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DURMUŞ ALP EMRE ACAR

B.S., Antalya Bilim University, 2017

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2023



© 2023 by
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ABSTRACT

Collecting a sufficient amount of data and centralizing them are both costly and

privacy-concerning operations. These practical concerns arise due to the communi-

cation costs between data collecting devices and data being personal such as text

messages of an end user. The goal is to train generalizable machine learning models

with constraints on data without sharing or transferring the data.

In this thesis, we will present solutions to several aspects of learning with data

constraints, such as processing and supervision. We focus on federated learning,

online learning, and learning generalizable representations and provide setting-specific

training recipes.

In the first scenario, we tackle a federated learning problem where data is decen-

tralized through different users and should not be centralized. Traditional approaches

either ignore the heterogeneity problem or increase communication costs to handle

it. Our solution carefully addresses the heterogeneity issue of user data by imposing

a dynamic regularizer that adapts to the heterogeneity of each user without extra

transmission costs. Theoretically, we establish convergence guarantees. We extend
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our ideas to personalized federated learning, where the model is customized to each

end user, and heterogeneous federated learning, where users support different model

architectures.

As a next scenario, we consider online meta-learning, where there is only one user,

and the data distribution of the user changes over time. The goal is to adapt new

data distributions with very few labeled data from each distribution. A naive way is

to store data from different distributions to train a model from scratch with sufficient

data. Our solution efficiently summarizes the information from each task data so that

the memory footprint does not scale with the number of tasks.

Lastly, we aim to train generalizable representations given a dataset. We con-

sider a setting where we have access to a powerful teacher (more complex) model.

Traditional methods do not distinguish points and force the model to learn all the

information from the powerful model. Our proposed method focuses on the learnable

input space and carefully distills attainable information from the teacher model by

discarding the over-capacity information.

We compare our methods with state-of-the-art methods in each setup and show

significant performance improvements. Finally, we discuss potential directions for

future work.
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Chapter 1

Introduction

1.1 Learning With Constraints On Processing And Supervi-

sion: Motivation

Machine learning shows incredible advances in many applications, such as natural

language understanding (Vaswani et al., 2017) and large-scale image classification

(Huang et al., 2017). One essential condition of this success is access to massive data

for training (Marcus, 2018). However, directly accessing a large amount of data results

in serious concerns. Firstly, some data reveal private information, so bringing them

into one place raises privacy concerns (McMahan et al., 2017a). Secondly, collecting

all data in one place is a costly operation (Halgamuge et al., 2009). A more practical

approach is to train models with data constraints such as processing and supervision,

which allows for avoiding privacy concerns and communication costs.

The thesis aims to train models with data constraints by using the available excess

information. In the applications we consider, a small amount of centralized data exists

for a model train. We adjust the model’s training to avoid overfitting to the small

dataset and encourage it to use the extra information of different forms. We list the

following applications we target in the thesis as motivation.

• Next Word Prediction. (McMahan et al., 2017b). Virtual keyboards suggest

the next word while typing a text on most mobile phones. A machine learning

model can be used for this task. Since one user’s data is limited, more is needed

to train a predictor model. Instead of centralizing data from all users, feder-
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ated learning collaboratively trains a global model on all user data. We target

fundamental practical problems in the current federated learning field, such as

data heterogeneity, personalization, and support for different architectures. We

propose communication-efficient novel solutions for each setting by obeying the

no-data-sharing policy of federated learning.

• Online Learning. (Shalev-Shwartz, 2007). Data collection is a continuous

process, and data distribution might change over time. For instance, the context

of the message inputs would vary during election time and a major sport event.

Online learning models this setting and aims to train a model on a sequence of

data points arriving in phases. A small data set is revealed in each round, and it

is not enough to train a machine-learning model. While there are methods where

data sets from the previous rounds are stored to train a model, we propose a

novel online meta-learning solution that does not store the data of earlier rounds

and efficiently trains a model.

• Distillation. (Hinton et al., 2015). Distillation refers to a process where a

powerful (teacher) model is utilized during the training of a student model

to avoid overfitting. Distillation improves the generalization performance of

the student models, where only the teacher model is used without any extra

data. Current methods encourage the student and the teacher to give similar

predictions. We view distillation differently and emphasize that the student

should only follow the teacher on some input space. We propose a novel selective

distillation technique where we force the student to follow teacher predictions

on learnable inputs and do not distill information on the over-capacity hard-to-

learn inputs.
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1.2 Problem Formulation

This section states the general learning problem and provides specific forms for the

subsequent problems. We mainly focus on supervised learning where the dataset

consists of N training tuples denoted as x ∈ X and corresponding labels y ∈ Y drawn

independently and identically (IID) from an unknown distribution, .i.e {xn, yn}Nn=1.

We note that our methods can be applied to other problems by changing the loss

definition.

We consider the following problem.

arg min
w∈W

1

N

∑
n∈[N ]

ℓ (w;xn, yn) subject to C
(
w, {xn, yn}Nn=1

)
(1.1)

where w is the parameters of the deep neural network (DNN), ℓ (w;xn, yn) is the

loss of the network for data point (xn, yn), and C
(
w, {xn, yn}Nn=1

)
is a constraint

depending on the problem setting.

We note that the no constraint setting corresponds to the standard DNN training,

which results in overfitting with limited data.

Eq. 1.1 is an abstract definition, and we list the variants based on the setting we

study below.

1.2.1 Federated Learning

Federated learning distributively learns a global model on the data from many users.

Let there be m devices in the system. Each device k has its own labeled dataset

denoted as {xk
n, y

k
n}

Nk
n=1. Each device k targets the following problem.

arg min
wk∈W

1

Nk

∑
n∈[Nk]

ℓ
(
wk;xk

n, y
k
n

)
subject to wk = ws ∀k ∈ [m] (1.2)



4

where ws is the server model. The constraint in Eq. 1.2 forces the local models to be

consistent with each other so that one common global model minimizing the all data

is learned.

Personalized Federated Learning

Personalized federated learning further customizes the global model based on user

data. The goal is to learn a common global meta-model and obtain a customized

device-specific model using an adaptation function for each user. Personalized feder-

ated learning considers the following problem for each device k,

arg min
wk∈W

1

Nk

∑
n∈[Nk]

ℓ
(
wk;xk

n, y
k
n

)
subject to wk = Tk(wk); wk = ws ∀k ∈ [m]

(1.3)

where wk is the meta model for device k, ws is the server meta model, wk = Tk(wk)

is the adapted model for device k using its dataset. The problem targets to align

the meta models using the server meta model to avoid local overfitting. We refer to

Chapter 3 for a precise definition of the adaptation function.

Federated Learning in Heterogeneous Networks

Eq. 1.2 assumes the model architectures to be the same for local and global models

through wk = ws equality. Practically, the model architecture depends on the ca-

pacity of each device. Then, wk = ws equality no longer holds since {wk}k∈[m] lives

in different dimensions. In this case, we reformulate Eq. 1.2 for device k as,

arg min
wk∈W

1

Nk

∑
n∈[Nk]

ℓ
(
wk;xk

n, y
k
n

)
subject to R

(
wk; {wj}j∈[m]

)
∀k ∈ [m]

(1.4)
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where R
(
wk; {wj}j∈[m]

)
forces the same capacity models to be the same and relates

device models from different capacities, .i.e wk = wj if device k and device j sup-

port the same architecture and wk ≈ wj if device k and device j supports different

architectures. We refer to Chapter 4 for a full definition of the relation function.

1.2.2 Online Meta Learning

Online meta-learning aims to model human learning. New tasks arrive in rounds, and

they are revealed with limited supervision .i.e a small dataset denoted as {xt
n, y

t
n}Nt

n=1

is given at round t . The learner tries to learn each task with the available data.

Learning from scratch for each task is not feasible since each task has very limited

supervision. Instead, the learner should transfer its experience from earlier tasks to

new ones. The learner solves the following problem,

arg min
w∈W

1

T

∑
t∈[T ]

1

Nt

∑
n∈[Nt]

ℓ
(
w;xt

n, y
t
n

)
subject to w = Tt(w) (1.5)

where datasets, {xt
n, y

t
n}Nt

n=1, are revealed in rounds so that the the learner does not

have direct access to the learning problem in Eq. 1.5. The performance of the learner

is measured with regret. We refer to Chapter 5 for more details.

1.2.3 Knowledge Distillation

Distillation considers a setting where a powerful teacher model exists during the

training of a student model. The student is given a labeled dataset, .i.e {xn, yn}n∈[N ].

