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ABSTRACT

Social networks, eCommerce, and online news attract billions of daily users. The PHP

interpreter powers a host of web applications, including messaging, development environ-

ments, news, and video games. The abundance of personal, financial, and other sensitive

information held by these applications makes them prime targets for cyber attacks. Consid-

ering the significance of safeguarding online platforms against cyber attacks, researchers

investigated different approaches to protect web applications. However, regardless of the

community’s achievements in improving the security of web applications, new vulnera-

bilities and cyber attacks occur on a daily basis (CISA, 2021; Bekerman and Yerushalmi,

2020).

In general, cyber security threat mitigation techniques are divided into two categories:

prevention and detection. In this thesis, I focus on tackling challenges in both prevention

and detection scenarios and propose novel contributions to improve the security of PHP

applications. Specifically, I propose methods for holistic analyses of both the web appli-

cations and the PHP interpreter to prevent cyber attacks and detect security vulnerabilities

in PHP web applications. For prevention techniques, I propose three approaches called

vi



Saphire, SQLBlock, and Minimalist. I first present Saphire, an integrated analysis of both

the PHP interpreter and web applications to defend against remote code execution (RCE)

attacks by creating a system call sandbox. The evaluation of Saphire shows that, unlike

prior work, Saphire protects web applications against RCE attacks in our dataset. Next,

I present SQLBlock, which generates SQL profiles for PHP web applications through a

hybrid static-dynamic analysis to prevent SQL injection attacks. My third contribution

is Minimalist, which removes unnecessary code from PHP web applications according

to prior user interaction. My results demonstrate that, on average, Minimalist debloats

17.78% of the source-code in PHP web applications while removing up to 38% of secu-

rity vulnerabilities. Finally, as a contribution to vulnerability detection, I present Argus,

a hybrid static-dynamic analysis over the PHP interpreter, to identify a comprehensive set

of PHP built-in functions that an attacker can use to inject malicious input to web appli-

cations (i.e., injection-sink APIs). I discovered more than 300 injection-sink APIs in PHP

7.2 using Argus, an order of magnitude more than the most exhaustive list used in prior

work. Furthermore, I integrated Argus’ results with existing program analysis tools, which

identified 13 previously unknown XSS and insecure deserialization vulnerabilities in PHP

web applications.

In summary, I improve the security of PHP web applications through a holistic analysis

of both the PHP interpreter and the web applications. I further apply hybrid static-dynamic

analysis techniques to the PHP interpreter as well as PHP web applications to provide

prevention mechanisms against cyber attacks or detect previously unknown security vul-

nerabilities. These achievements are only possible due to the holistic analysis of the web

stack put forth in my research.
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Chapter 1

Introduction

E-commerce, social media, and online news draw the attention of billions of users on a

daily basis. Importantly, as of 2022, PHP powers 77.4% of all live web sites (Q-Success,

2023b). A further testament to the prevalence of the PHP programming language is the

popularity of applications written in PHP. For instance, WordPress alone powers 43.1%

of all websites (Q-Success, 2023a). At a high level, a set of software technologies has to

work together to process and respond to a user’s web requests. This set, which we refer

to as the web stack, includes the operating system (OS), the web server (e.g., Nginx), the

database (e.g., MySQL), and the backend scripting language (e.g., PHP). LAMP (Linux,

Apache, MySQL, PHP/Perl/Python) (IBM, 2021) is a popular example of the web stack of

open-source building blocks.

The growing number of online users on social networks and online stores makes online

platforms an attractive target of sensitive information for attackers. Based on collected data

from 550 organizations that encountered data breaches between March 2021 and March

2022, IBM reports that the average cost of a cyber attack for a company was $4.35 mil-

lion, which is a 10% increase compared to the prior year (IBM, 2022). Exacerbating the

situation, Checkpoint’s cyber attack trend report shows that global cyber attacks increased

by 28% in the third quarter of 2022 compared to the same period in 2021 (Che, 2022).

Successful cyber attacks can have a significant impact on both the platform and its users by

compromising the integrity of data held by the online platform as well as the operation of

the running application.
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The most common type of vulnerability leveraged by attackers are injection vulnera-

bilities (CISA, 2021). OWASP (OWASP, 2023) defines an injection vulnerability as "a

vulnerability which allows an attacker to relay malicious code through an application to

another system. This can include compromising both backend systems as well as other

clients connected to the vulnerable application." The root cause of an injection vulnerabil-

ity is passing insufficiently sanitized attacker-controlled user-input to sensitive functions in

the vulnerable applications. OWASP’s 2017 application security risk report classifies injec-

tion vulnerabilities as the most critical type of security risk to web applications (OWASP,

2017), since these attacks can often completely compromise a target application on the

online platform.

In order to protect online platforms against attackers, security researchers have investi-

gated a plethora of techniques to identify threats or neutralize the exploitation of security

vulnerabilities. Existing approaches on improving the security of online platforms are clas-

sified into two groups: 1) detection mechanisms that identify security vulnerabilities, and

2) prevention techniques that provide the necessary tools to protect resources against cyber

attacks. In this thesis, I propose novel contributions to improve the security of PHP web

applications through both prevention and detection techniques.

1.1 Thesis Contributions

This thesis comprises two synergistic and complementary themes: runtime defenses and

vulnerability detection. This thesis proposes to leverage program analysis techniques to

address the shortcomings of prior solutions and improve the security of PHP web appli-

cations through protection and detection mechanisms. To this end, I introduce a series of

novel runtime defenses against SQL injection (SQLi) and remote code execution (RCE)

attacks, as well as a semi-automated debloating approach. Additionally, I propose the first

systematic and principled approach to identify injection-sinks in the PHP interpreter, which
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improves existing vulnerability detection systems. My thesis is given in the following state-

ment:

An integrated analysis of the web stack improves the security of web applications in

both detection and prevention scenarios.

To substantiate this thesis statement, my Ph.D. research comprises four novel contribu-

tions, which include three prevention mechanisms and one detection method. I will first

describe my contributions to improving the security of PHP applications through runtime

defenses. Next, I elaborate on my contribution toward improving existing tools for detect-

ing security vulnerabilities in PHP applications.

1.1.1 Prevention Mechanisms

Web applications and the interpreted languages that power them are at the core of security

breaches that affect society at large. In this subsection, I elaborate on my contributions to

runtime defenses against two types of injection attacks: RCE and SQLi. Furthermore, I

describe a semi-automated debloating approach to improve the security of PHP web appli-

cations by removing vulnerable portions of the source code.

Saphire: Sandboxing PHP applications against RCE attacks

Remote code execution (RCE) vulnerabilities are the most dangerous class of vulnerabili-

ties, where an attacker can completely control the compromised application. The issue that

makes RCE so perilous is the fact that modern interpreted applications do not adhere to

the principle of least privilege (PoLP). At-risk projects such as QEMU, Chrome, Firefox,

and Tor have recognized this issue and reduced the run-time privileges of their software,

which limits the potential impact of a vulnerability. However, this approach is not effective

on interpreted applications since interpreters such as PHP introduce a layer of abstraction

between the program and the underlying OS, which manages the OS resources through an

API.
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In my first contribution, I introduce an abstraction-aware technique for applying the

PoLP to interpreted PHP applications called Saphire. The proposed system treats the capa-

bility to issue a system call as a privilege. Thus, the PoLP dictates that each PHP program

should only be allowed to invoke the system calls that it needs to function correctly. Saphire

consists of three essential steps that broadly apply to any interpreted language. In the first

step, Saphire analyzes the available APIs for the PHP application and identifies the set

of system calls that each API invokes to access the operating system’s resources. Next,

Saphire analyzes the PHP application to identify the set of APIs used by each PHP file.

Combining the above information allows Saphire to generate a system call profile for each

PHP file. In the last step, Saphire enforces the system call profile on the executed PHP

files. The evaluation of Saphire shows that, on average, my approach reduces the avail-

able system calls of each PHP file by 80.5% for the web applications in our dataset. In

addition, Saphire successfully defends against 21 previously known vulnerabilities in our

dataset with a low 2% overhead on the response time of the web server.

SQLBlock: Mitigating SQL injection attacks against PHP applications

For my second contribution, I focused on SQL injection (SQLi) attacks. A SQLi vulnera-

bility is a type of injection vulnerability where the attacker aims to execute a malicious SQL

query on a database. According to a 2020 report from Imperva (Bekerman and Yerushalmi,

2020), 82% of detected injection vulnerabilities are SQLi vulnerabilities. There has been

a great deal of research on designing runtime defenses to protect web applications against

SQLi attacks (Bandhakavi et al., 2007; Buehrer et al., 2005; Liu et al., 2009; Medeiros

et al., 2016; Medeiros et al., 2019; Sun and Beznosov, 2008; Boyd and Keromytis, 2004;

Halfond and Orso, 2005; Naderi-Afooshteh et al., 2015). However, the shortcomings of

existing systems, such as relying on an incomplete definition of SQLi attacks (Ray and

Ligatti, 2012) and coarse-grained profiles of benign SQL queries (Medeiros et al., 2016;

Medeiros et al., 2019), leave popular web applications such as WordPress, Joomla, and
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Drupal vulnerable to SQLi attacks. Furthermore, overly strict approaches (Medeiros et al.,

2019) result in false positives (i.e., the application rejects valid user interaction).

As a novel contribution, I proposed SQLBlock, a hybrid static-dynamic approach that

protects web applications against SQLi attacks. To this end, SQLBlock first statically an-

alyzes the PHP web application to identify the database APIs that are used across the web

application to issue queries to the database. This step allows SQLBlock to determine the

database API and subsequently identify the PHP functions that use this API to communi-

cate with the database. Second, SQLBlock records the set of issued queries during benign

browsing of a given web application. In the next step, SQLBlock generates a profile, which

is a mapping between the function that issued the query and a query descriptor that charac-

terizes the benign functionality of the SQL query. Finally, SQLBlock enforces the profile

inside the database and rejects SQL queries that do not match the profile. The evaluation

of SQLBlock confirms that it protects against real-world SQLi attacks in our dataset.

Minimalist: Debloating PHP applications through static analysis

The growth in features and capabilities of web applications involves the constant introduc-

tion of new code. This ever-increasing codebase can be partially explained by the increas-

ing reliance on third-party libraries and frameworks that facilitate the development process.

Developers include an entire library in the web application while only using a small portion

of the code from the library. Concurrently, users do not always use the entirety of intro-

duced features, leading to another source of unnecessary code. In this thesis, we refer to

unnecessary code, independent of its source (e.g., libraries or user behavior), as bloat.

Debloating is the process of determining the functionality that a user or system requires

to fulfill its purpose and subsequently preventing the execution of all other code in the sys-

tem (e.g., a web application). An essential aspect of debloating is determining what code

to remove vs. what code to retain, which can be done dynamically (e.g., through reliance

on dynamic traces (Abubakar et al., 2021; Azad et al., 2019; Bulekov et al., 2021; Ja-
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hanshahi et al., 2020)) or statically (e.g., through static call-graph construction (Agadakos

et al., 2019; Ghavamnia et al., 2020a; Qian et al., 2020) or dependency graphs (Koishy-

bayev and Kapravelos, 2020)). Dynamic debloating techniques require a training phase

that records execution traces to determine the used portion of code in a web application,

which then allows dynamic approaches to reject all behaviors that were not observed dur-

ing training. However, profiling user interaction is a resource-intensive task, which can

hinder the server’s performance in terms of response time. For instance, my evaluation

shows that Less is More (LIM), a state-of-the-art dynamic debloating technique, slows

down the server’s response time by 17X in web applications like WordPress. Furthermore,

a key goal for both static and dynamic approaches is minimizing the false positives in a

debloated web application (i.e., the incorrect removal of required functionality). Achieving

a low number of false positives for a debloating mechanism is an important yet challenging

task since false positives make a debloated application unresponsive for legitimate users.

My evaluations demonstrate that by adding small variations in already exercised features

in a web application (e.g., changing an option in a drop-down list on a submitted form),

users observe a breakage in 33% of their actions for a web application debloated by LIM.

The drawbacks of existing systems point out the necessity of an analysis that avoids false

positives from debloated applications by not relying on dynamic code coverage.

To address the shortcomings of prior work in debloating PHP web applications, I pro-

pose a semi-automated static debloating method called Minimalist for web applications

written in PHP. Minimalist generates a call-graph for a given web application, which is

then used for the debloating process. At a high level, my debloating scheme consists of

three major steps. First, Minimalist statically analyzes the given PHP web application to

generate a call-graph. Second, Minimalist prunes the call-graph by removing the functions

that the web application does not require to respond to users’ requests. Finally, Minimal-

ist performs a function-level debloating to remove the unused functions. The evaluations
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show that Minimalist debloats 17.78% of code in 12 web applications and removes 38% of

high-severity vulnerabilities in our dataset.

1.1.2 Detection Mechanism

As mentioned before, injection vulnerabilities (e.g., SQLi, insecure deserialization, or

cross-site scripting) are the most common category of application vulnerabilities in web

applications. To exploit such injection vulnerabilities, attackers provide malicious input to

the web application, compromising both the backend systems as well as the clients. In this

novel contribution, we focus on two types of injection vulnerabilities: cross-site scripting

(XSS) and insecure deserialization. An XSS vulnerability allows an attacker to execute

malicious JavaScript on the client’s browser and compromise the interaction between the

client and the vulnerable website. In addition, an insecure deserialization vulnerability

arises when an attacker can inject malicious serialized data to a vulnerable application,

which allows the attacker to reuse existing application code in harmful ways. The root

cause of an injection vulnerability is passing insufficiently sanitized attacker-controlled

user-input to sensitive APIs. Depending on the injection vulnerability type, the sensitive

APIs differ. For instance, PHP’s echo is recognized as a sensitive API for XSS attacks by

the community, while unserialize plays the same role for insecure deserialization. De-

spite the differences in their details, injection vulnerabilities are data-flow problems where

untrusted user-input is propagated throughout the web application’s execution and finally

reaches sensitive sinks (e.g., echo or unserialize). Despite the effectiveness of prior

work in detecting security vulnerabilities, all existing systems share one common flaw: re-

lying on a manually curated or historically defined list of sensitive APIs to detect injection

vulnerabilities. The accuracy of a manually curated list of sensitive APIs depends on the

documentation for the programming language and the expertise of the analyst who identi-

fies the sensitive APIs. As is often the case with human involvement, the listings are not

comprehensive, which leads to undetected injection vulnerabilities.
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To address this shortcoming, I propose a systematic and principled approach to infer

a comprehensive set of APIs that can lead to XSS and insecure deserialization. To this

end, I designed, implemented, and evaluated an automatic approach called Argus to iden-

tify the set of APIs that deserialize user-input or write to the output buffer (e.g., the HTML

response for the user). A complete set of sinks offers significant security benefits. I demon-

strate that by incorporating Argus’ resulting sink list into existing systems, those systems

produce significantly higher-quality results. My key observation is that there is precisely

one function inside the PHP interpreter that deserializes data – php_var_unserialize. A

similar observation shows that there is one function used for writing to the output buffer

called php_output_write. Argus detects the set of injection-sinks through an automated

hybrid static-dynamic analysis of the PHP interpreter. Specifically, Argus first generates the

call-graph for the PHP interpreter. Next, Argus performs a reachability analysis to identify

the set of PHP APIs whose invocation can trigger deserialization or writing to the output

buffer. Using this approach, Argus detects 284 deserialization APIs, an order of magnitude

more than the most exhaustive manually curated list used in related works. Furthermore,

Argus also detected 22 output APIs in PHP 7.2, which is twice the number of sensitive

APIs used in existing detection systems. To demonstrate the benefits of this approach, I

extended two existing vulnerability detection systems (i.e., Psalm and FUGIO) to identify

and exploit injection vulnerabilities such as XSS and insecure deserialization. The exten-

sion of existing program analysis tools led to the identification of 13 previously unknown

vulnerabilities.

In summary, I introduced a series of novel protection and detection methods to improve

the security of PHP web applications. In protection scenarios, I designed and developed

three approaches to defend against RCE (Saphire) and SQLi attacks (SQLBlock), as well

as a semi-automated static debloating approach (Minimalist). Finally, as a detection mech-

anism, I propose a systematic and principled analysis of the PHP interpreter (Argus), which
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identifies the set of PHP APIs that can lead to XSS and insecure deserialization vulnera-

bilities. Overall, these contributions demonstrate how holistic analysis of the web stack

provides more protection against various attacks against PHP web applications as well as

the detection of previously unknown security vulnerabilities.
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Chapter 2

Background

In this section, I provide background knowledge on the resource management of the operat-

ing system (OS) through system-call, the PHP language, and the threat of vulnerabilities in

PHP web applications. I look into the PHP interpreter and review the language constructs

that complicate the analysis of PHP web applications in order to generate a call-graph. Fur-

thermore, I elaborate on the threat of SQL injection (SQLi), remote code execution (RCE),

cross-site scripting (XSS), and insecure deserialization. These factors motivate the design

of my runtime defenses as well as program analysis techniques, which I elaborate in the

next chapters.

2.1 System Calls

An operating system manages the resources on a computer and provides user-space pro-

cesses with mediated access to these resources via the system-call API. The available

system-calls and how they are invoked depend on the OS and the processor’s instruction set

architecture. Programs rely on system-calls as they are the only means of communicating

with the rest of the system and with the outside world. Programs and payload code alike

can only communicate with the process’ environment through the system-call API.

Recognizing that the system-call API is a key interface that is used by both benign and

compromised processes, operating systems provide methods for limiting the system-calls

accessible to an attacker who has exploited a process. For example, with Linux’ seccomp,

a process can provide the kernel with a filter, which the kernel uses to decide which system-
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calls to allow from the process in the future. Once the filter is installed, it is enabled for

the lifetime of the process, and it is not possible to remove restrictions. If a process calls

a filtered system-call, the kernel kills the process. seccomp is used for sandboxing major

client and server software, including Chrome, Firefox, Tor, QEMU, and OpenSSH. Since

the kernel performs the filtering, the overhead is negligible.

Linux also supports security modules (LSM), such as AppArmor and SELinux, which

add support for access control policies, including mandatory access control (MAC). MAC

rule-sets can be used to explicitly limit the “capabilities” of a program, such as access to

a network or specific files. Security modules allow an administrator to manually secure a

process if its interactions with the OS are well-defined. However, LSMs cannot distinguish

between individual scripts executed by an interpreter. Hence, it is difficult to build a MAC

rule-set for an interpreter while enforcing the PoLP for individual interpreted programs.

2.2 Interpreters

Interpreted programs rely on a separate application - the interpreter, for execution. Sepa-

rating the binary code in the interpreter from the actual program makes code portable and

allows for straightforward implementation of advanced language features, such as reflec-

tion and dynamic-scoping. Essentially, the interpreter is a layer of abstraction, separating

the program code from the low-level details of the underlying operating system. Since

interpreted programs still need access to system resources (e.g., files or network sockets),

they must have a means of communicating with the kernel. To bridge the gap created by ab-

straction and provide programs with access to OS-managed resources, interpreters provide

an API to the programs they execute.

For example, the PHP interpreter’s built-in API provides access to the file-system, net-

work, and databases, as well as unprivileged resources such as built-in data structures and

string-operations. When an API feature requires access to OS-managed resources, such as
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network sockets or file descriptors, the interpreter issues a system-call, which is handled

by the kernel. Interpreted programs can define functions in their code, but unlike the in-

terpreter API, these functions can never directly issue system-calls, as this would break the

interpreter abstraction.

2.3 PHP

PHP is an open-source server-side scripting language. According to W3Techs (Q-Success,

2023b), 79.1% of all websites use PHP as their server-side language. The PHP interpreter

provides various features to develop PHP web applications. In this section, we go over the

common source of dynamicity in the control flow of PHP web applications.

2.3.1 Object Oriented Programming

PHP supports the Object-Oriented Programming model, which introduces three new con-

cepts for developing PHP web applications: inheritance, polymorphism, and encapsulation.

Inheritance and polymorphism let developers extend the functionality of classes or imple-

ment an interface in more than one way. Encapsulation bundles data and methods into a

single unit. Hence, OOP allows developers to create modular programs and extend the

functionality of PHP database extensions. Additionally, PHP provides dynamic features,

such as creating objects from dynamic strings. new is the keyword for creating objects

from a class in PHP. The argument for the new keyword can be a class name or a string that

represents the name of the class. An example is shown in Figure 2.1, line 22, where the

value of type defines the class that should be instantiated.
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1 ## Class.php

2 class ParentClass {

3 public $feature = 0;

4 public function __construct() {

5 $this->feature = 1;

6 }

7 public function Cprint(){

8 echo $this->feature."\n";

9 }

10 }

11 class ChildClass extends ParentClass {

12 public function call() {

13 call

Invoke Cprint in ParentClass

_user_func(array($this, 'Cprint'));

14 }

15 }

16
17 ## test.php

18 define('classpath', __DIR__ );

19 $included = classpath."/Class";

20 include_once $included.'.php';

Variable file inclusion21 $type = "ChildClass";

22 $obj = new $type;
Invoke the parent constructor23 $method = "call";

24 $obj->$method(); Variable invocation

Listing 2.1: Usage of dynamic PHP language constructs
in file inclusion, class instantiation and function calls.

2.3.2 File Inclusion Schemes

Program dependencies are a prominent feature in many interpreters. Dependencies allow

developers to organize and reuse code and encourage good software engineering practices.

PHP provides two mechanisms for file inclusion: 1) Direct inclusion using include and

require statements, and 2)autoloaders.

Direct file inclusion enables developers to load PHP files corresponding to different

classes and modules at runtime. Lines 18 and 19 in Listing 2.1 incorporate a constant

variable definition based on the path of the current directory (using the __DIR__ built-
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in constant) to generate the file path that is then used in the include statement on line

20. This file inclusion scheme is commonly used in applications such as WordPress and

phpMyAdmin. In order to statically resolve such file paths, an application analysis needs

to properly models the data flow (e.g., direct variable assignments, use of arrays, constants,

and global variables) for the target variables.

Autoloaders allow developers to dynamically resolve and load undeclared classes with-

out explicit calls to include or require. A PHP application can introduce autoloading

rules to the PHP interpreter using the spl_autoload_register. This way, the PHP in-

terpreter can automatically use the defined rules to load undeclared classes. In Listing 2.1,

autoloaders could be used instead of direct file inclusion on line 20. This way, the PHP

interpreter would automatically include the Class.php file inside test.php on line 22

when the class instantiation occurs with an undefined class name. Regardless of the file

inclusion mechanism, the PHP engine executes all the code in the main body (i.e., not part

of a function or a class) of the included PHP script upon inclusion.

2.3.3 Function Invocation

PHP provides various language APIs to invoke functions (e.g., direct invocation, variable

function names, and callbacks). A dynamic function call refers to a function invocation

where the function to be invoked is determined at runtime. Next, we go over the PHP

language APIs and constructs that can result in dynamic function calls:

Reflection in the PHP interpreter allows programs to examine classes, interfaces, meth-

ods, and extensions. PHP applications can use reflection to dynamically instantiate a class,

list available methods and properties, and invoke class methods.

Variable functions in PHP are an implicit way of calling functions using reflection.

In this scheme, the target function name is stored in a variable, which is then used in a

function invocation. Lines 23 and 24 of Listing 2.1 demonstrate this use case, where the

variable $method is assigned with the function name call. Likewise, the class name that
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implements this method is defined on line 21 by a variable named $type.

Callback functions are another means of invoking functions. This scheme is com-

monly used to delay the invocation of a function. Certain PHP built-in functions, such

as array_filter(), call_user_func(), and set_error_handler(), accept a function name to be

called after a certain event. Line 13 in Listing 2.1 showcases a function named “Cprint” de-

fined under $this scope, which refers to ChildClass being invoked using a callback scheme

via call_user_func().

2.3.4 Deserialization

As part of the PHP API, the PHP interpreter provides a native implementation of seri-

alization through two PHP API functions – serialize and unserialize. Serialization

provides an easy mechanism to persist data in memory or storage. Serialization also al-

lows applications to communicate and transfer data to each other by converting the data

to a stream of bytes. The receiver of serialized data must follow a process called deserial-

ization, which converts the byte-stream back into PHP objects. Importantly, the serialized

byte-stream can only contain data; code, which defines the functionality and behavior of

objects, is not included. To deserialize a byte-stream, PHP provides the unserialize API

function. The PHP interpreter takes the following steps to deserialize an object:

• The PHP interpreter instantiates an object of the specified class and assigns its prop-

erties based on the byte-stream contents. Using this approach, the PHP interpreter

creates a copy of the originally serialized object. Note that in order to instantiate

objects via deserialization, their corresponding class structure and method imple-

mentation must already be defined in the program.

• Once the object is created, the PHP interpreter invokes the __wakeup function if it is

implemented by the corresponding class. This function recreates any resources that

the object contains. This functionality can be used to restore database connections,
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file handlers, etc.

While executing a PHP script, the PHP interpreter destroys the object when there are

no references to the object by invoking the __destruct function. Deserializing an input

is safe as long as the input is properly sanitized. Passing malicious data to unserialize

in PHP can lead to a diverse set of attacks, such as denial of service and arbitrary code

execution.

2.3.5 Stream Wrappers

A stream in the PHP interpreter is a generalization of a data source which implements

a set of common file operation functions such as fopen and copy. PHP Stream wrap-

pers allow developers to use consistently-named file-related functions such as fopen

for different types of file resources. The types of resources are identified analogous

to URL schemes and can vary from classic local files (e.g., /etc/passwd), network

reachable resources (e.g., https://example.com/text), to PHAR archive types (e.g.,

phar://usr/share/app.phar). Importantly, once the resource’s type is identified, the

PHP interpreter, maps each type to a corresponding stream wrapper which allows the ap-

plication developer to transparently perform (supported) file operations on the resource

(e.g., read, seek, etc.).

PHP Archives (phar) enable developers to compress an entire PHP application in a

single file. To interact with phar files, PHP provides a built-in stream wrapper. Each phar

file contains the following sections:

• Stub is a simple PHP file that instructs the PHP interpreter how to load the applica-

tion.

• Manifest determines the number of files in the phar as well as the file permissions,

type of compression, and serialized metadata. The metadata includes a description

of the existing files in the archive in a serialized format.
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• Contents includes the actual contents of all of the files in the phar archive.

• Signature is an optional approach to verify the file’s integrity.

