulate processes 
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under future conditions are central tools that can generate these predictions. For example, 

process-based Earth system models of the land, ocean, climate, and energy sector are 

what generate the predictions used in the Intergovernmental Panel on Climate Change’s 

Sixth Assessment Report (Chen et al., 2021; Masson-Delmotte et al., 2021). Process-

based models have clear strengths: they embody our current knowledge and hypotheses 

about how systems work, and they can predict a system’s response to novel 

circumstances (Dietze, 2017b). However, such models often contain large numbers of 

parameters that can be difficult to measure, which can result in high parameter 

uncertainty. In the terrestrial carbon cycle modeling community, parameter uncertainty 

has been a dominant source of overall uncertainty (Quetin et al., 2020; Shiklomanov et 

al., 2020). Even in cases where other sources of uncertainty dominate (i.e. climate  

Lovenduski & Bonan, 2017,  model structure Raiho et al., 2020), parameter uncertainty is 

usually still a large source of uncertainty, and represents a source of uncertainty that can 

be reduced by incorporating more information. Here we present a workflow for 

constraining parameter uncertainty, using a model of an invasive grass as a case study.    

 There are three broad techniques for constraining parameter uncertainty: 

incorporating parameter estimates reported in the scientific literature, measuring 

parameters directly, and constraining parameters indirectly using statistical inversion 

techniques (Figure 2.1). Each method has trade-offs. Literature values can be 

incorporated into parameter distributions via	the construction of informative Bayesian 

priors, formal meta-analyses, and hierarchical literature synthesis (LeBauer et al., 2013). 

Databases of trait values like the TRY and BAAD databases have made literature 
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synthesis easier by collating diverse datasets across a research community (Falster et al., 

2015; Kattge et al., 2011). But pre-existing scientific literature may not inform 

parameters for emerging systems, like novel diseases or invasive species, because the 

system itself has yet to be described.  In addition, the existing body of scientific literature 

has biases. In terrestrial ecology, above ground measurements are more common than 

belowground measurements (Dietze et al., 2014), despite roots’ control over carbon, 

water, and nutrient cycles (Fan et al., 2017; Jackson et al., 1997).  More insidiously, 

higher income areas are better sampled (Raja et al., 2022), researchers from the global 

South, women, and minorities are less likely to be cited or participate in research 

(Collyer, 2018; National Center for Science and Engineering Statistics, 2021; Ross et al., 

2022). Relying on pre-existing measures synthesizes existing knowledge, but carries 

forward gaps, biases, and does not capture new systems.   

Measuring data offers the opportunity to correct gaps, biases, and tackle the 

unknown. With good reason, conducting measurements is a foundational part of the 

scientific method. Measurements allow us to test hypotheses built into models (Dietze, 

2017a; Medlyn et al., 2015). New measurements can observe “surprising” results that 

spark new lines of inquiry (Lindenmayer et al., 2010). However, measurements come 

with financial, personnel, and time costs. Getting data to constrain some parameters can 

be logistically difficult, or impossible. If parameter values change over environmental 

gradients, limited measurements can introduce bias (Fisher et al., 2018; Reich et al., 

2014). Not all parameters in process-based models have real-world analogues that can be 

measured.  
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Statistical methods can constrain model-specific parameters, and can be faster to 

implement than data collection. However, different statistical techniques have their own 

trade-offs in computational needs, the error introduced by the method, and how well the 

method matches the model structure (Fer et al., 2018; Pandit et al., 2019; Raiho et al., 

2021). However, using only statistical constraints can calibrate parameters to solutions 

that do not reflect real-world understanding, and could limit applying models to new 

contexts (Luo et al., 2011; Medlyn et al., 2015).   

Navigating the tradeoffs in each constraint technique can require expertise as 

diverse as weighing the feasibility of making difference type of field measurements, that 

gen get specific (i.e. arctic root measurements Euskirchen et al., 2022) to the 

computational gains made with model parallelization (Raiho et al., 2021). The varied 

disciplines that each constraint technique operates in can obscure when one technique 

becomes more appropriate, or when multiple techniques can work in concert.  

 We developed a workflow to weigh how and when to use each technique (Figure 

2.1). As a case study, we constrain the parameters around the invasive grass Imperata 

Cylindrica, or cogongrass. We start with broad priors for a generic grass and then use a 

combination of targeted field work and statistical calibration to constrain uncertainty in 

our parameters. We quantify how much parametric uncertainty and output uncertainty 

each technique reduced, and the decision making process surrounding each choice.  

In this study we use Cogongrass as our model system because it is a societally 

relevant invasive species, and we were interested in using an ecosystem model to 

understand how cogongrass affects the native forests it invades (Chapter 3). Cogongrass 
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is a C4 perennial grass classified as a federal noxious weed with a widespread range 

reaching from Texas to Virginia. This range is growing; it is predicted to spread to 

Oklahoma and Tennessee (Noxious Weed Regulations, 2022; Holzmueller & Jose, 2011). 

Cogongrass’ effect on the US landscape and many of its invasion mechanisms have not 

yet been tested (Estrada & Flory, 2015). Because cogongrass is an invasive species with 

few traits measured in the literature, our initial representation of cogongrass in an 

ecosystem model had high parameter uncertainty, and high output uncertainty. We use 

our workflow to systematically reduce cogongrass parametric uncertainty with two aims: 

1) capturing cogongrass’s distinct attributes that could make it an effective invader, and 

2) reducing uncertainty in our model outputs. 

Cogongrass may have traits that set it apart from native grasses, and make 

cogongrass an effective invader (Pyšek et al., 2012). Grasses with tall stature and drought 

resistant photosynthesis have been found to be more likely to invade (Canavan et al., 

2019; Chuine et al., 2012). However, the traits of invasive grasses and native grasses can 

be similar (van Klinken et al., 2013). “Invasiveness” may be a product of introduction 

rate (Estrada & Flory, 2015; van Klinken et al., 2015) or the area being invaded (Pyšek et 

al., 2012).  

When cogongrass invades, it forms a dense clonal monoculture that outcompetes 

other understory plants, including native C4 grasses (Daneshgar et al., 2008).  Because of 

this, we hypothesize that cogongrass parameters (Table 2.1) will be more consistent with 

a highly productive plant photosynthesizing more efficiently than other C4 grasses. We 

expect Cogongrass to have higher values for measures of photosynthesis efficiency 
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(quantum efficiency), higher values for measures of intrinsic water-use efficiency 

(stomatal slope), and lower values of root respiration compared to a generic C4 grass 

(Leakey et al., 2006; Leuning, 1995). By constraining parameter uncertainty, we can 

weigh how and if cogongrass traits are distinct from C4 grasses overall.  

Using our workflow we aimed  to reduce uncertainty in model predictions of 

cogongrass’s leaf area index, net primary productivity, and evapotranspiration. By using 

our workflow, we hoped to reduce parameter uncertainty and in turn reduce output 

uncertainty. We hypothesize that each new form of constraint will reduce output 

uncertainty.   
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Figure 2.1: A Flowchart of Our Suggested Workflow. 1) Construct priors, 2) Run an 
uncertainty analysis that quantifies parameter uncertainty and identifies highly uncertain 
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parameters, 3) if parameter uncertainty is large, check scientific literature for parameter 
measures, and repeat uncertainty analysis, 3) if parameter uncertainty if still large, collect 
data on highly uncertainty parameters 4) if parameter uncertainty is still large, consider 
restructuring the model or using statistical constraint. 

	
Methods  

Workflow Overview 

Our workflow has roughly four stages of iterative constraint. First, construct 

priors using external data (ie LeBauer et al., 2013) or techniques like expert elicitation 

(Dietze, 2017a; Marvin et al., 2009). Second, quantify and attribute which parameters are 

contributing the most uncertainty and focus data efforts (e.g. literature synthesis) on these 

parameters. In our case, because we were working with a single invasive species there 

was limited trait data in the literature, but in other literature-synthesis projects have had 

success (Dietze et al., 2014; Dokoohaki et al., 2022; Euskirchen et al., 2022; LeBauer et 

al., 2013; Meunier, van der Heijden, et al., 2021; Raczka et al., 2018; Viskari et al., 2019; 

Wang et al., 2013). Third, evaluate which uncertain parameters can be constrained with 

measurements. If after targeted field work parameters uncertainties are still large, 

evaluate if parameters are good candidates for statistical calibration (Dietze, 2017a; Fer et 

al., 2018; Pinnington et al., 2020; Raiho et al., 2021). Finally, if after statistical 

calibration, certain model parameters are still a large source of uncertainty, further 

reduction in uncertainty may require model restructuring.    

To implement this workflow in our study, we began with broad priors that provided 

a functioning model-representation of cogongrass that could be run at our test site but 

which had a high level of parameter uncertainty. To reduce this uncertainty we ran an 
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uncertainty analysis  that quantified how uncertainty in different cogongrass traits 

contributes to uncertainty in model outputs including evapotranspiration, net primary 

production, and leaf area index. We focus on these ecosystem variables because they 

correspond to the ways cogongrass likely influences the system: water fluxes, carbon 

fluxes, and vegetation structure. 

  Based on the uncertainty associated with parameters, we determined what 

parameters needed to be targeted for field sampling (Figure 2.1, See Results: Priors and 

Targeted Field Work). After targeted data collection (See Targeted Field Work), we 

incorporated our field data into the meta analysis to constrain the posterior parameter 

distributions used for model runs described in the Statistical Constraint Section (Figure 

2.1). We then conducted a second uncertainty analysis to translate parameter constraint 

into uncertainty reduction (Figures 2.3-2.5).  

Finally, after using statistical inversion techniques to constrain the unmeasurable  

parameters (Figure 2.1, Section Priors + Targeted Field Work + Statistical Constraint),  

we performed a third round of uncertainty analyses. By comparing the uncertainty 

reductions that occur between different rounds of uncertainty analysis we can quantify 

the contributions of literature synthesis, targeted field data collection, and inverse 

calibration to the overall model improvement. 

	

The Ecosystem Demography Model 

The Ecosystem Demography 2 model (ED2) is a spatially-implicit cohort-based 

vegetation demographic model (VDM) (Longo et al., 2019a & b; Medvigy et al., 2009; 
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Moorcroft et al., 2001). Tpo capture biogeochemical cycles, ED2 tracks plant-level 

ecophysiological processes (photosynthesis, respiration, allocation, turnover) and 

demographic rates (growth, mortality, reproduction, disturbance). To simulate ecological 

processes like succession and competition, ED2 aggregates individuals into cohorts of 

similar size and the same plant functional type (PFT), keeping track of changes in cohort 

size and density. ED2 is well suited for this project because it is able to capture water, 

light, and carbon competition, and has a history of applications in the southeastern US 

(Dietze et al., 2014; Miller et al., 2016;De Kauwe et al., 2014; Medlyn et al., 2015; 

Walker et al., 2014;). 

Grasses are represented as having three carbon pools: leaves, fine-roots, and non-

structural carbon. Acquired carbon is allocated to each pool according to allometries, and 

then carbon is consumed via respiration to maintain living biomass. If the carbon balance 

is negative enough to consume the non-structural carbon pool, the plants will not grow 

and mortality will increase, killing plants as they age and crowd. If the carbon balance is 

positive, plants will grow new biomass and allocate carbon to reproduction. Leaf area 

index (LAI) is calculated by multiplying specific leaf areas with leaf biomass, and then 

LAI is used to modify the amount of possible photosynthesis. 

ED2’s representation of cogongrass is controlled by parameters described in 

Table 2.1.   In ED2’s representation of C4 grasses, photosynthesis is determined by 

stomatal slope, Vmax, and quantum efficiency. These parameters are used to fit the 

Farquar model of photosynthesis with modifications for C4 plants (Collatz et al., 1992; 

Farquhar et al., 1980) where photosynthesis is not limited by a CO2 compensation point 
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(Longo, Knox, Levine, et al., 2019). Photosynthesis is also modified by the amount of 

available water. Water conductance controls water availability as modified by root 

biomass. 

Detailed explanations of ED2 components and each parameter’s definitions can be 

found in the supplement of Longo, Knox, Levine, et al., (2019).  

 
Table 2.1: Cogongrass Parameter Definitions and Data used to constrain Parameters 

Parameter Definition Unit  Data Source Prior  Physical 
Analog 

Fine Root 
Allocation 

ratio of fine root 
to leaf biomass 

ratio  2019 Biomass 
measurements 

grasses Yes 

Stomatal 
Slope 

The slope of 
relationship 
between stomatal 
conductance and 
photosynthesis 
 

ratio 1
2 

2019 
Photosynthesis 
measurements 

C4 
grasses 

Yes 

Vmax Maximum rate of 
carboxylation 

umol 
CO2 
m-2 
s-1 
 

3 
 

2019 
Photosynthesis 
measurements 

gramin
oids 

Yes 

Quantum 
Efficiency 

Percentage of 
light converted to 
carbon 

Mol 
CO2 
fixed 
per 
mol 
irrad
ianc
e 

3 
 

2019 
Photosynthesis 
measurements 

C4 
grasses 

Yes 

Specific 
Leaf Area 
(SLA) 

Leaf area per unit 
dry biomass 

m2 
kg-1 

1 Dataset from 
concurrent 
project. (Hiatt & 
Flory, 2020) 

grasses Yes 

Root 
Respiration 

Temperature 
dependent rate of 
CO2 released by 
roots 

umol 
CO2 
kg-1 
s-1 

1 Root Respiration 
measurements 

C4 
grasses 

Yes 
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Root 
Turnover 
Rate 

Temperature 
dependent rate of 
fine root loss 

ratio 
year 
-1 

1 - grasses Yes 

Reproducti
on Fraction 

Fraction of 
storage carbon 
converted to seed 
reproduction 

ratio 1 - plants Yes 

Mortality 
Coefficient 

Carbon Balance 
Ratio for which 
morality rapidly 
increases 

ratio 
year 
-1 

1 - plants No 

Growth 
Respiration 

Proportion of 
daily carbon gain 
lost to growth 
respiration 

ratio 1 - grasses No 

Water 
Conductanc
e 

Rate of water 
supplied to plant 

m2 
kg-1 
s-1 

1 - plants No 

1Longo, Knox, Levine, et al., 2019 
2Leuning 1995 
3Farquhar et al. 1980 

Site Description 

 
Our measurements for cogongrass come from both natural cogongrass invasions and a 6-

year ongoing garden experiment at the University of Florida Bivens Arm Research Site 

(BARS) in Gainesville, Florida (29°37′42.4″N, 82°21′14.4″W). The long-term garden 

experiment has ten  4m  x 4m replicates of four treatments: native vegetation and ambient 

precipitation, cogongrass and ambient precipitation, native vegetation and drought, 

cogongrass and drought (Alba et al., 2017). BARS also has a naturally occurring 

cogongrass invasion. We measured Vmax, stomatal slope, quantum efficiency, 

aboveground and belowground biomass on the ambient treatments of the garden 

experiment. Because the planting timing and initial biomass of cogongrass at the 
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experiment was known, we used that information to initialize our ED2 model simulations 

(See Statistical Constraint Section). Root respiration was measured on samples taken 

from the natural invasion.  

 

The Predictive Ecosystem Analyzer: PEcAn 

PEcAn provides a common toolbox for working with and analyzing ecosystem 

models as well as accessible web-based tools for model execution (LeBauer et al., 2013, 

Fer et al. 2021). PEcAn contains a workflow for parameterizing new vegetation types by 

compiling field and literature data that provide constraints for individual model 

parameters. These data are synthesized within PEcAn in an automated Hierarchical Bayes 

literature synthesis that estimates each model parameter as a probability distribution 

(LeBauer et al., 2013). Parameter values used for PFT’s can be found at http://psql-

pecan.bu.edu/bety. PEcAn also hosts specific software tools used in the analyses below. 

Tools used are documented in Table 2.2. 

Table 2. 2: PEcAn Modules Used in this Paper 

 Paper Subsection Citation 

Hierarchical 

Bayes literature 

synthesis 

The Predictive 
Ecosystem Analyzer 

(LeBauer et al., 2013) 

Sensitivity and 
Uncertainty 
Analysis 

Uncertainty Analyses (LeBauer et al., 2013) 
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Parameter Data 
Assimilation 

Inverse Calibration of 
Cogongrass Water 
Conductance and 
Growth Respiration 

(Fer et al., 2018) 

Photosynthesis 
Parameter 
Estimation 

Constraint of 
Cogongrass 
Photosynthesis -- 
Parameter Estimation 

(Feng & Dietze, 
2013) 

 
Analyses were done using PEcAn v1.7.1 available at 
https://github.com/PecanProject/pecan.  
 
 

Uncertainty Analyses 

PEcAn uncertainty analyses begin by estimating model parameter sensitivities 

using a one-step-at-a-time sensitivity analysis. PEcAn evaluates each parameter at the 

posterior median, and at +1 SD and -1SD, while all other parameter values are held at 

their median.Then, PEcAn fits a natural cubic spline to the relationship between the 

model output and parameter values. How sensitive model output is to change in 

parameters is approximated as the derivative of the spline.  

Model output uncertainty was estimated by running 50-ensemble member runs 

sampling from posterior distribution sets associated with different stages of our workflow 

(Figure 2.1). For uncertainty at Priors, Targeted Field Data, and Statistical Constraint 

stages, ED2 was run from 2013-2019 at BARS. 2013 was the time of initial planting. We 

initialized ED2 with cogongrasses starting biomass and density identical to the 

experimental planting biomass and density described by (Alba et al., 2017). ED2 used the 

ERA5 Reanalysis product as meteorological drivers (Hersbach et al., 2018.). 
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The uncertainty attributed to each parameter is estimated by comparing the sum of 

the variance in each parameter to the total variance in model output as estimated by the 

50 ensemble members. The variance in each parameter comes from the estimate from the 

hierarchical literature synthesis (See Predictive Ecosystem Analyzer section), and is 

translated from the parameter domain into the model output domain by the sensitivity 

spline.  