The student is encouraged to learn the ground truth labels and to produce teacher-like

probability vectors on the training data. Distillation solves the following the problem.

arg min
w∈W

1

N

∑
n∈[N ]

ℓ (w;xn, yn) subject to R
(
w;wteacher, {xj, yj}j∈[N ]

)
(1.6)
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where the constraint forces to align the probability output of the model and the

teacher. We give detailed formulation in Chapter 6.

1.3 Challenges

In this section, we highlight the main challenges of the problems we consider in the

thesis.

Federated Learning

(McMahan et al., 2017a) give four fundamental challenges in federated learning based

on practical concerns. First, the server and device communication is lossy; only a

small subset of devices are available each round. Second, the data in the devices

are heterogeneous; minimization based on one device dataset does not generalize to

other device datasets. Third, there is a massive number of devices in the system and

there is very little data in each device. Lastly, the dataset sizes in each device vary.

Apart from these challenges, federated learning has a no-data-share policy due to

privacy concerns; data can not be transferred between devices and the server. The

ultimate goal in federated learning is to train a model with as little as server-to-device

transmissions due to communication costs.

Personalized Federated Learning

Personalized federated learning targets the data heterogeneity problem by finding a

meta-server model and customizing each model using the user’s limited data. Solving

for a meta-model introduces new challenges, such as adapting training to meta-model

training and handling meta-model bias in the device datasets.
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Federated Learning in Heterogeneous Networks

Above federated learning settings inherently assumes a common model architecture

for all devices by forcing a consensus on the learned model parameters. However,

devices support different model architectures based on their capacity levels. In differ-

ent architecture scenarios, the definition of consensus, .i.e training a common global

model, no longer holds. Transferring data knowledge between different capacity de-

vices becomes a challenge.

Online Meta Learning

Online meta-learning (Finn et al., 2019) consists of learning rounds. A small task

dataset that is not enough to learn a model is revealed in each learning round. The

learner is expected to extract crucial information from each round and train a model

that performs well in all rounds. The main challenge in this setting is to learn a model

without storing data from earlier rounds. Storing data from earlier tasks increases

memory footprint and leads to practical consequences.

Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) trains a model on a dataset with the help

of a powerful teacher model by forcing the model outputs to be similar to that of the

teacher model. The challenge in this problem is defining how the teacher helps the

model during training. Consider a setting where the teacher is much more powerful

than the model. Some of the outputs of the teacher would be over the model’s

capacity, and merely forcing the model to follow the teacher’s all outputs would not

help.



8

1.4 Contributions

We propose novel algorithms for the problems we consider, test our methods with

real-world datasets, and show significant performance improvements compared to

competitors. We list the main contributions of this thesis in the following paragraphs.

Federated Learning

We propose a method to dynamically regularize each device’s local losses to account

for the heterogeneity problem. Unlike prior works (Karimireddy et al., 2019), our

solution does not increase transmission costs; we transmit only one model between the

server and devices. We give convergence proof by being agnostic to the heterogeneity

levels.

Personalized Federated Learning

Our solution trains a meta server model that is customized to end users. Motivated

by privacy concerns, we further allow devices to hide the class information in their

datasets. Our method allows for arbitrary anonymization of the classes in each device

and works for arbitrary heterogeneity levels. We provide convergence guarantees on

the meta-model.

Federated Learning in Heterogeneous Networks

Motivated by early exit literature (Kaya et al., 2019), we propose a novel method

to enforce similarity between different model architectures where we train the simple

architecture as a subset of the complex architecture. The information transfer is

handled without extra communication costs.
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Online Meta Learning

Our novel method allows discarding data from earlier rounds by effectively summariz-

ing its information. Unlike the prior work (Finn et al., 2019), the memory footprint

of our approach does not linearly grow with the number of tasks.

Knowledge Distillation

We propose a novel solution where we scaffold the student model to focus on learnable

information from the teacher model. Using our method, the student ignores over-

capacity information from the teacher model and masters the learnable knowledge.

1.5 Related Work

We present a summary of the related works in this section. We refer to each chapter

for a detailed comparison of the prior works.

Federated Learning

Federated learning (Kairouz et al., 2019; Li et al., 2020) solves a distributed opti-

mization problem where the data nodes (devices) are connected to a server and col-

laboratively train a global model by sharing models and keeping all data local. One

key characteristic of federated learning is the non-IID nature of the local datasets

(McMahan et al., 2017a). Device users have different preferences, which lead to dif-

ferent local data distributions. Prior work handles the non-IID problem by either

controlling the heterogeneity levels in FedAvg (McMahan et al., 2017a) and Fed-

Prox (Li et al., 2020a) for convergence or transmitting bias corrections along with

the models as in SCAFFOLD (Karimireddy et al., 2019). We propose a novel de-

biasing method that does not increase per-round transmission costs, and we prove

convergence guarantees by being agnostic to the heterogeneity levels.
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Personalized Federated Learning

One common server model is trained for all devices in federated learning. However,

customizing models based on user needs is a better-motivated practical problem. Per-

sonalized federated learning (Chen et al., 2018; Fallah et al., 2020a) changes federated

learning where the devices collaboratively train a meta-server model, which is then

customized to each device based on its local dataset. Prior work, Per-FedAvg (Fallah

et al., 2020a), uses FedAvg-based optimization and MAML-type customization (Finn

et al., 2017). Differently, we propose to use heterogeneity agnostic optimization tech-

niques to avoid meta-bias due to the non-IID nature of local datasets. Furthermore,

we use the nearest neighbor customization (Snell et al., 2017), which enhances label

privacy by allowing users to index their class labels randomly.

Federated Learning in Heterogeneous Networks

A common way of merging different local model information into one server model

is to average the local model parameters, which is used in federated learning and

personalized federated learning. However, devices can only support the models based

on their capacities. Motivated by the mentioned practical problem, federated learning

in heterogeneous networks (Diao et al., 2021) proposes to have different architectures

in the devices based on their capacities. Prior work, HeteroFL (Diao et al., 2021),

changes the server aggregation step where the simple architecture is zero-padded to

be in the same dimensions as complex architectures and keeps the device training as

in FedAvg. We propose a device training scheme where the complex devices further

update the simple networks motivated by early exit literature (Bolukbasi et al., 2017;

Kaya et al., 2019). Adapting local optimization to different architectures results in

high savings.
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Online Meta Learning

Online Meta Learning (Finn et al., 2019) models human learning where an agent

sequentially adapts tasks using meta-learning. Each task consists of a small labeled

training set that is not sufficient to train a model from scratch. The agent must

transfer the meta information between tasks to have a sub-linear regret. Prior work,

FTML (Finn et al., 2019), trains a meta-model on all seen task data points in each

round which leads to a linear memory footprint. Differently, we propose a method

that does not need to store seen datasets and achieves sub-linear regret.

Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) targets a centralized training problem

consisting of a supervised dataset, a student model, and a pre-trained, more complex

teacher model. The student model severely overfits the supervised dataset without

teacher feedback. We can train the student network by distilling information from

teacher supervision to improve generalization. Prior work, KD (Hinton et al., 2015),

forces the student to follow the prediction probability vector of the teacher model for

all examples. Differently, we claim that distilling information on all data points is not

helpful as such, there exists some over-capacity points where the student should not

follow teacher supervision. Our method selectively distills information by filtering

over-capacity examples.

1.6 Organization

We list the content of the chapters in the following.

• Chapter 2 introduces the data heterogeneity problem in federated learning.

We propose a solution that handles the heterogeneity problem without extra

transmission costs. We present convergence guarantees.
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• Chapter 3 targets the personalization problem in federated learning, where the

global model is customized to each end user. Our solutions give high-performant

personalized models with provable convergence guarantees.

• Chapter 4 further extends federated learning into the setting where clients have

different architectures. Supporting different client architectures raises problems

regarding transferring knowledge between clients. We propose a method moti-

vated by the ideas from early exit works.

• Chapter 5 considers an online learning setup where datasets arrive in time for

one client. We propose a solution that gets optimal regret guarantees with

significant performance improvements without storing the data revealed in each

round.

• Chapter 6 targets the distillation problem, where we would like to improve the

generalization of a model using a powerful teacher. Our solution distinguishes

easy vs. over-capacity examples and distills the knowledge of the teacher model

using only attainable examples.

• Chapter 7 gives some exciting directions for future research. We use generaliza-

tion works and state-of-the-art data generation techniques for better training

in federated learning.
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Chapter 2

Federated Learning in Heterogeneous

Data Partitions

In this chapter, we target the standard federated learning (FL) problem. The basic

FL problem can be cast as one of empirical minimization of a global loss objective,

which is decomposable as a sum of device-level empirical loss objectives. The number

of communication rounds, along with the amount of bits communicated per round,

has emerged as a fundamental gold standard for FL problems. Many mobile and

IoT devices are bandwidth constrained, and wireless transmission and reception is

significantly more power hungry than computation (Halgamuge et al., 2009). As such

schemes that reduce communication are warranted. While distributed SGD is a viable

method in this context, it is nevertheless communication inefficient.