2.4 PHP Web App Vulnerabilities

In this section, we discuss four vulnerabilities that arise in PHP web applications: 1) SQL

injection, 2) php object injection, 3) remote code execution, and 4) cross-site scripting.

2.4.1 SQL Injection

SQL injection (SQLi) is a code injection attack in which an attacker is able to control a

SQL query to execute malicious SQL statements to manipulate the database. SQLi attacks

are classified into eight categories (Halfond et al., 2006; Dahse and Holz, 2014b):

1. Tautologies: The attacker injects a piece of code into the conditional clause (i.e.,

where clause) in a SQL query such that the SQL query always evaluates to true (Hal-

fond et al., 2006). The goal of this attack varies from bypassing authentication to

extracting data, depending on how the returned data is used in the application.

2. Illegal/Logically incorrect Queries: By leveraging this vulnerability, an attacker can

modify the SQL query to cause syntax, type conversion, or logical errors (Halfond

et al., 2006). If the web application’s error page shows the database error, the at-

tacker can learn information about the back-end database. This vulnerability can

be a stepping stone for further attacks by revealing the injectable parameters to the

attacker.

3. Union Query: In union query attacks, the attacker tricks the application to append

data from the tables in the database for a given query (Halfond et al., 2006). An

attacker adds one or more additional SELECT clauses, which start with the keyword
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UNION, that lead to merging results from other tables in the database with the re-

sult of the original SQL query. The goal of such an attack is to extract data from

additional tables in the database.

4. Piggy-backed Query: A piggy-backed query enables attackers to append at least

one additional query to the original query. Therefore, the database receives multiple

queries in one string for execution (Halfond et al., 2006). The attacker does not intend

to modify the original query but to add additional queries. Using the piggy-backed

query, an attacker can insert, extract, or modify data, as well as execute remote com-

mands and extract data from the database. The success of the attack depends on

whether the database allows the execution of multiple queries from a single string.

5. Stored procedures: Stored procedures are a group of SQL queries that encapsulate

a repetitive task. Stored procedures also allow interaction with the operating sys-

tem (Halfond et al., 2006), which can be invoked by another application, a command

line, or another stored procedure. While a database has a set of default stored pro-

cedures, the SQL queries in a stored procedure can be vulnerable, similar to SQL

queries outside the stored procedure.

6. Inference: In this type of attack, the application and the database are prevented from

returning feedback and error messages; therefore, the attacker cannot verify whether

the injection was successful or not (Halfond et al., 2006). In inference attacks, the

attacker tries to extract data based on answers to true/false questions about the data

already stored in the database.

7. Alternate Encoding: In order to evade detection, the attackers use different encoding

methods to send their payload to the database. Each layer of the application deploys

various approaches for handling encodings (Halfond et al., 2006). The difference

between handling escape characters can help an attacker evade the application layer
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and execute an alternate encoded string on the database layer.

8. Second order injections: One common misconception is that the data already stored

in the database is safe to extract (Dahse and Holz, 2014b). In a second order attack,

an attacker sends his crafted SQL query to the database to store his attack payload in

the database. The malicious payload stays dormant in the database until the database

returns it as a result of another query, and the malicious payload is insecurely used to

create another SQL query.

2.4.2 Remote Code Execution

Remote code execution (RCE) occurs when a network attacker gains the ability to execute

arbitrary code (ACE) on a target system. RCE exploits against interpreted programs gen-

erally rely on improper usage of language features. Notably, RCE exploits commonly rely

on code injection, insecure deserialization, or unrestricted file uploads.

Once the attacker exploits an RCE vulnerability, they leverage the exploited process

to run a payload to, generally, gain access to additional resources. The operating system

provides a system-call interface that processes must use to access privileged resources,

such as the network, file system, and process-management. Therefore, in order for the

attack to be fruitful, the payload must invoke system-calls to access resources managed

by the OS. For example, a simple payload may try to expose a shell that the attacker can

connect to remotely. Such a payload requires, at minimum, access to the network and

process management to spawn a shell process.

2.4.3 PHP Object Injection

PHP object injection (POI) is a security vulnerability that leverages insecure deserialization

in PHP applications. To exploit such a vulnerability, an adversary must control the proper-

ties of an insecurely deserialized object. By exploiting a POI vulnerability, an attacker can
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potentially hijack the program’s execution by controlling the properties used in automatic

calls to the __wakeup and __destruct methods.

The snippet in Listing 2.2 presents a PHP script that contains a deserialization vul-

nerability. We observe that at Line 25, user-input is passed to the unserialize function

without sanitization. In order to exploit this vulnerability, the attacker needs to satisfy two

conditions.

• There needs to be at least one class which implements the class methods __wakeup

or __destruct to carry out the attack.

• All of the classes used in the exploit need to be defined (or the application must

support automatic loading of classes) when the unserialize function is called on

Line 25.
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1 class Example

2 {

3 protected $obj;

4 function __construct()

5 {

6 // some PHP code ...

7 }

8 function __destruct()

9 {

10 if (isset($this->obj))

11 {

12 return $this->obj->getValue();

13 }

14 }

15 }

16 class Exec

17 {

18 private $_cmd;

19 function getValue()

20 {

21 system($this->_cmd);

22 }

23 }

24 // unsantizied user-input passed to unserialize

25 $user_data = unserialize($_POST['data']);

26
27 // unsanitized file operation

28 file_exists($_POST['file']);

Listing 2.2: A deserialization vulnerability leading to
arbitrary code execution. An adversary can execute any
command by crafting a PHP object which modifies the
value of _cmd property.

Exploiting a POI vulnerability is inherently a code-reuse attack, where an attacker sim-

ply recombines the already existing code to achieve malicious outcome by introducing a

malicious object. To exploit a POI vulnerability the attacker needs to identify the user-

defined functions and methods (i.e., gadgets) in the PHP app that can be used to achieve

his goals (Park et al., 2022). As an example, we describe how an attacker can choose the
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gadgets to link and perform a remote code execution attack in Listing 2.2. Looking at List-

ing 2.2, we observe that there are two defined classes prior to the deserialization at Line

25: Example and Exec. The destructor of class Example calls a function named getValue

from the variable obj. If an attacker sets the variable obj to an object of class Exec, then

the destructor will call the class method getValue at 12. Looking at the implementation

of the class method getValue, we see the invocation of the function system on the prop-

erty of _cmd. An attacker can run an arbitrary command by setting the value of the _cmd

property. The first part of Listing 2.3 contains the exploit written for the vulnerability in

Listing 2.2.

2.4.4 Exploiting phar wrappers.

Thomas in (Thomas, 2018) demonstrated how an attacker can exploit an invocation of a

file operation API and perform a PHP object injection. He showed that the PHP interpreter

deserializes the metadata upon any file operation on a phar file. Considering the aforemen-

tioned information, an adversary can achieve arbitrary code execution by leading the PHP

interpreter to perform file operations (e.g., file_exists) on a phar file with a malicious

metadata field.

The second part of Listing 2.3 shows how an attacker can generate a phar file with

malicious metadata (set on Line 20). Looking at the snippet in Listing 2.2, we observe that

the PHP script checks the existence of a file by passing an unsanitized user-input at line 28.

In order to exploit the vulnerability at Line 28 of Listing 2.2, the attacker can set the post

variable file to phar://path-to-malicious-phar-file.
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1 // PART ONE: modify properties

2 class Exec

3 {

4 private $_cmd = "cat secret";

5 }

6 class Example

7 {

8 protected $obj;

9 function __construct()

10 {

11 $this->obj = new Exec;

12 }

13 }

14
15 print urlencode( serialized( new Example ) );

16
17 // PART TWO: create Phar file

18 $phar = new Phar('exploit.phar');

19 $phar->startBuffering();

20 $phar->setMetadata(new Example());

21 $phar->stopBuffering();

Listing 2.3: Adversary can exploit file operations by
generating a malicious phar file.

2.4.5 Cross-site Scripting

A cross-site scripting (XSS) vulnerability is an injection vulnerability that allows an at-

tacker to compromise the interactions of the victim with a vulnerable application. This

vulnerability allows the attacker to execute malicious scripts in the victim’s web browser

by including malicious code in a legitimate web application. In order to understand the

cause of an XSS vulnerability, we first explain the life-cycle of a request sent by a user and

then discuss the role of the PHP interpreter in this life-cycle.

In the life-cycle of a request sent to a web-server such as Apache or Nginx, the PHP

interpreter plays an important role in providing the output shown to the user. When a web-

server receives a request for a PHP script, the web-server invokes the PHP interpreter to
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determine the output. The PHP interpreter executes the PHP script, which can include

interaction with a database, the file system, or the underlying operating system. After the

execution of the script, the PHP interpreter provides the output in the form of HTML to the

web-server, which is then sent back to the user as the response.

As mentioned above, the PHP interpreter determines the response that the web-server

sends back to users. In order for a PHP script to modify the response, the PHP interpreter

provides a set of built-in functions (i.e., PHP API), which PHP scripts can use. One of the

APIs that is used to modify the response of a web-server is echo. This function accepts

one or more strings, which are then sent to the output buffer, which in this case is the

response of a web-server. However, the set of APIs that are able to modify the response of

a web-server is not limited to only one API. According to prior work such as RIPS (Dahse

and Holz, 2014a), there are 12 functions in the PHP interpreter that can modify the output

buffer.

In a cross-site scripting attack, the attacker is able to modify the response that is sent

back to the user’s browser. If an attacker has control over the arguments passed to an API

such as echo, an XSS attack is a certainty. This capability of the echo API is provided

by an internal function of the PHP interpreter, which allows APIs to write into the output

buffer (i.e., the HTML response). An analysis on the source-code of the PHP interpreter

reveals that the function called php_output_write performs the write operation to the

output buffer. As a result, any PHP API that invokes php_output_write can modify the

response sent back to the web-server, which is the superset of all the APIs identified in

prior work.
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Chapter 3

Related Work

There are a significant number of studies on the security of PHP web applications. In this

chapter, I discuss prior work on PHP web application security. I categorized the related

work into prevention and detection techniques. In particular, I elaborate on debloating

techniques as well as runtime defenses against RCE and SQLi attacks. Next, I detail the

work on detection of vulnerabilities in PHP web applications, including deserialization

vulnerabilities.

3.1 Prevention Techniques

Prevention approaches provide the means to defend PHP web applications against different

types of attacks. Prior work in this area focused on preventing attacks based on vulnera-

bilities in PHP web applications using runtime defenses and debloating techniques. In this

section, I discuss existing runtime defenses against SQLi and RCE attacks. Next, I elab-

orate on debloating techniques and how they protect web applications against malicious

attacks.

3.1.1 Runtime Defenses Against SQLi Attacks

In this subsection, I review the relevant literature on defending web applications against

SQLi attacks. I also compare SQLBlock with five existing approaches and explain why

prior systems are not sufficient for PHP web applications that utilize OOP to communicate

with databases.
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plication’s source code and dynamically executing the SQL statements with benign inputs.

CANDID, SQLGaurd, WASP, and SQLPrevent assume that if the input does not change the

syntax structure of a SQL query, then a SQLi attack has not occurred. Such an assumption

can leave the web application vulnerable to SQLi attacks and also block benignly generated

queries (Ray and Ligatti, 2012). Unlike CANDID, SQLGaurd, WASP, and SQLPrevent,

SQLBlock does not detect SQLi attacks based on the modification to the syntax structure

of the SQL query. SQLBlock generates a set of query descriptors for benign queries that

each PHP function issues to the database. Furthermore, SQLBlock allows functions in the

web application to issue queries, as long as the query matches its query descriptors. Be-

yond this, SQLBlock does not need to modify the source code of the web application for

its operation.

SQLCheck (Su and Wassermann, 2006) tracks user-inputs to SQL queries and flags a

SQL query as an attack if user-input modifies the syntactic structure of the SQL query.

This incomplete definition of SQLi attacks prevents SQLCheck from defending against

tautology, inference, stored-procedure, and alternate encoding attacks. These four attacks

do not necessarily modify the syntax structure of a SQL query. Considering these weak-

nesses, SQLCheck cannot protect web applications against any of the vulnerabilities in the

evaluation dataset mentioned in Table 3.1.

Diglossia (Son et al., 2013) proposed a dual parser as an extension to the PHP inter-

preter. Diglossia maps the query without user-input to a shadow query, and then it checks

whether the parse tree of the actual query and the shadow query are isomorphic or not. If

both parse trees are isomorphic and the code in the shadow query is not tainted by user-

inputs, Diglossia passes the query to the back-end database. Diglossia is unable to defend

against second-order injection since Diglossia only checks queries with user-inputs. More-

over, Diglossia cannot detect alternate encoding and stored-procedure attacks since these

attacks do not modify the parse tree of the SQL query (Medeiros et al., 2019). As shown in
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Table 3.1, SQLBlock defends web applications against more variants of SQLi attacks than

Diglossia.

SEPTIC (Medeiros et al., 2019) creates a profile for each issued query during the train-

ing phase and enforces this profile to protect web applications against SQLi attacks. During

the training, SEPTIC creates a query model that includes all the nodes in the parse tree of a

SQL query. The profile in SEPTIC is a mapping between the query model and an ID. The

ID is the sequence of functions that pass the query as an argument. During the enforce-

ment, SEPTIC uses this sequence of functions as an identifier and finds the appropriate

query model in the profile. If the issued query matches the query model in the profile, SEP-

TIC allows the database to execute the query. Enforcing a profile based on the exact model

of the generated queries that includes the name of table columns and number of SQL func-

tions prevents web applications from generating dynamic yet benign SQL queries, which

causes false positives in SEPTIC. For instance, assume there is a webpage for searching for

published music albums, and users can search based on the name of an album, an artist’s

name, or the release year. If SEPTIC is trained with SQL queries that only include the

album’s name or the release year, it rejects any SQL queries from a user that search using

the artist’s name. SQLBlock solves this problem by creating query descriptors for SQL

queries. Query descriptors generalize the benign SQL queries, which allow the web appli-

cation to produce a range of dynamic queries.

Furthermore, to create an identifier for each issued query in the profile, SEPTIC uses

the information in the PHP call-stack that issued the call to methods from mysql or mysqli.

SEPTIC checks the sequence of functions in the PHP call-stack for the presence of a SQL

query in the function’s arguments. Since OOP web applications do not pass the SQL query

as an argument, SEPTIC cannot generate a correct identifier for SQL queries. Instead, it

creates the same identifier for all the issued queries in the OOP web application. Conse-

quently, an attacker can use a vulnerable function in the web application to issue any query
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from the profile. Considering the coarse-grained mapping that SEPTIC builds for the web

applications that use OOP, SEPTIC can defend against only four variants of SQLi attacks

in our dataset. All four SQLi attacks that SEPTIC can defend against reside in WordPress.

Wordpress does not use the encapsulation concept in its database API, and its modules

provide SQL queries as function arguments; consequently, SEPTIC can correctly create its

mapping. SQLBlock overcomes this problem by utilizing a static analysis that identifies

the database API in the web application, which helps SQLBlock correctly determine the

function that interacts with the database.

Merlo et al. (Merlo et al., 2007) proposed a two-step approach. First, it intercepts ev-

ery function call to mysql_query and records a profile for benignly issued SQL queries.

The profile is a mapping between the issued SQL query and the PHP function that calls

mysql_query. During enforcement, the proposed approach in (Merlo et al., 2007) looks

for the received SQL query in its mapping profile, and if the query does not syntactically

match with any recorded query for the PHP function, the approach blocks the query. This

approach maps all the SQL queries to the internal functions in the database API instead of

the appropriate function that uses the database API for communicating with the database.

Besides that, enforcing a strict comparison of the parse tree limits the functionality of the

web application for generating dynamic SQL queries. SQLRand (Boyd and Keromytis,

2004) proposed a randomization technique for randomizing queries in web applications.

SQLRand randomizes the SQL queries in the web application and uses an intermediary

proxy for de-randomizing before sending the queries to the database. Since web appli-

cations generate SQL queries dynamically, randomizing the queries using SQLRand is a

challenging task. Using an intermediate proxy introduces an overwhelming overhead to

web application performance (Halfond et al., 2006; Su and Wassermann, 2006). Besides

that, since there is one static key that modifies SQL keywords, knowledge of new SQL

keywords can compromise the security of SQLRand (Buehrer et al., 2005).
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3.1.2 Mitigation techniques against RCE

As system-calls guard access to sensitive OS-managed resources, there is abundant research

related to system-call based sandboxing, focused on restricting resources available to an

application (Kim and Zeldovich, 2013; Goldberg et al., 1996; Provos, 2003; Wagner, 1999;

Jain and Sekar, 2000; Forrest et al., 1996; Garfinkel et al., 2004; Seaborn, 2019), intrusion

detection systems (Hofmeyr et al., 1998; Wagner and Dean, 2001; Somayaji and Forrest,

2000; Sekar et al., 2001; Mutz et al., 2006; Zheng and Huang, 2018), and confining Linux

containers (Wan et al., 2017; Lei et al., 2017; Jamrozik et al., 2016).

Janus (Wagner, 1999) relies on system-call interposition with ptrace to intercept and

filter dangerous system-calls, according to defined policies. Plash (Seaborn, 2019) restricts

a process by executing it in a chroot environment with a set of instrumented system-calls,

relying on an RPC server. Systrace (Provos, 2003) generates system-call policies interac-

tively, with input from the user. Systrace requires the user to manually modify the policies

for applications that pass non-deterministic arguments to system-calls (Provos, 2003). Os-

tia (Garfinkel et al., 2004) and REMUS (Bernaschi et al., 2002) rely on user-specified rules

to filter system-calls.

Unlike Saphire, which is completely automatic, existing systems (Wagner, 1999;

Provos, 2003; Garfinkel et al., 2004; Seaborn, 2019; Bernaschi et al., 2002) require user in-

volvement in profile generation. N-gram-based allowlists (Forrest et al., 1996; Sekar et al.,

2001; Wagner and Dean, 2001) make decisions based on whether sequences of system-calls

were observed during benign execution, but rely on representative sets of benign execu-

tions. Janus, Systrace, Ostia, and the N-gram approaches incur significant overhead, which

makes them impractical (Linn et al., 2005). Unlike Saphire, prior filtering approaches do

not tailor system-call profiles to individual interpreted programs. Since interpreted pro-

grams are prime targets for attackers today, this is a major limitation.

SELinux (Loscocco and Smalley, 2001) leverages role-based access control and multi-
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level security to implement mandatory access control and enforce restrictions on data for

user roles. AppArmor (Cowan et al., 2000) restricts a program’s access to files and ca-

pabilities according to a profile. Both SELinux and AppArmor require an administrator to

manually specify, or dynamically collect a security profile, which is non-trivial. AppArmor

and SELinux’s protection cannot distinguish between the execution of different programs

by an interpreter. FMAC (Prevelakis and Spinellis, 2001) creates an access profile based on

benign inputs to a program and uses it to deny or restrict access to files. MAPbox (Acharya

and Raje, 2000) allows a user to manually specify a list of acceptable application behav-

iors, each of which corresponds to a sandbox configuration. Boxmate (Jamrozik et al.,

2016) confines an Android app to the set of resources it accessed during a training stage.

Boxmate blocks any access to resources that were not accessed during training. Wan et.

al (Wan et al., 2017) extend Boxmate to Linux containers by recording a list of the accessed

system calls during automatic testing and using this as an allowlist for filtering system-calls

in Linux containers. Boxmate (Jamrozik et al., 2016) and (Wan et al., 2017) confine pro-

cesses and are not fine-grained enough to identify the execution of different scripts by an

interpreter.

3.1.3 Debloating Techniques

The application of software debloating to vulnerability reduction has recently received a

great deal of attention. Prior work has applied debloating techniques to a wide spectrum

of software applications, ranging from low-level platforms such as kernels and contain-

ers (Abubakar et al., 2021; Ghavamnia et al., 2020a) to higher level binaries (Qian et al.,

2020; Ghavamnia et al., 2020b; Snyder et al., 2017; Redini et al., 2019; Heo et al., 2018;

Quach et al., 2018; Mishra and Polychronakis, 2020; Mishra and Polychronakis, 2018;

Mishra and Polychronakis, 2021; Koo et al., 2019) and web applications (Azad et al.,

2019; Koishybayev and Kapravelos, 2020; Bulekov et al., 2021).

Static and dynamic analysis are commonly used to identify unnecessary parts of appli-
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cations that are candidates for debloating. My work also overlaps with techniques that are

not geared towards debloating but that statically extract the call graph of web applications,

typically to identify vulnerabilities.

Debloating web applications. Prior work focused on debloating different parts of web

apps. SQLBlock protects legacy web apps against SQL injection attacks by only allow-

ing a limited set of SQL APIs in each function of a web application (Jahanshahi et al.,

2020). Orthogonally, Saphire protects web applications by limiting the list of system calls

available to each PHP script extracted by static analysis (Bulekov et al., 2021). Mininode

focuses on third-party dependencies in Node.js applications and their code bloat (Koishy-

bayev and Kapravelos, 2020).

Both Saphire and Mininode rely on static analysis to resolve dynamic language con-

structs such as dynamic file inclusions and class instantiations. Specifically for Mininode,

an incomplete static call graph generation due to dynamic imports translates to failure to

analyze 12% of packages in their dataset. While this is an acceptable failure ratio for a

large scale analysis, it quickly becomes a challenge for application-wide, static debloating

techniques.

Less is More (Azad et al., 2019) demonstrates that debloating web apps can lead to

the removal of high-severity vulnerabilities and the reduction of up to 60% of their source

code. The authors synthetically generate a set of baseline usage profiles for their target

applications and dynamically record the files and lines covered while running their tests.

Debloating browsers and other platforms. Hoe et al. explored the idea of reinforcement

learning for source code removal in software debloating (Heo et al., 2018). Abubakar et

al. apply the idea of debloating to kernels (Abubakar et al., 2021). Orthogonally, Cofine

aims to build restrictive system call policies for container environments (Ghavamnia et al.,

2020a). Another line of work focuses on the identification and removal of unreachable code

in binaries that can be used in code-reuse attacks (Quach et al., 2018; Redini et al., 2019).
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Finally, Koo et al. debloat up to 77% of NGINX, VSFTPD, and OpenSSH by the analyzing

specific configurations of each instance of these applications and removing code that is not

exercised with each configuration profile (Koo et al., 2019). Minimalist is similar in that

I use an abstraction of the outside environment to identify the set of features that will not

be used within that abstraction (e.g., configuration files or web server logs). That said, the

intricacies of binaries and web applications, as well as the differences in configuration files

and application entry points, lead to different sets of significant challenges for each project.

3.2 Vulnerability Detection Systems

The second thrust in improving the security of web applications is to detect the security

vulnerabilities and patch them before an attacker can exploit. In this section, we discuss

existing systems for detecting security vulnerabilities in PHP web applications.

3.2.1 Deserialization Vulnerability Detection

There are a significant number of studies on the security of PHP web applications. In this

section, we review the related literature on detecting security vulnerabilities and defending

PHP applications against malicious behavior.

Deserialization in PHP Application: In 2009, Esser introduced an approach to ex-

ploit deserialization vulnerabilities in PHP applications (Esser, 2010). In light of new at-

tack scenarios, new research has emerged on detecting deserialization vulnerabilities and

detecting such attacks on PHP applications. RIPS (Dahse and Holz, 2014a) performs

an intra-procedural data flow analysis to detect injection vulnerabilities, including POI.

Dahse (Dahse et al., 2014) also proposed an automatic approach for identifying gadget

chains that can be used to exploit POI vulnerabilities. Furthermore, FUGIO (Park et al.,

2022) introduced an automatic exploit generation tool to create exploit objects for POI vul-

nerabilities. In an orthogonal direction, my work is to detect the set of PHP API functions
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that can deserialize user-input. Furthermore, prior works solely relied on manual analysis

to specify the set of sinks for the taint analysis or exploit generation tools. Unlike prior

work, Argus performs an automatic hybrid analysis to identify the set of PHP API func-

tions that deserialize user-input. In the evaluation of Argus, I showed how the results can

improve prior work in detecting injection vulnerabilities.

Deserialization in Other Platforms: Deserialization vulnerabilities threaten a vari-

ety of platforms including Java, PHP, Python, and .NET. The research in this area focuses

on detecting such vulnerabilities or defending against deserialization attacks. SerialDetec-

tor (Shcherbakov and Balliu, 2021) leverages call-graph analysis to identify new patterns

of object injection in .NET libraries. Then it uses the discovered patterns to identify new

injection vulnerabilities in .net applications. The key difference between SerialDetector

and Minimalist is that we aim to detect functions at the PHP interpreter level that deseri-

alize user-input, whereas SerialDetector finds new object injection patterns at the library

level. Tanaka presents patterns for attacking deserialization vulnerabilities in the Pickle

library in Python that lead to denial of service (DoS) attacks (Tanaka and Saito, 2018).

Look-ahead object input stream (LAOIS) is a defense mechanism against Java deserialzia-

tion vulnerabilities, allowing the type check of the serialized stream before deserialization.

There are multiple implementations of this mechanism in SerialKilller (Carettoni, 2021),

Contrat-RO0 (Security, 2021), Apache’s Common IO library (Commons, 2021), and Java

Serialization Filtering (OpenJDK, 2021). The LAOIS approach shows promising results in

defending against insecure deserialization, but it is currently deficient in its current imple-

mentations against DoS attacks (Koutroumpouchos et al., 2019).

3.2.2 Detection of Other Vulnerabilities

There are multiple studies on detecting vulnerabilities in PHP applications using static,

dynamic, or hybrid analysis. Several approaches rely on taint analysis to track unsanitized

data and detect injection vulnerabilities (Backes et al., 2017; Dahse and Holz, 2014a; Dahse
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and Holz, 2014b; Jovanovic et al., 2006; Son and Shmatikov, 2011; Zheng and Zhang,

2013; Wassermann and Su, 2007). Pixy (Jovanovic et al., 2006) and Dahse et al. (Dahse

and Holz, 2014b), track data-flows to detect injection vulnerabilities. RIPS (Dahse and

Holz, 2014a) conducts taint analysis by building a control flow graph for PHP files in

web applications to find injection vulnerabilities. SaferPHP (Son and Shmatikov, 2011)

relies on static taint analysis to identify semantic vulnerabilities, including DoS, infinite

loops, and missing authorization checks. Zheng et al. (Zheng and Zhang, 2013) focused on

identifying remote code execution vulnerabilities by leveraging SMT solvers and finding

a path between user-input and critical PHP functions. Backes (Backes et al., 2017) uti-

lizes the code property graph to identify different types of security vulnerabilities, such as

SQL injection (SQLi), code injection, and arbitrary file read/write. Multiple works focus

on detecting specific type of vulnerabilities such a detecting SQLi (Wassermann and Su,

2007), DoS (Son and Shmatikov, 2011), and cross-site scripting (Jovanovic et al., 2006).

