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ABSTRACT

Traffic congestion is a central problem in transportation systems, especially in urban

areas. The rapid development of Connected and Automated Vehicles (CAVs) and new

traffic infrastructure technologies provides a promising solution to solve this problem. This

work focuses on the safety-critical optimal control of CAVs in autonomous traffic systems.

The dissertation starts with the roundabout problem of controlling CAVs travelling

through a roundabout so as to jointly minimize their travel time, energy consumption, and

centrifugal discomfort while providing speed-dependent safety guarantees. A systematic

approach is developed to determine the safety constraints for each CAV dynamically. The

joint optimal control and control barrier function (OCBF) controller is applied, where the

unconstrained optimal control solution is derived which is subsequently optimally tracked

by a real-time controller while guaranteeing the satisfaction of all safety constraints.

Secondly, the dissertation deals with the feasibility problem of OCBF. The feasibility

problem arises when the control bounds conflict with the Control Barrier Function (CBF)

constraints and is solved by adding a single feasibility constraint to the Quadratic Problem

(QP) in the OCBF controller to derive the feasibility guaranteed OCBF. The feasibility

v



guaranteed OCBF is applied in the merging control problem which provably guarantees

the feasibility of all QPs derived from the OCBF controller.

Thirdly, the dissertation deals with the performance loss of OCBF due to the improp-

erly selected reference trajectory which deviates largely from the complete optimal solution

especially when the vehicle limitations are tight. A neural network is used to learn the con-

trol policy from data retrieved by offline calculation from the complete optimal solutions.

Tracking the learnt reference trajectory with CBF outperforms OCBF in simulation exper-

iments.

Finally, a hierarchical framework of modular control zones (CZ) is proposed to extend

the safety-critical optimal control of CAV from a single CZ to a traffic network. The hier-

archical modular CZ framework is developed consisting of a lower-level OCBF controller

and a higher-level feedback flow controller to coordinate adjacent CZs which outperforms

a direct extension of the OCBF framework to multiple CZs without any flow control in

simulation.
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Chapter 1

Introduction

1.1 Background

Traffic congestion has always been a hard problem to solve, especially in urban areas,

which causes a significant economic loss including billions of hours of time and billions of

gallons of fuel wasted on roads. Coordinating and controlling vehicles in a traffic system is

a challenging problem in terms of ensuring safety and passenger comfort while minimizing

congestion and energy consumption. Recently, the development of Intelligent Transporta-

tion Systems (ITS) including the rapid evolution of Connected and Automated Vehicles

(CAVs) and the emergence of new traffic infrastructure technologies, has provided new

potentials to solve this problem through better information utilization and more precise ve-

hicle trajectory design. This thesis focuses on the coordination and control of CAVs to deal

with traffic congestion.

A CAV is a typical autonomous system that is managed and supervised by itself without

reliance of instructions from other entities and serves as an autonomous agent within a large

autonomous system. With the characteristic of connectivity, a CAV has the ability to fully

utilize the information from its neighbors (including the infrastructure) to design a safe

and optimal trajectory in terms of minimizing travel time, energy consumption as well as

discomfort in a decentralized way. Optimal control methods are often used in dynamic sys-

tems to achieve the optimal objective subject to known system dynamics and constraints.

Employing optimal control methods to CAVs is straightforward but challenging. As safety

is always the first priority in driving, the safety constraints are always tight to avoid colli-

1
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sion, which makes the optimal control problem hard to solve. How to control the CAVs in

real time in an optimal way (in terms of minimizing travel time, energy consumption and

discomfort) while guaranteeing safety is the main problem to solve in this dissertation.

1.2 State of the Art

1.2.1 Optimal Control in Traffic Control Problems

The performance of traffic networks critically depends on the control of conflict areas such

as intersections, roundabouts and merging roadways which define the main bottlenecks in

these networks (Rios-Torres and Malikopoulos, 2016). The development of CAVs provides

a promising solution to improve the performance in these conflict areas. One of the very

early piece of research work on CAVs dates back to 1966, where an optimal linear feedback

system was designed to regulate the position and velocity of high speed moving vehicles

(Levine and Athans, 1966). A more systematic research was conducted in (Varaiya, 1993)

where an automated intelligent vehicle/highway system was proposed.

Both centralized and decentralized methods have been studied to deal with the con-

trol and coordination of CAVs at conflict areas. Centralized mechanisms are often used

in forming platoons in merging problems (Shladover et al., 1991; Xu et al., 2019a) and

determining passing sequences at intersections (Xu et al., 2020; Xu et al., 2019b). These

approaches tend to work better when the safety constraints are independent of speed and

they generally require significant computation resources, especially when traffic is heavy.

They are also not easily amenable to disturbances.

Decentralized mechanisms restrict all computation to be done on board each vehicle

with information sharing limited to a small number of neighbor vehicles (Milanés et al.,

2010; Rios-Torres et al., 2015; Bichiou and Rakha, 2018; Hult et al., 2016). Optimal

control problem formulations are used in some of these approaches. The objectives in such

problem formulations typically target the minimization of acceleration (Rios-Torres et al.,
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2015) or the maximization of passenger comfort (measured as the acceleration derivative

or jerk) (Ntousakis et al., 2016; Rathgeber et al., 2015). The optimal control approaches

usually assume that no constraints are active in order to get simple analytical solutions.

When the constraints are included, the derivation of the optimal trajectory becomes too

complex to be solved in real time, even under simple vehicle dynamics (Malikopoulos

et al., 2018; Ntousakis et al., 2016; Xiao et al., 2019).

Among the conflict areas, roundabouts are important components of a traffic network

because they usually perform better than typical intersections in terms of efficiency and

safety (Flannery and Datta, 1997). However, they can become significant bottleneck points

as the traffic rate increases due to an inappropriate priority system, resulting in significant

delays when the circulating flow is heavy. Previous studies mainly focus on conventional

(human-driven) vehicles and try to solve the problem through improved road design or traf-

fic signal control (Martin-Gasulla et al., 2016; Yang et al., 2004; Xu et al., 2016). More

recently, however, researchers have proposed methods for decentralized optimal control

of CAVs in a roundabout based on formulating an optimal control problem with an ana-

lytical solution provided in (Zhao et al., 2018). The problem is decomposed so that first

the minimum travel time problem is solved under the assumption that all vehicles use the

same maximum speed within the roundabout. Then, fixing this time, the control input that

minimizes the energy consumption is derived analytically. The general framework for de-

centralized optimal control of CAVs used in intersections is implemented for roundabouts

in (Chalaki et al., 2020). The analysis is similar to (Zhao et al., 2018) except that there is

no circulating speed assumption.

1.2.2 Model Predictive Control and Control Barrier Function

Model Predictive Control (MPC) is a modern control strategy commonly used in control

systems known for its capacity to provide optimized responses while accounting for state

and input constraints of the system(Garcia et al., 1989). According to the system dynamics,
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MPC can be classified as Linear MPC (LMPC) and Nonlinear MPC (NMPC). The basic

idea of MPC is to create a discretized predictive model (or a simplified one to reduce

calculation) to predict the state of the system over a receding horizon. The MPC method

can guarantee terminal constraints at the cost of heavy calculation due to the receding

horizon it maintains. The computation becomes more expensive when it comes to NMPC

due to repetitively solving Nonlinear Programs (NP).

Barrier Functions (BFs) are Lyapunov-like functions (Tee et al., 2009) well known in

optimization problems (Boyd et al., 2004). Starting from a feasible solution, the BF can

guarantee the solution after each searching step is also feasible. Utilizing this set invariance

property, BFs have been extended to control problems as Control Barrier Functions (CBFs).

It is shown that for nonlinear systems affine in control with cost functions quadratic in con-

trols, an optimal control problem with safety constraints can be mapped to a sequence of

quadratic programs (QPs) with some conservatism (Galloway et al., 2015). The core of

the CBF method is the forward invariance property (Ames et al., 2014b) which refers to

the set invariance of the feasible set defined by a constraint. In other words, any control

input that satisfies the CBF constraint also satisfies the original constraint. In addition, a

Control Lyapunov Function (CLF) (Ames et al., 2012) can guarantee the system state to

converge to a desired one. Thus, the initial problem can be reformulated into a sequence

of CBF-CLF-QPs. The CBF method outperforms MPC techniques in that the forward in-

variance guarantees the satisfaction of constraints in each time interval and it does not need

discretized dynamics. The QPs in CBF method are usually less computationally expensive

compared to MPC.

Both methods have been applied in traffic control problems in order for real time ap-

plication. MPC techniques are often employed to account for additional constraints and

to compensate for disturbances by re-evaluating optimal actions (Cao et al., 2015; Mukai

et al., 2017; Nor and Namerikawa, 2018). As an alternative, CBFs are used in traffic merg-
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ing problems (Xiao and Belta, 2022; Xiao et al., 2019) which provide provable guarantees

that safety constraints are always satisfied under very general nonlinear vehicle dynamics

affine in control. The joint optimal control and control barrier functions (OCBF) approach

is proposed and applied in traffic control problems including merging roadways (Xiao et al.,

2021b) and intersections (Xu et al., 2022b), which uses the unconstrained optimal solution

as the referenced trajectory and optimally tracks the referenced trajectory subject to CBF

constraints that guarantee safety.

1.2.3 Feasibility Problem of Control Barrier Functions

One of the main challenges for the CBF method is the feasibility problem. As mentioned

before, the CBF method can easily map a nonlinear constraint to a new CBF constraint that

is linear in control for affine control systems to form a series of CBF-CLF-QPs. By solving

the problem one time step forward, it provably guarantees the satisfaction of the initial

constraints due to the forward invariance property. However, the series of CBF-CLF-QPs

may be infeasible due to multiple reasons and thus results in the loss of safety guarantees.

The first possibility is the violation of the initial constraint, potentially due to noise or

model inaccuracy. Adaptive Control Barrier Functions (AdaCBFs) are proposed to accom-

modate time-varying control bounds and noise in the system dynamics and applied to a

cruise control problem (Xiao et al., 2022a). There are also auxiliary methods in different

fields to help enable the satisfaction of initial constraints. In traffic control, a Feasibility En-

forcement Zone (FEZ) is proposed to enforce the satisfaction of initial constraints (Zhang

et al., 2017).

Another reason is the inadequately small time step. In real applications, a CBF con-

troller is usually realized by discretizing time and solving a series of CBF-CLF-QPs at

each time step. The proof of the forward invariant property is based on the continuous

dynamic system. The CBF constraints may become infeasible due to violation of the initial

constraint during the time interval, especially when the system states change fast. Multi-
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ple methods are proposed to deal with this problem. Discrete Control Barrier Functions

are proposed and applied in bipadal robot navigation (Agrawal and Sreenath, 2017) which

define the CBFs in a discrete time form. Another method is to use event-driven CBF as

opposed to time-driven ones(Xiao et al., 2021a). Safety constraint related events are de-

fined to trigger the reformulation and solution of the CBF-CLF-QPs thus to guarantee the

satisfaction of safety constraint at each time step.

The third reason is the myopic nature of CBF methods, especially when the control

limit is tight which greatly increases the chance of conflicting with the CBF/CLF con-

straints. As aforementioned, with the forward invariance property, the CBF method is able

to guarantee critical safety constraints by solving the problem just one time step forward,

thus is more computationally efficient compared with MPC but is also more myopic. Dif-

ferent approaches to improve feasibility for specific applications have been proposed. For

the adaptive cruise control (ACC) problem, the infeasibility issue is dealt with by adding an

addition complex safety constraint related to the minimum braking distance (Ames et al.,

2014b). A more general framework is proposed in (Xiao et al., 2022b) where an addi-

tional feasibility constraint is added to guarantee feasibility. However, in this work, the

constructed feasibility constraints are limited to be independent of the control, which is not

applicable for systems with control dependent constraints.

1.2.4 Machine Learning in Autonomous Traffic Systems

Neural network has become a hot research topic and has shown its power and potential

in areas like computer vision, speech recognition, natural language processing due to the

increasing computing power (Abiodun et al., 2018). Different types of neural networks are

used in autonomous traffic systems for different tasks. A Convolutional Neural Network

(CNN) is commonly used in image related tasks such as real-time object detection in au-

tonomous driving (Wu et al., 2017). A Recurrent Neural Network (RNN) is often used

in time related tasks due to the feedback introduced in the recurrent structure. Long-short
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Term Memory (LSTM), a typical RNN, is used to predict vehicle trajectories on highway

(Altché and de La Fortelle, 2017).

Apart from these supervised learning methods, reinforcement learning (RL) is also

widely used in control systems as well as the autonomous traffic systems. Reinforcement

learning enables an agent to learn an optimal policy to maximize its reward from scratch,

with little or no prior knowledge of the model. Reinforcement learning is widely applied

in autonomous driving research due to its model-free and online learning property (Sallab

et al., 2017; Kiran et al., 2022). However, reinforcement learning has its drawbacks. First,

reinforcement learning makes little utilization of model information and expert experience,

thus wasting a lot of computing power and time. Imitation learning can be considered

as an alternative which learns a control policy through imitating (Hussein et al., 2017).

Also reinforcement learning learns from making mistakes by its nature, which makes it

more effective in simulation-based scenarios while hard to implement in the real world.

In safety-critical scenarios like autonomous driving, it is always risky to directly imple-

ment reinforcement learning without safety guarantees. Recent research aims at solving

this problem by combining reinforcement learning with safety-critical control metrics like

CBFs (Dawson et al., 2022). However, as the infeasibility problem of CBF is not consid-

ered, safety concern still remains.

1.3 Contributions and Thesis Outline

1.3.1 Summary of Contributions

The contributions of the dissertation are listed as follows and explained in detail in the

following subsections. Firstly, the decentralized optimal control problem of CAVs in a

roundabout is formulated and solved systematically using the OCBF controller. Secondly,

the feasibility guaranteed OCBF is derived to provably resolve the feasibility problem aris-

ing from the roundabout problem. Thirdly, a neural network based method is proposed to
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learn a reference trajectory from the complete optimal solution to the traffic merging prob-

lem to resolve the performance loss problem. Last but not least, a hierarchical framework

of modular control zones is proposed to extend the safety critical optimal control of CAVs

from the previously studied single CZ scenario (e.g., traffic merging problem, roundabout

problem) to multiple CZs and ultimately a general traffic network.

1.3.2 Decentralized Optimal Control of CAVs in a roundabout

The problem of controlling Connected and Automated Vehicles (CAVs) traveling through

a roundabout is considered so as to jointly minimize their travel time, energy consumption,

and centrifugal discomfort while providing speed-dependent and lateral roll-over safety

guarantees, as well as satisfying velocity and acceleration constraints. We first develop

a systematic approach to determine the safety constraints for each CAV dynamically, as

it moves through different merging points in the roundabout. The unconstrained optimal

control solution is derived and is subsequently optimally tracked by a real-time controller

while guaranteeing that all constraints are always satisfied. Simulation experiments are per-

formed to compare the proposed controller to a baseline of human-driven vehicles, showing

its effectiveness under symmetric and asymmetric roundabout configurations, balanced and

imbalanced traffic rates, and different sequencing rules for CAVs.

The main contributions are as follows. First, unlike (Zhao et al., 2018; Chalaki et al.,

2020), the travel time and energy consumption are jointly minimized while also consider-

ing speed-dependent safety constraints at a set of MPs rather than merging zones, which

makes solutions less conservative by improving roadway utilization. Second, not only the

roundabouts consisting of only straight road segments are considered in (Xu et al., 2021)

but also the circular roundabout configurations are analyzed where the comfort constraints

are included and guaranteed to be satisfied. Third, the computational complexity of solv-

ing such an optimal control problem analytically is overcame by adopting the joint Optimal

Control and Barrier Function (OCBF) approach in (Xiao et al., 2021b).
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1.3.3 Feasibility guaranteed OCBF

Applying the joint optimal control and control barrier function (OCBF) method, a con-

troller that optimally tracks the unconstrained optimal control solution while guaranteeing

the satisfaction of all constraints is efficiently obtained by transforming the optimal tracking

problem into a sequence of quadratic programs (QPs). However, these QPs can become in-

feasible, especially under tight control bounds, thus failing to guarantee safety constraints.

This dissertation resolves the QP feasibility problem when an OCBF controller is used

in decentralized merging control, thus ensuring that feasible trajectories are always pos-

sible. The merging control problem is formulated as in (Xiao and Cassandras, 2021b) to

jointly minimize the travel time and energy consumption subject to speed-dependent safety

constraints as well as vehicle limitations. The OCBF approach is adopted where the fea-

sibility of each QP problem is guaranteed by adding a single feasibility constraint to it

following the strategy developed in (Xiao et al., 2022b) for general optimal control prob-

lems. While the feasibility constraints constructed in (Xiao et al., 2022b) are limited to be

independent of the control, the structure of the safety constraints is exploited in the merging

problem to derive control-dependent feasibility constraints and prove that all QPs needed to

fully solve the merging problem are feasible. Extensive simulations of the merging control

problem illustrate the effectiveness of this feasibility guaranteed controller.

1.3.4 Learning the Optimal Control Problem (OCP) Solution

Under the OCBF framework, the controller optimally tracks the unconstrained optimal con-

trol solution while guaranteeing the satisfaction of safety constraints using CBFs. However,

when the scenario becomes complicated, there can be a large deviation between the uncon-

strained optimal trajectory and the complete optimal trajectory. Tracking the analytically

unconstrained optimal trajectory easily results in saturated control or states when the vehi-

cle limitations are tight, which may result in a poor performance.
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To improve the potentially poor performance due to improperly selected referenced

trajectory, a neural network (NN) is designed to learn the control policy from the data re-

trieved from the previously solved complete optimal solutions. A Long-short Term Mem-

ory (LSTM) based neural network is trained to learn the OCP solution. The OCBF ap-

proach is then applied to optimally track the trajectory learnt from neural network to guar-

antee safety (this method is named as NN+CBF). Simulations are performed comparing the

trajectories and performance of the ego CAV using OCP, OCBF, NN+CBF respectively.

1.3.5 Scaling up the Optimal Safe Control of CAVs to a Traffic Network

The contribution of this section is to take a step towards a systematic extension of traffic

control involving CAVs from one to multiple CZs and ultimately a complex traffic net-

work. A hierarchical control framework is proposed consisting of modular interconnected

CZs with two levels: (i) a decentralized lower level applied to each CZ, and (ii) an upper

traffic flow control level. The interaction between the two levels relies on an interface that

connects neighboring CZs and adjusts the values of velocity parameters controlled by the

upper level to influence the performance of CAVs at the lower level, where CAVs are still

controlled in a decentralized way. These velocity parameters effectively act as regulators of

the traffic flow between adjacent CZs and can be dependent on global or only local infor-

mation regarding the traffic network. The decentralized controllers used at the lower level

are based on our prior work that combines Optimal Control with Control Barrier Functions

(OCBF) (Xiao et al., 2021b). In the OCBF framework, a decentralized optimal control

problem is first formulated with an objective which jointly minimizes (i) the travel time of

each CAV over a given road segment from a point entering a Control Zone (CZ) to the even-

tual exit point, and (ii) a measure of its energy consumption. CBF-based constraints are

included to guarantee that all safety constraints are satisfied at all times, taking advantage

of the forward invariance property of CBFs (Xiao et al., 2023).
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1.3.6 Outline of the Dissertation

This dissertation is organized as follows. In Chapter 2, the control barrier functions and its

application in safety-critical control is reviewed as the prior knowledge of the dissertation.

Chapter 3 describes the whole framework of solving the optimal control problem of CAVs

in a roundabout using the joint optimal control and control barrier functions approach.

Chapter 4 and 5 introduce the work on feasibility guaranteed OCBF and learning the com-

plete optimal trajectory separately, in order to resolve the feasibility and performance prob-

lem arising from roundabout problem. Chapter 6 introduces a hierarchical framework of

modular control zones which extends the study of safety-critical optimal control from a

single control zone to the traffic network. Finally, Chapter 7 concludes the work and points

out some future directions.
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Chapter 2

Control Barrier Functions and Safety-Critical
Optimal Control

In this chapter, the concept of control barrier functions and its application in safety-critical

optimal control are briefly reviewed. This chapter does not serve as the contribution of the

dissertation but is needed to set up a theoretical foundation for the rest of the thesis.

2.1 Control Barrier Functions

The term of control barrier functions motivates from barrier certificates that were intro-

duced to formally prove safety of nonlinear systems (Prajna and Jadbabaie, 2004) and the

control Lyapunov functions that aim to stabilizing a nonlinear system. Given a nonlinear

system in the form:

ẋ = f (x), (2.1)

where x ∈ D ⊂Rn and f : Rn →Rn, safety is defined in the context of enforcing the invari-

ance of a safe set.

2.1.1 Set Invariance and Barrier Functions

Definition 2.1. (Forward invariant set). A set C is forward invariant for system (2.1) if
∀x(t0) ∈ C and ∀t ≥ t0, x(t) ∈ C .

A safe set C is normally defined as the superlevel set of a continuously differentiable
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function h : D ⊂ Rn → R.

C = {x ∈ D ⊂ Rn : h(x ≥ 0)} (2.2)

This forward invaiance property helps define safety with respect to a set C in the sense

that the solution or the future state of a system will never get out of safe set C .

Definition 2.2. (Safety) The system (2.1) is safe with respect to the set C if the set C is
forward invariant.

A necessary and sufficient condition for set invariance is given by Nagumo in the 1940s

which focuses on boundary derivative properties of a safe set C .

Theorem 2.1. (Nagumo’s Theorem, (Nagumo, 1942)) Given a dynamic system (2.1), as-
suming that the safe set is defined as (2.2), and that ∂h

∂x (x) ̸= 0 for all x such that h(x) = 0,
then

C is invariant ⇔ ḣ(x)≥ 0 ∀x ∈ ∂C . (2.3)

The Nagumo’s Theorem is intuitive in the sense that a safe set always pushes the state

of the system x to the interior of set C when x is at the boundary of C . However, such

condition is hard to justify and utilize in practice as it is a condition on the boundary of the

safe set instead of for the whole set. In order to extend the condition for set invariance to

the whole set, the concept of barrier functions is borrowed from optimization theory.

Definition 2.3. (Class K function). (Khalil, 2015) A Lipschitz continuous function α :
[0,a) → [0,∞),a > 0 is a class K function if it is strictly monotonically increasing and
α(0) = 0.

Definition 2.4. (Extended class K function). (Ames et al., 2019) A Lipschitz continuous
function α :R→R is an extended class K∞ function if it is strictly monotonically increasing
and α(0) = 0. (An extended class K∞ function is defined on the entire real line.)

Definition 2.5. (Barrier function). (Ames et al., 2014b) The function b : Rn → R is a
barrier function (BF) for systems (2.1) if there exist an (extended) class K function α such
that

ḃ(x)+α(b(x))≥ 0,∀x ∈ C . (2.4)
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Theorem 2.2. (Glotfelter et al., 2017) Given a dynamic system (2.1) and a set C as in (2.2),
then

C is invariant ⇔∃ a BF b : C → R. (2.5)

Barrier functions provide formal certificates for safety of nonlinear systems (2.1). How-

ever, system (2.1) only describes the dynamics of the systems without control.