A Fundamental Dilemma. Motivated by these ideas, recent work has proposed

to push optimization burden onto the devices, in order to minimize amount of com-

munications. Much of the work in this context, propose to optimize the local risk

objective based on running SGD over mini-batched device data, analogous to what

one would do in a centralized scenario. On the one hand, training models on local

data that minimize local empirical loss appears to be meaningful, but yet, doing so,

is fundamentally inconsistent with minimizing the global empirical loss1 (Malinovsky

1To see this consider the situation where losses are differentiable. As such stationary points
for global empirical loss demand that only the sum of the gradients of device empirical losses are
zero, and not necessarily that the individual device gradients are zero. Indeed, in statistically
heterogeneous situations, such as where we have heterogeneous dominance of classes, stationary
points of local empirical functions do not coincide.
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et al., 2020; Khaled et al., 2020a). Prior works (McMahan et al., 2017a; Karimireddy

et al., 2019; Reddi et al., 2020) attempt to overcome this issue by running fewer

epochs or rounds of SGD on the devices, or attempt to stabilize server-side updates

so that the resulting fused models correspond to inexact minimizations and can result

in globally desirable properties.

Dynamic Regularization. To overcome these issues, we revisit the FL problem, and

view it primarily from a communication perspective, with the goal of minimizing com-

munication, and as such allowing for significantly more processing and optimization

at the device level, since communication is the main source of energy consumption

(Yadav and Yadav, 2016; Latré et al., 2011). This approach, while increasing com-

putation for devices, leads to substantial improvement in communication efficiency

over existing state-of-the-art methods, uniformly across the four FL scenarios (un-

reliable links, massive distribution, substantial heterogeneity, and unbalanced data).

Specifically, in each round, we dynamically modify the device objective with a penalty

term so that, in the limit, when model parameters converge, they do so to stationary

points of the global empirical loss. Concretely, we add linear and quadratic penalty

terms, whose minima is consistent with the global stationary point. We then provide

an analysis of our proposed FL algorithm and demonstrate convergence of the local

device models to models that satisfy conditions for local minima of global empirical

loss with a rate of O
(
1
T

)
where T is number of rounds communicated. For convex

smooth functions, with m devices, and P devices active per round, our convergence

rate for average loss with balanced data scales as O
(
1
T

√
m
P

)
, substantially improving

over the state-of-art (SCAFFOLD O
(
1
T

m
P

)
). For non-convex smooth functions, we

establish a rate of O
(
1
T

m
P

)
.

We perform experiments on both visual and language real-world datasets includ-

ing MNIST, EMNIST, CIFAR-10, CIFAR-100 and Shakespeare. We tabulate per-
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formance studying cases that are reflective of FL scenarios, namely, for (i) varying

device participation levels, (ii) massively distributed data, (iii) various levels of het-

erogeneity, as well as (iv) unbalanced local data settings. Our proposed algorithm,

FedDyn, has similar overhead to competing approaches, but converges at a signifi-

cantly faster rate. This results in a substantial reduction in communication compared

to baseline approaches such as conventional FedAvg (McMahan et al., 2017a), Fed-

Prox (Li et al., 2020) and SCAFFOLD (Karimireddy et al., 2019), for achieving

target accuracy. Furthermore, our approach is simple to implement, requiring far less

hyperparameter tuning compared to competing methods.

Contributions. We summarize our main results here.

• We present, FedDyn, a novel dynamic regularization method for FL. Key to

FedDyn is a new concept, where in each round the risk objective for each device

is dynamically updated so as to ensure that the device optima is asymptotically

consistent with stationary points of the global empirical loss,

• We prove convergence results for FedDyn in both convex and non-convex set-

tings, and obtain sharp results for communication rounds required for achieving

target accuracy. Our results for convex case improves significantly over state-

of-art prior works. FedDyn in theory is unaffected by heterogeneity, massively

distributed data, and quality of communication links,

• On benchmark examples FedDyn achieves significant communication savings

over competing methods uniformly across various choices of device heterogeneity

and device participation on massively distributed large-scale text and visual

datasets.

This work is published in (Acar et al., 2021a).
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2.1 Related Work

FL is a fast evolving topic, and we only describe closely related approaches here.

Comprehensive field studies have appeared in (Kairouz et al., 2019; Li et al., 2020;

Wang et al., 2021). The general FL setup involves two types of updates, the server

and device, and each of these updates are associated with minimizing some local loss

function, which by itself could be updated dynamically over different rounds. At

any round, there are methods that attempt to fully optimize or others that propose

inexact optimization. We specifically focus on relevant works that address the four

FL scenarios (massive distribution, heterogeneity, unreliable links, and unbalanced

data) here.

One line of work proposes local SGD (Stich, 2019) based updates, wherein each

participating device performs a single local SGD step. The server then averages

received models. In contrast to local SGD, our method proposes to minimize a local

penalized empirical loss.

FedAvg (McMahan et al., 2017a) is a generalization of local SGD, which proposes

a larger number of local SGD steps per round. Still, FedAvg inexactly solves device

side optimization. Identifying when to stop minimizing so that one gets a good

accuracy-communication trade-off is based on tuning the number of epochs and the

learning rate (McMahan et al., 2017a; Li et al., 2020b). Despite the strong empirical

performance of FedAvg in IID settings, performance degrades in non-IID scenarios

(Zhao et al., 2018).

Several modifications of FedAvg have been proposed to handle non-IID settings.

These variants include using a decreasing learning rate (Li et al., 2020b); modifying

device empirical loss dynamically (Li et al., 2020a); or modifying server side updates

(Hsu et al., 2019; Reddi et al., 2020). Methods that use a decreasing learning rate or

customized server side updates still rely on local SGD updates within devices. While
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these works do recognize the incompatibility of local and global stationary points,

their proposed fix is based on inexact minimization. Additionally, in order to establish

convergence for non-IID situations, these works impose additional “bounded-non-IID”

conditions.

FedProx (Li et al., 2020a) is related to our method. Like us they propose a

dynamic regularizer, which is modified based on server supplied models. This regu-

larizer penalizes updates that are far away from the server model. Nevertheless, the

resulting regularizer does not result in aligning the global and local stationary points,

and as such inexact minimization is warranted, and they do so by carefully choosing

learning rates and epochs. Furthermore, tuning requires some knowledge of statistical

heterogeneity.

In a similar vein, there are works that augment updates with extra device vari-

ables that are also transmitted along with the models (Karimireddy et al., 2019;

Shamir et al., 2014). These works prove convergence guarantees through adding

device-dependent regularizers. Nevertheless, they suffer additional communication

costs and they are not extensively experimented with deep neural networks. Among

them, SCAFFOLD (Karimireddy et al., 2019) is a closely related work even though

it transmits extra variables and a more detailed comparison is given in Section 2.2.

Another line of distributed optimization methods (Konečnỳ et al., 2016;

Makhdoumi and Ozdaglar, 2017; Shamir et al., 2014; Yuan and Ma, 2020; Pathak

and Wainwright, 2020; Liang et al., 2019; Li et al., 2020c; Condat et al., 2020) could

be considered in this setting. Moreover, there are works that extend analysis of SGD

type methods to FL settings (Gorbunov et al., 2020; Khaled et al., 2020b; Li and

Richtárik, 2020). However, these algorithms are proposed for full device participa-

tion case which fails to satisfy one important aspect of FL. FedSVRG (Konečnỳ et al.,

2016) and DANE (Shamir et al., 2014) need gradient information from all devices at
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each round and they are not directly applicable to partial FL settings. For example,

FedDANE (Li et al., 2019a) is a version of DANE that works in partial participation.

However, FedDANE performs worse than FedAvg empirically with partial participa-

tion (Li et al., 2019a). Similar to these works, FedPD (Zhang et al., 2020) method

is proposed in distributed optimization with a different participation notion. FedPD

activates either all devices or no devices per round which again fails to satisfy partial

participation in FL.

Another set of works aims to decrease communication costs by compressing the

transmitted models (Dutta et al., 2019; Mishchenko et al., 2019; Alistarh et al.,

2017). They save communication costs through decreasing bit-rate of the transmis-

sion. These ideas are complementary to our work and they can be integrated to our

proposed solution.