For visualization purposes, this spline approximation is also used to approximate 

the elasticity of model output, and partial variance decomposition seen in Figures 2.3-2.5. 

“Coefficient of Variation” refers to normalized parameter variance, which is a unit-

corrected, and output-mean corrected measure of variance. By contrast “Variance” in 

figures 2.3-2.5 refers to the raw variance in model output attributed to a specific 

parameter. “Elasticity” is the spline-approximation sensitivity corrected for the mean 

value of the parameter. Further details described in (LeBauer et al., 2013) 

Priors  

Cogongrass is an invasive species, and few measurements of the traits ED2 requires exist 

in the literature. Because of this, we began our development of our single-species 

cogongrass PFT by starting with the priors from a similar ED2 PFT developed for a grass 

of the same family with the same photosynthetic strategy (switchgrass; Panicum 

virgatum). The priors for switchgrass were taken from literature estimates (Figure 2.1) of 

trait-values based on board categories: like “plants”, “grasses”, “C4 grasses”, and 
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“graminoids” that are equally applicable to cogongrass (LeBauer et al., 2013; Table 

S2.1).  

Targeted Field Work 

Constraint	of	Cogongrass	Root	Respiration	

Root respiration is a difficult parameter to constrain because it is often measured in 

conjunction with soil respiration, and the partitioning between fine roots, rhizosphere, 

and soil aggregates is ill-defined and difficult to separate physically (Kelting et al. 1998, 

Kuzyakov 2006). We measured root respiration with a closed-path technique that used a 

sealed soil respiration chamber (Figure S2.1). Respiration measures were taken by 

running the soil respiration program on washed roots placed in a small jar that was then 

put into the sealed soil chamber 6400-09 (Figure S2.1 A). As part of the automatic soil 

program, a target CO2 is set based on ambient CO2, and then the CO2 level in the 

chamber is drawn down to below the target and allowed to increase past the target for a 

number of cycles (Figure S2.1 C). The program estimates the respiration rate by 

recording how quickly CO2 levels grow to the target amount (Healy et al., 1996). 1-3 wet 

biomass grams of fine roots and rhizomes were rinsed of soil, patted dry, and weighed. 

Then roots were measured within the soil-respiration chamber (Figure S2.1 B). To 

amplify the signal, roots from multiple plants were aggregated. In cases where our mass 

of fine-root biomass was still not enough to distinguish a signal, we measured rhizomes 

and fine roots both independently and together. For all samples we then dried the roots 

and rhizomes in a drying oven set to 60 degrees C for 48 hours, and normalized the 
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respiration rate by dried biomass. After quality control, we had 10 estimates of rhizome 

respiration and 9 estimates of fine root respiration.  

Constraint	of	Cogongrass	Biomass	and	Allometries	

Fine root biomass allocation (expressed in ED2 in terms of the  fine root to leaf 

biomass ratio) is another important parameter to constrain cogongrass uncertainty 

(Figures 2.3-2.5). We made measurements of fine root and leaf biomass at BARS.  

For each of the 10 4m X 4m plot, a 30 cm2 quadrat was placed in a subplot 

location for biomass harvesting. Quadrats were moved within a subplot to avoid 

seedlings and pre-existing measurements. All the live tillers were counted, and then 

harvested with garden shears. The harvested aboveground biomass was put into a drying 

oven set at 60 degrees C for 7 days. A soil core was taken from the center of the plot. Soil 

cores were taken using a hammer-style soil corer, with a depth of 15.5 cm and a diameter 

of 5.5 cm. The cores were then stored in a freezer until processing. 

The belowground biomass was processed by first thawing the soil core, then 

sieving through a 2mm sieve and a 420 micron sieve. When possible, the soil was sieved 

dry; however, most soil cores required water-draining. Rhizomes and fine roots were kept 

separate. Roots were rinsed of soil before drying. Roots clearly dead or non-cogongrass 

were excluded. Roots with unknown origin were included. Because fine roots can 

become quite small, the stopping point for root picking was to remove roots until the only 

roots found were unbranched roots 4mm in length or smaller. After that, roots were 

removed for an additional ten minutes. Each soil core took approximately two hours to 

process. After roots and rhizomes were removed from the soil they were put into a drying 
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oven at 60 degrees C degrees for 48 hours and then weighed. Aboveground biomass was 

calculated as the sum of the leaf and tillar biomass. Belowground biomass was the sum of 

fine root biomass and rhizomes. We collected 9 fine-root to leaf ratio measurements, 10 

aboveground biomass measurements, and 9 Belowground biomass measurements.  

 

Constraint	of	Cogongrass	Photosynthesis	--	Data	Collection	

In order to measure the parameters Stomatal slope, Vmax, and quantum 

efficiency, we used a LI-COR 6400 to measure light response curves where the level of 

light is started at maximum and slowly ramped down to zero, over 8-21 measurements, 

while other environmental variables are held constant. Light curves used a standard leaf-

chamber portable infrared gas analyzer with a 1098 light source. CO2 was held at either 

400 ppm or 450 ppm depending on ambient levels. The LI-COR 6400 was calibrated 

before all measurements by zeroing the flow rate, CO2 and humidity levels.  

Standard photosynthetic response curves progress too quickly to be able to 

measure stomata at equilibrium, which is required to estimate stomatal slope, therefore 

light curves were taken following the techniques described by Leakey et. all (2006), and 

in the supplement of Wolz et al. (2017).  Our methods differ from Leakey and Wolz’s in 

three small ways. First, measurements were performed on a combination of in vivo and 

excised leaves. Excised leaves were harvested pre-dawn and cut underwater. Leaves were 

harvested from the BARS long-term garden experiment using edge leaves that had grown 

out from under the precipitation exclosures. Leaves suspected of embolism were 

discarded. We attempted five excised leaf light curves, and were only able to produce two 
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reliable curves. We measured field curves separately to compare to the excised curves 

and found that excised leaves occasionally had comparable levels of photosynthesis – but 

sometimes had low or no detectable photosynthesis. We attributed this to embolisms 

forming during the excising process. Leaf-harvesting proved difficult enough that we 

switched to in-vivo leaves early in our measurements. Second, Leakey was able to hold 

all other environmental variables constant. Because the majority of our curves were taken 

in vivo, temperature varied as the day progressed and several curves were subject to 

humidity swings. Finally, the area for cogongrass leaves was smaller than that of the 

chamber. To estimate leaf area the width of the leaf was measured, and multiplied by the 

length of one side of the leaf gasket chamber (√6cm2).  

In order to let the stomatal slope stabilize, we set a minimum wait period between 

two light steps to ten minutes, and a maximum wait period of a half hour. In addition, 

CO2, humidity and flow rate had to be stable for a full minute before measurements were 

taken. All light curves but one began at a starting value of 2000 photon flux density 

before measurement began at 1500 photon flux density. We set the final light curve to 

start at 2300 based on observations that typical days in Florida can achieve up to 2300 

photon flux densities. The LI-COR 6400 was matched before each measurement. Field 

curves were taken during a range of times, from dawn until roughly 2:00 pm. 

To provide additional constraint, two humidity curves were taken. For the first 

curve, incoming radiation was fixed at 1500 photon flux density. The second was 700 

photon flux density. We started at roughly 80% humidity, and kept it steady for about 15 
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mins. Every 15 minutes, we would manually reduce the humidity by about 20-25%. 

Humidity reached a minimum of about 10%. 	

Constraint	of	Cogongrass	Photosynthesis	--	Parameter	Estimation	

Light and humidity curves were used to estimate values for stomatal slope, Vmax, 

and quantum efficiency. Stomatal slope represents how quickly plants adjust their 

stomata to environmental changes like light, humidity, and temperature (Table 2.1). 

Stomatal slope was estimated by fitting a linear model to a plot of stomatal conductance 

versus photosynthesis corrected for humidity and temperature, using the light curves from 

6 different plants (Figure S2.2). Specifically, stomatal slope was estimated using the 

Leuning (1995) model:  

𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙	𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 = 

𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒ghi.Rj	.,ik],] + 	𝑠𝑡𝑜𝑚𝑎𝑡𝑎𝑙	𝑠𝑙𝑜𝑝𝑒

∗
𝑝ℎ𝑜𝑡𝑜𝑠𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠

𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛 ∗ (1+ 𝑣𝑎𝑝𝑜𝑟	𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒	𝑑𝑒𝑓𝑖𝑐𝑖𝑡
	𝑙𝑒𝑎𝑓	𝑙𝑒𝑣𝑒𝑙	𝑤𝑎𝑡𝑒𝑟	𝑑𝑒𝑓𝑖𝑐𝑖𝑡)

 

 

where leaf-level water deficit was set to a C4 default, 0.016. Photosynthesis, 

respiration, vapor pressure deficit, and stomatal conductance were all measured. Vmax 

and quantum efficiency are both parameters that describe how photosynthesis could be 

limited by the plant’s photosynthetic machinery itself (Table 2.1). We estimated Vmax 

and quantum efficiency using a hierarchical Bayesian implementation of the Farquhar, 

von Caemmerer, and Berry (1980) photosynthesis model as described in Feng and Dietze 
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(2013), and implemented in the PEcAn photosynthesis module 

(https://github.com/PecanProject/pecan/tree/develop/modules/photosynthesis).  

 

Statistical Constraint  

Inverse	Calibration	of	Cogongrass	Water	Conductance	and	Growth	Respiration	

 After the inclusion of field data, the largest sources of uncertainty in LAI, NPP, 

and Evapotranspiration were water conductance, fine root allocation, and growth 

respiration (Figures 2.3-2.5). Water conductance and growth respiration pose a challenge 

because they have no physical analog to measure.  

Any additional constraint of water conductance and growth respiration required 

statistical techniques. We used a particle filter to use the field observations of 

aboveground and belowground biomass to narrow the possible values of water 

conductance and growth respiration (Dietze, 2017a). 
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This analysis consisted of four steps.

 
Figure	2.2: Conceptual Diagram of Inverse Calibration using a particle filter. 1) 
Representative values from the joint distribution of water conductance and growth 
respiration are chosen. 2) The parameter values are used to generate an ensemble of 
model runs from the first planting until observations are collected. 3) Parameter values 
are weighted based on an ensemble’s agreement with data. 4) Weights are used to 
constrain initial water conductance and growth respiration parameter distributions.  

 
First, we sampled from the joint distribution of water conductance and growth 

respiration using a Latin hyper cube method described in Fer et al., (2018). Second, we 

ran ED2 200 times using different values for water conductance and growth respiration 

(Figure S2.3). ED2 was run from Cogongrass first planting in 2013 until 2019 to match 

when aboveground and belowground biomass was collected in 2019. ED2 used the same 

initialization and meteorological forcing described in the Uncertainty Analysis section. 

Third, we weighted each ensemble based on prior weight and its ability to recreate 

observations. To calculate this, we compared each model run to our observations and 
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calculated the sum of squares error. We used  9 belowground biomass observations, and 

10 Aboveground biomass observations for constraint.  

 

𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑠< 	=8
K

(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠K 	−	𝜃<	)2	 

𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑠< 	=8
K

(𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠K 	−	𝜃<	)2	 

 
𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑠<	is the sum of squares error for each ensemble member compared to 
aboveground biomass observations. 𝜃< is a single ensemble member’s estimate of 
biomass, and 𝐵𝑖𝑜𝑚𝑎𝑠𝑠K is an observation of biomass.  
 
We then used our error estimates to calculate the standard deviation for each ensemble 

member, Were 𝜎]`_k<K , and 𝜎``_k<Kare the smallest standard deviation between an 

ensemble’s estimate of biomass and observed biomass for aboveground and 

belowground.  

 

 
𝜎]`_k<K = 	w𝑚𝑖𝑛(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑠/10)   
 
𝜎``_k<K = 	w𝑚𝑖𝑛(𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝑠𝑠/9)   
 
Then, we calculated the log likelihood of our observations given the model output. 

𝐿(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠	|𝜃<) 	= 	∑K 𝑁{𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠K, 𝜃<, 𝜎]`_k<K|  

𝐿(𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠	|𝜃<) 	= 	8
K

𝑁{𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠K, 𝜃<, 𝜎``_k<K| 

 
 

Then, we added the logged priors of growth respiration and water conductance.  
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𝑃(𝜃<) 	= 𝑃~g(𝜃<) 	+ 𝑃��(𝜃<)    

 
Where 𝑃~g(𝜃<) and 𝑃��(𝜃<) are the logged priors on water conductance and growth 

respiration respectively. The full prior definitions are found in Table S2.2.  

We weighted each ensemble member by the likelihoods and priors, and calculated an 

effective sample size from that weight, to verify that we had the power to estimate the 

mean and variance of our posterior distributions after weighting.  

𝐿(𝑂𝑏𝑠	|	𝜃<) 	= 	𝐿(𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠	|𝜃<) 	+ 	𝐿(𝐵𝑒𝑙𝑜𝑤𝑔𝑟𝑜𝑢𝑛𝑑	𝐵𝑖𝑜𝑚𝑎𝑠𝑠	|𝜃<) 

𝑊𝑒𝑖𝑔ℎ𝑡< 		= 	
𝑒�(�`.	|	�A)	-	�(�A)	

∑< 	𝑒�(�`.	|	�A)	-	�(�A)
 

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒	𝑆𝑎𝑚𝑝𝑙𝑒	𝑆𝑖𝑧𝑒	 = 	1÷	8
<

	𝑊𝑒𝑖𝑔ℎ𝑡<
2	 

Fourth, to constrain our parameter distributions of water conductance and growth 

respiration, we calculated a weighted mean and variance of our ensembles. We then used 

moment matching to translate the weighted mean and variance of our ensemble into 

matching beta (growth respiration) and lognormal (water conductance) posterior 

distributions (Table S2.3).  

Model	Assessment 

To check the effectiveness of our particle filter, we compared our model’s ability 

to recreate biomass observations constrained via just targeted field work, or both targeted 

field work and statistical constraint. We compared two sets of 50 ensemble member runs, 

that were generated as described in the Uncertainty Analysis section. The two ensembles 
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of modeled biomass  evaluated on their ability to capture the median observed biomass 

using a Continuous Ranked Probability Score (CRPS) (Jordan et al., 2019). We used the 

median observation because observations were right-skewed (Figure 2.8). When 

interpreting CRPS scores, smaller numbers represent a better score.  

 
Results  

 

Priors 

The parameters with the largest partial variances were fine root allocation, 

specific leaf area, and stomatal slope. Specific leaf area and fine root allocation were 

important across all three outputs (Figures 3-5 Priors Only). Some outputs had high 

partial variance attributed to growth respiration (NPP, LAI), quantum efficiency (NPP), 

vmax (Evap), and water conductance (LAI).  Growth respiration has the largest partial 

variance for NPP.  

Targeted Field Work 

Based on our analysis we designed a targeted field season to measure highly 

uncertain parameters (Figure 2.1). We included field data from 6 photosynthesis curves,  

19 root respiration estimates, 9 fine-root to leaf ratio measurements, and 96 SLA 

measurements.   

With the constraint from our field data, we reduced parametric uncertainty for the 

majority of parameters (Figure 2.6; Figures 2.3-2.5 CV%). We had large parametric 

uncertainty reductions in specific leaf area, root respiration, and Vmax. Fine root 
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allocation, quantum efficiency and stomatal slope all had smaller levels of constraint 

(Figure 2.6; Figures 2.3-2.5 CV%).  Vmax and quantum efficiency’s means shifted 

lower; Vmax (from 248  to 18), and quantum efficiency (from 0.057 to  0.047). Stomatal 

slope’s mean shifted higher (from 3.4  to  4.53) (Figure 2.6; Table S2.4). 

Field data reduced output uncertainty as well. The SD in LAI decreased by a 

factor of 2.52, and the mean shifted to a smaller LAI, from 1.62 to 0.98 with field data 

(Figure 2.7).  NPP had an ~ 30 % reduction in SD, and had a lower mean NPP value 

(from 2.57 x 10-8 to 1.78 x 10-8 with field data) (Figure 2.7). Evapotranspiration SD 

reduced by ~ 43 % and moved to a lower rate of water loss (form 4.16 x 10-6  to 3.69 x 10 

-6 with field data) (Figure 2.7).  

 Partial variance attributed to model-specific parameters grew after incorporating 

field data. Across LAI, Evapotranspiration, and NPP, the most important parameters 

became water conductance, growth respiration, and fine root allocation (Figures 2.3-2.5 

Variance). Elasticity for several parameters changed, but only translated into an increase 

in partial variance for water conductance and growth respiration. This suggested 1) that 

model-specific parameters started to become the dominant source of uncertainty after 

incorporating field data, and 2) that the updates in field-constrained parameters caused 

the model to shift to a part of parameter space that was more sensitive to trade-offs in the 

water and carbon balance.  
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Statistical Constraint  

Because cogongrass may have effects on water and carbon cycling in the 

southeast (Fahey et al., 2018), we elected to pursue statistical methods to constrain water 

conductance and growth respiration (Figure 2.1). After applying a particle filter, we 

found that our overall ensemble had an effective sample of 40.23. 

Water conductance was constrained by 2.5 fold on a log scale (~270-fold on the 

linear scale) and mean water conductance lowered (from 0.7003  to  0.0008) (Figure 2.6; 

Table S2.4). Growth respiration saw a 1.6 fold reduction in uncertainty, and narrowed the 

distribution at both ends, with a larger mean (from 0.29 to 0.35) (Figure 2.6; Table S2.4). 

When compared to the biomass data, model outputs were closer to observations after 

statistical calibration. When we compared the CRPS scores of model output with 

statistical constraint and field data constraint, the CRPS scores were lower than the CSRP 

scores of model output when constrained with field data alone. CRPS for aboveground 

biomass fell from 0.0187 to 0.0164. The CRPS for belowground biomass fell from 

0.0205 to 0.0191(Figure 2.8). Finally, CRPS score for the ratio of above to belowground 

biomass fell from 1.443 to 0.9148 after statistical calibration (Table S2.5; Figure S2.5).  

