
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2023

Reliable deep reinforcement
learning: stable training and robust
deployment

https://hdl.handle.net/2144/46651
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

RELIABLE DEEP REINFORCEMENT LEARNING:

STABLE TRAINING AND ROBUST DEPLOYMENT

by

JAMES QUEENEY

B.A., Colgate University, 2013
M.S., Boston University, 2022

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2023

© 2023 by
JAMES QUEENEY
All rights reserved

Approved by

First Reader

Ioannis Ch. Paschalidis, PhD
Distinguished Professor of Engineering
Professor of Electrical and Computer Engineering
Professor of Biomedical Engineering
Professor of Systems Engineering
Professor of Computing & Data Sciences

Second Reader

Christos G. Cassandras, PhD
Distinguished Professor of Engineering
Professor of Electrical and Computer Engineering
Professor and Division Head of Systems Engineering

Third Reader

Ashok Cutkosky, PhD
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Systems Engineering
Assistant Professor of Computer Science

Fourth Reader

Eshed Ohn-Bar, PhD
Assistant Professor of Electrical and Computer Engineering
Assistant Professor of Computer Science

Fifth Reader

Mouhacine Benosman, PhD
Senior Principal Research Scientist
Mitsubishi Electric Research Laboratories

Acknowledgments

I am grateful for all of the support I have received throughout the course of my PhD.

First and foremost, I would like to thank my advisors Yannis Paschalidis and Christos

Cassandras. They allowed me the freedom to pursue my research interests, while

providing incredible guidance and mentorship at every step of the way. I would also

like to recognize Ashok Cutkosky, Eshed Ohn-Bar, and Mouhacine Benosman for their

time and feedback as members of my dissertation committee, and Alex Olshevsky

for serving as committee chair. In addition, I had the privilege of collaborating

with Mouhacine during my PhD, and I have benefited greatly from his insights and

mentorship. I am grateful to all of my other collaborators, my PhD cohort, and

my fellow lab members for their invaluable help and thoughtful discussions over the

past five years. I also appreciate the staff of the Division of Systems Engineering

and the Center for Information & Systems Engineering for everything they have done

for me throughout my time at Boston University. Finally, I am thankful for the

constant encouragement from my family and friends. Most importantly, I would like

to thank my parents Jim and Pat Queeney and my wife Quincey Spagnoletti for their

unconditional love and unwavering support. I am truly lucky to have such amazing

people in my life.

iv

RELIABLE DEEP REINFORCEMENT LEARNING:

STABLE TRAINING AND ROBUST DEPLOYMENT

JAMES QUEENEY

Boston University, College of Engineering, 2023

Major Professors: Ioannis Ch. Paschalidis, PhD
Distinguished Professor of Engineering
Professor of Electrical and Computer Engineering
Professor of Biomedical Engineering
Professor of Systems Engineering
Professor of Computing & Data Sciences

Christos G. Cassandras, PhD
Distinguished Professor of Engineering
Professor of Electrical and Computer Engineering
Professor and Division Head of Systems Engineering

ABSTRACT

Deep reinforcement learning (RL) represents a data-driven framework for sequen-

tial decision making that has demonstrated the ability to solve challenging control

tasks. This data-driven, learning-based approach offers the potential to improve

operations in complex systems, but only if it can be trusted to produce reliable

performance both during training and upon deployment. These requirements have

hindered the adoption of deep RL in many real-world applications. In order to over-

come the limitations of existing methods, this dissertation introduces reliable deep

RL algorithms that deliver (i) stable training from limited data and (ii) robust, safe

deployment in the presence of uncertainty.

The first part of the dissertation addresses the interactive nature of deep RL,

v

where learning requires data collection from the environment. This interactive pro-

cess can be expensive, time-consuming, and dangerous in many real-world settings,

which motivates the need for reliable and efficient learning. We develop deep RL al-

gorithms that guarantee stable performance throughout training, while also directly

considering data efficiency in their design. These algorithms are supported by novel

policy improvement lower bounds that account for finite-sample estimation error and

sample reuse.

The second part of the dissertation focuses on the uncertainty present in real-

world applications, which can impact the performance and safety of learned control

policies. In order to reliably deploy deep RL in the presence of uncertainty, we in-

troduce frameworks that incorporate safety constraints and provide robustness to

general disturbances in the environment. Importantly, these frameworks make lim-

ited assumptions on the training process, and can be implemented in settings that

require real-world interaction for training. This motivates deep RL algorithms that

deliver robust, safe performance at deployment time, while only using standard data

collection from a single training environment.

Overall, this dissertation contributes new techniques to overcome key limitations

of deep RL for real-world decision making and control. Experiments across a variety

of continuous control tasks demonstrate the effectiveness of our algorithms.

vi

Contents

1 Introduction 1

1.1 Stable Training from Limited Data 2

1.2 Robust and Safe Deployment . 3

1.3 Contributions and Outline . 4

2 Background 7

2.1 Related Work: Stable Training from Limited Data 7

2.2 Related Work: Robust and Safe Deployment 10

2.3 Reinforcement Learning Framework 12

2.4 Preliminaries: Stable Training from Limited Data 13

2.5 Preliminaries: Robust and Safe Deployment 16

3 Uncertainty-Aware Trust Region Policy Optimization 20

3.1 Trust Region Policy Optimization . 20

3.2 Uncertainty-Aware Subspace . 22

3.3 Finite-Sample Policy Improvement Lower Bound 25

3.4 Uncertainty-Aware Trust Region . 28

3.5 Algorithm . 29

3.6 Experiments . 30

3.7 Summary . 34

4 Generalized Policy Improvement Algorithms with Sample Reuse 35

4.1 Generalized Policy Improvement Lower Bound 35

4.2 Theoretically Supported Sample Reuse 39

vii

4.3 Algorithms . 44

4.4 Experiments . 52

4.5 Summary . 57

5 Optimal Transport Perturbations with Safety Constraints 58

5.1 Robust and Safe Reinforcement Learning 58

5.2 Optimal Transport Uncertainty Set 60

5.3 Reformulation as Worst-Case Virtual State Transitions 62

5.4 Deep Perturbation Networks . 64

5.5 Algorithm . 66

5.6 Experiments . 67

5.7 Summary . 73

6 Risk-Averse Model Uncertainty with Safety Constraints 74

6.1 Coherent Distortion Risk Measures 74

6.2 Risk-Averse Model Uncertainty . 76

6.3 Robustness Guarantees . 79

6.4 Efficient Model-Free Implementation 80

6.5 Algorithm . 84

6.6 Comparing Robust and Safe Deployment Frameworks 85

6.7 Experiments . 87

6.8 Summary . 92

7 Conclusions and Future Research 94

7.1 Future Research . 95

A Detailed Proofs 98

A.1 Detailed Proofs for Chapter 3 . 98

A.2 Detailed Proofs for Chapter 4 . 100

viii

A.3 Detailed Proofs for Chapter 5 . 102

A.4 Detailed Proofs for Chapter 6 . 104

B Implementation Details 108

B.1 Implementation Details for Chapter 3 and Chapter 4 108

B.2 Implementation Details for Chapter 5 and Chapter 6 112

C Detailed Experimental Results 118

C.1 Detailed Results for Chapter 3 . 118

C.2 Detailed Results for Chapter 4 . 118

C.3 Detailed Results for Chapter 5 and Chapter 6 119

References 126

Curriculum Vitae 137

ix

List of Tables

4.1 Task classification by algorithm. 55

5.1 Aggregate performance summary. 70

6.1 Aggregate performance summary. 87

B.1 Network architectures and hyperparameter values shared across exper-

iments in Chapter 3 and Chapter 4. 110

B.2 Hyperparameter values by algorithm for experiments in Chapter 3 and

Chapter 4. 111

B.3 Safety constraints for all tasks. 112

B.4 Perturbation ranges for test environments. 114

B.5 Perturbation ranges for domain randomization. 114

B.6 Network architectures and hyperparameter values shared across exper-

iments in Chapter 5 and Chapter 6. 115

B.7 Network architectures and hyperparameter values for OTP and RAMU

frameworks. 117

C.1 Dimensionality of OpenAI Gym MuJoCo tasks. 119

C.2 Final performance across all algorithms and tasks. 121

x

List of Figures

2·1 Comparison of updates in policy improvement algorithms. 14

2·2 Popular representations of model uncertainty in deep RL. 18

3·1 Impact of restricting trust region estimate to uncertainty-aware subspace. 23

3·2 Illustration of trust regions and corresponding policy updates in pa-

rameter space for a range of sample-based projected gradient estimates. 29

3·3 Average performance of TRPO and UA-TRPO throughout training. . 32

3·4 Average performance gain of TRPO and UA-TRPO from training with

different levels of adversarial gradient noise. 33

4·1 Benefit of GPI update compared to the on-policy case. 43

4·2 Optimal mixture distributions for κ = 0.0, 0.5, 1.0 when B = 2. 44

4·3 Generalized vs. on-policy final performance by task. 53

4·4 Difference between generalized and on-policy final performance by task. 54

4·5 Generalized vs. on-policy performance throughout training for sparse

reward tasks. 56

5·1 Illustration of optimal transport cost between transition models. . . . 61

5·2 Illustration of tractable reformulation in Theorem 5.1. 64

5·3 Performance summary by task, aggregated across test environments. . 69

5·4 Comparison of OTP with standard safe RL across tasks and test envi-

ronments. 71

5·5 Average final training cost in the nominal training environment. . . . 72

xi

6·1 Coherent distortion risk measures used in RAMU experiments. 82

6·2 Calculation of sample-based RAMU Bellman targets. 85

6·3 Performance summary by task, aggregated across test environments. . 88

6·4 Comparison of RAMU with standard safe RL across tasks and test

environments. 89

6·5 Comparison of RAMU with OTP across tasks and test environments. 92

B·1 Hyperparameter sweep of safety coefficient. 113

C·1 Average performance of TRPO and UA-TRPO throughout training

with different levels of adversarial gradient noise. 122

C·2 Generalized vs. on-policy performance throughout training by task . . 123

C·3 Difference between generalized and on-policy final performance by al-

gorithm and by task. 124

C·4 Sparsity metric by task. 124

C·5 Performance of adversarial RL across tasks and test environments. . . 125

C·6 Performance of domain randomization across tasks and test environ-

ments. 125

xii

List of Algorithms

2.1 On-Policy Policy Improvement Algorithms 15

3.1 Basis for Uncertainty-Aware Subspace 24

3.2 Uncertainty-Aware Trust Region Policy Optimization 30

4.1 Generalized Policy Improvement Algorithms 45

4.2 GePPO Adaptive Learning Rate . 48

5.1 Safe RL with Optimal Transport Perturbations 66

6.1 Safe RL with Risk-Averse Model Uncertainty 84

xiii

List of Abbreviations

C-MDP Constrained MDP
CRPO Constraint-Rectified Policy Optimization
CVaR Conditional Value-at-Risk
GAE Generalized Advantage Estimation
GePPO Generalized PPO
GeTRPO Generalized TRPO
GeVMPO Generalized VMPO
GPI Generalized Policy Improvement
KL Kullback-Leibler
KWIK Knows What It Knows
MDP Markov Decision Process
MPO Maximum a Posteriori Policy Optimization
OOD Out-of-Distribution
OTP Optimal Transport Perturbations
PPO Proximal Policy Optimization
RAMU Risk-Averse Model Uncertainty
RC-MDP Robust Constrained MDP
RL Reinforcement Learning
TRPO Trust Region Policy Optimization
TV Total Variation
UA-TRPO Uncertainty-Aware TRPO
VMPO On-Policy MPO

xiv

1

Chapter 1

Introduction

Reinforcement learning (RL) represents a general framework for data-driven control

in sequential decision making settings, where an agent learns how to act by leverag-

ing information from its past experiences. In recent years, deep RL methods have

combined the RL framework with deep neural network function approximators to

successfully solve a variety of games (Mnih et al., 2015; Schrittwieser et al., 2020) and

simulated control tasks (Duan et al., 2016). These impressive results demonstrate the

potential of deep RL, and provide hope that these techniques can be used to improve

real-world decision making and control.

The data-driven, learning-based approach of deep RL provides a natural pipeline

for improving operations within many important application areas, including robotics,

autonomous navigation, healthcare, and cyber-physical systems. By using observed

data as feedback to iteratively improve decision making and control in these complex

settings, deep RL has the potential to significantly benefit society. However, in order

to successfully apply deep RL in real-world applications without the need for ongo-

ing human supervision, practitioners must be able to trust that deep RL algorithms

will deliver reliable performance both during training and upon deployment. Exist-

ing algorithms typically lack such performance guarantees, which has hindered the

adoption of deep RL and limited its societal impact.

In order to enable the future use of deep RL in application areas of societal im-

portance, this dissertation contributes new techniques to overcome key limitations of

2

existing deep RL algorithms. In particular, we introduce reliable deep RL algorithms

that deliver (i) stable training from limited data and (ii) robust, safe deployment in

the presence of uncertainty.

1.1 Stable Training from Limited Data

The interactive nature of deep RL requires data collection to guide learning. In

settings where we must deploy the current control policy to collect real-world data

during training, poor performance at any point can be both costly and dangerous. In

addition, data collection is often expensive and time-consuming in physical real-world

settings. As a result, reliable deep RL algorithms should deliver practical performance

guarantees throughout training (i.e., stable training), while also making efficient use

of limited data. The combination of these requirements is not an easy task, as training

stability and data efficiency often represent competing interests.

Given the importance of training stability in real-world applications, policy im-

provement methods represent promising starting points in the design of reliable deep

RL algorithms. These methods are motivated by lower bounds on the expected

performance loss at every update, providing theoretical support for stable training.

Unfortunately, the performance guarantees of existing policy improvement methods

require the use of data from the current policy (i.e., on-policy) and only hold in expec-

tation. Therefore, in order for these guarantees to hold in practice, a large number of

samples must be collected under the current policy prior to each update. This results

in high sample complexity and slow learning, which limits the effectiveness of these

algorithms when data collection is difficult.

In Chapter 3 and Chapter 4 of this dissertation, we develop techniques to extend

the stable training benefits of policy improvement methods to the limited data setting.

We construct novel policy improvement lower bounds that control the error introduced

3

by (i) sample-based uncertainty and (ii) sample reuse, which motivate reliable deep

RL algorithms with stable training and improved data efficiency.

1.2 Robust and Safe Deployment

In addition to stable training, robustness and safety are critical for the reliable deploy-

ment of deep RL in real-world decision making applications (Xu et al., 2022). Many

physical real-world settings require safe operations, where task completion cannot

come at the expense of safety. Moreover, performance and safety are often sensitive

to changes in the environment, which are common in real-world deployment scenarios

due to unknown disturbances or irreducible modeling errors. Therefore, reliable deep

RL algorithms should deliver safe decision making and control even in the presence

of uncertainty.

The need for safe operations is typically addressed by incorporating safety con-

straints into the deep RL framework. However, popular safe RL algorithms only focus

on satisfying safety requirements in the training environment. They do not consider

irreducible uncertainty about the true environment at deployment time, which we

refer to as model uncertainty. In order to reliably deploy learned control policies, it is

important to account for the impact of model uncertainty on both performance and

safety.

Unfortunately, common implementations of model uncertainty in deep RL are

not always suitable for real-world decision making settings. These methods often

assume access to a detailed simulator during training, and consider very structured

forms of model uncertainty based on modifying important environment parameters

or directly intervening with a learned adversary during data collection. In many real-

world applications, however, we do not have access to fast, high-fidelity simulators

for training (Cao et al., 2022; Mowlavi et al., 2022; Xu et al., 2023). In these cases,

4

we must be able to incorporate robustness to model uncertainty without relying on

multiple training environments or potentially dangerous adversarial interventions, as

real-world data collection may be necessary.

In Chapter 5 and Chapter 6 of this dissertation, we introduce techniques that

provide robustness to model uncertainty without introducing additional assumptions

on data collection during training. Therefore, these methods are compatible with

settings that require real-world interaction for training, and can be broadly applied

to any setting where we can collect data from a single training environment.

1.3 Contributions and Outline

This dissertation contributes new algorithms for reliable deep RL that address impor-

tant problems for real-world decision making and control. First, Chapter 2 provides

background on the key ideas addressed in the dissertation. Then, Chapter 3 and

Chapter 4 consider the requirement of stable training from limited data, and intro-

duce policy improvement algorithms with improved data efficiency. Next, Chapter 5

and Chapter 6 consider the need for robust, safe deployment in the presence of uncer-

tainty, and introduce techniques that provide robustness to model uncertainty while

only requiring standard data collection in a single training environment. Finally,

Chapter 7 concludes the dissertation with a discussion of future research directions

for the development of reliable deep RL algorithms.

These contributions are motivated by the need to overcome key barriers preventing

the adoption of deep RL in important application areas, which we accomplish through

principled algorithm design. Overall, the methods introduced in this dissertation

provide a foundation for the future development and deployment of reliable deep RL

algorithms in areas of societal importance. We now describe the detailed contributions

of each chapter in the dissertation.

5

In Chapter 3, we address the training instability caused by sample-based uncer-

tainty in policy improvement algorithms. We develop the algorithm Uncertainty-

Aware Trust Region Policy Optimization (UA-TRPO) that controls the finite-sample

estimation error in the main components of the popular deep RL algorithm TRPO

(Schulman et al., 2015). UA-TRPO is theoretically supported by a novel finite-sample

policy improvement lower bound, which we use to motivate an adaptive trust region

that directly considers the uncertainty in the surrogate objective estimate. We also

propose a technique that restricts policy updates to a subspace where trust region

information is available from the observed data. This chapter is based on the work

in Queeney et al. (2021b).

In Chapter 4, we improve the data efficiency of policy improvement algorithms

through sample reuse. We develop a class of Generalized Policy Improvement (GPI)

algorithms that extends on-policy methods to incorporate sample reuse, without sac-

rificing their approximate policy improvement guarantees during training. These

algorithms are constructed based on a novel Generalized Policy Improvement lower

bound that we introduce, which is compatible with the use of data from past poli-

cies. Using this lower bound, we demonstrate how to optimally reuse data from all

recent policies. Our theoretically supported sample reuse improves the trade-off be-

tween batch size and policy update size throughout training compared to on-policy

methods, while retaining the same approximate policy improvement guarantees. This

chapter is based on the work in Queeney et al. (2021a) and Queeney et al. (2022).

In Chapter 5, we introduce a framework to guarantee robust, safe deployment in

the presence of model uncertainty through the use of an optimal transport cost uncer-

tainty set. We show that worst-case optimization problems over this uncertainty set of

transition models can be reformulated as adversarial perturbations to state transitions

in the training environment. This motivates an efficient, model-free implementation

6

based on applying Optimal Transport Perturbations (OTP) to construct worst-case

virtual state transitions, which does not impact data collection during training and

does not require detailed simulator access. These perturbations can be added to the

training process of any safe RL algorithm to incorporate robustness to general distur-

bances at deployment time, while only requiring standard data collection in a single

training environment. This chapter is based on the work in Queeney et al. (2023).

In Chapter 6, we introduce a risk-averse perspective towards model uncertainty

to provide robust, safe deployment of learned control policies. We consider a dis-

tribution over transition models, and reformulate deep RL with safety constraints

to incorporate Risk-Averse Model Uncertainty (RAMU) through the use of coherent

distortion risk measures. From a theoretical standpoint, we provide robustness guar-

antees for the RAMU framework by showing it is equivalent to a specific class of

distributionally robust safe RL problems. Unlike existing approaches to robustness

in deep RL, however, this formulation does not involve minimax optimization. This

leads to an efficient, model-free implementation using weighted sample averages that

only requires data collected from a single training environment. This chapter is based

on the work in Queeney and Benosman (2023).

Throughout the dissertation, experiments on a variety of continuous control tasks

demonstrate the effectiveness of our algorithms. We include experiments on OpenAI

Gym’s MuJoCo environments (Brockman et al., 2016; Todorov et al., 2012), tasks

from the DeepMind Control Suite (Tunyasuvunakool et al., 2020), and tasks with

safety constraints from the Real-World RL Suite (Dulac-Arnold et al., 2020, 2021).

For reproducibility and future research, we provide publicly available implementations

of all algorithms introduced in this dissertation.1

1Code is publicly available at https://github.com/jqueeney.

7

Chapter 2

Background

Before introducing new algorithms for reliable deep RL, we provide background on

the key ideas explored throughout the dissertation. We include a literature review of

related work, and introduce the problem formulations used in the remainder of the

dissertation.

2.1 Related Work: Stable Training from Limited Data

The first part of the dissertation focuses on the goal of stable training from limited

data, and extends existing policy improvement algorithms to account for the error

introduced by (i) sample-based uncertainty and (ii) sample reuse.

2.1.1 On-Policy Policy Improvement Methods

The goal of monotonic policy improvement was first introduced by Kakade and Lang-

ford (2002) in Conservative Policy Iteration, which considers a mixture between the

current and greedy policies at every update. The policy improvement bounds pro-

posed by Kakade and Langford (2002) were later refined by Schulman et al. (2015) and

Achiam et al. (2017), making them compatible with the deep RL setting. This theory

of policy improvement has served as a fundamental building block in the design of

on-policy deep RL methods, including the popular algorithms Trust Region Policy Op-

timization (TRPO) (Schulman et al., 2015) and Proximal Policy Optimization (PPO)

(Schulman et al., 2017). In addition, on-policy methods based on non-parametric tar-

8

get policies, such as On-Policy Maximum a Posteriori Policy Optimization (VMPO)

(Song et al., 2020), can also be interpreted from a policy improvement perspective.

Unfortunately, existing policy improvement methods do not provide practical per-

formance guarantees in real-world settings where data collection is difficult, as they

require the use of on-policy data and only hold in expectation. In these cases, we must

address the error introduced from limited data in order to guarantee stable training

in practice.

2.1.2 Sample-Based Uncertainty from Limited Data

Deep RL algorithms rely on sample-based estimates to approximate expectations,

which introduce sample-based uncertainty into policy updates. These estimates are

known to suffer from high variance, so variance reduction techniques have been pro-

posed to mitigate this issue (Sutton et al., 2000; Schulman et al., 2016; Papini et al.,

2018). However, when access to data is limited, significant sample-based uncertainty

may remain. This source of error has also been referred to as epistemic uncertainty.

Li et al. (2011) developed the “knows what it knows” (KWIK) framework for this

scenario, which allows an algorithm to choose not to produce an output when uncer-

tainty is high. Several approaches in RL can be viewed as applications of the KWIK

framework. Laroche et al. (2019) bootstrapped the learned policy with a known base-

line policy in areas of the state space where data was limited, while Thomas et al.

(2015) only produced updates when the value of the new policy exceeded a baseline

value with high probability. A related line of work directly accounts for epistemic

uncertainty by learning conservative estimates of the value function (Kumar et al.,

2020) or transition model (Kidambi et al., 2020), which are then used to guide policy

updates. The policy improvement method that we introduce in Chapter 3 also ap-

plies conservative, uncertainty-aware estimates at every update in order to guarantee

stable training from limited data.

9

2.1.3 Data Efficiency with Sample Reuse

A common approach to improving the data efficiency of deep RL is to reuse samples

collected under prior policies. Off-policy deep RL algorithms (Lillicrap et al., 2016;

Fujimoto et al., 2018; Haarnoja et al., 2018; Abdolmaleki et al., 2018) achieve data

efficiency through the use of a replay buffer during training, which allows samples to

be used for multiple policy updates. Typically, the replay buffer stores millions of

samples, which enables state-of-the-art performance on popular benchmarks. How-

ever, this aggressive form of sample reuse can lead to high computation and memory

requirements when combined with deep neural network representations and rich sen-

sory data such as images. As a result, popular off-policy algorithms are not compati-

ble with many resource-constrained control settings that require real-time, on-device

learning (Jang et al., 2020; Duisterhof et al., 2021; Grossman and Plancher, 2022;

Neuman et al., 2022; Pau et al., 2023). On-policy approaches, on the other hand,

require significantly less computation and memory compared to off-policy algorithms

(Grossman and Plancher, 2022), making them a viable option in settings that preclude

the use of large replay buffers.