We further cover some of the new works published after our study. (Yang et al.,

2022) modify federated learning and give freedom to devices when to participate in

server aggregation and how much local computation to do. (Luo et al., 2021) tackle

the non-IID problem in federated learning, empirically show that training under non-

IID local datasets leads to different bias levels in layers, and propose calibrating the

weights with virtual representations. (Zhang et al., 2022) focus on server aggregation

and propose a distillation method to obtain the server model using a generator. The

proposed methods in (Yang et al., 2022) and (Zhang et al., 2022) are complementary

to FedDyn and can be used together.

2.2 Definition and Method

We assume there is a cloud server which can transmit and receive messages from m

client devices. Each device, k ∈ [m] consists of Nk training instances in the form of

features, x ∈ X and corresponding labels y ∈ Y that are drawn IID from a device-
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indexed joint distribution, (x, y) ∼ Pk.

Our objective is to solve

arg min
w∈Rd

ℓ(w) ≜
1

m

∑
k∈[m]

Lk(w)


where, Lk(w) = E(x,y)∼Dk

[ℓk(w; (x, y))] is the empirical loss of the kth device, and w

are the parameters of our neural network, whose structure is assumed to be identical

across the devices and the server. We denote by w∗ a local minima of the global

empirical loss function.

FedDyn Method. Our proposed method, FedDyn, is displayed in Algorithm 1. In

each round, t ∈ [T ], a subset of devices Pt ⊂ [m] are active, and the server transmits

its current model, wt−1, to these devices. Each active device then optimizes a local

empirical risk objective, which is the sum of its local empirical loss and a penalized

risk function. The penalized risk, which is dynamically updated, is based on current

local device model, and the received server model:

wt
k = argmin

w

[
Rk(w;wt−1

k ,wt−1) ≜ Lk(w)− ⟨∇Lk(wt−1
k ),w⟩+

α

2
∥w −wt−1∥2

]
.

(2.1)

Devices compute their local gradient, ∇Lk

(
wt−1

k

)
, recursively, by noting that the first

order condition for local optima must satisfy,

∇Lk(wt
k)−∇Lk(wt−1

k ) + α(wt
k −wt−1) = 0 (2.2)
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Algorithm 1 Federated Dynamic Regularizer - (FedDyn)

1: Input: T,w0, α > 0,∇Lk(w0
k) = 0.

2: for t = 1, 2, . . . T do
3: Sample devices Pt ⊆ [m] and transmit wt−1 to each selected device,
4: for each device k ∈ Pt, and in parallel do
5: Set wt

k = argmin
w

Lk(w)− ⟨∇Lk(wt−1
k ),w⟩+ α

2
∥w −wt−1∥2,

6: Set ∇Lk(wt
k) = ∇Lk(wt−1

k )− α (wt
k −wt−1),

7: Transmit device model wt
k to server,

8: end for
9: for each device k ̸∈ Pt, and in parallel do
10: Set wt

k = wt−1
k , ∇Lk(wt

k) = ∇Lk(wt−1
k ),

11: end for
12: Set ht = ht−1 − α 1

m

(∑
k∈Pt

wt
k −wt−1

)
,

13: Set wt =
(

1
|Pt|
∑

k∈Pt
wt

k

)
− 1

α
ht

14: end for

Stale devices do not update their models. Updated device models, wt
k, k ∈ Pt

are then transmitted to server, which then updates its model to wt as displayed in

Algorithm 1.

Intuitive Justification. To build intuition into our method, we first highlight a fun-

damental issue about the Federated Dynamic Regularizer setup. It is that stationary

points for device losses, in general, do not conform to global losses. Indeed, a global

stationary point, w∗ must necessarily satisfy,

∇ℓ(wt) ≜
1

m

∑
k∈[m]

∇Lk(w∗) =
∑
k∈[m]

E(x,y)∼Dk
∇ℓk(w∗; (x, y)) = 0. (2.3)

In contrast a device’s stationary point, w∗
k satisfies, ∇Lk(w∗

k) = 0, and in general

due to heterogeneity of data (Pk ̸= Pj for k ̸= j), the individual device-wise gradients

are non-zero ∇Lk(w∗) ̸= 0. This means that the dual goals of (i) seeking model

convergence to a consensus, namely, wt
k → wt → w∗, and (ii) the fact that model

updates are based on optimizing local empirical losses is inconsistent2.

2As pointed in related work prior works based on SGD implicitly account for the inconsistency
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Dynamic Regularization. Our proposed risk objective in Eq. 2.1 dynamically

modifies local loss functions, so that, if in fact local models converge to a consensus,

the consensus point is consistent with stationary point of the global loss. To see this,

first note that if we initialize at a consensus point, namely, wt−1
k = wt−1, we have,

∇R(w,wt−1
k ,wt−1) = 0 for w = wt−1. Thus our choice can be seen as modifying the

device loss so that the stationary points of device risk is consistent with server model.

Key Property of Algorithm 1. If local device models converge, they converge

to the server model, and the convergence point is a stationary point of the global

loss. To see this, observe from Eq 2.2 that if wt
k → w∞

k , it generally follows that,

∇Lk(wt
k) → ∇Lk(w∞

k ), and as a consequence, we have wt → w∞
k . In turn this

implies that w∞
k → w∞, i.e., is independent of k. Putting all of this together with our

server update equations we have that wt convergence implies ht → 0. Now the server

state ht ≜
∑

k∇Lk(wt
k), and as such in the limit we are left with

∑
k∇Lk(wt

k) →∑
k∇Lk(w∞) = 0. This implies that we converge to a point that turns out to be a

stationary point of the global risk.

2.2.1 Analysis of FedDyn

Properties outlined in the previous section, motivates our FedDyn convergence analy-

sis of device and server models. We will present theoretical results for strongly convex,

convex and non-convex functions.

Theorem 1 Assuming a constant number of devices are selected uniformly at random

in each round, |Pt| = P , for a suitably chosen of α > 0, Algorithm 1 satisfies,

• µ strongly convex and L smooth {Lk}mk=1 functions,

E

[
ℓ

(
1

R

T−1∑
t=0

rtgt

)
− ℓ∗

]
=

by performing inexact minimization, and additional hyperparameter tuning.
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O

 1

rT

β
∥∥w0 −w∗

∥∥2 +
m

P

1

β

 1

m

∑
k∈[m]

∥∇Lk(w∗)∥2


• Convex and L smooth {Lk}mk=1 functions,

E

[
ℓ

(
1

T

T−1∑
t=0

gt

)
− ℓ∗

]
=

O

 1

T

√
m

P

L
∥∥w0 −w∗

∥∥2 +
1

L

1

m

∑
k∈[m]

∥∇Lk(w∗)∥2


• Nonconvex and L smooth {Lk}mk=1 functions,

E ∥∇ℓ(gT )∥2 = O

 1

T

L
m

P

(
ℓ(w0)− ℓ∗

)
+ L2 1

m

∑
k∈[m]

∥w0
k −w0∥2


where gt= 1

P

∑
k∈Pt

wt
k, w∗=argmin

w
ℓ(w), ℓ∗=ℓ(w∗) , r=

(
1 + µ

α

)
, R=

∑T−1
t=0 rt

β= max
(
5m
P
µ, 30L

)
and gT is a random variable that takes values {gs}T−1

s=0 with equal

probability.

Theorem 1 gives rates for strongly convex, convex and nonconvex local losses.

For strongly convex and smooth functions, in expectation, a weighted average of

active device averages converge at a linear rate. For convex and smooth functions, in

expectation, the global loss of active device averages, converges at a rate O
(
1
T

√
m
P

)
.

Following convention, this rate is for the empirical loss averaged across devices. As

such this rate would hold with moderate data imbalance. In situations with significant

imbalance, which scales with data size, these results would have to account for the

variance in the amount of data/device. Furthermore, the
√

m
P

factor might appear

surprising, but note that our bounds hold under expectation, namely, the error reflects

the average over all random choices of devices. Similarly, for nonconvex and smooth

functions, in expectation, average of active device models converges to a stationary
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point at O
(
1
T

m
P

)
rate. The expectation is taken over randomness in active device

set at each round. Similar to known convergence theorems, the problem dependent

constants are related to how good the algorithm is initialized. We refer to Appendix

A.2.1 for a detailed proof.

FedDyn vs. SCAFFOLD (Karimireddy et al., 2019). While SCAFFOLD

appears to be similar to our method, there are fundamental differences. Practi-

cally, SCAFFOLD communicates twice as many bits as FedDyn or Federated Dy-

namic Regularizer, transmitting back and forth, both a model and its gradient.