2.1.2 Control Lyapunov Functions

To explore the relationship between formal safety and control, in the sequel, we consider

the nonlinear affine control system in the form:

ẋ = f (x)+g(x)u, (2.6)

where f : Rn → Rn and g : Rn → Rq are locally Lipschitz, x ∈ D ⊂ Rn (D denotes the set

of admissible states) and u ∈U ⊂ Rq (U denotes the set of admissible control).

Before establishing the control barrier function, we consider the stabilization problem

of (2.6) where the control objective is to asymptotically stabilizing the nonlinear control

system (2.6) to a point x∗ = 0. The systems is stabilized to V (x∗) = 0, i.e. x∗ = 0 if

∃u = k(x) s.t. V̇ (x,k(x))≤−γ(V (x)), (2.7)

where

V̇ (x,k(x)) = L fV (x)+LgV (x)k(x),

L f and Lg denote the Lie derivatives along f and g respectively, γ is a class K function,

V : Rn → R≥0 is a positive definite function and furthermore, a Lyapunov function.

Instead of explicitly constructing a control law that satisfied (2.7), we can describe the

set of all stabilizing controllers by defining the control Lyapunov functions.

Definition 2.6. (Control Lyapunov function) A continously differentiable function V :Rn →
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R≥0 is a control Lyapunov function (CLF) if it is positive definite and satisfies:

inf
u∈U

[L fV (x)+LgV (x)u]≤−γ(V (x)), (2.8)

where γ is a class K function.

The set of all stabilizing controllers for every point x ∈ D is described as:

Kclf(x) := {u ∈U : L fV (x)+LgV (x)u ≤−γ(V (x))}. (2.9)

Combining (2.7) and (2.8) yields the following theorem for stabilization with CLFs:

Theorem 2.3. For the affine control system (2.6), given a control Lyapunov function V , any
Lipschitz continuous feedback controller u(x)∈ Kclf(x) asymptotically stabilizes the system
to x∗ = 0.

2.1.3 Control Barrier Functions

Unlike the control Lyapunov function which aims at stabilizing the system to a given state

x∗, safety is formally guaranteed in the context of enforcing the invariance of a safe set.

Motivated by the concept of barrier functions, the control objective is to find a feedback

controller u = k(x) for the affine control system (2.6) such that the safe set C is invariant,

this goal is achieved if

∃u = k(x) s.t. ḃ(x,k(x))+α(b(x))≥ 0, (2.10)

where

ḃ(x,k(x)) = L f b(x)+Lgb(x)k(x),

L f and Lg denote the Lie derivatives along f and g respectively, α is an (extended) class K∞

function, b is a barrier function defined in (2.4). (2.10) has a similar form as (2.7), which

intuitively yields the establishment of control barrier function.

Definition 2.7. (Control barrier function). (Ames et al., 2012) Let C ⊂ D ⊂ Rn be the
superlevel set of a continuously differentiable function b : D→R, then b is a control barrier
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function (CBF) if there exists an extended class K∞ function α such that for the control
system (2.6):

sup
u∈U

[
L f b(x)+Lgb(x)u

]
≥−α(b(x)) (2.11)

for all x ∈ D.

Thus, the set of all controllers that render C safe for every point x ∈ D is described as:

Kcbf(x) := {u ∈U : L f b(x)+Lgb(x)u+α(b(x))≥ 0}. (2.12)

Combining (2.10) and (2.11) yields the following theorem enforcing safe forward in-

variance, i.e. safety:

Theorem 2.4. (Ames et al., 2014a) For the affine control system (2.6), given a control
barrier function b, any Lipschitz continuous feedback controller u(x) ∈ Kcbf(x) renders the
set C forward invariant.

2.2 Safety-Critical Control using Control Barrier Functions

In the context of safety-critical control, given a feedback controller u = k(x) which may

be unsafe, an optimization problem utilizing the control barrier functions is formulated to

amend the feedback controller to guarantee safety(Freeman and Kokotovic, 2008; Ames

et al., 2014a):

u(x) = argmin
u∈U

1
2
∥u− k(x)∥2

s.t. L f b(x)+Lgb(x)u+α(b(x))≥ 0
(2.13)

where b(x) is the control barrier function (in many cases, the safety constraint) and we

assume U ∈ R. By mapping the initial safety constraint b(x) ≥ 0 to the CBF constraint

L f b(x)+Lgb(x)u+α(b(x)) ≥ 0, we constrain the controllers in the feasible set to render

the safe set C forward invariant and thus guarantee safety. Note that (2.13) is Quadratic

Program (QP) as it has a quadratic objective and a linear CBF constraint, thus can be solved
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efficiently. When there is no actuation constraint (U ∈ R), this CBF-QP is always feasible,

thus provides a safety-critical controller which has a minimum deviation from k(x).

The performance of the controller acquired by solving the CBF-QP (2.13) greatly relies

on the performance of the feedback controller u = k(x) itself. To achieve both optimality

and safety guarantees, the joint Optimal Control and Control Barrier Function (OCBF)

approach is proposed (Xiao et al., 2021b) which has the following steps:

(i) Formulate an optimal control problem:

min
u

t f∫
t0

J(x(t),u(t))dt

s.t. ẋ = f (x)+g(x)u, b(x)≥ 0

(2.14)

where J is the objective, ẋ = f (x)+g(x)u is the system dynamics and b(x) is the safe

constraint. The complete optimal control problem is usually hard to solve, especially

when the safety constraint is complex.

(ii) Solve the optimal control problem with no active safety constraints or only some

tractable constraints to achieve the (unsafe) optimal controller u∗(t). Note that the

objective of (2.14) is an integration along time, the solution to (2.14) is often a con-

trol trajectory u(t) instead of a feedback controller u(x), especially when there are

boundary conditions.

(iii) Construct a controller that optimally tracks a reference trajectory uref(t) subject to

CBF constraints:

u(t) = argmin
u(t)∈U

t f∫
t0

1
2
∥u(t)−uref(t)∥2dt

s.t. L f b(x)+Lgb(x)u+α(b(x))≥ 0

(2.15)

Additionally, a control Lyapunov constraint can be added to (2.15) to stabilize the
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state to a reference state trajectory. The OCBF controller optimally tracks the refer-

ence trajectory by solving the optimization problem:

u(t) = argmin
u(t),ei(t)

t f∫
t0

(
1
2
∥u(t)−uref(t)∥2 +βe2

i (t)
)

dt

s.t. L f b(x)+Lgb(x)u+α(b(x))≥ 0

L fV (x)+LgV (x)u+ γ(V (x))≤ ei(t)

(2.16)

where ε > 0, and ei(t) is a relaxation variable which makes the constraint soft.

(iv) Solve problem (2.16) by discretizing [t0
i , t

f
i ] into intervals of equal length ∆t and

solving (2.16) over each time interval [t0
i +k∆t, t0

i +(k+1)∆t]. The decision variables

ui(t) and ei(t) are assumed to be constant over each such interval. They can be easily

obtained by solving the following CLF-CBF-QP, since all CBF constraints are linear

in the decision variables ui(t) and ei(t) (fixed over each interval [tk
i , t

k
i +∆t]):

min
ui(t),ei(t)

βei(t)2 +
1
2
(ui(t)−uref(t))2

s.t. L f b(x)+Lgb(x)u+α(b(x))≥ 0

L fV (x)+LgV (x)u+ γ(V (x))≤ ei(t)

t = t0
i + k∆t

(2.17)
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Chapter 3

Roundabout Problem

In this chapter, the roundabout problem of controlling CAVs travelling through a round-

about is considered. The chapter starts with the problem formulation and proposes a general

decentralized framework to control the CAVs. The solution to the unconstrained optimal

problem is derived in details which is then combined with a joint optimal control and con-

trol barrier function (OCBF) controller to guarantee safety in real time. The effectiveness

of the controller is validated through simulation experiments that compare the proposed

controller to a baseline of human-driven vehicles.

3.1 Problem Formulation

We consider the roundabout model shown in Fig. 3·1 with 3 entries and 3 exits. Extend-

ing our analysis to more than 3 entry and exit points is straightforward. We consider the

roundabout model shown in Fig. 3·1 with 3 entries and 3 exits. Extending our analysis

to more than 3 entry and exit points is straightforward. We consider the case where all

traffic consists of CAVs which randomly enter the roundabout from three different origin

points O1,O2 and O3 and have randomly assigned exit points E1,E2 and E3. The gray road

segments which include the circular part of the roundabout (within which we assume all

CAVs move in a counterclockwise direction), together with the three entry roads, form the

Control Zone (CZ) within which CAVs can share information and thus be automatically

controlled. The entry road segments are connected with the circular part at the three Merg-

ing Points (MPs) where CAVs from different road segments may potentially collide with
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A coordinator, i.e., a Road Side Unit (RSU) associated with the roundabout, records

the information associated with each CAV and maintains a queue table (see Fig. 3·1) with

CAVs orfered as they enter the CZ. The CAVs communicate with the coordinator but are not

controlled by it; rather, control inputs are evaluated on-board each CAV in a decentralized

way. Each CAV is assigned a unique index upon arrival at the CZ which is used to deter-

mine its passing order (i.e., the order in which CAVs go through MPs). The most common

scheme for maintaining such a passing order is the First-In-First-Out (FIFO) policy based

on each CAV’s arrival time at the CZ. The FIFO policy is one of the simplest schemes, yet

works well in many occasions as also shown in (Xu et al., 2022a). For simplicity, in what

follows we use the FIFO policy to illustrate the construction of the coordinator queue table,

but we point out that any passing order policy may be used, such as the Dynamic Rese-

quencing (DR) method in (Zhang and Cassandras, 2018). We also introduce an alternative

policy in Section 3.2.

Let S(t) be the set of CAV indices in the coordinator queue table at time t whose car-

dinality is N(t). When a new CAV arrives, it is allocated the index N(t)+ 1. Each time a

CAV i leaves the CZ, it is dropped and all CAV indices larger than i decrease by one. When

CAV i ∈ S(t) is traveling in the roundabout, there are several important events whose times

are used in our analysis: (i) CAV i enters the CZ at tme t0
i , (ii) CAV i arrives at MP Mk at

time tk
i , k ∈ {1,2,3}, (iii) CAV i leaves the CZ at time t f

i . Based on this setting, we can

formulate an optimal control problem as described next.

Vehicle Dynamics Denote the distance from the origin O j, j ∈ {1,2,3} to the current

location of CAV i along its trajectory as x j
i (t). However, since the CAV’s unique identity

i contains the information about the CAV’s origin O j, we can use xi(t) instead of x j
i (t)

(without any loss of information) to describe the vehicle dynamics as[
ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(3.1)



22

where vi is the velocity of CAV i along its trajectory and ui is the acceleration (control

input). In this chapter, we focus on planning optimal trajectories that guarantee safety

while ignoring lateral vehicle motion. The lateral vehicle offset can also be dealt with by

using detailed models (e.g., the 7-state model in (Xiao et al., 2021c)) and auxiliary methods

like MPC following the same framework as in the Appendix B.

Objective 1 Minimizing the travel time

Ji,1 = t f
i − t0

i (3.2)

where t0
i and t f

i are the times CAV i enters and exits the CZ respectively.

Objective 2 Minimizing energy consumption:

Ji,2 =

t f
i∫

t0
i

Ci(ui(t))dt (3.3)

where Ci(·) is a strictly increasing function of its argument. Since the energy consumption

rate is a monotonic function of the acceleration, we adopt this general form to achieve

energy efficiency.

Objective 3 Maximizing centrifugal comfort:

Ji,3 =

t f
i∫

t0
i

κ(xi(t))v2
i (t)dt (3.4)

where κ(xi) is the curvature of the road at position xi. As the aim is to minimize the

centrifugal force of the vehicle, the curvature κ(xi) has the form of 1
r(xi)

, where r(xi) is

the radius of the road at position xi. Specifically, if the road is a straight road segment,

κ(xi) = 0 which infers that r(xi) = ∞.

Constraint 1 (Rear-end safety constraint) Let ip denote the index of the CAV which

immediately precedes CAV i on the same road segment as i, if one exists. The distance



23

between ip and i, defined as zi,ip(t) ≡ xip(t)− xi(t), should satisfy a speed-dependent con-

straint:

zi,ip(t)≥ ϕvi(t)+δ, ∀t ∈ [t0
i , t

f
i ], ∀i ∈ S(t) (3.5)

where ϕ denotes the reaction time (as a rule, ϕ = 1.8s is suggested, see (Vogel, 2003)), and

δ denotes the minimum safe distance between CAVs (in general, we may use δi to make

this distance CAV-dependent but will use a fixed δ for simplicity). Note that the preceding

CAV index ip may change after road segment changing events and is updated by the method

described in section 3.2.2.

Constraint 2 (Safe merging constraint) Let tk
i , k ∈ {1,2,3} be the arrival time of CAV

i at MP Mk. Let im denote the index of the CAV that CAV i may collide with when arriving

at its next MP Mk. The distance between im and i, defined as zi,im(t) ≡ xim(t)− xi(t), is

constrained by:

zi,im(t
k
i )≥ ϕvi(tk

i )+δ, ∀i ∈ S(t), k ∈ {1,2,3} (3.6)

where im can be determined and updated by the method described in section 3.2.2.

We note that the rear-end safety constraint and the safe merging constraint take the

time-to-collision into consideration, which is the most prevalent indicator used to identify

collisions at roundabouts as reported, for example, in (Pinnow et al., 2021).

Constraint 3 (Lateral safety constraint) The moment generated by the centrifugal force

needs to be smaller than the one generated by gravity in order to avoid rollover:

κ(xi(t))v2
i (t)h ≤ whg (3.7)

where h is the height of the center of gravity of the CAV with respect to the ground, wh is

the half width of the CAV (for simplicity, both assumed the same for all CAVs) and g is the

gravity constant. The lateral safety constraint is obtained though the Zero Moment Point

(ZMP) (Sardain and Bessonnet, 2004) method that balances the gravity and centrifugal

force of the CAV.
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Constraint 4 (Vehicle limitations) The CAVs are also subject to velocity and accelera-

tion constraints due to physical limitations or traffic rules:

vi,min ≤ vi(t)≤ vi,max,∀t ∈ [t0
i , t

f
i ],∀i ∈ S(t)

ui,min ≤ ui(t)≤ ui,max,∀t ∈ [t0
i , t

f
i ],∀i ∈ S(t)

(3.8)

where vi,max > 0 and vi,min ≥ 0 denote the maximum and minimum speed for CAV i, while

ui,max > 0 and ui,min < 0 denote the maximum and minimum acceleration for CAV i. We

further assume common speed limits dictated by the traffic rules at the roundabout, i.e.

vi,min = vmin, vi,max = vmax.

Boundary conditions The initial position and velocity of the CAV as well as the ter-

minal position are given as

xi(t0
i ) = 0,vi(t0

i ) = v0
i ,xi(t

f
i ) = Li (3.9)

where v0
i is the velocity of the CAV when entering the control zone CZ and Li is the distance

it needs to travel from its entry point to its assigned exit (Li is determined once CAV i enters

CZ.)

Similar to the previous work (Xiao and Cassandras, 2021b), we construct a convex

combination of the three objectives above:

Ji = α1Ji,1 +α2
Ji,2

1
2 max{u2

max ,u
2
min}

+α3
Ji,3

κmaxv2
max

(3.10)

where α1,α2,α3 ∈ [0,1], α1+α2+α3 = 1, Ji,2 and Ji,3 are both properly normalized. Note

that these weights are determined by each CAV according to its owner’s relative preferences

among time, energy, and comfort; they are set upon a CAV’s arrival and remain unchanged

during the CAV’s trip. In particular, by defining

β1 ≡
α1

2α2
max{u2

max ,u
2
min}, (3.11)
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β2 ≡
α3 max{u2

max ,u
2
min}

2α2κmaxv2
max

, (3.12)

we can rewrite this minimization problem as

Ji(ui) =

t f
i∫

t0
i

(
β1 +

1
2

u2
i (t)+β2κ(xi(t))v2

i (t)
)

dt (3.13)

where β1 and β2 are the weight factors derived from α1 and α2. Finally, in what follows

we simply choose in Ji,2 the quadratic function Ci(ui) =
1
2u2

i (t). Then, we can formulate

the optimal control problem as follows:

Problem 1: For each CAV i following the dynamics (3.1), find the optimal control

input ui(t) and terminal time t f
i that minimizes (3.13) subject to constraints (3.1), (3.5),

(3.6), (3.7), (3.7), (3.8), boundary conditions (3.9) and given t0
i .

3.2 Decentralized Control Framework

In order to solve Problem 1 for each CAV i, we need to first determine the corresponding ip

and im (when they exist) required in the safety constraints (3.5) and (3.6). Compared to the

single-lane merging or intersection control problems where the constraints are determined

and fixed immediately when CAV i enters the CZ, the main difficulty in a roundabout is

that these constraints generally change after every event (defined earlier). In particular, for

each CAV i at time t only the merging constraint related to the next MP ahead is considered.

In other words, we need to determine at most one ip to enforce (3.5) and one im to enforce

(3.6) at any time instant.

There are two different ways to deal with this problem: (i) Treat the system as a single

CZ with three MPs with advance knowledge of each CAV’s sequence of MPs, or (ii) De-

compose the roundabout into three separate merging problems corresponding to the three

MPs, each with a separate CZ. The first approach heavily relies on the CAV sequenc-
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ing policy used. If FIFO is applied, it is likely to perform poorly in a large roundabout,

because a new CAV may experience a large delay in order to preserve the global FIFO

passing sequence. In contrast, the second approach allows us to make use of the solution

to the optimal merging problem (Xiao and Cassandras, 2021b) for each MP separately; it

may, however, cause congestion if a roundabout is too small to provide adequate space for

effective control at each separate CZ associated with each MP.

In what follows, we first address the task of determining the indices ip and im for every

CAV i in an event-driven manner which can be used in either of the two approaches above

and for any desired sequencing policy. An extended queue table, an example of which is

shown in Table 3.1 corresponding to Fig. 3·1, is used to record the essential state informa-

tion and identify all conflicting CAVs. We specify the state-updating mechanism for this

queue table so as to determine for each CAV i the corresponding ip and im. Then, we focus

on the second approach introduced above, and Section IV develops a general algorithm for

solving Problem 1 based on the OCBF method (Xiao et al., 2021b).

3.2.1 The Extended Coordinator Queue Table

Starting with the coordinator queue table shown in Fig. 3·1, we extend it to include 6

additional columns for each CAV i. The precise definitions are given below:

Table 3.1: The extended coordinator queue table S(t)

S(t)
idx state curr. ori. 1st MP 2nd MP 3rd MP ip im
0 x0 l6 l1 M1, M M2, M M3, M
1 x1 l6 l1 M1, M M2, M M3, M 0
2 x2 l5 l2 M2, M
3 x3 l2 l2 M2 M3 M1 2
4 x4 l2 l2 M2 M3 3
5 x5 l3 l3 M3 M1 1
6 x6 l4 l1 M1, M
7 x7 l4 l1 M1, M M2 M3 6 4
8 x8 l1 l1 M1 M2 7
9 x9 l1 l1 M1 M2 M3 8
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• idx: Unique CAV index, which allows us to determine the order in which the CAV

will leave the roundabout according to some policy (e.g., FIFO is assumed in Table I

since rows are ordered by the index value).

• state: CAV state xi = (xi,vi) where xi denotes the distance from the entry point to

the location of CAV i along its current road segment.

• curr.: Current CAV road segment, which allows us to determine the rear-end safety

constraints.

• ori.: Original CAV road segment, which allows us to determine its relative position

when in road segment curr.

• 1st-3rd MP: These columns record all the MPs on the CAV trajectory. If a CAV has

already passed an MP, this MP is marked with an “M”. Otherwise, it is unmarked.

This marker is used to systematically determine the safety constraints in Sec. 3.2.2.

As a CAV may not need to go through all three MPs in the roundabout, some of these

columns may be blank.

• ip: Index of the CAV that immediately precedes CAV i in the same road segment (if

such a CAV exists).

• im: Index of the CAV that may conflict with CAV i at the next MP. CAV im is the

last CAV that passes the MP ahead of CAV i. Note that if im and i are in the same

road segment, then im (= ip) is the immediately preceding CAV. In this case, the safe

merging constraint is redundant and need not be included.

Event-driven Update Process for S(t): The extended coordinator queue table S(t) is

updated whenever an event (as defined earlier) occurs. In particular:

• A new CAV enters the CZ: The CAV is indexed and added to the bottom of the queue

table.
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• CAV i exits the CZ: All information of CAV i is removed. All rows with index larger

than i decrease their index values by 1.

• CAV i passes an MP: Mark the MP with “M” and update the current road segment

value curr of CAV i with the one it is entering.

Following each event, the values of ip and im are also updated as detailed next.

3.2.2 Determination of Safety Constraints

Recall that for each CAV i in the CZ, we need to consider two different safety constraints

(3.5) and (3.6). First, by looking at each row j < i and the corresponding current road

segment value curr, CAV i can determine its immediately preceding CAV ip if one exists.

This fully specifies the rear-end safety constraint (3.5).

Next, we determine im, the CAV (if it exists) which possibly conflicts with CAV i at the

next MP it will pass so as to specify the safe merging constraint (3.6). To do so, we find

in the extended queue table the last CAV j < i that will pass or has passed the same MP as

CAV i. In addition, if such a CAV is in the same road segment as CAV i, it coincides with

the preceding CAV ip. As an example, in Table 3.1 (a snapshot of Fig. 3·1), CAV 8 has no

immediate preceding CAV in l1, but it needs to yield to CAV 7 at M1, its next MP: although

CAV 7 has already passed M1, when CAV 8 arrives at M1 there needs to be adequate space

between CAV 7 and 8 for CAV 8 to enter l4). On the other hand, CAV 9 only needs to

satisfy its rear-end safety constraint with CAV 8.

It is now clear that we can use the information in S(t) in a systematic way to determine

both ip in (3.5) and im in (3.6). Thus, there are two functions ip(e) and im(e) which need

to be updated after event e if this event affects CAV i. First, the index ip can be easily

determined by looking at rows j < i, starting at row i and moving up in the list, until the

first one is found with the same value curr as CAV i. For example, CAV 9 searches for its

ip from CAV 8 to the top and sets ip = 8 as CAV 8 has the curr value l1.
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Next, the index im is determined. To do this, CAV i compares its MP information to

that of each CAV in rows j < i, starting at row i and moving up in the list. The process

terminates the first time that any one of the following two conditions is satisfied:

• The MP information of CAV j matches CAV i. We define j to “match” i if and only

if the last marked MP or the first unmarked MP of CAV j is the same as the first

unmarked MP of CAV i. Thus, im = j.

• All prior rows j < i have been looked up and none of them matches the MP informa-

tion of CAV i.

Combining the two updating processes for ip and im together, there are four different

cases as follows:

1. Both ip and im exist. In this case, there are two possibilities: (i) ip ̸= im. CAV i has

to satisfy the safe merging constraint (3.6) with im < i and also satisfy the rear-end safety

constraint (3.5) with ip < i. For example, for i = 7, we have ip = 6 and im = 4 (M2 is the

first unmarked MP for CAV 7 and that matches the first unmarked MP for CAV 4). (ii)

ip = im. CAV i only has to follow ip and satisfy the rear-end safety constraint (3.5) with

respect to ip. Thus, there is no safe merging constraint for CAV i to satisfy. For example,

i = 4 and ip = im = 3.