Dynamic analysis and hybrid techniques also play an important role in the detection of

vulnerabilities (Son et al., 2013; Saxena et al., 2011; Nguyen-Tuong et al., 2005). While

earlier work in this area, require manual analysis toward identifying critical functions as

taint sinks, Argus uses a systematic and automatic approach to detect injection-sink. In

addition, my contribution relies on the analysis of the PHP interpreter itself rather than the

PHP application.
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Chapter 4

Sandboxing Interpreted Applications with
System Call Allowlists

In this chapter, I describe my first contribution to improving the security of PHP web ap-

plications. I elaborate on the design of the system in Section 4.1, and then detail Saphire –

my prototype implementation of this approach for PHP web applications, in Section 4.3.

4.1 Overview

My method of protecting interpreted applications involves collecting information about the

system-calls invoked through the interpreter API, finding the interpreter API functions (e.g.

fopen in Fig. 4·1) used by interpreted applications, and combining the results to enforce

a tailored system-call allowlist. To explain the process in more detail, I first describe the

interpreters and programs to which my approach applies. I then explain why generating

meaningful system-call allowlists requires consideration of both the interpreter and each

interpreted program. Finally, I describe the purpose of each of the three stages and explain

how their functionality can be combined to secure programs.

4.1.1 Interpreters

I define interpreted programs as programs that require an ancillary application (i.e., an

interpreter) to execute on a computer. The interpreter is, generally, an application native

to the computer system – i.e., it can be directly executed within an operating system by

the hardware. Hence, interpreted applications can be portable across systems for which
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and .NET CLR, the translated code still calls into a native API to invoke syscalls, so in the

context of Saphire, this optimization is simply an interpreter implementation detail.

4.1.2 An API for all interpreted programs

The functions in the interpreter API must be generic so that they are useful to a wide range

of interpreted programs. As a result, the interpreter provides API functions that collectively

invoke a diverse set of system-calls. Therefore, I cannot create a meaningful system-call

filter by simply enumerating the system-calls invoked anywhere in the interpreter.

Fortunately, individual interpreted programs depend on a small subset of all API func-

tions provided by the interpreter, and in extension only require a small set of system-calls

to execute correctly. For example, the generic Prog1 in Figure 4·1 does not rely on API3

and hence does not need Syscall1.

Thus, during the execution of Prog1, it is safe to filter access to Syscall1, even though

it occurs within the interpreter binary. To enforce the PoLP, one must analyze the joint

behavior of the interpreter and the program. Based on these insights, I present a three-

stage process for creating tailored system-call filters for interpreted programs.

4.1.3 Securing Interpreted Programs

Stage 1 maps the API exposed by the interpreter to a set of system-calls invoked by

each API function. In stage 2 , the interpreted program is analyzed to identify the APIs

it invokes. After composing this information with the map from stage 1 , the output of

stage 2 is the list of system-calls required by the interpreted program (i.e., the system-call

filter). In the final stage, the program is executed, and the system-call filter is applied to the

interpreter process, protecting the program.
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4.1.4 Mapping the interpreter API to syscalls

The goal of stage 1 is to identify the system-calls invoked by each API function. As men-

tioned in Section 4.1.1, interpreters provide programs with access to a generic API, parts

of which perform system-calls to expose system-managed resources. Generally, interpreter

APIs that depend on system-calls are implemented natively, conforming to the OS-specific

system-call interface (see Fig. 4·1).

Both static and dynamic analysis techniques can be used to map API functions to

system-calls. For example, APIs can be mapped to system-calls through a static control-

flow analysis of the interpreter. The analysis involves labeling the API function handlers

as sources, the system-call invocations as sinks, and calculating the reachability between

the two sets in the interpreter’s call-graph. A dynamic analysis can be used to refine this

statically-obtained mapping.

The result of stage 1 is a mapping of interpreter API functions to required system-

calls. This mapping is generated once, for each version of the interpreter.

4.1.5 Identifying API calls within an interpreted program

In stage 2 , I identify the API functions invoked by an interpreted program. Incorporating

the mapping from stage 1 , this stage determines the system-calls needed by the program.

I define a program as the body of interpreted code that can be executed by an interpreter

process from an entry-point. For example, in the PHP example in Fig. 4·1, the index

program includes the code defined both in index.php and in the included theme.php.

Note that a single script can be included in multiple places, and therefore belong to multiple

programs. There are two steps to identify API calls by a program:

1. Identify all the code comprising the interpreted program.

2. Analyze the program’s code to determine the interpreter API calls it can perform.
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Identifying the program’s code requires consideration of the interpreted language features

that create code-dependencies. In addition to “includes”, dependencies can arise from im-

plicit sources, such as customizable auto-loading rules. Once the dependency analysis is

complete, I scan the code in the program for API function calls (step 2).

As in stage 1 , both static and dynamic techniques can be applied to the program.

The result of stage 2 is a set of API functions referenced by the interpreted program,

that together with the mapping of API calls to system-calls produces the final mapping of

programs to system-calls, which is used as an allowlist in the final stage.

4.1.6 Protecting the Program

In stage 3 , to protect the program, the interpreter (or program) is modified to load the

corresponding allowlist, prior to execution. This dynamic protection can be facilitated

by built-in low-overhead support for filtering system-calls, which is present in operating

systems such as Linux, FreeBSD, and Windows. The implementation of the protection

depends on the execution model of the interpreter. For example, the way protections are

applied may differ for programs invoked on the command-line and those executed by a

web-server. In Section 4.3, I describe the implementation of system-call filtering for the

PHP interpreter on Linux. My filtering mechanism works with both the Apache and nginx

webservers, as well as the standalone php-cli interface.

4.2 Threat Model

The threat-model for Saphire assumes that an interpreted application running atop an un-

compromised OS contains an ACE vulnerability for which the attacker has an exploit. The

goal of this work is to enforce the PoLP on interpreted programs and thereby restrict the

capabilities (i.e., the set of available system-calls) the attacker’s payload can use. Saphire is

designed to restrict an attacker from exploiting an ACE vulnerability in an interpreted pro-
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gram. As such, this work does not focus on attacks that leverage a compromised interpreter

to obtain arbitrary-code-execution in a separate service (for example, by triggering a buffer

overflow in a database daemon over a network socket). As the evaluation (§4.4) shows, the

vast majority of programs comprising real-world web applications can be confined such

that existing exploits are mitigated.

4.3 Implementation

I implemented the three steps outlined in the previous section for the PHP language and

interpreter in my prototype – Saphire. I choose PHP due to its dominance among web ap-

plications, which are major targets of RCE attacks, and because it represents an interpreted

language with advanced dynamic features. PHP is dynamically typed, with dynamic bind-

ing of function and class names, dynamic name resolution, dynamic symbol inspection,

reflection, and dynamic code evaluation support. I explain how Saphire combines static

and dynamic analysis techniques in stage 1 . I describe the static web application analysis

performed in stage 2 . Finally, I detail how Saphire uses seccomp to sandbox the PHP

interpreter on a live web app in stage 3 . Figure 5·1 details Saphire’s implementation of

the three stages introduced in Section 4.1.

4.3.1 Mapping built-in PHP functions to system-calls

PHP refers to API functions as built-in PHP functions. Hence Saphire’s stage 1 maps

built-in PHP functions to system-calls. To this end, Saphire generates an initial mapping,

by performing a static call-graph analysis over the PHP interpreter. To refine the statically-

collected mapping, I use Linux ptrace , which allows Saphire to inspect the system-calls

invoked by a running PHP process. Note that ptrace is only used, offline, for 1 and is

not used for any active defense. Moreover, Saphire blocks ptrace for all scripts in the web

applications I evaluated, by default, as I found no built-in PHP functions that invoke the
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Saphire’s rudimentary call-graph analysis is purpose-built to cover libraries and identify

system-calls. While this step can be implemented as a static source-code analysis and might

yield a more precise call-graph, the analysis needs to operate over dozens of code-bases (for

the interpreter, and 55 libraries) using different languages and build-processes.

Refining the mapping through dynamic analysis

The reachability analysis performs an exhaustive search over the code within a PHP process

but does not handle indirect calls, which can occur in built-in PHP functions. For example,

PHP’s fopen(), can access remote files over HTTP (see Figure 4·1). Based on the URI,

fopen sets a function pointer that specifies whether to use an encrypted HTTPS, or unen-

crypted connection handler. The static call-graph does not contain edges to either of these

functions, which leads to an incomplete mapping of built-in PHP functions to system-calls.

Furthermore, some built-in PHP functions execute external programs. mail() executes the

sendmail binary. In order to apply PoLP to the mail, the mapping of system-calls should

contain the system-calls performed by sendmail. The static analysis over CG does not

reason about the system-calls that occur in external processes.

To address these issues, I extend the statically-built profile, by tracing the system-calls

performed by the PHP interpreter, while executing its test-suite. The test-suite is pack-

aged with PHP’s source. I rely on a PHP extension TE , which exposes the name of the

currently running built-in PHP function through shared memory. A companion tracer, TR

uses Linux’s ptrace functionality to intercept system-calls. While the interpreter is execut-

ing the test-suite, TR intercepts each system-call and examines the current PHP function,

exposed by TE . This allows Saphire to easily detect whether the currently running built-

in PHP function relies on any system-calls missing from the statically-generated mapping.

TE also traces system-calls in external programs called by PHP, to account for built-in PHP

functions, such as mail() which rely on external programs. The test-suite achieves 73.4%

line coverage over the PHP interpreter, allowing Saphire to discover additional system-calls
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used by 137 out of 4,655 built-in PHP functions.

4.3.2 Creating system-call filters for web applications

In Stage 2 , Saphire identifies each script’s dependencies and determines the built-in PHP

functions the interpreter can invoke while running the script. Composing this information

with the mapping from 1 , Stage 2 outputs a set of possible system-calls invoked for each

script in the web application.

To achieve this outcome, I built AA to perform a lightweight, flow-insensitive analysis

as a limited form of constant folding over strings that compose include statements. AA

iterates over all of the PHP files in web applications. I use php-parser (Slizov, 2019) to

parse each PHP script into its abstract syntax tree (AST). AA scans the AST for function

or method calls to identify possible built-in PHP function calls. If a function call’s name

matches a built-in PHP function, AA infers that the script contains a call to the built-in.

In the case of method calls, AA looks for all assignments of the object within the cur-

rent scope to identify the class type and checks whether the type and method combination

corresponds to a built-in PHP function. To infer script-dependencies AA identifies AST

nodes representing: (1) constant definitions, which frequently occur within include paths

(2) class definitions/instantiations, which are essential for creating edges for auto-loaded

classes, and (3) includes via the include/require operations. AA also identifies strings

in all variable assignments, as these variables are often referenced in include statements.

For each include, AA assembles an internal representation for each of these nodes, opti-

mized for static and string content.

String representation

PHP strings can be composed of literals, and references to constants, variables, and function

return values. When AA locates a node representing such a component, it notes its location.

Once AA finds all nodes that compose strings, it iterates over the includes in a script.
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the result as unknown.

For each include, AA applies this procedure, recursively, until the include is composed

of only literals and unknowns, and the PHP string concatenation operators (. and .=). Then

AA translates the sequence of nodes into a regular expression, substituting the unknowns

with regex wildcards (.*). Figure 4·3 demonstrates how AA handles includes built with

multiple components. If the include refers to variables with multiple assignments, AA

joins the regular expressions for each possibility with the “|” operator. AA handles relative

path elements, such as ../, by removing the preceding portions of the expression. If the

immediately preceding expression is dynamic (i.e., .*), AA replaces all content before

the relative path element with a wildcard. Once each include is represented as a regular

expression, AA resolves includes by evaluating the regular expression against the paths of

the PHP scripts in the web application. For each match, AA stores an edge in a dependency

graph, where the nodes are PHP scripts.

Saphire handles auto-loaded classes in scripts by checking if a class with a matching

name is declared in the resolved set of dependencies. If not, Saphire searches for matching

class declarations in the rest of the web application and creates dependency edges to the

corresponding scripts.

Unresolved Includes

In practice, AA statically resolves 74% of includes to a single file. Additional includes can

be "fuzzy-resolved" – i.e., resolved to a subset of the files in the web application, such as all

files in a subdirectory. Some include statements do not contain any information amenable

to static analysis. In these cases, Saphire cannot determine a subset of PHP scripts that

can satisfy an include statement. To address this, Saphire provides an option (Conservative

Includes, or CI) to resolve such includes to all scripts in the application. Enabling CI de-

creases the probability of false-positives due to missing edges in the dependency graph, but

increases the number of allowlisted system-calls in scripts containing unresolved includes.
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I examine the effects of this option on false-positives and false-negatives in Section 4.4.

Building system-call profiles for Scripts

After identifying the built-in PHP function calls in the script files and building the depen-

dency graph, AA calculates the transitive closure of dependencies for each script, to obtain

the list of built-in PHP functions called by the script or any of its dependencies. AA builds

the system-call profiles by replacing each of the built-in PHP functions in the list with the

set of corresponding system-calls obtained in Stage 1 . The output of AA and Stage 2

is a system-call profile (i.e., an allowlist) for each script, representing the system-calls for

the built-in PHP functions used within the script and all its dependencies. AA marks each

script path with its profile. The paths are relative to the root of the web application, so the

output of 2 is independent of the server and location of the application on the filesystem.

4.3.3 Sandboxing the Interpreter and web application

The goal of stage 3 (Sec. 4.1.6) is to sandbox an interpreted program when it executes.

My implementation, Saphire, applies the allowlists from Stage 2 to a live web app using

seccomp. Specifically, Saphire deprivileges the PHP interpreter process, before it executes

a web application scripts. Internally, Saphire relies on a PHP extension (labeled SE in

Figure 5·1) that invokes Linux’ seccomp facility.

To use seccomp, a process provides the kernel with a filter to enforce over process’s

future system-calls. Upon startup, the PHP interpreter loads the SE extension into the

process. SE determines which script the interpreter is about to execute, and provides the

kernel with a system-call allowlist – a set of allowed system-calls. After providing the

kernel with the filter, SE ’s task is complete, since the kernel is responsible for enforcing

the seccomp allowlist.

SE is activated twice during the lifetime of the interpreter. When the PHP process

is starting, it loads the SE extension. SE uses this opportunity to load the system-call
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allowlists from the disk into memory. Once the interpreter receives a request, it hands

control to SE . SE loads the allowlist for the requested script from memory, and provides

it to the kernel, as a filter program. Internally, SE uses libseccomp’s bindings to convert a

set of system-calls into an allowlist (Moore, 2018). PHP usually accepts web requests from

a separate program - the web-server. Web-servers such as nginx and Apache implement

advanced features such as reverse proxying, static resource caching, and load-balancing.

When a web-server receives a request that must be handled dynamically, it communicates

with a PHP interpreter using an API, such as FastCGI. With a common nginx web-server

using FastCGI to invoke PHP, the extension and allowlist are only loaded once, by a master

process that forks workers to process requests. In the evaluation, I installed Saphire’s SE

plugin for a PHP interpreter accessible behind both major web-servers on Linux: nginx

and Apache. I also deployed the same plugin for PHP’s cli API, which allows executing

PHP scripts from the command line (similar to Python or Perl). I did not evaluate this

configuration, as the vast majority of PHP apps (and exploit targets) are web applications.

If a PHP script does not trigger seccomp violations, the interpreter process terminates

once script execution concludes. Usually, the process cannot be reused to process other

scripts, since different scripts have different system-call privileges, and seccomp does not

allow a process to replace its system-call filters. This is a problem for interpreters that

handle many short requests, since APIs such as php-fpm reuse the interpreter for many

requests. There are two options to deal with this: (1) Configure the PHP API to only use

a PHP interpreter process for a single request. While functional, this approach results in

request latency, when the server is under high load. (2) Allow PHP workers to handle

many requests, but ensure that each worker only handles requests for the same script. The

worker loads a seccomp profile for the first request it receives, and this allowlist applies to

all subsequent requests to the same script. For an application with many scripts, such as

a CMS, dedicated workers handle scripts in high demand, and general workers handle the
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uncommon requests (restarting after each one). I evaluate both of these options in Section

4.4.4. This issue is specific to interpreters that handle many short-lived requests, such

as PHP. For longer lived executions, the one-time overhead of applying the system-call

profile is negligible, but if reusing the interpreter is beneficial, routing requests to minimize

Saphire overhead is a generic and effective (see Sec. 4.4.4) solution.

4.4 Evaluation

I evaluate Saphire’s ability to mitigate remote code execution attacks on a set of popular

PHP web applications and plugins. Additionally, I assess Saphire’s stages, individually.

Specifically, I examine the capabilities of Saphire’s include-resolution, the reduction of

system-call privileges due to the analysis in stage 2 , and the performance of stage 3 . My

experiments provide answers to three research questions:

RQ1 How precise is Saphire’s dependency resolution (§4.4.2)?

RQ2 For each PHP script in a web application, what is the reduction in privilege/available

system-calls with Saphire. How does the setting for CI affect the reduction (§4.4.3)?

RQ3 Does the retrofitted PoLP protect from known exploits without causing false posi-

tives? How does the setting for CI impact the accuracy of the system (§4.4.4)?

4.4.1 Evaluation Dataset

I evaluate Saphire on six of the most popular PHP web applications. The set includes the

four most popular open-source content management systems: Wordpress, Joomla, Drupal,

and Magento. According to W3Techs, these systems comprise 70.5% of the market share

among CMS systems, and 38.4% of the market for all websites (Q-Success, 2023a). Addi-

tionally, I include one of the most popular administration tools: phpMyAdmin (PCWorld

Staff, 2011), and Moodle, a popular course-management system.
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In practice, administrators customize CMS deployments by installing plugins. To

reflect this, I install nine vulnerable WordPress plugins: NMedia contact form, Wysija

newsletter, Foxy Press, Photo Gallery, WP-Property, Reflex Gallery, Slideshow Gallery,

WP Symposium, and WPtouch. For this dataset, I selected plugins and web application

versions with the most recently published RCE vulnerabilities and readily available proof-

of-concept exploits. Additionally, to evaluate false-positives for plugins, I installed 9 of the

most popular freely available plugins. In total, the evaluation was conducted over 12 vul-

nerable versions of web applications, 9 vulnerable and 9 popular freely-available plugins.

Application Includes Classes

Total Literal Dynamic Resolved Fuzzy-resolved Unresolved Total Resolved Unresolved

Drupal 7.0 263 9 254 175 57 31 (11.7%) 40 30 10 (25%)
Drupal 7.5 265 9 256 174 60 31 (11.6%) 48 39 9 (18.75%)
Drupal 7.26 214 1 213 171 42 1 (0.5%) 44 34 10 (22%)
Drupal 7.57 217 1 216 172 43 2 (0.9%) 24 28 6 (25%)
Drupal 7.58 218 1 217 173 43 2 (0.9%) 35 29 6 (17.1%)
Joomla 2.5.25 348 2 346 179 149 20 (5.7%) 252 229 23 (9.1%)
Joomla 3.7 265 5 260 102 152 11 (4.2%) 481 441 40 (8.3%)
Magento 1,190 271 918 971 175 42 (3.5 %) 3,339 3,120 219 (6.6%)
Moodle 7,548 877 6,671 5,605 1,876 67 (0.9%) 2,241 2,149 92 (4.1%)
phpMyAdmin 3.3.10 753 677 76 704 33 16 (2.1%) 49 48 1 (2.0%)
phpMyAdmin 4.8.1 292 222 70 254 32 6 (2.1%) 438 402 36 (8.2%)
WordPress 1,892 517 1,375 1,747 109 36 (1.90%) 215 193 22 (10.2%)

Table 4.1: We break-down the static and dynamic includes for each web app
and the number of include Saphire resolves precisely, and approximately.
We also present similar data for class references.

4.4.2 Dependency Resolution (RQ1)

In stage 2 , Saphire scans a PHP web application to determine the built-in PHP func-

tions that might be invoked within each script. The accuracy of the system-call profile

depends on the results of this stage. One of the main challenges for Saphire is resolving the

dependencies between scripts. To address this challenge, Saphire uses include and class

resolution to discover the dependencies.

Table 4.1 presents the include resolution statistics for the web applications in the

dataset, collected after Saphire’s static analysis. The literal column shows the number
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of include statements with a string literal argument. The dynamic column shows the num-

ber of include statements with arguments that are not string literals. The resolved, fuzzy-

resolved, and unresolved provide a breakdown of how the static analysis in 2 resolved

these includes. Namely, the resolved column contains the number of includes resolved to

a single script within the web application. The fuzzy-resolved column specifies the number

of includes that are resolved to a subset of all web application scripts. That is, the regular

expression generated by SE matched to multiple scripts. On average Saphire resolves 74%

includes and fuzzy-resolves 22%.

In the same table, I show Saphire’s class resolution statistics. On average, 85% of

classes are resolved. Unresolved classes can occur when web applications define classes

dynamically. For example, for historical reasons, Joomla dynamically creates an alias for

each defined class by prefixing the class name with “J” (e.g., the original Http class will

trigger the creation of JHttp as an alias)2. As the Joomla code-base uses both notations

interchangeably, Saphire detects dependencies only if the original notation is used and does

not detect dependencies if classes are referred to via their aliases. While this behavior could

be easily emulated in the analysis by duplicating the alias-generating logic in Saphire, I

chose to elide any program-dependent modifications to the system. If the application relies

on an autoloader, the effect of unresolved classes is the possibility of false-positives due to

missing edges in the dependency graph. As we will see, the only false positives Saphire en-

countered during the evaluation were caused by the Joomla idiosyncrasies described above.

4.4.3 System-Call Profile Size (RQ2)

The security benefits provided by Saphire hinge on its ability to restrict access to system-

calls – specifically those that are likely to be used by attackers. In this section, I examine

the reduction in attack-surface in terms of the number of system-calls in the allowlists. For

2This is implemented in Joomla’s class auto-loader. If the script instantiates a class with the name JHttp
but the auto-loader cannot find it, the loader trims the “J” prefix and looks for a class with the name Http
instead.
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qualitative measure, Section 4.4.4 further examines the dangerous system-calls (as defined

by Bernaschi et al. (Bernaschi et al., 2000)) that exploits can still use. I collected the data

presented here by running stages 1 and 2 on a system running Linux Kernel 4.17 which

provides 333 system-calls. Figure 4·4 shows the number of system-calls allowed for each

script in WordPress 4.6, phpMyAdmin 4.8.1, Joomla 3.7, and Drupal 7.58. The colored re-

gions represent profile sizes with the CI option enabled. The bottom-most region, Available

Dangerous, represents the dangerous system-calls available to each script. The Available

region represents additional system-calls available to each script that are not considered

dangerous. Hence, the allowlist for a given file consists of the system-calls contained in

these two regions. The upper two regions represent blocklisted system-calls and dangerous

system-calls, respectively. The black line represents the system-call profile sizes when the

CI option is disabled (no dependency edges for unresolved includes).

As the graphs illustrate, Saphire generates system-call allowlists that significantly re-

duce the attack surface. The overall reduction of the attack surface in the number of system-

calls is 80.5% on average, with the most permissive profile (i.e., the left-most script in

Joomla) still removing 72% of system-calls from the allowlist. More important than the

bare number of system-calls, Saphire reduces the number of available dangerous system

calls by 80% on average.

I note that “shelves” of system-calls occur in most of the graphs, indicating that many

files require the same number of system-calls. This phenomenon is due to the fact that

sets of scripts share the same dependencies. For example, Saphire finds that WordPress’

wp-includes/option.php is included in 383 (28% of scripts). This leads to many files

sharing similar system-call profiles.

When CI is enabled, scripts with unresolved includes include all other scripts in the

web application. This results in “shelves” at the maximum profile-size, indicating that the

scripts can invoke any system-call used in the entire web application. This reduces the
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Exploits Blocked False Positives Benign Traces Dangerous System Calls Available to Exploits
Application Vulnerability CI off CI on CI off CI on Line Coverage

Drupal 7.0 CVE-2014-3704 y y 0 0 †39.22% openat, unlink

Drupal 7.5 drupal_restws_exec y y 0 0 †28.50% chmod, openat, rename, symlink, unlink

Drupal 7.26 CVE-2014-3453 y y 0 0 †37.12% chmod, openat, rename, symlink, unlink

Drupal 7.57 CVE-2018-7600 y y 0 0 †42.51% chmod, openat, rename, symlink, unlink

Drupal 7.58 CVE-2018-7602 y y 0 0 †43.63% openat, unlink
Joomla 2.5.25 CVE-2014-7228 y y 2 0 12.67% chmod, openat, rename, unlink

Joomla 3.7 CVE-2017-8917 y y 1 0 †27.95% chmod, openat, rename, unlink

Magento 2.0.5 CVE-2016-4010 y y 0 0 †40.61%

Moodle 3.4 CVE-2013-3630 y y 0 0 †28.00% chmod
phpMyAdmin 3.3.10 CVE-2011-4107 y y 0 0 13.72% chmod, openat, rename, symlink, unlink

phpMyAdmin 4.8.1 CVE-2018-12613 y y 0 0 †49.28% chmod, openat, rename, unlink

Wordpress 4.6 11 Vulnerabilities y y 0 0 †∗36.18%

∗Wordpress & Plugins Vulnerabilities The WordPress vulnerabilities: WPVDB-7896, WPVDB-
6680, WPVDB-6231, CVE-2014-9312, WPVDB-6225, CVE-2015-4133, CVE-2014-5460,
CVE-2016-10033, WPVDB-7716, WPVDB-7118 wp_admin_shell_upload. Coverage including
the vulnerable plugins is 17.88%. See Sec. 4.4.4 for evaluation over popular plugins.
Complete list of dangerous system-calls: chmod, fchmod chown, fchown, lchown, execve,
mount, rename, open(at), link, symlink, unlink, setuid, setresuid, setfsuid, setreuid, setgroups,
setgid, setfsgid, setresgid, setregid, create_module

Table 4.2: Exploits blocked for each configuration of Saphire. Coverage
annotated with † was collected with the aid of unit-tests available for the
web app.

using exploits from the Metasploit Framework (Metasploit, 2019) and consider an attack

successful if it exposes a shell to the attacker via the network. Of course, I first verified that

all exploits work against unprotected versions of the web applications and plugins. In Table

4.2, I present the results of the experiments. Specifically, I evaluate the defense capabilities

of Saphire when CI is enabled and disabled.