Despite the reduction in parameter uncertainty associated with calibrating the 

model with the particle filter (Figure 2.6), the partial variance associated with water 

conductance for NPP, LAI and evapotranspiration actually increased due to a further 

increase in elasticity (Figures 2.3-2.5 Variance).  

The uncertainty around NPP standard deviation increased by 4% from the field-

work only condition, and had a lower mean (from 1.78 x 10-8 to 1.33 x 10-8) (Figure 2.7). 
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Discussion 

We set out to systematically constrain parametric uncertainty in an ecosystem 

model’s representation of an invasive species. We started first by quantifying the 

uncertainty and sensitivity in the parameters’ priors. After that, we designed a field 

season that targeted the largest sources of output uncertainty. Our field data constrained 

the overall uncertainty in LAI, NPP, and Evapotranspiration. Incorporating our field data 

changed the parameters the model was sensitive to – shifting sensitivity to photosynthetic 

control parameters, and SLA. While we were able to use our field data to indirectly 

constrain the partial variance attributed to growth respiration, the partial variance 

associated with water conductance increased. When we used a particle filter to reduce the 

parametric uncertainty in distributions of water conductance and growth respiration, the 

output uncertainty in NPP and Evaporation increased, and LAI slightly lowered. After 

both cycles of constraint, Cogongrass had a lower quantum efficiency and higher 

stomatal slope compared to priors (Figure 2.6).   

We hypothesized that after constraint, cogongrasses’ mean quantum efficiency 

value would be higher than the mean of the prior, reasoning that high quantum efficiency 

translates into higher productivity. We found the opposite (Figure 2.6; Table S2.5). This 

could be because cogongrass has some physiological aspect that makes it less light-use-

efficient. Bundle sheath leakage of CO2 has been shown to explain some variation in 

quantum yield in C4 grasses (Skillman, 2008). Experimentally, shading reduced 

cogongrass establishment, biomass, and sprouting (Estrada et al., 2016; Hamidavi et al., 
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2021). In contrast, we correctly hypothesized that mean stomatal slope would be higher 

than the prior estimate (Figure 2.6). In fact, cogongrass’ mean stomatal slope is similar to 

LeBauer et al., (2013)’s stomatal slope estimate (mean 4.1 vs 4.5 Table 2.4) for Panicum 

virgatum, a grass used in biofuel production. These results suggest that cogongrass’ 

photosynthesis is relatively efficient in hot and dry conditions, but has lower-light-use 

efficiency than other C4 grasses. It’s unclear how drought tolerant cogongrass is. 

Greenhouse experiments found that cogongrass drought stress reduced biomass and 

reproduction more than nutrient stress (Hamidavi et al., 2021; B. Zhang et al., 2021), but 

also found that cogongrass can survive ~30 day periods without watering. A garden 

experiment found that precipitation exclusions had little effect on cogongrass (Alba et al., 

2017; Fahey et al., 2018). Finally, we found that root-respiration had a mean similar to 

that of C4 grasses in general. While this was contrary to our hypothesis, our sensitivity 

analyses showed that cogongrass was not sensitive to root respiration (Figures 2.3-2.5). 

This trait seems unlikely to confer a competitive advantage to cogongrass.  

 We hypothesized that each cycle of constraint would reduce output uncertainty. 

Our first round of field-based constraint did reduce output uncertainty (Figure 2.7), but 

further statistical calibration increased output uncertainty despite lowering parametric 

uncertainty (Figure 2.6). How is it possible to narrow parameter distributions without 

reducing the uncertainty in the model itself? Certainly, the changes to model elasticity 

contributed (Figures 2.3-2.5). In addition, the data we used to construct the particle filter 

was belowground and aboveground biomass. The ED2 model we used only has a limited 

number of ways that congress could allocate biomass, which meant that linear changes to 
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one parameter were not able to recreate the variability of observations (Figure S2.3). 

Much of the increased output uncertainty was attributed to water conductance, which is a 

parameter that measures the movement of water in terms of carbon allocated to roots 

(Table 2.1). With limited options for allocating roots, water conductance became more 

important.  

Water conductance and growth respiration have been dominant sources of 

uncertainty in previous ED2 forest and grassland projections (Dietze et al., 2014; Raczka 

et al., 2018; Shiklomanov et al., 2020). One tool for decreasing the uncertainty associated 

with water conductance is ED HYDRO. ED HYDRO is a version of ED developed to 

translate water conductance into mechanistic hydraulic traits (Xu et al., 2016). ED 

HYDRO allows for measurement of hydraulic parameters, but could come at the cost of 

uncertainty around belowground carbon dynamics because of increased complexity 

(Cowdery, 2021). ED HYDRO is a single example of a tool addressing a common 

question: Should we restructure a model to reduce parameter uncertainty, if it introduces 

complexity? Optimizing model complexity for forecast skill is an area of active research 

(Famiglietti et al., 2021; Fisher & Koven, 2020). Large parameter uncertainty can trade-

off with model structural error, and disguise opportunities for restructuring (Buotte et al., 

2021; Famiglietti et al., 2021; Medlyn et al., 2015). Finding the perfect model complexity 

is still an open question, but reducing parameter uncertainty can inform restructuring 

decisions.  

Our workflow successfully reduced parameter uncertainty to the point where 

structural uncertainty began to dominate. The order of our workflow highlighted  the 
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strengths of each constraint technique.  Because we already knew the uncertainty and 

elasticity of each parameter from prios, we were able to prioritize parameters to measure 

during field work. By incorporating field data before statistical constraint, we fixed the 

modeled response to predictions that are consistent with congongrass’s traits, which 

prevented the statistical calibration from selecting biologically implausible parameter 

values in later stages. It also let us collect data that we could use for  statistical calibration 

later on.  

Our workflow synthesizes the parameter uncertainty reduction strategies groups 

are pursuing ad hoc. The sensitivity and uncertainty analyses we conducted at each stage 

are already used across a swath of environmental models: from simple ecosystems 

(Trotsiuk et al., 2020)  to radiative transfer (Meunier et al., 2022; Shiklomanov et al., 

2016), aquatic food webs (Bracis et al., 2020), and climate simulations (Woodard et al., 

2021). Meunier, van der Heijden, et al., (2021) first conducted a meta-analysis of 

literature values (Figure 2.1), and then statistically constrained the highly uncertain 

parameters that remained (Figure 2.1) (Meunier, van der Heijden, et al., 2021; Meunier, 

Verbeeck, et al., 2021). By organizing parameter-uncertainty steps into a single 

workflow, we demonstrate how these techniques can work together, and systematically 

reduce parameter uncertainty.  

 Deciding on an acceptable level of parameter uncertainty changes with 

application. Testing a hypothesis with a model may have a higher level of acceptable 

uncertainty than model projections for policy development. In this paper, we consider the 

point at which different forms of uncertainty begin to dominate a natural stopping point. 
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Conclusions 

All process-based models need a battle plan for how they can reduce parameter 

uncertainty. We demonstrate a workflow for reducing parametric uncertainty. We suggest 

using iterative sensitivity and uncertainty analyses that begin with broad priors, 

incorporate literature values via a meta analysis, move to targeted measurements, and end 

with statistical calibration or model restructuring. We demonstrated how this played out 

with the calibration of parameters for an invasive grass, and found that model parameters 

began to dominate after incorporating targeted data, and that model structure error began 

to dominate after statistical calibration.  

As a community, we need to actively manage parameter uncertainty. High 

parameter uncertainties can prohibit models from addressing pressing issues, like the 

future of the carbon cycle, and society’s capacity to conserve and adapt (Hobbs et al., 

2015; IPCC, 2014; National Research Council, 2001). Managing parameter uncertainty is 

a challenge for any field using process-based models (Donatelli et al., 2017; Fatichi et al., 

2016; Lai et al., 2021; Tracy et al., 2018; Y. Zhang et al., 2019). Our workflow offers a 

practical solution to systematically reduce parameter uncertainty. 
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CHAPTER THREE: HOW FUTURE CLIMATE MEDIATES 

COGONGRASS INVASIONS IN SOUTHEASTERN FORESTS 

Abstract 

Imperata cylindrica, (cogongrass) is an invasive grass spreading across the 

southeastern United States and into what remains of longleaf pine forests. Cogongrass 

outcompetes native understory vegetation, and lowers regional biodiversity. However, 

despite the social and economic importance of pine-oak savannas, few studies have 

looked at cogongrass’ effect on pine-oak forests. In addition, the photosynthetic strategy 

of cogongrass (C4) and native trees (C3) provide different benefits under future climates, 

and could change the severity of cogongrass invasions under climate change. To test this, 

we modeled a cogongrass invasion under four climate treatments (Elevated CO2,  

Elevated Temperature, Elevated CO2 + Temperature, and Present Day), and three 

competition scenarios (Cogongrass alone, Trees alone, Cogongrass + Trees). We found 

that cogongrass did not survive past 15 years in the understory of our undisturbed model 

forests. We found that cogongrass had less biomass and density under hotter temperature 

treatments when grown alone, and faster extinction rates when competing with trees. 

Despite cogongrass’ extinction, it changed the dominant tree species from oaks to pines. 

This suggests 1) pine dominance can emerge without fire from interspecies competition 

alone, and 2) that cogongrass can have long-term effects on community structure.  

Introduction 

Invasive species can upend ecosystems by changing species composition and in 

turn cause changes to the carbon balance of an ecosystem (Gaertner et al., 2017). But 
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composition shifts do not always translate into changes to carbon cycling as invaders 

could replace functionally similar species (Castro-Díez & Alonso, 2017). Understanding 

how and when invaders cause changes to the biogeochemistry of a system is important 

both because plants are regulators of climate, but also because C cycle changes can be 

precursors to shifts in ecosystem disturbance regimes and vegetation structural 

composition (Gaertner et al., 2017).  

At the same time, climate change is altering how ecosystems cycle carbon. 

Through the combustion of fossil fuels and land use change, humans have caused a build 

up of carbon dioxide (CO2) in the atmosphere that the earth has not experienced in over 

20 million years (Pearson & Palmer, 2000). Elevated CO2 traps longwave radiation in the 

atmosphere, which warms the planet (IPCC, 2014). In terrestrial systems, elevated CO2  

and temperature caused plants to assimilate increasing levels of carbon globally (Le 

Quéré et al., 2013). Temperature changes humidity, which has physiological implications 

for photosynthesis (Allen et al., 2010; Grossiord et al., 2020), and has been associated 

with tree mortality. Temperature changes can also trigger extreme disturbance events like 

droughts or wildfires (McDowell et al., 2018).  

Climate change shapes ecosystems globally – but so do other anthropogenic 

activities. In Canada, land-use change had a larger effect on species composition than 

climate change in the 19th century (Danneyrolles et al., 2019). Global trade and 

environmental change has increased the number of biological introductions (Seebens et 

al., 2018). Biological introductions can alter evolutionary trajectories, and upset 

ecosystem processes (Antonio & Vitousek, 1992; D’Antonio & Vitousek, 1992; 
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Ehrenfeld, 2010). Human introduction of novel species and altered climate regimes are 

both intensifying forces of global change. Understanding how they interact with each 

other is essential to understanding future ecosystems. 

We aim to test if an invasive grass changes biogeochemical cycling when it 

invades, and to assess how future climate affects cogongrass invasions. Imperata 

cylindrica (cogongrass) has infested the southeastern United States since its introductions 

in 1912 and 1920s (Estrada & Flory, 2015). Cogongrass is predicted to spread (Bradley et 

al., 2010) to the majority of US timberland, including much of the remaining old-growth 

Longleaf pine forests (Kirkman & Mitchell, 2006). Pine-oak woodlands and savannas are 

culturally and economically significant (Dezember, 2018; Nordman et al., 2021); If 

cogongrass invasions decrease forest productivity this could have important cumulative 

effects on economic yields and forest use, in addition to impacts on carbon cycling. 

 We currently have conflicting evidence about the impacts of cogongrass on pine 

forests. When invading, cogongrass outcompetes native-understory vegetation, becoming 

a taller, denser, monoculture (Brewer, 2008; Fahey et al., 2018). Cogongrass could shift 

pine forests demographically by preventing seedlings from establishing. Daneshgar et al. 

(2008) and NeSmith et al. (2017) found cogongrass reduced pine sapling survival. 

However, NeSmith et al. (2018) also found temporary facilitation between pine saplings 

and cogongrass during drought treatments, even though overall survival was reduced. 

NeSmith et al’s study hints that cogongrass’ effect on trees could be mediated by climate. 

Cogongrass could also change the landscape by lowering the productivity of adult pines. 
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Cogongrass has been a part of the landscape for ~100 years, but there are no studies that 

quantifies how cogongrass changes productivity in pine-oak savannas. 

 The next 100 years will subject the Southeast to an unprecedented climate regime. 

Because the Southeast is one of the United States’ largest regional sinks of carbon 

(Crevoisier et al., 2010; Lu et al., 2015), there are several modeling studies that tried to 

capture how southeastern forests will respond biogeochemically to climate change. They 

agree that the Southeast will likely remain a carbon sink, but disagree on if the size of the 

sink will decrease (Luo et al., 2008; Miller et al., 2016; Thomas et al., 2017; Zhao et al., 

2010, 2013), or increase (Hatch et al., 1999). They also disagree about the drivers of the 

forest-based carbon sink, with candidates including droughts, elevated CO2, land use 

change, management techniques, disturbances, and nutrient limitation. Free-air CO2 

enrichment experiments, which exposed ecosystems to artificially elevated levels of CO2, 

found that elevated CO2 increased plant growth and that the effect was more dramatic in 

trees than in grasses (Ainsworth & Long, 2004). Thus there is reason to believe that 

future climate regimes will change how forests cycle carbon, and that it will affect C3 

pines and oaks, and C4 grasses differently.   

The different photosynthetic strategies of trees and cogongrass could control how 

climate interacts with invasion. As atmospheric CO2 increases, managing for cogongrass 

could get cheaper as C3 pines experience CO2 fertilization (McCarthy et al., 2010). 

Conversely, elevated temperatures could cause invasions to worsen in their effects or 

hasten in their timing, as C4 plants are more water-use-efficient (Still et al., 2003). 

Experimental work by Chuine et al. (2012) found that the invasive C4 grass Setaria 
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parviflora had higher biomass and fecundity under warmer and dryer conditions (Chuine 

et al., 2012). Photosynthetic strategy can interact with climate to dictate competitive 

interactions between grasses and trees. For example, Pau et al., (2013) found that C3 and 

invasive C4 grasses in Hawaii inhabited areas with distinct climates and different levels 

of tree-cover (Pau et al., 2013). By contrast, cogongrass outcompetes native C4 grasses, 

saplings, crops, and other invasive-plants across a range of land cover types (Estrada & 

Flory, 2015; Fahey et al., 2018). But understanding how future climate mediates 

cogongrass-pine competitions targets the interaction that defines the landscape as a 

savannah: trees vs grasses.  

 To determine if cogongrass changes productivity in the southeast, we modeled 

cogongrass invasions into mixed oak and pine stands and estimated its effect on 

Southeastern forests both now and under future climate and CO2 treatments (Figure 3.1). 

First, we hypothesize that when grown in competition with pines and oaks, that 

cogongrass will establish in the understory, because it is a successful invasive species. 

Second, we hypothesize that cogongrass will have larger biomass and more individuals 

under hotter climate treatments when simulated in a monoculture, and when simulated 

competing with trees. We hypothesize this because cogongrass appears to be drought 

adapted. Cogongrass survives droughts (Zhang et al., 2021), withstands high 

temperatures (Hamidavi et al., 2021), and has drought-optimized traits (Chapter 2). 

Because cogongrass’s C4 photosynthesis strategy uses water efficiently, we hypothesize 

that cogongrass will have the largest competitive advantage over C3 trees under hot 

temperature treatments. Even in monoculture, we hypothesize that cogongrass’s biomass 
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will be larger under hotter treatments because cogongrass’s photosynthetic machinery 

requires lower activation energy in hotter temperatures (Jones, 2013; Longo et al., 2019). 

Third, because cogongrass decreases seedling survival and competes with adults, we 

hypothesize that oaks and pines grown with cogongrass will have lower biomass levels, 

and sparser density compared to oaks and pines grown alone. Finally, because elevated 

CO2 benefits C3 species more than C4 species, we hypothesize that that cogongrass will 

have less biomass and fewer individuals when competing with C3 oaks and pines under 

elevated CO2 treatments.  
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Figure 3.1: Illustration of competition treatments and meteorology treatments. Elevated 
CO2  + Temperature levels are based on radiation and CO2 levels from RCP 8.5. Present 
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day meteorology is generated from cycling the climate and CO2 levels from 2006-2026. 
Temperature has RCP 8.5 temperature and other climate increases while CO2 is held 
constant. Elevated CO2  has RCP 8.5 -level CO2 increases and temperature and climate 
resampled from 2006-2026. See Figure S3.1 for more information.  

 
Methods 

The Ecosystem Demography 2 (ED2) model 

We used Ecosystem Demography 2 (ED2) model to predict ecosystem responses 

to cogongrass invasions, because it both represents competitive interactions and has a 

fully dynamic energy, water, and carbon budget (Longo et al., 2019; Medvigy et al., 

2009). It has previously been used to model southern pine forests under climate change 

treatments (Dietze et al., 2014; Miller et al., 2016;De Kauwe et al., 2014; Medlyn et al., 

2015; Walker et al., 2014). ED2 is described generally in the methods section of Chapter 

2, and in detail in Longo et al., (2019). Broadly, ED2 similates cohort-level processes like 

photosynthesis, respiration, and transpiration and allocates any net carbon to biomass 

pools (i.e. roots, leaves, wood). These biomass pools then control plant-cohort access to 

water, light, and CO2. Light competition is simulated by treating each cohort’s canopy as 

an infinitely thin-flat layer arranged by cohort height, where the amount and type of 

radiation changes at each layer, according to the modeled cumulative leaf area at each 

height.  