Most importantly, the characteristics of the replay buffer are treated as hyper-

parameters in off-policy deep RL, resulting in aggressive, resource-intensive sample

reuse that lacks practical performance guarantees. Methods have been proposed to

address the bias introduced by off-policy data. One line of work combines on-policy

and off-policy updates to address this concern (O’Donoghue et al., 2017; Gu et al.,

2017a,b; Wang et al., 2017; Fakoor et al., 2020; Meng et al., 2022), and some of these

methods consider penalty terms that account for the difference between the current

policy and the data-generating policy. Other approaches have modified the use of

the replay buffer to control the bias from off-policy data. Novati and Koumout-

sakos (2019) ignored samples from the replay buffer whose actions were not likely

10

under the current policy, and Wang et al. (2020) considered a sampling scheme that

emphasized more recent experience in the replay buffer. The Generalized Policy Im-

provement lower bound that we introduce in Chapter 4 motivates similar penalty

terms and non-uniform weighting of samples, which guarantees stable training while

reusing samples for improved data efficiency.

2.2 Related Work: Robust and Safe Deployment

The second part of the dissertation focuses on the need for robust, safe deployment in

the presence of uncertainty, and builds upon standard representations of safety and

model uncertainty in deep RL.

2.2.1 Safety Constraints

The most common approach to modeling safety in RL is to incorporate constraints on

expected total costs, which is the definition of safety we consider in this dissertation.

In recent years, several deep RL algorithms have been developed for this framework.

A popular approach is to solve the Lagrangian relaxation of the constrained problem

(Tessler et al., 2019b; Ray et al., 2019; Stooke et al., 2020), which is supported by

theoretical results establishing that constrained RL has zero duality gap (Paternain

et al., 2019). Other approaches to safe RL construct closed-form solutions to guide

policy updates (Achiam et al., 2017; Liu et al., 2022), or consider immediate switching

between the objective and constraints to better satisfy safety during training (Xu

et al., 2021). However, these safe RL algorithms are only designed to satisfy expected

cost constraints in the training environment.

2.2.2 Model Uncertainty

Recall that model uncertainty represents irreducible uncertainty about the true envi-

ronment at deployment time, and is distinct from epistemic uncertainty that can be

11

reduced through additional data collection. We can account for model uncertainty by

considering a range of possible environments during training. Existing deep RL meth-

ods accomplish this by applying an uncertainty set or a distribution over transition

models.

Robust RL methods account for uncertainty in the environment by considering

worst-case transition models from an uncertainty set (Nilim and Ghaoui, 2005; Iyen-

gar, 2005). In order to facilitate efficient implementations in the deep RL setting,

most techniques have focused on adversarial interventions or parametric uncertainty.

Adversarial methods consider direct intervention with a learned adversary during

trajectory rollouts (Pinto et al., 2017; Tessler et al., 2019a; Vinitsky et al., 2020),

and these adversarial perturbations are trained to minimize performance. Paramet-

ric approaches, on the other hand, consider robustness with respect to environment

characteristics that can be altered in a simulator (Rajeswaran et al., 2017; Mankowitz

et al., 2020, 2021).

Model uncertainty can also be represented by a distribution over potential envi-

ronments. Domain randomization (Tobin et al., 2017; Peng et al., 2018) is a para-

metric uncertainty method that randomizes across parameter values in a simulator,

and trains a policy to maximize average performance over this training distribution.

This represents a risk-neutral attitude towards model uncertainty that works well in

practice but lacks robustness guarantees, so it has been referred to as a soft-robust

approach (Derman et al., 2018). Distributionally robust RL methods incorporate ro-

bustness to the choice of training distribution by instead considering an ambiguity set

of distributions (Xu and Mannor, 2010; Yu and Xu, 2016; Derman and Mannor, 2020;

Chen and Paschalidis, 2020), but application of this distributionally robust framework

has remained limited in deep RL as it requires solving for worst-case distributions

over transition models.

12

A major drawback of existing approaches is their need to directly modify the

environment during training. Parametric methods assume the ability to generate a

range of training environments with a detailed simulator, while adversarial methods

directly influence the data collection process by attempting to negatively impact

performance. The techniques that we introduce in Chapter 5 and Chapter 6, on the

other hand, do not require detailed simulator access and do not impact the data

collection process during training.

2.3 Reinforcement Learning Framework

Throughout the dissertation, we represent the sequential decision making problem as

an infinite-horizon, discounted Markov Decision Process (MDP) defined by the tuple

(S,A, p, r, d0, γ), where S is the set of states, A is the set of actions, p : S×A → P (S)

is the transition probability function where P (S) denotes the space of probability

measures over S, r : S × A → R is the reward function, d0 is the initial state

distribution, and γ is the discount rate.

We model the agent’s decisions as a stationary policy π : S → P (A), which

outputs a distribution of actions at every state. Our goal is to find a policy π that

maximizes the expected total discounted rewards

J(π) = E
τ∼π

[
∞∑
t=0

γtr(st, at)

]
,

where τ ∼ π represents a trajectory sampled according to s0 ∼ d0, at ∼ π(· | st),

and st+1 ∼ p(· | st, at). A policy π also induces a normalized discounted state

visitation distribution dπ, where dπ(s) = (1 − γ)
∑∞

t=0 γ
tP(st = s | d0, π, p). We

write the corresponding normalized discounted state-action visitation distribution as

dπ(s, a) = dπ(s)π(a | s), where we make it clear from the context whether dπ refers

to a distribution over states or state-action pairs.

13

We denote the state value function of π as V π(s) = Eτ∼π [
∑∞

t=0 γ
tr(st, at) | s0 = s],

the state-action value function as Qπ(s, a) = Eτ∼π [
∑∞

t=0 γ
tr(st, at) | s0 = s, a0 = a]

which is commonly referred to as the Q function, and the advantage function as

Aπ(s, a) = Qπ(s, a)−V π(s). In the context of deep RL, the policy and value functions

are parameterized by neural networks.

2.4 Preliminaries: Stable Training from Limited Data

In order to guarantee stable training from limited data, Chapter 3 and Chapter 4

develop policy improvement algorithms with a focus on data efficiency. These algo-

rithms are motivated by the design of existing on-policy policy improvement algo-

rithms, which we describe next.

2.4.1 On-Policy Policy Improvement Lower Bound

Many popular on-policy algorithms can be interpreted as approximately maximizing

the following policy improvement lower bound, which was first developed by Kakade

and Langford (2002) and later refined by Schulman et al. (2015) and Achiam et al.

(2017).

Lemma 2.1 (Achiam et al. 2017). Consider any policy π and a current policy πk.

Then,

J(π)− J(πk) ≥
1

1− γ
E

(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2
E

s∼dπk
[TV(π, πk)(s)] ,

(2.1)

where Cπ,πk = maxs∈S
∣∣Ea∼π(·|s) [Aπk(s, a)]∣∣ and TV(π, πk)(s) represents the total vari-

ation (TV) distance between the distributions π(· | s) and πk(· | s).

We refer to the first term of the lower bound in Lemma 2.1 as the surrogate objective

and the second term as the penalty term. Note that we can guarantee monotonic pol-

icy improvement at every step of the learning process by choosing the next policy πk+1

14

On-Policy Chapter 3 Chapter 4

πk+1 πk+1 πk+1

τ ∼ πk−1τ ∼ πk τ ∼ πk−2

Figure 2·1: Comparison of updates in policy improvement algorithms.
Left: On-policy methods require a large number of samples from the
current policy πk. Center: Chapter 3 addresses sample-based uncer-
tainty in the limited data setting. Right: Chapter 4 improves data
efficiency by reusing samples collected under prior policies.

to maximize this lower bound, leading to reliable performance throughout training.

However, the expectations that appear in the surrogate objective and penalty term

must be estimated using samples collected under the current policy πk. Therefore,

this bound motivates algorithms that are practical to implement, but may result in

slow learning due to their requirement of on-policy data and the need for large sample

sizes to approximate expectations. See Figure 2·1 for an illustration of these require-

ments, including a comparison to the settings we consider in Chapter 3 and Chapter 4

of the dissertation.

2.4.2 On-Policy Policy Improvement Algorithms

Rather than directly maximize the lower bound in Lemma 2.1, on-policy policy im-

provement algorithms typically maximize the surrogate objective while bounding the

risk of each policy update via a constraint on the penalty term. This leads to updates

with the following form.

15

Algorithm 2.1: On-Policy Policy Improvement Algorithms

Input: initial policy π0; TV distance trust region parameter ϵ; batch size N .

for k = 0, 1, 2, . . . do

Collect N samples with πk.

Use these N samples to approximate the expectations in Definition 2.1.

Update policy by approximately solving the optimization problem in
Definition 2.1. Implementation varies by algorithm.

end

Definition 2.1 (On-Policy Trust Region Update). For a given choice of trust region

parameter ϵ > 0, the on-policy trust region update has the form

max
π

E
(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
s.t. E

s∼dπk
[TV (π, πk) (s)] ≤

ϵ

2
. (2.2)

The trust region in (2.2) bounds the magnitude of the penalty term in (2.1),

limiting the worst-case performance decline at every update. Therefore, we say that

on-policy algorithms based on the trust region update in Definition 2.1 deliver approxi-

mate policy improvement guarantees. In addition, practical deep RL implementations

of this update introduce additional approximations through the use of sample-based

estimates.

The high-level framework of on-policy policy improvement algorithms is described

in Algorithm 2.1. The difference between popular on-policy algorithms is primarily

due to how they approximately solve the optimization problem in Definition 2.1. PPO

applies a TV distance trust region via a clipping mechanism, while TRPO and VMPO

instead consider forward and reverse Kullback-Leibler (KL) divergence trust regions,

respectively. These related trust regions guarantee that the TV distance trust region

in (2.2) is satisfied, as shown in the following result.

16

Lemma 2.2. Consider a current policy πk, and any policy π that satisfies

E
s∼dπk

[KL (πk∥π) (s)] ≤ δ, (2.3)

or

E
s∼dπk

[KL (π∥πk) (s)] ≤ δ, (2.4)

where KL (πk∥π) (s) and KL (π∥πk) (s) represent the forward and reverse KL diver-

gence of the distribution π(· | s) from the distribution πk(· | s), respectively, and

δ = ϵ2/2. Then, π also satisfies the TV distance trust region in (2.2).

Proof. Note that TV distance is symmetric, so the same argument can be used start-

ing from (2.3) or (2.4). By applying Pinsker’s inequality followed by Jensen’s inequal-

ity, we see that

E
s∼dπk

[TV (π, πk) (s)] ≤
√

1

2
E

s∼dπk
[KL (π∥πk) (s)] ≤

√
δ

2
=

ϵ

2
.

2.5 Preliminaries: Robust and Safe Deployment

In order to guarantee reliable performance and safety upon deployment, Chapter 5 and

Chapter 6 incorporate two additional components into the standard RL framework:

(i) safety constraints and (ii) model uncertainty.

2.5.1 Safety Constraints

We incorporate safety constraints through the use of a Constrained MDP (C-MDP)

(Altman, 1999) defined by the tuple (S,A, p, r, c, d0, γ), where c : S × A → R is the

cost function used to define the safety constraint. We focus on the setting with a

single constraint, but all results in the dissertation can be extended to the case of

multiple constraints.

In the C-MDP setting, we write the expected total discounted rewards as Jp,r(π)

and the corresponding reward Q function as Qπ
p,r(s, a), where we include subscripts to

17

denote the transition model p and reward function r. Similarly, we write the expected

total discounted costs as Jp,c(π) and the corresponding cost Q function as Qπ
p,c(s, a).

For a given C-MDP, the goal of safe RL is to find a policy π that maximizes the

constrained optimization problem

max
π

Jp,r(π) s.t. Jp,c(π) ≤ B, (2.5)

where B is a safety budget on expected total discounted costs. Off-policy optimization

techniques (Xu et al., 2021; Liu et al., 2022) iteratively optimize (2.5) by considering

the related optimization problem

max
π

E
s∼D

[
E

a∼π(·|s)

[
Qπk
p,r(s, a)

]]
s.t. E

s∼D

[
E

a∼π(·|s)

[
Qπk
p,c(s, a)

]]
≤ B, (2.6)

where πk is the current policy and D is a replay buffer containing data collected

during training.

2.5.2 Model Uncertainty

Rather than focusing on a single C-MDP with transition model p, we can incorporate

uncertainty about the transition model into the constrained optimization problem in

(2.5). The two most common approaches for representing model uncertainty apply

either an uncertainty set or a distribution over transition models. See Figure 2·2 for

an illustration. We consider both approaches in this dissertation.

In Chapter 5, we consider an uncertainty set P of transition models. We assume

P =
⊗

(s,a)∈S×A Ps,a, where Ps,a is a set of transition models ps,a = p(· | s, a) ∈ P (S)

at a given state-action pair and P is the product of these sets. We apply the Robust

Constrained MDP (RC-MDP) framework (Mankowitz et al., 2021; Russel et al., 2021),

19

distributionally robust safe RL problem

max
π

inf
µ∈U

E
p∼µ

[Jp,r(π)] s.t. sup
µ∈U

E
p∼µ

[Jp,c(π)] ≤ B. (2.9)

We show in Chapter 6 that our Risk-Averse Model Uncertainty framework is equiva-

lent to (2.9) for appropriate choices of ambiguity sets in the objective and constraint.

Finally, note that the product structure of P , µ, and U over state-action pairs is

known as rectangularity, and is a common assumption in the literature (Nilim and

Ghaoui, 2005; Iyengar, 2005; Xu and Mannor, 2010; Yu and Xu, 2016; Derman et al.,

2018; Derman and Mannor, 2020; Chen and Paschalidis, 2020).

20

Chapter 3

Uncertainty-Aware Trust Region Policy

Optimization

Given the data-driven nature of deep RL, we must rely on sample-based estimates to

approximate expectations. Unfortunately, these estimates are known to suffer from

high variance, particularly for problems with long time horizons. As a result, finite-

sample estimation error can be a major source of training instability in deep RL

algorithms when small sample sizes are used, which is often the case in real-world

decision making settings. Notably, sample-based uncertainty can destroy the stable

training benefits of policy improvement methods, since the lower bound in Lemma 2.1

depends on expectations in both the surrogate objective and penalty term. In this

chapter, we extend these policy improvement guarantees to the finite-sample setting

that applies in practice. In particular, we develop methods to control the sample-

based uncertainty present in Trust Region Policy Optimization (TRPO) (Schulman

et al., 2015), resulting in an uncertainty-aware algorithm that makes robust use of

limited data to deliver stable performance throughout the training process.

Throughout this chapter, we use bold lowercase letters to denote vectors, bold

uppercase letters to denote matrices, and hats (·̂) to denote sample-based estimates.

3.1 Trust Region Policy Optimization

TRPO is an on-policy policy improvement algorithm that approximates the update

in Definition 2.1 by considering the forward KL divergence trust region in (2.3). This

21

leads to the policy update

max
π

E
(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
s.t. E

s∼dπk
[KL (πk∥π) (s)] ≤ δ. (3.1)

Next, TRPO introduces several modifications to produce a scalable and practical

algorithm. Specifically, TRPO considers a first order approximation of the surrogate

objective and a second order approximation of the KL divergence trust region in (3.1).

For neural network policies π and πk parameterized by θ,θk ∈ Rd, respectively, these

approximations are given by

E
(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
≈ g′

k (θ − θk) , (3.2)

E
s∼dπk

[KL (πk∥π) (s)] ≈
1

2
(θ − θk)

′ Fk (θ − θk) , (3.3)

with

gk = E
(s,a)∼dπk

[Aπk(s, a)∇θ log πk(a | s)] , (3.4)

Fk = E
(s,a)∼dπk

[∇θ log πk(a | s)∇θ log πk(a | s)′] , (3.5)

where gk is the standard policy gradient determined by the Policy Gradient Theorem

(Williams, 1992; Sutton et al., 2000) and Fk is the average Fisher Information Matrix

(Schulman et al., 2015). By applying these approximations, we see that the TRPO

update is alternatively motivated by the following approximate policy improvement

lower bound.

Corollary 3.1. Consider a current policy πk parameterized by θk ∈ Rd, and any

policy π parameterized by θ ∈ Rd. Let Cπ,πk be defined as in Lemma 2.1. Then,

J(π)− J(πk) ≥
1

1− γ
g′
k (θ − θk)−

γCπ,πk

(1− γ)2

√
(θ − θk)

′ Fk (θ − θk),

up to first and second order approximation error.

22

Proof. Starting from the lower bound in Lemma 2.1, we can apply the same techniques

as in Lemma 2.2 to bound the TV distance penalty term with a forward KL divergence

penalty term. Then, by using the surrogate objective approximation in (3.2) and the

forward KL divergence approximation in (3.3), we obtain the result.

Note that gk and Fk are themselves expectations, so in practice they are estimated

using sample averages ĝk and F̂k. This results in the optimization problem

max
θ

ĝ′
k (θ − θk) s.t.

1

2
(θ − θk)

′ F̂k (θ − θk) ≤ δ, (3.6)

which we use to determine the parameterization θk+1 of the updated policy πk+1. The

closed-form solution of (3.6) is given by θk+1 = θk + ηv, where v = F̂−1
k ĝk is the up-

date direction and η =
√

2δ/v′F̂kv. The update direction cannot be calculated directly

in high dimensions, so it is solved approximately by applying a finite number of con-

jugate gradient steps to F̂kv = ĝk. Finally, a backtracking line search is performed

to account for the error introduced by the first and second order approximations.

By replacing expectations gk and Fk with sample-based estimates ĝk and F̂k,

TRPO introduces a potentially significant source of error when the number of samples

used to construct the estimates is small. This finite-sample estimation error can

destroy the approximate policy improvement argument on which TRPO is based. As

a result, TRPO typically uses large amounts of data to generate stable performance.

However, this approach is often not practical in real-world decision making settings.

3.2 Uncertainty-Aware Subspace

We first address the error present in the trust region estimate in (3.6). Because we

are estimating a high-dimensional matrix using a limited number of samples, F̂k is

unlikely to be full rank. This creates multiple problems when approximating the

update direction v = F−1
k gk by solving the system of equations F̂kv = ĝk. First,

24

Algorithm 3.1: Basis for Uncertainty-Aware Subspace

Input: sample-based estimate F̂k ∈ Rd×d; random matrix Ω ∈ Rd×m.

Generate m random projections onto the range of F̂k:

Y = F̂kΩ.

Construct basis Q ∈ Rd×ℓ, ℓ ≤ m, with orthonormal vectors via the singular
value decomposition of Y.

the range of F̂k since the matrix is symmetric). The unique least-squares solution

that satisfies this restriction is v = F̂+
k ĝk, where F̂+

k denotes the Moore-Penrose

pseudoinverse of F̂k. It is important to note that the standard implementation of

TRPO does not produce this update direction in general, which can lead to unstable

and inefficient updates when sample sizes are small.

If F̂k has rank p < d, it can be written as F̂k = UDU′ where U ∈ Rd×p is an

orthonormal eigenbasis for the range of F̂k and D ∈ Rp×p is a diagonal matrix of

the corresponding positive eigenvalues. The Moore-Penrose pseudoinverse is F̂+
k =

UD−1U′, and the update direction can be calculated as v = UD−1U′ĝk. Intuitively,

this solution is obtained by first restricting F̂k and ĝk to the p-dimensional subspace

spanned by the basis U, finding the unique solution to the resulting p-dimensional

system of equations, and representing this solution in terms of its coordinates in

parameter space.

Unfortunately, standard methods for computing a decomposition of F̂k are com-

putationally intractable in high dimensions. Rather than considering the full range

of F̂k spanned by U, we propose to instead restrict policy updates to a low-rank

subspace of the range using random projections (Halko et al., 2011). By generating

m≪ d random projections, we can efficiently calculate a basis Q ∈ Rd×ℓ, ℓ ≤ m, for

this uncertainty-aware subspace as detailed in Algorithm 3.1. This basis can be used

25

to construct the corresponding uncertainty-aware projections

F̂k,Q = Q′F̂kQ ∈ Rℓ×ℓ, ĝk,Q = Q′ĝk ∈ Rℓ,

where we use a subscript Q to denote projections in the coordinates given by this

basis. This leads to the low-dimensional policy update

max
y

ĝ′
k,Qy s.t.

1

2
y′F̂k,Qy ≤ δ (3.7)

in the subspace spanned by the basis Q, where θ = θk+Qy. Because the subspace is

contained in the range of F̂k by construction, we preserve our original goal of restrict-

ing policy updates to directions in parameter space where trust region information is

available as shown on the right-hand side of Figure 3·1.

Finally, for updates restricted to the uncertainty-aware subspace, we can rewrite

the approximate policy improvement lower bound in Corollary 3.1 as a function of the

low-dimensional policy update y ∈ Rℓ. For a policy π parameterized by θ = θk+Qy,

up to first and second order approximation error we have that

J(π)− J(πk) ≥
1

1− γ
g′
k,Qy − γCπ,πk

(1− γ)2

√
y′Fk,Qy, (3.8)

where gk,Q = Q′gk ∈ Rℓ and Fk,Q = Q′FkQ ∈ Rℓ×ℓ are projections of gk and Fk,

respectively, onto the subspace spanned by Q.

3.3 Finite-Sample Policy Improvement Lower Bound

Although we have restricted updates to an uncertainty-aware subspace, the sample-

based estimate of the projected policy gradient in (3.7) introduces another source of

potential error. Rather than relying on the high-variance estimate ĝk,Q to approxi-

mate gk,Q in (3.8), we instead develop a robust, uncertainty-aware lower bound that

holds for all vectors in an uncertainty set Uk centered around ĝk,Q. If Uk contains the

26

true projected policy gradient gk,Q, this will be a lower bound to J(π)− J(πk) up to

first and second order approximation error.

Consider the policy gradient random vector

ξk = Aπk(s, a)∇θ log πk(a | s) ∈ Rd,

where (s, a) ∼ dπk and gk = E [ξk] is the true policy gradient as in (3.4). Because

we are interested in updates restricted to the uncertainty-aware subspace spanned

by Q, we focus on the projected policy gradient random vector ξk,Q = Q′ξk ∈

Rℓ. Note that gk,Q = E
[
ξk,Q

]
is the true projected policy gradient, and Σk,Q =

E
[(
ξk,Q − gk,Q

) (
ξk,Q − gk,Q

)′]
is the true covariance matrix of the projected policy

gradient random vector. We make the following assumption regarding the standard-

ized projected random vector Σ
−1/2
k,Q (ξk,Q − gk,Q).

Assumption 3.1. Σ
−1/2
k,Q (ξk,Q−gk,Q) is a sub-Gaussian random vector with variance

proxy σ2.

The sub-Gaussian assumption is a reasonable one, and is satisfied by standard

assumptions in the literature such as bounded rewards and bounded ∇θ log πk(a | s)

(Konda and Tsitsiklis, 2000; Papini et al., 2018). Using this assumption, we can

construct an uncertainty set Uk that contains the true projected policy gradient with

high probability.

Lemma 3.1. Consider ξ̂
(1)

k,Q, . . . , ξ̂
(n)

k,Q independent, identically distributed random

samples of ξk,Q, with ĝk,Q = 1
n

∑n
i=1 ξ̂

(i)

k,Q their sample average. Fix α ∈ (0, 1), and

define

Uk =
{
u | (u− ĝk,Q)

′Σ−1
k,Q(u− ĝk,Q) ≤ σ2R2

n

}
,

where

R2
n =

1

n

(
ℓ+ 2

√
ℓ log

(
1

α

)
+ 2 log

(
1

α

))
.

Then, gk,Q ∈ Uk with probability at least 1− α.

27

Proof. The result follows by applying a concentration inequality for sub-Gaussian

random vectors from Hsu et al. (2012) to a standardized version of ĝk,Q. See the

Appendix for details.

The ellipsoidal uncertainty set Uk constructed in Lemma 3.1 has an intuitive struc-

ture. It can be seen as a multivariate extension of the standard confidence interval in

univariate statistics, where the radius has been calculated to accommodate the more

general sub-Gaussian case (Hsu et al., 2012). Because we consider an uncertainty

set centered around the projected gradient estimate, the radius only depends on the

dimension ℓ of the uncertainty-aware subspace rather than the full dimension d of the

policy parameterization. We now use this uncertainty set to develop a finite-sample

policy improvement lower bound.