Is Saphire too restrictive?

To properly apply the PoLP, Saphire should not prevent the normal operation of the web

applications. A false-positive for Saphire is a system-call blocked during benign execution

of application code. Saphire does not rely on any benign web application traces to build

the allowlists, but I exercise the web applications to evaluate how prone Saphire is to false

positives through an ensemble of three complementary techniques:

• I replay browsing traces collected while one of the authors explored the web-app as
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a user and administrator. The traces exercise functionality available to privileged and

unprivileged users.

• I crawl the application with a web crawler included in the Burp Suite. The crawler is

authenticated and has access to privileged web application functionality.

• When available, I execute test-suites packaged with the web-apps. The test-suites are

collections of PHP scripts that exercise portions of the web application code.

I measure the combined line coverage of the three methods using the XDebug PHP de-

bugger (Rethans, 2018) and present the coverage as a percentage of total lines of PHP code

(as determined by sloccount (Wheeler, 2004)) in Table 4.2. The measurement accounts

for possible coverage overlap between the three techniques and registers each covered line

only once. However, sloccount greedily counts source lines that are not considered exe-

cutable and are consequently not tracked by XDebug. Hence, the average coverage of 33%

is a strict lower bound of the true coverage that the mechanisms achieve. I selected Less is

More (LIM) (Azad et al., 2019) as, to the best of our knowledge, it is the most recent work

to collect comprehensive coverage data over PHP web applications. Unlike Saphire, LIM

collects coverage during an exploration stage to prune unused functions, thus cutting back

on a web application’s attack-surface. LIM presents coverage as the percentage of lines in

functions with any lines covered during the exploration stage. I.e., for any partially covered

functions, no lines are pruned. To mirror this technique, I calculated the percentage of lines

contained in functions with any lines executed. According to this metric, Saphire covers

64% of WordPress, while LIM covers 57%. Additionally, I obtained the Selenium traces

collected by LIM and executed them on my instance of WordPress. These Selenium traces

increased the coverage by 1% without raising any false-positives. In summary, I found

that the coverage is in-line with state-of-the-art PHP research. Moreover, the difficulty

in obtaining high dynamic coverage for web applications highlights the utility of using a
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static analysis for Saphire’s implementation of 2 , which can generate profiles even for

uncovered code.

The center column-group of Table 4.2 shows the number of false positives for dif-

ferent settings of CI. With CI enabled, Saphire did not raise any false positives during

the evaluation, as it conservatively assumes that an unresolved include can refer to any

script within the web application. While this conservative setting reduces false posi-

tives, it results in slightly larger allowlists (see the bottom two regions of the Figure 4·4

plots). When CI is disabled, system-call profile size is decreased (i.e., system-calls un-

der the black line in Figure 4·4), but false positives do occur. Specifically, I encounter

three false positives, all within Joomla versions 2.5.25 and 3.7. The reason for all three

false positives is the automatic generation of aliases, as explained in §4.4.2. Concretely,

administrator/index.php instantiates JHttp, which in turn relies on the built-in PHP

function curl_exec. Although, Saphire’s stage 1 correctly determines that curl_exec

requires the getpeername and setsockopt system-calls, stage 2 misses the dependency

introduced by instantiating the Http Joomla-class via its alias JHttp. The simple, yet

Joomla-specific, modification to Saphire described above would remove these false posi-

tives. Saphire handles calls to APIs that depend on external binaries. For example, Drupal

relies on the mail() API during user registration. Since Stage 1 tracks the system-calls

that the external sendmail binary performs, I observed no false positives from such func-

tionality. Finally, though I did not have access to any popular PHP sites, I installed Saphire

on a public web-server running WordPress. In total, the web-server received 13,261 HTTP

requests. Though many of these requests originated from benign crawlers, some appeared

to search for unsecured API endpoints, such as WordPress’ xmlrpc.php. None of these

requests triggered Saphire alerts. I performed a manual inspection of the web-server’s

filesystem to confirm that it had not been compromised.
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Payload Constraints

Table 4.2 also presents the effect of Saphire’s script de-privileging on the attackers us-

ing web application exploits to execute the Metasploit payload in the “Exploits Blocked”

columns. Of course, adversaries are not limited to Metasploit payloads and can craft ex-

ploits that do not extend past the exploited script’s system-call privileges.

To assess the impact of such attacks, I enumerate which dangerous system calls are

present in the allowlist for scripts that contain RCE vulnerabilities with CI enabled. I

consider a system-call dangerous if it is listed as a “Threat level 1 system call” in (Bernaschi

et al., 2000). All remaining dangerous system calls for the corresponding vulnerable files

are shown in the last column of Table 4.2. While attackers are free to modify the exploits,

they can only use the dangerous system calls listed in the table. Notably, none of the

payloads can spawn new processes outside the interpreter (no execve). CVE-2016-10033

is specific to Apache. Though I primarily test against nginx, I configured an Apache server

with Saphire protections. The steps for configuring Saphire for nginx and Apache were

virtually identical, aside from differences in the config-file syntaxes. CVE-2016-10033,

leverages parameter injection to the external sendmail executable through PHP’s mail()

function. Since Saphire collected an accurate profile for the mail() and the sendmail child

processes, I defend against this CVE, without raising false positives on the same page. The

remaining dangerous system-calls potentially allow the attacker to tamper with website-

content, but are insufficient to achieve arbitrary code-execution. Saphire protects against

RCE launched via file upload vulnerabilities by default. If an attacker exploits a file-upload

vulnerability, the uploaded script will have an empty system-call allowlist, as the script

was not present during the stage 2 analysis. Thus, the uploaded script cannot make any

system-call and cannot meaningfully contribute to the attacker’s goals.

Additionally, I test Saphire against a set of 40 real payloads. Though there are few php-

based payload datasets readily-available, I ran the payloads in one such dataset (Geniar,
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False Positives
Plugin Name Web App CI off CI on Coverage
ContactForm Wordpress 0 0 39.14%

Yoast Wordpress 0 0 †28.20%
Akismet Wordpress 0 0 32.53%

WooCommerce Wordpress 0 0 †27.93%
Classic Editor Wordpress 0 0 40.76%
Akeeba Joomla 0 0 14.67%
Acymail Joomla 0 0 15.66%

Ctools Drupal 0 0 †27.60%

Views Drupal 0 0 †43.69%

Table 4.3: False positive test for popular web app plugins. Coverage
marked with † was gathered with the aid of available unit-tests.

2014) and found that every payload relies on system-calls missing from the profiles for

vulnerable scripts listed in Table 4.2.

Analysis of Non-vulnerable Plugins

Most web applications in my evaluation dataset feature powerful plugin architectures. As

such, I assess whether Saphire triggers false-positives in the plugins that leverage this in-

frastructure. Using the above ensemble of three methods to determine coverage, I exercise

the popular plugins to assess Saphire for false positives (see Table 4.3). On average, I

achieved 31.76% line coverage, which is in line with existing work focusing on web ap-

plications (Azad et al., 2019), though the statistics also cover plugins. Some plugins guard

premium features behind paywalls. Since I did not pay for the plugins, these features con-

tributed unreachable code, lowering the coverage I could achieve.

Runtime overhead

Response time is a critical metric for web-server workloads. I note that Saphire’s analysis

stages 1 and 2 are performed offline. Stage 3 uses a PHP extension to sandbox a web-
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Concurrency Wordpress Trivial Script
Default Protected Default Protected Optimized

ng
in

x

1 328.252 328.78 (0.16%) 0.185 1.941 0.188 (1.62%)
2 353.982 355.776 (0.51%) 0.192 2.316 0.194 (1.04%)
4 348.242 348.639 (0.11%) 0.264 4.347 0.265 (0.38%)
8 361.377 363.83 (0.68%) 0.512 8.62 0.516 (0.78%)

16 416.639 419.342 (0.65%) 0.924 18.61 0.93 (0.65%)
32 863.932 867.932 (0.46%) 1.71 43.38 1.713 (0.18%)

A
pa

ch
e

1 338.75 337.42 0.201 1.91 0.204 (1.49%)
2 368.84 370.02 0.209 2.44 0.212 (1.43%)
4 369.48 369.55 0.236 4.53 0.233 (1.28%)
8 372.84 372.98 0.559 8.77 0.564 (0.89%)

16 412.47 414.42 0.954 19.02 0.961 (0.73%)
32 872.57 877.24 1.77 42.21 1.78 (0.56%)

Table 4.4: Response times for requests to WordPress index.php and a worst-
case, trivial script. All response times in milliseconds.

app, by loading a system-call profile for the PHP script, at the beginning of each request.

Additionally, Saphire relies on different system-call profiles for each script. Since seccomp

does not allow Saphire to replace the system-call profile, by default, Saphire configures

PHP to restart the process after serving each request. Modern web-servers, such as nginx

with php-fpm, typically reuse PHP processes to handle multiple requests, and I consider

this in the evaluation. I perform two experiments on a system with an 8-core Intel Xeon

E5-2620v2 @2.10GHz, 256GiB DDR3, running Linux 4.17 with nginx 1.14, PHP 7.1 with

php-fpm, and MySQL 5.7.

I measure Saphire’s overhead by observing the response time for WordPress’

index.php by using ApacheBench (Apache Software Foundation, 2018), over 15,000

requests, at multiple levels of request concurrency. I compare the default configuration

of php-fpm against php-fpm configured to use processes for a single request. Table 5.3

presents the performance overhead of using Saphire, which indicates negligible overhead
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at all levels of concurrency. To further generalize these results, I repeated the experiments

for Apache 2.4.

Additionally, I benchmarked a worst-case scenario for Saphire, where the interpreter

executes a trivial script. The script prints a single line of text prior to exiting. I use

ApacheBench to benchmark the trivial script across 50,000 requests under default and

protected php-fpm configurations. The results are presented in Table 5.3, in the first two

columns under the Trivial Script heading. I observe that disabling the reuse of PHP workers

has a severe impact on performance for the worst-case script since each interpreter process

is only active for a short time before it must be restarted.

To avoid the performance penalty due to the php-fpm configuration change, Saphire

takes advantage of php-fpm’s built-in pooling feature and nginx URL-routing capabilities.

First, an administrator specifies a set of high-demand PHP pages (this information is easily

obtained from server logs). Saphire configures separate php-fpm pools for each specified

page and creates nginx rules to route requests to the proper pool based on the URI. Saphire

also creates a catch-all pool, where processes are not reused, for scripts that are in low-

demand. Note that the total number of php-fpm processes does not increase, and php-fpm

automatically assigns and removes workers to each pool based on demand.

This configuration change enables protected php-fpm workers to process multiple re-

quests, without having to restart to re-apply the seccomp filter again. I present the bench-

marks for this configuration in the last column of Table 5.3. Observe that by configuring

nginx to route requests to script-specific pools, I eliminate virtually all overhead.

4.5 Limitations and Discussion

In this section, I discuss the limitations of the Saphire prototype and possible areas for

future work.

eval and system: eval() evaluates a string as PHP code. Saphire does not consider
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includes, or calls to built-in PHP functions inside eval() arguments. system() executes

an arbitrary shell command. None of the false-positives I observed resulted from eval or

system calls, and Saphire supports execution of pre-determined external programs such as

sendmail through the mail() API function. In future work, Saphire can be improved, to

analyze static content in arguments to eval and system.

Mimicry: Saphire’s goal is to apply the PoLP, as it relates to system-calls, to interpreted

applications. This severely restricts the system-calls that the exploit and payload can rely

on. In section 4.4.4, I discuss the scarcity of “dangerous” system-calls available to attack-

ers. Even so, Saphire does not explicitly detect ACE attacks, and the attacker can attempt

to craft a payload that only invokes allowed system-calls. For example, the attacker might

still leverage vulnerabilities to add undesired content to content management systems.

Overwriting scripts: Saphire’s system-call profiles are read-only to the PHP inter-

preter. If an attacker has write access to scripts on an upload path, they can, potentially,

overwrite an existing script with a payload. Saphire will limit the uploaded script with the

whitelist it built in Stage 2 . Therefore, the attacker can overwrite a script with a larger

system-call privilege-set. If scripts must be writeable, Saphire can be easily augmented to

record a checksum for each PHP script during Stage 2 and ensure that the checksum is

unchanged, when the script is loaded in Stage 3 .

Installing plugins: When a site administrator installs a new plugin into a web applica-

tion, they run stage 2 on the plugin source in a safe directory, and then Saphire merges the

plugin’s system-call profile into the profile for the rest of the web application. Currently,

2 is run manually for new plugins, removing some of the convenience of web applications

that support installing plugins directly through the web-interface.

Saphire does not filter system call arguments: Saphire applies the PoLP to PHP

scripts, where it considers each system-call type as privilege. This idea can be further

extended to consider system-call arguments as privileges. Though system-call arguments
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can be derived from user-input, at run-time, , unchanging arguments can be determined

statically during Saphire’s stage 2 and filtered in 3 . In my evaluation over 21 ex-

ploits, Saphire blocked all attacks by simply filtering based-on system-call type and I leave

argument-based PoLP to future work.

Line coverage of evaluated web applications: I use an ensemble of human-driven

and automatic techniques, as well as unit-testing to test for false-positives. In the evalua-

tion, I achieve an average line coverage of 31.76% which is in line with similar work (Azad

et al., 2019; Baek and Bae, 2016; Machiry et al., 2013; Artzi et al., 2010; Doupé et al.,

2012; Antunes and Vieira, 2010). Unlike these works, the web applications contain large

plugins. Since phpMyAdmin 3.3.10 and Joomla 2.5.25 do not include test-suites, their cov-

erage is significantly lower. Another factor limitting possible coverage is the fact that web

applications often rely on small fractions of large frameworks. For example my WordPress

installation contains the wp-property plugin, which includes TCPDF (a PDF generator).

The wp-property code does not reference TCPDF anywhere, so this idle code (39k lines,

or 11% of my WP install) is likely unreachable.
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Chapter 5

Mitigating SQL Injection attacks on PHP Web
Applications

In this chapter, I describe the second contribution to improve the security of PHP web ap-

plications. I elaborate on the design of my system in Section 4.1, and then detail SQLBlock

– the prototype implementation of this approach for PHP web applications in Section 4.3.

5.1 System Overview

In this section, I explain how SQLBlock records benign SQL queries and limits the access

of functions in a web application to the database. Figure 5·1 shows an overview of how

SQLBlock defends web applications against SQLi attacks. Specifically, SQLBlock records

a profile by observing benign issued queries by a web application. SQLBlock then enforces

the profile from inside the database for every query that the web application sends to the

database.

In step 1 , SQLBlock performs a static analysis over the web application to identify

the database procedures that are used across the web application’s scripts. This analysis

is done once per web application and SQLBlock uses this information during training and

enforcement of the profile.

In step 2 , SQLBlock is in the training mode and records the benign issued SQL queries

by the web application. SQLBlock can use benign browsing traces or the web application’s

unit tests in its training. SQLBlock creates a mapping between the benign SQL queries that

MySQL receives and the functions in the web application that used the database access
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1 $id = $_GET["id"]
2 function get_public_info{
3 include dirname(__FILE__)."/db/database.php";
4 $users = executeQuery("public_info", $id);
5 ...
6 }
7 get_public_info();

(a) get_public_info.php

1 class DatabaseConnectionmysqli
2 extends mysqli {
3 private $query;
4 function __construct(){
5 parent::__construct("localhost","admin","admin","mysqldb");
6 }
7 public function setQuery( $query ){
8 $this->query = $query;
9 ...

10 }
11 public function execute(){
12 return parent::query($this->query);
13 }
14 public function multi_execute(){
15 $result = parent::multi_query($this->query);
16 ...
17 }
18 }
19 function executeQuery( $tbl, $arg ) {
20 $query = "SELECT * FROM ".$tbl." WHERE id > ".$arg;
21 $classname = "DatabaseConnection".$this->getDriver();
22 return new $classname()->setQuery($query)->multi_execute();
23 }

(b) /db/database.php

Listing 5.1: Illustrative PHP code snippets demonstrating dynamic inputs
to new keyword
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5.1.1 Static Analysis of Web applications

The web application database access layer provides a unified interface to interact with

different databases. In step 1 , SQLBlock identifies the database access layer by statically

analyzing the web application. To this end, SQLBlock creates a class dependency graph

(CDG). The CDG is a directed graph CDG = (V,E), where the vertices (V ) are classes and

interfaces in the web application. An edge e1,2 ∈ E is drawn between v1 ∈V and v2 ∈V if

v1 extends class v2, implements interface v2 .

After creating the CDG, SQLBlock extracts the list of classes and interfaces in the web

application that extend database APIs (e.g., PDO in PHP). To do so, I manually identify

database extension classes (e.g., mysqli in PHP). Afterwards, SQLBlock iterates over the

vertices of the CDG and checks whether a vertex is connected to the database API. If a

vertex is connected to the database API, SQLBlock adds it to the database access layer.

SQLBlock also adds classes to the database access layer if their methods initialize an in-

stance of database API in PHP (e.g., mysqli_init). At the end of this iteration, SQLBlock

possess a list of all classes and interfaces in the web application that extends the database

API.

Besides the object-oriented design of database APIs in web applications, operations on

databases (e.g., SELECT operation) also have procedures (Drupal, 2016). Database pro-

cedures handle creation of objects from database API and setting correct parameters for

modules in the web application. A database procedure returns an object from a sub-type of

a database API. SQLBlock analyzes the body of the functions and procedures in the web

application for the returned objects. If the returned object is from a sub-type of a database

API in the web application, then SQLBlock considers it as a database procedure. At the

end of this step, SQLBlock extracts information regarding the database API as well as

database procedures. This step is necessary for SQLBlock to find the function that used the

database access layer for communicating with the database during training and enforcing
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of the profile.

Listing 5.1(b) shows a snippet of PHP code from a class that extends the database

API mysqli. There is also a database procedure called the executeQuery in List-

ing 5.1(b) that return an object from DatabaseConnectionmysqli that is a subclass of

mysqli. Listing 5.1(b) shows another code snippet which implements a function called

get_public_info, which uses executeQuery to retrieve data from the database. In such

a case, SQLBlock identifies DatabaseConnectionmysqli as a subclass of mysqli and

executeQuery as a database procedure.

5.1.2 Collecting Database Access Information

In step 2 , I train SQLBlock using benign traces or unit tests to learn benign SQL queries.

Step 2 consists of two components that work together to create a mapping between the

received SQL query in MySQL and the function that composed the SQL query. The first

component, appends the execution information at the end of each SQL query before send-

ing it to the database. The execution information includes the call-stack in the web appli-

cation that led to sending a SQL query to the database using database extensions (e.g., PDO

or mysqli in PHP).

The second part, a MySQL plugin, intercepts the execution of the incoming SQL

queries to MySQL. When MySQL receives a SQL query through benign traces or unit

tests, SQLBlock records the SQL query that MySQL receives including the execution in-

formation appended to the SQL query. Since SQLBlock has access to the parse tree of the

SQL query, SQLBlock traverses the parse tree and records information regarding the type

of nodes in the parse tree of the SQL query. SQLBlock also logs the list of tables that the

SQL query accesses, as well as the type of operation (e.g, SELECT operation) in the SQL

query.
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5.1.3 Creating the Profile

SQLBlock in step 3 , leverages the access logs collected from benign SQL queries in step

2 and generates a profile that defines the access to the database for each function in the

web application that interacted with the database. Particularly, the profile contains a set of

query descriptors for each function in the web application. A query descriptor comprises

four components. Each component specifies a different aspect of the database access, that

we explain below.

• Operation: denotes the type of operation in the SQL query. The operation can be

SELECT, INSERT, UPDATE, DELETE, etc. (Corporation, 2019). The profile records

the type of operation in each SQL query. Enforcing the operation type removes the

possibility of a SQLi attack performing a different operation. For instance, when the

profile only specifies a SELECT operation, the SQL query cannot perform an INSERT

SQL query.

• Table: determines the tables that the SQL query can operate on. Restricting the tables

used in a SQL query prevents an attacker from executing a SQL query on a different

table.

• Logical Operator: indicates the logical operators (Corporation, 2019) used in the

SQL query. Logical operators limit the ability of an attacker to use a tautology attack

in a SQL query for extracting data from a table.

• SQL function: determines the list of functions that the query uses. The compo-

nent also records the type of arguments that are passed to each function. The list of

functions restricts the attacker to use only the functions that are recorded during the

training. This limits the attacker’s capability to use alternate encoding and stored-

procedures attacks against the database.
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At the end of step 3 , SQLBlock acquired a set of query descriptors for each function in

the web application that issued a SQL query based on the training data that was obtained

in step 2 .

5.1.4 Protecting the Web Application

In the last step, SQLBlock is in enforcement mode and uses the profile created in step 3 to

restrict access to the database for each function in the web application. When the database

receives a SQL query, SQLBlock extracts information regarding the type of operation,

table accesses, and parse tree of the received SQL query. Subsequently, SQLBlock extracts

the function that issued the SQL query from the execution information appended to the

incoming SQL query. Afterwards, SQLBlock looks up in the profile and retrieves query

descriptors associated with the function that composed and issued the SQL query. For

each query descriptor associated with function, SQLBlock compares each component of

the query descriptor with the obtained information from the received SQL query. First,

SQLBlock checks whether the type of operation in the received SQL query and in the

query descriptor is the same or not. Second, SQLBlock examines the list of tables in the

received SQL query. The list of table in the received SQL query must be a subset of the list

of tables in the query descriptor. For the logical operators, SQLBlock checks whether the

logical operators in the SQL query that MySQL received is subset of the logical operators

in the query descriptor. Finally, SQLBlock inspects the functions used in the received SQL

query as well as the type of arguments. The functions and the type of arguments must

be in the recorded query descriptor. SQLBlock takes a conservative approach and allows

the database to execute the SQL query only if all four components of a query descriptor

associated with the function authorize the SQL query.
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5.2 Implementation

In this section, I elaborate on the implementation challenges that needed to be addressed

build SQLBlock. First, I explain how SQLBlock statically analyzes PHP web applica-

tions to identify the database access layer. Afterwards, I describe how SQLBlock uses the

MySQL plugin API to record the SQL queries that the database receives. I explain how

SQLBlock creates a precise profile for each PHP function based on the SQL queries issued

to the database. Finally, I describe SQLBlock’s approach for using a MySQL plugin API

to restrict database accesses.

5.2.1 Static Analysis of web applications

In step 1 , SQLBlock analyzes the web application to determine the database API and

database interfaces across the PHP scripts in a web application. SQLBlock performs a flow-

insensitive analysis, which focuses on finding database API, interfaces, and procedures.

SQLBlock identifies all PHP files in the web application, using libmagic. I use php-

parser (Slizov, 2019) to parse each PHP script into an abstract syntax tree (AST). SQLBlock

identifies classes, interfaces, and abstract definitions by scanning AST nodes that represent

their corresponding definitions. SQLBlock examines interface and class definitions across

the PHP web application to reason about the dependencies between classes and interfaces,

During analysis, SQLBlock creates a class dependency graph (CDG) and draws an edge

between interfaces and classes when: 1) An interface extends another interface. 2) A class

implements an interface. 3) A class extends another class.

After creating the CDG, the static analyzer ( SA ) iterates over the nodes of the CDG

to identify classes and interfaces that facilitate communication between the PHP web

application and the database. To accomplish this, SQLBlock starts with the PDO and

mysqli classes; two of the most popular database extensions in PHP. SQLBlock cre-

ates a list of classes and interfaces that share an edge with PDO or mysqli classes in the
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CDG. For example, after creating the CDG for the code in Listing 5.1(b), SA identifies

DatabaseConnectionmysqli as a subclass of mysqli.

SA must identify database procedures as well. SA decides whether a procedure is

a database procedure or not by analyzing the type of object it returns. If a procedure

returns an object from a subclass of the database API, SA marks that function as a database

procedure. For determining the object type that a function returns, SA analyzes the AST

node of the return statement. There are two cases that SA is interested to follow:

• Instantiating an object using the new keyword: If the function is instantiating an

object using the new keyword in the return statement, SA analyzes the argument that

is passed to the new keyword. If the argument is the name of a subclass of a database

API, SA marks the function as a database procedure. If the argument is a variable,

SA performs a lightweight static analysis as a limited form of constant folding over

strings that compose the value. SA marks the function as a database procedure, if

the resolved value is a subclass of database API.

• Variable: If the function returns a variable, SA iterates backward on the AST to

the last assignment of the variable and checks whether the assignment is a class

instantiation or not. If it is a class instantiation, SA tries to resolve the type of

instantiated object as described above.

As discussed in Section 2.3, PHP web applications often use variables as an argument for

creating objects from classes using the new keyword. During analysis, SA keeps track of

arguments passed to new in PHP scripts using a string representation.

String Representation

SA encounters strings when handling variable assignments and constant definitions.

Strings can be a mixture of literal components, function return values, and variables.
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When SA iterates over an assignment node in the AST, it records a set of information

from the assignment node in a hash table. SA keeps track of the name of the variable

and the components on the right side of the assignment. SA also records the name of the

function or the name of the class and method that the assignment statement occurs in. For

example, in Listing 5.1(b) at Line 21, the function executeQuery has an assignment state-

ment. The right side of the assignment concatenates a constant string and a return value

from a function. SA records the name of the variable on the left side of the assignment

as well as the value of the constant string and the return value from the function. SA also

records the type of operation on the right side (as discussed next, it is a concatenation oper-

ation). SA implements common string operations to resolve the value of the assignment.

String Operations

SQLBlock manages frequent string-related operations.

Variables: The argument passed to new can contain variables defined in the script. SA

keeps track of variable definition in the scope of script, class, or functions. When there is a

variable assignment, SA creates an object for the variable and its value.

Concatenation: In PHP, strings can be constructed by joining multiple components

with the . and .= operators. SA handles string concatenation by creating an object for

concatenation and adds components that exist in the concatenation statement.

Identifying Database Procedures

To identify database procedures, SA iterates over the assignments and resolves the value

of variables in the strings by looking for variables in the same class and function. If there

is a variable without a value, SA represents the value as a regular expression .* wildcard.