Within ED2, grasses have no wood pool, have a maximum height of 1.5 m, and 

grass-heights are estimated from an allometry relating biomass to height as modified by 

specific-leaf-area. Tree heights come from two diameter-at-breast-height (DBH) based 

allometries (biomass to DBH, DBH to height), and trees allocate carbon to leaves, fine 



 
	

 125	

roots, sapwood, and storage, and from storage to wood and reproduction. Different types 

of grasses and trees are simulated by calibrating Plant Functional Types (PFTs). 

Parameters associated with PFTs start with priors for PFT traits based on broad 

categories (i.e. “plants”, “trees”), which are narrowed by including PFT-specific trait 

measurements into a Hierarchical Bayesian meta-analysis (LeBauer et al., 2013). We 

used three PFTs: “Temperate Southern Pines”, “Temperate Southern Mid-successional 

Hardwood” and a cogongrass PFT (Chapter 2). Temperature Southern Pines, and 

Temperate Southern Mid Hardwoods have been both used to simulate southern forests, 

and forests under elevated CO2 (Dietze et al., 2014; Miller et al., 2016;De Kauwe et al., 

2014; Medlyn et al., 2015; Walker et al., 2014). Full details of parameters associated with 

PFTs are available via https://www.betydb.org/.  

  

Modeling experiments 

To test our hypothesis that cogongrass would have higher biomass and density 

under higher temperatures, we ran cogongrass alone under 4 climate scenarios from 2006 

to 2100 (Figure 3.1). The four meteorological treatments were based on the Coupled 

Model Intercomparison Project phase 5’s Representative Concentration Pathway 8.5 

(RCP8.5)  (Pchauri; Rajendra K. et al., 2014), and the Global Fluid Dynamics 

Laboratory’s CM3 model, ensemble member r1i1p1 (Geophysical Fluid Dynamics 

Laboratory, 2017). This model and ensemble member combination was chosen to 

represent approximately the central tendency of climate projections under scenario 8.5 

(Jiang et al., 2012; Yin et al., 2013). Under the 8.5 scenario, simulated climate variables 
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like temperature, and humidity, change in response to elevated CO2. Notably, 

temperature increases. In our four meteorological treatments, we separated the effects of 

elevated CO2  and climate responding to elevated CO2. Our “Elevated CO2 + 

Temperature” treatment is equivalent to RCP8.5. Our “Temperature” treatment is to 

simulate future climate without increasing CO2 , and our “Elevated CO2” is increasing 

CO2 without future climates. In our “Present Day” treatment, the CO2 and climate from 

2016-2026 are resampled (Figure 3.1; Figure S3.1). 

 In our cogongrass only runs, each meteorological treatment included 50 ensemble 

members to estimate parameter uncertainty. Each member within the 50 ensembles had 

parameter values randomly sampled from ± 1 SD around the joint parameter posterior. 

Parameter distributions match those described in Chapter 2. 

To test how cogongrass performed against forests, the same four climate scenarios 

were repeated for a tree-only treatment and a cogongrass + tree treatment (Figure 3.1). In 

these experiments we ran single ensemble-member runs with parameters held at their 

mean value. These experiments were repeated twice. In the first round, we ran 4 climate 

treatments by 3 competition treatments, allowed to grow from 2006 until 2100. Because 

cogongrass was unable to persist past the point where our climate treatments diverged 

(Figure 3.4), we ran a second round of experiments from 2085 until 2100 with the 

addition of a  simulated external propagule pressure (i.e. seed rain from outside the 

stand). 
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Model Initialization  

The ED2 initial conditions for cogongrass were fixed at the initial planting 

biomass and density used in Alba et al.’s  cogongrass experiment (Alba et al., 2017). For 

trees, and cogongrass + trees competition treatments we initialized ED2 using forest 

inventory data (See below) from an existing site, specifically a site from Moody Air 

Force Base (AFB). We chose a site within Moody AFB because Moody AFB is centrally 

located in the Southeastern US (lat 30.984, lon -83.175), and it represents a midpoint 

along a temperature and precipitation gradient (Figure S3.2; Figure 4.2). We then chose 

the site within Moody AFB that had a tree density closest to the mean density across a 

dataset of 115 sites, from across the Southeastern US (Figure S3.3; Figure 4.2). Our site 

had gone ~ one year without a prescribed burn at the time of sampling (Allan et al., 

2021).  

Our site was a 500 m2 circle, with trees  >3cm Diameter at Breast Height (DBH) 

recorded. Our site had a total of 71 trees with a mix of Pinus clausa (N=3, DBH =12-32.5 

cm), Pinus palustris (N=40,  DBH = 3.4-22.9 cm), Quercus nigra (N=24, DBH = 3.3-

14.5 cm), and the family Asteraceae (N=4, DBH = 3.6-7 cm) (Figure S3.4). Pinus clausa 

and Pinus palustris both were represented in ED2 by the Temperate Southern Pines PFT. 

Quercus nigra was represented by the Temperate Southern Mid Hardwood PFT. We 

excluded the Asteraceae. The site had loamy sand soils. Soils texture was estimated from 

the Soil Survey Geographic Database (SSURGO) accessed through the soilDB R package 

(Beaudette et al., 2022; Soil Survey Staff, 2022).  
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Results 

Cogongrass by Climate Treatments 

 We found that cogongrass’s biomass and density over a century was not 

dramatically altered between climate treatments, but that treatments with elevated 

temperature had lower biomass and density (Figures 3.1-3.2). In the final decade of 

model simulation (2090-2100), Cogongrass under elevated Temperature had a mean 

density of 7.97 plants/m2 (SD 4.56), Elevated CO2 + Temperature 11.6 plants/m2  (SD 

8.08). Present Day had a mean of 15.8 plants/m2 (SD 7.95), and Elevated CO2 had a 

mean of 18.0 plants/m2 (SD 9.52).  Biomass was lowest under the Temperature treatment 

(2090-2100 mean 0.056 kgC/m2, SD 0.024), second lowest under Elevated CO2 + 

Temperature 0.070 kgC/m2 (SD 0.019), followed closely by Present Day 0.084 kgC/m2 

(SD 0.018). Biomass was highest under Elevated CO2 0.093 kgC/m2 (SD 0.013).  The 

treatment scenarios fell within overlapping 95% confidence intervals (Figures 3.1-3.2). 
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Figure 3.2: Number of cogongrass plants over century, Upper panel shows mean quantile 
value. Lower panels show the mean quantile of each climate treatment against a 95% CI. 
Climate treatments diverge after 2026. 
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Figure 3.3: Cogongrass aboveground biomass over century, Upper panel shows mean 
quantile value. Lower panels show the mean quantile of each climate treatment against a 
95% CI. Climate treatments diverge after 2026. 

Competition Treatments 

When we modeled cogongrass competing with a pine-oak stand, we found that 

pines dominated the stand within 10 years, reduced oak abundance and biomass, and 

caused cogongrass to reach extinction (Figure 3.4; Figures 3.5-3.6 Top). This was true in 

both our century-long runs of cogongrass and trees competing, and our 15-year runs from 

2085-2100. Despite congongrass’s inability to thrive in the ED2 modeled understory, we 

can still assess impacts of climate change induced stress on cogongrasses' demography 

and biomass by assessing the impacts of the different climate treatments on the timing of 

extinction. Cogongrass was slowest to decline under Elevated CO2 and Present Day 

treatments, which had positive biomass and density 4-8 years after other treatments hit 

zero (Figures 3.5-3.6 Top). Trees suppressed cogongrass’ cumulative biomass and 

cumulative density most dramatically under Elevated CO2 (-12.5 kgC/m2 , -2259 

plants/m2 ), then Present Day (-11.1 kgC/m2 , -2095 plants/m2 ), and Elevated CO2 + 

Temperature (-10.6 kgC/m2 ,  -1616 plants/m2 ). Temperature had the smallest 

cumulative reduction (-8.4 kgC/m2 , -1166 plants/m2 ) (Figures 3.5-3.6 Bottom Right). 

Cogognrass’ density and biomass both responded to climate and competition treatments 

in the same direction, but they did not scale directly, and their relationships were different 

across treatments (Figure S3.5).  

Cogongrass affected the trees as well. When the pine-oak stand was run without 

cogongrass, oaks had larger biomass and density, and pines had low biomass and density 
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(Figure 3.4, Figures 3.7-3.8). We estimated that cogongrass had a negative effect on 

overall tree biomass and density for most climate treatments (Figure 3.8 Bottom Left), 

but the pine PFT saw a substantial increase in biomass and density when grown alongside 

cogongrass (Figures 3.7-3.8). When dominant, oaks were more numerous and productive 

than pines in all climate treatments except present day (Figures 3.7-3.8 Bottom). Trees 

saw the largest biomass and densities under the Elevated CO2 treatment, regardless of 

PFT (Oaks: 5.99 kgC/m2 309 plants/m2, Pines: 4.98 kgC/m2  268 plants/m2 ) (Figures 

3.7-3.8), and the lowest densities and biomasses under the temperature treatment (Oaks: 

0.238 kgC/m2 9.42 plants/m2, Pines: 0.498 kgC/m2 12.2 plants/m2 ).  
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Figure 3.4: Cogongrass competing with Pines and Oaks from 2006–2100. Figure shows 
results from the present-day climate treatment. Modeled cogongrass reached extinction 
before climate treatments diverged. Bottom panel is the data from the boxed-section of 
the top panel 
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Figure	3.5: Top - Annual July density of Cogongrass grown with trees from 2085–2100. 
Ticks designate timing of events. Triangles are when cogongrass hits its maximum 
number of plants. Squares are when cogongrass number of plants falls below its initial 
value, and circles are when cogongrass hits its minimum number of plants. Temperature 
and Elevated CO2 + Temperature hit zero, but Elevated CO2 and Present Day did not. 
Bottom Left - annual July density of Cogongrass grown alone from 2085–2100. Bottom 
Right - Cumulative sum of the difference between the Cogongrass and Trees treatment 
and Cogongrass-monoculture treatment.  
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Figure 3.6: Top - Annual July aboveground biomass of Cogongrass grown with trees 
from 2085–2100. Ticks designate timing of events. Triangles are when cogongrass hits its 
maximum biomass. Squares are when cogongrass biomass falls below its initial value, 
and circles are when cogongrass hits its minimum biomass. Temperature, Elevated CO2 + 
Temperature, and Elevated CO2 hit zero. Present Day did not. Bottom Left - annual July 
aboveground biomass of Cogongrass grown alone from 2085–2100. Bottom Right - 
Cumulative sum of the difference between the Cogongrass and Trees treatment  and 
Cogongrass-monoculture treatment.  

 

Figure 3.7: Effect of competition on tree density. Top Left- Oaks and pine PFTs grown 
with cogongrass from 2085-2100. Top Right - Oaks and pine PFTs grown without 
cogongrass from 2085-2100. Bottom - Difference in tree density between trees-only and 
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cogongrass + trees competition treatments summed from 2085-2100. 

 

Figure 3.8: Effect of competition on tree biomass. Top Left - Oaks and pine PFTs grown 
with cogongrass from 2085-2100. Top Right - Oaks and pine PFTs grown without 
cogongrass from 2085-2100. Bottom - Difference in tree biomass between trees-only and 
cogongrass + trees competition treatments summed from 2085-2100 

 

Discussion 

We aimed to quantify the effect of cogongrass invasions on southeastern forests, 

and see if future climate mediates the severity of those effects. We found that cogongrass 

monocultures performed poorly under hotter climate treatments. When modeled in 

competition with trees, cogongrass was unable to persist past 20 years into the 

simulation, but facilitated pine dominance over oaks. 
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Cogongrass’s extinction when grown with trees was surprising. Cogongrass is a 

successful invader across the southeastern United States. Cogongrass’ extinction could be 

an artifact of ED2’s light competition implementation (Fisher et al., 2018) as ED2 is 

known to over-predicted understory tree mortality due to shading in highly productive 

sites (Medvigy & Moorcroft, 2012). Uncertainty around NPP has been attributed to leaf 

transmittance and clumping parameters (Meunier et al., 2022; Viskari et al., 2019). 

Alternatively, cogongrass may survive and compete in understories via mechanisms not 

present in ED2. Cogongrass practices allelopathy (Estrada & Flory, 2015), and has been 

shown to redistribute photosynthate along clonal networks to compensate for shading 

(Estrada et al., 2020). Cogognrass’ traits may change quickly to adapt to new situations 

(Hiatt & Flory, 2020). Extinction in a shaded stand may also be a realistic finding. 

Experimentally, cogongrass tillers have failed to survive in shaded forest plots (Estrada et 

al., 2017). Cogongrass’ low quantum efficiency (Chapter 2) is consistent with low-

performance in the understory. Disturbances like agriculture and development are 

mechanisms that drive cogongrass’ success as an invader (Estrada et al., 2017; Estrada & 

Flory, 2015), but our forests were simulated with only climate and cogongrass as 

disturbances. Southeastern forests are also frequently burned (Flannigan et al., 2009; 

Kirkman et al., 2013; Mitchell et al., 2006). Cogongrass might realistically not survive 

the shade of a 15-year undisturbed forest, and cogongrass may be common across the 

southeast because 15-year undisturbed forests are rare.  

We found that cogongrass had the lowest biomass and density under elevated 

temperatures. We hypothesized cogongrass would thrive under elevated temperatures. 
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While higher temperatures can facilitate metabolically controlled processes like 

photosynthesis, plants have a threshold at which respiration grows, and temperature has a 

negative effect on net photosynthesis (Bonan, 2008; Jones, 2013). Cogongrass may be 

able to survive high temperatures, but still perform better under cooler treatments. Tees 

suppressed the least amount of cogongrass biomass and density under elevated 

temperature treatments, but that may be because cogongrass had less biomass and density 

in those treatments, not because cogongrass had a competitive advantage. Photosynthetic 

strategy may have made a difference. Temperature had an effect on cogongrass, but for 

trees CO2 and temperature had an effect. This is consistent with experimental findings. In 

free-air CO2 enrichment experiments, trees increase their biomass under elevated CO2 

until nutrient limitation (Ainsworth & Long, 2004). In open-top CO2 enriched field 

chambers,  cogongrass grew taller and had greater water-use-efficiency under elevated 

CO2, but the effect varied by ecotype (Runion et al., 2016).    

We hypothesized that cogongrass invasions would decrease the biomass and 

density in trees. Our hypothesis was supported in all climate treatments except present 

day, but not for the reasons we expected. Cogongrass facilitated pine dominance over 

oaks. Because oaks were more productive and numerous, cogongrass decreased tree 

biomass and density overall. But pine biomass and density increased with a cogongrass 

invasion. We know that cogongrass can interact with pines in complex ways. For 

example, two years into the drought by invasion experiment described by Alba et al., 

(2017), cogongrass reduced seedling survival, but offset drought stress for pine seedlings 

(Alba et al., 2017; Fahey et al., 2018). After three years, cogongrass began shading out 
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pines, and pines experienced dual stressors of invasion and drought (NeSmith et al., 

2018). After five years, pines experiencing a single stressor (drought or invasion) were 

larger than either pines grown under none or both because of a filtering effect (Alba et al., 

2019). Cogongrass may be acting in a similar role in our modeled pine-oak system; 

providing temporary facilitation with long-term implications for community structure.  

 We found that without cogongrass, our forests became oak-dominated, a result 

supported by the literature. Studies of old-field succession in the North Carolina 

piedmont found that without perturbations, oaks began to have larger densities than pine 

species 20-40 years after forests developed a broadleaf understory (Billings, 1938; 

Bonan, 2008; Oosting, 1942). We began our runs with an oak understory (Figure S3.3), 

and found that oak-density surpassed pine density in ~10-12 years. While not identical to 

the timing described by Billings (1938) and Oosting (1942), our model runs are 

consistent with the progression described by Billings (1938) and Oosting (1942), which is 

encouraging given that we initialized not from an old-field, but  based on a community of 

trees that developed from active fire management.  

We found that with cogongrass, pines were able to dominate over oaks. 

Classically, fires maintain pine overstories in the southeastern US. Both Clements (1936) 

and Odum (1969), pointed to Southeastern pine forests as a “fire climax”, when defining 

the concept of succession (Clements, 1936; Odum, 1969). Fires are a common and 

effective management tool to maintain pine overstories, particularly those of longleaf 

pine (Kirkman & Mitchell, 2006; Starr et al., 2015). Pines have a long evolutionary 

history with fire, and have developed distinct traits like thick bark and life-stages to 
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survive fires (Schwilk & Ackerly, 2001). Our results suggest that pines can dominate 

without fires; that pine dominance can come from interspecies competition alone, and 

that transitory understory species can change which trees dominate. Fire may lead to pine 

dominance, but pine dominance might not require fire. This is a mixed result for pine 

conservation goals if prescribed fires become less safe under climate change (Kupfer et 

al., 2020; Mitchell et al., 2014). While cogongrass itself is a clear detriment to 

biodiversity and conservation (Chapter 4), our results suggest that pines may be 

competitive in some fire-free contexts.  

Conclusion 

Cogognrass is an invasive grass affecting the southeastern US. Because of 

cogongrass’ photosynthetic strategy (C4), we hypothesized that hotter temperatures and 

higher CO2 under climate change would alter how cogongrass competed with (C3) oaks 

and pines. Cogongrass was unable to persist in our modeled forests, and reached 

extinction in ~ 20 years. We found that cogongrass had lower biomass and density under 

elevated temperatures, and that hotter temperatures caused faster extinctions.  Oaks grew 

to dominate pine-oak forests simulated without cogongrass, but pines dominated when 

cogongrass was present. This suggests that pine-dominated forests can emerge without 

fires, and that understory species can mediate which species dominate. This demonstrates 

that invaders -even when they are temporarily on a landscape- can alter forest 

composition for decades.  