2. Only ip exists. In this case, there is no safe merging constraint for CAV i to satisfy.

CAV i only needs to follow the preceding CAV ip and satisfy the rear-end safety constraint

(3.5) with respect to ip. For example, i = 1 and ip = 0.

3. Only im exists. In this case, CAV i has to satisfy the safe merging constraint (3.6)

with the CAV im in S(t). There is no preceding CAV ip, thus there is no rear-end safety

constraint. For example, i = 5 and im = 1 (M3 is the first unmarked MP for CAV 5 and that

matches the last marked MP for CAV 1 with no other match for j = 4,3,2).

4. Neither ip nor im exists. In this case, CAV i does not have to consider any safety

constraints. For example, i = 2.
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3.2.3 Sequencing Policies Using Local Coordinator Queue Tables

The extended queue table S(t) is based on a sequencing policy which applies to the whole

roundabout. Thus, if a FIFO policy is adopted, we have seen how to use a systematic pro-

cess for updating ip(e) and im(e) after each event e in S(t). However, FIFO may not be a

good sequencing policy if applied to the whole roundabout. More generally, we wish to al-

low possible resequencing after a CAV passes a MP, based on the system state information

at that time. This can be accomplished by introducing a local coordinator queue table Sk(t)

associated with each Mk, k = 1,2,3. This allows us to treat the problem of coordinating

all CAVs with Mk as their next (or just passed) MP as a separate optimal merging control

problem along the lines of (Xiao and Cassandras, 2021b). We define CZk as the CZ corre-

sponding to Mk that consists of the three road segments directly connected to Mk. A local

coordinator queue table can be viewed as a subset of the extended coordinator queue table

except that the CAVs appear in a different order in the two tables. As an example, Table

3.2 (a snapshot of Fig. 3·1) is the local coordinator queue table corresponding to M1 (in

this case, for simplicity, we still use the FIFO policy, but it is now applied only to CAVs

involved with M1).

Table 3.2: The local-coordinator queue table S1(t)

S1(t)
idx info curr. ori. 1st MP 2nd MP 3rd MP ip im
6 x6 l4 l1 M1, M
7 x7 l4 l1 M1, M M2 M3 6
8 x8 l1 l1 M1 M2 7
0 x0 l6 l1 M1, M M2, M M3, M
1 x1 l6 l1 M1, M M2, M M3, M 0
9 x9 l1 l1 M1 M2 M3 8

Event-driven Update Process for Sk(t): The local-coordinator queue table Sk(t) is

updated as follows after each event that has caused an update of the extended coordinator

queue table S(t):

• For each CAV i in Sk(t), update its information depending on the event observed: (i)
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A new CAV j enters CZk (either from an entry point to the roundabout CZ or a MP

passing event): Add a new row to Sk(t) and resequence the local-coordinator queue

table according to the sequencing policy used. (ii) CAV j exits CZk: Remove all the

information of CAV j from Sk(t).

• Determine ip and im in each local-coordinator queue table with the same method as

described in section 3.2.2.

• Update CAV j’s ip and im in the extended coordinator queue table with the corre-

sponding information in Sk(t), while Mk is the next MP of CAV j.

Note that CAV j may appear in multiple local-coordinator queue tables with different

ip and im values. However, only the one in Sk(t) where Mk is the next MP CAV j will pass

is used to update the extended coordinator queue table S(t). The information of CAV j in

other local-coordinator queue tables is necessary for determining the safety constraints as

CAV j may become CAV ip or im of other CAVs.

Resequencing policy: The local-coordinator queue table allows resequencing when a

CAV passes a MP. A resequencing policy evaluates a given criterion for each CAV and

sorts the CAVs in the queue table when a new event happens. For example, FIFO takes the

arrival time in the CZ as the criterion, while the Dynamic Resequencing (DR) policy(Zhang

and Cassandras, 2018) uses the overall objective value in (3.13) as the criterion.

We propose here a straightforward yet effective resequencing policy for the roundabout

as follows. Let x̃k
i ≡ xi −dk

j be the position of CAV i relative to Mk, where dk
j denotes the

fixed distance from the entry point (origin) O j to merging point Mk along the trajectory of

CAV i. Then, consider

yi(t) =−x̃k
i (t) (3.14)

This resequencing criterion reflects the distance between the CAV and the next MP. The

CAV which has the smallest yi(t) value is allocated first, thus this is referred to as the
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Shortest Distance First (SDF) policy. This simple resequencing policy is tested in Section

3.5. Other policies can also be easily implemented with the help of the local-coordinator

queue tables.

3.3 Unconstrained Optimal Control Solution

We now return to the solution of Problem 1, i.e., the minimization of (3.13) subject to

constraints (3.1), (3.5), (3.6), (3.8), (3.7), the initial condition xi(t0
i ) = 0, and given t0

i , v0
i

and xi(t
f
i ). The problem formulation is complete since we have used the local coordinator

queue tables to determine ip and im (needed for the safety constraints) associated with the

closest MP to CAV i.

As pointed out in (Xiao and Cassandras, 2021b), when one or more constraints become

active, the solution to Problem 1 becomes computationally intensive. The problem here

is exacerbated by the fact that the values of ip and im dynamically change due to differ-

ent events in the roundabout system. To ensure that a solution can be obtained in real time

while also guaranteeing that all safety constraints are always satisfied, we adopt the OCBF

approach (Xiao et al., 2021b) briefly introduced in the introduction and further discussed

in Section 3.4: we first determine the solution of the unconstrained optimal control prob-

lem and then solve a problem of optimally tracking this solution while guaranteeing the

satisfaction of all constraints through the use of Control Barrier Functions (CBFs).

Thus, our first task is to obtain a solution to the unconstrained roundabout problem

through Hamiltonian analysis. Denoting by Xi(t) := (xi(t),vi(t)) and λi(t) := (λx
i (t),λ

v
i (t))
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the state vector and costate vector respectively, the Hamiltonian of the system in (3.13) is

Hi(Xi,λi,ui) =β1 +
1
2

u2
i +β2κ(xi)v2

i +λ
x
i vi +λ

v
i ui

+µa
i (ui −umax)+µb

i (umin −ui)

+µc
i (vi − vmax)+µd

i (vmin − vi)

+µe
i (xi +ϕvi +δ− xip)

+µ f
i (κ(xi)v2

i h−whg)

(3.15)

where µa
i ,µ

b
i ,µ

c
i ,µ

d
i ,µ

e
i ,µ

f
i are Lagrange multipliers associated with the constraints (3.5),

(3.6), (3.8) and (3.7). Since the terminal state constraint ψi,1 := xi(t
f
i )−Li = 0 is not an

explicit function of time, the transversality condition is

Hi(Xi(t),λi(t),ui(t))|t=t f
i
= 0 (3.16)

The necessary conditions for optimality are

λ̇
x
i =−∂Hi

∂xi
=−µe

i −β2
∂κ(xi)

∂xi
v2

i −µ f
i

∂κ(xi)

∂xi
v2

i (3.17)

λ̇
v
i =−∂Hi

∂vi
=−2β2κ(xi)vi −λ

x
i − (µc

i −µd
i )

−ϕµe
i −2κ(xi)µ

f
i vi (3.18)

0 =
∂Hi

∂ui
=ui +λ

v
i +µa

i −µb
i (3.19)

Under the unconstrained assumption, none of the constraints (3.5), (3.6), (3.8) and

(3.7) is active, therefore, µa
i = µb

i = µc
i = µd

i = µe
i = µ f

i = 0. Then, the most complex part in

solving the equations above is due to ∂κ(xi)
∂xi

appearing in (3.17). In (Xiao and Cassandras,

2021a), a single curved road segment was modeled by assuming κ(xi) to be a constant taken

to be the average curvature κ̄ or the maximum curvature κmax. However, in a roundabout

road configuration, we cannot take κ(xi) to be a constant over an entire CAV trajectory, but
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rather define it as a piecewise constant function which is 0 when xi ∈ [0,L) and jumps to

1/r at xi = L. This discontinuity in κ(xi) causes complications in (3.17).

There are several ways to deal with this discontinuity problem in κ(xi). For example,

one can approximate it through a smooth (e.g., sigmoid) function. However, even the

simplest sigmoid function results in a set of complex nonlinear equations too hard to solve

in real time. In what follows, we resolve this issue by transforming Problem 1 into a

bi-level optimal control problem as described next.

At the lower level, we separate the problem for each CAV i into two parts: one for the

straight road segment and one for the circular part. Both problems are parameterized by

the terminal speed of CAV i, vm
i , at the end of the straight road segment, which is also the

initial speed for the circular part. Then, the upper level problem consists of determining an

optimal value for the parameter vm
i .

To formulate the two lower-level problems, let tm
i be the time a CAV enters the circular

part of the roundabout from the straight road segment. The boundary conditions for the

speed of CAV i when entering the straight road segment and the circular part are v0
i and

vm
i respectively. Then, we formulate the two lower-level problems corresponding to the

straight line and the circular part (both parameterized by vm
i ) as follows:

min
ui(t)

JS
i (ui(t);vm

i ) =

tm
i∫

t0
i

f S
i (ui(t))dt

s.t. (3.1), (3.5), (3.6), (3.8)

vi(t0
i ) = v0

i ,vi(tm
i ) = vm

i

xi(tm
i ) = 0,xi(t

f
i ) = Li,1

(3.20)
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min
ui(t)

JC
i (ui(t);vm

i ) =

t f
i∫

tm
i

f C
i (ui(t),vi(t))dt

s.t. (3.1), (3.5), (3.6), (3.8), (3.7)

vi(tm
i ) = vm

i

xi(tm
i ) = Li,1,xi(t

f
i ) = Li

(3.21)

where, for notational simplicity, we have defined

f S
i (ui(t)) = β1 +

1
2

u2
i (t)

f C
i (ui(t),vi(t)) = β1 +

1
2

u2
i (t)+β2κv2

i (t)

Note that f S
i and f C

i are both special cases of the integrand in (3.13). In f S
i the curvature

is κ(xi) = 0, while in f C
i the curvature is a constant κ(xi) = κ̂. Given the speed parameter

vm
i , solving the lower level problems yields two optimal costs J∗S

i (vm
i ) and J∗C

i (vm
i ), both

functions of vm
i . We then formulate the following upper level problem which aims at finding

the optimal terminal velocity vm
i :

min
vm

i

Ji(vm
i ) = J∗S

i (vm
i )+ J∗C

i (vm
i )

s.t. vmin ≤ vm
i ≤ vmax

(3.22)

3.3.1 Lower level problem 1 – Circular road segment

The circular part problem is a special case of Problem 1 where the curvature κ(xi) is

constant, i.e. κ = κ̂. Under the unconstrained assumption, µa
i = µb

i = µc
i = µd

i = µe
i = µ f

i = 0
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and the necessary conditions (3.17), (3.18), (3.19) yield:

λ̇
x
i =−∂Hi

∂xi
= 0 (3.23)

λ̇
v
i =−∂Hi

∂vi
=−2β2κ̂vi −λ

x
i (3.24)

0 =
∂Hi

∂ui
= ui +λ

v
i (3.25)

Since (3.23) implies that λx
i is a constant, set λx

i = ai. Then, combining (3.24) and (3.25)

yields

v̈i −2β2κ̂vi −ai = 0 (3.26)

Solving this equation gives an explicit solution for the speed:

v∗i (t) = bie
√

2β2κ̂t + cie−
√

2β2κ̂t − ai

2β2κ̂
(3.27)

where bi,ci are integration constants. Applying (3.1), the optimal solution for the uncon-

strained problem is obtained as follows:

u∗i (t) =
√

2β2κ(bie
√

2β2κ̂t − cie−
√

2β2κ̂t) (3.28)

x∗i (t) =
1√

2β2κ
(bie

√
2β2κ̂t − cie−

√
2β2κ̂t)− ai

2β2κ
t +di (3.29)

where di is also an integration constant.

Given the boundary conditions vi(tm
i ) = vm

i , xi(tm
i ) = Li,1, λv

i (t
f
i ) = 0, xi(t

f
i ) = Li, as

well as the transversality condition (3.16), we can obtain ai,bi,ci,di and t f
i by solving the
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set of nonlinear algebraic equations:

bie
√

2β2κ̂tm
i + cie−

√
2β2κ̂tm

i − ai

2β2κ̂
= vm

i

1√
2β2κ̂

(bie
√

2β2κ̂tm
i − cie−

√
2β2κ̂tm

i )− ai

2β2κ
tm
i +di = Li,1

1√
2β2κ̂

(bie
√

2β2κ̂t f
i − cie−

√
2β2κ̂t f

i )− ai

2β2κ
t f
i +di = Li√

2β2κ̂(bie
√

2β2κ̂t f
i − cie−

√
2β2κ̂t f

i ) = 0

β1 +β2κ̂(bie
√

2β2κ̂t f
i + cie−

√
2β2κ̂t f

i − ai

2β2κ̂
)2

+ai(bie
√

2β2κ̂t f
i + cie−

√
2β2κ̂t f

i − ai

2β2κ̂
) = 0

(3.30)

Thus, by solving (3.30) for each i ∈ S(t), we can obtain all the integration constants

ai,bi,ci,di and the terminal time t f
i for CAV i as a function of vm

i . Since (3.30) is usually

hard to solve due to the presence of the exponential terms, we will present in Section 3.3.3

a computationally efficient approach to calculate these five constants, as well as the optimal

cost.

3.3.2 Lower level problem 2 – Straight road segment

In this case, the Hamiltonian in (3.15) becomes

Hi(Xi,λi,ui) =β1 +
1
2

u2
i +λ

x
i vi +λ

v
i ui

+µa
i (ui −umax)+µb

i (umin −ui)

+µc
i (vi − vmax)+µd

i (vmin − vi)

+µe
i (xi +ϕvi +δ− xip)

(3.31)

with the transverality condition

Hi(Xi,λi,ui)
∣∣
t=tm

i
= 0 (3.32)
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The necessary conditions for optimality are

λ̇
x
i =−∂Hi

∂xi
=−µe

i (3.33)

λ̇
v
i =−∂Hi

∂vi
=−λ

x
i − (µc

i −µd
i )−ϕµe

i (3.34)

0 =
∂Hi

∂ui
=ui +λ

v
i +µa

i −µb
i (3.35)

Again, under the unconstrained assumption, µa
i = µb

i = µc
i = µd

i = µe
i = 0. Therefore,

solving the equations above, we can explicitly obtain the optimal solution to the uncon-

strained problem as:

u∗i (t) = ait +bi

v∗i (t) =
1
2

ait2 +bit + ci

x∗i (t) =
1
6

ait3 +
1
2

bit2 + cit +di

(3.36)

The boundary conditions for this problem are vi(t0
i ) = v0

i , vi(tm
i ) = vm

i , xi(t0
i ) = 0 and

xi(tm
i ) = Li,1. Combining these boundary conditions with the tranversality condition (3.32)

yields the following set of equations from which all the integration constants ai,bi,ci,di

and the terminal time tm
i can be obtained, again as a function of vm

i :

1
2

ai · (t0
i )

2 +bi · t0
i + ci = v0

i ,

1
2

ai · (tm
i )

2 +bi · t0
i + ci = vm

i ,

1
6

ai · (t0
i )

3 +
1
2

bi · (t0
i )

2 + cit0
i +di = 0,

1
6

ai · (tm
i )

3 +
1
2

bi · (tm
i )

2 + citm
i +di = L,

β− 1
2

b2
i +aici = 0.

(3.37)

This set equations is not difficult to solve; in practice, the solution can be obtained within

≪ 1s using MATLAB.
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3.3.3 The upper level problem

Once the solution u∗i (t) in (3.36) is obtained in conjunction with (3.37), we have the opti-

mal cost J∗S
i (vm

i ) available in (3.22). Similarly, once v∗i (t) and u∗i (t) in (3.27) and (3.28)

are obtained in conjunction with (3.30), then J∗C
i (vm

i ) is available and (3.22) becomes a

standard nonlinear programming problem whose solution gives an optimal vm
i . The diffi-

culty, however, is that explicit analytical expressions for J∗S
i (vm

i ) and J∗C
i (vm

i ) are generally

unavailable. The numerical evaluation of these two terms, given a particular vm
i value, is

computationally expensive and this is especially true for J∗C
i (vm

i ) where exponential terms

are involved. A straightforward and intuitive way to solve the upper level problem in real

time is to use a regression approach to obtain explicit expressions for the two optimal cost

functions. This provides a computationally efficient solution at the expense of some accu-

racy in determining the optimal vm
i .

What is important to note is that the aforementioned regression approach can be carried

out off line. To explain this, let us consider the first lower-level problem for the circular

part. For any CAV i with a given origin and destination, the physical parameter values

of Li,1, Li and κ̂ in (3.21) are fixed. Therefore, given the parameters β1,β2, for any fixed

vm
i , a shift in the arrival time tm

i will only result in a shift in the optimal control but does

not influence the optimal travel time or the optimal cost. In other words, for i, j ∈ S(t), if

vm
i = vm

j and ∆t = tm
j −tm

i , we have u∗i (t) = u∗j(t+∆t) as well as t f
i −tm

i = t f
j −tm

j . It follows

that

J∗C
i (vm

i ) =

t f
i∫

tm
i

f C
i (u

∗
i (t),x

∗
i (t))dt

=

t f
i +∆t∫

tm
i +∆t

f C
j (u

∗
j(t),x

∗
j(t))dt = J∗,Cj (vm

j )

(3.38)

where f C
i (u(t),x(t)) = f C

j (u(t),x(t)) for given β1 and β2. This implies that the optimal
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cost function J∗,Ci (vm
i ) is independent of the initial time tm

i . Therefore, given β1,β2 for a

roundabout with physical parameters κ̂,Li,1 and Li, we can get the optimal cost J∗C
i (vm

i ) for

any fixed vm
i ∈ [vmin

i ,vmax
i ] by solving (3.30) off line with tm

i = 0. Following this approach,

we can calculate a number of optimal cost and initial speed pairs (J∗C
i (vm

i ),v
m
i ) off line and

use any standard regression method to fit the optimal cost function:

R C
J (vm

i ) = J∗C
i (vm

i )+ ε(vm
i ) (3.39)

where R C
J : R → R denotes the regression model for the optimal cost, and ε denotes the

regression error.

Using the same technique, another regression model R S
J (v

m
i ) can be calculated off line

as an approximation to the optimal cost function J∗S
i (vm

i ) for CAV i in the straight road seg-

ment. Thus, the objective function of the upper level problem can be explicitly expressed

by the regression model:

Ji(vm
i ) = R S

J (v
m
i )+R C

J (vm
i ) (3.40)

Then, the upper-level problem becomes a nonlinear programming problem with an explicit

objective function. This is usually easy to solve and the optimal vm
i is readily obtained in

real time.

Once the optimal velocity vm
i is determined, the explicit solution of the two lower-level

optimal control problems can be obtained by solving (3.30) and (3.37) respectively. Re-

garding (3.30), as mentioned in Section 3.3.1, a solution can be computationally expensive

to obtain due to the exponential terms involved. To accelerate this solution process, we

can eliminate the variable t f
i in (3.30), hence obtaining a much simpler system of only four

equations to solve; this is accomplished by employing a similar regression technique for t f
i

in terms of vm
i as explained next.

As already pointed out, for a specific roundabout where Li,1 and Li are fixed, the total

travel time t f
i − tm

i is independent of the arrival time tm
i . Thus, given β1,β2 and the physical
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parameters κ̂,Li,1 and Li, we can calculate a number of travel time and initial speed pairs

(t f
i − tm

i ,v
m
i ) off line for any fixed vm

i . A regression model R C
t (vm

i ) is then used to fit the

travel time as follows:

R C
t (vm

i ) = (t f
i − tm

i )+ ε(vm
i ) (3.41)

where Rt : R → R denotes the regression model for the optimal travel time and ε(vm
i )

represents the regression error. Thus, for any observed initial velocity vm
i ∈ [vmin,vmax], we

can use this regression model to obtain the solution of t f
i :

t f
i = tm

i +R C
t (vm

i ) (3.42)

Given β1,β2 and vm
i and the regression model R C

t (vm
i ), the optimal terminal time can

be immediately obtained using (3.42). Therefore, the problem (3.21) is reduced into an

optimal control problem with fixed terminal time. The transversality condition (the last

equation in (3.30)) is no longer needed. Then, the integration constants can be obtained

easily and quickly through a simple matrix multiplication:


ai
bi
ci
di

=


− 1

2β2κ̂
e
√

2β2κ̂tm
i e−

√
2β2κ̂tm

i 0

− 1
2β2κ̂

e
√

2β2κ̂tmi
2β2κ̂

−e−
√

2β2κ̂tmi
2β2κ̂

1

− 1
2β2κ̂

e
√

2β2κ̂t f
i

2β2κ̂
−e−

√
2β2κ̂t f

i
2β2κ̂

1

0 e
√

2β2κ̂t f
i e−

√
2β2κ̂t f

i 0



−1
vm

i
Li,1
Li
0

 (3.43)

Although (3.37) for the second lower-level problem is easy to solve, the solution can

still be accelerated by a similar regression approach: a number of travel time pairs (tm
i −

t0
i ,v

m
i ) can be calculated off line to generate a regression model:

R S
t (v

m
i ) = (tm

i − t0
i )+ ε(vm

i ) (3.44)

which efficiently calculates the optimal terminal time. This reduces (3.37) to only four
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equations which are easily and quickly solved by a matrix multiplication:


ai
bi
ci
di

=


1
2(t

0
i )

2 t0
i 1 0

1
2(t

m
i )

2 tm
i 1 0

1
6(t

0
i )

3 1
2(t

0
i )

2 t0
i 1

1
6(t

m
i )

3 1
2(t

m
i )

2 tm
i 1


−1

v0
i

vm
i
0
L

 (3.45)

3.3.4 Bi-level optimal control problem transformation

Using the regression technique introduced in Section 3.3.3, the bi-level problem for an ex-

plicit solution of the unconstrained optimal control problem can be solved efficiently in real

time at the expense of some accuracy due to regression errors. We can further simplify this

process by transforming the bi-level problem into the following optimal control problem:

min
ui(t)

Ji(ui(t)) =

tm
i∫

t0
i

f S
i (ui(t),xi(t))dt +RC

J (vi(tm
i ))

s.t. (3.1), (3.5), (3.6), (3.8)

vi(t0
i ) = v0

i

xi(t0
i ) = 0,xi(tm

i ) = Li,1

(3.46)

This problem has a similar form to (3.20) except that it has a terminal state cost term

RC
J (vi(tm

i )) reflecting the performance of the terminal state under an undetermined terminal

velocity. The advantage of this alternative problem formulation is that only one regression

model, RC
J (vi(tm

i )), needs to be pre-calculated, thus reducing the overall regression error.

The Hamiltonian analysis to this problem is similar to that in Section 3.3.2 which, under

the unconstrained assumption, generates the same form of optimal control as (3.36).