SA looks for a match between the generated regular expression and the list of database

API subclasses. For example, in Listing 5.1(b), line 21, SA cannot determine the return

value of $this->getDriver. Instead, SA represents the value as a .* wildcard. SA
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searches the list of database API subclasses for a class that matches the regular expression

DatabaseConnection*, and finds such a class named DatabaseConnectionmysqli. SA

marks executeQuery as a database procedure.

At the end of this step, SA has a list of database access layer classes, interfaces, and

procedures.

5.2.2 Profile Data Collection

This step trains SQLBlock to create a mapping between issued SQL queries and the web

application’s function that relied on the database access layer to issue the SQL query. The

collected information in this step is necessary for generating query descriptors in step 3 .

As described in Section 5.1, the information collected for each SQL query contains the

operation, the access tables, the logical operators, the SQL functions that the query used,

and the type of arguments in each SQL function.

Attaching a PHP call stack:

When MySQL receives a SQL query, SQLBlock must infer which PHP function actually

issued the SQL query. To achieve this, I modified the source code of the MySQL driver for

the PDO and mysqli extensions. This modification appends the PHP call-stack at the end

of the query as a comment before sending it to the database.

To access the PHP call-stack, I use the Zend framework’s built-in function called

zend_fetch_debug_backtrace. Zend keeps the information regarding the call-stack for

the executing PHP script. This information includes the functions, class, their respective

arguments, the file, and the line number that issued the call. The modified database exten-

sion ( DE ) extracts the PHP call stack and appends it as a comment to the end of the SQL

query.
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1 SELECT * FROM public_info where id > 0 # mysqli::
multi_query@DatabaseConnectionmysqli::
multi_execute@executeQuery@get_public_info

2 FIELD@FUNC:>@2@FIELD@LITERAL # recorded info regarding the nodes in
the SQL query

3 public_info@0 # recorded info regarding the table and operation
type of the SQL query

Figure 5·2: recorded information for the execution of get_public_info

Extracting information from the parse tree:

Recorder plugin ( PR ) acts as a post-parse MySQL plugin. PR has access to various in-

formation regarding the parsed SQL query in MySQL: the type of operation (e.g. SELECT

operation, etc.), the name of the table, and the parse tree of the SQL query. MySQL pro-

vides a parse tree visitor function that PR uses to access the parse tree of SQL queries.

However, MySQL only allows plugins to access literal values of the query, such as

user inputs in the parse tree. Because SQLBlock needs more information regarding the

parsed SQL query, we modified the source code of MySQL-server so that the plugin can

access non-Literal values as well. When MySQL invokes PR , PR records the SQL query

that MySQL receives. Afterwards, PR iterates over the parse tree of the SQL query and

records the type of each node. If the node represents a SQL function in the SQL query, PR

also records the number of arguments used in the SQL function. The node that represents

the SQL function in the SQL query also holds the number of arguments used in the SQL

function. Afterwards, PR records the type of arguments passed to the SQL function as

they appear in the parse tree of the SQL query. Lastly, PR logs the table and the type of

operation for the SQL query that MySQL received. MySQL shows the type of operation

for a SQL query as a number. Hence, PR logs the type of operation for a SQL query as an

encoded number in the profile. Figure 5·2 shows the recorded information in the profile,

when function get_public_info executes.
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At the end of step 2 , SQLBlock has detailed information on the received SQL queries

for training.

5.2.3 Creating the Profile

In step 3 , profile generator ( PG ) creates a profile for each PHP function in the web

application that accesses the database. PG relies on the training data from step 2 as

input.

PG reads the recorded information from step 2 . As shown in Figure 5·2, the first line

is the SQL query including the PHP call-stack. Using the list created in step 1 , PG must

infer which PHP used the database access layer to send the SQL query to the database.

This is a difficult problem, because the last function on the call stack might be a helper

function that issues all queries for the application (and, in fact, this is how modern real-

world PHP applications such as Wordpress and Joomla are written). PG iterates over the

stack of functions in the PHP call-stack and checks whether the function or the method

was recognized as a database procedure or database API method in step 1 . PG iterates

over the stack starting from the last call in PHP call-stack until a function is not a database

procedure or database API method. PG identifies this function as the function that created

the database query.

As an example, the Line 1 in Figure 5·2 shows the SQL query that MySQL receives

including the PHP call-stack. PG detects mysqli as a database extension in PHP and

DatabaseConnectionmysqli as a class that extends mysqli. Then, PG visits the next

function executeQuery, which was identified as a database procedure in step 1 . The

next function in the PHP call-stack is get_public_info. get_public_info is not in the

list of database procedures from step 1 , therefore PG identifies it as the PHP function that

used database access layer to send the SQL query to the database. PG will then update

get_public_info’s query descriptor.

Afterwards, PG iterates over the nodes of the SQL query’s parse tree and extracts all
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the logical operators. If all the logical operators are the same, PG updates the cond with

the respective value. If both logical operators (i.e, both OR and AND) are in the nodes of

SQL query’s parse tree, PG sets cond to "Both". If there is no logical operators in the SQL

query, PG sets cond to "None". Based on Figure 5·2, PG specifies that get_public_info

does not use any logical operators in its SQL query.

PG iterates over the list of nodes from the parsed tree of the SQL query and extracts

the name of the used functions in the SQL query as well as their respective arguments.

Since the number of arguments passed to the SQL function can be variable, PG does not

record each argument’s type. Instead, PG summarizes the types of arguments that a SQL

function relies on. There are multiple types of functions in MySQL such as numeric, string,

comparison, and date function. All of the aforementioned types of SQL functions except

the comparison type either receive less or equal to two arguments or modifies the content

of the first argument passed to the function. Comparison functions in MySQL (e.g., <,

IN, etc.) compare a single argument to a variable sized argument array. Moreover, the

single argument appears as the first argument in the SQL comparison functions. Owing to

this, PG records the type of the first argument passed to a SQL function separately. If the

argument is a table column, PG records it as a FIELD argument, otherwise PG records

it as a LITERAL argument. Afterwards, PG iterates over the rest of the arguments passed

to the SQL function. If the type of all the other arguments are the same type (i.e., FIELD

or LITERAL), then PG records the value of the respective type in the profile. Otherwise

PG sets the type as var. For instance, based on Figure 5·2, PG specifies that function

get_public_info used function ">", that the first argument is a table column and the

second argument is a LITERAL.

Lastly, PG reads the information about the name of the table and the type of SQL query.

For instance, based on line 3 in Figure 5·2, PG deduces that function get_public_info

accesses the table public_info using a 0-type SQL query (i.e., SELECT SQL query).
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At the end of step 3 , PG has a set of query descriptors for each PHP function in the

web application that issued a SQL query during training in step 2

5.2.4 Protecting the Web Application

In step 4 , the enforcer plugin ( PE ) is on enforcement mode. PE uses the profile that was

generated in step 3 and protects the database from queries that deviate from the profile.

Similar to PG , PE is implemented as a postplugin, which gives it access to the parse tree

of the received SQL query. PE also uses the same PHP database extensions as described in

Sectin 5.2.2. PE reads the profile for each PHP function and uses it to analyze the received

queries.

After receiving a query, MySQL parses the SQL query and calls PE . PE locates

the call-stack and extracts the PHP function that issued the query with the same approach

described in Section 5.2.3. Afterwards, PE finds the query descriptors in the profile asso-

ciated with the PHP function. PE checks the query against all four components of each

query descriptor found for the PHP function. For operation type, PE checks whether the

received SQL query has the same operation type as it is recorded in the profile. PE also

examines that the list of tables accessed for the received SQL query is a subset of table

access listed in the query descriptor. The logical operators used in the received SQL query

must be a subset of the logical operators in the query descriptor. Finally, the received SQL

query can only use a subset of functions listed in the query descriptor. PE also checks

whether the arguments passed to each function has the same type as it is recorded in the

query descriptor. Only if the SQL query matches with all four components of at least

one query descriptor in the profile, PE allows MySQL to execute the SQL query and re-

turn the results. Otherwise PE returns False to MySQL-server, aborting execution of the

query and returning an error to the web application, thus preventing a potentially malicious

attacker-controlled SQL query from executing.
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5.3 Evaluation

I assessed the ability of SQLBlock to prevent SQLi attacks on a set of popular PHP web

applications. I also examined SQLBlock’s false positive rate during the benign browsing

of the web application. Additionally, I evaluated the performance overhead of step 3 for

the benign browsing. For this evaluation, I answer the following research questions:

RQ1 How precise is SQLBlock’s static analysis?

RQ2 Is SQLBlock effective against real world SQLi vulnerabilities in popular web appli-

cations?

RQ3 How practical is SQLBlock regarding performance overhead and false positives?

5.3.1 Evaluation Strategy

In this evaluation, I performed the static analysis once for each web application in Sec-

tion 5.3.2. I evaluated the database access layer resolved by the static analysis in RQ1.

Then I leveraged the database access layer to answer RQ2 and RQ3. I trained and built the

profile for SQLBlock using the official unit tests of each web application once and used the

generated profile for the experiments to answer RQ2 and RQ3. The official unit tests examine

the correctness of functions in the web application by executing test-inputs and verifying

their results. The advantage of unit tests over web crawlers is that there is no need for man-

ual intervention of administrators, specifically for providing semantically correct inputs for

each form in web applications. A web application’s unit tests are specifically tailored to its

implementation and therefore are likely to achieve higher code coverage. Figure 5·3 shows

that Drupal’s unit tests achieve higher line coverage compared to Burp suite and also cov-

ers almost all the lines that Burp Suite (PortSwigger, 2019) covered. However, alternative

approaches such as web crawlers can also be used for training SQLBlock.
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Figure 5·3: The line coverage for unit tests and Burp suite on Drupal 7.0

5.3.2 Evaluation Dataset

I evaluated SQLBlock on the four most popular PHP web applications, Wordpress, Joomla,

Drupal, and Magento. According to W3Techs, these web applications hold 70.5% of the

market share among all existing content management systems (CMS) and power 38.4% of

all the live websites on the Internet combined (Q-Success, 2023b). Administrators install

plugins and additional components to customize the web application and extend its func-

tionality. To reflect this behavior in the evaluation, I also evaluate SQLBlock on plugins.

I installed four vulnerable Wordpress plugins called Easy-Modal, Polls, Form-maker, and

Autosuggest. I also installed three vulnerable plugins in Joomla named jsJobs, JE photo

gallery, and QuickContact. To assess the defensive capability of SQLBlock, I selected re-

cent versions of the web applications and plugins that contain known SQLi vulnerabilities.

I also considered the type of SQLi vulnerability in the dataset to include all types of SQLi

exploits for a comprehensive evaluation. I collected a total of 11 SQLi vulnerabilities in

different web applications and plugins.
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5.3.3 Resolving The Database Access Layer (RQ1)

In step 1 , SQLBlock scans the PHP web application to identify the database access layer

that is used to communicate with the database. Step 1 is a crucial step to identify the

correct function in the PHP call-stack that relies on the database access layer for interacting

with the database.

Table 5.1 presents the resolved database access layer statistics. The resolved subclasses

column specifies the number of classes that extends the database API in PHP. The resolved

database procedures column presents the number of functions that returns an object from a

subclass of the database API. Since there is no ground truth for the database access layer in

the web applications, I manually analyze the output of SA for true positives. Subclasses of

database APIs in the PHP web applications also implement interfaces to facilitate actions

such as iterating over elements in the object and counting elements. For instance, Drupal

implements Iterator and Countable so that the PHP script can iterate over or count the

number of records that the database returns to the PHP script. Since Drupal implements

Countable and Iterator in the subclasses of database API, SA adds these two interfaces

to the database access layer. As shown in Table 5.1, the only false positives I observed

during the evaluation are caused by the Iterator and Countable interfaces. All the web

applications in the dataset except for Wordpress, use encapsulation in their database API

subclasses and database procedures that show the necessity of identifying the database

access layer for creating a profile. Without identifying the database access layer, SQLBlock

would operate similar to SEPTIC and map the received queries to a single identifier.

Web application Resolved subclasses (FP) Resolved database procedure
Wordpress 4.7 1 -
Drupal 7.0 44 (2) 38
Joomla 3.7 30 (0) -
Joomla 3.8 30 (0) -
Mangeto 2.3.0 15 (0) -

Table 5.1: Resolved database access layer by SQLBlock’s static analysis.
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5.3.4 Defensive Capabilities (RQ2)

I assessed the defense capabilities of SQLBlock against 11 SQLi vulnerabilities listed in

Table 5.2. I built and deployed five Docker containers that run a vulnerable version of a web

application and a plugin. I exploit the vulnerabilities using exploits from Metasploit Frame-

work (Metasploit, 2019), exploit-db (Security, 2019), and sqlmap (Bernardo and Miroslav,

2019). I consider an attack successful if an attacker can inject malicious SQL code into the

generated query in the web application and the database executes the malicious SQL query.

For this evaluation I used the results of the static analysis in RQ1. I trained SQLBlock

using the official unit tests of web applications in their respective repositories. After cre-

ating the profile, I configured SQLBlock in the enforcement mode and assess whether the

exploits in exploit-db and Metasploit Framework are successful or not. Adversaries are

not limited to use exploits in the evaluation and can craft their SQL queries to circumvent

SQLBlock. To evaluate the potential of such attacks, I also used sqlmap (Bernardo and

Miroslav, 2019) to generate various exploits for the vulnerabilities listed in Table 5.2.

In Table 5.2, I present the list of SQLi vulnerabilities that SQLBlock defends the web

applications against. The second column in Table 5.2, represents the ID assigned to each

vulnerability. I marked the SQLi vulnerabilities that reside in the core of web applications

by C . The third column shows the type of attacks I performed to exploit the respective

vulnerability. SQLBlock protects the web applications against all 11 SQLi exploits in

the dataset, while SEPTIC can only defend against four SQLi exploits that only reside in

Wordpress plugins.

To evaluate the potential of circumventing SQLBlock, I also listed the available query

descriptors for the SQL queries that the vulnerable PHP function in each web application

or plugin can issue. For instance, any potential exploit against the first vulnerability in

Table 5.2 is restricted to an UPDATE query exclusively on table wp_em_modals without

further logical operators. Furthermore, the exploit can only use SQL functions "=" and
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Application Vulnerability SQLi Type and Available query descriptors

Wordpress 4.7 CVE-2017-12946 Taut., Infer., Alt. Encoding
(update, wp_em_modals, none, [(=,field,literal),(IN,field,literal)])

Wordpress 4.7 polls-widget 1.2.4 Taut., Infer., Alt. Encoding
(update, wp_polls, none, [(=,field,lietral)])

Wordpress 4.7 CVE-2019-10866 Infer.
(select, wp_formmaker_submits, and, [(=,field,literal)])

Drupal 7 WPVDB-9188 Taut., Infer.
(select, wp_posts, and, [(=,field,literal)])

Joomla 3.7 CVE-2014-3704 C Taut., Union, Piggy-back, Stored Proc., Infer., Alt. Encoding
(select, users, and,[(=,field,literal)])

Joomla 3.8.3 CVE-2017-8917 C Union, Infer.,Alt. Encoding
(select, [users, languages, fields], both, [(=,field,literal),(=, field, field),(IN, field, literal)])

Joomla 3.8.3 com_jsjobs 1.2.5 Infer.
(select, js_jobs_fieldsordering, none, [(=, field, literal)])

Joomla 3.8.3 com_jephotogallery 1.1 Union, Infer.
(select, jephotogallery, none, [(=, field, literal)])

Joomla 3.8.3 CVE-2018-5983 Infer.
(select, jquickcontanct_captach, none, [(=, field, literal)])

Joomla 3.8.3 CVE-2018-17385 C Second order inj.
(select, template_styles, and, [(=, field, literal)])

magento 2.3.0 CVE-2019-7139 C Infer., Alt. Encoding
(select, catalog_product_frontend_action, and, [(>=, field, literal),(<=, field, literal)])

Table 5.2: Exploits blocked by SQLBlock.

"IN".

5.3.5 Performance (RQ3)

Performance/responsiveness is a crucial factor for web applications. Therefore, I evaluate

SQLBlock’s performance overhead. In SQLBlock, the first three steps can be performed

offline. Steps 1 and 3 are automatic and do not rely on help from the administrator.

In step 2 , the administrator must perform unit tests or create benign traffic in the web

application to train SQLBlock. Step 4 is deployed as a MySQL plugin and a set of mod-

ified PHP database extensions to sandbox databases against malicious SQL queries. The

MySQL server loads SQLBlock’s protection plugin upon launch. SQLBlock loads the pro-

file and waits for incoming SQL queries. I perform the experiments on a 4-core Intel Core

i7-6700 with 4Gb of memory 2133Mhz DDR4 that runs Linux 4.9.0, with Nginx 1.13.0,

PHP 7.1.20, and MySQL 5.7.

For the performance evaluation, I created a Docker (Docker, 2018) container that runs
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with a default configuration of PHP, Nginx, and MySQL containing the Drupal 7.0 web ap-

plication. I measure the performance overhead of SQLBlock using ApacheBench (Apache

Software Foundation, 2018), a tool for benchmarking HTTP web servers. I simulated a

real-world scenario by increasing the level of concurrency in ApacheBench. The level of

concurrency shows the number of open requests at a time. I measured the network response

time of index.html in Drupal 7.0 that issues 26 queries to MySQL. For more precise re-

sults, I measured the response time for 10,000 requests at multiple levels of concurrency.

Table 5.3 presents the results for the aforementioned scenario. The first column in Table 5.3

shows the level of concurrency for each test. The next two columns in Table 5.3 present the

network response time for Drupal with/without SQLBlock. As shown in Table 5.3 SQL-

Block incurs less than (2.5%) overhead to the network response time of the server. Based

on the strong protections afforded by SQLBlock, I consider this overhead acceptable. Fur-

thermore, SQLBlock is a prototype with no emphasis on performance optimization. Such

optimizations likely could reduce the overhead even further.

I also measured the execution time of queries in MySQL. I modified the source code

of MySQL to calculate the time it takes for MySQL to execute a SQL query. For this

experiment, I used ApacheBench to send 10,000 requests to index.html in Drupal 7.0,

which issued a total of 260,000 queries to MySQL. I measured the average execution time

of issued queries for two different scenarios. The first scenario is MySQL without SQL-

Block’s plugin, and in the second scenario, I enabled SQLBlock’s plugin in MySQL. The

last two columns in Table 5.3 present the average execution time of all the received queries

to MySQL. The performance overhead of SQLBlock in MySQL is less than 0.31 ms for

each query.
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Server Response Time(ms) MySQL Execution Time(ms)
Concurrency Unprotected Protected Unprotected Protected

1 27.792 28.338 (1.96%) 0.150 0.23
4 11.644 11.813 (1.45%) 0.669 0.90
8 8.907 9.127 (2.46%) 0.732 1.02

16 8.885 9.084 (2.23%) 0.740 1.05
32 8.971 9.182 (2.35%) 0.747 1.02

Table 5.3: Response times for requests to Drupal index.php

5.3.6 False Positive Evaluation

I count an operation as a false positive if SQLBlock blocks a benign query to the database.

For the false positive evaluation, I evaluated SQLBlock with Wordpress 4.7 and Drupal

7.0. For each web application I used the profile built in RQ2. Then, I configured SQLBlock

in enforcement mode and replayed browsing traces collected by Selenium (Balde Samit,

2018). The browsing traces explored the web application as a user and administrator with

the goal of covering the web application as much as possible.

Based on Table 5.4, only 10.11% of the issued queries during benign browsing and the

unit test had the same query structure. This legitimate difference in the query structure

of issued queries renders prior approaches that build their profile based on query structure

unable to distinguish benign SQL queries from malicious ones. For instance, SEPTIC has

above 89% false positive on the same test for Drupal 7.0. SQLBlock allows a query to exe-

cute in MySQL as long as the query matches at least one of the query descriptors associated

with the PHP function in the profile. In the false positive test for Drupal, SQLBlock did not

block any query from the benign Selenium browsing. This shows that although the PHP

functions during training and testing used different queries, the query descriptors were the

same.

Table 5.4 shows that 82.57% of queries in the benign browsing were similar to queries

recorded for SQLBlock’s profile. Although the rate of similar issued queries during train-

ing and testing of Wordpress is higher that Drupal, SQLBlock blocked 7 unique queries
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during the benign browsing, which corresponds to 5% of all issued queries. There are two

main reasons for the false positives in Wordpress. The first reason is MySQL modifying

the query based on the arguments passed to SQL function in the query. For instance, if the

length of the array passed to the IN statement in a query is one, MySQL modifies the IN

statement to an equal (=) statement. This modification in the query and subsequently in

the parse tree of the query leads to false positives for SQLBlock since SQLBlock encoun-

ters a different function in enforcement than what is in the profile. The second reason is

missing PHP functions in the profile. During the enforcement, SQLBlock blocks the SQL

query if SQLBlock does not find any query descriptor for a PHP function that issued the

SQL query. Six out of seven false positives in Wordpress was due to lack of query de-

scriptors for the PHP function during benign browsing, which implies that covering all the

functions that can issue a query during the training is an important factor for SQLBlock.

web application Unit tests Selenium (Unit tests ∩ Selenium) False Positive
Drupal 299961 336 34 (10.11%) 0

Wordpress 3099 132 109 (82.57%) 7

Table 5.4: Number of unique SQL queries during unit testing and Selenium
browsing

5.4 Discussion and Limitations

In this section, I discuss the limitations of the SQLBlock and possible future works in this

area.

eval Function: PHP web applications use dynamic features implemented in PHP

extensively, such as the eval function, which evaluates a string argument as a PHP code.

Currently, SQLBlock does not handle function and class definitions inside eval. A web

application can use eval for defining the database API or procedures dynamically and use

it across the web application. This leads to generating a non-complete list of PHP database

API and interfaces for a PHP web application in the step 1 . In such cases, SQLBlock
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maps the query descriptors to a small set of PHP functions that can allow the attacker to

execute a malicious query. In future work, the static analyzer in SQLBlock can be improved

to handle the static PHP code passed to eval, to determine a more precise database access

layer.

Incomplete coverage during training: PHP web applications generate dynamic

queries based on user inputs. This approach makes it impossible to issue all possible

queries to the database during the training phase. Dynamic analyses suffer from incom-

plete training phases, and SQLBlock is not an exception. The Wordpress false positive

test shows that the incomplete coverage of the issued queries leads to SQLBlock blocking

benign queries.
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Chapter 6

Debloating PHP web application through static
analysis

In this chapter, I describe my third contribution to debloat the source-code of the PHP

web application. First, I discuss the threat model and environmental conditions. Next,

I elaborate the system architecture of the debloating mechanism in Section 6.1. Then, I

evaluate my approach on most popular PHP web application in terms of reducing the size

of source-code and removing security vulnerabilities from the PHP web applications in

Section 6.2.

Threat Model and Environmental Conditions. The threat model targets PHP web

applications which may contain unknown security vulnerabilities running atop a non-

compromised OS. I assume that the administrators cannot host their web applications with

the profiler code turned on due to its high overhead and negative effect on page-load time.

My assumption also entails that operators/developers/administrators can invest time in de-

veloping custom static analysis which Minimalist then uses to debloat web applications.

As the evaluation in Section 6.2 shows that Minimalist can remove up to 38% of security

vulnerabilities from PHP web applications with a minimal effort from developers.

6.1 System Architecture

In this contribution, I aim to debloat PHP web applications. My tool consists of three main

steps: 1) Generating a call-graph for the selected PHP web application. 2) Pruning the call-

graph based on the PHP files that users (via their HTTP requests) accessed. 3) Debloating
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the unreachable functionality from the web application. I implemented this approach for

PHP web applications in a prototype called Minimalist.

Call-graph in conjuction with the application entry-points can be used to identify un-

used functions within a web application, which can then be removed via debloating. The

soundness and accuracy of the call-graphs directly affect the performance and correctness

of debloated web applications. Leveraging an unsound call-graph to debloat applications

can lead to false positives (i.e., removing parts of the code that are needed by the appli-

cation). However, over-approximations due to the imprecise resolution of dynamic code

constructs lead to the generation of a call-graph that, despite being sound, is unusable for

debloating. For example, a fully connected graph (i.e., connecting all pairs of functions

in the application) is trivially sound, but is not useful for debloating since every function

is reachable from every entry-point. Therefore, over-approximation and lack of precision

during the call-graph generation leads to degraded debloating results (i.e., keeping pieces

of code that are not used in practice).

The system takes a multi-step approach to construct the call-graph by leveraging three

analyses of inheritance, variables, and script inclusions to handle the dynamic features

that the web application uses to invoke a function. Figure 6·1 demonstrates the overall

architecture of my system. In this section, I first explain each analysis and how Minimalist

combines the results to generate a call-graph. Finally, I explain the pruning process of the

generated call-graph and the eventual debloating of the given PHP web application.

6.1.1 Generate the call-graph

The first step for Minimalist to debloat a PHP web application is to represent it in the

form of a call-graph. To generate the call-graph, Minimalist performs three preliminary

analyses on the web application to handle dynamic features in the PHP web applications:

1) Class Hierarchy Analysis, 2) Variable Analysis, 3) Script Inclusion Analysis. My tool

uses the php-parser library (Slizov, 2019) to parse each PHP script in the web application
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and script inclusion to deliver dynamic content. This analysis allows Minimalist to cor-

rectly resolve the list of target functions in dynamic invocations and included files in fur-

ther analyses. The variable analysis in Minimalist involves tracking assignment statements

in the web application and recording the assigned values in a hashmap. In this analysis, a

variable can take any of the following values:

• Constant: The assignment statement contains only constant values.

• Unbound: The variable analysis cannot restrict the possible values for a variable

such as assignments based on user-input.

• Mixed: The assigned value to the variable is a mixture of constants and unbounded

values.

Each assignment statement is comprised of three components: the left hand side (lhs),

the right hand side (rhs), and the operation. Minimalist tracks the variable assignments for

each PHP script in a separate hashmap structure named ValueSet. In this hashmap, the key

is the name of the variable on the lhs and the value is the string representing the assigned

value. For each assignment, I resolve the lhs expression to extract the name of the target

variable, which includes variables, arrays, and class property assignments. Similarly, the

rhs is resolved iteratively by traversing the AST nodes provided by the PHP parser. The

rhs is resolved to a string representing the assigned value. In PHP, variables are scoped.