Citations 

Ainsworth, E. A., & Long, S. P. (2004). What have we learned from 15 years of free-air 



 
	

 142	

 CO2 enrichment (FACE)? A meta-analytic review of the responses of 

 photosynthesis, canopy properties and plant production to rising CO2. New 

 Phytologist, 165(2), 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x 

Alba, C., Fahey, C., & Flory, S. L. (2019). Global change stressors alter resources and 

 shift plant interactions from facilitation to competition over time. Ecology, 

 100(12), e02859. https://doi.org/10.1002/ecy.2859 

Alba, C., NeSmith, J. E., Fahey, C., Angelini, C., & Flory, S. L. (2017). Methods to test 

 the interactive effects of drought and plant invasion on ecosystem structure and 

 function using complementary common garden and field experiments. Ecology 

 and Evolution, 7(5), 1442–1452. https://doi.org/10.1002/ece3.2729 

Allan, B., Gardener, A., Dietze, M., McCabe, T., Dillon, W., Flory, L., & Hiatt, D. 

 (2021). Climate Changes Impacts on Fire Regimes, Plant Invasions, and Tick-

 Borne Diseases (RC-2636; p. 171). SERDP. 

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, 

 M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. (Ted), Gonzalez, P., 

 Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., 

Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-

 induced tree mortality reveals emerging climate change risks for forests. Forest 

 Ecology and Management, 259(4), 660–684. 

 https://doi.org/10.1016/j.foreco.2009.09.001 

Antonio, C. M. D., & Vitousek, P. M. (1992). Biological Invasions By Global Change. 

 63–87. 



 
	

 143	

Beaudette, D., Skovlin, J., Roecker, S., & Brown, A. (2022). SoilDB: Soil Database 

 Interface. https://CRAN.R-project.org/package=soilDB 

Billings, W. D. (1938). The Structure and Development of Old Field Shortleaf Pine 

 Stands and Certain Associated Physical Properties of the Soil. Ecological 

 Monographs, 8(3), 437–499. https://doi.org/10.2307/1943541 

Bonan, G. B. (2008). Ecological climatology: Concepts and applications, 2nd Edition. 

 Geographical Research. https://doi.org/10.1111/j.1745-5871.2009.00640.x 

Bradley, B. A., Wilcove, D. S., & Oppenheimer, M. (2010). Climate change increases 

 risk of plant invasion in the Eastern United States. Biological Invasions, 12(6), 

 1855–1872. https://doi.org/10.1007/s10530-009-9597-y 

Brewer, S. (2008). Declines in plant species richness and endemic plant species in 

 longleaf pine savannas invaded by Imperata cylindrica. Biological Invasions, 

 10(8), 1257–1264. https://doi.org/10.1007/s10530-007-9200-3 

Castro-Díez, P., & Alonso, Á. (2017). Alteration of Nitrogen Cycling as a Result 

of Invasion. Impact of Biological Invasions on Ecosystem Services, 49–62. 

https://doi.org/10.1007/978-3-319-45121-3_4 

Chuine, I., Morin, X., Sonié, L., Collin, C., Fabreguettes, J., Degueldre, D., Salager, J. L., 

 & Roy, J. (2012). Climate change might increase the invasion potential of the 

 alien C4 grass Setaria parviflora (Poaceae) in the Mediterranean Basin. Diversity 

 and Distributions, 18(7), 661–672. https://doi.org/10.1111/j.1472-

 4642.2011.00880.x 

Clements, F. E. (1936). Nature and Structure of the Climax. The Journal of Ecology. 



 
	

 144	

 https://doi.org/10.2307/2256278 

Crevoisier, C., Sweeney, C., Gloor, M., Sarmiento, J. L., & Tans, P. P. (2010). Regional 

 US carbon sinks from three-dimensional atmospheric CO2 sampling. Proceedings 

 of the National Academy of Sciences, 107(43), 18348–18353. 

 https://doi.org/10.1073/pnas.0900062107 

Daneshgar, P., Jose, S., Collins, A., & Ramsey, C. (2008). Cogongrass (Imperata 

 cylindrica), an alien invasive grass, reduces survival and productivity of an 

 establishing pine forest. Forest Science, 54(6), 579–587. 

Danneyrolles, V., Dupuis, S., Fortin, G., Leroyer, M., de Römer, A., Terrail, R., Vellend, 

 M., Boucher, Y., Laflamme, J., Bergeron, Y., & Arseneault, D. (2019). Stronger 

 influence of anthropogenic disturbance than climate change on century-scale 

 compositional changes in northern forests. Nature Communications, 10(1), 1–7. 

 https://doi.org/10.1038/s41467-019-09265-z 

D’Antonio, C. M., & Vitousek, P. M. (1992). Biological Invasions by Exotic Grasses, the 

 Grass/Fire Cycle, and Global Change. Annual Review of Ecology and Systematics. 

 https://doi.org/10.1146/annurev.es.23.110192.000431 

Dezember, R. (2018). Thousands of Southerners Planted Trees for Retirement. It Didn’t 

 Work. The Wall Street Journal, 1–4. 

Dietze, M. C., Serbin, S. P., Davidson, C., Desai, A. R., Feng, X., Kelly, R., Kooper, R., 

 LeBauer, D., Mantooth, J., McHenry, K., & Wang, D. (2014). A quantitative 

 assessment of a terrestrial biosphere model’s data needs across North American 

 biomes: PEcAn/ED model-data uncertainty analysis. Journal of Geophysical 



 
	

 145	

 Research: Biogeosciences, 119(3), 286–300. 

 https://doi.org/10.1002/2013JG002392 

Ehrenfeld, J. G. (2010). Ecosystem consequences of biological invasions. Annual Review 

 of Ecology, Evolution, and Systematics, 41, 59–80. 

Estrada, J. A., & Flory, S. L. (2015). Cogongrass (Imperata cylindrica) invasions in the 

 US: Mechanisms, impacts, and threats to biodiversity. Global Ecology and 

 Conservation, 3, 1–10. https://doi.org/10.1016/j.gecco.2014.10.014 

Estrada, J. A., Wilson, C. H., & Flory, S. L. (2020). Clonal integration enhances 

 performance of an invasive grass. Oikos, 129(11), 1623–1631. 

 https://doi.org/10.1111/oik.07016 

Estrada, J. A., Wilson, C. H., Hiatt, D., & Flory, S. L. (2017). Different Factors Drive 

 Emergence and Persistence in an Invasive Grass. International Journal of Plant 

 Sciences. https://doi.org/10.1086/691142 

Fahey, C., Angelini, C., & Flory, S. L. (2018). Grass invasion and drought interact to 

 alter the diversity and structure of native plant communities. Ecology, 99(12), 

 2692–2702. https://doi.org/10.1002/ecy.2536 

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., Dietze, M. C., 

 Farrior, C. E., Holm, J. A., Hurtt, G. C., Knox, R. G., Lawrence, P. J., Lichstein, 

 J. W., Longo, M., Matheny, A. M., Medvigy, D., Muller-Landau, H. C., Powell, 

 T. L., Serbin, S. P., Sato, H., Shuman, J. K., … Moorcroft, P. R. (2018). 

 Vegetation demographics in Earth System Models: A review of progress and 

 priorities. Global Change Biology, 24(1), 35–54. 



 
	

 146	

 https://doi.org/10.1111/gcb.13910 

Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, M. B., & Gowman, L. M. 

 (2009). Implications of changing climate for global wildland fire. International 

 Journal of Wildland Fire. https://doi.org/10.1071/WF08187 

Gaertner, M., Le Maitre, D. C., & Esler, K. J. (2017). Alterations of Disturbance Regimes 

 by Plant and Animal Invaders. In Impact of Biological Invasions on Ecosystem 

 Services (pp. 249–259). Springer International Publishing. 

 https://doi.org/10.1007/978-3-319-45121-3 16 

Geophysical Fluid Dynamics Laboratory. (2017). WCRP CMIP5: Geophysical Fluid 

 Dynamics Laboratory (GFDL) GFDL-CM3 model output for the rcp85 

 experiment. Center for Environmental Data Analysis. 

 https://catalogue.ceda.ac.uk/uuid/311e3ace23854fea9070b99a1ead3d9e 

Grossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. 

 T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor 

 pressure deficit. New Phytologist, nph.16485. https://doi.org/10.1111/nph.16485 

Hamidavi, H., Eslami, S. V., & Jami-Al-Ahmadi, M. (2021). Effect of 

environmental factors on rhizome bud germination and shoot emergence of 

invasive Imperata cylindrica. Weed Research, 61(5), 375–384. 

https://doi.org/10.1111/wre.12495 

Hatch, U., Jagtap, S., Jones, J., & Lamb, M. (1999). Potential effects of climate change 

 on agricultural water use in the southeast U.S. Journal of the American Water 

 Resources Association, 35(6), 1551–1561. https://doi.org/10.1111/j.1752-



 
	

 147	

 1688.1999.tb04237.x 

Hiatt, D., & Flory, S. L. (2020). Populations of a widespread invader and co-occurring 

 native species vary in phenotypic plasticity. New Phytologist, 225(1), 584–594. 

 https://doi.org/10.1111/nph.16225 

IPCC. (2014). IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis 

 Report. IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis 

 Report, pages: 167. 

Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Del Genio, A., Nazarenko, L. S., Donner, L. J., 

 Horowitz, L., Seman, C., Cole, J., Gettelman, A., Ringer, M. A., Rotstayn, L., 

 Jeffrey, S., Wu, T., Brient, F., Dufresne, J.-L., Kawai, H., Koshiro, T., … 

 Stephens, G. L. (2012). Evaluation of cloud and water vapor simulations in 

 CMIP5 climate models using NASA “A-Train” satellite observations. Journal of 

 Geophysical Research: Atmospheres, 117(D14). 

 https://doi.org/10.1029/2011JD017237 

Jones, H. G. (2013). Plants and microclimate: A quantitative approach to environmental 

 plant physiology. 

Kirkman, L. K., Barnett, A., Williams, B. W., Hiers, J. K., Pokswinski, S. M., Mitchell, 

 R. J., & Jones, J. W. (2013). A dynamic reference model: A framework for 

 assessing biodiversity restoration goals in a fire-dependent ecosystem. Ecological 

 Applications, 23(7), 1574–1587. 

Kirkman, L. K., & Mitchell, R. J. (2006). Conservation management of Pinus palustris 

 ecosystems from a landscape perspective. Applied Vegetation Science, 9(1), 67. 



 
	

 148	

 https://doi.org/10.1658/1402-2001(2006)9[67:cmoppe]2.0.co;2 

Kupfer, J. A., Terando, A. J., Gao, P., Teske, C., Hiers, J. K., Kupfer, J. A., Terando, A. 

 J., Gao, P., Teske, C., & Hiers, J. K. (2020). Climate change projected to reduce 

 prescribed burning opportunities in the south-eastern United States. International 

 Journal of Wildland Fire, 29(9), 764–778. https://doi.org/10.1071/WF19198 

Le Quéré, C., Andres, R. J., Boden, T., Conway, T., Houghton, R. A., House, J. I., 

Marland, G., Peters, G. P., Van Der Werf, G. R., Ahlström, A., Andrew, R. M., 

Bopp, L., Canadell, J. G., Ciais, P., Doney, S. C., Enright, C., Friedlingstein, P., 

Huntingford, C., Jain, A. K., … Zeng, N. (2013). The global carbon budget 1959-

2011. Earth System Science Data, 5(1), 165–185. https://doi.org/10.5194/essd-5-

165-2013 

LeBauer, D. S., Wang, D., Richter, K. T., Davidson, C. C., & Dietze, M. C. (2013). 

 Facilitating feedbacks between field measurements and ecosystem models. 

 Source: Ecological Monographs Ecological Monographs, 83(832), 133–154. 

Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D. M., Dietze, M. C., 

 Kim, Y., Zhang, K., Bonal, D., Burban, B., Camargo, P. B., Hayek, M. N., 

 Saleska, S. R., da Silva, R., Bras, R. L., Wofsy, S. C., & Moorcroft, P. R. (2019). 

 The biophysics, ecology, and biogeochemistry of functionally diverse, vertically- 

 and horizontally-heterogeneous ecosystems: The Ecosystem Demography Model, 

 version 2.2 &amp;ndash; Part 2: Model evaluation. Geoscientific Model 

 Development Discussions, 1–34. https://doi.org/10.5194/gmd-2019-71 

Lu, X., Kicklighter, D. W., Melillo, J. M., Reilly, J. M., & Xu, L. (2015). Land carbon 



 
	

 149	

 sequestration within the conterminous United States: Regional- and state-level 

 analyses. Journal of Geophysical Research: Biogeosciences, 120(2), 379–398. 

 https://doi.org/10.1002/2014JG002818 

Luo, Y., Gerten, D., Le Maire, G., Parton, W. J., Weng, E., Zhou, X., Keough, C., Beier, 

 C., Ciais, P., Cramer, W., Dukes, J. S., Emmett, B., Hanson, P. J., Knapp, A., 

 Linder, S., Nepstad, D., & Rustad, L. (2008). Modeled interactive effects of 

 precipitation, temperature, and [CO 2 ] on ecosystem carbon and water dynamics 

 in different climatic zones. Global Change Biology, 14(9), 1986–1999. 

 https://doi.org/10.1111/j.1365-2486.2008.01629.x 

McCarthy, H. R., Oren, R., Johnsen, K. H., Gallet-Budynek, A., Pritchard, S. G., Cook, 

 C. W., Ladeau, S. L., Jackson, R. B., & Finzi, A. C. (2010). Re-assessment of 

 plant carbon dynamics at the Duke free-air CO2 enrichment site: Interactions of 

 atmospheric [CO2] with nitrogen and water availability over stand development. 

 New Phytologist, 185(2), 514–528. https://doi.org/10.1111/j.1469-

 8137.2009.03078.x 

McDowell, N. G., Michaletz, S. T., Bennett, K. E., Solander, K. C., Xu, C., Maxwell, R. 

 M., & Middleton, R. S. (2018). Predicting Chronic Climate-Driven Disturbances 

 and Their Mitigation. Trends in Ecology and Evolution, 33(1), 15–27. 

 https://doi.org/10.1016/j.tree.2017.10.002 

Medvigy, D., & Moorcroft, P. R. (2012). Predicting ecosystem dynamics at regional 

 scales: An evaluation of a terrestrial biosphere model for the forests of 

 northeastern North America. Philosophical Transactions of the Royal Society B: 



 
	

 150	

 Biological Sciences, 367(1586), 222–235. https://doi.org/10.1098/rstb.2011.0253 

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., & Moorcroft, P. R. (2009). 

 Mechanistic scaling of ecosystem function and dynamics in space and time: 

 Ecosystem Demography model version 2. Journal of Geophysical Research: 

 Biogeosciences, 114(1). https://doi.org/10.1029/2008JG000812 

Meunier, F., Visser, M. D., Shiklomanov, A., Dietze, M. C., Guzmán Q., J. A., Sanchez-

 Azofeifa, G. A., De Deurwaerder, H. P. T., Krishna Moorthy, S. M., Schnitzer, S. 

 A., Marvin, D. C., Longo, M., Liu, C., Broadbent, E. N., Almeyda Zambrano, A. 

 M., Muller-Landau, H. C., Detto, M., & Verbeeck, H. (2022). Liana optical traits 

 increase tropical forest albedo and reduce ecosystem productivity. Global Change 

 Biology, 28(1), 227–244. https://doi.org/10.1111/gcb.15928 

Miller, A. D., Dietze, M. C., Delucia, E. H., & Anderson-Teixeira, K. J. (2016). 

 Alteration of forest succession and carbon cycling under elevated CO2. Global  

 Change Biology, 22(1), 351–363. https://doi.org/10.1111/gcb.13077 

Mitchell, R. J., Hiers, J. K., O’Brien, J. J., Jack, S. B., & Engstrom, R. T. (2006). 

 Silviculture that sustains: The nexus between silviculture, frequent prescribed fire, 

 and conservation of biodiversity in longleaf pine forests of the southeastern 

 United States. Canadian Journal of Forest Research. 

 https://doi.org/10.1139/X06-100 

Mitchell, R. J., Liu, Y., O’Brien, J. J., Elliott, K. J., Starr, G., Miniat, C. F., & Hiers, J. K. 

 (2014). Future climate and fire interactions in the southeastern region of the 

 United States. Forest Ecology and Management, 327, 316–326. 



 
	

 151	

 https://doi.org/10.1016/j.foreco.2013.12.003 

NeSmith, J. E., Alba, C., & Flory, S. L. (2018). Experimental drought and plant invasion 

 additively suppress primary pine species of southeastern US forests. Forest 

 Ecology and Management, 411(July 2017), 158–165. 

 https://doi.org/10.1016/j.foreco.2017.12.045 

Nordman, C., Faber-Langendoen, D., & Baggs, J. (2021). Rapid Ecological Integrity 

 Assessment Metrics to Restore Wildlife Habitat and Biodiversity for Shortleaf 

 Pine–Oak Ecosystems. Forests, 12(12), 1739. https://doi.org/10.3390/f12121739 

Odum, E. P. (1969). The strategy of ecosystem development. Science. 

 https://doi.org/10.1126/science.164.3877.262 

Oosting, H. J. (1942). An Ecological Analysis of the Plant Communities of Piedmont, 

 North Carolina. The American Midland Naturalist, 28(1), 1–126. 

 https://doi.org/10.2307/2420696 

Pau, S., Edwards, E. J., & Still, C. J. (2013). Improving our understanding of 

 environmental controls on the distribution of C3 and C4 grasses. Global Change 

 Biology, 19(1), 184–196. https://doi.org/10.1111/gcb.12037 

Pchauri; Rajendra K., Meyer; Leo, & The Core Writing Team. (2014). Climate Change 

 2014 Synthesis Report. 

Pearson, P. N., & Palmer, M. R. (2000). Atmospheric carbon dioxide concentrations over 

 the past 60 million years. Nature. https://doi.org/10.1038/35021000 

Thomas, R. Q., Brooks, E. B., Jersild, A. L., Ward, E. J., Wynne, R. H., Albaugh, 

T. J., Dinon-Aldridge, H., Burkhart, H. E., Domec, J. C., Fox, T. R., Gonzalez-



 
	

 152	

Benecke, C. A., Martin, T. A., Noormets, A., Sampson, D. A., & Teskey, R. O. 