As the term R C
J (vi(tm

i )) is included, the transversality condition and the boundary con-

dition of (3.46) differ from (3.22). The transversality condition is

Hi(Xi,λi,ui)
∣∣
t=tm

i
=

∂RC
J (vi(t))

∂t

∣∣∣∣
t=tm

i

(3.47)
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with costate boundary condition

λ
v
i (t

m
i ) =

∂RC
J (vi(t))
∂vi

∣∣∣∣
vi=vi(tm

i )

. (3.48)

Combining the boundary conditions vi(t0
i ) = v0

i , xi(t0
i ) = 0, xi(tm

i ) = Li,1 and (3.48) with

the transversality condition (3.47) yields the following equations from which we can solve

for all the integration constants ai,bi,ci,di and the terminal time tm
i :

1
2

ai · (t0
i )

2 +bi · t0
i + ci = v0

i ,

−aitm
i −bi =

∂RC
J (vi(t))
∂vi

∣∣∣∣
vi=

1
2 ai·(tm

i )2+bitm
i +ci

,

1
6

ai · (t0
i )

3 +
1
2

bi · (t0
i )

2 + cit0
i +di = 0,

1
6

ai · (tm
i )

3 +
1
2

bi · (tm
i )

2 + citm
i +di = L,

β− 1
2

b2
i +aici =

∂RC
J (vi(t))

∂t

∣∣∣∣
t=tm

i

.

(3.49)

This set of equations is usually easy to solve if the regression model is not too complex

(e.g., using polynomial regression). Hence, the whole problem can be solved efficiently

with only the approximation error of RC
J (v

m
i ) included. We emphasize that this is only an

alternative to the full bi-level problem solution which can reduce the computational cost for

determining the unconstrained optimal solution needed for the OCBF approach described

in Section 3.4.

3.3.5 Example

The purpose of this example is to illustrate the difference between the bi-level optimal

control approach (or the simpler transformed version in Section 3.3.4) to the alternative of

separating the roundabout into two segments where the optimal control for a CAV in each

segment is calculated and applied every time the CAV enters a new segment.

Consider a CAV entering a roundabout which consists of a 100m straight road seg-
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efficiently solved by discretizing time and solving a simple Quadratic Problem (QP) at each

discrete time step. The significance of CBFs in this approach is twofold: first, their forward

invariance property (Xiao et al., 2021b) guarantees that all constraints they enforce are

satisfied at all times if they are initially satisfied; second, CBFs impose linear constraints

on the control which is what enables the efficient solution of the tracking problem through

the sequence of QPs in (iii) above.

Once we obtain the unconstrained optimal control solution for the straight (3.36) and

circular road segment (3.28) respectively, we define it as a control reference trajectory

ure f (t). More generally, we can define any function h(u∗i (t),x
∗
i (t),xi(t)) as a control refer-

ence ure f (t) = h(u∗i (t),x
∗
i (t),xi(t)), where xi(t) provides feedback from the actual observed

CAV trajectory to add robustness to the solution. We normally choose the simplest and most

straightforward choice ure f (t) = u∗i (t) where u∗i (t) is the unconstrained optimal control so-

lution obtained from (3.36) and (3.28). We will, however, revisit the case with feedback in

Section 3.4.1.

Next, we design a controller that optimally tracks ure f (t) while satisfying all con-

straints. First, let xi(t)≡ (xi(t),vi(t)). Based on the vehicle dynamics (3.1), define f (xi(t))=

[vi(t),0]T and g(xi(t)) = [0,1]T . Each of the constraints (3.5), (3.6) and (3.8) is expressed

in the form bk(xi(t)) ≥ 0,k ∈ {1, ...,n} where n is the number of constraints. The CBF

method maps a constraint bk(xi(t)) ≥ 0 onto a new constraint which directly involves the

control ui(t) in linear fashion and takes the general form

L f bk(xi(t))+Lgbk(xi(t))ui(t)+ γ(bk(xi(t)))≥ 0, (3.50)

where L f ,Lg denote the Lie derivatives of bk(xi(t)) along f and g respectively and γ(·)

denotes any class-K function (Xiao et al., 2021b). The forward invariance property of

CBFs guarantees that a control input that keeps (3.50) satisfied will also keep bk(xi(t))≥ 0.

In other words, the constraints (3.5), (3.6), (3.8) and (3.7) are never violated (this comes
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at the expense of potential conservativeness in the control since the CBF constraint is a

sufficient condition for ensuring its associated original problem constraint.)

Considering all constraints in Problem 1, the rear-end safety constraint (3.5), the vehi-

cle limitations (3.8) and the lateral safety constraint (3.7) are all straightforward to trans-

form into a CBF form by directly applying (3.50). As an example, consider (3.5) by setting

b1(xi(t)) = zi,ip(t)−ϕvi(t)−δ = xip(t)− xi(t)−ϕvi(t)−δ. As b1(xi(t)) is differentiable,

we can calculate the Lie derivatives L f b1(xi(t))= vip −vi and Lgb1(xi(t))=−ϕ. Choosing

a linear class-K function γ(x) = k1x, the CBF constraint (3.50) can be obtained as

bcbf1(xi,ui) = vip − vi −ϕui + k1b1(xi)≥ 0 (3.51)

The safe merging constraint (3.6) differs from the rest in that it only applies to a single

specific time instants tmk
i . This poses a technical complication due to the fact that a CBF

must always be in a continuously differentiable form. We can convert (3.6) to such a form

using the technique in (Xiao et al., 2021b) to obtain

zi,im(t)−Φ(xi(t))vi(t)−δ ≥ 0, t ∈ [tk,0
i , tk

i ] (3.52)

where tk,0
i denotes the time CAV i enters the road segment connected to Mk and Φ(·) is

any strictly increasing function as long as it satisfies the boundary constraints zi,im(t
k,0
i )−

φvi(t
k,0
i )− δ ≥ 0 and zi,im(t

k
i )−φvi(tk

i )− δ ≥ 0 (the latter is precisely (3.6)). Note that we

need to satisfy (3.52) when a CAV changes road segments in the roundabout and the value

of im changes. Since zi,im(t
k,0
i ) ≥ −Lim + Li, where Li is the length of the road segment

CAV i is in, to guarantee the feasibility of (3.52), we set Φ(xi(t
k,0
i ))vi(t

k,0
i )+δ =−Lim +Li.

Then, from (3.6), we get Φ(xi(tk
i )) = ϕ. Simply choosing a linear Φ(·) as follows:

Φ(xi(t)) =

(
ϕ+

Lim −Li +δ

vi(t
k,0
i )

)
xi(t)
Li

− Lim −Li +δ

vi(t
k,0
i )

(3.53)

it is easy to check that it satisfies the boundary requirements. Note that when implementing
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the OCBF controller, xi(t) needs to be transformed into a relative position x̃k
i +Li, which

reflects the distance between CAV i and the origin of the current road segment. Thus, zi,ip

and zi,im are calculated after this transformation, where zi,ip = x̃k
ip
− x̃k

i , zi,im = x̃k
im − x̃k

i .

The last step is to provide the OCBF controller with the capability to optimally track

the reference speed trajectory. This is accomplished by using a Control Lyapunov Function

(CLF) V (xi(t)) which is similar to a CBF. Letting V (xi(t)) = (vi(t)− vre f (t))2, the CLF

constraint takes the form

L fV (xi(t))+LgV (xi(t))ui(t)+ εV (xi(t))≤ ei(t), (3.54)

where ε > 0, and ei(t) is a relaxation variable which makes this a soft constraint.

We can now formulate the problem that the OCBF controler must solve, i.e., to opti-

mally track the reference trajectory by solving the optimization problem:

min
ui(t),ei(t)

t f
i∫

t0
i

(
βe2

i (t)+
1
2
(ui(t)−ure f (t))2

)
dt (3.55)

subject to the vehicle dynamics (3.1), the CBF constraints (3.50) derived from (3.5), (3.6),

(3.8), (3.7) and the CLF constraint (3.54). As already mentioned, we select ure f (t) = u∗i (t)

and, similarly, vre f (t) = v∗i (t) in the CLF V (xi(t)) = (vi(t)− vre f (t))2, but extend these in

Section 3.4.1.

With all constraints converted to CBF constraints in (3.55), we can solve this prob-

lem by discretizing [t0
i , t

f
i ] into intervals [t0

i , t
0
i +∆], . . . , [t0

i + k∆, t0
i +(k+1)∆], . . . of equal

length ∆ and solving (3.55) over each time interval. The decision variables uk = ui(tk) and

ek = ei(tk) are assumed to be constant on each such time interval and can be easily obtained

by solving a Quadratic Program (QP) problem:

min
uk,ek

βe2
k +

∆

2
(uk −ure f (t0

i + k∆))2 (3.56)
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subject to the CBF constraints (3.50) and the CLF constraint (3.54), all evaluated at tk,

where all CBF and CLF constraints are linear in the decision variables uk and ek. By

repeating this process until CAV i exits the CZ, the solution to (3.55) is obtained.

The computational cost in using OCBF is that of solving a Quadratic Program (QP) as

shown in (3.56) at each time step. The cost of QP solutions is minimal and, in practice, it

is less than 0.01 sec. By comparison, a complete solution of the optimal control problem

(3.13), may require one or two orders of magnitude more (about 0.3 to 30 seconds). Simi-

larly, an MPC-based approach is also an order of magnitude slower (about 0.5 second). All

the computation times are measured in MATLAB.

3.4.1 Reference Trajectory with Feedback

As already mentioned, in (3.55) we can select the simplest and most straightforward ure f (t)=

u∗i (t) along with vre f (t) = v∗i (t) in the CLF V (xi(t)) = (vi(t)− vre f (t))2. These simple

reference trajectories work well in problems where the deviations (ui(t)−ure f (t)) are not

exceedingly large, as observed, for instance, in optimal merging (Xiao et al., 2021b) and in-

tersection control (Zhang and Cassandras, 2019) problems. However, when the constraints

become complex, especially when traffic in the roundabout becomes heavy, tracking these

simple reference trajectories in an open-loop way often results in such large deviations

from the unconstrained optimal solution (as illustrated in Section 3.5). Thus, a reference

trajectory which includes feedback is introduced to solve this issue. In particular, we set

vref(t) =
x∗(t)
x(t)

v∗(t), uref(t) =
x∗(t)
x(t)

u∗(t), (3.57)

where x(t) is the actual observed CAV position.

We also introduce another type of position-feedback to resolve the problem related to

large deviations in t between the reference and actual trajectories, as illustrated through a

specific numerical example in Fig. 3·8, further discussed in Section 3.5.2. We calculate a
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reference time tref by solving the following equation at any t:

x∗(tref) = x(t) (3.58)

where x∗(·) is the optimal unconstrained position of a given CAV in (3.29). Then, we

choose the unconstrained optimal trajectory at tref as the reference vref(t) = v∗(tref) and

uref(t) = u∗(tref) or

vref(t) = v∗((x∗)−1(x(t))), uref(t) = u∗((x∗)−1(x(t))) (3.59)

We will show how this approach can improve performance in Section 3.5.2.

3.5 Simulation Results

In this section, we use Vissim, a multi-model traffic flow simulation platform, as a baseline

to evaluate traffic performance in roundabouts with human-driven vehicles and compare it

to the performance obtained using our OCBF controller (for all CAVs). We use the model

shown in Fig. 3·1 constructed in Vissim and use the same vehicle arrival patterns in the

human-driven vehicle baseline and under the OCBF controller for consistent comparison

purposes.

3.5.1 Virtual roundabout example

We first conduct a case study based on a virtual roundabout as shown in Fig. 3·1. The

parameter settings are as follows: La = 100m, L = 100m, δ = 0m, ϕ = 1.8s, vmax = 20m/s,

vmin = 0, umax = 5m/s2, umin =−5m/s2. This example considers a symmetric configuration

in the sense that La = L. Different weights α1,α2,α3 directly influence the unconstrained

optimal trajectory of a CAV. To explore this impact and determine a proper parameter

setting for the weights, we start with the analysis of a single CAV that enters O1 with initial

speed v0 = 15m/s and exits from E2 and plot the unconstrained optimal velocity trajectory
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Table 3.3: Performance comparison for a symmetric
roundabout under symmetric traffic input

Traffic rate 400 CAVs/h 600 CAVs/h
Methods OCBF Vissim OCBF Vissim

Ave. time (s) 21.00 19.77 28.49 36.87
Ave. energy 17.67 34.78 32.73 57.35
Ave. comfort 58.36 74.10 47.98 60.96

Ave. obj. (energy) 175.20 200.32 218.37 296.56
Ave. fuel (mL) 19.64 13.39 19.92 14.59
Ave. obj. (fuel) 177.17 178.92 205.56 253.81

travel time), 43% in the energy consumption, 20% in the comfort cost, and 26.5% in the

total objective using OCBF relative to Vissim. This improvement in all the metrics is to be

expected as the CAVs using the OCBF method never stop and wait for CAVs in other road

segments to go through, which is the case in Vissim.

In Table 3.3, we also include another performance metric that captures fuel consump-

tion through a detailed model compared to the simple “energy” metric 1
2u2. The fuel con-

sumption is measured using the model introduced in (Kamal et al., 2011) using the set of

parameters given in (Kamal et al., 2013b):

fV = fcruise + faccel (3.60)

where fcruise = b0 +b1v+b2v2 +b3v3 represents the fuel consumption of cruising, faccel =

u(c0 + c1v+ c2v2) represents the fuel consumption of acceleration. The OCBF controller

(which is not designed to explicitly minimize fV ) consumes about 40% more fuel than

the car-following model used in Vissim; however, since we do not know the details of the

Vissim fuel consumption model, the importance of this comparison should be discounted.

Nonetheless, a higher fuel consumption under OCBF is justified due to the following two

reasons: (i) a CAV consumes more fuel when cruising at a higher speed - which is se-

lected by CAVs to improve travel times, (ii) the quadratic criterion 1
2u2 discourages large

deceleration, whereas deceleration consumes no fuel according to (Kamal et al., 2011). On
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the other hand, leaving deceleration unpenalized slows traffic down and promotes backlog.

Nevertheless, despite this difference, the total objective with fuel consumption included is

still improved using OCBF as shown in Table 3.3.

Finally, we note that if fuel consumption as measured through fV above becomes an

optimization objective, this can be accomplished using a numerical optimization approach

which makes use of CBFs to still guarantee all constraints; this was shown in (Xiao et al.,

2021b).

3.5.2 Real Roundabout

Figure 3·5: An asymmetric roundabout near Fresh Pond in Boston, MA

We consider next a real roundabout as shown in Fig. 3·5 located near Fresh Pond in

Boston, MA, with the geometric parameters L1 = 186m,L2 = 165m,L3 = 196m,La,1 =

La,2 = 53m,La,3 = 63m. This roundabout is asymmetric with a small circle and three long

entries. The remaining settings are the same as in Section 3.5.1, i.e., δ = 0m, ϕ = 1.8s,
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Figure 3·6: Vissim simulation of human-driven behavior

Figure 3·7: Matlab simulation of OCBF controller
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vmax = 20m/s, vmin = 0, umax = 5m/s2, umin = −5m/s2. We start with the same weight

parameter settings: α1 = 0.2,α2 = 0.5,α3 = 0.3 and compare the performance of OCBF

(with the SDF rule and no feedback) to the human-driven vehicle performance in Vissim

under two different traffic rates 600 CAVs/h and 800 CAVs/h. The simulation results are

shown in Table 3.4. Sample snapshots of the Vissim and MATLAB simluation respectively

are shown in Fig. 3·6 and Fig. 3·7 at the same time instant.

Table 3.4: Performance comparison for an asymmetric
real roundabout under symmetric traffic input

Traffic rate 600 CAVs/h 800 CAVs/h
Methods OCBF Vissim OCBF Vissim

Ave. time (s) 18.97 27.44 22.28 39.13
Ave. energy 49.50 62.60 63.82 74.34
Ave. comfort 41.65 35.83 37.83 30.22

Ave. obj. (energy) 165.44 217.94 194.35 285.30
Ave. fuel 21.57 11.66 19.96 12.49

Ave. obj. (fuel) 137.52 167.00 150.48 223.45

As illustrated in Fig. 3·6, a backlog always forms in the Vissim simulation which

requires vehicles to stop and queue before entering the circular road segment. The OCBF

method, however, allows the CAVs to move faster and smoothly with guaranteed safety

constraints without forming any backlogs (see Fig. 3·7). Although δ is set to 0, the CAVs

using OCBF still keep an appropriate safety distance because of the ϕvi term in (3.5);

interestingly, these safety distances are actually larger than those observed between human-

driven vehicles that use the car-following model in Vissim.

As shown in Table 3.4, CAVs using the OCBF controller improve performance on av-

erage by 31% in time, 21% in energy consumption and 24% in the total objective when

the traffic rate is 600 CAVs/h, which is consistent with the results of the example in Sec-

tion 3.5.1. An additional 8% improvement in the total objective is achieved under the high

traffic rate of 800 CAVs/h. Note that although the comfort cost is included in the total ob-

jective with weight 0.3, the OCBF controller still incurs a 16% higher comfort cost. This
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can be explained by the backlog formed by human-driven vehicles in Vissim shown in Fig.

3·6. As the queuing vehicles stop before entering and re-accelerate from zero speed in the

circle, they result in a lower average velocity than those using the OCBF controller (thus,

the actual comfort experience wihin the circular road segment is misrepresented by the

average comfort data). The fuel consumption and the associated total objective using the

model in (Kamal et al., 2011), instead of the simple metric 1
2u2, are also included in Table

3.4 showing similar results to those of Section 3.5.1.

In the following subsections, the settings of the OCBF controller are changed and simu-

lated to explore the influence of weights, sequencing rules, feedback as well as asymmetric

incoming traffic.

Time vs. comfort

In this case study, the travel time weight is fixed to α1 = 0.2 while the weight of comfort

α3 is changed from 0.3 to 0.01, representing almost no emphasis on comfort. The OCBF

controller uses the SDF rule (see Section 3.2.3) and tracks the reference trajectory with

feedback. Simulation results under the traffic rate of 800 CAVs/h is recorded in Table 3.5.

Table 3.5: Performance comparison for an asymmetric real
roundabout under symmetric traffic input

Methods OCBF Vissim
Weight of comfort α3 0.3 0.01 0.3 0.01

Ave. time (s) 22.65 21.84 39.13
Ave. energy 64.61 61.95 74.34
Ave. comfort 37.12 39.27 30.22

Ave. obj. (energy) 196.63 131.47 285.30 198.49

As shown in Table 3.5, the OCBF controller achieves better performance both when

α3 = 0.3 and α3 = 0.01, with improvements of over 30% in the total objective. The average

travel time as well as energy consumption decreases while the comfort cost increases when

α3 = 0.01. This is reasonable as more emphasis is placed on energy consumption instead
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of comfort. As the comfort cost is a quadratic function of speed, a larger comfort cost

indicates a higher velocity which results in shorter travel time.

Effect of Sequencing Rules

In this set of simulations, the effect of different sequencing rules is explored using both

a symmetric roundabout (the virtual one) and an asymmetric roundabout (the real one).

Simulation results on the performance of OCBF with FIFO and OCBF with the SDF se-

quencing policy are shown in Table 3.6.

Table 3.6: Performance comparison for different sequencing
rules under symmetric traffic input

Roundabout geometry Asymmetric Symmetric
Sequencing rule FIFO SDF FIFO SDF

Ave. time (s) 57.51 18.97 34.31 28.49
Ave. energy 141.37 49.50 39.61 32.73
Ave. comfort 14.27 41.65 43.66 47.98

Ave. obj. (energy) 436.14 165.44 250.44 218.37

When OCBF+FIFO is applied in a symmetric roundabout, it performs worse than

OCBF+SDF in average travel time (20%), energy consumption (20%) as well as the to-

tal objective (14%). Comparing Table 3.6 with Table 3.3, it can be seen that the CAVs still

benefit from the OCBF controller regardless of the sequencing policy selected. However,

when OCBF+FIFO is applied to an asymmetric roundabout, the traffic becomes congested

and the results become unstable even after simulating only 50 CAVs, indicating that FIFO

works poorly in an asymmetric roundabout. For example, when a CAV enters segment l4, it

has to wait for another CAV that has entered l2 just before it to drive more than 100 meters

for safe merging. This is unreasonable and may also result in some extreme cases where the

OCBF problem becomes infeasible. On the other hand, OCBF+SDF still achieves better

and reliable performance in an asymmetric setting.
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where the terminal time t f is marked with an asterisk. Note that t f here corresponds to the

unconstrained problem and is determined by (3.30), so in the actual constrained trajectory

implemented through the OCBF controller the CAV is still in the CZ for times t > t f . This

“extended” speed trajectory is shown with the dashed line. When the traffic is heavy and

results in considerable delay, the reference trajectory required by the OCBF controller is

the one shown by the dashed line in Fig. 3·8. The reference speed will even drop to 0

after 27s in this example. Thus, the OCBF controller will track the inappropriate reference

speed, which induces the CAV to stop and consequently block traffic. However, when a

referenced trajectory with feedback (3.59) is used, the controller will map the current state

of the CAV to the point on the solid curve in Fig. 3·8 and thus solve the issue related to

selecting the proper time t on the reference trajectory.

Imbalanced Traffic

The purpose of this case study is to investigate the effect of traffic volume. A total number

of approximately 200 CAVs is simulated under imbalanced incoming traffic (900 CAVs/h

from O1, 450 CAVs/h from O2 and O3). The simulation results of the performance under

OCBF+SDF compared to that of the human-driven vehicles in Vissim under imbalanced

incoming traffic are shown in Table 3.8.

Table 3.8: Performance comparison for an asymmetric real roundabout under asymmetric
traffic input

Method CAV Origin Time Energy Comfort Ave. Obj

OCBF
All 18.28 45.63 42.24 158.45
O1 19.38 44.01 42.14 162.27
O2 16.13 41.68 39.35 142.27
O3 18.62 53.22 45.70 169.48

Vissim
All 28.87 69.25 36.09 231.88
O1 33.88 76.03 34.67 263.03
O2 26.90 71.27 33.24 222.61
O3 21.43 53.89 42.06 182.36

Comparing Table 3.8 with Table 3.4, it is seen that imbalanced traffic causes longer
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travel times (∼2s) and higher energy consumption (∼7%), although the total traffic rates

are the same. The imbalanced traffic results in an imbalanced performance of CAVs from

different origins. The CAVs originating from O1 with heavy traffic perform worse than

those from O2 and O3 where traffic is lighter. However, when OCBF+SDF is applied to

the system, the imbalanced traffic brings no performance loss and becomes more balanced

compared to human-driven vehicle traffic. This result is interesting because the OCBF

approach does not explicitly take into account the fact that traffic is imbalanced. An expla-

nation of this phenomenon is that the SDF policy gives CAVs from O1 a higher priority as

they are more likely to be the closest ones to the MP, while OCBF allows the CAVs to go

through the roundabout quickly without stopping; therefore, the CAVs from a heavy traffic

flow are less likely to get congested.
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Chapter 4

Feasibility-Guaranteed OCBF

As aforementioned in the introduction, the feasibility problem of CBFs arises when the

control limits are tight, which often happens in the roundabout. To resolve this issue,

we start from the traffic merging problem where the traffic from two different roads join

together. The merging roadway is a basic component of a roundabout, which has a similar

problem structure but less complexity. Through the analysis of the merging problem, we

can provide a feasibility guaranteed OCBF approach that is extendable to the roundabout

problem.