According to the PHP documentation (PHP, 2022), there are three different variable scopes

in PHP: 1) global, 2) local, and 3) static. A variable’s scope is global when the variable

is defined outside a PHP function. Furthermore, a variable defined inside a function is by

default limited to the local function scope. Similar to local scope, a static variable can

only be accessed inside the local function scope (PHP, 2022). Minimalist conservatively

promotes all variables to the global scope and combines the resulting ValueSets (i.e., set

union) of all variables that share the same name, irrespective of the variables’ scopes. This
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approach leads Minimalist to over-approximate the possible values a variable can hold. I

categorize the rhs expressions into six groups, which Minimalist handles as follows:

Literal: There is no further analysis on string literals.

Magic Constants and PHP built-in functions: The PHP interpreter defines a set of

constants with predefined values such as __dir__ and __function__, which refer to the

current directory and current function, respectively. Minimalist models the commonly-

used PHP file operations functions such as dirname as well as magic constants. This way,

Minimalist can resolve dynamic file inclusions statically.

Object Instantiation: For object instantiation statements, Minimalist extracts the name

of the instantiated class and determines the type of the instantiated object.

If Minimalist cannot reason about the type of an object in rhs, it marks the variable as

“unbound”.

Variables: If the rhs contains a variable, this means that the variable must have been

initialized previously in the web application. In this case, Minimalist resolves each variable

on the rhs by looking up its assigned value in the ValueSet hashmap. If I cannot find the

variable in the hashmap for the current script, I perform a global search across other PHP

scripts for its definition. If the variable is not found, Minimalist marks the variable as

“unbound”.

User-defined Function Call: Minimalist only resolves direct function calls used in

assignment statements. To do this, Minimalist identifies the implementation of the invoked

function in the web application, and analyzes the return statement inside the function’s

body. Minimalist iteratively analyzes the AST nodes of the return statement, similar to the

analysis of the assignment statements. Next, I translate the sequence of nodes that compose

the return statement into a string representing the returned value. I then replace the function

call in the assignment statement with this string. In the case of recursion in function calls,

Minimalist only analyzes the return statement once. If Minimalist cannot determine the
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target function (i.e., variable invocations) or its returned value, it marks the return value as

“unbound”.

Unbound: For any other type of node that does not belong to the above categories,

Minimalist marks the string representation of the node as “unbound”.

$included = classpath."/Class";
variable constant literal

Key

included
/var/www/html/Class

Previously defined in the script

Value1
2

3
classpath /var/www/html

included

ValueSet hashmap

/var/www/html/Class

Figure 6·2: Minimalist analyzes the assignment statements by 1) Extracting
the name of the variable from LHS, 2) Resolving the RHS to a string repre-
senting the assigned value, 3) Storing the mapping in the ValueSet hashmap.

Minimalist applies this procedure recursively on every node of the rhs in the assignment

statement until it includes only literals, unbounds, and string concatenation. Minimalist

then translates the rhs into a regular expression (regex). In doing so, Minimalist over-

approximates the unbounds (e.g., user-input, database records) by replacing them with a

wildcard (.*) in the generated regex. Over-approximating the values of variables in this

step allows Minimalist to include all possible values assumed by a variable in the regex.

In the case of multiple assignments to the same variable, Minimalist joins the regexes for

each option with the or operator. In the end, Minimalist creates an entry in the ValueSet

hashmap with the name of the variable as the key and the generated regex as the value. Fig-

ure 6·2 demonstrates how Minimalist analyzes different types of nodes in the AST for the

assignment statements in Listing 2.1 and stores the mapping of their values in the ValueSet

hashmap.
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test.php

Class.php

##test.php 
include_once $included.' . php';

/var/www/html/Class .php
concat

/var/www/html/Class.php

Figure 6·3: An example include resolution by Minimalist.
Minimalist analyzes the include statements and generates a script dependency graph for

the web application under analysis.

Analyze Script Inclusions

In this analysis, Minimalist generates a script dependency graph for the PHP web applica-

tion. A script dependency graph is a directed graph where the nodes are the files in the web

application and a directed edge between two nodes (i.e., two files) represents the inclusion

of scripts. The PHP interpreter always executes the main body (i.e., global context) of an

included script. This is critical to constructing the call graph since each included script can

invoke a series of functions or include other scripts. Minimalist iterates over the AST of

each script in the PHP web application and identifies script inclusion expressions. For each

script inclusion expression, Minimalist iterates over all the nodes that compose the string

passed to the expression.

Minimalist handles dynamic script inclusions in web application by resolving the value

of variables using the variable analysis results. If there is a variable in the argument, I re-

place the variable with its value in the valueSet hashmap. Next, Minimalist translates the

sequence of arguments into a regex. Finally, I draw edges between the file under analysis

and every file that matched the regex. If the passed argument to the script inclusion func-

tion is a wildcard regex, we draw edges from the file under analysis to every file in the web

application. In Figure 6·3, I demonstrate how Minimalist resolves the arguments into the

files matching the regex, and generates the script dependency graph for Listing 2.1.
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PHP scripts frequently use auto-loaders to instantiate objects from classes without ex-

plicitly including the file which contains the implemented class. Minimalist handles auto-

loaded classes in scripts by analyzing the new expression used for instantiating the object.

As with resolving the argument passed to include statements, Minimalist resolves the argu-

ments passed to the new expression. Afterward, Minimalist draws a dependency edge from

the current file under analysis to the script(s) which contain(s) the class implementation(s).

Generate the Call-graph

In this step, Minimalist generates a call-graph for the web application under analysis. To

generate the call-graph, Minimalist must identify the caller-callee relationships between

functions in the web application. This is accomplished by iterating over the AST of each

PHP file, to identify function call expressions residing in the caller. The target of this ex-

pression is to identify the callee. As callers and callees are functions, Minimalist maintains

a special caller corresponding to the global script context (i.e., function invocations not part

of a function body). For direct invocations, Minimalist adds a node to the call-graph for the

caller and callee, if they do not exist, and draws an edge from the caller to the callee.

In case of variable invocations, Minimalist leverages the collected information in the

variable and class hierarchy analysis to resolve the values of variables. Minimalist extracts

the nodes that compose the variable and performs a lookup in the ValueSet hashmap to find

the regex for the assigned values. For keywords within the object’s context (e.g., parent),

Minimalist uses the Inherit mapping to replace the keyword with the name of the current

class or its parent. Next, Minimalist resolves the variable invocation by matching the regex

against all defined functions and methods in the web application. Finally, Minimalist draws

edges in the call-graph between the caller and each of the matching functions. Note that

the over-approximation of variable values in the variable analysis leads Minimalist to draw

edges to every possible invoked function at each call-site. Figure 6·4 demonstrates how

Minimalist resolves the assigned values to variables in a function call and draws the edge
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edge between them. Note that, if there are multiple functions that match the passed argu-

ment (i.e., function to be invoked) to the higher-order function, Minimalist draws an edge

between the caller and each of the matching functions. Similar to higher-order function

invocation, I modeled the behavior of PHP’s reflection API in Minimalist. Specifically,

to address reflection, Minimalist extracts the argument that represents the function to be

invoked and draws the respective edges in the call-graph. Analogous to variable func-

tion calls, Minimalist generates a report for unresolved instances of the invoked functions

by higher-order functions or the reflection API, which should be addressed by an analyst

through CSA. For script inclusion functions, Minimalist uses the script inclusion analysis

result and creates a dummy node for the main body of the included script if it does not exist

and draws an edge from the caller to the dummy node.

At the end of this step, Minimalist generated a call-graph for the web application using

the information acquired from the previous analyses. My approach needs to construct the

call-graph once per web application. Whenever there is a modification in the source-code

of the target web application, such as upgrading to a new version or installing a new mod-

ule, Minimalist needs to repeat the call-graph construction step, including the preliminary

analyses.

1 function test() {

2 //Retrieve the callable action from the database

3 $query ="SELECT * FROM actions WHERE ".$conds;

4 $result_db = mysql_query($query);

5
6 //Assign the value to the variable action

7 $action = mysql_fetch_row($result_db);

8 // Invoke the retrieved function name

9 // from the database

10 $result = $action();

11 }

Listing 6.1: Drupal retrieves the name of the function to
invoke from database. The function test is implemented in
actions.php.



97

Custom Static Analysis

In this analysis, Minimalist resolves the problematic function calls and script inclusions

into a small set of functions/scripts. For a small subset of function calls and file inclusions,

Minimalist cannot statically resolve the callees or target scripts. In the absence of such in-

formation, Minimalist draws edges to every node in the call-graph or the script dependency

graph. This level of abstraction can render the debloating process ineffective if an invoked

function has edges to all the functions in the web application.

Since Minimalist is not able to fix the unresolved instances alone, alternative methods

are necessary. My tool leverages an analysts’ knowledge in order to resolve the missing

function calls. Using the report from the previous step, a human analyst can inspect the

source code of the web application and provide the annotations using the CSA API. Us-

ing these annotations, Minimalist can resolve the specific challenging call sites and file

inclusions to a subset of functions and files.

To put this into perspective, I investigate an unresolved function call in Drupal 7.34 in

Listing 6.1. Drupal registers a set of functions called “actions” in the database while getting

installed or whenever there is a new module installed. Drupal retrieves the function names

from the database to invoke under certain conditions, such as when a user comments on a

post or replies to a comment. In Listing 6.1, Drupal issues a query to the database on line

4 to extract the name of the target function from the database and store it in the action

variable on line 7. Given that the values fetched from dynamic queries executed on a

database are not accessible to the static analysis, such cases pose a challenge to any static

analysis tool, including Minimalist. In such a case, an analyst can assist Minimalist by

providing the routine to query the database and retrieve all possible invoked target function

calls and update the call-graph.

Listing 6.2 demonstrates the CSA for Drupal, which adds the edges in the call-graph for

the function test based on the query results on the first line. Note that Minimalist needs
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1 list_actions=db.Query('SELECT callbacks FROM actions')
2 foreach list_actions.Next() {
3 // grab items from the list of actions
4 var item
5 list_actions.Scan(&item)
6 // update the callgraph of function test
7 // with the retrieved action called item
8 update_callgraph("test", "actions.php", item)
9 }

Listing 6.2: The code snippet in the CSA to resolve the actions
retrieved from the database in Drupal

to rebuild the call-graph whenever there is a change in the web application source-code

(e.g., a new installed module). Considering that new installed modules in Drupal have their

own actions in the database, communicating with the database allows the CSA to update

the call-graph with the latest target function calls. The function test in Listing 6.1 only

retrieves one action to invoke, which is determined by the provided conditions in variable

conds. Since Minimalist cannot reason about the value of conds in Line 3 of Listing 6.1,

the analyst needs to identify all possible invoked functions on Line 10. On lines 2 to 8

of Listing 6.2, I iterate over the values of the variable action retrieved from the database

and add the target functions in the call-graph for the function test in actions.php inside

Drupal.

6.1.2 Debloating the Web application

Up to this point, Minimalist generated the call-graph of the entire web application. In this

step, Minimalist removes the pieces of code from the web application that are not necessary

to respond to users’ requests. Each individual request from the users of web applications

invokes a small subset of the files within the whole codebase of the application. Moreover,

not all functions contained within these files get invoked to respond to users’ requests. The

debloating process in Minimalist consists of identifying the reachable files and functions

from the set of files accessed by users within the call-graph and then removing the unreach-

able parts of the graph.
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First, I use access-log files to obtain the set of files that users access during their in-

teraction with a web application. There are alternatives to this approach, including instru-

menting the PHP interpreter and the web application to log every executed file, function,

and line at runtime. This approach slows down the server’s response-time by up to 17x in

certain cases. Moreover, recording synthetic interaction with a web application for a short

period of time does not encompass the behavior of real users’ interactions. My approach

infers the accessed entry points in the application by analyzing existing access-log files,

which are readily available on the web servers. The web server records the requests that

users and administrators send to the server for browsing the website, exercising the offered

functionality, and debugging problems (Apache, 2021). Compared to instrumentation ap-

proaches, access-log files allow Minimalist to obtain real users’ interaction over longer

periods without causing additional performance overhead.

Second, for every file recorded in the access-log file, Minimalist identifies the node

associated with the global context of the accessed file in the call-graph. Afterwards, Mini-

malist performs a reachability analysis to identify all the files and functions reachable from

each accessed file. Minimalist repeats this process for all unique entries from the access-

log file to build its overall reachable call-graph and prunes the nodes of unreachable files

and functions.

In the last step, I debloat the web application at a function-level granularity based on

prior users’ interactions. Leveraging function-level debloating allows Minimalist to selec-

tively remove functions and PHP files from the web application. To achieve this, Minimalist

determines the set of line numbers associated with the body of reachable functions and the

global scope of the scripts. Finally, it iterates over the PHP files in the web application and

removes any lines that are not associated with the set of line numbers for the functions or

scripts remaining in the pruned call-graph.
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6.2 Evaluation

I assess the effectiveness of Minimalist from different perspectives on a set of popular PHP

web applications. First, I assess the static analysis and its capability to resolve function

calls in the web applications. Next, I analyze the CSAs implemented for the web applica-

tion in our dataset. Finally, I evaluate the impact of debloating web applications in terms

of reducing bloated code and removing security vulnerabilities. This evaluation aims to

answer the following research questions:

RQ1. How precise is Minimalist in resolving function calls and generating the call-graph

for a web application? (§ 6.2.2)

RQ2. How much effort do analysts need to implement a CSA for Minimalist? (§ 6.2.3)

RQ3. How effective is Minimalist in debloating web applications in terms of reducing the

lines of code? (§ 6.2.4)

RQ4. What is the impact of Minimalist on removing severe security vulnerabilities?

(§ 6.2.4)

RQ5. What is the effect of different debloating techniques on the usability of debloated

web applications? (§ 6.2.5)

6.2.1 Evaluation Dataset

I evaluated Minimalist on four popular PHP web applications. The evaluation dataset in-

cludes three open-source PHP content management systems (CMS): WordPress, Joomla,

and Drupal, and phpMyAdmin as a database administration tool. In practice, adminis-

trators customize CMSes by installing plugins. To reflect this, I installed the top five (at

the time of writing) featured plugins (WordPress, 2022) on WordPress 4.6.0 in accordance

to official WordPress website: Jetpack, Akismet, Health-check, classic editor, and classic
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widgets. According to W3Tech, these open-source CMSes account for 45.2% of all the

websites on the Internet (Q-Success, 2023a). For each web application in the dataset, I

selected the versions with the largest number of high-severity vulnerabilities based on the

vulnerability CVSS score (NIST, 2021). Collectively, I analyzed 12 different versions (see

Table 6.1) of the aforementioned web applications in the dataset and mapped 45 security

vulnerabilities to their source code.

For the evaluation of Minimalist, I compared my tool with Less is More (LIM).

LIM (Azad et al., 2019) is a dynamic debloating approach that records the executed lines

of code in the web application while performing a series of interactions using Selenium

scripts. Next, LIM removes the lines of code that were not exercised during the above in-

teraction. I used LIM’s source code, which is publicly available (Azad, 2022). In order to

assess Minimalist using the analyst-provided CSAs, I implemented a custom static analysis

for each web application in the dataset, which I describe in Section 6.2.3.

6.2.2 Static Analysis Evaluation

The static analysis in Minimalist is an integral part of my debloating scheme. This tool

analyzes a PHP web application to generate a call-graph which is then used to debloat

the given web application based on prior user interaction. The debloating performance of

Minimalist is directly affected by the accuracy of its static analysis.

Table 6.1 presents the function call resolution statistics for the web applications in the

dataset. The Direct calls column shows the total number of function calls that simply use

the name of the function for invocation. The Dynamic calls column shows the number of

function calls in a given web application that are not string literals. The Resolved, Fuzzy-

Resolved, and Unres Function calls provide a breakdown of how the static analysis resolved

each function call in a given web application. Namely, the Resolved function call column

contains the number of function calls that are resolved to a single function definition. The

Unres function call column presents the number of function calls that Minimalist cannot
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Table 6.1: A break down of the static and dynamic function calls for each
web application in our dataset. I also include the result of function call
resolution precisely and approximately for each web application. The last
two columns in the Static Analysis section present the number of unresolved
function calls in each web application and the number of new implemented
lines in their CSAs. The Vulnerability Reduction section presents the num-
ber of removed security vulnerabilities from the web application debloated
by LIM, and Minimalist.
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resolve to a subset of defined functions in the web application. Finally, the Fuzzy-Resolved

function call column shows the number of function calls that Minimalist resolves to a subset

of defined functions which is less than total number of functions in the web application.

The static analysis in Minimalist resolved 99.95% of all function calls in the web ap-

plication to a single function (95.23%) or a subset of defined functions (4.72%) in each

web application in the dataset. To handle unresolved function calls, Minimalist requires an

analyst to provide the CSA annotations. For the evaluation, I implemented the CSA for all

the web applications in our dataset. The last column in Table 6.1 present the manual effort

required to implement a CSA in terms implemented lines of code (LoC) per version.

In a further analysis of Minimalist’s call-graph generation, I assessed the number of

resolved higher-order functions. Higher-order functions in PHP take a target function name

as an argument, which gets invoked by the interpreter. Such behavior poses a challenge for

any static analysis, including Minimalist. Thus, I investigated all 4,143 invocations of

higher-order PHP functions in the dataset of web applications and counted the number of

resolved higher-order functions. Minimalist resolved 99.92% of all higher-order functions.

To handle the remaining 0.08%, Minimalist relies on the implemented CSAs for the web

applications.

6.2.3 Custom Static Analyses

In this section, I quantify the effort required by an analyst to implement a CSA for a given

web application and maintain it over time across multiple web application updates and new

releases. As described in Section 7.2.1, I implemented a CSA for each web application in

the dataset to handle instances of unresolved call-sites. First, I look into the development

of CSAs for different versions of web applications and the reusability of previous CSAs

when migrating them to a new version of the same web application. Next, I investigate

the major version changes in web applications and the underlying changes that affect the

CSA implementation. Finally, I examine the use of third-party libraries in different web
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applications and their effects on implementing CSAs.

Custom Static Analysis. The data in Table 6.1 indicate that the manual effort required

to implement a CSA varies between versions of a web application. We see in the last

column of Static Analysis section in Table 6.1 that the first version of a CSA often requires

the largest number of new implemented lines. This is because the first version needs to

implement annotations for all the function calls that Minimalist does not resolve. The

analysis of the unresolved function calls shows that the majority of the unresolved functions

remain unchanged across versions. In such cases where there is little to no change in the

unresolved dynamic function calls, analysts can reuse the same CSA annotations from the

previous versions of the web application with zero to minimal change.

Figure 6·5 plots the number of new lines of code (y-axis) implemented over time for

multiple versions of phpMyAdmin and WordPress. According to Figure 6·5, the first imple-

mented CSA for WordPress requires the highest number of implemented lines, which then

drastically reduces for the next versions of WordPress. During the evaluation, I observed

that on average, 80% of the code in the CSA remains unchanged between two consecutive

versions of the same web application. In the case of WordPress, from 2016 to 2020, an-

alysts only need to add or modify an average of 10 lines of code each year. For instance,

although WordPress 4.7.19 was released three years after 4.7.1, an administrator can fully

reuse the CSA on version 4.7.1 with zero modifications.

Major releases and architectural changes. Major changes in the architecture of web

applications can affect the reusability of CSAs. In the dataset, phpMyAdmin from version

4.7.0 started incorporating the Composer package manager and its provided third-party li-

braries. This resulted in a 45% increase in Logical Lines of Code (LLOC) between versions

4.6.0 to 4.7.0 in this application and 41 unresolved function calls that need to be included in

the CSA. This increase in the number of unresolved function calls is evident by the increase

in the required number of new implemented lines of code in the CSA in Figure 6·5.







107

web application amortizes the effort of implementing one for newer web applications. Fur-

thermore, crowd-sourcing the tasks in the implementation of CSAs among developers and

administrators of web applications (CSAs are globally valid) can further minimize the ef-

fort of authoring CSAs.

6.2.4 Debloating results of Minimalist

In this section, I evaluate the effectiveness of the debloating scheme by measuring the

reduction in lines of code and security vulnerabilities after debloating. Minimalist reuses

the same usage profiles as LIM to generate the entry-point information and feature usage.

I collected the access-log files for each web application in the dataset using the Selenium

scripts available on LIM’s website and exercised the web applications. For Drupal and

Joomla, I adopted the same approach as LIM, produced the Selenium scripts based on

online tutorials, and collected access-logs to get the ground truth of coverage information

from the LIM framework.

LLOC Reduction

According to McConnel (McConnell, 2004), the number of programming errors in an ap-

plication is proportional to the size of the program. Given the correlation between the size

of an application and its overall security, I look into the reduction of web applications’

size in terms of LLOC. LLOC represents the number of lines in the source code, excluding

comments and empty lines.

Figure 6·7 demonstrates the LLOC reduction for different versions of web applications

that Minimalist debloated. On average, Minimalist debloated 17.78% of LLOC in all the

web applications in our dataset while using the implemented CSAs. LIM debloats 53.47%

of the web applications in the dataset. As discussed before, LIM is a dynamic debloating

mechanism that removes all functions and scripts that are not exercised during its training

with Selenium scripts. As seen in Figure 6·7, relying on dynamic traces for debloating
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each web application. The last two columns present the number of removed vulnerabilities

in our work and LIM. On average, my debloating scheme can remove 38% of vulnerabil-

ities in web applications, while LIM removes 73% of the vulnerabilities. The analysis of

the removed vulnerabilities by LIM that Minimalist preserved shows that all the vulnerable

functions are reachable from the entry-points in the analyzed access-log files. Thus, Min-

imalist does not remove the vulnerable functions to preserve the functions required by the

users in the debloated web application.

Compared to Minimalist, LIM favors a more aggressive approach on debloating web

applications and consequently removing vulnerabilities. A case study for this argument

is the CVE-2016-6609 vulnerability in phpMyAdmin 4.4.0 and 4.6.0. This vulnerability

resides in an export module, where an attacker can run arbitrary PHP commands using a

specially crafted database name. The excessive debloating of LIM removes the security

vulnerability as well as all but one of the exporting functions from phpMyAdmin. Com-

pared to LIM, Minimalist preserves all exporting functions, thereby retaining the vulner-

able code but also all the export features that users might require. This demonstrates the

clear dichotomy between the dynamic, LIM-like approaches that favor aggressive debloat-

ing gains (accepting breakage while doing so) vs. Minimalist that aims to provide a balance

between debloating-based security gains and preserving the functionality and usability of

the debloated software.

Overall, in the debloating experiments, I demonstrated the reduction of LLOC in web

applications and its effect on eliminating vulnerabilities. Compared to prior work, I ob-

served higher debloating numbers in LIM. LIM was built as a means to quantify the bene-

fits of debloating and its potential to remove security vulnerabilities, assuming the system

is provided with complete dynamic traces. In contrast, Minimalist is a practical debloating

scheme that provides a balance between debloating source-code, removing vulnerabilities,

and keeping debloated web applications usable.
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6.2.5 Robustness of Debloated Web applications

In this experiment, I evaluated the robustness against false positives of web applications

debloated by Minimalist. False positives (i.e., breakage) in a debloated web application

occur when a user’s interaction causes the invocation of an (incorrectly) removed function.

To this end, I used two different approaches to investigate the occurrence of false positives

in debloated web applications: 1) Automatic random testing and 2) Official testsuites.

Automatic Random Testing

In this experiment, I evaluated the robustness of debloated web applications using the

crawling feature of Burp-suite to mimic random user behavior. I argue that there should not

be any false positives in the debloated web applications as long as Burp-suite targets the al-

ready visited PHP scripts by Selenium. Note that I debloated the web application based on

the prior user interaction recorded in the LIM’s Selenium. To assess robustness, I crawled

the debloated web applications using Burp-suite with a custom-defined scope. This scope

forces Burp-suite to only crawl a predefined set of PHP scripts in the debloated web appli-

cation, which, in this case, are the PHP scripts visited by Selenium. While Burp-suite will

target the same web application entry points, it will randomly vary the passed parameters

and values leading to execution paths that differ from those observed during the Selenium

interactions. Whenever Burp-suite invokes a removed PHP function, the debloated web

application raises an alert. Thus, I calculated the number of alerts raised by Burp-suite to

examine the robustness of the debloated web application. In the experiment, I crawled the

debloated WordPress and phpMyAdmin for one hour each using Burp-suite. Collectively,

Burp-suite sent 1,055 requests to both debloated WordPress (603) and phpMyAdmin (452)

and raised no false positives.
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Figure 6·8: The function coverage of Burp random testing compared to Se-
lenium browsing for debloated PhpMyAdmin (left) and WordPress (right).

In the next step of the analysis, I looked into the function coverage of the web appli-

cations while browsing with Burp-suite compared to Selenium scripts. Note that the Burp-

suite browsing tests are only meaningful if they cover a different set of functions in the web

applications during their browsing compared to the Selenium scripts. Thus, I recorded the

set of invoked functions during both Burp-suite and Selenium browsing. Figure 6·8 shows

the set of different invoked functions during both browsing patterns. Burp-suite browsing

led to the invocation of 114 (7.5%) functions that were not covered during Selenium brows-

ing. Importantly, I note that the invocation of 114 new functions by Burp-suite would yield

up to 114 false positives in a dynamic debloating approach such as LIM. However, Mini-

malist correctly debloated the web applications using the access-log files and preserved the

necessary functionality to respond to users’ requests.

Official Testsuites

In a further experiment, I evaluated the breakage of debloated applications by using the

official testsuites obtained from their respective Github repositories. In order to execute the

official testsuite of the web applications, we manually prepared the testing environment,

which included creating configuration files, database tables, and inserting sample data to

the database. For this evaluation, I executed all 7,238 test cases from the official testsuites
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of both phpMyAdmin and WordPress on Minimalist-debloated web applications.

Table 6.2 presents the results of this experiment. Each set of tests from the official

testsuites belongs to a category, which is shown in the second column of Table 6.2. The

next two columns present the total number of tests in each category and the number of failed

tests. On average, the debloated web applications in the dataset failed 12% of the official

testsuite (885 out of 7,238 total unit-tests). During the experiment, I randomly chose 6% of

failed test cases (52 out of 885 total failed unit-tests) and investigated the cause of failure.

All 52 failures were rooted in a few correctly debloated functions. The last column in

Table 6.2 shows the name of the debloated function that failed the test cases in each group.

Note that, these failed test cases are not false positives of Minimalist. Specifically, the

analysis of both web applications reveals that neither of these functions are reachable from

the PHP files in the access-log, and were either deprecated (e.g., wp_shrink_dimensions)

or exclusively invoked from entry points not found in the access-log. Hence, Minimalist

correctly debloated the functions.