(2017). Leveraging 35 years of Pinus taeda research in the southeastern US to 

constrain forest carbon cycle predictions: Regional data assimilation using 

ecosystem experiments. Biogeosciences, 14(14), 3525–3547. 

https://doi.org/10.5194/bg-14-3525-2017 

Runion, G. B., Prior, S. A., Capo-chichi, L. J. A., Torbert, H. A., & van Santen, E. 

 (2016). Varied Growth Response of Cogongrass Ecotypes to Elevated CO2. 

 Frontiers in Plant Science, 6. 

 https://www.frontiersin.org/article/10.3389/fpls.2015.01182 

Schwilk, D. W., & Ackerly, D. D. (2001). Flammability and Serotiny as Strategies: 

 Correlated Evolution in Pines. Nordic Society Oikos, 94(2), 326–336. 

Seebens, H., Blackburn, T. M., Dyer, E. E., Genovesi, P., Hulme, P. E., Jeschke, J. M., 

 Pagad, S., Pyšek, P., van Kleunen, M., Winter, M., Ansong, M., Arianoutsou, M., 

 Bacher, S., Blasius, B., Brockerhoff, E. G., Brundu, G., Capinha, C., Causton, C. 

 E., Celesti-Grapow, L., … Essl, F. (2018). Global rise in emerging alien species 

 results from increased accessibility of new source pools. Proceedings of the 

 National Academy of Sciences, 201719429. 

 https://doi.org/10.1073/pnas.1719429115 

Soil Survey Staff. (2022). Web Soil Survey. Natural Resources Conservation Service, 

 United States Department of Agriculture. https://websoilsurvey.nrcs.usda.gov/ 

Starr, G., Staudhammer, C. L., Loescher, H. W., Mitchell, R., Whelan, A., Hiers, J. K., & 

 O’Brien, J. J. (2015). Time series analysis of forest carbon dynamics: Recovery of 



 
	

 153	

 Pinus palustris physiology following a prescribed fire. New Forests, 46(1), 63–90. 

 https://doi.org/10.1007/s11056-014-9447-3 

Still, C. J., Berry, J. A., Collatz, G. J., & DeFries, R. S. (2003). Global distribution of C 3 

 and C 4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 

 17(1), 6-1-6–14. https://doi.org/10.1029/2001gb001807 

Thornton, P. E., Thornton, M. M., Mayer, B. W., Wei, Y., Devarakonda, R., Vose, R. S., 

 & Cook, R. B. (2016). Daymet: Daily Surface Weather Data on a 1-km Grid for 

 North America, Version 3. ORNL DAAC. 

 https://doi.org/10.3334/ORNLDAAC/1328 

Viskari, T., Shiklomanov, A., Dietze, M. C., & Serbin, S. P. (2019). The influence of 

 canopy radiation parameter uncertainty on model projections of terrestrial carbon 

 and energy cycling. PLOS ONE, 14(7), e0216512. 

 https://doi.org/10.1371/journal.pone.0216512 

Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Asao, S., 

 Dietze, M., Hickler, T., Huntingford, C., Iversen, C. M., Jain, A., Lomas, M., 

 Luo, Y., McCarthy, H., Parton, W. J., Prentice, I. C., Thornton, P. E., Wang, S., 

 Wang, Y.-P., … Norby, R. J. (2014). Comprehensive ecosystem model-data 

 synthesis using multiple data sets at two temperate forest free-air CO2 enrichment 

 experiments: Model performance at ambient CO2 concentration. Journal of 

 Geophysical Research: Biogeosciences, 119(5), 937–964. 

 https://doi.org/10.1002/2013JG002553 

Yin, L., Fu, R., Shevliakova, E., & Dickinson, R. E. (2013). How well can CMIP5 



 
	

 154	

 simulate precipitation and its controlling processes over tropical South America? 

 Climate Dynamics, 41(11), 3127–3143. doi.org/10.1007/s00382-012-1582-y 

Zhang, B., Yuan, Y., Shu, L., Grosholz, E., Guo, Y., Hastings, A., Cuda, J. P., Zhang, J., 

 Zhai, L., & Qiu, J. (2021). Scaling up experimental stress responses of grass 

 invasion to predictions of continental-level range suitability. Ecology, 102(8), 

 e03417. https://doi.org/10.1002/ecy.3417 

Zhao, S., Liu, S., Li, Z., & Sohl, T. L. (2010). Federal land management, carbon 

 sequestration, and climate change in the Southeastern U.S.: A case study with fort 

 benning. Environmental Science and Technology, 44(3), 992–997. 

 https://doi.org/10.1021/es9009019 

Zhao, S., Liu, S., Sohl, T., Young, C., & Werner, J. (2013). Land use and carbon 

 dynamics in the southeastern United States from 1992 to 2050. Environmental 

 Research Letters, 8(4), 044022. https://doi.org/10.1088/1748-9326/8/4/044022 



 
	

 155	

CHAPTER FOUR: PRESCRIBED BURNING TO CURB TICK POPULATIONS: 

A DECISION SUPPORT TOOL FOR SOUTHEASTERN DEPARTMENT OF 

DEFENSE INSTALLATIONS 

Tempest McCabe, Whalen Dillion, Drew Hiatt, L. Page Fredericks, Allison Gardner, 
Luke Flory, Brian Allan, Michael C. Dietze 
 

Abstract 
Tick Borne Diseases (TBD) are a persistent and intensifying threat to human 

health. Vegetation structure and climate change can impact tick populations by creating 

tick habitat or preferred tick microclimate. In the Southeastern US, prescribed burning 

has historically been effective at reducing tick populations, but invasive species and 

climate change could make prescribed burns less effective or feasible. We built a 

Decision Support Tool to help partners from nine Department of Defense installations 

navigate the interactions between prescribed fire, climate, vegetation, and tick borne 

disease risk. We began by interviewing partners about management priorities. We then 

built a R Shiny web application that communicated metrics of TBD risk and pathogens 

detected. We also developed interactive projections exploring how hypothetical changes 

to environmental variables affect tick populations. We found that tick populations are 

most sensitive to leaf litter and humidity changes. This knowledge provides managers 

with alternative control strategies beyond prescribed burns.  

Introduction 
Reported human cases of Tick Borne Diseases (TBD) more than doubled from 

2004–2016 (Rosenberg et al., 2018). Reasons for this increase are complex and varied, 

but include ecosystem changes and climate change (Caminade et al., 2019). Climate and 
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vegetation both mediate tick borne disease risk in direct and indirect ways. Tick survival 

is directly affected by micro-climate variables like humidity, precipitation, and heat 

(Rosendale et al., 2016), and climate can also impact tick population size, host-seeking 

behavior, and population timing (Berggoetz et al., 2014; Eisen et al., 2018; Levi et al., 

2015).  Additionally, climate affects ranges, and can drive range expansions (Colwell & 

Rangel, 2009). This paper focused on the Southeastern US, where the Gulf Coast tick and 

the Lone-star tick have both had dramatic range expansions in the last 50 years 

(Sonenshine, 2018). This range expansion could be driven directly by changes in 

temperature or humidity, which effect tick survival, but are also fueled by climate-driven 

changes to host population and ranges, especially white tailed deer, feral hogs, and mice 

(Mowry et al., 2019; Sonenshine, 2018; Weiskopf et al., 2019).  

 Similarly, vegetation can directly and indirectly affect TBD prevalence. 

Vegetation directly affects tick survival via the microclimate, and provides tick habitat in 

the form of litter and low structure vegetation (Jordan & Schulze, 2020; Linske et al., 

2019; Mathisson et al., 2021). In the Southeast, pine dominated systems were hotter and 

drier at ground-level than broad-leaf systems, and altered several tick species’ questing 

behavior (Schulze & Jordan, 2005). Mast-producing trees and climate interact to alter 

host abundance, in turn altering tick abundance (Ostfeld et al., 1996).  

 Although ticks and TBDs are an increasing problem, many broadly-effective 

management strategies for reducing TBDs have emerged. TBDs can be prevented by 

management practices that cull tick populations, such as the removal of invasive species 

associated with ticks (Allan et al., 2010). In the Southeastern US specifically, prescribed 
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burning is a common management practice that decreases tick populations in the short 

and long-term, and reduces TBD risk (Gleim et al., 2014). Allen et al., (2021) found that 

woody-litter and tree density increased tick populations, and ticks are affected by 

vegetation-mediated microclimate. Specifically, ticks survived longer in stands of the 

invasive grass Imperata cylindrica, or Cogongrass. Outside the Southeast, Pascoe et al., 

(2020) similarly found that wildfires significantly reduce tick populations two years post-

burn, but attributed the difference to direct loss and vegetation changes, and noted that 

vegetation would likely return. These studies suggest that frequent prescribed burning is 

an effective strategy to combat tick populations for three reasons: fire culls tick 

populations, destroys litter habitat, and shifts the ecosystem to a less-hospitable pine 

understory.  

However, burns can create canopy gaps that promote vegetation that ticks favor, 

such as fast-growing understory species and invasive species (Guthrie et al., 2016; 

Huebner, 2005). There are also a handful of studies that have found that infrequent burns 

may not affect tick populations, or may even increase tick populations as vegetation 

recovers (Padgett et al., 2009). For example, prescribed burns accelerate cogongrass 

spread, as cogongrass burns hotter and recovers faster than native vegetation (Flory et al., 

2022). In turn, ticks survive longer in cogongrass stands than on native grasses.   

These findings together suggest a range of possibilities: Future climate could 

make the risk of wildfires higher, and the regular use of prescribed burns more difficult, 

increasing tick populations (Flannigan et al., 2009; Mitchell et al., 2014). Climate may 

shift the understory to favor ticks independent of disturbance regime, or cogongrass 
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invasion (Chapter 3). Prescribed fire could reduce tick populations, or accelerate invasive 

species and tick survival (Fusco et al., 2019). It’s unclear how vegetation, climate, 

overstory, and frequent burning interact to deplete or sustain tick populations (Allan et 

al., 2021). 

Future vegetation interactions are becoming important land management 

priorities. In a survey of land-managers in the Southeast roughly half listed the abundance 

of invasive species as important to them (Martin, 2019). We are unaware of similar 

studies about the relative importance of tick population management to regional land 

managers, nor how these goals intersect with the interacting challenges of climate 

change, invasive species, and fire (Chapter 3).  

A number of Decision Support Tools (DSTs) exist already pertaining to the 

implementation of prescribed fire, such as: FARSITE (Finney, 2004), SPITFIRE 

(Thonicke et al., 2010), First Order Fire Effects model (Hood & Lutes, 2017), FFI (Lutes 

et al., 2009), and Interagency Fuels Treatment Decision Support System (Wells et al., 

2009). However, these management decisions are made in isolation from decisions 

concerning efforts to control plant invasions or mitigate tick-borne disease risk, for which 

there are no established DSTs at present to our knowledge. Therefore, we developed a 

DST designed to integrate across multiple environmental management decisions. While 

this tool potentially has applications to land managers across the Southeast, it was 

specifically developed in partnership with land managers at nine U.S. Department of 

Defense (DoD) installations.  Therefore before designing this DST we conducted 
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structured interviews with different installations to establish management priorities. This 

paper has three goals: 

1) Report on the DoD management priorities identified through these structured 

interviews 

2) Report on the development of our tick management DST 

3) Illustrate how this DST can be used to explore each installation’s tick-borne 

disease risk and how alternative fire and management scenarios may affect tick 

populations 

This decision support tool is based on field data collected from Department of Defense 

(DoD) sites. However, the DoD installations represent a large range of latitudes, soil 

types, and forests of the southeastern US. Estimates of tick-borne disease risk, may not 

correspond to levels of disease risk nearby. However, the underlying relationships 

between prescribed burns and ticks may be useful to public and private land managers to 

explore how burn frequency affects ticks (Goal 3).  

Methods 

This decision support tool relies on the field data, pathogen analysis, and path 

analyses done as part of a larger research project investigating the interacting impacts of 

invasive species, climate, fire, and management on tick populations and TBD disease 

prevalence for the Strategic Environmental Research and Development Program 

(SERDP) grant number 2636 . Here we briefly review the study system, field data 

collection, laboratory pathogen analyses and statistical path analysis that we take as 

inputs into our DST. Full descriptions can be found in Allen et al (2021) and the SERDP-
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2636 report available for download at https://www.serdp-estcp.org/Program-

Areas/Resource-Conservation-and-Resiliency/Natural-Resources/Species-Ecology-and-

Management/RC-2636.   

Field Data Collection 

  We collected field data from nine DoD installations across the southeastern 

United States (Figure 4.1) that were selected to capture a range of temperature and 

precipitation gradients across the southeast (Figure 4.2). Field data included vegetation 

data like overstory composition, percent canopy cover, litter depth and percent litter 

cover. Field data was collected from 500m2 plots within each installation. Installations 

had a range of sampling effort from 3 plots at Moody AFB to 13 at Camp Shelby, Fort 

Jackson, and Camp Blanding. 92 plots were sampled in total. Each plot had four tick 

traps, four 50m dung transects, and four 1m2 and 25cm2  quadrats. Within each 500m2 

plot all trees with a DBH of over 3cm were mapped, identified to the species level, and 

had their DBH measured. Ten trees within the plots had their heights recorded. Percent 

Canopy Cover was estimated with a spherical convex densiometer (Forestry Suppliers, 

Jackson, MS). Within the 1m2 quadrat, percent litter was estimated, along with three 

measurements of litter depth from the top litter level to the mineral soil surface. Within 

the 25cm2 quadrat, all vegetation and litter biomass was collected, dried, and weighed to 

estimate standing biomass.  

Host Abundance of large mammal host species (e.g. white tailed deer, Odocoileus 

virginianus) was measured based on four 50m dung transects at each plot. Dung was 
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recorded <1m away from the transects. Tick populations were sampled using dry-ice 

baited traps set at sites for 24 hours (See Table 4.1 Trapping Effort).  

Tick pathogens were detected by using a Fluidigm Access Array combined with 

Illumina sequencing individual ticks. Fire history was obtained from the installations at a 

management compartment level and includes information about the timing and extent of 

both prescribed burns and wildfire. Time Since Last Fire, also called Days Since Fire, are 

the number of days since the plot was burned. Fire regime – 15 yr FRI is the fire return 

interval averaged over 15  years for each plot (average number of years between fires), 

calculated in GIS using data provided by installations. Climate data comes from Daymet 

(Thornton et al., 2016; https://daymet.ornl.gov/). 1 year vapor pressure deficit was 

estimated as the average vapor pressure deficit for the last 365 days leading up to the 

sample date. Climate – 30yr CV fire days is a 30-year average of annual coefficient of 

variation of fire days defined as having <6 mm of recorded precipitation.  

Structured Interviews with Installation Decision Makers 

To better understand installation needs for decision support surrounding tick-

borne disease, invasive species, and fire, and how these fit into forest management goals 

more broadly, we designed interviews and reached out to contacts at DoD installations 

via email and phone. Within the nine participating DoD installations (Figure 4.1), we 

targeted six installations where we had established contacts from field sampling ( Tyndall 

AFB, Moody AFB, and Camp Shelby were not included). We successfully completed 30-

min structured interviews with a representative from five of these installations (Avon 
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Park AFR, Camp Blanding, Eglin AFB, Fort Jackson, and Fort Benning), while the sixth 

was unavailable for an interview. Representatives had varying titles, but were all tasked 

with implementing their installations environmental management goals. Interviews were 

organized around a script that began with broad questions on the installation’s decision-

making process, and moved to specific questions about how the installation could use 

data from our project (Figure S4.1). We asked questions about installation priorities, 

evaluation metrics, and timelines of operation. We inquired about how each installation 

might value datasets from different aspects of the project: cogongrass invasions, tick 

borne disease metrics, and climate projections. We often ended interviews asking 

managers to describe their ideal DST tailored to their installation (Figure S4.1). 

Responses were recorded for reference. We summarized interviews by identifying areas 

where managers had consensus and areas of contrast for each of the interview themes. 

These responses highlighted what aspects of this project installation managers valued, 

how installation managers envisioned using a DST, and potential challenges and 

opportunities associated with DST implementations. Findings from these interviews 

allow us to tailor the design of our DST to shared priorities across installations.  

This project was reviewed by the Boston University Institutional Review Board 

(IRB) and was determined to not meet the definition of human subject research and 

therefore did not require further IRB review and approval (Figure S4.2). 
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R Shiny Web Application 

We elected to build our DST as a R Shiny web application (Chang et al., 2019; R 

Core Team, 2019), because 1) most of the underlying analyses performed for this project 

were conducted in R making for straight-forward harmonization of data, and 2) R Shiny 

is user-friendly and can perform complex data visualizations. We chose a web application 

because they are more intuitive to use by non-experts, can be updated with new data and 

features, and are not tied to specific software requirements. PINEMAP, a research project 

that focused on the restoration of the same southeastern longleaf pine ecosystems in 

which we performed this research, had success implementing their decision support 

system as a web application (Martin, 2019). Calculations underlying the TBD risk map 

are found at 

https://github.com/whalend/SERDP_Project/blob/master/R_scripts/ticks_tbo_mapping.R. 

The interactive map code is at https://github.com/mccabete/SERDP shiny.  

 

Summary of Features 

 
Our DST content is sorted into tabs. Below is a list of tabs in the DST and the content 

associated with those tabs.  

 

Tick-Borne Disease  
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- Disease Risk Map: Map of Tick-Borne Disease risk (Risk of pathogen exposure 

per 24 hours), Tick abundance in counts, and Pathogen prevalence at each of the 

DoD installations. Data available for download.  	

- Tick Pathogens: Searchable & downloadable database of pathogens that were 

detected at each base, and a key to diseases the pathogens cause. 	

- Tick Hosts: Searchable & downloadable database of animal hosts detected at each 

installation. 	

Vegetation 

- Litter: Summary figures of litter depth and percent cover per installation. 	

- Canopy cover: Summary of figures of percent canopy cover per installation.	