Theorem 3.1. Consider a current policy πk parameterized by θk ∈ Rd, and any

policy π parameterized by θ ∈ Rd where θ = θk + Qy for some y ∈ Rℓ. Let Cπ,πk

be defined as in Lemma 2.1, and let Rn be defined as in Lemma 3.1 with confidence

parameter α ∈ (0, 1). Then,

J(π)− J(πk) ≥
1

1− γ
ĝ′
k,Qy − γCπ,πk

(1− γ)2

√
y′Fk,Qy − σRn

1− γ

√
y′Σk,Qy (3.9)

with probability at least 1− α, up to first and second order approximation error.

Proof. Consider a robust (i.e., worst-case with respect to Uk) lower bound of the form

min
u∈Uk

1

1− γ
u′y − γCπ,πk

(1− γ)2

√
y′Fk,Qy, (3.10)

where Uk is defined as in Lemma 3.1. Note that (3.10) is the minimization of a

linear function of u subject to a convex quadratic constraint in u. By forming the

Lagrangian and applying strong duality, we see that the minimum value of (3.10) is

equivalent to the right-hand side of (3.9). By construction of Uk, gk,Q is a feasible

solution to (3.10) with probability at least 1− α. Therefore, (3.10) is a lower bound

to the right-hand side of (3.8) with probability at least 1−α. This implies that (3.9)

holds with probability at least 1−α, up to first and second order approximation error.

See the Appendix for details.

28

3.4 Uncertainty-Aware Trust Region

The appearance of an additional penalty term in our robust finite-sample lower bound

from Theorem 3.1 motivates the use of a modified trust region in TRPO.

Definition 3.1 (Uncertainty-Aware Trust Region). For a given choice of trust region

parameter δ > 0, the uncertainty-aware trust region represents the set of all policies

parameterized by θ ∈ Rd such that θ = θk +Qy for some y ∈ Rℓ and

1

2
y′Mk,Qy ≤ δ,

where Mk,Q = Fk,Q + cR2
nΣk,Q and c ≥ 0.

Note that each term in Mk,Q accounts for a main source of potential error. The

first term controls the approximation error from using on-policy expectations as in

TRPO, while the second term controls the finite-sample estimation error from using

the projected policy gradient estimate ĝk,Q. The importance of including this second

term is illustrated in Figure 3·2. The resulting trust region adapts to the true noise

of the projected policy gradient random vector through Σk,Q, as well as the number

of samples n used to estimate the projected policy gradient through the coefficient

R2
n. We include the parameter c ≥ 0 to control the trade-off between the two terms

of Mk,Q.

This results in a modified policy update based on the optimization problem

max
y

ĝ′
k,Qy s.t.

1

2
y′M̂k,Qy ≤ δ, (3.11)

where F̂k,Q in (3.7) has been replaced by a sample-based estimate M̂k,Q = F̂k,Q +

cR2
nΣ̂k,Q of the uncertainty-aware trust region matrix. Finally, because (3.11) is a

low-dimensional problem, we can compute its solution exactly without relying on a

30

Algorithm 3.2: Uncertainty-Aware Trust Region Policy Optimization

Input: initial policy π0 with parameterization θ0 ∈ Rd; trust region
parameters δ, c, α; random matrix Ω ∈ Rd×m; batch size N .

for k = 0, 1, 2, . . . do

Collect N samples with πk.

Use sample-based estimate of the average Fisher Information Matrix F̂k

to construct an uncertainty-aware subspace basis Q via Algorithm 3.1.

Calculate projected sample-based estimates of the policy gradient ĝk,Q
and uncertainty-aware trust region matrix M̂k,Q = F̂k,Q + cR2

nΣ̂k,Q.

Compute the solution to the uncertainty-aware policy update in (3.11)
given by y∗ in (3.12), and apply the policy update

θk+1 = θk +Qy∗.

end

3.6 Experiments

In our experiments, we aim to investigate the robustness and training stability of

TRPO and UA-TRPO when a limited amount of data is used for each policy update.

In order to accomplish this, we perform simulations on several MuJoCo environ-

ments (Todorov et al., 2012) in OpenAI Gym (Brockman et al., 2016). In particular,

we consider six continuous control locomotion tasks which vary in dimensionality:

Swimmer-v3, Hopper-v3, HalfCheetah-v3, Walker2d-v3, Ant-v3, and Humanoid-v3.

Due to the complexity and high dimensionality of Ant-v3 and Humanoid-v3, we

train TRPO and UA-TRPO for 10 million steps on these tasks. For all other tasks,

we train for a total of 1 million steps. We run each experiment across 5 random seeds.

Because we are interested in evaluating the performance of TRPO and UA-TRPO

when updates must be made from limited data, we perform policy updates every

N = 1,024 steps in our experiments. The tasks we consider all have a maximum time

horizon of 1,000, so our choice of batch size represents as little as one full trajectory

31

per policy update. Most implementations of TRPO in the literature make use of

larger batch sizes (Duan et al., 2016; Wu et al., 2017; Henderson et al., 2018).

With the exception of a small batch size, we consider default implementation

choices commonly used in the literature for TRPO (Henderson et al., 2018; Engstrom

et al., 2020; Andrychowicz et al., 2021). In particular, we represent the policy π

as a multivariate Gaussian distribution, where the mean action for a given state is

parameterized by a neural network with two hidden layers of 64 units each and tanh

activations. The state-independent standard deviation is parameterized separately.

We use a separate neural network with the same structure to parameterize our value

function, and estimate advantages using Generalized Advantage Estimation (GAE)

(Schulman et al., 2016). For policy updates, we consider ϵ = 0.2 for the TV distance

trust region radius in Definition 2.1, which leads to the KL divergence trust region

radius of δ = 0.02 according to Lemma 2.2.

For our implementation of UA-TRPO, we use independent standard Gaussian

samples to construct the random matrix Ω needed to compute random projections

(Halko et al., 2011), and we consider m = 200 random projections to construct our

uncertainty-aware subspace. We construct our uncertainty-aware trust region matrix

based on 256 minibatch gradient estimates with c = 0.1 and α = 0.05. See the

Appendix for additional implementation details.1

3.6.1 Comparison with Small Batch Size

We see in Figure 3·3 that UA-TRPO generates robust policy improvement using the

small batch size of N = 1,024, resulting in comparable or improved performance rela-

tive to TRPO across all environments. In addition, the benefits of UA-TRPO become

more noticeable as the complexity of the task increases. In the high-dimensional Ant-

v3 and Humanoid-v3 tasks, TRPO struggles to make meaningful progress over 10 mil-

1Code is publicly available at https://github.com/jqueeney/uatrpo.

34

final performance of TRPO trained without noise.

3.7 Summary

In this chapter, we have addressed the issue of sample-based uncertainty in policy

improvement methods. We developed the algorithm UA-TRPO that controls the

finite-sample estimation error in both the surrogate objective and trust region esti-

mates used by TRPO. UA-TRPO is theoretically supported by a finite-sample policy

improvement lower bound, which provides approximate policy improvement guar-

antees in the limited data setting. As a result, our algorithm demonstrates stable

training from limited data and produces policy updates that are robust to noise.

These represent important characteristics for reliable deep RL in real-world settings

where data collection is difficult.

Because UA-TRPO is based on uncertainty-aware modifications to TRPO, it is

still an on-policy algorithm that only leverages data collected under the current policy

during training. In the next chapter, we develop techniques to relax the on-policy lim-

itation of policy improvement methods, leading to improved data efficiency through

sample reuse.

35

Chapter 4

Generalized Policy Improvement

Algorithms with Sample Reuse

When data collection is expensive or limited, it is important to leverage the avail-

able samples as efficiently as possible. A natural way to accomplish this is to reuse

samples to compute multiple policy updates, as done in off-policy algorithms. Unfor-

tunately, the reuse of data from prior policies invalidates the standard performance

guarantees of policy improvement algorithms, which require that samples be gener-

ated from the current policy. In this chapter, we address the on-policy limitation of

existing policy improvement methods. We improve the data efficiency of on-policy

algorithms through sample reuse, without sacrificing their approximate policy im-

provement guarantees.

4.1 Generalized Policy Improvement Lower Bound

The need for on-policy samples in existing policy improvement algorithms is a direct

result of the expectations that appear in the lower bound of Lemma 2.1, which serves

as the theoretical motivation for these algorithms. In order to relax the on-policy

requirement of the expectations that appear in Lemma 2.1, our key insight is that we

can construct a similar policy improvement bound with expectations that depend on

any reference policy.

36

Lemma 4.1. Consider any policy π and a reference policy πref. Then,

J(π)−J(πk) ≥
1

1− γ
E

(s,a)∼dπref

[
π(a | s)
πref(a | s)

Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2
E

s∼dπref
[TV (π, πref) (s)] ,

where Cπ,πk is defined as in Lemma 2.1.

Proof. We apply similar techniques used in Achiam et al. (2017) to prove Lemma 2.1,

where the on-policy state visitation distribution dπk was the sampling distribution of

interest. The key difference is that we instead consider dπref as the sampling distribu-

tion. See the Appendix for details.

By considering our prior policies as reference policies, we can use Lemma 4.1 to

develop a Generalized Policy Improvement (GPI) lower bound that is compatible with

sample reuse.

Theorem 4.1. Consider any policy π and prior policies πk−i, i = 0, 1, 2, Let

ν be any choice of mixture distribution over prior policies, where 0 ≤ νi ≤ 1 is the

probability of using πk−i as the reference policy,
∑

i νi = 1, and Ei∼ν [·] represents an
expectation determined by this mixture distribution. Then, we have that

J(π)− J(πk) ≥
1

1− γ
E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)
πk−i(a | s)

Aπk(s, a)

]]
− 2γCπ,πk

(1− γ)2
E
i∼ν

[
E

s∼dπk−i

[TV (π, πk−i) (s)]

]
, (4.1)

where Cπ,πk is defined as in Lemma 2.1.

Proof. For any prior policy πk−i, we can apply Lemma 4.1 to construct a policy im-

provement lower bound with expectations that depend on the visitation distribution

dπk−i . These all represent lower bounds on the same quantity J(π) − J(πk), so any

convex combination of these lower bounds will also be a lower bound on J(π)−J(πk).
Therefore, (4.1) holds for any choice of mixture distribution ν over prior policies.

The expectations that appear in our Generalized Policy Improvement lower bound

can be estimated using a mixture of samples collected under prior policies, so Theo-

rem 4.1 provides insight into how we can reuse samples while still providing guarantees

37

on performance throughout training. The cost of sample reuse is that the penalty

term now depends on the expected TV distance between the new policy and our prior

policies, rather than the current policy. Otherwise, our lower bound remains largely

unchanged compared to the on-policy case. In fact, we recover the on-policy lower

bound when ν is chosen to place all weight on the current policy, so Lemma 2.1 is a

special case of Theorem 4.1.

Because the structure of our generalized lower bound remains the same as the

on-policy lower bound, we can use the same techniques to motivate practical policy

improvement algorithms. Just as the on-policy lower bound motivated the policy

update in Definition 2.1, we can use Theorem 4.1 to motivate a generalized policy

update of the form

max
π

E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)
πk−i(a | s)

Aπk(s, a)

]]
s.t. E

i∼ν

[
E

s∼dπk−i

[TV (π, πk−i) (s)]

]
≤ ϵ

2
,

(4.2)

where ϵ represents the same trust region parameter used in the on-policy case. By

the triangle inequality of TV distance, we have that

E
i∼ν

[
E

s∼dπk−i

[TV (π, πk−i) (s)]

]
≤ E

i∼ν

[
E

s∼dπk−i

[TV (π, πk) (s)]

]
+ E

i∼ν

[
E

s∼dπk−i

[TV (πk, πk−i) (s)]

]
, (4.3)

where the first term on the right-hand side is the expected one-step TV distance and

the second term does not depend on π. Therefore, we can satisfy the trust region in

(4.2) by controlling the expected one-step TV distance, which is often easier to work

with in practice. For an appropriate choice of ϵGPI, this leads to the following policy

update.

Definition 4.1 (Generalized Trust Region Update). For a given choice of trust region

38

parameter ϵGPI > 0, the generalized trust region update has the form

max
π

E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)
πk−i(a | s)

Aπk(s, a)

]]
s.t. E

i∼ν

[
E

s∼dπk−i

[TV (π, πk) (s)]

]
≤ ϵGPI

2
.

(4.4)

Similar to the on-policy trust region update in Definition 2.1, the generalized trust

region update also provides approximate policy improvement guarantees due to its

connection to the Generalized Policy Improvement lower bound in Theorem 4.1. In

order to deliver these approximate policy improvement guarantees, the generalized

update still depends on the advantage function with respect to the current policy πk,

which must be approximated using off-policy estimation techniques in practice.

As in the on-policy case, we can also satisfy the one-step TV distance trust region

in (4.4) by instead considering related forward or reverse KL divergence trust regions.

Lemma 4.2. Consider prior policies πk−i, i = 0, 1, 2, . . ., and any policy π that

satisfies

E
i∼ν

[
E

s∼dπk−i

[KL (πk∥π) (s)]
]
≤ δGPI, (4.5)

or

E
i∼ν

[
E

s∼dπk−i

[KL (π∥πk) (s)]
]
≤ δGPI, (4.6)

where δGPI = ϵ2GPI/2. Then, π also satisfies the TV distance trust region in (4.4).

Proof. As in the proof of Lemma 2.2, we apply Pinsker’s inequality followed by

Jensen’s inequality to the left-hand side of the trust region constraint in (4.4). By

doing so, we have that

E
i∼ν

[
E

s∼dπk−i

[TV (π, πk) (s)]

]
≤

√
1

2
E
i∼ν

[
E

s∼dπk−i

[KL (π∥πk) (s)]
]
≤
√
δGPI

2
=
ϵGPI

2
.

Next, we describe how to select the generalized trust region parameter ϵGPI and

mixture distribution ν over prior policies in order to provide guarantees on the risk

39

of every policy update while optimizing key quantities of interest. Principled choices

of ϵGPI and ν result in theoretically supported sample reuse.

4.2 Theoretically Supported Sample Reuse

4.2.1 Generalized Trust Region Parameter

Note that our Generalized Policy Improvement lower bound is valid for any mixture

distribution ν over prior policies, and the magnitude of the penalty term depends on

the choice of ν. Therefore, we first determine how to select ϵGPI for a given mixture

distribution ν in order to provide the same performance guarantees as the on-policy

setting.

From (4.3), we see that the generalized update in Definition 4.1 satisfies the trust

region in (4.2) for any ϵGPI such that

ϵGPI

2
≤ ϵ

2
− E

i∼ν

[
E

s∼dπk−i

[TV (πk, πk−i) (s)]

]
. (4.7)

While the adaptive choice of ϵGPI given by (4.7) will successfully control the magnitude

of the penalty term in the Generalized Policy Improvement lower bound, it only

indirectly provides insight into how ϵGPI depends on the choice of ν. In order to

establish a more direct connection between ϵGPI and ν, we consider a slightly stronger

trust region assumption.

Theorem 4.2. Assume that the expected one-step TV distance under each state vis-

itation distribution dπk−i is bounded by ϵGPI/2 at every update, where

ϵGPI =
ϵ

Ei∼ν [i+ 1]
.

Then, the magnitude of the generalized penalty term is no greater than the magnitude

of the on-policy penalty term under the on-policy update in Definition 2.1.

Proof. The coefficients outside of the expectation in the on-policy and generalized

penalty terms are the same, so we need to show that the trust region in (4.2) is

40

satisfied to prove the claim. For ease of notation, we write π = πk+1. Using the

triangle inequality for TV distance, we have that

E
i∼ν

[
E

s∼dπk−i

[TV (π, πk−i) (s)]

]
≤ E

i∼ν

[
i∑

j=0

E
s∼dπk−i

[TV (πk−j+1, πk−j) (s)]

]
≤ E

i∼ν

[ϵGPI

2
· (i+ 1)

]
=
ϵGPI

2
· E
i∼ν

[i+ 1] =
ϵ

2
,

where we have used the assumption on the expected one-step TV distance under each

state visitation distribution to bound each term inside the summation by ϵGPI/2.

Although the generalized update in Definition 4.1 does not directly imply the

trust region assumption in Theorem 4.2, practical implementations based on clipping

mechanisms or backtracking line searches can ensure that this assumption holds.

In practice, the choice of ϵGPI determined by Theorem 4.2 successfully controls the

magnitude of the generalized penalty term, and tends to be conservative compared

to (4.7) because it is based on applying the triangle inequality between every prior

policy.

The form of ϵGPI in Theorem 4.2 clearly demonstrates the trade-off of sample

reuse. As we reuse older data, we must consider smaller one-step trust regions at

every policy update in order to guarantee the same level of risk.

4.2.2 Mixture Distribution

Despite the need for smaller one-step trust regions at every policy update, we can

show that our generalized policy update improves key quantities of interest when the

mixture distribution ν is chosen in a principled manner. Note that νi > 0 indicates

that data from πk−i will be used during updates, so the choice of ν determines how

many prior policies to consider in addition to how to weight their contributions.

In this section, we show it is possible to select ν in a way that improves both

the effective sample size and total TV distance update size throughout training com-

41

pared to the on-policy baseline. It is common to consider auxiliary metrics to inform

sampling schemes (Schaul et al., 2016; de Bruin et al., 2018), and these represent

two important quantities in policy optimization. A larger effective sample size results

in more accurate estimates of the expectations that we must approximate in policy

updates, and leads to a more diverse batch of data which can be useful when reward

signals are sparse (Hong et al., 2018). A larger total TV distance update size allows

for more aggressive exploitation of the available information, which can lead to faster

learning throughout training. Although optimizing these metrics does not guarantee

improved performance compared to on-policy algorithms, we see in our experiments

that empirically this is often the case.

We write the on-policy sample size as N = Bn, where B is a positive integer and n

represents the smallest possible batch size (e.g., the length of one full trajectory). On-

policy policy improvement algorithms update the policy according to Definition 2.1

after every N samples collected, where the expectations are approximated using em-

pirical averages calculated using these N samples.

For the generalized case, we can combine data across several prior policies to con-

struct the batch used to calculate the generalized policy update in Definition 4.1.

Therefore, sample reuse allows us to make policy updates after every n samples col-

lected. The resulting effective sample size used for generalized policy updates is given

by

fESS(ν) =
n∑
i ν

2
i

,

where νi, i = 0, 1, 2, . . ., represents the weighting for data collected under πk−i. We

consider the effective sample size to account for the increased variance due to non-

uniform weights (Kong, 1992). For the case of uniform weights over the last M

policies, fESS(ν) reduces to the standard sample size definition of Mn.

Because we calculate generalized policy updates after every n samples collected,

42

we are able to make B times as many updates as the on-policy case. The total TV

distance update size for every N samples collected in the generalized case is given by

fTV(ν) = B · ϵGPI

2
=

B∑
i νi (i+ 1)

· ϵ
2
,

compared to ϵ/2 in on-policy algorithms.

Using the following result, we select ν to optimize fESS(ν) and fTV(ν) relative to

the on-policy case.

Theorem 4.3. Fix the trade-off parameter κ ∈ [0, 1], and select the mixture distri-

bution ν according to the convex optimization problem

ν∗(κ) = argmin
ν

κ ·
∑

i ν
2
i

cESS
+ (1− κ) ·

∑
i νi (i+ 1)

cTV

s.t.
∑
i

ν2i ≤
1

B
,
∑
i

νi (i+ 1) ≤ B,∑
i

νi = 1, νi ≥ 0, i = 0, 1, 2, . . . ,

(4.8)

where cESS, cTV ≥ 0 are scaling coefficients. Then, by applying the generalized update

in Definition 4.1 throughout training with ϵGPI from Theorem 4.2, the effective sam-

ple size and total TV distance update size are at least as large as the corresponding

quantities in the on-policy baseline.

Proof. Note that fESS(ν) and fTV(ν) only depend on ν in their denominators. There-

fore, we can maximize these quantities by minimizing the denominators that depend

on ν. By considering a convex combination determined by the trade-off parameter κ

and applying scaling coefficients, we arrive at the objective in (4.8).

Next, we consider the constraints in (4.8). The first constraint implies fESS(ν) ≥
Bn and the second constraint implies fTV(ν) ≥ ϵ/2. Therefore, these constraints

guarantee that the effective sample size and total TV distance update size are at

least as large as in the on-policy case. The remaining constraints ensure that ν is

a distribution. Finally, note that a uniform distribution over the last M policies

is a feasible solution to (4.8) for B ≤ M ≤ 2B − 1. Therefore, (4.8) is a feasible

optimization problem.

We see the benefits of using the optimal mixture distribution from Theorem 4.3 in

45

Algorithm 4.1: Generalized Policy Improvement Algorithms

Input: initial policy π0; TV distance trust region parameter ϵ; on-policy
batch size N = Bn, where n represents minimum batch size;
trade-off parameter κ.

Calculate mixture distribution ν using Theorem 4.3, and let M be the
number of prior policies with non-zero weighting.

Calculate generalized trust region parameter ϵGPI using Theorem 4.2.

for k = 0, 1, 2, . . . do

Collect n samples with πk.

Use n samples from each of πk−i, i = 0, . . . ,M − 1, to approximate the
expectations in Definition 4.1.

Update policy by approximately solving the optimization problem in
Definition 4.1. Implementation varies by algorithm.

end

PPO (GePPO), Generalized TRPO (GeTRPO), and Generalized VMPO (GeVMPO).

4.3.1 Generalized PPO

PPO (Schulman et al., 2017) approximates the on-policy trust region update in Def-

inition 2.1 using the policy update

max
π

E
(s,a)∼dπk

[
min

(
π(a | s)
πk(a | s)

Aπk(s, a), clip

(
π(a | s)
πk(a | s)

, 1− ϵ, 1 + ϵ

)
Aπk(s, a)

)]
,

(4.9)

where clip(x, l, u) = min(max(x, l), u) and the maximization is implemented using

minibatch stochastic gradient ascent. The policy update in (4.9) approximately max-

imizes a lower bound on the on-policy surrogate objective, while also heuristically

enforcing ∣∣∣∣ π(a | s)
πk(a | s)

− 1

∣∣∣∣ ≤ ϵ

at every state-action pair through the use of the clipping mechanism in the second

term. The clipping mechanism accomplishes this by removing any incentive for the

46

probability ratio to deviate more than ϵ from its starting point during every policy

update. Therefore, the clipping mechanism heuristically enforces the TV distance

trust region in (2.2), as shown in the following result.

Lemma 4.3. Assume that the support of π is contained within the support of πk at

every state. Then, the TV distance trust region in (2.2) can be written as

E
s∼dπk

[TV (π, πk) (s)] =
1

2
E

(s,a)∼dπk

[∣∣∣∣ π(a | s)
πk(a | s)

− 1

∣∣∣∣] .
Proof. From the definition of TV distance, we have that

E
s∼dπk

[TV (π, πk) (s)] =
1

2
E

s∼dπk

∫
A

|π(a | s)− πk(a | s)| da

 .
Then, by multiplying and dividing each term by πk(a | s), we obtain the result.

Note that the assumption in Lemma 4.3 is satisfied by popular policy representa-

tions such as a Gaussian policy.

In order to develop a generalized version of PPO that approximates the generalized

trust region update in Definition 4.1, we desire a policy update that approximately

maximizes a lower bound on the generalized surrogate objective while also heuris-

tically enforcing the generalized trust region via a clipping mechanism. In order to

determine the appropriate clipping mechanism, we can write the generalized TV dis-

tance trust region in (4.4) as the expectation of a probability ratio deviation just as

we did in the on-policy case.

Lemma 4.4. Assume that the support of π is contained within the support of πk−i,

i = 0, 1, 2, . . ., at every state. Then, the TV distance trust region in (4.4) can be

written as

E
i∼ν

[
E

s∼dπk−i

[TV (π, πk) (s)]

]
=

1

2
E
i∼ν

[
E

(s,a)∼dπk−i

[∣∣∣∣ π(a | s)
πk−i(a | s)

− πk(a | s)
πk−i(a | s)

∣∣∣∣]] .
Proof. Apply the same techniques as in the proof of Lemma 4.3. From the definition

47

of TV distance, we have that

E
i∼ν

[
E

s∼dπk−i

[TV (π, πk) (s)]

]
=

1

2
E
i∼ν

 E
s∼dπk−i

∫
A

|π(a | s)− πk(a | s)| da

 .
Then, by multiplying and dividing each term by πk−i(a | s), we obtain the result.