4.1 Feasibility-Guaranteed OCBF

We first consider the general OCBF controller to provide a sufficient condition for it to be

feasible. Consider the nonlinear affine control system in the form:

ẋ = f (x)+g(x)u, (4.1)

where f : Rn →Rn and g : Rn →Rq are locally Lipschitz, x ∈ D ⊂Rn (D denotes the set of

admissible states) and u ∈U ⊂Rq (U denotes the set of admissible control). As introduced

in Chapter 2, the CBF method maps b(x(t))≥ 0 to a new constraint which directly involves

the control u(t) and takes the (linear in the control) form

bCBF(x(t),u(t)) = L f b(x(t))+Lgb(x(t))ui(t)+ γ(b(x(t)))≥ 0, (4.2)
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where L f ,Lg denote the Lie derivatives of b(x(t)) along f and g respectively and γ(·)

denotes some class-K function (Xiao and Belta, 2019).

To optimally track the reference speed trajectory, a CLF function V (x(t)) is used. A

CLF function is not a necessity in OCBF but often helps tracking the velocity trajectory.

The CLF constraint takes the form

L fV (x(t))+LgV (x(t))u(t)+ εV (x(t))≤ e(t), (4.3)

where ε > 0, and ei(t) is a relaxation variable which makes the constraint soft.

We solve an optimal tracking problem by discretizing [t0, tm] into intervals of equal

length ∆t and solving a Quadratic Program (QP) problem (4.4)

min
u(t),e(t)

βe(t)2 +
1
2
(u(t)−uref(t))2

s.t. L f b(x(t))+Lgb(x(t))u(t)+ γ(b(x(t)))≥ 0,

L fV (x(t))+LgV (x(t))u(t)+ εV (x(t))≤ e(t),

umin ≤ u(t)≤ umax,

t = t0 + k∆t

(4.4)

where the control limit

umin ≤ u(t)≤ umax (4.5)

is also included. This approach is simple and computationally efficient. However, it is also

myopic since each QP is solved over a single time step, which may lead to infeasible QPs

at future time steps, especially when the control limits (4.5) is tight.

To avoid the infeasibility caused by the myopic QP solving approach in the CBF method,

an additional “feasibility constraint” bF(x(t),u(t))≥ 0 is introduced in (Xiao et al., 2022b).

Definition 4.1. (Feasibility Constraint) A feasibility constraint is defined as a constraint
that makes the QP corresponding to the next time interval feasible, thus, in the case of
(4.4), a feasibility constraint has the following properties:
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(i) it guarantees that the CBF constraint (4.2) and the control bound (4.5) do not con-
flict,

(ii) the feasibility constraint itself conflicts with neither the CBF constraint (4.2) nor the
control bound (4.5).

Definition 4.2. (Conflict free) Any two state and/or control constraints (e.g., any CBF
constraint) conflict-free if their intersection is non-empty in terms of the control.

In (Xiao et al., 2022b), a sufficient condition for feasibility is provided based on the

assumption that the feasibility constraint bF(x(t),u(t)) is independent of the control u(t).

This assumption restricts the generality of the sufficient condition as many systems (e.g.

traffic merging problem) do not have the beautiful nature of independence. In what follows,

we show that it is possible to find a feasibility constraint bF(x(t),u(t)) ≥ 0 without this

assumption and explicitly derive this constraint which can provably guarantee feasibility.

This provably guaranteed feasibility also relies on the property of the system, however, we

will show that this property assumption is looser than the assumption in (Xiao et al., 2022b).

We will also show in the case study that the traffic merging control problem satisfies such

property, thus we are able to explicitly derive a feasibility constraint bF(x(t),u(t)) ≥ 0

which can provably guarantee feasibility.

4.1.1 Sufficient condition to guarantee feasibility

We now consider the QP problem (4.4). Due to the existence of the slack variable ei(t) in

the CLF constraint, the CLF constraint (4.3) never conflicts with other constraint. Thus,

the QP problem (4.4) only becomes infeasible when the CBF constraint (4.2) conflicts with

(4.5). We consider the case that u(t) is one dimensional. Without loss of generalization,

we assume Lg(b(x(t))≤ 0 and multiplies −Lg(b(x(t)) to both side of (4.5) which yields:

−Lg(b(x(t))umin ≤−Lg(b(x(t))u(t)≤−Lg(b(x(t))umax (4.6)



64

Note that (4.2) can be rewritten as

−Lgb(x(t))u(t)≤ L f b(x(t))+ γ(b(x(t))) (4.7)

where −Lgb(x(t))u(t)≤−Lgb(x(t))umax never conflicts with (4.7) as they have the same

inequality direction. Thus, we can guarantee that (4.2) and (4.6) are conflict-free by adding

a feasibility constraint:

bF(x) = L f b(x)+Lgb(x)umin + γ(b(x))≥ 0 (4.8)

where the argument t of the functions above is omitted for simplicity. Note that there is no

control u in (4.8), thus (4.8) is equivalent to x ∈ CF , where

CF = {x : bF(x)≥ 0} (4.9)

We can now consider this feasibility constraint as a new CBF and apply (4.2) to trans-

form it into a CBF constraint to enforce the forward invariance of set CF . Choosing the

linear function γ(x) = k1x and γF(x) = kFx as the class K functions, the corresponding

CBF constraint is:

L2
f b(x)+L f Lgb(x)umin + k1L f b(x)+

(
LgL f b(x)+L2

gb(x)umin

+ k1Lgb(x))u+ kF(L f b(x)+Lgb(x)umin + k1(b(x)))≥ 0
(4.10)

Next, we determine a feasible constraint to be added to every QP so that it guarantees

the QP of the next time interval is feasible. This is done by choosing kF so that kF = k1 and

(4.10) becomes

L2
f b(x)+L f Lgb(x)umin +(LgL f b(x)+L2

gb(x)umin)u

+ k1(L f b(x)+Lgb(x)umin)+ k1(L f b(x)+Lgb(x)u+ k1(b(x))≥ 0
(4.11)
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Define a “candidate function” η(xi,ui) (Xiao et al., 2022b) as

η(x,u) = L2
f b(x)+L f Lgb(x)umin +

(
LgL f b(x)+L2

gb(x)umin
)

u

+ k1
(
L f b(x)+Lgb(x)umin

) (4.12)

Then, replacing the first four terms of the feasibility CBF constraint (4.11) with η(x,u)

and noting that the remaining terms are given by bcbf(x,u) defined in (4.2) to substitute

them with bcbf(x,u), (4.11) becomes

η1(x,u)+ k1bcbf(x,u)≥ 0 (4.13)

Since bcbf(x,u)≥ 0 is required in (4.2), it follows that (4.13) will be satisfied if

η(x,u)≥ 0 (4.14)

Setting

bη(x) = L f b(x)+Lgb(x)umin (4.15)

in (4.12), we can view bη(x) as a CBF and apply (4.2) to observe that the corresponding

CBF constraint coincides with (4.14). Adding the CBF constraint (4.14) to the QP (4.4),

we will show next that (4.14) is a constraint that guarantees the feasibility of the QP corre-

sponding to the next time interval. Before establishing this result, we make the following

assumption.

Assumption 4.1. The affine system (4.1) and the CBF function b(x) has the property such
that:

∀x ∈ C , sup
u∈U

h(x,u)≥ 0, (4.16)

where
h(x,u) = L2

f b(x)+L f Lgb(x)umin +
(
LgL f b(x)+L2

gb(x)umin
)

u (4.17)

C = {x : b(x)≥ 0}

This assumption is required to guarantee that (4.14) and (4.6) are conflict-free. It is a
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system dependent assumption which provides a guidance in designing the CBF and can be

proved to be true for systems like the traffic merging problem.

Assumption 4.2. ∆t is adequately small such that the forward invariance property of CBFs
remains in force.

This assumption is made to utilize the forward invariance property of CBFs to guarantee

safety. It can be met by decreasing the time interval or by using the recently proposed event-

driven technique (Xiao et al., 2021a) which uses a tunable inter-QP interval (instead of a

fixed time-driven one) which is guaranteed to preserve constraint satisfaction.

Theorem 4.1. Under Assumption 4.1 and 4.2, if bη(x(t))≥ 0 and the QP (4.4) subject to
(4.2), (4.6) and (4.14) is feasible at time t, then the QP corresponding to time t +∆t is also
feasible.

Proof. By Assumption 4.1, there always exists a control input u(t) ∈ [umin,umax] such that
h(x,u) ≥ 0. As bη(x(t)) ≥ 0, applying (4.12), we can always find a feasible control u(t)
such that η(x(t),u(t)) ≥ 0. As η(x(t),u(t)) ≥ 0 is the CBF constraint corresponding to
bη(x(t)) ≥ 0, using the forward invariance property of CBFs under Assumption 4.2, we
have bη(x(t +∆t)) ≥ 0. Thus, there always exists a control u(t) ∈ [umin,umax] such that
η(x(t +∆t),u(t +∆t))≥ 0. Hence, (4.14) and (4.6) are conflict-free at t +∆t.

Since −Lgb(x(t))≥ 0, (4.2) constrains the control u(t+∆t) with an upper bound. Sim-
ilarly, u(t+∆t) is also constrained by an upper bound through (4.14). Thus, (4.2) and (4.14)
are conflict-free at t +∆t.

Since the QP (4.4) subject to (4.2), (4.6) and (4.14) is feasible at time t, it follows
that bcbf(x(t),u(t)) ≥ 0, bF(x(t)) ≥ 0. As η(x(t),ui(t)) ≥ 0 always has a solution u(t) ∈
[umin,umax], there exists a control under which (4.13) is satisfied. Since (4.13) is the CBF
constraint of (4.8), using the forward invariance of CBFs under Assumption 4.2, we have
bF(x(t +∆t))≥ 0, which implies that (4.2) and (4.6) are conflict-free at time t +∆t.

Thus, all constraints of the QP (4.4) are conflict-free at t+∆t and the QP corresponding
to time t +∆ is feasible.

Assumption 4.3. The following initial conditions are satisfied:

b(x(t0))≥ 0,bF(x(t0))≥ 0,bη(x(t0))≥ 0

.
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This assumption requires the system to be safe and feasible at the initial time point such

that this property can maintain through the OCBF method. In the context of set invariance,

this is a common assumption to require the initial state x to be in the feasible safe set.

Theorem 4.2. Under Assumptions 4.1, 4.2 and 4.3, the QP (4.4) subject to (4.2), (4.6) and
(4.14) corresponding to any time interval [t0 + k∆t, t0 +(k+1)∆t]⊂ [t0, t f ] is feasible.

Proof. See Appendix A.

4.1.2 Trade-off between feasibility and performance

In this section, we go back to the feasibility condition (4.8) and view it in the context of

set invariance: a controller u that enforces the forward invariance of CF guarantees the

feasibility of (4.8). Furthermore, we only need to enforce the forward invariance of a

nonempty subset of CF to guarantee feasibility at the expense of conservation, such that he

feasibility guaranteed OCBF controller becomes more conservative if the subset is smaller.

One of the goals of the OCBF controller (4.4) is to guarantee the invariance of a safe

set such that:

b(x(t))≥ 0, (4.18)

thus we can naturally seperate bF(x) into two parts: bη(x) and γ(b(x)), where bη(x) =

L f b(x)+Lg(x)umin is defined in (4.12), and γ(b(x)) ≥ 0. bη(x) provides the feasibility

guarantee in Theorem 4.1 and 4.2 where a CBF constraint (4.14) is found to enforce the

forward invariance of bη(x)≥ 0, while γ(b(x)) gives some relaxation to avoid some con-

servation. A trade-off can be made between feasibility and conservation by defining the

following function:

bη(x,α) = L f b(x)+Lgb(x)umin +αγ(b(x))) (4.19)

where α ∈ [0,1]. Defining

Cη(α) = {x : bη(x,α)≥ 0}, (4.20)
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it is obvious that

Cη(α)⊂ CF (4.21)

The function bη(x,α) describes a series of feasibility constraints, where a trade-off

between feasibility and performance is made by α. When α = 0,

bη(x,0) = L f b(x)+Lgb(x)umin (4.22)

which yields the tightest feasibility set Cη(α) to enforce invariance and thus the most con-

servative feasibility condition (which is used in Theorem 4.1 and 4.2). When α = 1,

bη(x,1) = L f b(x)+Lgb(x)umin + γ(b(x)), (4.23)

then bη(x,1) = bF(x) yields the least conservative feasibility constraint with respect to

bF(x) and Cη(α) becomes CF .

Consider the case when α = 0. Applying (4.2) to bη(x,0) yields the following CBF

constraint which enforces the forward invariance of Cη(0):

L2
f b(x)+L f Lgb(x)umin +

(
LgL f b(x)+L2

g(b(x))umin
)

u+ γ2(bη(x,0))≥ 0 (4.24)

where γ2 is again a class K function. This is exactly the candidate function defined in

(4.12). Furthermore, we can prove Theorem 4.2 in the context of set invariance without

choosing the class K function to be linear.

Proof. Consider the set C ∩Cη(0), for each state x(0) ∈ C ∩Cη(0), x(0) ∈ C and x(0) ∈
Cη(0) by definition. Under Assumption 4.1, there always exists a controller u such that
(4.24) is satisfied, thus renders Cη(0) forward invariant, i.e. x(t) ∈Cη(0) for all t ≥ t0.

As Cη(0)⊂CF , according to the definition of a feasibility constraint, the CBF constraint
(4.2) is always feasible for x ∈ Cη(0), thus renders set C forward invariant, i.e. ∀x(0) ∈
Cη(0)∩C , x(t) ∈ C for all t ≥ t0.

Combing the two forward invariance properties, we can always solve the QP (4.4) to
find a controller u such that x(t) ∈ C ∩ Cη(0) which indicates that the set C ∩ Cη(0) is
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rendered forward invariant.

Remark. The system-dependent Assumption 4.1 is important to guarantee feasibility.

In the case study of the traffic control problem which is introduced in the following sections,

the satisfaction of this assumption can be proved. Generally speaking, bη(0) provides the

most conservative condition and to some extend the best we can do. If Assumption 4.1 is

not satisfied, we should redesign the CBF to enhance feasibility. If we have the feasibility

guarantee when Assumption 4.1 is satisfied but poor performance due to the conservation

introduced, α can be adjusted to make a trade-off between feasibility and performance.

4.2 Case Study: Merging Problem Formulation

We consider the traffic merging problem in the sequel to illustrate the application of the

feasibility guaranteed OCBF approach. The merging problem arises when traffic must be

joined from two different roads, usually associated with a main lane and a merging lane

as shown in Fig.4·1. We consider the case where all traffic consists of CAVs randomly

arriving at the two roads joined at the Merging Point (MP) M where a collision may occur.

A coordinator is associated with the MP whose function is to maintain a First-In-First-

Out (FIFO) queue of CAVs based on their arrival time at the CZ and enable real-time

Vehicle-to Infrastructure (V2I) communication with the CAVs that are in the CZ, as well

as the last one leaving the CZ. The segment from the origin O or O′ to the MP M has

a length L for both roads, where L is selected to be as large as possible subject to the

coordinator’s communication range and the road network’s configuration and it defines the

CZ. Since we consider single-lane roads in this merging problem, CAVs may not overtake

each other in the CZ (extensions to multi-lane merging are given in (Xiao et al., 2020)). The

FIFO assumption imposed so that CAVs cross the MP in their order of arrival is made for

simplicity (and often to ensure fairness), but can be relaxed through dynamic resequencing

schemes as in (Xiao and Cassandras, 2020) where optimal solutions are similarly derived
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but for different selected CAV sequences.

Figure 4·1: The merging problem. CAVs randomly arrive at the origins of the main and
merging roads. Collisons may occur at the MP. A coordinator is associated with the MP to
maintain the FIFO queue and share information among CAVs as needed.

Let S(t) be the set of FIFO-ordered indices of all CAVs located in the CZ at time t

along with the CAV (whose index is 0 as shown in Fig.6·2) that has just left the CZ. Let

N(t) be the cardinality of S(t). Thus, if a CAV arrives at time t it is assigned the index N(t).

All CAV indices in S(t) decrease by one when a CAV passes over the MP and the vehicle

whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the lane to which it belongs take the

form [
ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(4.25)

where xi(t) denotes the distance to the origin O (O′) along the main (merging) lane if the

vehicle i is located in the main (merging) lane, vi(t) denotes the velocity, and ui(t) denotes

the control input (acceleration). We consider two objectives for each CAV subject to three

constraints, as detailed next.

Objective 1 (Minimizing travel time): Let t0
i and tm

i denote the time that CAV i ∈ S(t)

arrives at the origin O or O′ and the MP M, respectively. We wish to minimize the travel
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time tm
i − t0

i for CAV i.

Objective 2 (Minimizing energy consumption): We also wish to minimize energy con-

sumption for each CAV i ∈ S(t) expressed as

Ji(ui(t)) =

tm
i∫

t0
i

C(ui(t))dt, (4.26)

where C(·) is a strictly increasing function of its argument.

Constraint 1 (Safety constraints between i and ip): Let ip denote the index of the CAV

which physically immediately precedes i in the CZ (if one is present). We require that the

distance zi,ip(t) := xip(t)− xi(t) be constrained so that

zi,ip(t)≥ ϕvi(t)+δ, ∀t ∈ [t0
i , t

m
i ], (4.27)

where vi(t) is the speed of CAV i ∈ S(t) and ϕ denotes the reaction time (as a rule, ϕ = 1.8s

is used, e.g., (Vogel, 2003)). If we define zi,ip to be the distance from the center of CAV i

to the center of CAV ip, then δ is a constant determined by the length of these two CAVs

(generally dependent on i and ip but taken to be a constant for simplicity).

Constraint 2 (Safe merging between i and i− 1): When i− 1 = ip, this constraint is

redundant since (6.3) is enforced, but when i−1 ̸= ip there should be enough safe space at

the MP M for a merging CAV to cut in, i.e.,

zi,i−1(tm
i )≥ ϕvi(tm

i )+δ. (4.28)

Note that the safe merging is a terminal constraint, which is only active when the ego

vehicle arrives at the merging point.

Constraint 3 (Vehicle limitations): Finally, there are constraints on the speed and ac-
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celeration for each i ∈ S(t), i.e.,

vmin ≤ vi(t)≤ vmax,∀t ∈ [t0
i , t

m
i ], (4.29)

ui,min ≤ ui(t)≤ ui,max,∀t ∈ [t0
i , t

m
i ], (4.30)

where vmax > 0 and vmin ≥ 0 denote the maximum and minimum speed allowed in the

CZ, while ui,min < 0 and ui,max > 0 denote the minimum and maximum control input,

respectively.

Optimization Problem Formulation. Our goal is to determine a control law (as well

as optimal merging time tm
i ) to achieve objectives 1-2 subject to constraints 1-3 for each i ∈

S(t) governed by the dynamics (4.25). The common way to minimize energy consumption

is by minimizing the control input effort u2
i (t), noting that the OCBF method allows for

more elaborate fuel consumption models, e.g., as in (Kamal et al., 2013a). By normalizing

travel time and u2
i (t), and using α ∈ [0,1), we construct a convex combination as follows:

Ji(ui(t), tm
i ) =

tm
i∫

t0
i

(
α+

(1−α)1
2u2

i (t)
1
2 max{u2

i,max,u
2
i,min}

)
dt. (4.31)

If α = 1, then we solve (4.31) as a minimum time problem. Otherwise, by defining

β :=
αmax{u2

i,max,u
2
i,min}

2(1−α)

and multiplying (4.31) by β

α
, we have:

Ji(ui(t), tm
i ) := β(tm

i − t0
i )+

tm
i∫

t0
i

1
2

u2
i (t)dt, (4.32)

where β ≥ 0 is a weight factor that can be adjusted to penalize travel time relative to the

energy cost, subject to (4.25), (4.27)-(4.30) and the terminal constraint xi(tm
i ) = L, given

t0
i ,xi(t0

i ),vi(t0
i ).
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4.3 Feasibility-Guaranteed OCBF in Merging Problem

In the merging control problem, the form of the safety constraint depends on whether CAV

i and CAV i− 1 are in the same road. If so, i− 1 = ip and the rear-end safety constraint

needs to be considered. Otherwise, the safe merging constraint (4.28) must be included.

4.3.1 Rear-end Safety Constraint

When CAV i and i−1 = ip are in the same road, only the rear-end safety constraint needs

to be considered:

b1(x(t)) = zi,ip(t)−ϕvi(t)+δ ≥ 0 (4.33)

Note that in (4.33) only CAV ip’s position xip(t) is needed in addition to CAV i’s state

xi(t), which can be easily implemented in a decentralized way. As b1(x(t)) is differen-

tiable, we can calculate the Lie derivatives L f (b1(x(t))) = vip − vi(t), Lg(b1(x(t))) =−ϕ.

Applying (4.2) and choosing a linear function γ(x) = k1x as the class-K function, the rear-

end safety constraint (4.33) can be directly transformed into the CBF constraint:

bcbf1(x,ui) = vip − vi −ϕui + k1b1(x)≥ 0 (4.34)

As −Lg(b1(x(t))) = ϕ > 0, multiplying both sides of the control bound (4.30) by

−Lg(b1(x(t))) will not change the direction of the inequalities. Hence, we have

ϕui,min ≤ ϕui(t)≤ ϕui,max (4.35)

Note that (4.34) can be rewritten as

ϕui(t)≤ vip(t)− vi(t)+ k1b1(x(t)) (4.36)

where ϕui(t)≤ ui,max never conflicts with (4.36) as they have the same inequality direction.
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Thus, we can guarantee that (4.34) and (4.35) are conflict-free by adding

bF(x(t)) = vip(t)− vi(t)+ k1b1(x(t))−ϕui,min ≥ 0 (4.37)

Following the derivation in Sec 4.1.1, we can now consider this feasibility constraint as a

new CBF and apply (4.2) to transform it into a CBF constraint. Choosing a linear function

γ(x) = k1x as the class K function, the corresponding CBF constraint becomes

uip −ui + k1(vip − vi −ϕui,min)

+ k1(vip − vi −ϕui + k1(zi,ip −ϕvi +δ))≥ 0
(4.38)

Define a candidate function η(x,ui) as

η1(x,ui) = uip −ui + k1(vip − vi −ϕui,min) (4.39)

Then, replacing the first three terms of the feasibility CBF constraint (4.38) with η1(x,ui)

and noting that the remaining terms are given by bcbf1(x,ui) defined in (4.34), to substitute

the second row with bcbf1(x,ui), (4.38) becomes

η1(x,ui)+ k1bcbf1(x,ui)≥ 0 (4.40)

Since bcbf1(x,ui)≥ 0 is required in (3.51), it follows that (4.38) will be satisfied if

η1(x,ui)≥ 0 (4.41)

Following the derivation in Sec 4.1.1, we have

bη1(x) = vip − vi −ϕui,min (4.42)

h1(x,u) = ui,p −ui (4.43)

We will show next that (4.41) is a constraint that guarantees the feasibility of the QP
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corresponding to the next time interval. Before establishing this result, we make the fol-

lowing assumption.

Assumption 4.4. All CAVs have the same minimum acceleration, i.e. ui,min = umin.

This is a weak assumption guaranteeing that (4.27) and (4.30) are conflict-free, thus

Assumption 4.1 is true. It can be easily enforced since all CAVs are operating within the

same CZ, i.e., they can reach agreement on a common umin = mini{ui,min}.

Lemma 4.1. Under Assumption 4.4, Assumption 4.1 is satisfied, i.e.

∀x ∈ C , sup
u∈U

h1(x,u)≥ 0,

where C = {x : b1(x)≥ 0} and h1(x,u) is defined in (4.43).