In a further evaluation, I examined the set of features that Minimalist preserves in the

web application but LIM removes. During this experiment, I observed that unlike Minimal-

ist, LIM causes up to 33% false positives in new real-user browsing patterns on average.

Overall, in the evaluation, I performed several experiments on web applications debloated

by Minimalist and the state-of-the-art approach, LIM (Azad et al., 2019). I evaluated Mini-

malist and LIM in terms of reducing the LLoC of web applications and its effect on remov-

ing vulnerabilities. I observe that although dynamic debloating techniques such as LIM

have higher debloating numbers compared to Minimalist, their debloating approach causes

false positives in debloated web applications.
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Web app Test Group Tests Example Reason
Total Failed

WordPress

Admin 741 22 get_help_tab(2),
comment_exists(5)

Authentication 16 0
Comment 311 21 unreigster_taxonomy(6)

File Operation 20 0
Others 5152 709 parseISO(6), getISO(4),

wp_shrink_dimensions(4),
is_comment_feed(5),
remove_permastruct (8)

Total 6240 752 (12%)

phpMyAdmin
Unit 509 39 npgettext(2),

StringReader::currentpos(3)

Engines 26 0
Classes 463 93 HasErrors(1),

HasUserErrors(1),
getVersion(3),
getPrintPreview(1),
locale_emulation(1)

Total 998 132 (13%)

Table 6.2: On average, Minimalist-debloated web applications fail 12% of
official testsuite. The last column presents the name of functions and the
number of failed tests due to debloating each function in paranthesis.

6.3 Discussion and Limitations

In this section, I discuss the limitations of Minimalist. Of particular interest are the code

practices that challenges Minimalist to generate a call-graph, and the fact that manually-

created CSAs might introduce unsoundness into the generated call-graph. Furthermore, I

elaborate on extending Minimalist to debloat web applications using other languages such

as JavaScript.

Soundiness in CSAs: Minimalist resolved the majority of function calls (99.95%) in

the web applications in our dataset. The remaining 0.05% of call-sites required the devel-

opment of CSAs, inducing small amounts of developer attention (even zero in the case of

WordPress 4.7.19). Obviously, unsound CSAs can render the resulting call-graph unsound

too. As Minimalist cannot assess whether a CSA is sound, it is the developer’s responsi-

bility to ensure the developed CSA preserves soundiness. CSAs are necessary in scenarios

where Minimalist cannot reason about specific program constructs (e.g., custom call-back
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schemes), or where control flow is determined based on factors external to the web appli-

cation’s code (e.g., by information stored in a database). In theory, these challenges can

become arbitrarily complex. In practice, I observed that during the development of all the

CSAs used in this work, soundiness can be manually ascertained. Based on the observation

that our evaluation covers the largest and most popular web applications in use today, we

are confident that CSAs for other web applications can be created in a soundy manner too.

Unsupported PHP features in Minimalist: Minimalist’s static analysis is soundy with

respect to most features of the PHP interpreter. models most features in the PHP interpreter

to generate call-graphs. However, there are features in the PHP interpreter that challenge

any static analysis, including Minimalist. Among the PHP features, there are two that

Minimalist does not support in its current implementation: 1) dynamically loaded code

through eval and assert and 2) arguments passed by reference. eval and assert evaluate

their string arguments as PHP code, which can originate from arbitrary origins (e.g., a

remote URL) or computation (e.g., the decryption of encrypted content). Such functionality

is widely recognized to be beyond the reach and capability of static analysis techniques.

Besides that, there exists a set of PHP features that Minimalist partially supports, which

includes, 1) dynamic file inclusion, 2) reflection API, 3) higher-order functions, and 4) vari-

able function calls. All the above features use variables to either include a dynamic script or

invoke a function that is determined at runtime. Thus, resolving the variables is an essential

step to identifying the invoked function. Minimalist over-approximates the value of vari-

ables used in dynamic function calls. Thus, in cases where the system cannot constrain the

value of variables, it draws edges to all defined functions in the web application. However,

such aggressive over-approximation limits the utility for debloating purposes, and hence

Minimalist calls the analyst’s attention to these instances, which have to be resolved via

CSA. Table 6.3 includes the full list of features that Minimalist partially supports or does

not support. I identified the features listed in Table 6.3 by relying on prior work such as
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Pixy (Jovanovic et al., 2006), RIPS (Dahse and Holz, 2014a), and Hills et al. (Hills et al.,

2013), as well as our expertise on analyzing PHP applications. Note that I cannot guaran-

tee the completeness of the features listed in Table 6.3 due to the complexity of the PHP

interpreter as well as its large codebase (1.3M LOC).

Type Function name
Partially Supported Features

Higher-order function call_user_func, call_user_func_array, array_map, preg_replace_callback,
array_walk, array_walk_recursive, array_reduce, array_intersect_ukey,
array_uintersect, array_uintersect_assoc, array_intersect_uassoc, ar-
ray_uintersect_uassoc, array_diff, array_diff_ukey, array_udiff_assoc,
array_diff_uassoc, array_udiff_uassoc, array_filter, array_udiff,
usort, uasort, uksort, ob_start, session_set_save_handler, as-
sert_option, sqlite_create_function, register_shutdown_function, regis-
ter_tick_function, set_error_handler, set_exception_handler, iterator_apply,
spl_autoload_register

Reflection API ReflectionClass, ReflectionMethod, ReflectionFunction
Dynamic file inclusion use of variables in script inclusion functions
Variable function call use of variables for invoking a function

Unsupported Features
dynamic loaded code eval, assert
Pass by reference

Table 6.3: The list of dynamic PHP features that Minimalist partially sup-
ports or does not support while generating call-graph.

Extend Minimalist to Other Languages: In the current implementation of Minimal-

ist, I focus on PHP web applications, which power more than 77% of all live web sites (Q-

Success, 2023b). While each programming language has unique characteristics, there are

similarities between PHP and other server-side languages such as JavaScript or Python.

For example, both JavaScript and Python support variable function calls in scripts, which

is similar to PHP. Furthermore, both Python and JavaScript also allows the dynamic in-

clusion of modules, which is similar to include in PHP. These similarities suggest that

our approach of handling dynamic features in the PHP interpreter is applicable to other

interpreted applications such as JavaScript and Python. Of course, the technical details and

idiosyncrasies of other languages would still require significant engineering efforts. How-
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ever, not all programming languages provide such a diverse set of dynamic features. For

example, Java only provides a fraction of the dynamic features (e.g., the reflection API) that

are available in PHP. As a result, the challenges of analyzing dynamic features to debloat

Java applications might be fewer than those of interpreted languages such as PHP.
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Chapter 7

Detection of Vulnerability Injection Sinks in
PHP runtime

In this chapter, I describe my fourth contribution to improve the security of PHP web appli-

cations by detecting the set of vulnerability injection sinks in the PHP interpreter. Injection

sinks are a set of PHP APIs which can cause an injection vulnerability in a PHP applica-

tion, if used with improper user-input sanitization. First, I elaborate the implementation

of my approach on the PHP interpreter called Argus in Section 7.1. Next, I evaluate Ar-

gus on three most popular versions of the PHP interpreter, and explain how Argus’ results

improve existing detection tools to identify XSS and deserialization vulnerabilities in PHP

web applications in Section 7.2.

7.1 System Design

In this section, I discuss the salient characteristics of my approach – Argus – and how it

identifies the set of PHP APIs that leads to deserialization or writing user-input to output

buffer. For consistency, I use the term output APIs to refer to the set of APIs that writes

to output buffer, which leads to an XSS vulnerability. Similarly, I refer to set of APIs that

invoke the deserialization in the PHP interpreter, as deserialization APIs. Figure 7·1 illus-

trates the overall process. First, Argus combines static and dynamic analysis techniques to

generate a call-graph of a PHP interpreter in Step 1 . Subsequently, for Step 2 , Argus

uses the call-graph to perform a reachability analysis to determine the set of API functions

that invoke the vulnerability indicator functions (VIFs). Furthermore, Step 3 discusses
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munication protocols such as LDAP and IMAP. These extensions are free to augment the

PHP API, including adding additional injection-sinks, and frequently do so. For example,

in a standard PHP deployment, the GD graphics library, the PDO database communication

extension, and the FTP extension are provided as separate libraries and all add additional

injection-sinks to the runtime. To complicate matters further, extensions can be written

in different programming languages (e.g., (copernica, 2022; Zephir, 2022)), provide their

own build environments, and are usually simply loaded by the interpreter as shared dy-

namic libraries. However, injection vulnerabilities can arise from any API provided by the

runtime, including APIs provided by the core interpreter and those provided by extensions.

As such, it is imperative to analyze the interpreter’s core along with the code that comprises

the extensions. At first glance, the open source nature of the PHP interpreter would sug-

gest a source-based analysis to infer the call-graph. However, the variety of frameworks,

languages, and build systems used for extensions would require an analysis catering to

all these characteristics. Thus, instead of deriving call-graph information from various in-

terconnected source-based analyses, Argus instead performs its call-graph analysis on the

compiled binaries of the interpreter and its extensions. To facilitate this analysis, I build

the runtime and include debug symbols.

The call-graph analysis ( CG in Figure 7·1) first disassembles the PHP interpreter and

all of its shared libraries using the objdump tool. Argus builds the call-graph by adding a

node for each binary symbol in the disassembled PHP interpreter. Subsequently, Argus per-

forms a linear scan over the interpreter and library disassembly. For every call instruction,

CG draws an edge in the call-graph from the caller (i.e., the currently analyzed symbol)

to the callee (i.e., the target of the call). This analysis works well for direct calls and calls

to symbols provided by extensions. That is, direct calls will invoke symbols that have

corresponding names in the debug information. Argus handles calls to imported symbols

by launching the PHP interpreter with the LD_DEBUG=binding environment variable set to
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infer symbol binding information from extension libraries. The LD_DEBUG option allows

Argus to resolve the external symbols to the library and address where the symbols are im-

plemented. Unfortunately, indirect calls (e.g., those that are used to implement the concept

of stream wrappers) elide this analysis.

Refining Call-graph using Dynamic Analysis

Argus uses dynamic analysis to handle indirect calls in the PHP interpreter and refine the

statically generated call-graph created in the previous step. For instance, PHP’s fopen

can be used to access local or remote files over protocols such as HTTP, HTTPS, or FTP.

Depending on the argument passed to fopen, the PHP interpreter decides which stream

wrapper (see Section 2.3.5) should handle the underlying resource. Internally, PHP stream

wrappers rely on function pointers to dispatch operations (e.g., fread()) to functions that

handle the protocol corresponding to the opened resource. The static analysis in Argus

cannot handle such cases implemented in the PHP interpreter and runtime. To address this

issue, Argus improves the statically generated call-graph by tracing the execution of the

PHP interpreter while executing its high-quality test-suite (i.e., the PHP test-suite achieves

a remarkable 73% line coverage). Argus then uses this dynamic information and adds any

edges not already detected by the static analysis to the call-graph.

To achieve this, I compile the PHP interpreter with the -pg flag. This flag instruments

each function with two additional hook functions at the entry and exit of each function,

which allow Argus to perform dynamic tracing (GCC, 2022). The first function call occurs

just after each function entry, which invokes the function __cyg_profile_func_enter.

The next function which is __cyg_profile_func_exit, get invoked before exiting each

function. After the recompilation of the PHP interpeter, Argus uses the uftrace tool (Kim,

2022) ( TR in Figure 7·1) to implement both hook functions and record dynamic traces.

Finally, Argus executes the PHP unit tests while uftrace records the execution traces for

each test-case.
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After recording the execution traces, Argus iterates over the sequence of invoked func-

tions by each test-case and examines the statically generated call-graph for the missing

edges. For every invoked function during the dynamic analysis, Argus draws an edge

between the pair of functions in the execution trace if there is no edge representing the

recorded invocation.

At the end of this step, Argus has assembled a static call-graph of the PHP interpreter

and refined it using dynamically-collected traces of PHP unit tests.

7.1.2 Reachability Analysis

In Step 2 , Argus performs a reachability analysis on the generated call-graph, which

requires the identification of sources and sinks on the call-graph. The key obser-

vation of analyzing the PHP interpreter demonstrates that, the PHP interpreter uses

a single internal function that is responsible for all deserialization operations, called

php_var_unserialize (VIF). The PHP interpreter uses a customized parser to parse se-

rialized strings, which are then converted to PHP objects. The analysis of this custom

parser across PHP’s source-code yielded a single deserialization function inside the PHP

interpreter. In the case of output APIs that write to an output buffer, I observed a similar

pattern during my analysis of PHP’s source-code, where the function php_output_write

is responsible for outputting the buffer. With the VIF identified as sinks, Argus labels all

API functions in the call-graph as sources.

Unfortunately, the symbols for API functions are indistinguishable from those of

internal (i.e., non API) functions, and text-based techniques that parse documentation

are rarely, if ever, accurate. However, a running PHP process must be aware of any

and all APIs exposed to the web applications running on top of it. Thus, to iden-

tify the set of APIs, Argus uses a PHP extension that, once loaded into the PHP inter-

preter, iterates over all available APIs. Specifically, the extension first invokes PHP’s

get_defined_functions API to obtain the list of all API functions. Unfortunately, the re-
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sults of get_defined_functions cannot be directly mapped to the call-graph. The reason

is that the name of an API function available to a web application is commonly different

from the name of the symbol that implements the actual functionality. For example, the

session_decode PHP API is implemented by a function called zif_session_decode.

Unfortunately, the zif prefix is not a consistent pattern. However, as the nodes in the

call-graph correspond to symbol names rather than API names, the API names have to be

translated. To this end, the extension leverages an interpreter-internal data structure (i.e.,

executor_globals.function_table), which maps API names to the names of the func-

tions that implement the APIs’ functionalities. Finally, the extension relays this information

to Argus, which labels the symbols that map to API functions in the call-graph accordingly.

Once all APIs are labeled as sources, Argus traverses the call-graph for each source

node and follows any call edges captured in the graph. Argus identifies an API as a dese-

rialization or output API if this traversal includes the graph node corresponding to its VIF

function.

7.1.3 Validation

The reachability analysis presented above might inappropriately label an API as an

injection-sink if the underlying implementation in the runtime performs input sanitization

or filtering. Thus, Step 3 filters APIs and only passes those that propagate their input VIF

unmodified. To this end, Argus automatically generates PHP snippets to test each identi-

fied API for this characteristic. More specifically, these snippets contain a class definition

(i.e., test) that, if deserialized (i.e., its __wakeup method is invoked), prints the content

of one of its properties (i.e., msg) as a success message. Subsequently, the template calls

the API in question with a serialized test object that has msg set to “SUCCESS”. Thus, if

the execution of the PHP snippet prints the success message, Argus validates that the API

in question passes the input argument unmodified to VIF, and hence the API is for sure a

deserialization API.
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As the evaluation in Section 7.2 will show, Argus confirmed 284 deserialization APIs in

the PHP interpreter, which warranted an automated validation step. However, the number

of confirmed output APIs in the PHP interpreter is 22, which prompted us to manually

validate whether the invocation of the API with user-input can cause an XSS attack. To this

end, I created a Docker container with a running Nginx web-server for each PHP interpreter

version. For each output API, I created a PHP template that invokes the API and passes a

constant user-input containing a Javascript snippet (i.e., <script>alert(1)</script>). I

visited the generated PHP template on the client side’s browser, and if the browser displays

a dialog, Argus marks the tested API as an output API.

7.1.4 Extend program analyses

Argus’ results comprise a comprehensive list of injection-sinks. This is in contrast with

the exclusively manually-crafted lists of injection-sink used by all existing XSS and POI

detection and automatic exploit generation systems. Thus, to demonstrate the value of

Argus’ principled approach, I extend two existing program analysis tools, Psalm (Vimeo,

2021) and FUGIO (Park et al., 2022) as examples of downstream analysis that benefit from

my work.

Psalm Extension

Psalm is a static analysis tool featuring code refactoring and taint analysis (Vimeo, 2021).

For its taint analysis, Psalm attempts to find unwanted flows between user-controlled inputs

(e.g., $GET variables) and a set of sink functions (e.g., system). The set of sink functions

in Psalm differs depending on the type of vulnerability that the user is trying to detect. For

instance, to identify insecure deserialization, Psalm exclusively considers unserialize as

a sink.

As shown in previous reports (Thomas, 2018) and in the evaluation, this assumption

results in false negatives (i.e., missed detections). To extend Psalm’s static analysis, I
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modify the list of taint sinks to include all deserialization and output APIs identified by

Argus. In Listing 7.1, I show the generated annotation for adding the md5_file PHP API

function as a taint sink to Psalm’s configuration. Lines 2-4 in Listing 7.1 define the PHP

function and the type of arguments it accepts. Furthermore, Line 1 in the listing annotates

that the argument file_name to the function md5_file is a taint sink for a deserialization

vulnerability.

1 // @psalm-taint-sink unserialize file_name

2 function md5_file(string $file_name, bool $binary=false)

3 { }

Listing 7.1: We extended Psalm static taint analysis
by modifying its list of taint sinks for POI and XSS
vulnerabilities.

FUGIO Extension

FUGIO is an automatic exploit generation tool which uses a combination of static and dy-

namic analysis to detect and generate a proof of concept exploit for POI vulnerabilities. In

the first step, FUGIO submits requests to a target web application where request parame-

ters (e.g., GET, POST, and COOKIE values) contain serialized data. During the processing

of these requests, FUGIO hooks the invocation of deserialization APIs and verifies if the

passed arguments correspond to the parameters supplied in the request. To this end, FU-

GIO hooks a subset of 27 PHP deserialization APIs – the explicit unserialize API along

with 26 implicit APIs first mentioned by Thomas (Thomas, 2018). If FUGIO detects that

parameters are indeed forwarded to deserialization APIs, its second step will attempt to

morph the parameter into a complete POP chain, forming a POC exploit. While FUGIO’s

second step (i.e, the exploit generation itself), is independent of my work, the first step

(i.e., recognizing the invocation of vulnerable deserialization APIs) is directly affected by

the (in-)completeness of the list of deserialization APIs.

To extend FUGIO, I integrated the set of deserialization APIs identified by Argus such
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that FUGIO hooks all these APIs in its first analysis step. Listing 7.2 shows how I added

a hook for the get_meta_tags PHP deserialization API which was among the dozens not

considered by FUGIO to begin with. The extended FUGIO intercepts a more compre-

hensive set of PHP APIs which allows it to identify and exploit previously unknown POI

vulnerabilities (see Section 7.2.3 for details).

1 $hook_get_meta_tags_func = function()

2 {

3 global $argv_list_r353t;

4 saveDatas_r353t($argv_list_r353t,

5 'get_meta_tags', func_get_args(), '1');

6 };

7 uopz_set_hook('get_meta_tags',

8 $hook_get_meta_tags_func);

Listing 7.2: We extended FUGIO by modifying its detection
mechanism in order to intercept and hook into the list of
functions reported from Minimalist.

In summary, Argus generates a call-graph for the PHP interpreter by leveraging hybrid

static-dynamic analysis. Furthermore, Argus performs a reachability analysis to identify a

comprehensive set of deserialization and output APIs in the PHP interpreter, and optionally

validates APIs that pass their inputs unchecked to the underlying VIF deserialization and

output functions. I augmented two existing detection and exploit generation systems as

examples that demonstrate the value of Argus’ results.

7.2 Evaluation

In this section, I evaluate Argus along two orthogonal dimensions. First, I focus on identi-

fying deserialization and output APIs in the three most popular major versions of the PHP

interpreter. The reason for evaluating different interpreter versions is that the number and

names of deserialization and output APIs are implementation and version dependent. In the

second thrust of the evaluation, I assess how Argus’ analysis results improve the accuracy

of two example PHP analysis systems – Psalm and FUGIO. To cover these two dimensions,
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the evaluation answers the following research questions:

RQ1: On the interpreter’s call-graph, how many PHP APIs reach the VIF functions (Sec-

tion 7.2.2), and how many of the reachable APIs pass their arguments to VIF unmod-

ified (Section 7.2.2)?

RQ2: How does the number and identity of deserialization and output APIs change across

PHP versions and what are the reasons for the observed changes (Section 7.2.2)?

RQ3: How do Argus’ results improve the current state-of-the-art PHP program analysis

that target injection vulnerabilities? Does Argus’ comprehensive list of injection-

sinks lead to the identification of previously unknown POI and XSS vulnerabilities

(Section 7.2.3)?

7.2.1 Evaluation Dataset

The evaluation dataset for Argus is divided into two categories corresponding to the two

evaluation dimensions. For the experiments on the PHP interpreter, I evaluated Argus on

the three most popular major versions (i.e., versions 5, 7, and 8) of the PHP interpreter.

As of August 2022, PHP engines of these versions power 99.8% of all live PHP websites,

according to W3Tech data (Q-Success, 2023b).

The second dataset is used to evaluate the benefit of Argus’ results to existing POI and

XSS detection systems as well as exploitation systems. As these systems operate on the

code of web applications, rather than the PHP interpreter, I aggregated a dataset corre-

sponding to that purpose. I collected the most popular PHP applications and plugins from

a variety of sources. On the one hand, I downloaded the 60 most popular PHP applications

based on the reported popularity provided by W3Tech (Q-Success, 2023b). On the other

hand, I recognize that large web applications frequently feature a plugin model that allows

administrators to customize their sites. As such, I also collected the most downloaded plu-

gins for the popular WordPress, Drupal, and Typo3 web applications from their respective
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PHP App Repository # of Projects Psalm Minimalist+Psalm
Drupal plugins 521 0 0
Typo3 plugins 400 0 36
WordPress plugins 996 30 670
Web Apps 60 35 816

Total 1977 65 1522

Table 7.1: Extending a static analysis tool such as Psalm using our results
improved its detection rate by more than 23x.

repositories. Overall, I collected more than 1,950 PHP artifacts (i.e., web applications and

plugins). Table 7.1 provides a detailed breakdown in the first two columns.

7.2.2 Analysis of the PHP Interpreter

As the PHP language and ecosystem evolves, the interpreter must provide support and func-

tionality accordingly. Unsurprisingly, this evolution also affects the number and identity of

the injection-sink functions provided by different versions of the PHP interpreter. To assess

these changes, I evaluate Argus on three different versions of the PHP interpreter (versions

5.6, 7.2, 8.0) as detailed in Table 7.3.

Reachable APIs

The first set of sub-columns labeled as Detected for both injection vulnerabilities in Ta-

ble 7.3 shows the number of APIs that Argus identified as reaching VIF for the three dif-

ferent PHP versions. As the table shows, the number of deserialization APIs for versions

5 and 7 is similar, and two orders of magnitude larger than for version 8. I discuss the

difference in the number of reachable deserialization APIs in Section 7.2.2. Furthermore,

the number of output APIs for the analyzed PHP versions is almost constant throughout the

evaluation.
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Validated APIs

The second set of sub-columns labeled Validated in Table 7.3 shows the number of APIs

that Argus successfully validated by directly passing their input argument to VIF. That

is, if an adversary can control input to any of these APIs, the existence of an injection

vulnerability (i.e., insecure deserialization or XSS) is a certainty. Validated APIs are a

strict subset of reachable APIs. The table shows that Argus was able to consistently validate

around 66% and 43% of the deserialization and output APIs, respectively. A closer look at

the reachable APIs that failed the validation test shows that either the user is not in control

of the input to the VIF or the input is sanitized. For instance, Argus detects the function

highlight_string reaches the output VIF function (i.e., php_output_write), however,

the input is sanitized by replacing "<" with "&lt;". As a result, the attacker’s input does not

cause an XSS attack and the function highlight_string fails the validation test. In case

of deserialization, the SplTempFileObject::__construct opens a temporary file object

that the user cannot control. As a result, an attacker cannot trick the API to open a malicious

PHAR file and validation failed. Table 7.2 contains the complete list of deserialization APIs

for PHP version 7.2. Note that the set of APIs in version 7.2 is a strict superset of the APIs

in version 5.6. The table also highlights the APIs that still show deserialization capabilities

in version 8.0 by typesetting their names in bold. As shown in Table 7.3, all three versions

of the PHP interpreter have 22 output APIs, which are exactly the same among all the

versions.