Therefore, Lemma 4.4 suggests the need for a clipping mechanism that heuristi-

cally enforces ∣∣∣∣ π(a | s)
πk−i(a | s)

− πk(a | s)
πk−i(a | s)

∣∣∣∣ ≤ ϵGPI

by removing the incentive for the probability ratio to deviate more than ϵGPI from its

starting point of πk(a|s)/πk−i(a|s). By applying such a generalized clipping mechanism

and considering a lower bound on the generalized surrogate objective, we arrive at

the Generalized PPO (GePPO) update

max
π

E
i∼ν

[
E

(s,a)∼dπk−i

[
min

(
π(a | s)
πk−i(a | s)

Aπk(s, a),

clip

(
π(a | s)
πk−i(a | s)

,
πk(a | s)
πk−i(a | s)

− ϵGPI,
πk(a | s)
πk−i(a | s)

+ ϵGPI

)
Aπk(s, a)

)]]
. (4.10)

Because the GePPO objective in (4.10) is maximized using minibatch stochastic

gradient ascent, the effectiveness of the clipping mechanism in enforcing the corre-

sponding trust region depends on the learning rate. To see why this is true, note that

each probability ratio begins at the center of the clipping range at the start of each

policy update. Therefore, the clipping mechanism has no impact at the beginning of

each update, and a large learning rate can result in probability ratios far outside of

the clipping range (Engstrom et al., 2020). In order to address this concern, we pro-

pose an adaptive learning rate where we decrease the learning rate if the expected TV

distance of a policy update exceeds the target trust region radius. See Algorithm 4.2

for details. This allows the theoretical connection between the clipping mechanism

48

Algorithm 4.2: GePPO Adaptive Learning Rate

Input: TV distance trust region parameter ϵGPI; policy learning rate η;
adaptive learning rate factor υ ≥ 0.

Calculate sample-based estimate T̂V of one-step TV distance trust region in
Definition 4.1 using Lemma 4.4.

if T̂V > ϵGPI/2 then η = η/(1+υ).

and the TV distance trust region to also hold in practice. Note that this is similar

to decaying learning rate schedules which are commonly used in PPO (Engstrom

et al., 2020; Andrychowicz et al., 2021), but our approach automatically adapts to

satisfy the goal of approximate policy improvement. In our experiments, we apply

this adaptive learning rate to both PPO and GePPO.

4.3.2 Generalized TRPO

As described in Chapter 3, TRPO (Schulman et al., 2015) approximates the on-policy

update in Definition 2.1 by instead applying the forward KL divergence trust region

in (2.3). Therefore, TRPO considers the policy update

max
π

E
(s,a)∼dπk

[
π(a | s)
πk(a | s)

Aπk(s, a)

]
s.t. E

s∼dπk
[KL (πk∥π) (s)] ≤ δ.

Next, TRPO considers a first order expansion of the surrogate objective and

second order expansion of the forward KL divergence trust region with respect to

the policy parameterization. Using these approximations, the TRPO policy update

admits a closed-form solution for the parameterization of πk+1. Finally, a backtracking

line search is performed to guarantee that the trust region is satisfied. See Chapter 3

for additional details.

It is straightforward to extend TRPO to the generalized setting. We approximate

the GPI update in Definition 4.1 by instead applying the forward KL divergence trust

49

region in (4.5). This leads to the policy update

max
π

E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)
πk−i(a | s)

Aπk(s, a)

]]
s.t. E

i∼ν

[
E

s∼dπk−i

[KL (πk∥π) (s)]
]
≤ δGPI.

(4.11)

We consider the same approximations and optimization procedure as TRPO to imple-

ment the Generalized TRPO (GeTRPO) update. For policies π and πk parameterized

by θ,θk ∈ Rd, respectively, approximations to the generalized surrogate objective and

trust region in (4.11) are given by

E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)
πk−i(a | s)

Aπk(s, a)

]]
≈ g′

k,ν (θ − θk) ,

E
i∼ν

[
E

s∼dπk−i

[KL (πk∥π) (s)]
]
≈ 1

2
(θ − θk)

′Fk,ν (θ − θk) ,

which represent first and second order expansions, respectively, centered around πk.

4.3.3 Generalized VMPO

VMPO (Song et al., 2020) approximates the on-policy update in Definition 2.1 by

instead considering the reverse KL divergence trust region in (2.4). VMPO begins by

calculating a non-parametric target policy based on this update. However, in the on-

policy setting we can only compute advantages for state-action pairs we have visited,

so VMPO first transforms the update to treat the state-action visitation distribution

as the variable rather than the policy. We write the new and current state-action

visitation distributions ψ, ψk as

ψ(s, a) = dπk(s)π(a | s), ψk(s, a) = dπk(s)πk(a | s),

50

which results in the non-parametric VMPO update

ψtarg = argmax
ψ

E
(s,a)∼ψ

[Aπk(s, a)] s.t. KL (ψ∥ψk) ≤ δ. (4.12)

This leads to the target distribution

ψtarg(s, a) = dπk(s)πk(a | s)w(s, a),

where

w(s, a) =
exp (Aπk (s,a)/λ∗)

Z(λ∗)
, Z(λ∗) = E

(s,a)∼dπk
[exp (Aπk (s,a)/λ∗)] ,

and

λ∗ = argmin
λ≥0

λδ + λ log (Z(λ))

is the optimal solution to the corresponding dual problem.

Next, VMPO projects this target distribution back onto the space of parametric

policies, while guaranteeing that the new policy satisfies the forward KL divergence

trust region in (2.3). Therefore, VMPO guarantees approximate policy improvement

in both the initial non-parametric step and the subsequent projection step. This

results in the constrained maximum likelihood update

max
π

E
(s,a)∼dπk

[w(s, a) log π(a | s)] s.t. E
s∼dπk

[KL (πk∥π) (s)] ≤ δ. (4.13)

In order to generalize VMPO, we begin by approximating the GPI update in Def-

inition 4.1 with the reverse KL divergence trust region from (4.6). In the generalized

setting, the new and current state-action visitation distributions ψ, ψk used in the

non-parametric update step are given by

ψ(s, a) = E
i∼ν

[dπk−i(s)] π(a | s), ψk(s, a) = E
i∼ν

[dπk−i(s)]πk(a | s).

51

Using these generalized visitation distributions, the non-parametric update has the

same form as (4.12) with δ replaced by δGPI. This results in the target distribution

ψtarg(s, a) = E
i∼ν

[dπk−i(s)] πk(a | s)w(s, a),

where w(s, a) has the same form as in the on-policy case, the normalizing coefficient

is now given by

Z(λ∗) = E
i∼ν

[
E

(s,a)∼dπk−i

[
πk(a | s)
πk−i(a | s)

exp (Aπk (s,a)/λ∗)

]]
,

and λ∗ is the optimal solution to the corresponding dual problem as in the on-policy

case.

The projection step in the generalized case considers the forward KL divergence

trust region in (4.5), resulting in the Generalized VMPO (GeVMPO) update

max
π

E
i∼ν

[
E

(s,a)∼dπk−i

[
πk(a | s)
πk−i(a | s)

w(s, a) log π(a | s)
]]

s.t. E
i∼ν

[
E

s∼dπk−i

[KL (πk∥π) (s)]
]
≤ δGPI.

(4.14)

In order to implement the GeVMPO update in (4.14), we approximate expecta-

tions using sample averages. Because we only have access to a single action in any

given state, the empirical version of the maximum likelihood objective in (4.14) incen-

tivizes an increase in likelihood at every state-action pair, even those with w(s, a) < 1.

In order to address this issue, Song et al. (2020) only considered samples with posi-

tive advantages. Rather than discard potentially useful information from half of the

collected samples, we propose an alternative approach.

We note the similarity between the GeVMPO update in (4.14) and the GeTRPO

update in (4.11), where the only difference comes in the form of the objective. There-

fore, we can apply the same optimization procedure as in GeTRPO, where we consider

52

a first order approximation of the objective and a second order approximation of the

forward KL divergence trust region. Similar to policy gradient methods, we intro-

duce a baseline value to the objective that does not impact the gradient at the current

policy πk (Sutton et al., 2000). In particular, we replace the non-parametric target

weights w(s, a) in (4.14) with w̄(s, a) = w(s, a)− 1. This leads to the same gradient

as the true maximum likelihood objective at πk, but results in the appropriate update

direction at every state-action pair when we approximate expectations using sample

averages. In our experiments, we apply these implementation details to both VMPO

and GeVMPO.

4.4 Experiments

In order to analyze the performance of our GPI algorithms, we consider the full set of

28 continuous control benchmark tasks in the DeepMind Control Suite (Tunyasuvu-

nakool et al., 2020). This benchmark set covers a broad range of continuous control

tasks, including a variety of classic control, goal-oriented manipulation, and locomo-

tion tasks. In addition, the benchmark tasks vary in complexity, both in terms of

dimensionality and sparsity of reward signals. Finally, each task has a horizon length

of 1,000 and r(s, a) ∈ [0, 1] for every state-action pair, resulting in a total return

between 0 and 1,000.

We focus our analysis on the comparison between GPI algorithms and their on-

policy policy improvement counterparts. Note that we do not claim state-of-the-art

performance, but instead we are interested in evaluating the benefits of theoretically

supported sample reuse in the context of policy improvement algorithms. By doing

so, we can support the use of GPI algorithms in settings where on-policy methods

are currently the most viable option for data-driven control.

In our experiments, we consider default network architectures and hyperparam-

55

Table 4.1: Task classification by algorithm.

Task Classification PPO TRPO VMPO Best

On-Policy Outperforms 3 1 3 2
Generalized Outperforms 18 19 17 19
No Learning 7 8 8 7

Total Number of Tasks 28 28 28 28

accomplish this, we consider an off-policy variant of GAE that uses the V-trace value

function estimator (Espeholt et al., 2018). See the Appendix for details, including

the values of all hyperparameters.1

4.4.1 Overview of Experimental Results

In order to evaluate the benefit of our generalized framework, we compare the best

performing on-policy algorithm to the best performing GPI algorithm for every task

where learning occurs. Figure 4·3 shows the final performance of these algorithms by

task, and Figure 4·4 shows the difference in final performance by task. From these

results, we see a clear performance gain from our generalized approach. Out of 28

tasks, our GPI algorithms outperform in 19 tasks, on-policy algorithms outperform in

2 tasks, and we observe no meaningful learning under any algorithm in 7 tasks when

compared to a random policy. In the 2 tasks where on-policy algorithms outperform,

the performance difference is small. On the other hand, in the tasks where our

GPI algorithms outperform, we often observe a significant performance difference.

We see an improvement of more than 50% from our GPI algorithms in 4 of the

tasks and an improvement of more than 10% in 13 of the tasks. Note that we also

observe similar trends when comparing any on-policy algorithm to its corresponding

generalized version, as summarized in Table 4.1. See the Appendix for details.

1Code is publicly available at https://github.com/jqueeney/gpi.

57

the largest total gain in performance and the 4 tasks where our GPI algorithms

demonstrate the largest percentage gain in performance are all contained in this set

of sparse reward tasks. In this setting, on-policy algorithms struggle to exploit the

limited reward information. The sample reuse in our GPI algorithms, on the other

hand, allows sparse reward signals to be exploited across several policy updates while

also leading to larger, more diverse batches of data at every update. Together, these

benefits of sample reuse result in improved learning progress in difficult sparse reward

settings.

4.5 Summary

In this chapter, we have addressed the on-policy limitation of existing policy improve-

ment methods. We developed a class of Generalized Policy Improvement algorithms

that guarantee approximate policy improvement throughout training while reusing

data from all recent policies. We demonstrated the theoretical benefits of principled

sample reuse, and showed empirically that our generalized approach results in im-

proved performance compared to popular on-policy algorithms. Therefore, our class

of GPI algorithms represents a strong alternative in settings where on-policy methods

are currently the default choice for data-driven decision making and control, providing

the same guarantees on stable training with improved data efficiency.

Because our methods use on-policy policy improvement algorithms as a starting

point, our Generalized Policy Improvement lower bound only supports the reuse of

data from recent policies. For settings where large replay buffers are feasible, an

interesting avenue for future work includes the development of policy improvement

guarantees that are compatible with the aggressive sample reuse in off-policy algo-

rithms. We provide a discussion on this future research direction in Chapter 7.

58

Chapter 5

Optimal Transport Perturbations with

Safety Constraints

We now turn our attention to the issues of robustness and safety in deep RL, which

are critical for the reliable deployment of learned control policies in many important

application areas. We consider deep RL with safety constraints, and we incorporate

uncertainty about the true environment at deployment time (i.e., model uncertainty).

In this chapter, we focus on worst-case transition models in an uncertainty set, which

is a common formulation of model uncertainty in robust RL. Unfortunately, many

choices of uncertainty sets can be difficult to implement in a way that is compatible

with the training requirements of real-world settings. In order to address this concern,

we consider an uncertainty set based on the optimal transport cost between transition

models, which provides robustness to general forms of environment disturbances while

only requiring standard data collection from a single training environment.

5.1 Robust and Safe Reinforcement Learning

Throughout this chapter, we consider the RC-MDP framework with uncertainty set

P =
⊗

(s,a)∈S×A Ps,a, which leads to the robust and safe RL problem in (2.7). As

in the standard safe RL setting, we can apply off-policy optimization techniques to

iteratively optimize (2.7) by considering the related optimization problem

max
π

E
s∼D

[
E

a∼π(·|s)

[
Qπk

P,r(s, a)
]]

s.t. E
s∼D

[
E

a∼π(·|s)

[
Qπk

P,c(s, a)
]]

≤ B, (5.1)

59

where πk is the current policy, D is a replay buffer containing data collected during

training, and Qπ
P,r(s, a) and Qπ

P,c(s, a) represent robust Q functions. Compared to

the standard safe RL update in (2.6), the only difference in the robust and safe RL

update of (5.1) comes from the use of robust Q functions. Therefore, in order to

incorporate robustness into existing deep safe RL algorithms, we focus on how to

efficiently learn the robust Q functions that are needed for the policy update in (5.1).

The robust Q functions Qπ
P,r(s, a) and Q

π
P,c(s, a) represent the unique fixed points

of the corresponding robust Bellman operators (Nilim and Ghaoui, 2005; Iyengar,

2005) given by

T π
P,rQr(s, a) := r(s, a) + γ inf

ps,a∈Ps,a
E

s′∼ps,a
[V π
r (s

′)] , (5.2)

T π
P,cQc(s, a) := c(s, a) + γ sup

ps,a∈Ps,a

E
s′∼ps,a

[V π
c (s

′)] , (5.3)

where we write V π
r (s

′) = Ea′∼π(·|s′) [Qr(s
′, a′)] and V π

c (s
′) = Ea′∼π(·|s′) [Qc(s

′, a′)]. Note

that T π
P,r and T π

P,c are contraction operators (Nilim and Ghaoui, 2005; Iyengar, 2005),

so we can apply standard temporal difference learning techniques to learn Qπ
P,r(s, a)

and Qπ
P,c(s, a). In order to do so, we must be able to calculate the Bellman targets

in (5.2) and (5.3), which involve optimization problems over transition models that

depend on the choice of uncertainty set Ps,a at every state-action pair. In order to

efficiently estimate these Bellman targets, popular choices of Ps,a in the literature

require the ability to change physical parameters of the environment (Mankowitz

et al., 2020, 2021) or directly apply adversarial perturbations during trajectory roll-

outs (Pinto et al., 2017; Tessler et al., 2019a; Vinitsky et al., 2020) to calculate worst-

case transitions. However, because these implementations rely on multiple simulated

training environments or potentially dangerous adversarial interventions, they are not

compatible with settings that require real-world data collection for training.

60

5.2 Optimal Transport Uncertainty Set

In this work, we use optimal transport theory to consider an uncertainty set that can

be efficiently implemented in a model-free fashion using only samples collected from a

nominal training environment. In order to do so, we assume that S is a Polish space

(i.e., a separable, completely metrizable topological space). Note that the Euclidean

space Rm is Polish, so this is not very restrictive. Next, we define Ps,a using the

optimal transport cost between transition models.

Definition 5.1 (Optimal Transport Cost). Let S be a Polish space, and let ds,a :

S×S → R+ be a non-negative, lower semicontinuous function satisfying ds,a(s
′, s′) =

0 for all s′ ∈ S. Then, the optimal transport cost between two transition models

p̂s,a, ps,a ∈ P (S) is defined as

OTCds,a(p̂s,a, ps,a) = inf
ν∈Γ(p̂s,a,ps,a)

∫
S×S

ds,a(ŝ
′, s′)dν(ŝ′, s′),

where Γ(p̂s,a, ps,a) is the set of all couplings of p̂s,a and ps,a.

See Figure 5·1 for an illustration of Definition 5.1. If ds,a is chosen to be a metric

raised to some power p ≥ 1, we recover the p-Wasserstein distance raised to the

power p as a special case (Chen and Paschalidis, 2020). If we let ds,a(ŝ
′, s′) = 1ŝ′ ̸=s′ ,

we recover the TV distance as a special case (Villani, 2008).

By considering the optimal transport cost from some nominal transition model

p̂s,a, we define the optimal transport uncertainty set as follows.

Definition 5.2 (Optimal Transport Uncertainty Set). For a given nominal transition

model p̂s,a, transport cost function ds,a, and radius ϵs,a at (s, a) ∈ S ×A, the optimal

transport uncertainty set is defined as

Ps,a =
{
ps,a ∈ P (S) | OTCds,a(p̂s,a, ps,a) ≤ ϵs,a

}
.

This uncertainty set has previously been considered in robust RL for the special

62

share the same support, unlike other popular measures between distributions such as

the KL divergence. As a result, the optimal transport uncertainty set is very general

and can be applied to both stochastic and deterministic transition models. Finally,

as we will show in the following sections, the use of an optimal transport uncertainty

set results in an efficient model-free implementation of robust and safe RL that only

requires the ability to collect data in a nominal training environment.

5.3 Reformulation as Worst-Case Virtual State Transitions

In order to learn robust Q functions for an optimal transport uncertainty set, we

focus on how to efficiently calculate the robust Bellman operators in (5.2) and (5.3).

We consider the following main assumptions.

Assumption 5.1. For any π and Qr(s
′, a′) in (5.2), V π

r (s
′) = Ea′∼π(·|s′) [Qr(s

′, a′)]

is lower semicontinuous and Es′∼p̂s,a|V π
r (s

′)| < ∞. For any π and Qc(s
′, a′) in (5.3),

V π
c (s

′) = Ea′∼π(·|s′) [Qc(s
′, a′)] is upper semicontinuous and Es′∼p̂s,a|V π

c (s
′)| <∞.

Assumption 5.2. Optimal transport plans exist for the distributionally robust opti-

mization problems in (5.2) and (5.3).

Note that Assumptions 5.1–5.2 correspond to assumptions in Blanchet and Murthy

(2019) applied to our setting. In practice, the use of neural network representations

results in continuous value functions, which are bounded for the common case when

rewards and costs are bounded, respectively. A sufficient condition for Assumption 5.2

to hold is if S is compact, or if we restrict our attention to a compact subset of next

states in our definition of Ps,a which is reasonable in practice. Blanchet and Murthy

(2019) also provide other sufficient conditions for Assumption 5.2 to hold.

Under these assumptions, we can reformulate the Bellman operators in (5.2) and

(5.3) to arrive at a tractable result that can be efficiently implemented in a deep RL

setting.

63

Theorem 5.1. Let Assumptions 5.1–5.2 hold, and let G be the set of all functions

from S to S. Then, we have

T π
P,rQr(s, a) = r(s, a) + γ E

ŝ′∼p̂s,a

[
V π
r (g

r
s,a(ŝ

′))
]
, (5.5)

T π
P,cQc(s, a) = c(s, a) + γ E

ŝ′∼p̂s,a

[
V π
c (g

c
s,a(ŝ

′))
]
, (5.6)

where for a given state-action pair (s, a) ∈ S ×A we have

grs,a ∈ arg min
g∈G

E
ŝ′∼p̂s,a

[V π
r (g(ŝ

′))] s.t. E
ŝ′∼p̂s,a

[ds,a(ŝ
′, g(ŝ′))] ≤ ϵs,a, (5.7)

gcs,a ∈ arg max
g∈G

E
ŝ′∼p̂s,a

[V π
c (g(ŝ

′))] s.t. E
ŝ′∼p̂s,a

[ds,a(ŝ
′, g(ŝ′))] ≤ ϵs,a. (5.8)

Proof. First, we leverage results from Blanchet and Murthy (2019) to show that

optimal transport strong duality holds for the distributionally robust optimization

problems in (5.2) and (5.3) under Assumption 5.1. Next, we establish that the dis-

tributionally robust optimization problems in (5.2) and (5.3) share the same dual

problems as (5.7) and (5.8), respectively. Finally, we use Assumption 5.2 to show

that strong duality also holds for (5.7) and (5.8), which proves the result. See the

Appendix for details.

Theorem 5.1 demonstrates that we can calculate the Bellman operators T π
P,r and

T π
P,c by using samples collected from a nominal environment with transition model p̂s,a,

and adversarially perturbing the next state samples according to (5.7) and (5.8), re-

spectively. We refer to the resulting changes in state transitions as Optimal Transport

Perturbations (OTP). As a result, we have replaced difficult optimization problems

over distribution space in (5.2) and (5.3) with the tractable problems of computing

Optimal Transport Perturbations in state space. See Figure 5·2 for an illustration.

Theorem 5.1 represents the main theoretical contribution of this chapter, which di-

rectly motivates an efficient deep RL implementation of robust and safe RL.

Finally, note that these perturbed state transitions are only needed to calculate

the Bellman targets in (5.5) and (5.6), which we use to train the robust Q functions

Qπ
P,r(s, a) and Q

π
P,c(s, a). Therefore, unlike other adversarial approaches to robust RL

65

F be the set of all functions from S ×A× S to S, with gr, gc ∈ F .

In the context of deep RL, we consider a class of perturbation functions Fδ ⊆ F

parameterized by a neural network δ : S × A × S → S. In our experiments, we

consider tasks where S = Rm and we apply multiplicative perturbations to state

transitions. In particular, we consider perturbation functions of the form

gδ(s, a, ŝ
′) = s+ (ŝ′ − s)(1 + δ(s, a, ŝ′)), (5.9)

where δ(s, a, ŝ′) ∈ Rm and all operations are performed per-coordinate. By defining

Fδ in this way, we obtain plausible adversarial transitions that are interpretable,

where δ(s, a, ŝ′) represents the percentage change to the nominal state transition in

each coordinate.

Using ds,a from (5.4), we have that

ds,a(ŝ
′, gδ(s, a, ŝ

′)) =
1

m
∥δ(s, a, ŝ′)∥22.

Then, following common practice in off-policy deep RL, we combine the perturbation

function updates in (5.7) and (5.8) across state-action pairs by averaging over samples

from the replay buffer. By doing so, we can efficiently update our perturbation

networks in a deep RL setting according to

δr ∈ arg min
δ

E
(s,a,ŝ′)∼D

[V π
r (gδ(s, a, ŝ

′))] s.t. E
(s,a,ŝ′)∼D

[
∥δ(s, a, ŝ′)∥22

]
≤ mϵ2δ , (5.10)

δc ∈ arg max
δ

E
(s,a,ŝ′)∼D

[V π
c (gδ(s, a, ŝ

′))] s.t. E
(s,a,ŝ′)∼D

[
∥δ(s, a, ŝ′)∥22

]
≤ mϵ2δ , (5.11)

where (s, a, ŝ′) ∼ D are transitions collected in the nominal environment and ϵδ

represents the average per-coordinate magnitude of δ(s, a, ŝ′) with E(s,a)∼D [ϵs,a] = ϵ2δ .

It is also possible to satisfy perturbation function constraints at every state-action

pair through the use of clipping mechanisms, if desired. Note that any violation of the

66

Algorithm 5.1: Safe RL with Optimal Transport Perturbations

Input: initial policy π0; critics Qθr , Qθc ; OTP networks δr, δc.

for k = 0, 1, 2, . . . do

Collect data τ ∼ (πk, p̂) and store it in D.

for K updates do

Sample a batch of data (s, a, r, c, ŝ′) ∼ D.

Update OTP networks δr, δc according to (5.10) and (5.11).

Calculate Bellman targets in (5.12) and (5.13), and update critics
Qθr , Qθc to minimize LP,r(θr),LP,c(θc).

Update policy π according to (5.1).

end

end

perturbation function constraints in practice will only lead to additional robustness

and will not negatively impact safety.