Proof. By Assumption 4.4, uip ∈ [umin,umax]. Taking u = uip , h1(x,u) = 0, thus there
always exists a control input u(t) ∈ [umin,umax] such that h1(x,u)≥ 0.

Theorem 4.3. If bη1(x(t)) ≥ 0 and the QP (4.4) subject to (4.34), (4.30) and (4.41) is
feasible at time t, then the QP corresponding to time t +∆t is also feasible.

Proof. See Appendix A.

Assumption 4.5. The following initial conditions are satisfied:

b1(x(t0
i ))≥ 0,bF(x(t0

i ))≥ 0,bη1(x(t
0
i ))≥ 0

The constraint b1(x(t0
i )) ≥ 0 requires CAV i to meet the rear-end safety with the im-

mediately preceding CAV (if one exists) when entering the CZ. In addition, bF(x(t0
i )) ≥

0 requires that the CBF constraint is initially conflict-free with the control bounds and

bη1(x(t
0
i ))≥ 0 indicates that CAV i should not be too faster than the preceding CAV. These

constraints are reasonable and can be met using a Feasibility Enforcement Zone (FEZ)

(Zhang et al., 2017) that precedes the CZ.

Theorem 4.4. Under Assumptions 4.2, 4.4 and 4.5, the QP (4.4) subject to (4.34), (4.30)
and (4.41) corresponding to any time interval [t0

i +k∆t, t0
i +(k+1)∆t]⊂ [t0

i , t
m
i ] is feasible.

Proof. See Appendix A.
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4.3.2 Safe Merging Constraint

When CAVs i and i− 1 are in different roads, they should also satisfy the merging safety

constraint

zi,i−1(tm
i )−ϕvi(tm

i )−δ ≥ 0 (4.44)

This differs from the rear-end safety constraint in that it only applies to specific time in-

stants tm
i . This poses a technical complication as a CBF must always be in a continuously

differentiable form. We can convert (4.44) to such a form using a technique similar to the

one in (Xiao et al., 2021b) to define

b2(x(t)) = zi,i−1(t)−Φ(x(t))vi(t)−δ ≥ 0 (4.45)

where Φ(x(t)) = ϕ

xi(tm
i )xi(t). Note that Φ(x(tm

i )) = ϕ consistent with (4.44). Setting ϕ2 =

ϕ

xi(tm
i ) and omitting the argument t, we get L f (b2(x)) = vi−1 − vi −ϕ2v2

i and Lg(b2(x)) =

−ϕ2xi. Thus, using (4.2) and choosing γ(x)= k2x, (4.44) is mapped onto the CBF constraint

bcbf2(x,ui) = vi−1 − vi −ϕ2v2
i −ϕ2xiui + k2b2(x)≥ 0 (4.46)

Proceeding as in Sec. 4.3.1, we define

h2(x,u) = ui−1 −ui −2ϕ2viui −ϕ2viumin (4.47)

bη2(x) = vi−1 − vi −ϕ2v2
i −ϕ2xiumin (4.48)

η2(x,ui) = h(x,u)+ k2(bη2(x)) (4.49)

We can then obtain similar theorems as before by deriving a condition corresponding

to (4.41):

η2(x,ui)≥ 0 (4.50)

Lemma 4.2. Under Assumption 4.4, if vi ≥ 0,umin ≤ 0„ then Assumption 4.1 is satisfied,
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i.e.
∀x ∈ C , sup

u∈U
h2(x,u)≥ 0,

where C = {x : b2(x)≥ 0} and h2(x,u) is defined in (4.47).

Proof. See Appendix A.

Theorem 4.5. If bη2(x(t))≥ 0, vi ≥ 0,umin ≤ 0 and the QP (4.4) subject to (4.46), (4.30)
and (4.50) is feasible at time t, then the QP corresponding to time t +∆t is also feasible.

Proof. See Appendix A.

Assumption 4.6. The following initial conditions are satisfied:

b2(x(t0
i ))≥ 0,bF(x(t0

i ))≥ 0,bη2(x(t
0
i ))≥ 0

Theorem 4.6. Under Assumptions 4.2, 4.4, 4.6, if vi ≥ 0,umin ≤ 0, the QP (4.4) subject
to (4.46), (4.30) and (4.50) corresponding to any time interval [t0

i + k∆t, t0
i +(k+1)∆t] ⊂

[t0
i , t

m
i ] is feasible.

Proof. See Appendix A.

Note that when both the rear-end safety constraint and the safe merging constraint are

included, the feasibility of the QP can still be guaranteed by adding one feasibility con-

straint corresponding to each CBF constraint, i.e. (4.41) and (4.50).

Theorem 4.7. If bη1(x(t)) ≥ 0, bη2(x(t)) ≥ 0, vi ≥ 0,umin ≤ 0, the QP (4.4) subject to
(4.34), (4.46), (4.30), (4.41) and (4.50) is feasible at time t, then the QP corresponding to
time t +∆t is also feasible.

Proof. See Appendix A.

Theorem 4.8. Under Assumption 4.5 and Assumption 4.6, if vi ≥ 0,umin ≤ 0, the QP
(4.4) subject to (4.34), (4.46), (4.30), (4.41) and (4.50) corresponding to any time interval
[t0

i + k∆t, t0
i +(k+1)∆t]⊂ [t0

i , t
m
i ] is feasible.

Proof. See Appendix A.
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4.4 Simulation Results

In this section, simulations are conducted to validate and assess the effect of the feasibility

constraints added onto the OCBF framework. All simulations are performed in MATLAB

using quadprog as the solver for the QPs.

We first build the model shown in Fig. 4·1 with simulation parameters L = 400,umin =

−2m/ss,umax = 3m/s2 and adopt the OCBF controller without feasibility guarantee for

each CAV. In some situations, a QP for optimally tracking the unconstrained optimal con-

trol trajectory of a CAV i becomes infeasible. We record the indices of such CAVs and

consider two different cases corresponding to the rear-end safety constraint and the safe

merging constraint separately. We re-run the simulations of the two cases with feasibility

constraints added to the ego CAV, keeping all other conditions same. The simulation results

are detailed in what follows.

4.4.1 Rear-end Safety Constraint

A particular CAV, labeled “CAV 25”, is chosen as the first case study. As CAV 25 and

CAV 24 are in the same road, the possibly active constraint of interest is the rear-end safety

constraint. We adopt the OCBF controller and run the simulation twice to derive the two

trajectories of CAV 25, one with the feasibility guarantee and the other without. Note that

in the merging problem, the control ui(t) is 1-dimensional, thus the feasible set of the QP is

an interval. To illustrate the performance of the feasibility constraint, the evolution of the

feasible set of the QPs over time are plotted in Fig. 4·2.

In Fig. 4·2, the solid blue curve shows the control history u(t) generated by the OCBF

controller. The shaded blue area shows the feasible set of the QP. For each time t, the shaded

blue area marks the maximum and minimum acceleration allowed by the QP. Note that

when t = 85s, the QP becomes infeasible and the control is set to be −2m/s2 to continue

the program execution. The solid red line is the control history generated by the OCBF
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Figure 4·2: Control History Comparison

controller with the feasibility constraint added to the QP. The shaded red area shows the

feasible set corresponding to the revised QP. The dashed black lines shows the control

bounds of the CAV.

The figure shows that the OCBF and feasibility guaranteed OCBF have the same fea-

sible set before 79s, which generates the same control history. However, after 79s, the

feasible set of the feasibility guaranteed OCBF shrinks due to the feasibility constraint

while the myopic OCBF approach keeps the same feasible set. This leads to a large dif-

ference after 84s. The feasible set of the myopic OCBF approach rapidly shrinks and even

becomes empty, indicating that the QP is infeasible. The feasibility guaranteed OCBF,

however, remains feasible with the help of the advance action introduced by the feasibility

constraint.

The infeasible QP makes the safety constraints unguaranteed as we no longer benefit

from the forward invariance property of the CBF. The rear-end safety constraints of the

two cases are plotted in Fig. 4·3, where the blue curve corresponds to the OCBF controller

and the red curve corresponds to the feasibility guaranteed OCBF controller. From the

figure, we can see that the rear-end safety constraint is violated after 85s using the OCBF

controllers. This corresponds to the infeasible QP shown in Fig. 4·2 after 85s. With the
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problem to demonstrate the effectiveness of this approach. The explicit control-dependent

feasibility constraints we have derived rely on the special velocity-dependent safety con-

straint structure of the merging control problem.



83

Chapter 5

Learning the Optimal Control Problem Solution

In this chapter, we introduce the machine learning method to find a better reference trajec-

tory for the OCBF controller to track which has a huge influence on the performance of the

controller. The unconstrained optimal solution used in the previous roundabout problem

often deviates largely from the optimal trajectory, especially when the vehicle limitation is

tight. To find a better reference trajectory that is achievable in real time, we also start from

the merging control problem as what we did in deriving the feasibility guaranteed OCBF

(See Chapter 4. Although the complete optimal solution can not be calculated in real time,

they are achievable in off-line calculation, thus gives us the possibility to learn a better

referenced trajectory using neural network based on data generated from the complete Op-

timal Control Problem (OCP) solution.

5.1 Problem Formulation

We consider the traffic merging problem in the sequel to learn an optimal solution from.

The merging problem is formulated in detail in Section 4.2 and revisited briefly in the

follow sections.

5.1.1 Merging Problem Revisit

The merging problem arises when traffic must be joined from two different roads, usually

associated with a main lane and a merging lane as shown in Fig.4·1, where we consider

the case where all traffic consists of CAVs randomly arriving at the two roads joined at the
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Merging Point (MP) M where a collision may occur.

Figure 5·1: The merging problem. CAVs randomly arrive at the origins of the main and
merging roads. Collisons may occur at the MP. A coordinator is associated with the MP to
maintain the FIFO queue and share information among CAVs as needed.

Let S(t) be the set of FIFO-ordered indices of all CAVs located in the CZ at time t along

with the CAV (whose index is 0 as shown in Fig.5·1) that has just left the CZ. The vehicle

dynamics for each CAV i ∈ S(t) along the lane to which it belongs take the form[
ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(5.1)

where xi(t) denotes the distance to the origin O (O′) along the main (merging) lane if the

vehicle i is located in the main (merging) lane, vi(t) denotes the velocity, and ui(t) denotes

the control input (acceleration). We consider the convex combination of two objectives,

minimizing travel time and minimizing energy consumption, for each CAV subject to rear-

end safety constraint, safe merging constraint and vehicle limitations and thus formulate
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the optimal control problem as follows:

min
ui,tm

i

Ji(ui(t), tm
i ) := β(tm

i − t0
i )+

tm
i∫

t0
i

1
2

u2
i (t)dt (5.2)

s.t. zi,ip(t)≥ ϕvi(t)+δ, ∀t ∈ [t0
i , t

m
i ], (5.3)

zi,im(t
m
i )≥ ϕvi(tm

i )+δ, (5.4)

vmin ≤ vi(t)≤ vmax, ∀t ∈ [t0
i , t

m
i ], (5.5)

ui,min ≤ ui(t)≤ ui,max, ∀t ∈ [t0
i , t

m
i ], (5.6)

xi(tm
i ) = L, given t0

i ,xi(t0
i ),vi(t0

i ) (5.7)

Detailed explanations on the objective (5.2), the safety constraints (5.3), (5.4) and the

vehicle limitations (5.5), (5.6) can be found in Section 4.2.

5.1.2 Solution to the Merging Problem

The solution to the merging problem can be obtained through Hanmiltonian analysis. The

Hanmiltonian analysis starts from the unconstrained problem where all constraints are as-

sumed to be inactive. Following the same analysis as in Section 3.3.2 where we calculate

the unconstrained optimal solution to the lower level problem of straight road segments in

the roundabout problem, the unconstrained optimal solution to the merging problem can be

explicitly obtained as:

u∗i (t) = ait +bi

v∗i (t) =
1
2

ait2 +bit + ci

x∗i (t) =
1
6

ait3 +
1
2

bit2 + cit +di

(5.8)



86

where the integration constants ai,bi,ci,di and the terminal time tm
i can be obtained by

solving the set of equations

1
2

ai · (t0
i )

2 +bi · t0
i + ci = v0

i ,

ait0
i +bi = 0,

1
6

ai · (t0
i )

3 +
1
2

bi · (t0
i )

2 + cit0
i +di = 0,

1
6

ai · (tm
i )

3 +
1
2

bi · (tm
i )

2 + citm
i +di = L,

β− 1
2

b2
i +aici = 0,

(5.9)

which is not difficult to solve numerically. By solving the equations and replacing the

integration constants into (5.8), the unconstrained optimal solution to the merging problem

can be achieved in real time.

When one of more constraints becomes active, the solution to the optimal control prob-

lem becomes computationally intensive, thus restricts its application in real time. However,

the complete solution to the merging problem is still achievable in reasonable time using

the method in (Xiao and Cassandras, 2021b), thus provides the ability to generate the com-

plete optimal trajectories off-line and learn a reference trajectory using the neural network.

Denote the optimal trajectory to the merging problem as fOCP(x, t), the goal of learning a

reference trajectory is to find a function fNN(x,α) in the form of a neural network that has

the minimum derivation from the optimal trajectory:

min
α

tm
i∫

t0
i

1
2
∥ fOCP(x, t)− fNN(x,α)∥2dt (5.10)

where α denotes the parameters of the neural network with a specific structure and mean

square error is used as the performance criterion.
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5.2 Learning Framework

The whole process of learning a reference trajectory from the complete optimal trajectory

of the merging problem follows the standard framework in machine learning consisting of

data generation and data set construction, network design and training and is explained in

details in the sequel.

5.2.1 Generation of training data

As aforementioned, the complete optimal solution to the merging control problem can be

completely solved through intensive calculation, which restricts its application in real time.

Due to the long computation time to get a complete optimal trajectory, it is inefficient

and unreasonable to generate such a trajectory corresponding to an initial state of an ego

CAV during the training process like what is commonly done in reinforcement learning and

imitation learning. However, as the computation can be done in reasonable time off-line,

it is possible to generate the data of optimal trajectories corresponding to different initial

states and learn a reference trajectory from the data using supervised learning.

The raw data set is defined to include the state of the ego CAV i and the CAV ic that

may conflict with the ego vehicle, as well as the optimal control u∗i acquired from the

complete optimal solution. Each data point in the data set records the discrete time series

of a 7-dimensional state xi,raw(t) consisting of:

(i) State of the ego CAV xi(t),vi(t).

(ii) State of the potentially conflicting vehicle xic(t),vic(t), where ic refers to the index of

the CAV that may conflict with CAV i. Under the FIFO assumption of the merging

problem, for each CAV i, only one safety constraint (either rear-end safety or safety

merging) needs to be considered. If the rear-end safety constraint is considered,

ic = ip. Otherwise, if the safe merging constraint is considered, ic = im.
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(iii) Lane information li and lic . The lane information is necessary to indicate whether

i and ic are in the same lane. For the merging problem, both li and lic are boolean

variables which records the index of the lane CAV i and ic belongs to respectively.

Furthermore, li = lic indicates that the two CAVs are in the same lane.

(iv) The optimal control u∗i (t) obtained from the complete optimal solution.

We first build the model shown in Fig. 4·1 in simulation with parameters α = 0.25,L =

400m,umin = −2m/ss,umax = 3m/s2 and calculate the complete optimal solution for each

CAV i. In each simulation, CAVs arrive at the merging roadway following the Poisson

process with arrival rates carefully selected such that the OCP may encounter some active

constraints but is still solvable. The state xi,raw(t) is recorded in a discrete manner for

all t ∈ [t0
i , t

m
i ] where t = t0

i + k∆, k ∈ Z and thus forms a data point in the raw data set.

Following the process, the raw data set is constructed which includes the trajectories of

around 8000 CAVs in the simulation.

The raw data set is separated into a train set and a test set following the standard 7:3

ratio such that the train set contains 70% of the trajectories in the data set and the test set

contains the complementary 30%. Additionally, pre-processing may be needed to adjust

the structure of the data based on the neural network structure.

5.2.2 Network Structure

As aforementioned, our aim is to learn a reference trajectory from the complete optimal

solution. Unlike the classification and prediction task which only relies on the current

state, the trajectory learning task requires information of past states, thus time must be

introduced to get a better performance. The standard way to take time into consideration

in neural network is to include a Recurrent Neural Network (RNN) such as the Long-short

Term Memory (LSTM). A LSTM network is a RNN aimed to deal with the vanishing

gradient problem which is composed of a cell, an input gate, an output gate and a forget
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gate(Gers et al., 1999). The cell remembers values over arbitrarily long terms and the

three gates regulates the flow of information into and out of the cell to provide achievable

short-term memory.

Figure 5·2: LSTM model(Gers et al., 1999)

Based on a LSTM, we design the basic structure of the neural network as shown in 5·3.

Figure 5·3: Basic Structure of the Neural Network

The input is a 6-dimensional vector x(t) = (xi(t),vi(t), li(t),xic(t),vic(t), lic(t)), which

includes the states and lane information of both the ego CAV and the potentially conflicting

CAV. The LSTM has both the hidden layer size and the output size set to be 256 and is

connected to a Multilayer Perceptron (MLP) with hidden layer size also 256. The output

size of the MLP is 1, which refers to the control learnt from the data and is compared to

the label u∗i (t). The mean square loss is selected as the criterion to learn the parameters in
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Figure 5·4: Comparison of the learnt trajectory and the optimal trajectory

the neural network model and the Adam optimizer is chosen to learn the parameters during

training.

The neural network works in the way as follows. Given a series of data x(t) corre-

sponding to a trajectory from t0
i to tm

i , the input x(t0
i ) is first fed into the LSTM, along with

all hidden nodes initialized as 0. The LSTM generates an output which is passed to the

MLP to get the control u(t0
i ) and updates the hidden layer. The same process is followed to

deal with the data points along the trajectory, however, the hidden layer gets updated in the

previous time step and is no longer all 0. In this way, time is introduced to the network by

including the history information with the hidden layer in LSTM. Finally, the output ui(t)

is compared with the label u∗i (t) and the MSE loss is calculated.

This model works well in both training and testing with an MSE loss of around 10−6,

which indicates the average deviation from the predicted control and the label is around

10−3m/s2. As ui(t) distributes in [−2m/s2,3m/s2] and heavily accumulates within the

range of [0.2m/s2,0.5m/s2], the loss is adequately small. The comparison of the learnt

trajectory and the optimal trajectory shown in Fig. 5·4 also shows that the network has

learnt the trend of the complete optimal solution.
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However, when this model is directly implemented in the simulation such that the con-

trol u = fNN(x) is exerted on CAV i at each time step, a huge performance loss occurs due

to the dependency between xi(t),vi(t) and ui(t). In the offline training session, all data are

previously generated. xi(t),vi(t) are always accurate and independent with the output ui(t).

However, when the model is tested in an online environment in the simulation, xi(t +∆t)

and vi(t +∆t) are influenced by ui(t). The errors in ui(t) accumulate through this feedback

process and thus results in a large deviation from the label trajectory.

Adjustments are made to the neural network model to resolve the problem of perfor-

mance difference between offline and online testing due to the input-output dependency.

The structure of the network is shown in Fig. 5·5 which decouples xi(t),vi(t) with ui(t)

in the training. In this model, xi(t) and vi(t) no longer serves as the input, thus the in-

put is decoupled from the output and remains accurate in both offline training and online

testing. Only xi(t0) and vi(t0) are used to initialize the hidden layer of the LSTM, the rest

state information of CAV i are used as the label. The adjusted network has an input size

of 4 (xic(t),vic(t), li(t), lic(t)) and an output size of 3 (xi(t),vi(t),ui(t)). Besides learning a

reference trajectory from the optimal solution, the network now has an underlying goal of

learning the dynamics of the CAV at the same time. In the adjusted model, the mean square

error is also chosen as the loss function with properly selected weights. As the adjusted

model has fewer inputs and more outputs and is more complex than the previous one, it is

harder to be trained. However, a small MSE loss can still be acquired at around 10−4 both

in off-line training and online testing.

Figure 5·5: Neural Network Model 2
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5.3 OCBF with Neural Network

As introduced in Sec. 3.4, the OCBF controller transforms the optimal control problem into

an optimal trajectory tracking problem with CBFs providing safety guarantees and CLFs

providing convergence to desired states. The problem is decretized along time with time

step ∆t to form a series of QPs (5.11) which can be solved efficiently in real time.

min
u(t),e(t)

βe(t)2 +
1
2
(u(t)−uref(t))2

s.t. L f b(x(t))+Lgb(x(t))u(t)+ γ(b(x(t)))≥ 0,

L fV (x(t))+LgV (x(t))u(t)+ εV (x(t))≤ e(t),

umin ≤ u(t)≤ umax,

t = t0 + k∆t

(5.11)

where V (x(t)) = (v(t)− vref(t))2 is the CLF.

Combing the OCBF with the neural network model proposed in Sec. 5.2 is straight-

forward. Denote the neural network as a function y(t) = fNN(x(t),h(t)) where x(t) =

(xic(t),vic(t), li(t), lic(t)), y(t) =
(
xNN

i (t),vNN
i (t),uNN

i (t)
)

and h(t) is the hidden layer in

the LSTM. Starting with t = t0, h(t0) is initialized with the initial state of the ego vehicle

xi(t0) and vi(t). The learnt trajectory y(t0) is given by taking x(t0) and h(t0) into fNN(x,h)

which also updates the hidden state into h(t1). Taking y(t0) as the reference state such that

uref(t0) = uNN
i (t0) and vref(t0) = vNN

i (t0) and solving (5.11) gives the control ui(t0). Execut-

ing the control to the vehicle updates the states of both the ego vehicle and the conflicting

vehicle.

For t = tk = t0 + k∆t and k = 1...kmax, the hidden state h(tk) is no longer initialized.

By taking x(tk) and h(tk) into fNN(x,h), both the learnt state y(tk) and the updated hidden

state h(tk+1) are acquired. Tracking y(tk) with (5.11) generates the control xi(tk) which is

then exerted on the ego vehicle.
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Following this process, the control that optimally tracks the learnt trajectory from the

neural network with safety guarantees can be acquired in real time.

5.4 Simulation Results

In this section, a simulation is build on the model shown in Fig. 5·1 with the parameters

α = 0.25,L = 400,umin =−2m/s2,umax = 3m/s2 same as those when generating the data

set. CAVs arrive at the CZ following a Poisson process with different initial velocities

and follow their own complete optimal trajectories which are previously calculated offline.

Among the optimal trajectories, a trajectory with partially active constraints generated by

CAV i is selected as the baseline. The simulation is then rerun following the same process

except that CAV i is controlled by an OCBF controller. Both the unconstrained optimal

trajectory and the trajectory generated by a neural network are used as the reference tra-

jectory in OCBF and measured in the simulation. The comparison of the standard OCBF

(with unconstrained optimal trajectory), NN-based OCBF (with learnt reference trajectory)

and the complete optimal solution is plotted in Fig. 5·6.