Exploring Hypotheticals 

- Predictors of  Tick Populations: Project tick populations with new fire regimes, 

climate, levels of vegetation biomass, canopy cover, and leaf litter. 	

Access and Installation Instructions 

To see the app navigate to: https://serdp2636.shinyapps.io/serdp2636/ 

The underlying code that generates the app is at: 

https://github.com/mccabete/SERDP_shiny/tree/main/code 

Our tool requires an internet browser to access, and no other software to run. 

Graphics can appear differently depending on the browser. Data downloaded from our 

tool may require software to be opened or edited. We provide the options to download 

.csv files and .pdf files.  



 
	

 165	

 
Figure 4.1: Study area with the location of each Department of Defense (DoD) 
installation sampled. 

 
Figure 4.2: Average maximum temperature (left) and average monthly precipitation 
(right) from (1980-2018) Daymet climate variables.  
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Tick Borne Disease Risk Map 

Our DST contains an interactive map of tick-borne disease risk as estimated by tick 

population sampling and pathogen analysis. It depicts three different estimates of TBD 

exposure risk based upon 1) tick abundance, 2) human pathogen prevalence, and 3) the 

product of tick abundance and pathogen prevalence, pathogens per trap, which is our best 

overall estimate of TBD exposure risk (Table 4.1). Traps were left at sites for 24 hours, 

so final risk numbers are presented in units of human pathogens per 24 hours.  

 
𝑇𝑖𝑐𝑘𝑠	𝑃𝑒𝑟	𝑇𝑟𝑎𝑝	 = 𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑐𝑘𝑠	/	𝑇𝑟𝑎𝑝𝑝𝑖𝑛𝑔	𝐸𝑓𝑓𝑜𝑟𝑡 

𝐻𝑢𝑚𝑎𝑛	𝑃𝑎𝑡ℎ𝑜𝑔𝑒𝑛	𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒	𝑃𝑒𝑟	𝑇𝑖𝑐𝑘	 = 	𝑃𝑎𝑡ℎ𝑜𝑔𝑒𝑛	𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	/	𝑇𝑜𝑡𝑎𝑙	𝑇𝑖𝑐𝑘𝑠 
𝑃𝑎𝑡ℎ𝑜𝑔𝑒𝑛𝑠	𝑃𝑒𝑟	𝑇𝑟𝑎𝑝 = 	𝑇𝑖𝑐𝑘𝑠	𝑃𝑒𝑟	𝑡𝑟𝑎𝑝	 × 	𝐻𝑢𝑚𝑎𝑛	𝑃𝑎𝑡ℎ𝑜𝑔𝑒𝑛	𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒	𝑃𝑒𝑟	𝑇𝑖𝑐𝑘  
 
 

Installa
-tion 
 

Pathogen 
Abun-
dance 

Total 
Ticks 
 

Human 
Pathogen 
Prevalence Per 
Tick 
 

Trapping 
Effort 
 

Ticks 
Per Trap 
 

Pathogens 
Per Trap 
 

Avon 

Park 

0 6 0.00 28 0.214 0.00 

Camp 

Blanding 

129 318 0.173 75 4.24 0.733 

Camp 

Shelby 

10 25 0.16 39 0.641 0.103 

Eglin 

AFB 

42 89 0.146 42 2.119 0.310 

Ft. 

Benning 

2 25 0.04 31 0.81 0.0324 

Ft. 

Gordon 

20 71 0.113 26 2.73 0.308 

Ft. 

Jackson 

3 7 0.143 31 0.2265 0.0326 
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Moody 

AFB 

3 7 0.143 16 0.43800 0.0630 

Tyndall 

AFB 

126 165 0.212 48 3.4380 0.7297 

 

Table 4.1: Data used to calculate tick borne disease risk per installation. Because traps 
were left for 24 hours, the units on pathogen abundance, total ticks, and pathogens per 
trap are per day. Trapping effort is in units of the number of traps set. 

 
The DST includes histograms of the number of ticks observed per trapping effort 

sampling event, and total number of ticks per species.  

Exploring Hypotheticals 

The scenario exploration tool aims to visualize predictions of how tick populations are 

likely to change in response to changes in input variables related to climate, fire, and 

vegetation. The scenario exploration tool builds off of the path analysis (a.k.a. structural 

equation model) described in Allen et al. (2021) and Dillon et al (in prep) . The 

component linear models from the path analysis defined relationships between 

environmental variables (Figure 3). For the DST we focused on the environmental 

variables affecting tick abundance (Figure 3, pink). Information on hosts (Figure 4.3, 

yellow) was not included in the DST.  30yr CV fire days and 15 yr FRI were not found to 

have direct effects on tick abundance, and were excluded from the DST. Neither Time 

since fire nor canopy cover had a significant direct effect on tick abundance, but were 

included in the DST because they had a significant effect on litter cover. Significant 

connections to ticks included litter depth, litter cover, standing biomass and vapor 

pressure. Predicted tick abundance was greater with increasing litter cover, litter depth, 

standing understory biomass, and vapor pressure.  
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We used ggpredict from the R package ggeffects as a wrapper for the predict 

function (Leeper, 2019; Lüdecke, 2018). The ggpredict function uses the component 

linear models of the path analysis, which was conducted using the R packages glmer and 

piecewiseSEM, and computes an out-of-sample confidence interval (integrating over 

random effect variances) based on the terms passed to the function (Bates et al., 2015, p. 

4; Lefcheck, 2016). Unlike other parts of the DST, these results are not tailored to a 

specific installation. Our scenario exploration tool lets users select one or two variables, 

and will predict the change in tick population conditional on the variable being held at set 

levels. For a single variable, the tool will show the predicted number of ticks across the 

range of the variable. For two variables, the tool will show how ticks change across the 

range of the first variable, with three lines representing the second variable at 

representative levels. By default, the tool will select the mean +/- one standard deviation. 

Users can control the range of the first variable (to do projections) and the levels of the 

second variable (to explore the extent of interactions). Some of the underlying data 

driving the path analyses can be explored by installation via the Vegetation tab.  
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Figure 4.3: Path analysis and figure from (Allan et al., 2021). Numbers of standardized 
path coefficients that correspond to relative strength of effects. Color indicated response 
variable. Bold coefficient values = P<0.05. Values on dashed paths = P>0.1. Normal text 
on solid paths = 0.05<P<0.1. Red dash-dot-dot lines are “missing” paths identified 
during model fitting.  

 
Results 

Structured Interviews with Installation Managers 

 Interviews with installation managers revealed that while most installations have 

similar goals, how those goals are prioritized varied by installation. Overall, common 

natural resource management goals were: accommodate military training, wildfire risk 

reduction, habitat and species conservation, and silviculture. All of the installations relied 

on prescribed fire as a primary management strategy, and managers structured burn 
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schedules to maintain a frequent fire-return interval for priority areas. Most interviewees 

characterized conservation, silviculture, and reduction of wildfire risk as long-term goals, 

with evaluations happening at yearly, five-year, decadal and multidecadal timescales. 

Several spoke about multidecadal changes in Red Cockaded Woodpecker 

(Leuconotopicus borealis) populations, pine populations (particularly longleaf pine), and 

anticipated changes to forest composition in the future.  

In general, when asked about investment in major themes of our project - ticks, 

invasive species, and climate projections - managers typically indicated they would value 

each theme based on how closely it mapped onto these central priorities (training, 

wildfire, conservation, silviculture). However, there was quite a bit of variation among 

managers in how they weighed these priorities. For example, not all installations 

interacted with military training in the same way. At some installations military training 

and ground exercises dictated the day-to-day scheduling of prescribed burns. One 

interviewee suggested that a DST would only be useful if it incorporated military training 

activity. Some installation managers characterized military training as important but 

happening in parallel with natural resource management. One interviewee said that 

military training was largely independent from natural resource management. Of the 

installations that worked closely with military training personnel, interviewees said that 

military-motivated burns took priority unless there was a safety issue that needed to be 

addressed. One interviewee provided an example where conservation goals outweighed 

military goals: the military was considering clear-cutting a stand of longleaf pines to 

create a site to simulate desert conditions, and the natural resource team countered that 
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the time it would take to regrow the longleaf population offset the gains of a new training 

site. However, this example was described as rare. On the whole, each installation shaped 

its long-term thinking around a varied military presence.  

 Another source of contrast was how each installation handled management of 

invasive plant species. All of the installation managers considered invasive species a 

management problem, and that controlling them was essential to their conservation goals. 

Our questions focused on cogongrass, but it was by no means the only invasive species 

that installations were grappling with – or even the most difficult species to eliminate. 

Two other species mentioned as difficult to control were Japanese climbing fern and 

kudzu. Some installation managers were optimistic about their successful control of 

cogongrass. As one interviewee stated, “Our longest running feud has been with 

cogongrass … and we are doing fairly well. We finally turned a corner”. However, others 

felt that it was a “losing battle” and that even if our project offered an insight into 

cogongrass control, they were “already at capacity” on cogongrass control, and would 

struggle to implement additional changes. Not all the installation managers we spoke to 

had cogongrass invasions, but all were monitoring for it. One interviewee said that our 

project could be a useful way to anticipate the effects of cogongrass when it reached their 

installation. Installations actively controlling cogongrass used some combination of 

burning and herbicides, and sometimes physical management techniques.  

 Installation managers agreed that data on tick populations and tick-borne 

pathogens were useful. Four out of five interviewees listed it as the most valuable topic 

our project covered. Most said that monitoring tick populations and pathogens would be 
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helpful for the safety of their staff or the safety of installation personnel. As one 

interviewee stated, “To me, tick-borne disease is not a management goal but a health and 

safety goal”. Another interviewee suggested that connecting invasive species to health 

outcomes like tick-borne diseases could better motivate invasive plant control. Most 

managers felt that prescribed burns were effective at controlling tick populations, but 

were still concerned about tick bites originating from infrequently burned areas, and 

about the illnesses associated with tick bites. Only one interviewee listed tick research as 

low-priority, citing the efficacy of permethrin-treated uniforms.  

 Climate projections were considered valuable when they were able to extend 

understanding of other important datasets into the future, but were considered lower-

priority than other aspects of the project by four out of five interviewees. One interviewee 

listed it as most important, because they could inform demographic shifts in the forests 

over time. This interviewee was also interested in using climate projections to inform tree 

planting decisions, and ensuring that trees planted today would be able to tolerate future 

climates.  

 While many of our interview questions focused on the content of a DST from this 

project, we also asked about what forms of implementation would be effective. We 

learned that two installations already use a DST or ecosystem modeling in their planning. 

For example, Fort Benning uses a combination of monitoring plots and LANDIS-II 

modeling (Martin et al., 2015), and Eglin AFB uses a burn prioritization model that is 

maintained by a GIS specialist (Hiers et al., 2003). In general, GIS was the type of 

software most installations utilized. That said, two interviewees warned against designing 
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a tool that required a specific operating system to run, or that needed to be run locally on 

a computer. This sentiment was echoed by others who explained that a variety of 

common software is not approved for use on installation computers, and that even 

approved software can be difficult to maintain locally because of access restrictions. One 

interviewee offered online tools, specifically QGIS, as a solution. One manager also 

cautioned that time-limited personnel may be slow to adopt a new tool, but suggested that 

an installation-specific demonstration could help.  

 Taken together, these conversations highlight that while the mechanics of 

management at each installation are different, all of the installations have similar 

objectives, challenges, and interests. We learned that installations differ enough in their 

on-the-ground operations that even with perfect information, it would be challenging to 

design a tool that met the everyday logistical needs of each installation. However, we also 

learned what information would be valuable for broad decision-making. Managers 

expressed interest in connecting management decisions to health of personnel, TBD risk 

monitoring, insights into cogongrass invasion prevention and quantifying cogongrass 

effects, and forest demographic changes. Existing DSTs used by installations offer 

concrete examples to draw from and complement. Finally, we were reassured that a web-

based DST was the best method to host and share our findings. These insights will help 

us shape the features and dissemination of our DST.   

Tick Borne Disease Risk by Installation  

 Camp Blanding and Tyndall both had the highest rate of tick borne disease risk 

(Table 4.1). Camp Blanding reported 0.73  pathogens per trap per day, and Tyndall 0.72 
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pathogens per trap per day. Ft. Gordon, and Eglin AFB had mid range rates of 0.25 

pathogens per day. Moody AFB and Camp Shelby had lower levels at 0.063 and 0.06 

respectively, and Ft. Benning, Ft. Jackson and Avon Park had the lowest levels at 0.025, 

0.019, and 0 respectively. For all sites, the level of tick borne disease risk was driven by 

the number of ticks collected more than than the number of pathogens detected per tick 

(Figure 4.1).  Camp Blanding and Tandall’s high numbers are likely driven by a few 

sampling events with a high number of ticks (Figure 4.5). Tick borne disease risk was 

calculated as a function of human pathogen presence. Many managers stressed that they 

value data that would describe possible health effects of tick populations. To 

accommodate this need, we included a search functionality for installations to have 

detailed information about the pathogens detected, and the possible diseases they cause. 

For example, at Camp Blanding, 19 different pathogens were detected, five of which 

have associations with human TBD (Figure 4.6). Finally, we included a search of the host 

populations we detected at each installation (Figure 4.7) . We did this because tick 

populations are tied to host populations, and because several managers we spoke to had 

management interests in vertebrate populations on their installation. Host population 

descriptions provide managers with the likely source of ticks on their installation, which 

could inform decision making.  
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Figure 4.4: Two sample screenshots from decision support tool. Top panel shows 
pathogen exposure per trap per 24 hours. Bottom panel shows tick abundance per 
installation.   
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Figure 4.5: Frequency of Ticks Observed per sampling event, and tick species and life 
stage for Tyndall and Camp Blanding.  
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Figure 4.6: Pathogens detected at Camp Blanding that cause diseases in humans. Hosts 
known to be reservoirs of pathogens are listed. 

 

Figure 4.7: Installation, host type, and dung-count for each host.  

Exploring Hypotheticals 

The second goal of our DST was to allow installations to explore how alternative 

fire and management scenarios might affect tick populations. This goal can be reframed 

as the question, what variables are tick populations sensitive to? The exploring 

hypothetical tools separates the direct and indirect effects of environmental variables on 

tick populations. For example, the direct effect of days since fire on tick abundance is 

small (Figure 4.8 Top), with the expected number of ticks remaining close to one tick per 

trap per 24 hours. Tick population is similarly insensitive to the direct effects of standing 

biomass and percent canopy cover, but is more sensitive to litter depth (Figure 4.8 

Bottom), yearly vapor pressure deficit, and % litter cover.  
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Figure 4.8: Ticks per Trap as a function of Days since fire, and ticks per trap as a 
function of Litter Depth (cm). Line is predicted number of ticks, points are ticks per trap 
observed across all installations. Gray shading shows 95% confidence interval. 

Users can explore how these relationships project into out-of-sample values using 

the “Project to Custom Values” menu. For example, litter depth increases the expected 

number of ticks by ~3 ticks with 3.5 cm of leaf litter (Figure 4.9). 
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Figure 4.9: Ticks per Trap as a Function of Leaf Litter (cm). Line is the predicted number 
of ticks, and points are ticks per trap observed across all installations. Gray shading 
shows 95% confidence interval.  

 
Setting the number of predictors to two allows a user to see how sensitive tick 

populations are to an interaction between two terms. For example, tick populations are 

not very sensitive to the interaction between litter depth and days since fire (expected 

value range of 2.5–3.5 ticks) (Figure 4.10 Top), but are sensitive to the interaction 

between litter depth and vapor pressure deficit (expected value ranges form ~ 3–7 ticks 

(Figure 4.10 Bottom). The largest sensitivity we found was the interaction between litter 

cover and vapor pressure deficit.  
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Figure 4.10: The interaction of litter depth and days since fire, and litter depth and vapor 
pressure deficit. Note the change in scale on the Y axis.  

 
Discussion 

 

Designing a DST around Interviews with Installation Managers 

 Our structured interviews with land managers forewarned us that designing a tool 

that would align with the varied needs of all participating DoD sites would be 

challenging. There were a few themes that resonated with the majority of our partners. 

The largest resonating theme was information about tick borne disease risk at each 

installation. This theme ended up being the central focus of our DST. Other themes, like 

the control of invasive species and forest demographics changes, are not the focus of our 

tool, and are present in our DST only in their capacity to affect tick populations. Part of 

that design choice came from practicalities. All installations were monitoring for 

cogongrass, and several were actively suppressing cogongrass. This meant that finding 

instances of cogongrass invasions on DoD sites to measure was challenging. We could 

not build a tool to measure the effects of cogongrass because many of our partners had 

already prioritized suppressing it. In addition, cogongrass was never the only invasive 

species managers were concerned about. With both cogongrass and forest demographics, 
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land managers were already familiar with trends on their installations. With tick 

populations and TBD monitoring, our group was offering new insights and data to 

managers. Our choice to build an online tool was directly in line with partner 

recommendations. By incorporating structured interviews, we were able to narrow in on a 

topic that was of interest to the majority of our partners.  

In many ways, DoD management goals echo regional conservation goals. DoD 

land managers emphasized the need for prescribed fires to preserve open pine 

ecosystems, suppress invasive species, and conserve threatened species. These are goals 

shared by a network of public and private conservation organizations. For example, 

Natureserve, the Gulf Coastal Plain and Ozarks Landscape Conservation Cooperative, 

U.S. Fish and Wildlife, and East Gulf Coastal Plain Join Ventrue collaborated making 

metrics to judge open pine ecosystem quality, with an eye towards more frequent burns to 

preserve bird species, longleaf pine and shortleaf pine species (Nordman et al., 2021). 