We train separate reward and cost perturbation networks δr and δc, and we apply

the resulting Optimal Transport Perturbations to calculate the Bellman targets in

(5.5) and (5.6) for training the robust Q functions Qπ
P,r(s, a) and Qπ

P,c(s, a). For

(s, a, ŝ′) ∼ D, we consider the sample-based estimates

T̂ π
P,rQr(s, a) = r(s, a) + γV π

r (gδr(s, a, ŝ
′)), (5.12)

T̂ π
P,cQc(s, a) = c(s, a) + γV π

c (gδc(s, a, ŝ
′)). (5.13)

5.5 Algorithm

We summarize our approach to robust and safe RL in Algorithm 5.1. At every

update, we sample previously collected data from a replay buffer D. We update

our reward and cost perturbation networks δr and δc according to (5.10) and (5.11),

respectively. Then, we estimate Bellman targets according to (5.12) and (5.13), which

we use to update our critics via standard temporal difference learning loss functions.

67

We consider parameterized critics Qθr and Qθc , and we optimize their parameters to

minimize the loss functions

LP,r(θr) = E
(s,a,ŝ′)∼D

[(
Qθr(s, a)− T̂ π

P,rQ̄θr(s, a)
)2]

,

LP,c(θc) = E
(s,a,ŝ′)∼D

[(
Qθc(s, a)− T̂ π

P,cQ̄θc(s, a)
)2]

,

where Q̄θr and Q̄θc represent target critic networks. Finally, we use these critic esti-

mates to update our policy according to (5.1).

Compared to standard safe RL methods, the only additional components of our

approach are the perturbation networks used to apply Optimal Transport Perturba-

tions, which we train alongside the critics and the policy using standard gradient-

based methods. Otherwise, the computations for updating the critics and policy

remain unchanged. Therefore, it is simple to incorporate our OTP framework into

existing deep safe RL algorithms in order to provide robustness guarantees on per-

formance and safety.

5.6 Experiments

We analyze the use of Optimal Transport Perturbations for robust and safe RL on

continuous control tasks with safety constraints in the Real-World RL Suite (Dulac-

Arnold et al., 2020, 2021). We consider 5 constrained tasks over 3 domains: Cartpole

Swingup, Walker Walk, Walker Run, Quadruped Walk, and Quadruped Run. Each

task has a horizon length of 1,000 with r(s, a) ∈ [0, 1] and c(s, a) ∈ {0, 1}. In all tasks,

we consider a safety budget of B = 100. A policy incurs cost in the Cartpole domain

when the slider moves outside of a specified range, in the Walker domain when the

velocity of any joint exceeds a threshold, and in the Quadruped domain when joint

angles are outside of an acceptable range. See the Appendix for additional information

on the safety constraints we consider, and see Dulac-Arnold et al. (2021) for detailed

68

definitions.

We train policies in a nominal training environment for 1 million steps over 5

random seeds, and we evaluate the robustness of the learned policies in terms of both

performance and safety across a range of perturbed test environments via 10 trajec-

tory rollouts. We define these test environments by perturbing a simulator parameter

in each domain. We vary the length of the pole in the Cartpole domain, the length

of the torso in the Walker domain, and the density of the torso in the Quadruped

domain. Note that the parameter value associated with the nominal training environ-

ment is in the center of the range of parameter values considered at test time. See the

Appendix for additional information on the environment perturbations considered for

each task.

Our Optimal Transport Perturbations can be combined with many popular safe

RL algorithms, which is a benefit of our methodology. In our experiments, we con-

sider the safe RL algorithm Constraint-Rectified Policy Optimization (CRPO) (Xu

et al., 2021), and we use the unconstrained deep RL algorithm Maximum a Posteriori

Policy Optimization (MPO) (Abdolmaleki et al., 2018) to calculate policy updates

in CRPO. For a fair comparison, we apply CRPO with MPO policy updates as the

baseline safe RL algorithm in every method we consider in our experiments. We

train a multivariate Gaussian policy, where the mean and diagonal covariance at a

given state are parameterized by a neural network. We also consider separate neu-

ral network parameterizations for the reward and cost critics. See the Appendix for

additional implementation details, including network architectures and values of all

hyperparameters.1

We incorporate robustness into the baseline safe RL algorithm in three ways:

(i) Optimal Transport Perturbations, (ii) adversarial RL using the action-robust PR-

MDP framework from Tessler et al. (2019a) applied to the safety constraint, and

1Code is publicly available at https://github.com/jqueeney/robust-safe-rl.

70

Table 5.1: Aggregate performance summary.

Normalized Ave.‡ Rollouts Require∗

Algorithm % Safe† Reward Cost Adversary Simulator

Safe RL 51% 1.00 1.00 No No
OTP 87% 1.06 0.34 No No
Adversarial RL (5%) 82% 1.05 0.48 Yes No
Adversarial RL (10%) 88% 0.95 0.28 Yes No
Domain Randomization 76% 1.14 0.72 No Yes
Domain Randomization (OOD) 55% 1.02 1.02 No Yes
† Percentage of policies that satisfy the safety constraint across all tasks and test
environments.

‡ Normalized relative to the average performance of standard safe RL for each task and test
environment.

∗ Denotes need for adversary or simulator during data collection (i.e., trajectory rollouts) for
training.

of 1.06x relative to safe RL across the range of test environments. Most importantly,

we see a significant improvement in safety, with our algorithm satisfying constraints

in 87% of test cases (compared to 51% for safe RL) and incurring 0.34x the costs of

safe RL, on average. Note that we achieve this robustness while collecting data from

the same training environment considered in standard safe RL, without requiring ad-

versarial interventions in the environment or domain knowledge on the structure of

the perturbed test environments.

5.6.2 Comparison to Adversarial Reinforcement Learning

Next, we compare our approach to the PR-MDP framework (Tessler et al., 2019a),

an adversarial RL method that randomly applies adversarial actions a percentage of

the time during training. In order to apply this method to the safe RL setting, we

train the adversary to maximize costs. We consider 5% and 10% probabilities of in-

tervention during training. As shown in Figure 5·3, this adversarial approach leads to

robust constraint satisfaction at test time in the Quadruped tasks. Our OTP frame-

work, on the other hand, leads to improved constraint satisfaction in the remaining

3 out of 5 tasks. Note that the robust safety demonstrated by the more adversarial

73

where we lack domain knowledge, we consider an out-of-distribution (OOD) version

of domain randomization that is trained on a distribution over a different parameter

than the one varied at test time. When the training distribution is not appropri-

ately selected, we see that domain randomization provides little benefit compared to

standard safe RL. Our OTP framework, on the other hand, guarantees robust and

safe performance under general forms of model uncertainty while only collecting data

from a single training environment.

5.7 Summary

In this chapter, we have developed a general framework for robust and safe RL through

the use of an optimal transport uncertainty set. We demonstrated that we can guar-

antee robustness to general forms of environment disturbances by applying adversarial

perturbations to observed state transitions. These Optimal Transport Perturbations

can be efficiently implemented by constructing virtual transitions without impacting

data collection during training, and can be easily combined with existing techniques

for safe RL to provide protection against unknown disturbances. Because our frame-

work makes limited assumptions on the data collection process during training and

does not require directly modifying the environment, it should be compatible with

many real-world decision making applications.

Note that our use of the RC-MDP framework guarantees robust, safe performance

for all environments in the uncertainty set P . Therefore, we must specify the transport

cost function ds,a and radius ϵs,a to achieve the desired robustness without being overly

conservative. An alternative method for incorporating model uncertainty is to instead

consider a distribution over possible transition models. We apply this approach in

the next chapter.

74

Chapter 6

Risk-Averse Model Uncertainty with

Safety Constraints

The previous chapter incorporated model uncertainty into safe RL by considering

worst-case transition models in an uncertainty set. In this chapter, we instead rep-

resent model uncertainty using a distribution over possible transition models, which

provides benefits compared to the common robust RL approach based on an uncer-

tainty set. First, a distribution represents a more informative way to represent model

uncertainty, as it incorporates additional prior knowledge about which transition

models are more likely than others at deployment time. In addition, the worst-case

approach of robust RL with an uncertainty set introduces complex minimax opti-

mization problems throughout training. These difficult minimax formulations can be

avoided by instead optimizing for average performance over a distribution of possi-

ble transition models. However, by focusing on average performance, this popular

approach to model uncertainty lacks robustness guarantees. In order to incorporate

robustness while considering a distribution over transition models, we introduce a

risk-averse perspective towards model uncertainty through the use of coherent distor-

tion risk measures.

6.1 Coherent Distortion Risk Measures

Consider a random variable Z ∈ Z, where Z is a space of random variables defined

on a given probability space. A real-valued risk measure ρ : Z → R summarizes a

75

random variable as a value on the real line. In this section, we consider cost random

variables where a lower value of ρ(Z) is better. We can define a corresponding risk

measure ρ+ for reward random variables through an appropriate change in sign, where

ρ+(Z) = −ρ(−Z).

Recently, Majumdar and Pavone (2020) proposed a set of axioms to characterize

desirable properties of risk measures in the context of robotics.

Definition 6.1 (Risk Measure Axioms). Majumdar and Pavone (2020) proposed a

set of risk measure axioms defined as follows:

A1. Monotonicity: ρ(Z) ≤ ρ(Z ′) if Z,Z ′ ∈ Z and Z ≤ Z ′ almost everywhere.

A2. Translation invariance: ρ(Z + α) = ρ(Z) + α if α ∈ R and Z ∈ Z.

A3. Positive homogeneity: ρ(τZ) = τρ(Z) if τ ≥ 0 and Z ∈ Z.

A4. Convexity: ρ(λZ+(1−λ)Z ′) ≤ λρ(Z)+(1−λ)ρ(Z ′) if λ ∈ [0, 1] and Z,Z ′ ∈ Z.

A5. Comonotonic additivity: ρ(Z+Z ′) = ρ(Z)+ρ(Z ′) if Z,Z ′ ∈ Z are comonotonic.

A6. Law invariance: ρ(Z) = ρ(Z ′) if Z,Z ′ ∈ Z are identically distributed.

See Majumdar and Pavone (2020) for a discussion on the intuition behind these

axioms. Risk-sensitive methods typically focus on classes of risk measures that satisfy

some or all of these axioms, such as coherent risk measures (Artzner et al., 1999) and

distortion risk measures (Wang, 1996; Dhaene et al., 2012).

Definition 6.2 (Coherent Risk Measure). A risk measure ρ is a coherent risk measure

if it satisfies Axioms A1–A4.

Definition 6.3 (Distortion Risk Measure). Let g : [0, 1] → [0, 1] be a non-decreasing,

left-continuous function with g(0) = 0 and g(1) = 1. A distortion risk measure with

respect to g is defined as

ρ(Z) =

1∫
0

F−1
Z (u)dg̃(u),

where F−1
Z is the inverse cumulative distribution function of Z and g̃(u) = 1−g(1−u).

76

All distortion risk measures satisfy Axioms A1–A3 and Axioms A5–A6. A distor-

tion risk measure is coherent if and only if g is concave (Wirch and Hardy, 2003). In

this chapter, we focus on the class of coherent distortion risk measures, which satisfy

all of the axioms proposed in Majumdar and Pavone (2020). Many commonly used

risk measures belong to this class, including expectation, conditional value-at-risk

(CVaR), and the Wang transform (Wang, 2000) for η ≥ 0 which is defined by the dis-

tortion function gη(u) = Φ(Φ−1(u) + η), where Φ is the standard Normal cumulative

distribution function.

Risk-sensitive methods typically focus on the aleatoric uncertainty in RL, which

refers to the range of stochastic outcomes within a single MDP. Rather than con-

sidering the standard expected value objective, they learn risk-sensitive policies over

this distribution of possible outcomes in a fixed MDP (Shen et al., 2014; Chow et al.,

2015; Tamar et al., 2015; Bellemare et al., 2017; Dabney et al., 2018; Ma et al., 2020;

Keramati et al., 2020; L.A. and Fu, 2022). We also consider the use of risk measures

in this chapter, but different from standard risk-sensitive RL methods we apply a risk

measure over model uncertainty instead of aleatoric uncertainty.

6.2 Risk-Averse Model Uncertainty

In the standard safe RL setting with fixed transition model p, the policy update in

(2.6) depends on Qπ
p,r(s, a) and Qπ

p,c(s, a). These Q functions represent fixed points

of the standard Bellman operators

T π
p,rQ(s, a) := r(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

T π
p,cQ(s, a) := c(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
.

In this work, however, we are interested in a distribution over possible transition

models given by µ =
∏

(s,a)∈S×A µs,a rather than a fixed transition model. The dis-

77

tribution µ provides a natural way to capture our uncertainty about the unknown

transition model at deployment time. Next, we must incorporate this model uncer-

tainty in the definition of our Q functions. Prior methods have done this by applying

the expectation operator over µs,a at every transition (Derman et al., 2018), which

corresponds to the constrained optimization problem in (2.8). Instead, we adopt a

risk-averse view towards model uncertainty in order to learn robust and safe policies.

We accomplish this by applying a coherent distortion risk measure ρ with respect

to model uncertainty at every transition. For a given policy π, this results in the

Risk-Averse Model Uncertainty (RAMU) Q functions defined as

Qπ
ρ+,r(s, a) := r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
r(s′, a′) + γ ρ+

ps′,a′∼µs′,a′
(. . .)

]])
,

Qπ
ρ,c(s, a) := c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
c(s′, a′) + γ ρ

ps′,a′∼µs′,a′
(. . .)

]])
,

with the use of ρ+ in Qπ
ρ+,r(s, a) to account for reward random variables. The notation

ρ ps,a∼µs,a (·) makes clear the fact that the stochasticity of the random variable is with

respect to the transition model sampled from µs,a. Note that we still apply expec-

tations over the aleatoric uncertainty of the C-MDP (i.e., the randomness associated

with a stochastic transition model and stochastic policy), while being risk-averse with

respect to model uncertainty.

We can write the RAMU Q functions recursively as

Qπ
ρ+,r(s, a) = r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
Qπ
ρ+,r(s

′, a′)
]])

,

Qπ
ρ,c(s, a) = c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)

[
Qπ
ρ,c(s

′, a′)
]])

.

These recursive definitions motivate corresponding RAMU Bellman operators.

Definition 6.4 (RAMU Bellman Operators). For a given policy π, the RAMU Bell-

78

man operators are defined as

T π
ρ+,rQ(s, a) := r(s, a) + γ ρ+

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
,

T π
ρ,cQ(s, a) := c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
.

Note that the RAMU Bellman operators can also be interpreted as applying a

coherent distortion risk measure over standard Bellman targets, which are random

variables with respect to the transition model ps,a ∼ µs,a for a given state-action pair.

Lemma 6.1. The RAMU Bellman operators can be written in terms of standard

Bellman operators as

T π
ρ+,rQ(s, a) = ρ+

ps,a∼µs,a

(
T π
p,rQ(s, a)

)
, T π

ρ,cQ(s, a) = ρ
ps,a∼µs,a

(
T π
p,cQ(s, a)

)
. (6.1)

Proof. Starting from the definition of T π
ρ,c in Definition 6.4, we have that

T π
ρ,cQ(s, a) = c(s, a) + γ ρ

ps,a∼µs,a

(
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
= ρ

ps,a∼µs,a

(
c(s, a) + γ E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

])
= ρ

ps,a∼µs,a

(
T π
p,cQ(s, a)

)
,

where the second equality follows from the positive homogeneity (Axiom A3) and

translation invariance (Axiom A2) of coherent distortion risk measures, and the fi-

nal equality follows from the definition of the standard cost Bellman operator T π
p,c.

Similarly, we can apply these steps starting from T π
ρ+,rQ(s, a).

In the next section, we show that T π
ρ+,r and T π

ρ,c are contraction operators, so we

can apply standard temporal difference learning techniques to learn the RAMU Q

functions Qπ
ρ+,r(s, a) and Q

π
ρ,c(s, a). Then, by replacing the standard Q functions in

(2.6) with RAMU Q functions, we can learn a safe policy that is risk-averse to model

79

uncertainty by iteratively optimizing

max
π

E
s∼D

[
E

a∼π(·|s)

[
Qπk
ρ+,r(s, a)

]]
s.t. E

s∼D

[
E

a∼π(·|s)

[
Qπk
ρ,c(s, a)

]]
≤ B. (6.2)

6.3 Robustness Guarantees

Intuitively, our risk-averse perspective places more emphasis on potential transition

models that result in higher costs or lower rewards under the current policy, which

should result in learning safe policies that are robust to model uncertainty. Next, we

formalize the robustness guarantees of our RAMU framework by showing it is equiv-

alent to solving the distributionally robust safe RL problem in (2.9) for appropriate

choices of ambiguity sets.

Theorem 6.1. The RAMU Bellman operators T π
ρ+,r and T π

ρ,c are equivalent to dis-

tributionally robust Bellman operators with ambiguity sets U+ =
⊗

(s,a)∈S×A U+
s,a and

U =
⊗

(s,a)∈S×A Us,a, respectively, where

T π
ρ+,rQ(s, a) = inf

βs,a∈U+
s,a

E
ps,a∼βs,a

[
T π
p,rQ(s, a)

]
, (6.3)

T π
ρ,cQ(s, a) = sup

βs,a∈Us,a

E
ps,a∼βs,a

[
T π
p,cQ(s, a)

]
, (6.4)

and

U+
s,a, Us,a ⊆ {βs,a ∈ P (M) | βs,a = ξs,aµs,a}

are sets of feasible reweightings of µs,a with ξs,a that depend on the choice of ρ+ and

ρ, respectively.

Proof. Using duality results for coherent risk measures (Shapiro et al., 2014), we

see that the application of ρ+ and ρ at every timestep are equivalent to solving

distributionally robust optimization problems over the ambiguity sets of distributions

U+ and U , respectively. This can be interpreted as adversarially reweighting µs,a with

ξs,a at every state-action pair. See the Appendix for details.

Because T π
ρ+,r and T π

ρ,c are equivalent to distributionally robust Bellman operators

according to Theorem 6.1, they are also equivalent to robust Bellman operators.

80

Corollary 6.1. The RAMU Bellman operators T π
ρ+,r and T π

ρ,c are equivalent to robust

Bellman operators for appropriate choices of uncertainty sets over mixture transition

models in M = P (S).

Proof. Given the equivalence to distributionally robust Bellman operators as shown

in Theorem 6.1, the proof follows by applying results from Xu and Mannor (2010) and

Yu and Xu (2016). We include a detailed proof in the Appendix for completeness.

In addition, given the equivalence established in Theorem 6.1, we can leverage

existing results for distributionally robust Bellman operators to show that T π
ρ+,r and

T π
ρ,c are contraction operators.

Corollary 6.2. The RAMU Bellman operators T π
ρ+,r and T π

ρ,c are γ-contractions in

the sup-norm.

Proof. The proof follows from previous results on distributionally robust Bellman

operators (Xu and Mannor, 2010; Yu and Xu, 2016) and robust Bellman operators

(Iyengar, 2005; Nilim and Ghaoui, 2005) due to the equivalences shown in Theorem 6.1

and Corollary 6.1. We include a detailed proof in the Appendix for completeness.

Therefore, we have that Qπ
ρ+,r(s, a) and Q

π
ρ,c(s, a) can be interpreted as distribu-

tionally robust Q functions by Theorem 6.1 (or robust Q functions by Corollary 6.1),

and we can apply standard temporal difference methods to learn these RAMU Q

functions as a result of Corollary 6.2. Importantly, the results in Theorem 6.1 demon-

strate the robustness properties of our RAMU framework, but they are not used to

implement our approach. Directly implementing (6.3) and (6.4) would require solving

for adversarial distributions over transition models at every transition. Instead, our

framework provides the same robustness, but the use of risk measures leads to an

efficient deep RL implementation as we describe in the following section.

6.4 Efficient Model-Free Implementation

The RAMU policy update in (6.2) takes the same form as the standard safe RL up-

date in (2.6), except for the use of Qπ
ρ+,r(s, a) and Qπ

ρ,c(s, a). Because our RAMU

81

Bellman operators are contractions, we can learn these RAMU Q functions by apply-

ing standard temporal difference loss functions that are used throughout deep RL.

In particular, we consider parameterized critics Qθr and Qθc , and we optimize their

parameters during training to minimize the loss functions

Lρ+,r(θr) = E
(s,a)∼D

[(
Qθr(s, a)− T̂ π

ρ+,rQ̄θr(s, a)
)2]

,

Lρ,c(θc) = E
(s,a)∼D

[(
Qθc(s, a)− T̂ π

ρ,cQ̄θc(s, a)
)2]

,

where T̂ π
ρ+,r and T̂ π

ρ,c represent sample-based estimates of the RAMU Bellman oper-

ators applied to target Q functions denoted by Q̄. Therefore, we must be able to

efficiently estimate the RAMU Bellman targets, which involve calculating coherent

distortion risk measures that depend on the distribution µs,a.

6.4.1 Sample-Based Estimation of Risk Measures

Using the formulation of our RAMU Bellman operators from Lemma 6.1, we can

leverage properties of distortion risk measures to efficiently estimate the results in

(6.1) using sample-based weighted averages of standard Bellman targets. For n tran-

sition models p
(i)
s,a, i = 1, . . . , n, sampled independently from µs,a and sorted according

to their corresponding Bellman targets, consider the weights

w(i)
ρ = g

(
i

n

)
− g

(
i− 1

n

)
,

where g defines the distortion risk measure ρ according to Definition 6.3. See Fig-

ure 6·1 for the weights associated with the risk measures used in our experiments.

Then, from Jones and Zitikis (2003) we have that

n∑
i=1

w
(i)

ρ+T
π
p(i),rQ(s, a),

n∑
i=1

w(i)
ρ T π

p(i),cQ(s, a),

83

for sampling transition models p
(i)
s,a ∼ µs,a and corresponding next states s′ ∼ p

(i)
s,a.

However, in order for our methods to be broadly applicable to any setting where

data can be collected under a single training environment p̂, we propose a generative

approach to sampling transition models and corresponding next states by defining the

distribution µ over perturbed versions of the training environment. We consider a

model-free implementation in this work, but model-based approaches are also possible.

This choice of distribution µ captures general uncertainty in the training environment,

without requiring specific domain knowledge of potential disturbances.

Consider a function fx : S × S → S that takes as input a state transition (s, ŝ′)

and outputs a perturbed next state s′ = fx(s, ŝ
′), where fx depends on a latent vari-

able x ∼ X. We also define a transition model ps,a(x) for every x ∼ X that shifts the

probability of ŝ′ under p̂s,a to s′ = fx(s, ŝ
′). Then, by considering a distribution over

latent space, we implicitly define a distribution µs,a over transition models ps,a(x). By

defining µs,a in this way, it becomes easy to generate the next state samples needed

to calculate the Bellman target estimates in (6.5). We sample a latent variable, which

defines the transition model ps,a(x). Then, we can generate a state transition under

this sampled model by simply perturbing the next state observed in the training envi-

ronment according to fx. In particular, for data collected in the training environment

we have that ŝ′ ∼ p̂s,a, so s
′ = fx(s, ŝ

′) represents the corresponding sample from the

transition model ps,a(x).

In our experiments, we consider a simple implementation for the common case

where S = Rm. We use uniformly distributed latent variables x ∼ U([−2ϵ, 2ϵ]m), and

we define the perturbation function as

fx(s, ŝ
′) = s+ (ŝ′ − s)(1 + x),

where all operations are performed per-coordinate. Note that this represents the

84

Algorithm 6.1: Safe RL with Risk-Averse Model Uncertainty

Input: initial policy π0; critics Qθr , Qθc ; risk measures ρ+, ρ; latent random
variable X.

for k = 0, 1, 2, . . . do

Collect data τ ∼ (πk, p̂) and store it in D.

for K updates do

Sample a batch of data (s, a, r, c, ŝ′) ∼ D.

Sample n latent variables xi ∼ X per data point, and compute next
state samples fxi(s, ŝ

′), i = 1, . . . , n.