Figure 5·6: Control Trajectory: NN+CBF vs OCBF
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The complete optimal control solution is plotted in blue in Fig. 5·6. The CAV enters the

merging roadway at around 78s and keeps a linearly increasing acceleration until it reaches

the safety constraint at 83s. Given the same initial condition, the unconstrained optimal

control trajectory is calculated and plotted as the dashed green line. The unconstrained

optimal solution is always linear in time t as it neglect all the safety constrains and thus

has a large deviation from the OCP solution. Using it as the reference trajectory in OCBF

ans tracking it with CBF and CLF generates the red curve, in which we can see a huge

drop in the control at the beginning. This will result in a waste in energy consumption

and a jerk that may bring discomfort. In comparison, the neural network model manage to

generate a trajectory that is closer to the OCP solution as shown in the yellow curve. It has

a smaller acceleration at the beginning which reduces the energy cost and manage to follow

the tendency of the OCP trajectory to reduce the acceleration when the constraint becomes

active. Using the control trajectory generated by the neural network and tracking it using

CBFs, the NN-based OCBF controller generates a curve closer to the OCP trajectory as

shown in purple (Note: The NN-based OCBF controller is also noted as NN+CBF in the

figures and tables). It has small acceleration in the beginning and gets closer to the OCP

curve when the constraint becomes active.

Table 5.1: Performance Comparison of OCP, OCBF and NN+CBF

Method OCP OCBF NN+CBF
time (s) 18.20 18.20 18.20
energy 0.967 1.387 0.982

obj. 49.50 49.92 49.52

The performance comparison of OCP, OCBF and NN+CBF are listed in Table 5.1. As

the time resolution of the simulation is 0.1s (which means the CAVs in the simulation are

updated and recorded every 0.1 simulation seconds), the travel time of all three method are

not distinguishable. However, there is a huge difference in the energy consumption and

thus brings a difference in the total objective. Comparing with the OCP baseline, OCBF
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Figure 5·7: Control Trajectory2: NN+CBF vs OCBF

costs about 40% more energy while NN+CBF costs only 1.5% more, which results in a

performance loss of 1% and 0.04% respectively. The results shows that for this particular

CAV, the neural network manages to generate a referenced trajectory that outperforms the

standard OCBF and improves the performance of the OCBF controller.

Multiple trajectories are selected as baselines to illustrate the improvement to the refer-

ence trajectory brought by the neural network. Some selected cases are shown in Fig. 5·7

and Fig. 5·8 respectively. The figures show that the NN-based trajectory is much closer

to the complete OCP solution than the unconstrained optimal solution although there re-

mains some deviation between the NN curve and the complete OCP curve. Due to the

limited samples of constrained optimal solution in the data set, the neural network can-

not full reconstruct the complete OCP solution, but manage to learn a trajectory between

the unconstrained optimal solution and the OCP solution. As shown in Fig. 5·8, the NN

curve in yellow gives the CAV the instruction to accelerate when entering the CZ, which
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Figure 5·8: Control Trajectory3: NN+CBF vs OCBF

is opposite to the deceleration command given by the OCP solution. However, instead of

the aggressive 1.5m/s2 control given by the unconstrained optimal trajectory (shown in

dashed green), the NN-based trajectory suggests a control 0.5m/s2 which happens to be

the average of the OCP trajectory and the unconstrained one. The simulation results show

that by using a neural network, a better reference trajectory can be generated and utilized

to improve the performance of the OCBF controller comparing to using the unconstrained

optimal trajectory. Further improvements can be made to enhance the performance of the

NN-based trajectory, including adjustment to the NN model, better tuning and learning on

a larger data set.



97

Chapter 6

A Hierarchical Framework of Modular Control
Zones

The transition from a single CZ to multiple interconnected CZs is particularly challenging

for several reasons including the following. First, when studying a CZ in isolation through

an optimization problem, it is assumed that the initial conditions for each CAV satisfy the

constraints of the problem. When one CZ is followed by another, there is no obvious way

to ensure that the state of a CAV exiting the first can always satisfy the initial feasibility

conditions of the next CZ’s optimization problem. Second, when two adjacent CZs are

physically separated by a short distance, the optimal control of CAVs in either CZ may

in fact cause congestion in the other, including traffic blocking effects. Thus, both per-

formance degradation and lack of safety guarantees result from a direct application of the

techniques developed to date for a single CZ without utilizing the global information of the

traffic flow in a system or at least some local information from neighboring CZs.

6.1 Problem Formulation

We model the control of CAVs in a general traffic network under the modular control zone

architecture shown in Fig. 6·1. A Control Zone (CZ), defined as an area within which

CAVs can communicate with each other and with a coordinator, is usually associated with

a specific conflict area, including (but not limited to) merging roadways, intersections, and

roundabouts. A coordinator (Road Side Unit (RSU)) is associated with each CZ to maintain

a certain passing sequence of CAVs based on their arrival time at the CZ and their states; it
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joined from two different roads, usually associated with a main road and a merging road

as shown in Fig. 6·2. We consider the case where all traffic consists of CAVs randomly

arriving at the two roads joined at the Merging Point (MP) M where a collision may occur.

A coordinator is associated with the MP to maintain a First-In-First-Out (FIFO) queue of

CAVs based on their arrival time at the CZ. The segment from the origin O or O′ to M has

a length L for both roads, where L is selected to be as large as possible subject to the co-

ordinator’s communication range and the road network’s configuration. Since we consider

single-lane roads in this merging problem, CAVs may not overtake each other in the CZ

(extensions to multi-lane merging are given in (Xiao et al., 2020)). The FIFO assumption

imposed so that CAVs cross the MP in their order of arrival is made for simplicity (and

often to ensure fairness), but can be relaxed through dynamic resequencing schemes as in

(Xiao and Cassandras, 2020) where optimal solutions are similarly derived but for different

selected CAV sequences.

Figure 6·2: The merging problem: CAVs randomly arrive at the origins of the main and
merging roads. Collisons may occur at the Merging Point M. A coordinator is associated
with M to maintain a queue and share information among CAVs as needed.

Let S(t) be the set of FIFO-ordered indices of all CAVs located in the CZ at time t
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along with the CAV (whose index is 0 as shown in Fig.6·2) that has just left the CZ. Let

N(t) be the cardinality of S(t). Thus, if a CAV arrives at time t, it is assigned the index

N(t). All CAV indices in S(t) decrease by one when a CAV passes over the MP and the

vehicle whose index is −1 is dropped.

The vehicle dynamics for each CAV i ∈ S(t) along the lane to which it belongs take the

form [
ẋi(t)
v̇i(t)

]
=

[
vi(t)
ui(t)

]
(6.1)

where xi(t) denotes the distance to the origin O (O′) along the main (merging) lane if the

vehicle i is located in the main (merging) lane, vi(t) denotes the velocity, and ui(t) denotes

the control input (acceleration). We consider two objectives for each CAV subject to four

constraints, as detailed next.

Objective 1 (Minimizing travel time): Let t0
i and tm

i denote the time that CAV i ∈ S(t)

arrives at the origin O or O′ and the MP M, respectively. We wish to minimize the travel

time tm
i − t0

i for CAV i.

Objective 2 (Minimizing energy consumption): We also wish to minimize energy con-

sumption for each CAV i ∈ S(t) expressed as

Ji(ui(t)) =

tm
i∫

t0
i

C(ui(t))dt, (6.2)

where C(·) is a strictly increasing function of its argument.

Constraint 1 (Rear end safety constraints): Let ip denote the index of the CAV which

physically immediately precedes i in the CZ (if one is present). We require that the distance

zi,ip(t) := xip(t)− xi(t) be constrained so that

zi,ip(t)≥ ϕvi(t)+δ, ∀t ∈ [t0
i , t

m
i ], (6.3)

where vi(t) is the speed of CAV i ∈ S(t) and ϕ denotes the reaction time (as a rule, ϕ = 1.8s

is used, e.g., (Vogel, 2003)). If we define zi,ip to be the distance from the center of CAV i

to the center of CAV ip, then δ is a constant determined by the length of these two CAVs
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(generally dependent on i and ip but taken to be a constant for simplicity).

Constraint 2 (Safe merging (terminal constraint) between i and i−1): When i−1 = ip,

this constraint is redundant since (6.3) is enforced, but when i− 1 ̸= ip there should be

enough safe space at the MP M for a merging CAV to cut in, i.e.,

zi,i−1(tm
i )≥ ϕvi(tm

i )+δ. (6.4)

Constraint 3 (Vehicle limitations): There are constraints on the speed and acceleration

for each i ∈ S(t), i.e.,

vmin ≤ vi(t)≤ vmax,∀t ∈ [t0
i , t

m
i ], (6.5)

ui,min ≤ ui(t)≤ ui,max,∀t ∈ [t0
i , t

m
i ], (6.6)

where vmax > 0 and vmin ≥ 0 denote the maximum and minimum speed allowed in the

CZ, while ui,min < 0 and ui,max > 0 denote the minimum and maximum control input,

respectively.

Constraint 4 (Terminal velocity): In a single CZ problem (Xiao et al., 2021b), the

optimal terminal velocity is determined by solving the associated optimal control problem.

In contrast, here we impose a constraint vm determined by the upper (flow control) level:

vi(tm
i ) = vm (6.7)

Problem 1: Our goal is to determine a control law (as well as optimal merging time

tm
i ) to achieve objectives 1-2 subject to constraints 1-4 for each i ∈ S(t) governed by the

dynamics (6.1). The common way to minimize energy consumption is by minimizing the

control input effort u2
i (t), noting that the OCBF method allows for more elaborate fuel

consumption models, e.g., as in (Kamal et al., 2013a). By normalizing travel time and
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u2
i (t), and using α ∈ [0,1), we construct a convex combination as follows:

Ji(ui(t), tm
i ;vm) =

tm
i∫

t0
i

(
α+

(1−α)1
2u2

i (t)
1
2 max{u2

i,max,u
2
i,min}

)
dt. (6.8)

If α = 1, then we solve (6.8) as a minimum time problem. Otherwise, by defining β :=
αmax{u2

i,max,u
2
i,min}

2(1−α) and multiplying (6.8) by β

α
, we have:

(ui(t), tm
i ;vm) := β(tm

i − t0
i )+

tm
i∫

t0
i

1
2

u2
i (t)dt, (6.9)

where β ≥ 0 is a weight factor that can be adjusted to penalize travel time relative to

the energy cost, subject to (6.1), (6.3)-(6.7) and the terminal constraint xi(tm
i ) = L, given

t0
i ,xi(t0

i ),vi(t0
i ).

6.1.2 Merging Control: Upper (Flow Control) Level

The function of the coordinator of CZ j = 1,2, . . . now includes dynamically setting vm =

vm
j in the terminal velocity constraint (6.7). The traffic in CZ j is influenced by vm

j in two

ways: (i) CAV i’s objective Ji(ui(t), tm
i ;vm

j ) becomes a function of vm
j , and (ii) The initial

velocity of CAVs in CZ j is exactly the terminal velocity vm
ju in CZ j’s upstream CZ, ju.

Thus, by setting such terminal velocity constraints, the coordinators can control the traffic

flow in CZ j based on observations including, but not limited to, the number of CAVs in

CZ j, N j; the number of CAVs in CZ j’s neighboring CZs , {N jn : jn ∈ N ( j)}; the length

of the road segment L; and the terminal velocity of the neighboring CZs vm
jn .

Problem 2 Our goal is to design a terminal velocity constraint controller for CZ j that

minimizes the average of CAV objectives:

J j(vm
j (t)) =

1
N j(t)

N j(t)

∑
i

J∗i (v
m
j (t)) (6.10)
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where N j(t) denotes the total number of CAVs in CZ j at time t and J∗i (v
m
j (t)) is the optimal

cost in (6.9). The problem is re-solved at every t when a CAV arrival/departure event occurs

that causes a change in N j(t) and the set of feasible values of vm
j (t) depends on observations

from CZ j and its neighboring CZs jn ∈ N ( j). This is a challenging problem to solve on

line. In the sequel, we limit ourselves to a simpler feedback-based policy for vm
j (t), as

described in Section 6.2.2.

6.2 Hierarchical Control Problem Solution

In this section, we provide solutions to Problems 1-2 formulated above as shown in Fig.

6·3. Problem 1 is solved adopting the OCBF approach (Xiao et al., 2021b). Problem 2 is

solved by using several event-driven methods including a simple fixed vm and a feedback

control method to set the terminal velocity dynamically.

6.2.1 Problem 1: Lower Level Merging Control

The merging control problem can be analytically solved, however, as pointed out in (Xiao

et al., 2021b), it becomes computationally intensive when one of more constraints be-

come active. To solve the merging problem in real time while still guaranteeing that all

safety constraints are satisfied, we adopt the OCBF approach (Xiao et al., 2021b) through

the following steps: (i) an optimal control solution for the unconstrained optimal control

problem (6.9) is first obtained as a reference control, (ii) the resulting reference trajectory

is optimally tracked subject to the control bounds (6.6) as well as a set of CBF constraints

enforcing (6.3),(6.4). Using the forward invariance property of CBFs (Xiao et al., 2023),

these constraints are guaranteed to be satisfied at all times if they are initially satisfied. The

importance of CBFs is that they impose linear constraints on the control which, if satisfied,

guarantee the satisfaction of the associated original constraints that involve the state and/or

control. This whole process leads to a sequence of QPs solved over discrete time steps,
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since the objective function is quadratic and the CBF constraints are linear in the control.

Unconstrained optimal control solution. The unconstrained solution refers to the

solution of (6.9) with all safety constraints (6.3) and (6.4) inactive. However, the terminal

velocity constraint (6.7) is retained as a boundary condition. Using standard Hamiltonian

analysis (Bryson and Ho, 1969), the optimal control, velocity, and position trajectories of

CAV i have the form:

ui(t) = ait +bi (6.11)

vi(t) = 1/2 ·ait2 +bit + ci (6.12)

xi(t) = 1/6 ·ait3 +1/2 ·bit2 + cit +di (6.13)

where the parameters ai,bi,ci,di and tm
i are obtained by solving the following five equa-

tions:

1/2 ·ai(t0
i )

2 +bit0
i + ci = v0

i (6.14)

1/2 ·ai(tm
i )

2 +bitm
i + ci = vm (6.15)

1/6 ·ai(t0
i )

3 +1/2 ·bi(t0
i )

2 + cit0
i +di = 0 (6.16)

1/6 ·ai(tm
i )

3 +1/2 ·bi(tm
i )

2 + citm
i +di = L (6.17)

β−1/2 ·bi +aici = 0 (6.18)

where (6.15) corresponds to the terminal speed constraint (6.7).

Optimal reference tracking controller with CBFs: Once we obtain the unconstrained

optimal control solution (6.11)-(6.13), we set a reference control ure f (t)= h(u∗i (t),x
∗
i (t),xi(t))

for some appropriately designed h(ui(·) that provides feedback xi(t) from the actual ob-

served CAV trajectory; in the simplest case, we just set ure f (t) = u∗i (t), the solution of the

unconstrained problem in (6.11). We then design a controller that minimizes
∫ tm

i
t0
i

1
2(ui(t)−

uref(t))2dt subject to all constraints (6.3) through (6.6). This is accomplished by intro-
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ducing CBFs for the safety constraints to take advantage of their simple form (linear in

the control) while still guaranteeing the satisfaction of all constraints through the forward

invariance property of CBFs. We review this approach next (see also (Xiao et al., 2021b)).

First, let xi(t) ≡ (xi(t),vi(t)). Based on the vehicle dynamics (6.1), define f (xi(t)) =

[vi(t),0]T and g(xi(t)) = [0,1]T . All state constraints, such as (6.3) and (6.4), can be ex-

pressed in the form bk(xi(t))≥ 0,k ∈ {1, ...,B} where B is the number of constraints. The

CBF method maps each constraint bk(xi(t))≥ 0 to a new constraint which directly involves

the control ui(t) and takes the (linear in the control) form

L f bk(xi(t))+Lgbk(xi(t))ui(t)+ γ(bk(xi(t)))≥ 0, (6.19)

where L f ,Lg denote the Lie derivatives of bk(xi(t)) along f and g respectively and γ(·)

denotes some class-K function (Xiao et al., 2023), usually taken to be linear for simplicity.

The forward invariance property of CBFs guarantees that a control input that satisfies (6.19)

will also enforce bk(xi(t))≥ 0 at all times. In other words, the safety constraints (6.3), (6.4)

are never violated.

To optimally track the reference speed trajectory, a Control Lyapunov Function (CLF)

V (xi(t)) is used. Letting V (xi(t)) = (vi(t)− vref(t))2, the CLF constraint takes the form

L fV (xi(t))+LgV (xi(t))ui(t)+ εV (xi(t))≤ ei(t), (6.20)

where ε > 0, and ei(t) is a relaxation variable which makes the constraint soft. Then,

the OCBF controller optimally tracks the reference trajectory by solving the optimization

problem:

min
ui(t),ei(t)

tm
i∫

t0
i

(
βe2

i (t)+
1
2
(ui(t)−uref(t))

2
)

(6.21)

subject to the B CBF constraints (6.19), the CLF constraints (6.20) and the control bounds

(6.6).
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We can now solve problem (6.21) by discretizing [t0
i , t

m
i ] into intervals of equal length ∆t

and solving (6.21) over each time interval [t0
i + k∆t, t0

i +(k+1)∆t]. The decision variables

ui(t) and ei(t) are assumed to be constant over each such interval. They can be easily ob-

tained by solving the following Quadratic Program (QP) problem, since all CBF constraints

are linear in the decision variables ui(t) and ei(t) (fixed over each interval [tk
i , t

k
i +∆t]):

min
ui(t),ei(t)

βei(t)2 +
1
2
(ui(t)−uref(t))2

s.t. (6.19), (6.20), (6.6), t = t0
i + k∆t

(6.22)

By repeating this process until CAV i exits the CZ, the solution to (6.21) is obtained

as long as (6.22) is feasible for each time interval (this issue is further addressed below).

Unlike the CBF constraints (6.19) that guarantee safety, the CLF constraints (6.20) provide

convergence to the referenced velocity trajectory, designed so that vref(tm
i ) = vm. If conver-

gence to vm is not fully attained by the time CAV i exits the CZ, this only causes some loss

in performance but no violation to any safety constraint.

Control and speed reference trajectories. The reference trajectories uref(t) and vref(t)

are designed in a position-feedback manner such that vref(t) ends with vm, i.e. when xi(t) =

L, vref(tm
i )= vm. We introduce a reference time tref by solving x∗(tref)= x(t) for any t, where

x∗(·) is the optimal unconstrained position of a given CAV in (6.13). For computational

efficiency, we may use an approximate solution tref = t−(x∗(t)−x(t))/v∗(t)instead. Then,

we choose the unconstrained optimal trajectory at tref: vref(t) = v∗(tref), uref(t) = u∗(tref).

Feasibility Enforcement Mode. When solving (6.9) for a single CZ, it is assumed that

all safety constraints are initially satisfied. When OCBF is applied, the additional initial

CBF constraints in (6.19) are assumed to be satisfied as well. However, when multiple

CZs are considered, this assumption is no longer reasonable, as the initial state of a CAV

entering a CZ depends directly on the control applied at its upstream CZ. Thus, a control

mechanism is needed to enforce the initial feasibility which can no longer be assumed.
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Inspired by the Feasibility Enforcement Zone (FEZ) concept (Zhang et al., 2017), where

initial constraints are enforced in a road segment prior to entering the CZ, we introduce a

Feasibility Enforcement (FE) mode as shown in Fig. 6·3. When CAV i enters a CZ at time

t, it is set to the FE mode with a constant control input of maximum deceleration which

enforces the satisfaction of initial constraints as fast as possible up to a maximum distance

limit (normally L/4) within which feasibility must be attained. If none of the constraints is

violated, the CAV’s mode is switched to OCBF mode with the OCBF controller optimally

tracking the reference trajectory, and never changed back. Of course, the FE mode mecha-

nism does not guarantee the desired initial feasibility, especially when the road length L is

short and the initial velocity v0
i is high. Thus, the coordinator is required to constrain the

terminal velocity of CAVs appropriately so as to further enforce feasibility and smooth the

traffic flow. In addition, the average time of a CAV in FE mode reflects the robustness of

the system: the shorter the average FE mode is in a CZ, the safer and more robust this CZ

is.

OCBF Control Feasibility. As already pointed out, the feasibility of the OCBF con-

troller after each time step in (6.22) is not guaranteed. This is because the time discretiza-

tion keeps the control constant over a time step and may cause a conflict with the control

limits which cannot be predicted by the myopic nature of each QP in the sequence of QPs

that are solved. However, in merging control, we can enforce this feasibility by adding

a single feasibility guarantee constraint corresponding to each CBF constraint using the

method in (Xu et al., 2022c). Specifically, the rear-end CBF constraint (6.19) applied to

(6.3) is vip − vi −ϕui + k1b1(xi) ≥ 0 and it was shown in (Xu et al., 2022c) that it can be

enforced by any ui and k1 > 0 that satisfy

uip −ui + k1(vip − vi −ϕui,min)≥ 0 (6.23)

Similarly, the safe-merging CBF constraint (6.19) applied to (6.4) is vi−1 − vi − ϕ2v2
i −
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ϕ2xiui + k2b2(xi)≥ 0 and it can be shown to be enforced by any ui and k2 > 0 that satisfy

ui−1 −ui −2ϕ2viui −ϕ2viumin + k2(vi−1 − vi −ϕ2v2
i −ϕ2xiumin)≥ 0

6.2.2 Problem 2: Upper Level Flow Control

Flow control is performed by dynamically setting the terminal velocity vm
j for each CZ j

in an event-driven way: when a CAV enters or exits CZ j or its neighbors, coordinator j

communicates with all its neighboring coordinators jn ∈ N ( j) and adjusts vm
j according

to accumulated statistical information at the CZ and its neighbors. Coordinator j then

broadcasts vm
j to all CAVs within CZ j. Once a new vm

j is received, CAV i generates a new

reference trajectory through (6.11), (6.12), (6.13) and tracks it with the OCBF controller.

This event-driven method avoids frequent rescheduling of CAVs through the lower level

control.

The performance of the system is affected by vm
j in two ways. First, vm

j directly in-

fluences the CAV objectives at the lower level. Specifically, when the weight α on travel

times is relatively large, a large vm
j often results in better performance. On the other hand,

an aggressive exit velocity vm
j may result in a higher probability of violating the safety con-

straints upon entering the downstream CZs, which increases the average time spent in FE

mode and consumes more energy as a consequence.

In this chapter, rather than explicitly trying to solve Problem 2 through (6.10), we

design a feedback controller to regulate the terminal velocity vm
j according to the number

of CAVs in CZ j and its neighbors which is monitored by each coordinator. The feedback

controller has the form:

vm
j (t) = vb − kN jn(t) (6.24)

where vb is a baseline velocity, k ≥ 0 is a feedback gain parameter, and N jn(t) is the number

of CAVs in the downstream neighboring CZ jn. When k = 0, this becomes a fixed speed

controller. A simple, yet effective, selection for vb is the average optimal terminal velocity
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vb =
1

NS
∑i∈S argminvm J∗i (v

m), where where J∗i (v
m) is the optimal cost in (6.9), S is a set of

CAVs sampled with different entry velocity, and NS is the cardinality of S.

The controller can be modified by replacing N jn(t) by N jn(l, t), defined as the number

of CAVs in [0, l], the first segment of the CZ with length l, since the performance of the

downstream CZ is critically affected by the average time in FE mode, therefore, the states

of CAVs in this segment is more important than the rest. In this case, l is a parameter to be

selected and an alternative selection for vb is the average velocity of CAVs in the critical

zone [0, l], denoted by v̄(l).