Reasons for Differences

Comparing the results for PHP 5.6 with those from 7.2 only shows three additional deseri-

alization APIs (all of which Argus validated). The reason for this increase is the addition of

support for the BMP image format in PHP 7.2’s GD standard graphics library. Specifically,

the new createimagefrombmp and imagebmp functions serve as implicit (i.e., undocu-
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Deserialization API
Category PHP API functions
Phar phar::__construct, phar::unlinkArchive, phar::loadPhar, phar::setAlias, phar::delete, phar::offsetSet,

phar::setSignatureAlgorithm, phar::isValidPharFilename, phar::buildFromIterator, phar::setDefaultStub, phar::mount,
phar::getType, phar::covertToExecutable, phar::offsetUnset, phar::stopBuffering, phar:getATime, phar::setStub,
phar::isLink, phar::addFromString, phar::isFile, phar::addFile, phar::compress, phar::extractTo, phar::hasChildren,
phar::getInode, phar:getFileInfo, phar::decompressFiles, phar::mapPhar, phar:isReadable, phar::addEmptyDir,
phar::compressFiles, phar:getOwner, phar:getGroup, phar::offsetGet, phar::setMetadata, phar:getPerms,
phar::isExecutable, phar::loadPhar, phar::copy, phar::convertToData, phar::isWritable, phar:getSize, phar:getCTime,
phar:getMTime, phar:isDir, phar::getStub, Phar::delMetadata, PharFileInfo::__construct, PharFileInfo::chmod, PharFile-
Info::getContent, PharFileInfo::getType, PharFileInfo::isReadable, PharFileInfo::isDir, PharFileInfo::isWritable,
PharFileInfo::openFile, PharFileInfo::decompress, PharFileInfo::compress, PharFileInfo::getInode, PharFile-
Info::getCTime, PharFileInfo::getMTime, PharFileInfo::getSize, PharFileInfo::isExecutable, PharFileInfo::isLink,
PharFileInfo::isFile, PharFileInfo::getATime, PharFileInfo::getGroup, PharFileInfo::getPerms, PharFileInfo::getOwner,
PharFileInfo::getFileInfo, PharFileInfo::setMetadata, PharFileInfo::delMetadata, PharData::unlinkArchive, Phar-
Data::loadPhar, phar::getMetadata, PharFileInfo::getMetadata,

SPL FileInfo::openFile, FileInfo::getCTime, FileInfo::getSize, FileInfo::getATime, FileInfo::getFileInfo, FileInfo::getGroup,
FileInfo::getType, FileInfo::getPerms, FileInfo::getOwner, FileInfo::isWritable, FileInfo::isDir, FileInfo::getMTime, File-
Info::isReadable, FileInfo::getInode, FileInfo::isExecutable, FileInfo::isFile, FileInfo::isLink, SplFileObject::__construct,
SplFileObject::getType, SplFileObject::isReadable, SplFileObject::isDir, SplFileObject::openFile, SplFileObject::getInode,
SplFileObject::isWritable, SplFileObject::getFileInfo, SplFileObject::getCTime, SplFileObject::getPerms, SplFileOb-
ject::getOwner, SplFileObject::getGroup, SplFileObject::getATime, SplFileObject::getGroup, SplFileObject::isExecutable,
SplFileObject::isFile, DirectoryIterator::__construct, DirectoryIterator::getType, DirectoryIterator::isReadable, Di-
rectoryIterator::isDir, DirectoryIterator::openFile, DirectoryIterator::getInode, DirectoryIterator::isWritable, Di-
rectoryIterator::getFileInfo, DirectoryIterator::getATime, DirectoryIterator::getCTime, DirectoryIterator::getPerms,
DirectoryIterator::getOwner, DirectoryIterator::getGroup, DirectoryIterator::isLink, DirectoryIterator::isFile, Directo-
ryIterator::isExecutable, RecursiveDirectoryIterator::__construct, RecursiveDirectoryIterator::getType, RecursiveDirec-
toryIterator::isReadable, RecursiveDirectoryIterator::isDir, RecursiveDirectoryIterator::openFile, RecursiveDirectoryIt-
erator::getInode, RecursiveDirectoryIterator::isWritable, RecursiveDirectoryIterator::getFileInfo, RecursiveDirectoryIt-
erator::getCTime, RecursiveDirectoryIterator::getPerms, RecursiveDirectoryIterator::getOwner, RecursiveDirectoryItera-
tor::getGroup, RecursiveDirectoryIterator::isLink, RecursiveDirectoryIterator::current, RecursiveDirectoryIterator::isFile,
RecursiveDirectoryIterator::isExecutable, RecursiveDirectoryIterator::hasChildren, FileSystemIterator::__construct,
FileSystemIterator::getType, FileSystemIterator::isReadable, FileSystemIterator::isDir, FileSystemIterator::openFile,
FileSystemIterator::getInode, FileSystemIterator::isWritable, FileSystemIterator::getFileInfo, FileSystemIterator::getPerms,
FileSystemIterator::getOwner, FileSystemIterator::getGroup, FileSystemIterator::getATime, FileSystemIterator::current,
FileSystemIterator::getSize, FileSystemIterator::isLink, FileSystemIterator::getMTime, FileSystemIterator::isExecutable,
FileSystemIterator::isFile,
SplQueue::unserialize, SplStack::unserialize, SplDoublyLinkedList::unserialize, ArrayIterator::unserialize, Recur-
siveArrayIteratorunserialize, SplObjectStorage::unserialize, ArrayObject::__unserialize

DOM & XML DOMDocument::loadHTMLFile, DOM::C14NFile, DOMDocument::load, DOMDocument::loadXML, DOMDoc-
ument:saveHTMLFile, DOMDocument:relaxNGValidate, DOMDocument:validate, DOMDocument:save, xml-
write_open_uri, xmlreader::open, SimpleXMLElement::__construct, simplexml_load_file, simplexml_load_string

File Operation get_meta_tags, is_dir, scandir, is_writable, is_file, opendir, file, move_uploaded_file, rmdir, fileowner, touch, gz-
file, file_get_contents, mkdir, finfo_file, fileatime, bzopen, fileperms proc_open, readgzfile, is_link, file_put_contents,
finfo_buffer, gzopen, getdir, unlink, is_readable, filegroup, finfo_open, filectime, filemtime, rename, fileinode, copy, filesize,
mime_content_type, stat, filetype, fopen,readfile,file_exists, is_executable

Hash md5_file, hash_hmac_file, sha1_file, hash_file
DataBase PDO::pgsqlCopyFromFile, PDO:pgsqlCopyToFile, pg_trace
Image Pro-
cessing

imageloadfont, exifimagetype, exif_read_data, read_exif_data, exif_thumbnail, getimagesize, imagecreatefromjpeg, image-
createfrompng, imagecreatefromgd2,imagecreatefromgif, imagecreatefromwebp, imagecreatefromgd, imagecreatefromxbm,
imagecreatefrombmp, imagecreatefromwbmp, imagecreatefromavif, imagejpeg, imagepng, imagegif, imagegd, imagegd2, im-
ageavif, imagebmp, imagewbmp,imagexbm, imagewebp

Session Func-
tion

session_decode, session_start

Communication ftp_nb_put, ftp_nb_get, ftp_get, ftp_append, ftp_put, msg_recieve
Deserialization unserialize

Output API
Database pg_loreadall, pg_lo_read_all, odbc_result_all
File Operation fpassthru, readfile, readgzfile, gzpassthru, SplFileObject::fpassthru
OOP class_alias
Closures Closure::bind, Closure::bindTo
Iterators CachingIterator::offsetGet, RecursiveCachingIterator::offsetGet
Error Han-
dling

trigger_error, user_error, die, exit

General echo, print, print_r, vprintf

Table 7.2: The categories of output and deserialization API.
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PHP interpreter Deserialization API XSS-leading API
Detected Validated Detected Validated

PHP 5.6 419 281 (67%) 54 22 (41%)
PHP 7.2 425 284 (67%) 52 22 (42%)
PHP 8.0 20 13 (65%) 46 22 (48%)

Total 864 578 (66%) 152 66 (43%)

Table 7.3: Our analysis of PHP interpreter shows PHP interpreters prior to
version 8.0, contained more than 300 PHP functions that deserialize their
arguments or write to output buffer.

mented) deserialization APIs. The last implicit deserialization API missing from PHP 5.6

is the ftp_append API which is supported in PHP versions 7.2 and above. All deserializa-

tion APIs available in version 5.6 also exist in version 7.2.

In contrast to the small change of deserialization APIs between versions 5.6 and 7.2, the

drop from 284 to merely 13 deserialization APIs in version 8.0 is significant. As discussed

in Section 2.3.5, prior to version 8.0, any file operation on a phar archive results in the im-

plicit deserialization of the archive’s metadata. Fortunately, the PHP developers recognized

the negative security consequences this behavior entails in 2020 and voted unanimously to

change the default behavior of the phar stream wrapper (Group, 2020). Thus, since PHP

8.0 metadata in phar archives is only deserialized upon an explicit call to the getMetadata

function in the Phar module, and not implicitly on any file operation on the archive. While

this change certainly benefits the security of web applications, PHP 8.x is still not widely

used by PHP-powered websites (less than 5% at the time of writing) (Q-Success, 2023b).

The challenging process of migration prevents most web applications from adopting PHP

8. Therefore, most websites still rely on older versions of the PHP interpreter that include

284 deserialization APIs.
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7.2.3 Extending Prior Program Analyses Tools

Argus’ value arises from the comprehensive list of output and deserialization APIs it iden-

tifies within a PHP interpreter. To demonstrate the value of this information, I extend two

PHP analysis systems – Psalm, a static data flow analysis system, and FUGIO, a dynamic

automatic exploit generation system targeting POI vulnerabilities.

Psalm Extension

Psalm is a static analysis tool for PHP applications, providing taint analysis and code refac-

toring (Vimeo, 2021). Psalm’s taint analysis operates based on a set of configuration files

that specify the taint sources and sinks in the PHP application. For the evaluation, I down-

loaded the latest available version1 at the time of writing from its GitHub repository.

Psalm’s taint analysis identifies exactly one PHP API function as a taint sink for in-

secure deserialization: unserialize. Furthermore, Psalm includes six functions as taint

sinks for XSS vulnerabilities. Argus identified and confirmed 16 additional sinks that are

missing in Psalm. To improve Psalm’s taint analysis, I extended the set of taint sinks for

both XSS and insecure deserialization to include the APIs Argus identified for PHP 7.2.

Subsequently, I performed a comparative evaluation between upstream Psalm, and the ver-

sion incorporating the APIs identified by Argus on the set of 1,977 PHP artifacts described

in Section 7.2.1.

The findings in Table 7.1 show a significant increase (i.e., over 10X) in the number

of detected insecure deserialization vulnerabilities by the extended version of Psalm. To

compare the quality of the results produced by upstream Psalm and our extended version, I

manually analyzed all 656 insecure deserialization reports. As Psalm is a static analysis, I

expect the results to contain false positives. Furthermore, as the extended version features

284 times as many deserialization sinks, it is unsurprising that it reports 10 times as many

1Psalm 4.x-dev@832fc35d8da6e5bb60f059ebf5cb681b4ec2dba5
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Category # of Detected Threats
Deserialization XSS

Phar 0 -
SPL Functions 3 0
DOM & XML 6 0
File Operations 530 15
Hashing Functions 0 -
Image Functions 35 -
Database Funtcions 0 0
Session Function 0 -
Communication Functions 0 -
Unserialize 63 -

Table 7.4: More than 79% of the detected POI vulnerabilities by extended
Psalm are related to file operation functions.

potential vulnerabilities. However, what I did not expect is that all 65 reports (i.e., 100%)

arising from upstream Psalm are false positives. False positives can arise from web appli-

cations that sanitize inputs or, more prevalent in my POI vulnerability analysis, arise from

the fact that the application sets a fixed prefix for file-paths. A “fixed” file-path-prefix, even

if it is derived from an API such as dirname essentially thwarts any attack that relies on

the phar module, as the attacker will no longer be able to specify the phar:// prefix that

triggers the stream wrapper.

I confirmed that the extension to Psalm’s taint analysis detected 12 previously unknown

POI vulnerabilities (i.e., 2% true positives) in the dataset (see Table 7.5). In addition, I con-

firmed that the extended Psalm detected one previously unknown XSS vulnerability in the

core of the WordPress web application. As I will show in Section 7.2.3, FUGIO generated

POC exploits for all 12 POI reports supporting the notion that these are actual vulnerabili-

ties. As a case study, I will describe three of the vulnerabilities that we discovered among

WordPress and its plugins and how Argus’ comprehensive results were necessary to detect

them.
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Case Study - Feed Them Social

Feed Them Social is one of the most popular plugins on WordPress that allows devel-

opers to share social media content on their websites (WordPress, 2022). Using this plugin,

a developer can mirror the posts and tweets of a specific account on Twitter, Facebook, and

other social media sites.

The detected vulnerability for this plugin is an unauthenticated insecure deserializa-

tion which resides in the functionality of the module’s Twitter feed. The Twitter feed in

this plugin retrieves and shows the content of tweets including any referenced media on

a WordPress page. Whenever a tweet contains a URL, the plugin attempts to retrieve the

URL’s title, image, and description to display on the WordPress page. To do this, the plu-

gin uses the function get_meta_tags with unsanitized user-input directly from the tweet

to retrieve the metadata of the specified URL. Listing 7.3 shows the simplified version of

this vulnerability in this plugin, where the unsanitized user-input is passed to the implicit

deserialization API get_meta_tags on line 4.

In order to exploit this vulnerability, an attacker can simply set the fts_url request

parameter to the path of a phar file with malicious metadata. Note that, the $_REQUEST

variable populates the variables sent through $POST and $GET requests by the user to the

server. When the plugin tries to read and parse the metadata of the passed URL, it will

automatically deserialize the metadata of the malicious phar file. get_meta_tags is an

implicit deserialization API identified by Argus and not taken into consideration by prior

work demonstrating the necessity of Argus’ comprehensive analysis.
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1 function fts_twitter_share_url_check() {

2 $twitter_external_url = $_REQUEST['fts_url'];

3 // ...

4 $tags = get_meta_tags($twitter_external_url);

5 ...

6 }

Listing 7.3: The feed them social plugin passes
unsanitized user-input to the function get_meta_tags.

Case Study - Ajax Load More

The Ajax Load More plugin is one of the most popular plugins in WordPress that pro-

vides infinite scrolling for posts, pages, and comments. The vulnerability identified by

the extended Psalm resided in the so-called repeater template in this plugin. The function

alm_repeaters_export exports repeater templates for backup or sharing with other Word-

Press sites. Listing 7.4 abbreviates the vulnerable code in the Ajax Load More plugin.

As the attacker has full control over the file variable (Line 3) which gets passed to the

implicit deserialization API (i.e.,file_exists) at Line 4 without sanitization the plugin

suffers from insecure deserialization.

1 function alm_repeaters_export() {

2 // check privileges

3 $file = $_POST['alm_repeaters_export'];

4 if ( file_exists( $file ) ) {

5 // ...

6 }

7 }

Listing 7.4: The Ajax load more plugin passes unsanitized
user-input to the function file_exists.

Fortunately, Ajax Load More checks whether the user is authorized to export templates

before any file operation, preventing a devastating pre-authentication vulnerability. Un-

fortunately, however, the plugin does not check cross site request forgery (CSRF) nonces,

allowing an adversary to exploit the vulnerability via a CSRF attack against an authorized

user.
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Case Study - XSS in WordPress Core

WordPress is the most popular CMS, as it powers more than 43% of all live websites (?).

The detected vulnerability in the core of WordPress is a cross-site scripting vulnerability

that resides in the multi-site feature of the web application. This feature allows developers

to host multiple websites on one installation of WordPress and create a network of websites.

However, this feature also allows attackers to perform a XSS attack on WordPress. In

particular, this vulnerability resides in a file called ms-files.php, which was detected by

the extended Psalm. Listing 7.5 shows the simplified version of this vulnerability, where

the function readfile writes the content of a file chosen by an attacker to the output buffer

(i.e., the HTML response) without any sanitization (Line 5). Note that, none of the existing

tools identify readfile as a vulnerable API to XSS attacks. As a result, Psalm can only

detect this XSS vulnerability if it is extended using Argus’ results.

1 // wp-includes/ms-files.php

2 ...

3 $file = rtrim(BLOGUPLOADDIR, '/').'/'.

4 str_replace('..', '', $_GET['file']);

5 ...

6 readfile( $file );

7

Listing 7.5: WordPress uses the function readfile to output
the content of a file to the browser without sufficient
sanitization.

In order to exploit this vulnerability, an attacker sets the file request parameter to the

path of the malicious file (Line 3). The malicious file contains JavaScript code, which gets

written in the HTML response by the function readfile. Next, the browser executes the

malicious JavaScript on the client’s browser.

FUGIO Extension

FUGIO (Park et al., 2022) is an automatic exploit generator for deserialization vulner-

abilities in PHP applications. FUGIO’s exploit generation operates based on hooking a
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set of predefined deserialization functions while sending serialized objects as request to

the web application under test. The analysis of FUGIO shows that FUGIO hooks into

26 file operation functions in the PHP interpreter as well as the unserialize function

to intercept deserialization of user-input. Similar to Psalm, FUGIO obtained the list of

hooked functions through manual analysis of PHP documentation and prior works such

as Thomas (Thomas, 2018). For the evaluation, I downloaded FUGIO from its GitHub

repository at https://www.github.com/WSP-LAB/FUGIO.

One should note that FUGIO states that it is not a vulnerability detection tool. Rather

its core contribution is to generate exploits for already known deserialization vulnerabil-

ities (Park et al., 2022), such as those identified by Psalm. As a result, I evaluated FU-

GIO on the 12 vulnerabilities that the extended version of Psalm detected. To extend

FUGIO, I modified its source code to hook the comprehensive set of deserialization API

functions identified by Argus. The last two columns in Table 7.5 show the results of ex-

tending FUGIO using Argus when generating exploits for the discovered vulnerabilities by

Psalm+Argus.

As a dynamic analysis system, FUGIO requires a runtime environment. To this end,

I created an experimental environment for WordPress plugins consisting of Nginx, PHP

7.2, MySQL 8, and WordPress 5.4. FUGIO creates attacks by stitching together so-called

gadgets into a POP-chain. However, WordPress alone does not contain any gadgets that

could be used for remote code execution attacks. In practice, administrators customize

their WordPress installations using plugins and themes. Thus to ensure that FUGIO has

gadgets to work with, I installed the latest versions of the top ten most popular plugins in

WordPress in the experimental environment (WordPress, 2022). During the experiment,

FUGIO without Argus’ results does not hook into the image functions listed in Table 7.2.

As a result, FUGIO was unable to generate an exploit for two of the discovered vulnerabili-

ties in Table 7.5. However, the extended FUGIO+Argus successfully generated exploits for
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all the discovered vulnerabilities listed in Table 7.5. On this small sample, this indicates a

20% increase in the number of generated exploits.

Web App Plugin Vuln. Type CVE P P+A F F+A
Xoops - 1 - 7 X 7 X

WordPress

Feed them Social 1 CVE-2022-2437 7 X 7 X
ImageMagick 2 CVE-2022-2441 7 X X X

String locator 2 CVE-2022-2434 7 X X X

Ajax load more 2 CVE-2022-2433 7 X X X

Broken link checker 3 CVE-2022-2438 7 X X X
wp editor 3 CVE-2022-2446 7 X X X

Visualizer 3 CVE-2022-2444 7 X X X
Easy digital download 3 CVE-2022-2439 7 X X X

Theme Editor 3 CVE-2022-2440 7 X X X
wPvivid Backup 3 CVE-2022-2442 7 X X X

Download manager 3 CVE-2022-2436 7 X X X

Core XSS - 7 X - -
Total - - - 0 13 10 12

Table 7.5: I verified the reports of Psalm+Argus by discovering 13 previ-
ously unkown POI and XSS vulnerabilities. The vulnerability types 1, 2,
and 3 refers to Unauthenticated Phar deserialization, CSRF to Phar deseri-
alization, and Authenticated Phar deserialization, respectively.

Disclosure. Of course, I responsibly reported all the vulnerabilities to their correspond-

ing developer teams and notified the WordPress plugin review team of my findings. Seven

teams already patched their WordPress plugins, and WordFence assigned CVE numbers to

the vulnerabilities as shown in Table 7.5.

To summarize the evaluation, I evaluated Argus along two dimensions. First, I eval-

uated Argus across three different versions of the PHP interpreter. I identified, analyzed,

and explained the reasons for the varying numbers of deserialization APIs in each version.

Along the second dimension, I used Argus’ results to extend two existing PHP security

analysis tools – Psalm and FUGIO. I showed how Argus’ comprehensive list of injection-

sinks improves the results of both tools yielding 13 previously unknown XSS and POI

vulnerabilities and corresponding POC exploits.
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7.3 Discussion

In this section, I discuss the limitations of Argus and other aspects affecting the relevance

of this work.

As mentioned in Section 7.1.2, Argus relies on a reachability analysis on the call-graph

to identify the serialization and output APIs in the PHP interpreter. However, I perform a

validation step to verify the output of the reachability analysis since the call-graph analy-

sis does not reason about any sanitization or filtering the PHP interpreter might perform.

While it seems more pertinent to perform a data-flow analysis rather than the reachability

analysis, I argue that Argus needs to reason about the PHP interpreter and its extensions

that it is linked against. Ignoring additional challenges to practicality (e.g., extensions rely-

ing on non-C code), the analysis needs to scale to millions of lines of code across PH (one

million lines of C code alone). Needless to say, resolving function pointers is still a promi-

nent challenge for existing data-flow analysis including the state-of-the-art SVF tool (Sui

and Xue, 2016), which leads to imprecise control-flow graphs. As a result, I opted for a

reachability analysis and subsequently validation in Argus to identify injection-sinks in the

PHP interpreter.

Furthermore, the evaluation identified two sets of injection-sink APIs for PHP: 1) APIs

that directly deserialize or output their arguments, and 2) APIs that operates on malicious

files. As mentioned in Section 2.3.5, the phar stream wrapper in the PHP interpreter only

operates on local phar files. As a result, to exploit any APIs in the second category, the at-

tacker needs to upload the phar file prior to invoking the insecure deserialization. Therefore,

in order to confirm the detected vulnerabilities, I made the assumption that the attacker had

already uploaded the malicious phar file to the web application’s server. I argue that this as-

sumption is realistic since there are a plethora of approaches where an attacker can upload

malicious phar files, which include exploiting arbitrary file upload vulnerabilities (Huang

et al., 2019; Huang et al., 2021). Furthermore, web applications and their plugins pro-
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vide upload functionality for many purposes, such as uploading plugins, profile pictures,

and PDF files. An attacker can use such functionality to upload malicious files to the web

application’s installation. In order to bypass the upload restrictions such as file type and

metadata checks, one can use PHPGCC (Security, 2018) to modify the phar file into ZIP,

PDF, and image formats such as JPEG.

Finally, as the evaluation demonstrates, the PHP developers noticed the security conse-

quences of automatic deserialization of phar files and fixed this issue in PHP 8.0 (released

in November 2020). However, the PHP usage statistics indicate that, at the time of writ-

ing, only 4.5% of all websites that rely on PHP actually operate on PHP 8.0 (Q-Success,

2023b). The reason for this low adoption rate is probably that transitioning to PHP 8.0 is a

non-trivial procedure for most PHP-powered websites. The major changes in the PHP inter-

preter 8.0 compared to previous versions lead to backward incompatible changes (Group,

2022) which can potentially cause fatal errors in the web applications. The challenge of (in-

)compatibility is evidenced by the most popular PHP application – WordPress. Although

efforts within the WordPress project to support PHP version 8.0 began way before the of-

ficial release of the language, at the time of writing, WordPress still warns users that even

its latest stable version (released in 2022) is not fully compatible with version 8 yet (Word-

Press, 2022). While the PHP interpreter has addressed the threat arising from the automatic

deserialization of phar files in version 8, history suggests that web sites relying on older

versions of PHP are likely to remain publicly accessible on the Internet for a long time to

come. These will continue to include the over 280 deserialization APIs provided by their

PHP runtimes.
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Chapter 8

Conclusions

In this thesis, I present and evaluate a range of methodologies and frameworks to improve

the security of PHP web applications through runtime defenses, debloating the source-code

of PHP web applications, and detecting injection sink APIs in the PHP runtime.

8.1 Scope of Contributions

The work presented in this thesis focuses on the PHP interpreter as well as the web ap-

plication developed in the PHP programming language. As of 2022, the PHP interpreter

had 77.4% of the global market share among all live websites (Q-Success, 2023b). Fur-

thermore, the most popular web applications, including WordPress, are written in PHP (Q-

Success, 2023a). Moreover, PHP web applications are among the web applications with

the highest number of detected vulnerabilities. In 2019, 2,652 vulnerabilities were de-

tected in PHP web applications, which increased by 12.7% compared to 2018 (Bekerman

and Yerushalmi, 2019). Due to the dominance of PHP among web applications, in this

thesis I focus on the PHP interpreter and its web applications.

8.2 Summary of Major Contributions

Existing prevention techniques against various attacks on web applications are limited due

to a lack of consideration for how the PHP web applications communicate with the host

OS and its resources as well as a lack of fine-grained analysis of the PHP web applica-

tions. Furthermore, the absence of an integrated analysis of both the PHP interpreter and
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web applications leaves PHP web applications vulnerable to injection vulnerabilities such

as insecure deserialization. This thesis claims that to improve the security of PHP web

applications, an integrated analysis of both the interpreter and the web application is re-

quired in the application and the interpreter source-code. To this end, this thesis provided

techniques to analyze PHP web applications and the interpreter to provide a defense mecha-

nism against SQLi and RCE attacks, remove security vulnerabilities, and detect previously

unknown XSS and deserialization vulnerabilities in PHP web applications.

This thesis proposes a hybrid static-dynamic technique to defend PHP web applications

against RCE attacks. Prior work mitigated RCE through static taint analysis, code prop-

erty graphs, and dynamic taint analysis. However, the dynamic language features of the

PHP programming language (e.g., dynamic includes and class autoloaders) and the runtime

overhead of dynamic analysis can be challenging for such techniques. I first introduced an

abstraction-aware technique to create a system-call sandbox for PHP web applications in a

tool called Saphire. I then evaluated our system on the most popular PHP web applications,

which reduces the set of available system-calls to each PHP file by 80.5%, on average. Fur-

thermore, Saphire successfully defended against 21 RCE vulnerabilities in our dataset.

I then introduced an approach to protect web applications against SQLi attacks. While

existing systems are only able to defend against specific types of SQLi attacks, SQLBlock

provides a defense mechanism against more SQLi attacks compared to prior techniques.

SQLBlock is a hybrid static-dynamic approach that generates a profile of benign issued

queries by PHP web applications. I demonstrated that SQLBlock successfully defends

against all attacks on 11 SQLi vulnerabilities in the dataset, compared to defending against

only five in prior works.

This thesis then proposed Minimalist, a semi-automated debloating technique to re-

move unnecessary functionality from PHP web applications. Minimalist statically gener-

ates the call-graph of a web application and utilizes prior user interaction with the web
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application to identify unnecessary functionalities. Our evaluation shows that, compared

to prior work, Minimalist debloats 17.78% of the source-code in web applications while

raising no false positives.

I finally demonstrated a principled and systematic analysis of the PHP interpreter to

identify injection sink APIs. Compared to manual analysis in prior work, Argus detected

more than 280 APIs in the PHP interpreter that can deserialize user-input or lead to XSS

vulnerabilities through an analysis of the PHP interpreter and its extensions. To demon-

strate the effectiveness of Argus, I extended existing vulnerability detection systems and

identified 13 unknown deserialization and XSS vulnerabilities.

In conclusion, this thesis claimed that an array of hybrid static-dynamic protection and

detection mechanisms over the PHP interpreter and web applications can improve the un-

derlying security of PHP web applications. In response, this work provides the following:

• Hybrid static-dynamic analysis on the PHP interpreter and the web applications with

Saphire, which generates a system-call profile to sandbox the PHP web applications

and protect them against RCE attacks (Bulekov et al., 2021).

• Hybrid static-dynamic analysis on the PHP web applications, which generates SQL

profiles for benign issued queries by the web application to defend against SQLi

attacks (Jahanshahi et al., 2020).

• A semi-automated debloating mechanism, which statically analyzes PHP web appli-

cations and takes prior user-interaction into account to identify and debloat unneces-

sary functionalities.

• Hybrid static-dynamic analysis of the PHP interpreter to identify the set of APIs that

can lead to insecure deserialization or XSS vulnerabilities.
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