Calculate Bellman targets in (6.5), and update critics Qθr , Qθc to
minimize Lρ+,r(θr),Lρ,c(θc).
Update policy π according to (6.2).

end

end

same percentage-based perturbation structure considered in Chapter 5. Therefore,

the latent variable x ∼ U([−2ϵ, 2ϵ]m) can be interpreted as the percentage change in

each dimension of a state transition observed in the training environment, where the

average magnitude of the percentage change is ϵ. The hyperparameter ϵ determines

the distribution µs,a over transition models, where a larger value of ϵ leads to transition

models that vary more significantly from the training environment. The structure of

fx provides an intuitive, scale-invariant meaning for the hyperparameter ϵ, which

makes it easy to tune in practice.

6.5 Algorithm

We summarize the implementation of our RAMU framework in Algorithm 6.1. Given

data collected in a single training environment, we can efficiently calculate the sample-

based RAMU Bellman targets in (6.5) by (i) sampling from a latent variable x ∼ X,

(ii) computing the corresponding next state samples fx(s, ŝ
′), and (iii) sorting the

85

p̂s,a

xi ∼ X,

s′ = fxi(s, ŝ
′)

µs,a

∼

T̂ π
p(1),c

Q(s, a)

T̂ π
p(2),c

Q(s, a)

T̂ π
p(3),c

Q(s, a)

T̂ π
p(4),c

Q(s, a)

T̂ π
p(5),c

Q(s, a)

w
(i)
ρ

T̂ π
ρ,cQ(s, a)

Figure 6·2: Calculation of sample-based RAMU Bellman targets. By
sampling n latent variables xi ∼ X, we implicitly sample transition
models ps,a(xi) from µs,a. Then, we compute standard Bellman esti-

mates T̂ π
p(i),c

Q(s, a) using the corresponding perturbed next state sam-

ples given by fxi(s, ŝ
′). Finally, we sort the standard Bellman esti-

mates in descending order and compute T̂ π
ρ,cQ(s, a) using a sample-

based weighted average as in (6.5). T̂ π
ρ+,rQ(s, a) can be calculated sim-

ilarly, with standard Bellman estimates sorted in ascending order.

standard Bellman estimates that correspond to these sampled transition models. See

Figure 6·2 for an illustration. Given the sample-based RAMU Bellman targets, up-

dates of the critics and policy have the same form as in standard deep safe RL

algorithms. Therefore, our RAMU framework can be easily combined with many

popular safe RL algorithms to incorporate model uncertainty with robustness guar-

antees, using only a minor change to the estimation of Bellman targets that is efficient

to implement in practice.

6.6 Comparing Robust and Safe Deployment Frameworks

Both the RAMU framework from this chapter and the Optimal Transport Perturba-

tions framework from Chapter 5 are designed to achieve robust, safe performance in

the presence of model uncertainty. In addition, both of these frameworks can be im-

plemented using standard data collection from a single training environment, making

86

them compatible with settings that require real-world interaction for training. How-

ever, these two approaches consider different representations of model uncertainty,

which leads to algorithms with distinct characteristics.

Importantly, these two frameworks deliver different types of robustness guaran-

tees. Our OTP framework considers the robust RL setting with an uncertainty set

over transition models, providing robustness to worst-case transition models in M.

OTP applies robustness around the nominal transition model p̂ by training deep

perturbation networks to construct worst-case virtual state transitions. Our RAMU

framework, on the other hand, is equivalent to a distributionally robust RL setting,

which instead provides robustness to worst-case distributions over transition models

in P (M). RAMU applies robustness around the distribution µ through the use of

weighted sample averages, without the need to solve minimax optimization problems

during training.

In general, the choice between our OTP framework and our RAMU framework

should depend on (i) the prior knowledge about model uncertainty at deployment time

and (ii) the desired robustness guarantees for the application area of interest. The

uncertainty set approach of our OTP formulation provides an intuitive way to guard

against general disturbances at deployment time when we have less prior knowledge

about model uncertainty, and is more useful when we require stronger robustness

guarantees related to worst-case transition models in M. Our RAMU formulation

instead considers a distribution µ over transition models, providing a rich represen-

tation of model uncertainty that can incorporate additional prior knowledge about

which transition models are more likely than others at deployment time. The choice of

risk measure ρ also provides flexibility on the level of robustness to apply around the

user-defined distribution µ, which can lead to policies with less conservative behavior

in settings where distributionally robust guarantees are acceptable.

87

Table 6.1: Aggregate performance summary.

Normalized Ave.‡ Rollouts Require∗

Algorithm % Safe† Reward Cost Adversary Simulator

Safe RL 51% 1.00 1.00 No No
RAMU (Wang 0.75) 80% 1.08 0.51 No No
RAMU (Expectation) 74% 1.05 0.67 No No
OTP (Chapter 5) 87% 1.06 0.34 No No
Adversarial RL (5%) 82% 1.05 0.48 Yes No
Domain Randomization 76% 1.14 0.72 No Yes
† Percentage of policies that satisfy the safety constraint across all tasks and test
environments.

‡ Normalized relative to the average performance of standard safe RL for each task and test
environment.

∗ Denotes need for adversary or simulator during data collection (i.e., trajectory rollouts) for
training.

6.7 Experiments

In order to evaluate the performance and safety of our RAMU framework, we con-

sider the same experimental design used in Chapter 5. In particular, we conduct

experiments on the same set of continuous control tasks with safety constraints from

the Real-World RL Suite (Dulac-Arnold et al., 2020, 2021), we apply the same safety

constraints and safety budget (B = 100), and we evaluate performance at deploy-

ment time on the same set of perturbed test environments. See Chapter 5 and the

Appendix for details.

Our RAMU framework can be combined with several choices of safe RL algo-

rithms. As in Chapter 5, we apply CRPO (Xu et al., 2021) with MPO policy updates

(Abdolmaleki et al., 2018) as the baseline safe RL algorithm in every method we con-

sider in our experiments. We also apply the same policy and critic representations

used in Chapter 5. We consider a multivariate Gaussian policy with learned mean

and diagonal covariance at each state, along with separate reward and cost critics.

See the Appendix for implementation details.1

1Code is publicly available at https://github.com/jqueeney/robust-safe-rl.

90

6.7.2 Comparison to Domain Randomization

Next, we compare our RAMU framework to domain randomization (Peng et al., 2018),

a popular approach that also represents model uncertainty using a distribution µ over

models. Note that domain randomization considers parametric uncertainty and has

the benefit of training on a range of simulated environments, while our method only

collects data from a single training environment. As shown in Chapter 5, domain

knowledge is critical for defining the training distribution in domain randomization.

When the training distribution is not chosen properly, domain randomization provides

little benefit compared to standard safe RL. Therefore, we focus our comparison on

the case where domain randomization trains across half of the test environments,

representing detailed domain knowledge about model uncertainty at deployment time.

With this detailed knowledge, domain randomization achieves the highest nor-

malized average rewards (1.14x) in Table 6.1. However, domain randomization also

achieves lower levels of safety, on average, than our risk-averse formulation. In fact, we

see in Figure 6·3 that the safety constraint satisfaction of our risk-averse formulation

is at least as strong as domain randomization in 4 out of 5 tasks, despite only training

on a single environment with no specific knowledge about the disturbances at test time.

This demonstrates the key benefit of our risk-averse approach to model uncertainty,

compared to domain randomization which focuses on average performance.

6.7.3 Comparison to Adversarial Reinforcement Learning

We also compare our approach to adversarial RL using the action-robust PR-MDP

framework (Tessler et al., 2019a), which randomly applies worst-case actions a per-

centage of the time during data collection. Although adversarial RL only collects

data from a single training environment, it requires potentially dangerous adversarial

interventions during training in order to provide robustness at test time. In order to

91

apply this method to the safe RL setting, we train an adversary to maximize costs

which results in a minimax formulation during training. As shown in Chapter 5,

adversarial RL with a 10% probability of intervention leads to overly conservative

behavior, so we focus our comparison on adversarial RL with a 5% probability of

intervention. Note that the performance of adversarial RL is typically evaluated

without adversarial interventions, which requires a clear distinction between training

and testing.

We see in Figure 6·3 that adversarial RL learns policies that achieve robust safety

constraint satisfaction at test time in the Quadruped tasks. Our risk-averse formu-

lation, on the other hand, achieves higher levels of safety in the remaining 3 out of

5 tasks, and similar levels of safety on average. Unlike adversarial RL, our RAMU

framework achieves robust safety in a way that (i) does not alter the data collection

process, (ii) does not require training an adversary in a minimax formulation, and

(iii) does not require different implementations during training and testing. In addi-

tion, our use of a distribution over models represents a less conservative approach than

adversarial RL, resulting in higher normalized average rewards as shown in Table 6.1.

6.7.4 Comparison to Optimal Transport Perturbations

Finally, we compare our RAMU framework to our OTP framework introduced in

Chapter 5. Note that both frameworks only consider standard data collection from

a single training environment. OTP provides robustness by training additional neu-

ral networks to construct worst-case virtual state transitions, while RAMU only re-

quires computing weighted sample averages. Figure 6·5 compares the performance

and safety of our two frameworks across all tasks and test environments, using the de-

fault settings for both approaches. We see that our RAMU framework achieves better

performance at test time in terms of total rewards in most cases, resulting in normal-

ized average rewards of 1.08x compared to 1.06x for OTP. Our OTP framework, on

93

deep RL implementation that does not involve minimax optimization problems. As

in the previous chapter, this approach only requires data collected from a single train-

ing environment. Therefore, it can be used to learn robust, safe policies in real-world

domains where fast, high-fidelity simulators are not readily available.

Similar to the OTP framework in Chapter 5, the robustness and safety of our

RAMU framework depend on user-defined specifications. The distribution µ defines

the uncertainty over transition models, and the risk measure ρ defines the level of

robustness to this choice of µ. In addition, note that both our OTP framework and our

RAMU framework focus on robustness with respect to model uncertainty. It would

also be interesting to extend our techniques to address other forms of uncertainty,

such as epistemic uncertainty in model-based RL. We provide a discussion on this

future research direction in the next chapter.

94

Chapter 7

Conclusions and Future Research

Deep RL has the potential to improve operations in important application areas

by applying a data-driven, learning-based approach to control. However, deep RL

can only benefit society if it can be trusted to produce reliable performance both

during training and upon deployment. In this dissertation, we have contributed new

techniques to overcome key limitations of existing deep RL methods for real-world

decision making and control. In particular, we introduced several reliable deep RL

algorithms with a focus on (i) stable training from limited data and (ii) robust, safe

deployment in the presence of uncertainty.

The first part of the dissertation introduced reliable deep RL algorithms that

deliver stable performance throughout training, while also making efficient use of

limited data. In Chapter 3 and Chapter 4, we developed techniques to extend the

stable training benefits of existing policy improvement methods to the limited data

setting. Chapter 3 proposed methods to control the finite-sample estimation error

in policy improvement algorithms, and Chapter 4 improved the data efficiency of

policy improvement algorithms through theoretically supported sample reuse. These

algorithmic contributions are supported by novel policy improvement lower bounds,

which guarantee stable training from limited data.

The second part of the dissertation introduced reliable deep RL algorithms that

guarantee robust performance and safety in the presence of model uncertainty. In

Chapter 5 and Chapter 6, we incorporated safety constraints and model uncertainty

95

into the deep RL framework. Chapter 5 provided robustness to model uncertainty

through the use of an optimal transport uncertainty set over transition models, while

Chapter 6 applied a risk-averse perspective to a distribution over transition mod-

els. Importantly, these frameworks do not impact the data collection process during

training and do not require detailed simulator access. Instead, they can be efficiently

implemented using standard data collection from a single training environment, mak-

ing them compatible with settings that require real-world interaction for training.

Overall, we hope that the contributions of this dissertation provide a founda-

tion for the continued development of reliable deep RL algorithms, with the goal of

maximizing the long-term societal impact of deep RL.

7.1 Future Research

In order to unlock the potential of deep RL for decision making and control in ap-

plication areas of societal importance, it will require continued advances in the area

of reliable deep RL. We conclude the dissertation with a discussion on potential di-

rections for future research, which build upon the key ideas that we have explored

throughout this work.

7.1.1 Stable Training from Large Replay Buffers

The policy improvement algorithms developed in Chapter 3 and Chapter 4 consider

on-policy methods as a starting point. As a result, our policy improvement lower

bounds only provide support for using data from the current or recent policies during

training. These algorithms are useful in limited data settings that require guaran-

tees on stable training, particularly in resource-constrained applications that preclude

the use of large replay buffers. However, in settings where large replay buffers are

feasible, off-policy deep RL algorithms (Lillicrap et al., 2016; Fujimoto et al., 2018;

Haarnoja et al., 2018; Abdolmaleki et al., 2018) have demonstrated strong perfor-

96

mance on benchmark tasks by reusing a significant amount of previously collected

data. Therefore, an interesting avenue for future work includes the development of

policy improvement guarantees that are compatible with the aggressive sample reuse

in off-policy algorithms. The design of practical performance certificates or verifica-

tion methods for these algorithms may increase their adoption in real-world control

settings where guarantees on stable training are required for deployment.

In many realistic scenarios, the reliable use of large replay buffers for training

becomes even more complex than the standard off-policy setting. Real-world systems

are often subject to changing environment conditions, involve interactions with other

agents that evolve over time, and require the ability to perform multiple tasks. All

of these characteristics alter the distribution of data observed during training, and

impact the usefulness of past data for future policy updates. Existing methods for

multi-agent RL (Foerster et al., 2017; Weber et al., 2022) and continual RL (Isele and

Cosgun, 2018; Rolnick et al., 2019) propose heuristic modifications to the replay buffer

to address this issue. However, in order to reliably deploy deep RL for data-driven

control in non-stationary, multi-agent, and multi-task settings, future research should

focus on techniques that provide performance guarantees by selecting the appropriate

data to use for training.

7.1.2 Reliable Model-Based Algorithms

We have focused on model-free deep RL algorithms in this dissertation, but model-

based methods are a popular choice for improving data efficiency in deep RL. In

model-based deep RL, the samples collected from the environment are used to con-

struct a neural network estimate of the transition probability function p of the MDP.

This model of the environment can then be used to train the policy, resulting in faster

learning that requires less interaction with the true environment. Unfortunately, it

can be difficult to learn an accurate model when the environment is complex, and

97

policy updates tend to exploit model errors which can lead to poor performance and

catastrophic failures in the true environment (Deisenroth and Rasmussen, 2011). Ex-

isting approaches use ensembles of learned models to address epistemic uncertainty

(Chua et al., 2018; Kurutach et al., 2018; Janner et al., 2019; Rajeswaran et al., 2020),

but typically lack practical robustness guarantees on performance and safety. The

frameworks from Chapter 5 and Chapter 6 represent promising starting points in the

design of reliable model-based deep RL algorithms. These frameworks focused on

robustness to irreducible model uncertainty, but similar tools could also be applied

to the epistemic uncertainty about a learned transition model. By doing so, future

research could develop reliable model-based algorithms that are robust to estimation

error and guarantee safe, stable performance throughout training.

98

Appendix A

Detailed Proofs

A.1 Detailed Proofs for Chapter 3

A.1.1 Useful Results

We will make use of the following results in our proofs.

Definition A.1 (Sub-Gaussian Random Variable). A random variable ω ∈ R is sub-

Gaussian with variance proxy σ2 if E [ω] = 0 and its moment generating function

satisfies E [exp (sω)] ≤ exp (s2σ2/2) for all s ∈ R. We denote this by ω ∼ subG(σ2).

Definition A.2 (Sub-Gaussian Random Vector). A random vector ω ∈ Rℓ is sub-

Gaussian with variance proxy σ2 if s′ω ∼ subG(σ2) for all s ∈ Sℓ, where Sℓ ={
s ∈ Rℓ | ∥s∥ = 1

}
is the unit sphere in Rℓ. We denote this by ω ∼ subGℓ(σ

2).

Lemma A.1. Let ω ∈ Rℓ be a sub-Gaussian random vector with variance proxy

σ2. Consider ω̂(1), . . . , ω̂(n) independent, identically distributed random samples of

ω, with x̂ = 1
n

∑n
i=1 ω̂

(i) their sample average. Fix α ∈ (0, 1). Then,

P
(
∥x̂∥22 ≤ σ2R2

n

)
> 1− α,

where

R2
n =

1

n

(
ℓ+ 2

√
ℓ log

(
1

α

)
+ 2 log

(
1

α

))
.

Proof. Consider the random vector x = 1
n

∑n
i=1 ω

(i), where ω(i), i = 1, . . . , n, are

independent, identically distributed copies of the random vector ω. Because ω(i) ∼
subGℓ(σ

2), we have that x ∼ subGℓ(σ
2/n). Then, the result immediately follows as

a special case of Theorem 2.1 in Hsu et al. (2012) applied to the sample x̂ of the

random vector x.

99

A.1.2 Detailed Proof of Lemma 3.1

Proof. Define ω = Σ
−1/2
k,Q (ξk,Q − gk,Q) ∈ Rℓ. Note that ω ∼ subGℓ(σ

2) by Assump-

tion 3.1. Therefore, by applying Lemma A.1 with x̂ = Σ
−1/2
k,Q (ĝk,Q − gk,Q), we have

that

P
(
(ĝk,Q − gk,Q)

′Σ−1
k,Q(ĝk,Q − gk,Q) ≤ σ2R2

n

)
> 1− α.

This implies gk,Q ∈ Uk with probability at least 1− α.

A.1.3 Detailed Proof of Theorem 3.1

Proof. Consider the function

f(u) =
1

1− γ
u′y − γCπ,πk

(1− γ)2

√
y′Fk,Qy.

Note that we can write the right-hand side of (3.8) as f(gk,Q), so up to first and

second order approximation error we have

J(π)− J(πk) ≥ f(gk,Q).

By Lemma 3.1, gk,Q ∈ Uk with probability at least 1− α. In this case, we have that

f(gk,Q) ≥ minu∈Uk
f(u). Therefore, with probability at least 1− α we have that

J(π)− J(πk) ≥ min
u∈Uk

f(u),

up to first and second order approximation error.

In order to complete the proof, we now show that minu∈Uk
f(u) is equivalent to

the right-hand side of (3.9). Note that the second term in the objective f(u) does

not depend on u, so we can ignore it when solving the minimization problem over Uk.
Omitting this term and ignoring the multiplicative constant 1/(1−γ) in the first term,

we can use the definition of Uk from Lemma 3.1 to write the resulting minimization

problem as

min
u

u′y s.t. (u− ĝk,Q)
′ Σ−1

k,Q (u− ĝk,Q) ≤ σ2R2
n. (A.1)

This is the minimization of a linear function subject to a convex quadratic constraint.

The Lagrangian corresponding to (A.1) can be written

G(u, ν) = u′y + ν
[
(u− ĝk,Q)

′Σ−1
k,Q(u− ĝk,Q)− σ2R2

n

]
,

100

where ν ≥ 0 is the Lagrange multiplier associated with the constraint. The dual func-

tion is given by D(ν) = minuG(u, ν). By applying sufficient conditions to G(u, ν),

we can write the dual function in closed-form as

D(ν) = ĝ′
k,Qy − 1

4ν
y′Σk,Qy − νσ2R2

n.

The corresponding dual problem is maxν≥0D(ν). D(ν) is concave in ν for ν > 0,

so we can apply sufficient conditions to find the solution to the dual problem. The

optimal value of the dual problem is given by

max
ν≥0

D(ν) = ĝ′
k,Qy − σRn

√
y′Σk,Qy. (A.2)

By strong duality, this is the optimal value of the primal problem in (A.1). After

rescaling (A.2) by 1/(1−γ) and including the second term of f(u) that we omitted

to begin the proof, we see that minu∈Uk
f(u) is equivalent to the right-hand side of

(3.9).

A.2 Detailed Proofs for Chapter 4

A.2.1 Useful Results

We will make use of the following results in our proof of Lemma 4.1.

Lemma A.2 (Kakade and Langford 2002). Consider any policy π and a current

policy πk. Then,

J(π)− J(πk) =
1

1− γ
E

s∼dπ

[
E

a∼π(· |s)
[Aπk(s, a)]

]
.

Lemma A.3 (Achiam et al. 2017). Consider any policy π and a reference policy πref.

Then,

TV (dπ, dπref) ≤ γ

1− γ
E

s∼dπref
[TV (π, πref) (s)] ,

where dπ and dπref represent normalized discounted state visitation distributions.

A.2.2 Detailed Proof of Lemma 4.1

Proof. We apply similar proof techniques as in Achiam et al. (2017), but we are

interested in dπref as our sampling distribution rather than dπk . Starting from the

101

equality in Lemma A.2, we add and subtract the term

1

1− γ
E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]
.

By doing so, we have

J(π)− J(πk) =
1

1− γ
E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]
+

1

1− γ

(
E

s∼dπ

[
E

a∼π(· |s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

])
≥ 1

1− γ
E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]
− 1

1− γ

∣∣∣∣ E
s∼dπ

[
E

a∼π(· |s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]∣∣∣∣ .
(A.3)

Next, we can bound the magnitude of the second term in the right-hand side of (A.3).

We have that

1

1− γ

∣∣∣∣ E
s∼dπ

[
E

a∼π(· |s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]∣∣∣∣
≤ 1

1− γ
·max
s∈S

∣∣∣∣ E
a∼π(· |s)

[Aπk(s, a)]

∣∣∣∣ · ∫
S

|dπ(s)− dπref(s)| ds (A.4)

=
2Cπ,πk

1− γ
· TV (dπ, dπref) (A.5)

≤ 2γCπ,πk

(1− γ)2
E

s∼dπref
[TV (π, πref) (s)] , (A.6)

where in (A.4) we applied Hölder’s inequality, in (A.5) we used the definition of Cπ,πk

from Lemma 2.1 and the definition of TV distance, and in (A.6) we applied the result

from Lemma A.3. This leads to the lower bound

J(π)− J(πk) ≥
1

1− γ
E

s∼dπref

[
E

a∼π(· |s)
[Aπk(s, a)]

]
− 2γCπ,πk

(1− γ)2
E

s∼dπref
[TV (π, πref) (s)] .

Finally, we apply importance sampling on the actions in the first term to obtain the

result, which assumes that the support of π is contained within the support of πref at

every state.

102

A.3 Detailed Proofs for Chapter 5

In this section, we prove all results for the robust cost Bellman operator T π
P,c. Note

that

inf
ps,a∈Ps,a

E
s′∼ps,a

[V π
r (s

′)] = − sup
ps,a∈Ps,a

E
s′∼ps,a

[−V π
r (s

′)] .

Therefore, results related to the robust reward Bellman operator T π
P,r follow immedi-

ately by applying the same proofs after an appropriate change in signs.

A.3.1 Useful Results

In order to prove the tractable reformulation in Theorem 5.1, we will make use of the

following result.

Lemma A.4. Let Assumption 5.1 hold. Then, we have

T π
P,rQr(s, a) = r(s, a) + γ sup

λ≥0
E

ŝ′∼p̂s,a

[
inf
s′∈S

V π
r (s

′) + λ (ds,a(ŝ
′, s′)− ϵs,a)

]
, (A.7)

T π
P,cQc(s, a) = c(s, a) + γ inf

λ≥0
E

ŝ′∼p̂s,a

[
sup
s′∈S

V π
c (s

′)− λ (ds,a(ŝ
′, s′)− ϵs,a)

]
. (A.8)

Proof. Under Assumption 5.1, note that Assumption (A1) and Assumption (A2) of

Blanchet and Murthy (2019) are satisfied for the distributionally robust optimization

problem in (5.3). Assumption (A1) is satisfied by our definition of optimal transport

cost, and Assumption (A2) is satisfied by our Assumption 5.1. Then, according to

Theorem 1 in Blanchet and Murthy (2019), optimal transport strong duality holds

for the distributionally robust optimization problem in (5.3). Therefore, we have that

sup
ps,a∈Ps,a

E
s′∼ps,a

[V π
c (s

′)] = inf
λ≥0

E
ŝ′∼p̂s,a

[
sup
s′∈S

V π
c (s

′)− λ (ds,a(ŝ
′, s′)− ϵs,a)

]
.

By substituting this result into (5.3), we arrive at the result in (A.8).

103

A.3.2 Detailed Proof of Theorem 5.1

Proof. First, we show that (5.8) and the distributionally robust optimization problem

in (5.3) share the same dual problem. We write the dual problem to (5.8) as

inf
λ≥0

sup
g∈G

E
ŝ′∼p̂s,a

[V π
c (g(ŝ

′))]− λ

(
E

ŝ′∼p̂s,a
[ds,a(ŝ

′, g(ŝ′))]− ϵs,a

)
= inf

λ≥0
sup
g∈G

E
ŝ′∼p̂s,a

[V π
c (g(ŝ

′))− λ (ds,a(ŝ
′, g(ŝ′))− ϵs,a)] .