The cross-institution organization, America’s Longleaf Restoration Initiative, highlighted 

the need to control cogongrass and climbing ferns in their 2022-2024 Strategic Priorities 

and Actions report, in addition to emphasizing the need for prescribed fires (McIntyre et 

al., 2022). The unified goals of conservation groups across the Southeast gave us 

confidence that while TBD was not a stated priority of non-DoD sites, all conservation 

groups were planning around prescribed burns, and could benefit from knowing 

additional benefits or trade-offs that prescribed burning could cause.  
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Tick Borne Disease Risk By Installation 

High rates of tick borne disease found at Camp Blanding and Tyndall are likely 

driven in part by the strong heterogeneity in tick population sampling. Part of that was 

likely exacerbated by changes in tick phenology along the field season, although 

installations were sampled over multiple years, at different times each year. It is also 

likely that lifestage affected results because nymphs were more likely to be encountered 

in a dense cluster than adults. Estimates of possible exposure in units of time is a useful 

way to present pathogen exposure to installations. It allows for incorporating estimates of 

exposure in field campaigns, and can help justify the cost of preventative measures like 

protective outerwear and insect repellents. By including the pathogens and diseases they 

could cause, we can put installations on alert for possible illnesses. Staff at Blanding, for 

example, might familiarize themselves with the symptoms for ehrlichiosis, richettotsis, 

and Southern-Tick Associated Rash Illness (STARI) (Figure 4.6). By including host data, 

we provide installations with the most likely reservoirs of pathogens, which might better 

inform decisions about how those host populations are managed.   

Exploring Hypotheticals 

Despite multiple lines of experimental evidence that prescribed burning reduces 

tick populations (Gleim et al., 2013, 2019), we found that ticks population projections 

were insensitive to the direct effects of fire. This suggests that fires may cull tick 

populations more through consuming leaf litter and by maintaining a forest structure that 

has lower leaf litter, rather than through direct fire mortality. We also found that 

predictions were most sensitive to the interactions between vapor pressure deficit and 
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litter depth, which suggests that ticks are controlled by available habitat. These 

distinctions are useful because of the pragmatic solutions they open up. If prescribed 

burns become infeasible because of changes to the fire season (Mitchell et al., 2014), or 

because of scheduling conflicts, removing the leaf litter via other techniques will likely 

have a similar effect on tick populations. Knowing that leaf litter effects interact with 

vapor pressure deficit suggests that if the climate becomes drier, tick populations may 

decrease. It also allows for prioritization; if it is only possible to remove the litter from a 

fraction of the sites, managers should prioritize wetter sites. Finally, by creating a tool 

that puts the change of one environmental variable in terms of ticks per trap, we can 

justify management choices in units of ticks reduced.  These analyses were based on the 

full range of installations across the southeast, which captures a range of temperatures, 

precipitation levels, and sites. This suggests that land managers in the southeast should 

see similar relationships between tick populations, litter, and climate.  

Conclusion 
We conducted five interviews with managers at participating installations, and 

learned that day-to-day decision making varied strongly between installations. However, 

installations have shared decision-making interests, and valued new insights from tick 

population and pathogen data and environmental effects data. We have developed a DST 

using R Shiny web application and it depicts three metrics of TBD exposure risk across 

nine installations. We report on the pathogens detected and on diseases those pathogens 

cause. We developed a tool that predicts how changes in environmental variables 

translate into changes in tick abundance, and found that tick populations are most 

sensitive to leaf litter and humidity. This sensitivity could be useful to find alternative 
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management strategies if prescribed burns become less logistically feasible under climate 

change. 
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License 

 
The datasets that are downloadable from this tool are summarized versions of the datasets 

we collected. We ask that publications only incorporate the data from this tool with 

explicit permission from the RC-2636 team. Please contact Tempest McCabe 

tmccabe@bu.edu or Brian Allan ballan@illinois.edu if you are interested in 

collaboration. Our data license reflects this, and allows third parties to share and copy 

data, but may not so without attribution, and may not create derivatives from the data (ie 

future publications). 

The data for this project are licensed Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License, which  To view a copy of this 

license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to 

Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. 
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The underlying code used to display, format, and extrapolate from data is licensed under 

the MIT license. To view a copy of this license, visit 

https://opensource.org/licenses/MIT.  
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CONCLUSIONS 

Key findings 

 
 In this dissertation, I had two goals. The first was to incorporate disturbances into 

an ecosystem model. In my first chapter, I discussed a theoretical technique for including 

contagious disturbances into dynamic vegetation models. In my second chapter, I layed 

out a workflow for reducing parameter uncertainty in an invasive grass. My second goal 

was to use models of disturbances to make projections about the ecology of the 

southeastern United States. In my third chapter, I simulated the effect of cogongrass 

invasions on a pine-oak stand. In my fourth chapter, I built a decision support tool for 

land managers to reduce tick-borne disease risk. My key findings were:  

 

● Representing disturbances in terms of frequency and shape can accurately recreate 

landscape dynamics, and different ecoregion and mechanisms had signature 

disturbance shape and size distributions. This suggests that our methods could be 

coupled with dynamic vegetation models to represent the heterogeneity of 

disturbances.  

● Iteratively reducing parameter uncertainty can reduce the output uncertainty in 

models. We used a workflow to reduce parameter uncertainty around cogongrass. 

We recommend starting with an uncertainty analysis based on model priors, and 

then cyclically integrating literature values, measurements, and statistical 

constraints, stopping when parameter uncertainty is sufficiently reduced. We 

found that integrating measurements reduced output uncertainty, but that 
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integrating both measurements and using statistical constraint increased output 

uncertainty, because model structural error began to dominate. This suggests that 

parameter uncertainty can be systematically reduced to the point when other 

forms of uncertainty dominate.  

● Cogongrass had lower biomass and density under elevated temperatures 

compared to elevated CO2 levels, and present-day conditions. Simulations where 

cogongrass was grown with pines and oaks became pine-dominant stands, but 

simulations with only pines and oaks became oak-dominant. Cogongrass 

facilitated a change in dominant tree despite extinction within the first 20 years of 

simulation. This suggests that cogongrass can affect the structural composition of 

a forest, and that pines can dominate southeastern stands without fire. 

● Department of Defense land managers prioritize information about tick borne 

disease risk and tick populations. Our decision support tool lets land managers 

explore the interactions of fire, climate, vegetation, and tick borne disease risk. 

We found that tick populations were most sensitive to leaf litter and humidity. 

 
 

Recommendations for Future Work 

 My first two chapters highlight the difficulty of balancing model parameters and 

model structure. Implementing contagious disturbances in dynamic vegetation models 

involves new model structures and parameters. Our theoretical scheme has the potential 

to capture heterogeneity in models (Fisher & Koven, 2020), but actual implementation 

may not be appropriate for all questions, and could introduce uncertainty, if information 
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about disturbance size and shape is difficult to measure, or is variable (Famiglietti et al., 

2021). While we found that disturbance shape and size were distinct in some contexts, 

more testing is necessary to determine how difficult estimating these parameters could 

be. For example, we found disturbances had distinct sizes and shapes across state-level 

landscapes, but many modeling problems work on smaller scales that may not have 

sufficient data to parameterize disturbance regimes. There are disturbance types that we 

would expect to have different sizes and shapes seasonally (ie insect disturbances, 

development, fire), in ways that may be difficult to measure without continuous 

monitoring. More validation against time series of remotely-sensed disturbances is 

necessary (Vogelmann et al., 2011).  

Our workflow for parameter uncertainty encountered model structural error. We 

need better tools for deciding how and when to restructure models. Process-based models 

can be subject to “complexification”, where models become more intricate as more 

processes are implemented. Complexification can make comparing, parameterizing, and 

using models challenging (Fisher & Koven, 2020). Dynamic vegetation models are 

complex enough that traditional model selection metrics are logistically challenging, and 

basic model-evaluation questions like appropriate scoring metrics and benchmarks, are 

still being resolved (Fisher & Koven, 2020). Possible solutions to complexification 

include evaluating models based on their ability to confirm or refute specific hypotheses,  

evaluating models based on performance against a range of situations, and evaluating 

specific sub-processes within models (Collier et al., 2018; Fisher & Koven, 2020; 

Medlyn et al., 2015). umber 
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 My second two chapters explored how vegetation in the southeast controls the 

system independently of fire. This is a useful finding because it distinguishes between the 

direct effect of fire, and possible indirect effects. This is a particularly relevant distinction 

for cogongrass, which has been hypothesized to be part of the fire-grass-cycle. D’Antonio 

hypothesized that grasses invade by altering fire regimes (D’Antonio & Vitousek, 1992). 

The “Fire-grass-cycle” hypothesis states that grasses expand their range into woodlands 

through four steps: 1) establishing in a natural forest-canopy gap, 2) changing the 

microclimate to favor flammability and ignitions, 3) when ignition occurs, burning at a 

higher intensity than native vegetation can withstand, causing mortality and new canopy 

gaps 4) expand into the new gap.  This hypothesis is cited as an explanation for why 

forests, savannas, and grasslands can co-occur at similar latitudes and climates (Oliveras 

& Malhi, 2016).  

 There is compelling evidence that cogongrass could be part of the fire-grass cycle. 

Cogongrass has traits that could alter fire regimes, like intrinsic flammability, creating 

dry thatch layers, and growing in a monoculture (Brooks et al., 2004). Cogongrass 

establishes quicker in disturbed sites than native vegetation (Estrada et al., 2017). It burns 

longer and more intensely than native grasses (Dillon et al., 2021; Flory et al., 2022). 

Cogongrass is taller than native grasses, and has been observed acting as a fire ladder 

from the understory to the tree canopy (Lippincott, 2000). However, only one study 

examined cogongrass’ effects on landscape-scale fire regime, a remote sensing study that 

attributed change in fire regimes to reports of invasive grasses, including Cogongrass 

(Fusco et al., 2019). Cogongrass was found to significantly affect fire frequency and fire 
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occurrence in the Southeast compared to uninvaded sites, but this was based on 

correlations and cogongrass had a smaller effect than other anthropogenic factors like the 

distance to roads. It’s unclear from this study if cogongrass actually changes fire regimes, 

or if cogongrass invades places with distinct fire regimes, because both effects are 

anthropogenically mediated. Given the Southeast’s extensive fire-management history, 

anthropogenic control over fire regimes seems plausible.  

Testing if Cogongrass is part of the fire-grass cycle would require testing if 

cogongrass changes existing fire regimes, and that those regimes change forest mortality. 

After my dissertation, it also involves testing if forest demographics change after 

cogongrass invasions because of fire, or because of facilitation. Cogongrass may have 

large structural effects on forests independent of its effect on disturbance regimes. Future 

work could clarify how closely cogongrass is tied to fire. 
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APPENDIX TO CHAPTER 1 

 

Figure S1.0.1: Comparisons of functional forms. Compared to all single-disturbance data 
larger than three pixels. For curve equations and fits, see Table S1.3. 
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Figure S1.0.2: Co-occurence of disturbance type within mixed disturbances.  

 
 
Table S1.1: Summary Statistics of Disturbance types 

  
  

Percent Event Frequency Percent Area Number of Events 

Unknown 0 728100113765643 0 20004122983 34560 

Prescribed Fire 0 010175 0 0363565 483 

Clearcut 0 000800 0 00059 38 

Thinning 0 013125184 0 0107915249 623 

Other Mechanical  0 07470610 0 030325679 3546 
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Herbicide 0 09807019 0 0930310 4655 

Wildfire 0 0066363 0 06033 315 

Mastication  0 0016222  0 0003213 77 

Wildland Fire 0 00263  0 001288523 125 

Chemical 0 0051826 0 00312636 246 

Biological 8 42708465006531e-05 4 95050955096828e-05 4 

Harvest 0 000463489655753592 0 000545727768843426 22 

Disease 0 00012640 0 000198752705936803 6 

Mixed  0 0122614 0 562501 582 

Florida 0 428 0 207 20329 

Southeastern USA Plains 0 182 0 0592 8618 

Southeast Coastal Plains  0 247  0 147 11711 

Oregon 0 572  0 793  27137 

Western Cordilleras  0 418 0 757 19852 

Marine West Coast Forest 0 153  0 0359 7285 

  
Table	S1.2: Pairwise comparisons of size density 

distributions statistics 
Comparison P value D 

statistic 
Clearcut x Wildland Fire 0.01743 0.28526 
Clearcut x Wildfire 0.15749 0.19357 
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Table S1.4: P values of model comparisons 

 
 
Table S1.5: Parameter Values of Curves 
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APPENDIX TO CHAPTER 2 

Table S2.1: Prior Distribution Definitions from (LeBauer et al., 2013)

 

Table S2.2: Distributions Definitions after Incorporating Field Data 
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Table S2.3: Distribution Definitions Field Data and Statistical Constraint 
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Figure S2.1: 2019 Field Season Closed-path Root Respiration measurement technique 
using LI-Cor 6400-09 soil chamber. Box A shows soil respiration chamber. Box B shows 
example fine roots being weighed. Box C shows the average CO2 measurements through 
time. Box C corresponds to fine root measurement #15.  
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Figure S2.2: Estimate of stomatal slope from light curves. Each leaf had photosynthesis 
measured across progressive light changes. Different colored dots are distinct leaves. 
Dotted lines show 95% confidence interval.  

 

Table S2.3: Parameter Distribution Mean Values Before and After Constraint.  

Parameter 
Prior 
Mean 

Mean with 
Constraint 

Fine Root Allocation 3.12358
07 

2.8388126 

Growth Respiration 0.29244
97 

0.3509166 

Quantum Efficiency 0.05728
89 

0.0471646 
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Root Respiration 5.53464
19 

4.9710924 

Specific Leaf Area 16.6978
538 

16.5855974 

Stomatal Slope 3.40002
32 

4.5366999 

Vmax 248.982
4621 

17.6382072 

Water Conductance 0.70033
97 

0.0007561 

 

Table S2.5: Continuous Ranked Probability Score Modeled Biomass to Median 
Observation 

 Priors With Field 
Data 

With Field 
Data + PF 

Aboveground 
Biomass 

0.0115 0.0187 0.0164 

Belowground 
Biomass 

0.0366 0.0205 0.0191 

Aboveground/ 
Belowground 

0.901 1.443 0.9148 
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Figure S2.3: Observed above and belowground biomass compared to biomass estimated 
by the 200 knots used in the particle filter described in the Statistical Constraint section. 
Observations are dark green circles. Knot values are magenta crosses.  

 

Figure S2.4: Density of observed above and belowground biomass compared to modeled 
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above and belowground biomass. Modeled distributions come from 50-member 
ensembles with parameter distributions described in Tables S2.1-S2.3. Bivariate points in 
Figure S2.5.

 

Figure S2.0.5: Observed above and belowground biomass compared to estimated above 
and belowground biomass using priors, field data constraint, and statistical constraint. 
Univariate distributions seen in Figure S2.4. Dark green circles are observations, crosses 
are model estimates.  
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APPENDIX TO CHAPTER 3 

 

 
Figure S3.1: Average June climate variables from four climate treatments. 
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Figure S3.2: Where sites sampled fall in climate space. Precip and Temperature estimates 
are from Daymet (Thornton et al., 2016). Counts are the number of grid cells within the 
southeast (1km2) with corresponding levels of temperature and precipitation. This data is 
plotted spatially in Figure 4.2 Sites were sampled as part of (RC-2636 Project Overview, 
n.d.) 
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Figure S3.3: Plot-scale Density vs Tree DBH across all inventoried sites. Line indicates 
cross-sample mean. Triangle indicates the density of plot used for analyses. Points above 
the triangle are the trees used to initialize model runs.  
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Figure S3.4: Species and DBH used to initialize ED2 for Trees, and Cogongrass + Trees 
competition treatments.  
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Figure S3.5: Density vs Biomass of Cogongrass. Arrows indicate movement through 
time, from 2085-2100.  
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APPENDIX TO CHAPTER 4 

Hello and thank you for agreeing to meet with us! 
 
My name is [Main interviewer], and this is [second interviewer], who will be taking 
notes.  
 
We are both part of a research team that studied the effects of fire and invasive plant 
management on vegetation and tick populations on your installation [personal context- 
when did Whalen & Drew  sample and who were they in contact with] .  
One of the products of our contract is to design a “decision support tool”.  At this early 
design stage, by “decision support tool” we mean a tool that displays how land 
management decisions affect some aspect of your installation that we studied. For 
example, the effect of time since last burn on tick populations. We would like to know 
more about how you are making decisions and what you find valuable to make the final 
“decision support tool” as useful as possible.  
 
Briefly, what is your role at the installation?  
 
How does your installation make decisions around forested natural resources?  
 
Do you use any decision support tools to make decisions now? Do you use any 
simulations or software to inform your decisions?  
 
What goals does your installation have for its natural resources?  
 
How do you prioritize goals?  
 
How do you evaluate whether you've met your management goals? 
 
What techniques do you use for management? Why? 
 
How far into the future are you planning?  
 
How often do troop training exercises conflict with natural resource management? Are 
areas that have been recently burned more likely to have troop training than areas that 
have a long history of no/minimal fires? 
 
Our research has collected data on plant community composition, cogongrass invasion, 
climate projections, and tick populations and tick-borne pathogen prevalence at your 
installation. Are any of these topics relevant to your installation's management goals? If 
yes, what makes them relevant? If not, what research would be relevant to your goals?  
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If tick-borne disease risk could be incorporated into a decision support tool as an outcome 
of management, would that be useful and why? 
 
If invasive species prevalence could be incorporated into a decision support tool as an 
outcome of management, would that be useful and why? 
 
If climate projections could be incorporated into a decision support tool as an outcome of 
management, would that be useful and why? 
 
What, if any, data do you collect for fire management, invasive species, or tick 
populations or tick-borne diseases?  
 
What would be the most useful way of presenting our results? Have you had past 
collaborations we could emulate? What has worked well?  
 
Hypothetically, if we had 10 or more years, and unlimited dedicated funding to build the 
decision support tool, and were building it just to cater to the needs of your installation, 
how would you advise us to design it?  
 
Do you have any questions for us?  
 
Would you be willing to give us feedback on an early version of the decision support 
tool?  
 
Do you have colleagues that you think we should reach out to? 
 
Thank you again! 
 
Figure S4.1: Structured Interview Script. 
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Figure S4.2: Research With Human Subjects Determination Form.
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