The 2× increase in bits can be substantial for many low-power IoT applications,

since energy consumption for communication dominates computation. Conceptu-

ally, we attribute the increased bit-rate to algorithmic differences. At the device-

level, our modified risk incorporates a linear term, ∇Lk(wt
k) (which we can com-

pute readily (Eq. 2.2)). Applying our perspective to SCAFFOLD, in full partici-

pation setting, we see SCAFFOLD as replacing our linear term ⟨∇Lk(wt
k),w⟩ with〈

∇Lk(wt)− 1
m

∑
k∈[m]∇Lk(wt

k),w
〉

. While ∇Lk(wt) can be locally computed, after

wt is received, the term 1
m

∑
k∈[m]∇Lk(wt

k) is unknown and must be transmitted by

the server, leading to increased bit-rate. Note that this is unavoidable, since ignoring

this term, leads to freezing device updates (optimizing Lk(w)−⟨∇Lk(wt),w −wt⟩+
α
2
∥w − wt∥2 results in w = wt). This extra term is a surrogate for ∇ℓ(wt), which

is unavailable. As such we believe that these differences are responsible for FedDyn’s

improved rate (in rounds) in theory as well as practice.

Finally, apart from conceptual differences, there are also implementation differ-

ences. SCAFFOLD runs SGD, and adapts hyperparameter tuning for a given number

of rounds to maximize accuracy. In contrast, our approach, based on exact minimiza-

tion, is agnostic to specific implementation, and as such we utilize significantly less

tuning.
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2.3 Experiments

Our goal in this section is to evaluate FedDyn against competing methods on bench-

mark datasets for various FL scenarios. Our results will highlight trade-offs and

benefits of our exact minimization relative to prior inexact minimization methods.

To ensure a fair comparison, the usual SGD procedure is adapted for the FedDyn

algorithm in the device update as in FedAvg rather than leveraging an off the shelf

optimization solver. We provide a brief description of the datasets and the models

used in the experiments. A detailed description of our setup can be found in Ap-

pendix A.1.1. Partial participation was handled by sampling devices at random in

each round independent of previous rounds.

Datasets. We used benchmark datasets with the same train/test splits as in

previous works (McMahan et al., 2017a; Li et al., 2020a) which are MNIST (LeCun

et al., 1998), CIFAR-10, CIFAR-100 (Krizhevsky, 2009), a subset of EMNIST (Co-

hen et al., 2017) (EMNIST-L), Shakespeare (Shakespeare, 1994) as well as a synthetic

dataset. The IID split is generated by randomly assigning datapoints to the devices.

The Dirichlet distribution is used on the label ratios to ensure uneven label distribu-

tions among devices for non-IID splits as in (Yurochkin et al., 2019). For example,

in MNIST, 100 device experiments, each device has about 5 and 3 classes that con-

sume 80% of local data at Dirichlet parameter settings of 0.6 and 0.3 respectively. To

generate unbalanced data, we sample the number of datapoints from a lognormal dis-

tribution. Controlling the variance of lognormal distribution gives unbalanced data.

For instance, in CIFAR-10, 100 device experiments, balanced and unbalanced data

settings have standard deviation of device sample size of 0 and 0.3 respectively.

Models. We use fully-connected neural network architectures for MNIST and

EMNIST-L with 2 hidden layers. The number of neurons in the layers are 200 and

100; and the models achieve 98.4% and 95.0% test accuracy in MNIST and EMNIST-
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Table 2.1: Number of parameters transmitted relative to one round
of FedAvg to reach target test accuracy for moderate and large number
of devices in IID and Dirichlet .3 settings. SCAFFOLD communicates
the current model and its associated gradient per round, while others
communicate only the current model. As such number of rounds for
SCAFFOLD is one half of those reported.

Device Number Dataset Accuracy FedDyn SCAFFOLD FedAvg FedProx

Moderate

IID

CIFAR-10
84.5 637 1852(2.9×) 1000+(>1.6×) 1000+(>1.6×)
82.3 240 512(2.1×) 994(4.1×) 825(3.4×)

CIFAR-100
51.0 522 1854(3.6×) 1000+(>1.9×) 1000+(>1.9×)
40.9 159 286(1.8×) 822(5.2×) 873(5.5×)

Dirichlet (.3)

CIFAR-10
82.5 444 1880(4.2×) 1000+(>2.3×) 1000+(>2.3×)
80.7 232 594(2.6×) 863(3.7×) 930(4.0×)

CIFAR-100
51.0 561 1884(3.4×) 1000+(>1.8×) 1000+(>1.8×)
42.3 170 330(1.9×) 959(5.6×) 882(5.2×)

Massive

IID

CIFAR-10
80.0 840 4000+(>4.8×) 2000+(>2.4×) 2000+(>2.4×)
62.3 305 928(3.0×) 1277(4.2×) 1274(4.2×)

CIFAR-100
50.1 1445 3982(2.8×) 2000+(>1.4×) 2000+(>1.4×)
38.3 477 1408(3.0×) 1997(4.2×) 1974(4.1×)

Dirichlet (.3)

CIFAR-10
80.0 831 4000+(>4.8×) 2000+(>2.4×) 2000+(>2.4×)
70.6 350 2138(6.1×) 1962(5.6×) 1517(4.3×)

CIFAR-100
47.0 969 4000(4.1×) 2000+(>2.1×) 2000+(>2.1×)
39.9 467 2266(4.9×) 1913(4.1×) 1794(3.8×)

L respectively. The model used for MNIST is the same as used in (McMahan et al.,

2017a). For CIFAR-10 and CIFAR-100, we use a CNN model, similar to (McMahan

et al., 2017a), consisting of 2 convolutional layers with 64 5 × 5 filters followed by

2 fully connected layers with 394 and 192 neurons, and a softmax layer. The model

achieves 85.2% and 55.3% test accuracy for CIFAR-10 and CIFAR-100 respectively.

For the next character prediction task (Shakespeare), we use a stacked LSTM, similar

to (Li et al., 2020a). This architecture achieves a test accuracy of 50.8% and 51.2%

in IID and non-IID settings respectively. Both IID and non-IID performances are

reported since splits are randomly regenerated from the entire Shakespeare writing.
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Hence centralized data and the centralized model performance is different.

In passing, we note that while the accuracies reported are state-of-art for our cho-

sen models, higher capacity models can achieve higher performance on these datasets.

As such, our aim is to compare the relative performance of these models in FL using

FedDyn and other strong baselines.

Comparison of Methods. We report the performance of FedDyn, SCAFFOLD,

FedAvg and FedProx on synthetic and real datasets. We also experimented with dis-

tributed SGD, where devices in each round compute gradients on the server supplied

model on local data, and communicate these gradients. Its performance was not com-

petitive relative to other methods. Therefore, we do not tabulate it here. We cover

synthetic data generation and its results in Appendix A.1.1.

The standard goal in FL is to minimize amount of bits transferred. For this reason,

we adopt the number of models transmitted to achieve a target accuracy as our

metric in our comparisons. This metric is different than comparing communication

rounds since not all methods communicate the same amount of information per round.

FedDyn, FedAvg and FedProx transmit/receive the same amount of models for a fixed

number of rounds whereas SCAFFOLD costs twice due to transmission of states.

We compare algorithms for two different accuracy levels which we pick them to be

close to performance obtained by centralizing data. Along with transmission costs

of each method, we report the communication savings of FedDyn compared to each

baseline in parenthesis. For methods that could not achieve aimed accuracy within

the communication constraint, we append transmission cost with + sign. We observe

FedDyn results in communication savings compared to all baselines to reach a target

accuracy. We test FedDyn under the four characteristic properties of FL which are

partial participation, large number of devices, heterogeneous data, and unbalanced

data.
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Moderate vs. Large Number of Devices. FedDyn significantly outperforms

competing methods in the practically relevant massively distributed scenario. We re-

port the performance of FedDyn on CIFAR-10 and CIFAR-100 with moderate and

large number of devices in Table 2.1, while keeping the participation level constant

(10%) and the data amounts balanced. Specifically, the moderately distributed set-

ting has 100 devices with 500 images per device. The massively distributed setting

has 1000 devices with 50 images per device for CIFAR-10, as well as 500 devices with

100 images per device for CIFAR-100. In each distributed setting, the data is parti-

tioned in both IID and non-IID (Dirichlet 0.3) fashion. FedDyn leads to substantial

transmission reduction in each of the regimes.