Using the definition of G, we can rewrite this as

inf
λ≥0

E
ŝ′∼p̂s,a

[
sup
s′∈S

V π
c (s

′)− λ (ds,a(ŝ
′, s′)− ϵs,a)

]
, (A.9)

which appears in the right-hand side of (A.8) from Lemma A.4. Note that (A.9) is

also the dual to the distributionally robust optimization problem in (5.3) and optimal

transport strong duality holds (see Lemma A.4).

Next, we show that strong duality holds between (5.8) and (A.9). Let λ∗ be the

optimal dual variable in (A.9), and let

g∗s,a(ŝ
′) ∈ argmax

s′∈S
V π
c (s

′)− λ∗ (ds,a(ŝ
′, s′)− ϵs,a) .

We have that λ∗ and g∗s,a(ŝ
′) exist according to Theorem 1(b) in Blanchet and Murthy

(2019) along with Assumption 5.2, and g∗s,a characterizes the optimal transport plan

ν∗ that moves the probability of ŝ′ under p̂s,a to g∗s,a(ŝ
′). By the complementary

slackness results of Theorem 1(b) in Blanchet and Murthy (2019), we also have that

λ∗
(

E
ŝ′∼p̂s,a

[
ds,a(ŝ

′, g∗s,a(ŝ
′))
]
− ϵs,a

)
= 0.

Therefore,

inf
λ≥0

E
ŝ′∼p̂s,a

[
sup
s′∈S

V π
c (s

′)− λ (ds,a(ŝ
′, s′)− ϵs,a)

]
= E

ŝ′∼p̂s,a

[
V π
c (g

∗
s,a(ŝ

′))− λ∗
(
ds,a(ŝ

′, g∗s,a(ŝ
′))− ϵs,a

)]
= E

ŝ′∼p̂s,a

[
V π
c (g

∗
s,a(ŝ

′))
]
.

104

Moreover, by the primal feasibility of the optimal transport plan ν∗, we have that

E
ŝ′∼p̂s,a

[
d(ŝ′, g∗s,a(ŝ

′))
]
≤ ϵs,a,

so g∗s,a is a feasible solution to (5.8) with the same objective value as the value of

(A.9). Therefore, strong duality holds between (5.8) and (A.9), and g∗s,a is an optimal

solution to (5.8) (i.e., an optimal solution to (5.8) exists). Then, for any optimal

solution gcs,a to (5.8), we have that

E
ŝ′∼p̂s,a

[
V π
c (g

c
s,a(ŝ

′))
]
= E

ŝ′∼p̂s,a

[
V π
c (g

∗
s,a(ŝ

′))
]
,

and the right-hand side of (A.8) is equivalent to the right-hand side of (5.6).

A.4 Detailed Proofs for Chapter 6

In this section, we prove all results related to the RAMU cost Bellman operator T π
ρ,c.

Using the fact that ρ+(Z) = −ρ(−Z) for a coherent distortion risk measure ρ on

a cost random variable, all results related to the RAMU reward Bellman operator

follow by an appropriate change in sign.

A.4.1 Useful Results

Consider the probability space (M,F , µs,a), where F is a σ-algebra on M and µs,a ∈

P (M) defines a probability measure over M. Let Z be a space of random variables

defined on this probability space, and let Z∗ be its corresponding dual space. In order

to prove Theorem 6.1, we make use of the following dual representation of coherent

risk measures applied to our probability space of interest.

Lemma A.5 (Shapiro et al. 2014). Let ρ be a proper, real-valued coherent risk mea-

sure. Then, for any Z ∈ Z we have that

ρ(Z) = sup
βs,a∈Us,a

Eβs,a [Z] ,

where Eβs,a [·] represents expectation with respect to the probability measure βs,a ∈

105

P (M), and

Us,a ⊆ {βs,a ∈ P (M) | βs,a = ξs,aµs,a, ξs,a ∈ Z∗}

is a convex, bounded, and weakly* closed set that depends on ρ.

See Shapiro et al. (2014) for a general treatment of this result.

A.4.2 Detailed Proof of Theorem 6.1

Proof. For a given state-action pair, we apply Lemma A.5 to the risk measure that

appears in the formulation of T π
ρ,c given by Lemma 6.1. By doing so, we have that

T π
ρ,cQ(s, a) = ρ

ps,a∼µs,a

(
T π
p,cQ(s, a)

)
= sup

βs,a∈Us,a

E
ps,a∼βs,a

[
T π
p,cQ(s, a)

]
= c(s, a) + γ sup

βs,a∈Us,a

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
,

where Us,a is defined in Lemma A.5. Therefore, T π
ρ,c has the same form as a distribu-

tionally robust Bellman operator (Xu and Mannor, 2010; Yu and Xu, 2016) with the

ambiguity set U =
⊗

(s,a)∈S×A Us,a.

A.4.3 Detailed Proof of Corollary 6.1

Given the equivalence to a distributionally robust Bellman operator as shown in

Theorem 6.1, Corollary 6.1 follows from results in Xu and Mannor (2010) and Yu

and Xu (2016). We include a proof for completeness.

Proof. Due to the linearity of the expectation operator, for a given βs,a ∈ Us,a we

have that

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
= E

s′∼p̄βs,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

where p̄βs,a = Eps,a∼βs,a [ps,a] ∈ P (S) represents a mixture transition model determined

106

by βs,a. Therefore, starting from the result in Theorem 6.1, we can write

T π
ρ,cQ(s, a) = c(s, a) + γ sup

βs,a∈Us,a

E
ps,a∼βs,a

[
E

s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]]
= c(s, a) + γ sup

p̄βs,a∈Ps,a

E
s′∼p̄βs,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
,

where

Ps,a =
{
p̄βs,a ∈ P (S) | p̄βs,a = E

ps,a∼βs,a
[ps,a] , βs,a ∈ Us,a

}
.

As a result, T π
ρ,c has the same form as a robust Bellman operator (Iyengar, 2005;

Nilim and Ghaoui, 2005) with the uncertainty set P =
⊗

(s,a)∈S×A Ps,a. Similarly,

the RAMU reward Bellman operator T π
ρ+,r has the same form as a robust Bellman

operator with the uncertainty set P+ =
⊗

(s,a)∈S×A P+
s,a, where

P+
s,a =

{
p̄βs,a ∈ P (S) | p̄βs,a = E

ps,a∼βs,a
[ps,a] , βs,a ∈ U+

s,a

}
.

A.4.4 Detailed Proof of Corollary 6.2

Corollary 6.2 also follows from previous results on distributionally robust Bellman

operators (Xu and Mannor, 2010; Yu and Xu, 2016) and robust Bellman operators

(Iyengar, 2005; Nilim and Ghaoui, 2005) due to the equivalences shown in Theorem 6.1

and Corollary 6.1. Again, we include a proof for completeness.

Proof. From Corollary 6.1, we can write

T π
ρ,cQ(s, a) = c(s, a) + γ sup

ps,a∈Ps,a

E
s′∼ps,a

[
E

a′∼π(·|s′)
[Q(s′, a′)]

]
.

Consider Q functions Q(1) and Q(2), and denote the sup-norm by

∥Q(1) −Q(2)∥∞ = sup
(s,a)∈S×A

∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣ .

107

Fix ϵ > 0 and consider (s, a) ∈ S ×A. Then, there exists p
(1)
s,a ∈ Ps,a such that

E
s′∼p(1)s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
≥ sup

ps,a∈Ps,a

E
s′∼ps,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
− ϵ.

We have that

T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a)

= γ

(
sup

ps,a∈Ps,a

E
s′∼ps,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
− sup

ps,a∈Ps,a

E
s′∼ps,a

[
E

a′∼π(·|s′)

[
Q(2)(s′, a′)

]])

≤ γ

(
E

s′∼p(1)s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)

]]
+ ϵ− E

s′∼p(1)s,a

[
E

a′∼π(·|s′)

[
Q(2)(s′, a′)

]])

= γ E
s′∼p(1)s,a

[
E

a′∼π(·|s′)

[
Q(1)(s′, a′)−Q(2)(s′, a′)

]]
+ γϵ

≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

A similar argument can be used to show that

−γ∥Q(1) −Q(2)∥∞ − γϵ ≤ T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a),

so we have that∣∣T π
ρ,cQ

(1)(s, a)− T π
ρ,cQ

(2)(s, a)
∣∣ ≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

By applying a supremum over state-action pairs on the left-hand side, we obtain

∥T π
ρ,cQ

(1) − T π
ρ,cQ

(2)∥∞ ≤ γ∥Q(1) −Q(2)∥∞ + γϵ.

Finally, since ϵ > 0 was arbitrary, we have shown that T π
ρ,c is a γ-contraction in the

sup-norm.

108

Appendix B

Implementation Details

B.1 Implementation Details for Chapter 3 and Chapter 4

B.1.1 Advantage Estimation

For all of the policy improvement algorithms we consider in Chapter 3 and Chapter 4,

we must estimate the advantage function Aπk(s, a) of the current policy πk. The use

of Aπk(s, a) is important because it allows our methods to provide policy improvement

guarantees with respect to the current policy, regardless of the policy used to generate

the data. In the on-policy setting, advantage estimation is straightforward because

multi-step advantage estimates are unbiased except for the use of bootstrapping with

the learned value function. We use Generalized Advantage Estimation (GAE) (Schul-

man et al., 2016) with λ = 0.97 in all on-policy algorithms (including UA-TRPO in

Chapter 3), where λ determines a weighted average over K-step advantage estimates.

When estimating Aπk(s, a) for our GPI algorithms in Chapter 4, on the other hand,

our data has been collected using prior policies. As a result, the multi-step estimates

used in GAE are no longer unbiased. Therefore, we must use off-policy estimation

techniques to account for this bias. We consider an off-policy variant of GAE that uses

the V-trace value function estimator (Espeholt et al., 2018), which corrects multi-step

off-policy estimates while controlling variance via truncated importance sampling. For

data collected under a prior policy πk−i, the K-step V-trace estimate of the current

109

value function is given by

V πk
trace(st) = V (st) +

K−1∑
j=0

γj

(
j∏

m=0

ct+m

)
δVt+j,

where V is a learned value function, δVt = r(st, at) + γV (st+1) − V (st), and ct =

min(c̄, πk(at|st)/πk−i(at|st)) represents a truncated importance sampling ratio with trun-

cation parameter c̄. Similarly, for K ≥ 2, the corrected K-step estimate of the current

advantage function using V-trace is given by

Aπktrace(st, at) = δVt +
K−1∑
j=1

γj

(
j∏

m=1

ct+m

)
δVt+j,

and for K = 1 we have the standard one-step estimate Aπktrace(st, at) = δVt that does

not require any correction. Note that Espeholt et al. (2018) treat the final importance

sampling ratio in each term separately, but we do not make this distinction in our

notation because the truncation parameter is typically chosen to be the same for

all terms. We use the default setting of c̄ = 1 from Espeholt et al. (2018) in our

experiments, and as in GAE we consider a weighted average over K-step estimates

determined by the parameter λ.

It is common to standardize advantage estimates within each batch or minibatch

during policy updates. Note that the expectation of Aπk(s, a) with respect to samples

generated under the current policy πk equals zero, so standardization ensures that our

sample-based estimates also satisfy this property. Therefore, the appropriate quantity

to standardize in the generalized case is

πk(a | s)
πk−i(a | s)

Aπk(s, a),

since the expectation of this term with respect to data generated under prior policies

equals zero.

110

Table B.1: Network architectures and hyperparameter values shared
across experiments in Chapter 3 and Chapter 4.

General

Discount rate (γ) 0.995
Trust region parameter (ϵ) 0.2

Policy

Layer sizes 64, 64
Layer activations tanh
Initial standard deviation 1.0

Value Function

Layer sizes 64, 64
Layer activations tanh
Optimizer Adam
Learning rate 3e−4
Minibatches per epoch 32
Epochs per update 10
GAE parameter (λ) 0.97

Chapter 3

Batch size (N) 1,024

Chapter 4

On-policy batch size (N) 2,048
Minimum batch size (n) 1,024
Trade-off parameter (κ) 0.0, 0.5, 1.0
V-trace truncation parameter (c̄) 1.0

B.1.2 Network Architectures

As discussed in Chapter 3 and Chapter 4, we represent the policy π as a multivariate

Gaussian distribution where the mean action for a given state is parameterized by a

neural network with two hidden layers of 64 units each and tanh activations. The

state-independent standard deviation is parameterized separately. The value function

is parameterized by a separate neural network with two hidden layers of 64 units each

and tanh activations, and is updated at every iteration using minibatch stochastic

gradient descent.

111

Table B.2: Hyperparameter values by algorithm for experiments in
Chapter 3 and Chapter 4.

UA-TRPO

Trade-off parameter (c) 0.1
Confidence parameter (α) 0.05
Number of random projections (m) 200
Number of minibatch gradient estimates 256

PPO

Policy optimizer Adam
Initial policy learning rate (η) 3e−4
Adaptive learning rate factor (υ) 0.03
Policy minibatches per epoch 32
Policy epochs per update 10

TRPO / VMPO

Conjugate gradient iterations per update 20
Conjugate gradient damping coefficient 0.01

B.1.3 Algorithm Hyperparameters

For our experiments in Chapter 3 and Chapter 4, we provide the values of all hyper-

parameters in Table B.1 and Table B.2. In addition, we describe how to calculate the

scaling coefficients cESS, cTV used when determining the optimal mixture distribution

for sample reuse in Theorem 4.3. We include these coefficients in Theorem 4.3 so

that each component of the objective is on the same scale, which we can accomplish

by setting each coefficient to be the range of potential values for its corresponding

numerator. The numerator in the effective sample size term is the largest when κ = 0

and smallest when κ = 1, and the reverse is true for the numerator in the total TV

distance update size term. Therefore, we set the scaling coefficients to be

cESS =
∑
i

ν∗i (0)
2 −

∑
i

ν∗i (1)
2, cTV =

∑
i

ν∗i (1)(i+ 1)−
∑
i

ν∗i (0)(i+ 1),

where ν∗(0) and ν∗(1) are the optimal mixture distributions when κ = 0 and κ =

1, respectively. Note that we can calculate these optimal mixture distributions by

112

Table B.3: Safety constraints for all tasks.

Safety
Task Safety Constraint Coefficient

Cartpole Swingup Slider Position 0.30
Walker Walk Joint Velocity 0.25
Walker Run Joint Velocity 0.30
Quadruped Walk Joint Angle 0.15
Quadruped Run Joint Angle 0.30

ignoring the scaling coefficients in Theorem 4.3, since the coefficients do not impact

the resulting minimizer for these extreme values of trade-off parameter κ.

B.2 Implementation Details for Chapter 5 and Chapter 6

B.2.1 Safety Constraints and Environment Perturbations

In Chapter 5 and Chapter 6, we consider experiments on tasks from the Real-World

RL Suite where the goal is to optimize a task objective while satisfying a safety

constraint. For each task, we apply a single safety constraint corresponding to a cost

function defined in the Real-World RL Suite, which we summarize in Table B.3. See

Dulac-Arnold et al. (2021) for detailed definitions of each safety constraint.

The definitions of these cost functions depend on a safety coefficient in [0, 1].

As the safety coefficient decreases, the range of safe outcomes also decreases and

the safety constraints corresponding to these cost functions become more difficult

to satisfy. In order to consider safe RL tasks with difficult safety constraints where

strong performance is still possible, we selected the value of this safety coefficient

in the range of [0.15, 0.20, 0.25, 0.30] for each task based on the performance of the

baseline safe RL algorithm CRPO compared to the unconstrained algorithm MPO.

Figure B·1 shows total rewards throughout training for each task across this range

of safety coefficients. We selected the most difficult cost definition in this range (i.e.,

lowest safety coefficient value) where CRPO is still able to achieve the same total

114

Table B.4: Perturbation ranges for test environments.

Perturbation Nominal
Domain Parameter Value Test Range

Cartpole Pole Length 1.00 [0.75, 1.25]
Walker Torso Length 0.30 [0.10, 0.50]
Quadruped Torso Density 1,000 [500, 1,500]

Table B.5: Perturbation ranges for domain randomization.

Perturbation Nominal Training
Domain Parameter Value Range

In-Distribution

Cartpole Pole Length 1.00 [0.875, 1.125]
Walker Torso Length 0.30 [0.20, 0.40]
Quadruped Torso Density 1,000 [750, 1,250]

Out-of-Distribution

Cartpole Pole Mass 0.10 [0.05, 0.15]
Walker Contact Friction 0.70 [0.40, 1.00]
Quadruped Contact Friction 1.50 [1.00, 2.00]

units and ELU activations, and we apply layer normalization followed by a tanh acti-

vation after the first layer as in Abdolmaleki et al. (2020). We represent the policy as

a multivariate Gaussian distribution with diagonal covariance, where at a given state

the policy network outputs the mean µ(s) and diagonal covariance Σ(s) of the action

distribution. The diagonal of Σ(s) is calculated by applying the softplus operator

to the outputs of the neural network corresponding to the covariance. In addition

to the policy network, we consider separate networks for the reward and cost critics.

We maintain target versions of the policy and critic networks using an exponential

moving average of the weights with τ = 5e−3. Finally, for our OTP framework in

Chapter 5, we also consider neural networks for our perturbation networks δr and δc.

We consider small networks with 2 hidden layers of 64 units and ELU activations,

and we clip the outputs in the range [−2ϵδ, 2ϵδ] for additional stability.

115

Table B.6: Network architectures and hyperparameter values shared
across experiments in Chapter 5 and Chapter 6.

General

Batch size per update 256
Updates per environment step 1
Discount rate (γ) 0.99
Target network exponential moving average (τ) 5e−3

Policy

Layer sizes 256, 256, 256
Layer activations ELU
Layer norm + tanh on first layer Yes
Initial standard deviation 0.3
Optimizer Adam
Learning rate 1e−4
Non-parametric KL (ϵKL) 0.10
Action penalty KL 1e−3
Action samples per update 20
Parametric mean KL (βµ) 0.01
Parametric covariance KL (βΣ) 1e−5
Parametric KL dual learning rate 0.01

Critics

Layer sizes 256, 256, 256
Layer activations ELU
Layer norm + tanh on first layer Yes
Optimizer Adam
Learning rate 1e−4

B.2.3 Algorithm Hyperparameters

We consider CRPO (Xu et al., 2021) as the baseline safe RL algorithm for all of our

experiments in Chapter 5 and Chapter 6. At every update, CRPO calculates the

current value of the safety constraint based on a batch of sampled data. If the safety

constraint is satisfied for the current batch, it applies a policy update to maximize

rewards. Otherwise, it applies a policy update to minimize costs. In both cases, we

use the unconstrained RL algorithm MPO (Abdolmaleki et al., 2018) to calculate pol-

icy updates. MPO calculates a non-parametric target policy with KL divergence ϵKL

from the current policy, and updates the current policy towards this target while con-

straining separate KL divergence contributions from the mean and covariance by βµ

116

and βΣ, respectively. We apply per-dimension KL divergence constraints and action

penalization using the multi-objective MPO framework (Abdolmaleki et al., 2020) as

in Hoffman et al. (2020), and we consider closed-form updates of the temperature

parameter used in the non-parametric target policy as in Liu et al. (2022) to account

for the immediate switching between objectives in CRPO. See Table B.6 for all im-

portant hyperparameter values associated with the implementation of policy updates

using MPO, and see Abdolmaleki et al. (2018) for additional details.

For our OTP framework in Chapter 5, we update the perturbation networks along-

side the policy and critics. We combine the perturbation function updates in (5.7)

and (5.8) across state-action pairs by averaging over samples from the replay buffer,

and we apply a radius of ϵ2δ . This leads to updates of the form

gδr ∈ arg min
gδ∈Fδ

E
(s,a,ŝ′)∼D

[V π
r (gδ(s, a, ŝ

′))] s.t. E
(s,a,ŝ′)∼D

[ds,a(ŝ
′, gδ(s, a, ŝ

′))] ≤ ϵ2δ ,

gδc ∈ arg max
gδ∈Fδ

E
(s,a,ŝ′)∼D

[V π
c (gδ(s, a, ŝ

′))] s.t. E
(s,a,ŝ′)∼D

[ds,a(ŝ
′, gδ(s, a, ŝ

′))] ≤ ϵ2δ ,

where Fδ represents the class of perturbation functions with the form in (5.9). We

consider ds,a given by (5.4) to arrive at the perturbation network updates in (5.10)

and (5.11), where ϵδ determines the average per-coordinate magnitude of the outputs

of δr and δc. We consider ϵδ = 0.02 in our experiments. We apply gradient-based

updates on the Lagrangian relaxations of (5.10) and (5.11), and we also update the

corresponding dual variables throughout training. See Table B.7 for hyperparameter

values associated with our OTP framework.

For our RAMU framework in Chapter 6, the latent variable hyperparameter ϵ

controls the definition of the distribution µs,a over transition models. A larger value

of ϵ leads to a distribution over a wider range of transition models, which results

in a more robust approach when combined with a risk-averse perspective on model

uncertainty. We consider ϵ = 0.10 in our experiments, as it achieves strong constraint

117

Table B.7: Network architectures and hyperparameter values for OTP
and RAMU frameworks.

OTP

Layer sizes 64, 64
Layer activations ELU
Layer norm + tanh on first layer No
Output clipping [−2ϵδ, 2ϵδ]
Optimizer Adam
Learning rate 1e−4
Dual learning rate 0.01
Per-coordinate perturbation magnitude (ϵδ) 0.02

RAMU

Transition model samples per data point (n) 5
Latent variable hyperparameter (ϵ) 0.10

satisfaction without a meaningful decrease in rewards. For computational efficiency

we consider n = 5 samples of transition models per data point to calculate sample-

based Bellman targets in our RAMU framework, as we did not observe meaningful

improvements in performance from considering a larger number of samples.

Finally, we also implement adversarial RL and domain randomization using CRPO

with MPO policy updates. We represent the adversarial policy in the PR-MDP

framework using the same structure and neural network architecture as our main

policy, and we train the adversarial policy to maximize costs using MPO. Using the

default settings from Tessler et al. (2019a), we apply one adversary update for every

10 policy updates. Domain randomization considers the same updates as the CRPO

baseline, but collects data from the range of training environments summarized in

Table B.5.

118

Appendix C

Detailed Experimental Results

C.1 Detailed Results for Chapter 3

In this section, we include detailed results for all experiments considered in Chapter 3.

We provide the dimensions of the state and action space for each OpenAI Gym

MuJoCo task in Table C.1. In Figure C·1, we include full training curves for all six of

these tasks across all three levels of adversarial gradient noise (no noise, 0.5x standard

error, and 1.0x standard error). We see that UA-TRPO leads to consistent, robust

policy improvement throughout training, even in the presence of adversarial noise.

TRPO, on the other hand, struggles to learn under adversarial noise, and leads to

performance that is worse than the initial policy in some cases.

C.2 Detailed Results for Chapter 4

Next, we provide detailed experimental results for Chapter 4. We include full training

curves in Figure C·2 for the best performing GPI algorithm and the best performing

on-policy algorithm across all tasks where learning occurs. In addition, we include

details on final performance across all algorithms and all tasks. Figure C·3 shows

a comparison of final performance between generalized and on-policy methods for

each choice of policy improvement algorithm. We see similar trends across all algo-

rithms, where our generalized approach results in performance improvement across

the majority of tasks in the DeepMind Control Suite benchmarking set. The final

119

Table C.1: Dimensionality of OpenAI Gym MuJoCo tasks.

Task dim(S) dim(A)

Swimmer-v3 8 2
Hopper-v3 11 3
HalfCheetah-v3 17 6
Walker2d-v3 17 6
Ant-v3 111 8
Humanoid-v3 376 17

performance of every algorithm across each task is included in Table C.2, as well

as the performance of a random Gaussian policy with zero mean and unit standard

deviation in each action dimension. We say that learning occurs for a task if the best

performing algorithm exceeds the performance of the random policy by at least 10.

Finally, we include the sparsity metric associated with each task in Figure C·4.