Efficient trajectory generation when vm changes. Clearly, every time vm changes in

(6.15), the reference trajectories of all CAVs in the CZ affected by this change need to

be re-generated. The event-driven nature of the flow controller above limit the frequency

of such changes. Nonetheless, under heavy traffic, this frequency may still be high and

motivates an efficient trajectory regenerating method that address this problem.

We first observe that the unconstrained optimal solution to Problem 1 (6.11)-(6.13) is

invariant to a time shift, i.e. ui(t) = u′i(t − t ′) where the parameters of u′i(t) are obtained

from (6.14)-(6.18) with t0
i − t ′ replacing t0

i and tm
i − t ′ replacing tm

i . Thus, by shifting time

t ′ = t0
i forward and replacing tm by tm

i − t0
i , (6.14)-(6.18) are equivalent to:

ci = v0
i (6.25)

1/2 ·ait2
m +bitm + ci = vm (6.26)

di = 0 (6.27)

1/6 ·ait3
m +1/2 ·bit2

m + citm +di = L (6.28)

β−1/2 ·bi +aici = 0 (6.29)

These can be combined into a single cubic equation in tm (for notational simplicity, v0
i and
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vm are replaced with v0 and vm respectively in the sequel):

βt3
m +(2v0 + vm)t2

m +(−3L+6v0vm +6v2
0)tm −12Lv0 = 0 (6.30)

Denoting the left side of (6.30) by f (tm,vm), we get

∂ f (tm,vm)

∂vm
= t2

m +6v0tm

∂ f (tm,vm)

∂tm
= 3βt2

m +(4v0 +2vm)tm −3L+6v0vm +6v2
m

Considering a small perturbation in vm, we have f (tm,vm+∆v)= f (tm,vm)+
∂ f (tm,vm)

∂vm
∆v,

which results in a perturbation in tm such that f (tm +∆t,vm +∆v) = f (tm,vm) = 0. Then,

using a first-order Taylor expansion,

f (tm +∆t,vm +∆v) = f (tm,vm +∆v)+
∂ f (tm,vm)

∂tm
∆t (6.31)

which yields

∆t =−
(

∂ f (tm,vm)

∂vm

)/(
∂ f (tm,vm +∆v)

∂tm

)
∆v

=− t2
m +6v0tm

3βt2
m +(4v0 +2v′m)tm −3L+6v0v′m +6v2

0
∆v

(6.32)

where v′m = vm +∆v is the perturbed vm. This provides an analytical expression of the

perturbed terminal time t ′m = tm +∆t when vm is perturbed by ∆v.

Now the problem turns into finding the unconstrained optimal solution to Problem 1

with fixed terminal time t ′m. The solution shares the form (6.11)-(6.13) with parameters

obtained by solving (6.14)-(6.17). By similarly shifting time t ′ = t0
i forward and replacing

tm by tm
i − t0

i , (6.14)-(6.17) are equivalent to (6.25)-(6.28) which has a unique analytical
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solution if tm ̸= 0 (which obviously holds):

ai = 6/t2
m(v

m − v0
i )−12/t3

m(L− v0
i tm)

bi =−2/tm(vm − v0
i )+6/t2

m(L− v0
i tm)

ci = v0
i ,

di = 0

(6.33)

Thus, every time vm is changed by ∆v, we can efficiently generate the unconstrained optimal

trajectories by setting t ′m = tm +∆t using (6.32) and then using t ′m into (6.33) to update all

the parameters without re-solving (6.14)-(6.18).

6.3 Simulation Results

In this section, we use the multi-model traffic flow simulation platform Vissim to construct

the two-CZ configuration in Fig. 6·1. We replicate this model in a Python-based simulation

with the same traffic input and apply the lower level controller only (without flow control

using terminal velocity constraints) as a baseline to evaluate the traffic performance in

two consecutive merging roadways and compare it to the performance obtained using our

proposed modular control zone framework. In the simulations, only the terminal velocity

vm
1 of CZ1 is set for flow control, while vm

2 is set to be the average exiting velocity of CAVs

passing CZ2 with the lower level controller only for fair comparison.

Flow control with fixed vm vs. No flow control. We start with the flow controller (6.24)

with fixed vm. The parameter settings are as follows: L1 = L2 = 200m,δ = 0m,ϕ = 1.8s,

vmax = 30m/s, vmin = 0, umax =−umin = 4m/s2, α= 0.0625, vm
2 = 18.5m/s. We use a fixed

traffic rate 400 CAVs/h in each road segment and simulate around 120 CAVs. Simulations

are performed using a fixed vm
1 value, which varies over 12−20m/s with step size 0.5m/s.

The objective of each CZ as well as the total objective corresponding to different vm
1 are

shown in Fig. 6·4 where dashed lines show the baseline. The figure shows that a higher
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Table 6.1: Feasibility Comparison of Flow Control vs. no flow control

FEm count FEm Time (s) Infeasible Count
No flow control 62 0.86 1

vm
1 = 15m/s 46 0.34 0

vm
1 = 12m/s 26 0.15 0

with the fixed value flow controller (vm
1 = 15m/s) and the baseline using only the lower

level controller as shown in Table. 6.2.

Table 6.2: Performance Comparison

Metric Feedback Control Fixed vm No flow control

CZ1
t 12.45 13.44 10.65
e 4.51 5.66 5.81

obj. 12.81 14.62 12.92

CZ2
t 10.31 12.11 10.23
e 8.32 5.38 13.31

obj. 15.19 13.46 20.13
Total obj. 28.00 28.07 33.03

Table 6.2 shows that the flow controller with fixed vm and feedback control on vm both

outperform the baseline in the sense of total objective, with approximately 15% improve-

ment. CAVs using only the lower level controller always have a shorter travel time than the

modular CZ method with flow control at the expense of an energy consumption rise in CZ2

causing a total performance loss. There is no significant performance increase using the

feedback controller due to the constant traffic rate used in the simulation. As can be seen in

Fig. 6·4, vm
1 = 15m/s is already close to optimal, leaving little room for extra improvement.

However, a feedback controller pays off when the traffic rate increases over time.

Varying traffic input. We construct a varying traffic input with rates

λ(t) =


300, t ∈ [ 0, 400]
200, t ∈ [ 400, 800]
400, t ∈ [ 800,1200]
100, t ∈ [1200,1600]
400, t ∈ [1600,2000]

CAVs/h
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Table 6.3: Performance Comparison

Metric Feedback Control Fixed vm No flow control

CZ1
t 10.69 12.48 10.66
e 8.45 5.58 5.81

obj. 36.96 38.85 34.23

CZ2
t 9.72 10.69 10.23
e 9.88 9.41 13.31

obj. 35.82 37.92 40.59
Total obj. 72.78 76.77 74.72

method.



Chapter 7

Conclusions and Future Directions

7.1 Conclusions

In this dissertation, we develop and tackled four problems closely related to safety-critical

optimal control in autonomous traffic systems:

(1) Optimal control of CAVs in a roundabout (Chapter 3),

(2) Feasibility guaranteed OCBF (Chapter 4),

(3) Learning the OCP solution (Chapter 5),

(4) A hierarchical framework of modular control zones (Chapter 6).

These works are related in the following way. Following our proposed framework in

(1), the CAVs in a roundabout can be controlled in a decentralized way with significant

improvements in the performance shown in the simulation. However, when the traffic con-

ditions become more complex and the vehicle limitations become tighter, the feasibility

problem arises and is often accompanied with the problem of performance loss. The fea-

sibility guaranteed OCBF is derived to resolve the feasibility problem, where we adopt the

OCBF approach and guarantee the feasibility of each QP problem by adding a single feasi-

bility constraint to it. To improve the performance, a neural network is designed and trained

to learn a referenced trajectory from the OCP solution. As the roundabout problem con-

sists of several coupled merging control problems and the latter is easier to analyze, work

(2) and (3) are both conducted in the merging control scenario. Work (1)-(3) successfully

tackle the decentralized optimal control problem of controlling CAVs travelling through a

roundabout scenario and resolve the potential feasibility and performance problem but are
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restricted to a single control zone. For the completeness and generality of the dissertation, a

hierarchical framework is proposed and validated in (4) to scale up the optimal safe control

of CAVs to a traffic network.

7.2 Future Directions

7.2.1 Application in a Generalized Complex Traffic Network

The decentralized control framework for CAVs proposed in the dissertation are built and

tested in simple scenarios comparing to a complex traffic network. The effectiveness of

the framework remains to be validated and adjustments may be needed when applying the

framework to a more complicated scenario. Therefore, the application of the safety-critical

optimal control methods to CAVs in simulators with a built-in town map (like CARLA)

will be a future direction. A benchmark can also be a potential output.

7.2.2 Adaptive Control Barrier Function with Feasibility Guarantee

The feasibility of the OCBF controller is guaranteed by adding a feasibility constraint at

the price of conservation. As pointed out in Chapter 4, a parameter α can make a trade-

off between feasibility and conservation. However, in the dissertation, α is a fixed value

predefined according to a user’s preference instead of a decision variable. The idea of

adaptive CBF can be borrowed to bring the parameter α into the optimization process to

provide a less conservative feasibility guarantee.

7.2.3 Control Barrier Functions with Reinforcement Learning and Online Learning

In the dissertation, the OCBF controller tracks a reference trajectory that is fixed either

by analytical solution or by pre-trained neural network. Therefore the controller lacks the

capability to learn from the environment and adjust according to noises and environment

changes. A combination of CBFs with reinforcement learning and online learning has the

potential to resolve this problem and thus improve the performance.
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7.2.4 Mixed Traffic Scenario

The dissertation limits itself to the scenario of all CAVs with no human interference. The

problem becomes interesting and challenging when human driven vehicles (HDVs) are

included. The decentralized OCBF framework still has the potential to solve the problem

under mixed traffic scenario, however, the interaction between HDVs and CAVs remains to

be studied.
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Appendix A

Proofs

Proof of Theorem 4.2

Theorem 4.2 Under Assumptions 4.1, 4.2 and 4.3, the QP (4.4) subject to (4.2), (4.6) and

(4.14) corresponding to any time interval [t0 + k∆t, t0 +(k+1)∆t]⊂ [t0, t f ] is feasible.

Proof. Since bF(x(t0)) ≥ 0, the CBF constraint (4.2) does not conflict with the control
bounds (4.6). Using (4.12) under bη(x(t0)) ≥ 0 and Assumption 4.1, there always exists
a control u(t0) ∈ [umin,umax] such that (4.14) is satisfied, which indicates that (4.14) and
(4.6) are conflict-free. As (4.2) and (4.14) have the same inequality direction for u(t0), they
are conflict-free as well. Thus, the QP (4.4) subject to (4.2), (4.6) and (4.14) is feasible at
time t0.

According to Theorem 4.1, the QP corresponding to time t0+∆t is feasible. Assumption
4.2 preserves the forward invariance property of CBFs which guarantees that b(x(t0 +

∆t))≥ 0 and bη(x(t0 +∆t))≥ 0 under Assumption 4.3.
Following the same procedure, it is easy to prove that if the QP is feasible at t0 + k∆t,

b(x(t0 + k∆t)) ≥ 0 and bη(x(t0 + k∆t)) ≥ 0, then the QP corresponding to t0 +(k+ 1)∆t
is feasible, b(x(t0 +(k+ 1)∆t)) ≥ 0 and bη(x(t0 +(k+ 1)∆t)) ≥ 0 and the proof of the
theorem is completed by induction.

Proof of Theorem 4.3

Theorem 4.3 If bη1(x(t)) ≥ 0 and the QP (4.4) subject to (4.34), (4.30) and (4.41) is

feasible at time t, then the QP corresponding to time t +∆t is also feasible.

Proof. By Assumption 4.4, mini{ui}= umin ≤ uip(t), thus there always exists a control in-
put ui(t) ∈ [umin,ui,max] such that uip(t)−ui(t)≥ 0. As bη1(x(t))≥ 0, applying (4.39), we
can always find a feasible control ui(t) such that η1(xi(t),ui(t))≥ 0. As η1(xi(t),ui(t))≥ 0
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is the CBF constraint corresponding to bη1(xi(t)) ≥ 0, using the forward invariance prop-
erty of CBFs under Assumption 4.2, we have bη1(x(t +∆t))≥ 0. Thus, there always exists
a control ui(t) ∈ [umin,ui,max] such that η1(xi(t +∆t),ui(t +∆t)) ≥ 0. Hence, (4.41) and
(4.30) are conflict-free at t +∆t.

Since ϕ ≥ 0, (4.34) constrains the control ui(t +∆t) with an upper bound. Similarly,
ui(t+∆t) is also constrained by an upper bound through (4.41). Thus, (4.34) and (4.41) are
conflict-free at t +∆t.

Since the QP (4.4) subject to (4.34), (4.30) and (4.41) is feasible at time t, it follows
that bcbf1(xi(t),ui(t)) ≥ 0, bF(x(t)) ≥ 0. As η1(xi(t),ui(t)) ≥ 0 always has a solution
ui(t) ∈ [umin,ui,max], there exists a control under which (4.40) is satisfied. Since (4.40) is
the CBF constraint of (4.37), using the forward invariance of CBFs under Assumption 4.2,
we have bF(x(t +∆t)) ≥ 0, which implies that (4.34) and (4.30) are conflict-free at time
t +∆t.

Thus, all constraints of the QP (4.4) are conflict-free at t+∆t and the QP corresponding
to time t +∆ is feasible.

Proof of Theorem 4.4

Theorem 4.4 Under Assumptions 4.2, 4.4 and 4.5, the QP (4.4) subject to (4.34), (4.30)

and (4.41) corresponding to any time interval [t0
i +k∆t, t0

i +(k+1)∆t]⊂ [t0
i , t

m
i ] is feasible.

Proof. Since bF(xi(t0
i )) ≥ 0, the CBF constraint (4.34) does not conflict with the control

bounds (4.30). Using (4.39) under bη1(xi(t0
i ))≥ 0 and Assumption 4.4, there always exists

a control ui(t0
i ) ∈ [umin,ui,max] such that (4.41) is satisfied, which indicates that (4.41) and

(4.30) are conflict-free. As (4.34) and (4.41) have the same inequality direction for ui(t0
i ),

they are conflict-free as well. Thus, the QP (4.4) subject to (4.34), (4.30) and (4.41) is
feasible at time t0

i .
According to Theorem 4.3, the QP corresponding to time t0

i +∆t is feasible. Assumption
4.2 preserves the forward invariance property of CBFs which guarantees that b1(xi(t0

i +

∆t))≥ 0 and bη1(x(t
0
i +∆t))≥ 0 under Assumption 4.5.

Following the same procedure, it is easy to prove that if the QP is feasible at t0
i + k∆t,

b1(xi(t0
i +k∆t))≥ 0 and bη1(xi(t0

i +k∆t))≥ 0, then the QP corresponding to t0
i +(k+1)∆t

is feasible, b1(xi(t0
i +(k+1)∆t))≥ 0 and bη1(xi(t0

i +(k+1)∆t))≥ 0 and the proof of the
theorem is completed by induction.
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Proof of Lemma 4.2

Theorem 4.2 Under Assumption 4.4, Assumption 4.1 is satisfied, i.e.

∀x ∈ C , sup
u∈U

h2(x,u)≥ 0,

where C = {x : b2(x)≥ 0} and h2(x,u) is defined in (4.47).

Proof. Lemma 4.2 is equivalent to: if vi ≥ 0,umin ≤ 0, there exists a control input ui(t) ∈
[umin,ui,max], such that

ui−1 −ui −2ϕ2viui −ϕ2viumin ≥ 0 (A.1)

Note that (A.1) can be rewritten as

ui +
1
2

umin ≤
1

1+2ϕ2vi
(ui−1 +

1
2

umin) (A.2)

Under Assumption 4.4,

1
1+2ϕ2vi

(ui−1 +
1
2

umin)≥
1

1+2ϕ2vi

3
2

umin (A.3)

As vi ≥ 0, we have 1+2ϕ2vi ≥ 1. Additionally, umin ≤ 0, thus

umin ≤
1

1+2ϕ2vi
umin (A.4)

As minui(ui +
1
2umin) =

3
2umin, we have

min
ui

(ui +
1
2

umin)≤
1

1+2ϕ2vi

3
2

umin (A.5)

Combining (A.5) with (A.3), there always exists a control input ui(t) ∈ [umin,ui,max] such
that (A.2) is satisfied. Hence, Lemma 4.2 is proved.

Proof of Theorem 4.5

Theorem 4.5 If bη2(x(t)) ≥ 0, vi ≥ 0,umin ≤ 0 and the QP (4.4) subject to (4.46), (4.30)

and (4.50) is feasible at time t, then the QP corresponding to time t +∆t is also feasible.
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Proof. According to Lemma 4.2, there exists a control input ui(t) ∈ [umin,ui,max] such that
(A.1) is satisfied, thus Assumption 4.1 is satisfied. According to Theorem 4.1, the QP (4.4)
subject to (4.46), (4.30) and (4.50) is feasible at time t, then the QP corresponding to time
t +∆t is also feasible.

Proof of Theorem 4.6

Theorem 4.6 Under Assumptions 4.2, 4.4, 4.6, if vi ≥ 0,umin ≤ 0, the QP (4.4) subject

to (4.46), (4.30) and (4.50) corresponding to any time interval [t0
i + k∆t, t0

i +(k+1)∆t] ⊂

[t0
i , t

m
i ] is feasible.

Proof. The proof is by induction following the same steps as in the proof of Theorem 4.4
and invoking Theorem 4.5.

Proof of Theorem 4.7

Theorem 4.7 If bη1(x(t)) ≥ 0, bη2(x(t)) ≥ 0, vi ≥ 0,umin ≤ 0, the QP (4.4) subject to

(4.34), (4.46), (4.30), (4.41) and (4.50) is feasible at time t, then the QP corresponding to

time t +∆t is also feasible.

Proof. Theorem 4.3 shows that (4.34), (4.30) and (4.41) are conflict-free at t+∆t. Theorem
4.5 shows that (4.46), (4.30) and (4.50) are conflict-free at t +∆t. In order to guarantee the
feasibility of the QP corresponding to time t +∆t, we need to further prove (4.34), (4.46),
(4.41) and (4.50) are conflict-free. By analyzing the coefficient of ui(t), we find ϕ ≥ 0 in
(4.34), 1 ≥ 0 in (4.41), ϕ2xi ≥ 0 in (4.46) and 1+2ϕ2vi ≥ 0 in (4.50). This indicates that all
these constraints have the same inequality direction, thus (4.34), (4.46), (4.41) and (4.50)
are conflict-free. Hence, the QP corresponding to time t +∆t is feasible.

Proof of Theorem 4.8

Theorem 4.8 Under Assumption 4.5 and Assumption 4.6, if vi ≥ 0,umin ≤ 0, the QP (4.4)

subject to (4.34), (4.46), (4.30), (4.41) and (4.50) corresponding to any time interval [t0
i +

k∆t, t0
i +(k+1)∆t]⊂ [t0

i , t
m
i ] is feasible.



124

Proof. Theorem 4.8 is proved by induction following the same steps of the proof of Theo-
rem 4.4 using Theorem 4.7.



Appendix B

Tracking the reference trajectory with MPC

In this appendix, an auxiliary method is introduced to deal with the lateral offset while

tracking the trajectory given by the OCBF controller. The OCBF controller focuses on

generating a reference trajectory with longitudinal safety guarantees in real time. The lat-

eral error can be dealt using the Model Predictive Control (MPC) approach.

B.1 Vehicle Dynamics

The same vehicle dynamics is adopted as in (Xiao et al., 2021c). Ego dynamics are defined

in a 2-dimension coordinate system with respect to a reference trajectory, where the x

coordinate lies along the referenced trajectory and the y coordinate refers to the lateral

offset. 

ṡ
ḋ
µ̇
v̇
ȧ
δ̇

ω̇


︸︷︷︸

ẋ

=



vcos(µ+β)
1−dκ

vsin(µ+β)
v
lr

sinβ−κ
vcos(µ+β)

1−dκ

a
0
ω

0


︸ ︷︷ ︸

f (x)

+



0 0
0 0
0 0
0 0
1 0
0 0
0 1


︸ ︷︷ ︸

g(x)

[
u jerk
usteer

]
︸ ︷︷ ︸

u

(B.1)

where s ∈ R is the along-trajectory distance and d ∈ R is the lateral offset; µ is the vehicle

local heading error; v,a denote the vehicle linear speed and acceleration; δ,ω denote the

steering angle and steering rate; u jerk and usteer denote the two control inputs for jerk and

steering acceleration; κ is the curvature of the reference trajectory at the projection point
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(s,0); β = arctan
(

lr
lr+l f

tanδ

)
where l f (lr)+ is the length of the vehicle from head (tail) to

the CoG.

Figure B·1: Coordinates of ego w.r.t a reference trajectory

B.2 MPC controller design

To track the referenced trajectory under the complex vehicle dynamics as shown in Sec.

B.1, we propose a receding horizon (MPC) approach that solves the following optimization

problem with receding horizon H at each time t ≥ 0:

(umpc,xmpc) = arg min
u(0:H−1),x(1:H)

H

∑
i=1

C(x(i))+
H−1

∑
i=0

J(u(i)) (B.2)

where C(x(i)) describes the tracking error with respect to the reference trajectory, J(u(i))

is the penalty term for jerk and steering acceleration. For this specific problem, the two

functions are defined as follows:

C(x) = w1(s− sre f )
2 +w2(d −d2

re f )+w3(v− vre f )
2 (B.3)

J(u) = u2
jerk +u2

steering (B.4)
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For the prediction part, we are using the following predictive model derived from (B.1)

using the Adomian Decomposition Method (ADM):



s(k+1)
d(k+1)
µ(k+1)
v(k+1)
a(k+1)
δ(k+1)
ω(k+1)


=



s(k)+ v(k)cos(µ(k)+β(k))
1−d(k)κ(k) ∆T

d(k)+ v(k)sin(µ(k)+β(k))∆T
µ(k)+(v(k)

lr
sinβ(k)−κ(k)v(k)cos(µ(k)+β(k))

1−d(k)κ(k))∆T
v(k)+a(k)∆T + 1

2u jerk∆T 2

a(k)+u jerk∆T
δ(k)+ω∆T + 1

2usteer∆T 2

ω(k)+usteer∆T


(B.5)

The control bounds and state constraints are also included as follows:

vmin ≤v(t)≤ vmax

amin ≤a(t)≤ amax

δmin ≤δ(t)≤ δmax

ωmin ≤ω(t)≤ ωmax

u jerk,min ≤u jerk(t)≤ u jerk,max

usteer,min ≤usteer(t)≤ usteer,max

(B.6)

B.3 Simulation Results

In this simulation, we build a scenario of roundabout which connects a 3/4 circle with ra-

dius r = 27m to a 100m length straight road segment. We use the proposed MPC approach

to track the reference trajectory given by our OCBF controller. The first simulation is con-

ducted without adding noises. The tracking performance of the MPC controller is shown

in Fig. B·2, where we can see the MPC trajectory precisely follows the center line of the

road (also the reference trajectory).

The tracking errors of the three states (lateral offset d, velocity v and along-trajectory

distance s) are shown in Fig. B·3, B·4 and B·5 respectively.

The tracking error of the lateral offset is almost zero except at around 8s when the
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