First, the communication saving in the massive setting is significantly larger rel-

ative to the moderate setting. Compared to SCAFFOLD, FedDyn leads to 4.8× and

2.9× gains respectively on CIFAR-10 IID setting. SCAFFOLD is not able to achieve

80% within 2000 rounds in the massive setting (shown in Figure A·4), thus actual

saving is more than 4.8×. Similar trend is observed in the non-IID setting of CIFAR-

10 and CIFAR-100. Second, all the methods require more communications to achieve

a reasonable accuracy in the massive setting as the dataset is more decentralized.

For instance, it takes FedDyn 637 rounds to achieve 84.5% with 100 devices, while

it takes 840 rounds to achieve 80.0% with 1000 devices. Similar trend is observed

for CIFAR-100 and other methods. FedDyn always achieves the target accuracy with

fewer rounds and thus leads to significant saving. Third, a higher target accuracy may

result in a greater saving. For instance, the saving relative to SCAFFOLD increases

from 3× to 4.8× in the CIFAR-10 IID massive setting. We may attribute this to the

fact that FedDyn aligns device functions to global loss and efficiently optimizes the

problem.

Full vs. Partial Participation Levels. FedDyn outperforms baseline methods
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across different device participation levels. We consider different device participation

levels with 100 devices and balanced data in Table 2.2 & 2.3 where part of CIFAR-10

and CIFAR-100 results are omitted since they are reported in moderate number of

devices section of Table 2.1. The Shakespeare non-IID results are separately shown,

since it has a natural non-IID split which does not conform with the Dirichlet distri-

bution. The communication gain, with respect to best baseline, increases with greater

participation levels from 2.9× to 9.4×; 4.0× to 12.8× and 4.2× to 7.9× for CIFAR-10

in different device distribution settings. We observe a similar performance increase in

full participation for most of the datasets. This validates our hypothesis that FedDyn

more efficiently incorporates information from all devices compared to other methods,

and results in more savings in full participation. Similar to previous results, a greater

target accuracy gives a greater savings in most of the settings. We also report results

for 1% participation regime with different device distribution settings (See Table A.3

in Appendix A.1.1).

Balanced vs. Unbalanced Data. FedDyn is more robust to unbalanced data

than competing methods. We fix number of devices (100) and participation level

(10%) and consider effect of unbalanced data (Table A.2 (Appendix A.1.1)). FedDyn

achieves 4.3× gains over the best competitor, SCAFFOLD to achieve the target

accuracy. As before, gains increase with the target accuracy.

IID vs. non-IID Device Distribution. FedDyn outperforms baseline methods

across different device distribution levels. We consider heterogeneous device distri-

butions in the context of varying device numbers, participation levels and balanced-

unbalanced settings in Table 2.1, 2.2, 2.3 and A.2 (Appendix A.1.1) respectively. De-

vice distributions become more non-IID as we go from IID, Dirichlet .6 to Dirichlet .3

splits which makes global optimization problem harder. We see a clear effect of this

change in Table 2.3 for 10% participation level and in Table A.2 for unbalanced set-
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ting. For instance, increasing non-IID level results in a greater communication saving

such as from 2.9×, 4.0× to 4.2× in CIFAR-10 10% participation. Similar statement

holds for MNIST, EMNIST-L and Shakespeare in Table 2.3 and for CIFAR-10 un-

balanced setting in Table A.2. We do not observe a significant difference in savings

for full participation setting in Table 2.2.

Summary. Overall, FedDyn consistently leads to substantial communication

savings compared to baseline methods uniformly across various FL regimes of interest.

We realize large gains in the practically relevant massively distributed data setting.
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Table 2.2: Number of parameters transmitted relative to one round
of FedAvg to reach target test accuracy for 100% participation regimes
in the IID, non-IID settings. SCAFFOLD communicates the current
model and its associated gradient per round, while others communicate
only the current model. As such number of rounds for SCAFFOLD is
one half of those reported.

Dataset Accuracy FedDyn SCAFFOLD FedAvg FedProx

IID

CIFAR-10
85.0 198 1860(9.4×) 1000+(>5.1×) 1000+(>5.1×)

81.4 67 320(4.8×) 754(11.3×) 655(9.8×)

CIFAR-100
51.0 259 1744(6.7×) 1000+(>3.9×) 1000+(>3.9×)

39.4 55 172(3.1×) 1000+(>18.2×) 741(13.5×)

MNIST
98.2 38 72(1.9×) 194(5.1×) 445(11.7×)

97.2 9 18(2.0×) 31(3.4×) 28(3.1×)

EMNIST-L
94.6 65 414(6.4×) 307(4.7×) 1000+(>15×)

93.6 16 36(2.2×) 66(4.1×) 62(3.9×)

Shakespeare
46.4 33 74(2.2×) 96(2.9×) 113(3.4×)

45.4 28 64(2.3×) 59(2.1×) 56(2.0×)

Dirichlet (.6)

CIFAR-10
84.0 148 1890(12.8×) 1000+(>6.8×) 1000+(>6.8×)

80.3 64 392(6.1×) 869(13.6×) 724(11.3×)

CIFAR-100
51.0 468 1838(3.9×) 1000+(>2.1×) 1000+(>2.1×)

40.6 73 206(2.8×) 998(13.7×) 592(8.1×)

MNIST
98.1 39 108(2.8×) 157(4.0×) 416(10.7×)

97.1 11 24(2.2×) 38(3.5×) 34(3.1×)

EMNIST-L
94.9 207 552(2.7×) 410(2.0×) 1000+(>4.8×)

93.9 20 42(2.1×) 73(3.6×) 61(3.0×)

Dirichlet (.3)

CIFAR-10
83.5 223 1762(7.9×) 1000+(>4.5×) 1000+(>4.5×)

80.2 70 504(7.2×) 705(10.1×) 1000+(>14.3×)

CIFAR-100
50.5 405 1940(4.8×) 1000+(>2.5×) 1000+(>2.5×)

41.0 80 224(2.8×) 911(11.4×) 1000+(>12.5×)

MNIST
98.1 35 76(2.2×) 313(8.9×) 458(13.1×)

97.1 10 24(2.4×) 49(4.9×) 44(4.4×)

EMNIST-L
94.5 65 210(3.2×) 492(7.6×) 1000+(>15×)

93.5 23 46(2.0×) 78(3.4×) 69(3.0×)

Non-IID

Shakespeare
47.3 33 70(2.1×) 134(4.1×) 150+(>4.5×)

46.3 28 62(2.2×) 53(1.9×) 64(2.3×)
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Table 2.3: Number of parameters transmitted relative to one round
of FedAvg to reach target test accuracy for 10% participation regimes
in the IID, non-IID settings. SCAFFOLD communicates the current
model and its associated gradient per round, while others communicate
only the current model. As such number of rounds for SCAFFOLD is
one half of those reported.

Dataset Accuracy FedDyn SCAFFOLD FedAvg FedProx

IID

MNIST
98.2 100 142(1.4×) 588(5.9×) 362(3.6×)

97.2 31 52(1.7×) 49(1.6×) 43(1.4×)

EMNIST-L
94.6 104 160(1.5×) 330(3.2×) 210(2.0×)

93.6 58 84(1.4×) 69(1.2×) 65(1.1×)

Shakespeare
46.9 63 94(1.5×) 138(2.2×) 190(3.0×)

45.9 56 76(1.4×) 96(1.7×) 75(1.3×)

Dirichlet (.6)

CIFAR-10
83.5 403 1618(4.0×) 1000+(>2.5×) 1000+(>2.5×)

81.3 189 486(2.6×) 977(5.2×) 943(5.0×)

CIFAR-100
51.0 521 1910(3.7×) 1000+(>1.9×) 1000+(>1.9×)

41.6 170 302(1.8×) 931(5.5×) 748(4.4×)

MNIST
98.1 129 194(1.5×) 581(4.5×) 361(2.8×)

97.1 37 60(1.6×) 57(1.5×) 57(1.5×)

EMNIST-L
94.9 192 296(1.5×) 306(1.6×) 1000+(>5.2×)

93.9 55 102(1.9×) 95(1.7×) 86(1.6×)

Dirichlet (.3)

MNIST
98.2 90 208(2.3×) 428(4.8×) 858(9.5×)

97.2 37 68(1.8×) 76(2.1×) 61(1.6×)

EMNIST-L
94.4 107 178(1.7×) 804(7.5×) 1000+(>9.3×)

93.4 58 100(1.7×) 81(1.4×) 86(1.5×)

Non-IID

Shakespeare
47.6 63 102(1.6×) 169(2.7×) 133(2.1×)

46.6 56 82(1.5×) 80(1.4×) 66(1.2×)
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Chapter 3

Personalized Federated Learning

In this chapter, we consider the personalization of FL to the end user. In FL,

data stored on the edge devices is statistically heterogeneous, namely, different de-

vices/users have different data. As a result, naively fusing independently trained

device models can result in significant bias and poor performance. While a number

of previous works (see (Karimireddy et al., 2019)) have proposed methods to over-

come the effects of statistical heterogeneity, the goal of these works have remained

the same, namely, to realize a single model at termination time, which works as well

as a learner with centralized test data. In particular, the performance is measured

with respect to the combined test data of all of the devices.