C.3 Detailed Results for Chapter 5 and Chapter 6

Finally, we include detailed results across tasks and test environments for all baseline

algorithms considered in Chapter 5 and Chapter 6. Figure C·5 compares safe RL

to both variations of adversarial RL using different probabilities of adversarial inter-

vention. We see that both versions of adversarial RL lead to robust safety in some

cases, such as the two Quadruped tasks. In the more adversarial 10% implementa-

tion, safety often comes at the cost of overly conservative performance. Adversarial

RL with 5% intervention probability achieves stronger total rewards in general, but

safety constraint satisfaction in tasks such as Cartpole Swingup is not as robust.

Figure C·6 shows the performance of domain randomization across tasks and test

environments. The grey shaded areas represent the training distribution ranges for

the in-distribution implementation of domain randomization. We see that domain

randomization leads to strong, robust performance in terms of rewards across all test

cases, as well as improved constraint satisfaction in perturbed environments compared

120

to standard safe RL which only considers a single training environment. However,

in tasks such as Walker Run and Quadruped Run, domain randomization does not

robustly satisfy safety constraints for test environments that were not seen during

training. This issue is amplified in the case of out-of-distribution domain randomiza-

tion, which does not demonstrate consistent robustness benefits compared to stan-

dard safe RL. In fact, it even leads to an increase in constraint-violating test cases

in Cartpole Swingup compared to safe RL. This demonstrates that training on mul-

tiple environments does not necessarily lead to robust performance. Instead, domain

knowledge is critical in order for domain randomization to work well in practice.

121

Table C.2: Final performance across all algorithms and tasks.

PPO TRPO VMPO

Task Random On GPI On GPI On GPI

acrobot, swingup 3 34 32 21 24 16 24
acrobot, swingup sparse∗ 0 1 1 1 1 0 1
ball in cup, catch 55 835 879 885 922 884 939
cartpole, balance 322 761 933 320 624 385 631
cartpole, balance sparse 43 998 998 69 410 280 279
cartpole, swingup 47 641 862 574 733 620 712
cartpole, swingup sparse 0 166 339 56 285 70 409
cheetah, run 5 452 639 629 615 594 524
finger, spin 3 494 757 316 772 343 729
finger, turn easy 194 187 243 176 192 197 211
finger, turn hard 88 83 127 82 99 95 96
fish, upright 299 756 758 716 754 732 734
fish, swim 65 100 122 93 101 104 99
hopper, stand 1 3 140 19 50 30 92
hopper, hop 0 22 21 2 13 4 25
humanoid, stand∗ 5 6 7 6 7 6 6
humanoid, walk∗ 1 2 2 2 2 2 2
humanoid, run∗ 1 1 1 1 1 1 1
manipulator, bring ball∗ 0 1 0 1 0 0 1
pendulum, swingup 0 73 199 160 346 82 490
point mass, easy 4 866 852 141 585 12 406
reacher, easy 50 572 639 379 596 309 580
reacher, hard 8 408 523 104 420 116 365
swimmer, swimmer6∗ 192 162 192 154 174 157 178
swimmer, swimmer15∗ 178 146 157 145 153 146 154
walker, stand 138 516 607 706 835 759 804
walker, walk 40 426 590 581 624 541 620
walker, run 25 115 191 254 268 258 267

Bold indicates best performing algorithm for each task where learning occurs.
Asterisk (∗) indicates no learning occurs under any algorithm.

126

References

Abdolmaleki, A., Huang, S., Hasenclever, L., Neunert, M., Song, F., Zambelli, M.,
Martins, M., Heess, N., Hadsell, R., and Riedmiller, M. (2020). A distributional
view on multi-objective policy optimization. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119, pages 11–22. PMLR.

Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos, R., Heess, N., and Ried-
miller, M. (2018). Maximum a posteriori policy optimisation. In Sixth Interna-
tional Conference on Learning Representations.

Abdullah, M. A., Ren, H., Ammar, H. B., Milenkovic, V., Luo, R., Zhang, M., and
Wang, J. (2019). Wasserstein robust reinforcement learning. arXiv preprint.
arXiv:1907.13196.

Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy optimiza-
tion. In Proceedings of the 34th International Conference on Machine Learning,
volume 70, pages 22–31. PMLR.

Altman, E. (1999). Constrained Markov Decision Processes. CRC Press.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., and Bachem, O.
(2021). What matters for on-policy deep actor-critic methods? A large-scale study.
In Ninth International Conference on Learning Representations.

Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of
risk. Mathematical Finance, 9(3):203–228.

Bellemare, M. G., Dabney, W., and Munos, R. (2017). A distributional perspective
on reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning, volume 70, pages 449–458. PMLR.

Blanchet, J. and Murthy, K. (2019). Quantifying distributional model risk via opti-
mal transport. Mathematics of Operations Research, 44(2):565–600.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and
Zaremba, W. (2016). OpenAI Gym. arXiv preprint. arXiv:1606.01540.

127

Cao, W., Benosman, M., and Ma, R. (2022). Domain knowledge-based automated
analog circuit design with deep reinforcement learning. In The 59th ACM/IEEE
Design Automation Conference.

Chen, R. and Paschalidis, I. C. (2020). Distributionally robust learning. Foundations
and Trends® in Optimization, 4(1-2):1–243.

Chow, Y., Tamar, A., Mannor, S., and Pavone, M. (2015). Risk-sensitive and ro-
bust decision-making: a CVaR optimization approach. In Advances in Neural
Information Processing Systems, volume 28. Curran Associates, Inc.

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in
Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R. (2018). Implicit quantile
networks for distributional reinforcement learning. In Proceedings of the 35th In-
ternational Conference on Machine Learning, volume 80, pages 1096–1105. PMLR.

de Bruin, T., Kober, J., Tuyls, K., and Babuška, R. (2018). Experience selection in
deep reinforcement learning for control. Journal of Machine Learning Research,
19(9):1–56.

Deisenroth, M. and Rasmussen, C. (2011). PILCO: A model-based and data-efficient
approach to policy search. In Proceedings of the 28th International Conference on
Machine Learning, pages 465–472. ACM.

Derman, E., Mankowitz, D. J., Mann, T. A., and Mannor, S. (2018). Soft-robust
actor-critic policy-gradient. arXiv preprint. arXiv:1803.04848.

Derman, E. and Mannor, S. (2020). Distributional robustness and regularization in
reinforcement learning. arXiv preprint. arXiv:2003.02894.

Dhaene, J., Kukush, A., Linders, D., and Tang, Q. (2012). Remarks on quantiles
and distortion risk measures. European Actuarial Journal, 2:319–328.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Bench-
marking deep reinforcement learning for continuous control. In Proceedings of the
33rd International Conference on Machine Learning, volume 48, pages 1329–1338.
PMLR.

Duisterhof, B. P., Krishnan, S., Cruz, J. J., Banbury, C. R., Fu, W., Faust, A.,
de Croon, G. C. H. E., and Janapa Reddi, V. (2021). Tiny robot learning (tinyRL)
for source seeking on a nano quadcopter. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 7242–7248.

128

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S.,
and Hester, T. (2020). An empirical investigation of the challenges of real-world
reinforcement learning. arXiv preprint. arXiv:2003.11881.

Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., and
Hester, T. (2021). Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110:2419–2468.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., and
Madry, A. (2020). Implementation matters in deep RL: A case study on PPO and
TRPO. In Eighth International Conference on Learning Representations.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron,
Y., Firoiu, V., Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018).
IMPALA: Scalable distributed deep-RL with importance weighted actor-learner
architectures. In Proceedings of the 35th International Conference on Machine
Learning, volume 80, pages 1407–1416. PMLR.

Fakoor, R., Chaudhari, P., and Smola, A. J. (2020). P3O: Policy-on policy-off policy
optimization. In Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference, volume 115, pages 1017–1027. PMLR.

Foerster, J., Nardelli, N., Farquhar, G., Afouras, T., Torr, P. H. S., Kohli, P., and
Whiteson, S. (2017). Stabilising experience replay for deep multi-agent reinforce-
ment learning. In Proceedings of the 34th International Conference on Machine
Learning, volume 70, pages 1146–1155. PMLR.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approximation
error in actor-critic methods. In Proceedings of the 35th International Conference
on Machine Learning, volume 80, pages 1587–1596. PMLR.

Grossman, L. and Plancher, B. (2022). Just round: Quantized observation spaces
enable memory efficient learning of dynamic locomotion. arXiv preprint. arXiv:
2210.08065.

Gu, S., Lillicrap, T., Ghahramani, Z., Turner, R. E., and Levine, S. (2017a). Q-
Prop: Sample-efficient policy gradient with an off-policy critic. In 5th International
Conference on Learning Representations.

Gu, S., Lillicrap, T., Turner, R. E., Ghahramani, Z., Schölkopf, B., and Levine, S.
(2017b). Interpolated policy gradient: Merging on-policy and off-policy gradient
estimation for deep reinforcement learning. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.

129

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In
Proceedings of the 35th International Conference on Machine Learning, volume 80,
pages 1861–1870. PMLR.

Halko, N., Martinsson, P. G., and Tropp, J. A. (2011). Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix decom-
positions. SIAM Review, 53(2):217–288.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018).
Deep reinforcement learning that matters. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, pages 3207–3214. AAAI Press.

Hoffman, M. W., Shahriari, B., Aslanides, J., Barth-Maron, G., Momchev, N., Sino-
palnikov, D., Stańczyk, P., Ramos, S., Raichuk, A., Vincent, D., Hussenot, L.,
Dadashi, R., Dulac-Arnold, G., Orsini, M., Jacq, A., Ferret, J., Vieillard, N.,
Ghasemipour, S. K. S., Girgin, S., Pietquin, O., Behbahani, F., Norman, T., Ab-
dolmaleki, A., Cassirer, A., Yang, F., Baumli, K., Henderson, S., Friesen, A.,
Haroun, R., Novikov, A., Colmenarejo, S. G., Cabi, S., Gulcehre, C., Paine, T. L.,
Srinivasan, S., Cowie, A., Wang, Z., Piot, B., and de Freitas, N. (2020). Acme:
A research framework for distributed reinforcement learning. arXiv preprint.
arXiv:2006.00979.

Hong, Z.-W., Shann, T.-Y., Su, S.-Y., Chang, Y.-H., Fu, T.-J., and Lee, C.-Y. (2018).
Diversity-driven exploration strategy for deep reinforcement learning. In Advances
in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

Hou, L., Pang, L., Hong, X., Lan, Y., Ma, Z., and Yin, D. (2020). Robust reinforce-
ment learning with Wasserstein constraint. arXiv preprint. arXiv:2006.00945.

Hsu, D., Kakade, S., and Zhang, T. (2012). A tail inequality for quadratic forms of
subgaussian random vectors. Electronic Communications in Probability, 17.

Isele, D. and Cosgun, A. (2018). Selective experience replay for lifelong learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, pages
3302–3309. AAAI Press.

Iyengar, G. N. (2005). Robust dynamic programming. Mathematics of Operations
Research, 30(2):257–280.

Jang, I., Kim, H., Lee, D., Son, Y.-S., and Kim, S. (2020). Knowledge transfer
for on-device deep reinforcement learning in resource constrained edge computing
systems. IEEE Access, 8:146588–146597.

130

Janner, M., Fu, J., Zhang, M., and Levine, S. (2019). When to trust your model:
Model-based policy optimization. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Jones, B. L. and Zitikis, R. (2003). Empirical estimation of risk measures and related
quantities. North American Actuarial Journal, 7(4):44–54.

Kakade, S. and Langford, J. (2002). Approximately optimal approximate reinforce-
ment learning. In Proceedings of the 19th International Conference on Machine
Learning, pages 267–274. Morgan Kaufmann Publishers Inc.

Keramati, R., Dann, C., Tamkin, A., and Brunskill, E. (2020). Being optimistic
to be conservative: Quickly learning a CVaR policy. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 4436–4443.

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims, T. (2020). MOReL:
Model-based offline reinforcement learning. In Advances in Neural Information
Processing Systems, volume 33, pages 21810–21823. Curran Associates, Inc.

Konda, V. and Tsitsiklis, J. (2000). Actor-critic algorithms. In Advances in Neural
Information Processing Systems, volume 12. MIT Press.

Kong, A. (1992). A note on importance sampling using standardized weights. Tech-
nical Report 348, Department of Statistics, The University of Chicago. https:

//victorelvira.github.io/papers/kong92.pdf.

Kuang, Y., Lu, M., Wang, J., Zhou, Q., Li, B., and Li, H. (2022). Learning ro-
bust policy against disturbance in transition dynamics via state-conservative pol-
icy optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 7247–7254.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative Q-learning
for offline reinforcement learning. In Advances in Neural Information Processing
Systems, volume 33, pages 1179–1191. Curran Associates, Inc.

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-
ensemble trust-region policy optimization. In Sixth International Conference on
Learning Representations.

L.A., P. and Fu, M. C. (2022). Risk-sensitive reinforcement learning via policy
gradient search. Foundations and Trends® in Machine Learning, 15(5):537–693.

Laroche, R., Trichelair, P., and Combes, R. T. D. (2019). Safe policy improvement
with baseline bootstrapping. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 3652–3661. PMLR.

131

Li, L., Littman, M. L., Walsh, T. J., and Strehl, A. L. (2011). Knows what it knows:
A framework for self-aware learning. Machine Learning, 82:399–443.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2016). Continuous control with deep reinforcement learning. In 4th
International Conference on Learning Representations.

Liu, Z., Cen, Z., Isenbaev, V., Liu, W., Wu, S., Li, B., and Zhao, D. (2022). Con-
strained variational policy optimization for safe reinforcement learning. In Proceed-
ings of the 39th International Conference on Machine Learning, pages 13644–13668.
PMLR.

Ma, X., Xia, L., Zhou, Z., Yang, J., and Zhao, Q. (2020). DSAC: Distribu-
tional soft actor critic for risk-sensitive reinforcement learning. arXiv preprint.
arXiv:2004.14547.

Majumdar, A. and Pavone, M. (2020). How should a robot assess risk? Towards an
axiomatic theory of risk in robotics. In Robotics Research, pages 75–84. Springer
International Publishing.

Mankowitz, D. J., Calian, D. A., Jeong, R., Paduraru, C., Heess, N., Dathathri, S.,
Riedmiller, M., and Mann, T. (2021). Robust constrained reinforcement learn-
ing for continuous control with model misspecification. arXiv preprint. arXiv:
2010.10644.

Mankowitz, D. J., Levine, N., Jeong, R., Abdolmaleki, A., Springenberg, J. T., Shi,
Y., Kay, J., Hester, T., Mann, T., and Riedmiller, M. (2020). Robust reinforce-
ment learning for continuous control with model misspecification. In Eighth Inter-
national Conference on Learning Representations.

Meng, W., Zheng, Q., Shi, Y., and Pan, G. (2022). An off-policy trust region policy
optimization method with monotonic improvement guarantee for deep reinforce-
ment learning. IEEE Transactions on Neural Networks and Learning Systems,
33(5):2223–2235.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie,
C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and
Hassabis, D. (2015). Human-level control through deep reinforcement learning.
Nature, 518:529–533.

Mowlavi, S., Benosman, M., and Nabi, S. (2022). Reinforcement learning state esti-
mation for high-dimensional nonlinear systems. In Tenth International Conference
on Learning Representations.

132

Neuman, S. M., Plancher, B., Duisterhof, B. P., Krishnan, S., Banbury, C., Mazum-
der, M., Prakash, S., Jabbour, J., Faust, A., de Croon, G. C., and Reddi, V. J.
(2022). Tiny robot learning: Challenges and directions for machine learning in
resource-constrained robots. In 2022 IEEE 4th International Conference on Arti-
ficial Intelligence Circuits and Systems (AICAS), pages 296–299.

Nilim, A. and Ghaoui, L. E. (2005). Robust control of Markov decision processes
with uncertain transition matrices. Operations Research, 53(5):780–798.

Novati, G. and Koumoutsakos, P. (2019). Remember and forget for experience
replay. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 4851–4860. PMLR.

O’Donoghue, B., Munos, R., Kavukcuoglu, K., and Mnih, V. (2017). Combining
policy gradient and Q-learning. In 5th International Conference on Learning Rep-
resentations.

Papini, M., Binaghi, D., Canonaco, G., Pirotta, M., and Restelli, M. (2018). Stochas-
tic variance-reduced policy gradient. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80, pages 4026–4035. PMLR.

Paternain, S., Chamon, L., Calvo-Fullana, M., and Ribeiro, A. (2019). Constrained
reinforcement learning has zero duality gap. In Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Pau, D., Colella, S., and Marchisio, C. (2023). End to end optimized tiny learning for
repositionable walls in maze topologies. In 2023 IEEE International Conference
on Consumer Electronics (ICCE), pages 1–7.

Peng, X. B., Andrychowicz, M., Zaremba, W., and Abbeel, P. (2018). Sim-to-real
transfer of robotic control with dynamics randomization. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3803–3810.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adversarial
reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning, volume 70, pages 2817–2826. PMLR.

Pydi, M. S. and Jog, V. (2020). Adversarial risk via optimal transport and opti-
mal couplings. In Proceedings of the 37th International Conference on Machine
Learning, volume 119, pages 7814–7823. PMLR.

Queeney, J. and Benosman, M. (2023). Risk-averse model uncertainty for distribu-
tionally robust safe reinforcement learning. arXiv preprint. arXiv:2301.12593.

Queeney, J., Ozcan, E. C., Paschalidis, I. C., and Cassandras, C. G. (2023). Optimal
transport perturbations for safe reinforcement learning with robustness guarantees.
arXiv preprint. arXiv:2301.13375.

133

Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021a). Generalized prox-
imal policy optimization with sample reuse. In Advances in Neural Information
Processing Systems, volume 34. Curran Associates, Inc.

Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2021b). Uncertainty-aware
policy optimization: A robust, adaptive trust region approach. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35, pages 9377–9385. AAAI
Press.

Queeney, J., Paschalidis, I. C., and Cassandras, C. G. (2022). Generalized policy im-
provement algorithms with theoretically supported sample reuse. arXiv preprint.
arXiv:2206.13714.

Rajeswaran, A., Ghotra, S., Ravindran, B., and Levine, S. (2017). EPOpt: Learn-
ing robust neural network policies using model ensembles. In 5th International
Conference on Learning Representations.

Rajeswaran, A., Mordatch, I., and Kumar, V. (2020). A game theoretic framework
for model based reinforcement learning. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages 7953–7963. PMLR.

Ray, A., Achiam, J., and Amodei, D. (2019). Benchmarking safe exploration in deep
reinforcement learning. https://cdn.openai.com/safexp-short.pdf.

Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and Wayne, G. (2019). Experi-
ence replay for continual learning. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc.

Russel, R. H., Benosman, M., Van Baar, J., and Corcodel, R. (2021). Lyapunov ro-
bust constrained-MDPs: Soft-constrained robustly stable policy optimization under
model uncertainty. arXiv preprint. arXiv:2108.02701.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience
replay. In 4th International Conference on Learning Representations.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., and Silver, D.
(2020). Mastering Atari, Go, chess and shogi by planning with a learned model.
Nature, 588:604–609.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust
region policy optimization. In Proceedings of the 32nd International Conference
on Machine Learning, volume 37, pages 1889–1897. PMLR.

Schulman, J., Moritz, P., Levine, S., Jordan, M. I., and Abbeel, P. (2016). High-
dimensional continuous control using generalized advantage estimation. In 4th
International Conference on Learning Representations.

134

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint. arXiv:1707.06347.

Shapiro, A., Dentcheva, D., and Ruszczyński, A. (2014). Lectures on Stochastic
Programming: Modeling and Theory, Second Edition. Society for Industrial and
Applied Mathematics.

Shen, Y., Tobia, M. J., Sommer, T., and Obermayer, K. (2014). Risk-sensitive
reinforcement learning. Neural Computation, 26(7):1298–1328.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark, A., Soyer, H., Rae, J. W.,
Noury, S., Ahuja, A., Liu, S., Tirumala, D., Heess, N., Belov, D., Riedmiller,
M., and Botvinick, M. M. (2020). V-MPO: On-policy maximum a posteriori
policy optimization for discrete and continuous control. In Eighth International
Conference on Learning Representations.

Stooke, A., Achiam, J., and Abbeel, P. (2020). Responsive safety in reinforcement
learning by PID Lagrangian methods. In Proceedings of the 37th International
Conference on Machine Learning, volume 119, pages 9133–9143. PMLR.

Sutton, R. S., McAllester, D., Singh, S., and Mansour, Y. (2000). Policy gradient
methods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems, volume 12. MIT Press.

Tamar, A., Chow, Y., Ghavamzadeh, M., and Mannor, S. (2015). Policy gradient for
coherent risk measures. In Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.

Tessler, C., Efroni, Y., and Mannor, S. (2019a). Action robust reinforcement learning
and applications in continuous control. In Proceedings of the 36th International
Conference on Machine Learning, volume 97, pages 6215–6224. PMLR.

Tessler, C., Mankowitz, D. J., and Mannor, S. (2019b). Reward constrained policy
optimization. In Seventh International Conference on Learning Representations.

Thomas, P., Theocharous, G., and Ghavamzadeh, M. (2015). High confidence policy
improvement. In Proceedings of the 32nd International Conference on Machine
Learning, volume 37, pages 2380–2388. PMLR.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and Abbeel, P. (2017).
Domain randomization for transferring deep neural networks from simulation to
the real world. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 23–30.

Todorov, E., Erez, T., and Tassa, Y. (2012). MuJoCo: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033.

135

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez, S., Merel, J., Erez, T.,
Lillicrap, T., Heess, N., and Tassa, Y. (2020). dm control: Software and tasks for
continuous control. Software Impacts, 6:100022.

Villani, C. (2008). Optimal transport, old and new. Springer.

Vinitsky, E., Du, Y., Parvate, K., Jang, K., Abbeel, P., and Bayen, A. (2020).
Robust reinforcement learning using adversarial populations. arXiv preprint.
arXiv:2008.01825.

Wang, C., Wu, Y., Vuong, Q., and Ross, K. (2020). Striving for simplicity and
performance in off-policy DRL: Output normalization and non-uniform sampling.
In Proceedings of the 37th International Conference on Machine Learning, volume
119, pages 10070–10080. PMLR.

Wang, S. (1996). Premium calculation by transforming the layer premium density.
ASTIN Bulletin, 26(1):71–92.

Wang, S. S. (2000). A class of distortion operators for pricing financial and insurance
risks. The Journal of Risk and Insurance, 67(1):15–36.

Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., and de Fre-
itas, N. (2017). Sample efficient actor-critic with experience replay. In 5th Inter-
national Conference on Learning Representations.

Weber, P., Wälchli, D., Zeqiri, M., and Koumoutsakos, P. (2022). Remember and
forget experience replay for multi-agent reinforcement learning. arXiv preprint.
arXiv:2203.13319.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8(3–4):229–256.

Wirch, J. L. and Hardy, M. R. (2003). Distortion risk measures: Coherence and
stochastic dominance. Insurance Mathematics and Economics, 32:168–168.

Wu, Y., Mansimov, E., Grosse, R. B., Liao, S., and Ba, J. (2017). Scalable trust-
region method for deep reinforcement learning using Kronecker-factored approxima-
tion. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc.

Xu, H. and Mannor, S. (2010). Distributionally robust Markov decision processes.
In Advances in Neural Information Processing Systems, volume 23. Curran Asso-
ciates, Inc.

136

Xu, J., Kim, S., Chen, T., Garcia, A. R., Agrawal, P., Matusik, W., and Sueda, S.
(2023). Efficient tactile simulation with differentiability for robotic manipulation.
In Proceedings of The 6th Conference on Robot Learning, volume 205, pages 1488–
1498. PMLR.

Xu, M., Liu, Z., Huang, P., Ding, W., Cen, Z., Li, B., and Zhao, D. (2022). Trust-
worthy reinforcement learning against intrinsic vulnerabilities: Robustness, safety,
and generalizability. arXiv preprint. arXiv:2209.08025.

Xu, T., Liang, Y., and Lan, G. (2021). CRPO: A new approach for safe reinforcement
learning with convergence guarantee. In Proceedings of the 38th International
Conference on Machine Learning, pages 11480–11491. PMLR.

Yu, P. and Xu, H. (2016). Distributionally robust counterpart in Markov decision
processes. IEEE Transactions on Automatic Control, 61(9):2538–2543.

137

CURRICULUM VITAE

138

139