While FL optimizes centralized performance, this metric may not be meaningful

from the user’s perspective. An end user, after all, will have personal objectives and

interests. Therefore, a more suitable metric is to measure model performance against

the user’s custom test data1. Variability in user objectives include assigning increased

importance to specific classes, variability in user tasks (word completion for native

vs. foreign speakers), and requiring privacy/anonymity of class predictions.

We propose a novel federated training approach based on meta-learning, which

allows for sample-efficient customization of a centralized model to suit an end user’s

objectives. That meta-learning approaches are well-suited for our customization sce-

nario is not surprising, and has been leveraged in prior works (Chen et al., 2018;

1As a case in point consider two users, one whose experiences involve wild animals, while the
other is primarily interested in domestic pets.
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Jiang et al., 2019; Fallah et al., 2020b). Indeed, in our setup, each user is associated

with a different task, and our goal, as in meta-learning, is to train a meta-model on

a variety of tasks, such that this model can be rapidly re-purposed to solve new or

existing tasks using only a few training examples.

Challenges. Personalized Federated Learning (PFL) presents two fundamental

challenges. First, each client is associated with a personal task, and tasks across

different clients exhibit significant statistical variability. In the conventional approach,

such as meta-learning or multi-task learning, one leverages data across different tasks

to build initial models (meta-model) that serve as a basis to refine and specialize to the

presented task. However, since FL prohibits data sharing, this approach is no longer

feasible. In this context, (Fallah et al., 2020b) propose to utilize federated averaging

to overcome the no-data-sharing constraint, and utilize model-agnostic meta-learning

(MAML) (Finn et al., 2017) to personalize to a specific user. Nevertheless, it is

well-known that federated averaging performs poorly with statistically heterogeneous

data, and results in significantly biased models in these contexts. To overcome these

drawbacks, (Fallah et al., 2020b) impose statistical constraints on task and dataset

variability across devices, which, in practice, maybe unrealistic.

In contrast, our proposed PFL approach allows for arbitrary variability in user

tasks. To overcome task/dataset biases during meta-training, we propose a novel

federated meta-learning method, which is based on dynamically modifying device

loss functions in each round, so that the resulting meta-model is relatively unbi-

ased towards any user. The proposed dynamic modification of loss is rooted in the

rich theory of distributed optimization (Gabay and Mercier, 1976; Makhdoumi and

Ozdaglar, 2017; Hong et al., 2016; Shamir et al., 2014), where one attempts to solve

a distributed constrained problem through sequentially updated penalty functions.

We focus on deep neural networks, and consider two meta-learning approaches: one
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based on MAML, which requires no additional parameters for customization, and

the other based on ProtoNet (Snell et al., 2017), where the meta-model serves as a

feature representation to train task customized classifiers. While MAML-based PFL

performs well in most cases, ProtoNet-based PFL is particularly effective in cases that

require generalization to new tasks, or cases that require anonymization of class names

across devices. We derive convergence results for our algorithm, which is agnostic to

task heterogeneity across devices in both full- and partial-participation settings. We

also perform extensive experiments to empirically evaluate our method on real world

datasets, and show that our method significantly outperforms prior works.

Contributions

• We propose a new algorithm, PFL, for personalized federated learning and show

its convergence guarantees.

• We propose to extend Proto (Snell et al., 2017) meta adaptation in the person-

alized federated learning setup.

• We perform extensive empirical evaluations of PFL, as well as Proto adaptation

and compare it to the baselines.

• During evaluation, we consider test performance of each user. Based on the

individual end-user needs, we observe performance metrics such as average,

best and worst device performance. We observe that PFL leads to significant

communication savings.

This work is published in (Acar et al., 2021b).

3.1 Related Work

Meta learning. Meta learning is defined as ’learning to learn’ (Thrun and Pratt,

2012). In this concept, the aim of the meta learner is to learn how to learn new tasks.
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This paradigm is motivated from human learning where humans are able to transfer

their experience from previous task instances into new tasks. Thus, meta learning

is thought of as an important step towards future machine learning research (Lake

et al., 2017). We refer to extensive surveys (Vanschoren, 2018; Hospedales et al.,

2022) for a detailed discussion and we discuss closely related work here.

Conceptually, a meta learner learns a new algorithm for every task. There are

many efforts to formulate the meta learning problem. One line of research proposes a

non parametric meta adaptation (Vinyals et al., 2016; Snell et al., 2017). For instance,

prototypical adaptation (Snell et al., 2017) is an extension of the non parametric k

nearest neighbor method, where adaptation is based on the class clusters obtained

using the available training dataset of the task. Another line of research views meta

adaptation as a black box optimization and finds the adaptation based on the state

of the meta learner (Santoro et al., 2016; Mishra et al., 2017; Ravi and Larochelle,

2017). For example, in (Ravi and Larochelle, 2017), the authors propose a meta

algorithm in which the meta adaptation is obtained from the current state of a meta

LSTM. Lastly, there are works in which the adaption is a fixed optimization procedure

and the meta learning problem can be optimized using standard gradient descent

techniques (Finn et al., 2017; Antoniou et al., 2018; Li et al., 2017). The most popular

adaptation is MAML (Finn et al., 2017). In MAML, the meta model is customized

by having one gradient descent update on the available task training data. Different

from standard meta learning, personalized federated learning extends meta learning

to the distributed learning scenario.

Personalized federated learning. We focus on customizing federated learning to-

ward the end user objective, which can be termed federated meta learning (Chen

et al., 2018) or personalized federated learning (Fallah et al., 2020b). This relatively

new concept extends federated learning to the scenario where the server is required
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to find a good meta model in which a simple transformation using device data leads

to a well performing personalized device model. For instance, Per-FedAvg (Fallah

et al., 2020b) is proposed where the MAML meta transformation is used for person-

alization and the server model is optimized with FedAvg. Along the same lines (Jiang

et al., 2019) proposes to use FedAvg, but use SGD with momentum for their updates.

Recently, FedFomo (Zhang et al., 2021a) is proposed where there are n server meta

models. Transmitting n models increases the communication costs of one round. Dif-

ferent from these methods, we propose PFL as a solution that has one server meta

model, significantly reduces communication costs, and unlike FedAvg does not require

strong constraints on statistical heterogeneity.

We further cover some of the new works published after our study. (Oh et al.,

2022) propose a personalized federated learning method where clients share the same

feature extractor and customize the classification layers based on their dataset. (Ma

et al., 2022) develop a method that personalizes aggregation of device models in the

server using one hypernetwork per device. (Achituve et al., 2021) propose to use

Gaussian process for personalization through a common kernel function among the

clients parametrized by a DNN.

3.2 Definition and Method

Our setting consists of one server and m devices. The server can send and receive

models from devices without sharing data instances. In device i, there are Ni data-

points with features x ∈ X and labels y ∈ Y which are drawn from a device specific

distribution (x, y) ∼ pi denoted as Di = {(xj
i , y

j
i )}

Ni
j=1. Each device customizes a

device specific model from the server model using their dataset. This transformation

for device i is modeled as Ti : Rd → Rd where wi = Ti(w) corresponds to the person-

alized model transformed from meta model w for device i. We define our objective
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as,

arg min
w∈Rd

F (w) ≜
1

m

∑
i∈[m]

fi (wi)

 , wi = Ti(w) (OPT)

where w is the parameter set of the NN used, wi is the personalized model for device

i, fi = E{x,y}∼piL ((x, y);w) is the loss obtained at device i and L is the loss function

with respect to one data tuple.

Transformation function. Our objective is a generic objective and depends on the

transformation function denoted as Ti for device i. There are different proposed trans-

formation functions within meta learning area. For example, MAML transformation

(Finn et al., 2017) is introduced as,

Ti(w) = w − η∇f̂i(w)

where η is meta learning rate and f̂i is the empirical loss function of the dateset as

f̂i(w) = 1
Ni

∑Ni

j=1 L
(
(xj

i , y
j
i );w

)
. We can summarize MAML as doing one gradient

descent update to personalize the meta model. Per-FedAvg (Fallah et al., 2020b) ex-

tends MAML transformation to personalized federated learning where it uses MAML

meta transformation with FedAvg optimization (McMahan et al., 2017a).

We propose to use another meta transformation named as prototypical adaptation

(Snell et al., 2017). Prototypical transformation constructs class representations using

the meta model and the data on the device where a representation of a feature x

with respect to model w is defined as rw(x). For each class label k ∈ Y , the class

representation is obtained by averaging the representations of this class instances as,

ci,kw =
1

|Sk
i |
∑
x∈Sk

i

rw(x)

where Sk
i = {(x, y) : y = k, (x, y) ∈ Di} is the set of training data instances that
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are labeled as k in device i. Prototypical transformation is a non parametric adap-

tation and the customized device model labels the test data with the closest class

representation as,

argmin
k∈Y

d
(
ci,kw , rw(x)

)
where w is the meta model, x is a test point and d(., .) is a distance function.

Figure 3·1: Toy example with three devices in a two dimensional
parameter space. Only device 1 is active in the current round. In
(Fallah et al., 2020b) algorithm, the model is pulled towards device
1’s local minima due to the bias discrepancy. The debiasing and the
correct unbiased directions are needed for convergence.

Device Bias in (Fallah et al., 2020b). (Fallah et al., 2020b) adapts MAML

transformation and applies FedAvg algorithm on transformed local objectives. Namely,

in each communication round, the server sends the current server meta model to the

participating devices. Each active device runs SGD updates on the server model us-

ing gradient of the device specific meta loss, ∇fi ◦ Ti where Ti is MAML adaptation.

Then, the device meta model is transmitted to the server and the received models

are averaged.
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Device Bias. As we noted in OPT, we are interested in solving the average meta

loss functions of all devices. However, devices do not have access to the global loss,

they have access to their meta loss function. This leads to a misalignment between

the local meta losses and the global loss, because their optimal solutions are different,

i.e., minw fi ◦Ti(w) ̸= minw F (w). Consequently, local bias exhibited by device meta

losses leads to global convergence issues. To avoid these issues, (Fallah et al., 2020b)

proposes to limit the variability among device meta objectives.

A Toy Example. We visualize device biases for a three device example, where

the loss functions are parameterized in a two dimensional space. Figure 3·1 shows

contour plots of each device meta functions, fi ◦ Ti as well as the global loss, F . The

corresponding optimal meta models are shown with circles. We denote the current

server model with × mark. Consider the case where only device 1 is active in the

current round.

According to (Fallah et al., 2020b), the server sends the current model to device 1.

The model is updated based on the local gradients, ∇f1 ◦T1. As seen in the plot, the

gradient pulls the server model in a different direction of the global minima. This is

an example of the bias discrepancy as such the correct gradient information, shown as

unbiased direction is different from the device gradient information. The discrepancy

forces (Fallah et al., 2020b) to control the distance between device minima and the

global minima for convergence.

We propose the concept of debiasing, where we explicitly debias the local objec-

tives and orient the local loss towards the global objective as shown with red arrows

in the figure 3·1.

Debiasing Local Objectives. We debias the local objective fi ◦ Ti to the first-

order, and introduce a quadratic regularizer. To build intuition, let us consider the
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following local objective,

min
w

fi◦Ti(w)− ⟨∇fi◦Ti(w
∗),w⟩+

α

2
∥w −w∗∥2 (3.1)

where α is a hyperparameter and w∗ is a stationary point of OPT. For a solution, w′,

we can write the first order condition as ∇fi◦Ti(w
′)−∇fi◦Ti(w

∗)+α (w′ −w∗) = 0.

We see that w∗ satisfies the condition. As such the objective is no longer biased

towards the device minima. In particular, ⟨∇fi ◦ Ti(w
∗),w⟩ term debiases the loss

fi ◦ Ti so that the gradient is not necessarily pointed towards the device minima.

However, this is not strictly feasible, since this objective would require that the devices

have access to the optimal solution w∗.

A Feasible Surrogate. We consider the server meta model wt in round communi-

cation t as a surrogate for w∗, which results in the following objective,

min
w

fi ◦ Ti(w)−
〈
∇fi ◦ Ti(w

t),w
〉

+
α

2

∥∥w −wt
∥∥2 .

We note that if the server model converges to a stationary point of OPT, then we

recover the modified objective as in 3.1. Different from the previous objective, devices

can construct the current objective since they receive the server model. However, the

objective does not have the correct direction for the global loss because we observe

that wt is among one of the stationary points of the objective. This freezes the update

so that device models are stuck at the server model. To circumvent this issue, we

consider,

min
w

fi ◦ Ti(w)−
〈
∇fi ◦ Ti(w

t),w
〉

+

〈
1

m

∑
j∈[m]

∇fj◦Tj(w
t),w

〉
+

α

2

∥∥w−wt
∥∥2
(3.2)

where the gradient of the global loss, OPT, appears as a linear term. In Figure 3·1,
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Algorithm 2 Personalized Federated Learning, PFL

Input: T,w1, g1
i = g1 = 0, K, β, α

for t = 1, 2, . . . T do
Sample active device set Pt ⊆ [m] of P devices,
for i ∈ Pt do

Receive wt from server (& gt in PFLScaf),
Rt

i(w)=Regularizer(w,wt, gt
i) (& gt in PFLScaf),

wt+1
i , gt+1

i = Update(wt, K, β,Di,Rt
i)

Send wt+1
i back to server (& gt+1

i in PFLScaf),
end for
Freeze stale devices wt+1

i =wt
i, g

t+1
i =gt

i ∀i /∈ Pt

Server
PFLDyn: wt+1 = Update1

(
{wt+1

i }i∈Pt

)
,

PFLScaf: wt+1, gt+1=Update2
(
{wt+1

i , gt+1
i }i∈Pt

)
.

end for

the direction of these two terms are shown in red arrows where the first linear term

debiases the current loss and the second linear term results in the correct gradient

direction.

Devices can construct the first linear term and the quadratic term with the server

model. However, the second linear term depends on all device losses so that it is

still not feasible. As a surrogate for this term, we transmit the gradient information

of the current server meta model to the server. The server aggregates the gradient

information from all devices and constructs the second term. Finally, devices need

the server to send the average gradient information, 1
m

∑
j∈[m]∇fj ◦ Tj(w

t), along

with the server model. In summary, devices and the server communicates two models

to construct this objective.

An Alternative Surrogate. Instead of using wt model in the linear terms, we can

as well use the recent device models, wt
i, to construct them. Then, the objective in
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Eq. 3.2 becomes,

min
w

fi ◦ Ti(w)−
〈
∇fi ◦ Ti(w

t
i),w

〉
+

〈
1

m

∑
j∈[m]

∇fj◦Tj(w
t
j),w

〉
+
α

2

∥∥w−wt
∥∥2 .
(3.3)

We note that if the device models, wt
is, converge to the stationary point of OPT,

we still recover the proposed the modification as in Eq. 3.1. This seemingly subtle

modification allows the server to transmit only one model instead of two models. This

extension is further discussed in the subsequent section.

PFL Algorithms. We propose to use two recent algorithms as SCAFFOLD

and FedDyn to debias the device level meta optimization.

Learning Structure. The general structure of PFL is given in Algorithm 2. In the

beginning of each communication round, P devices are selected uniformly at random

as active device set Pt. The current server meta model, wt, is sent to each of these

active devices. Devices construct the regularizer depending on the objectives as in

Eq. 3.2 or 3.3 where gt
i corresponds to the gradient of device level meta loss.

We continue device level optimization with a subroutine consisting of SGD steps

and the constructed regularizer as described in Update method in Algorithm 3. First,

we start from the server model wt+1
i,1 = wt. To realize unbiased gradient estimates

between the personalized model and the meta loss, we randomly draw two minibatches

of data (Dk
i , D

k′
i ) from device dataset Di. We obtain a customized device model as

wt+1
i,k = T̃i(w

t+1
i,k , Dk

i ) where the transformation function personalizes the current meta

model wt+1
i,k using the minibatch of Dk

i . Then, we perform one step SGD update on

the regularized empirical loss with respect to the second minibatch as,

wt+1
i,k+1=wt+1

i,k −β
(
∇f̃i(wt+1

i,k , Dk′

i )+∇Rt
i(w

t+1
i,k )

)
where f̃i(w

t+1
i,k , Dk′

i ) is the empirical loss with the customized model wt+1 on minibatch
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Dk′
i and β is the learning rate. After performing K SGD updates, the subroutine ends

and we set the device meta model as wt+1
i = wt+1

i,K+1.

By definition, the regularizer, Rt
i(w), depends on the current server model and

the current gradient information, gt
i. We update the gradient information for the

next round depending on the objective as in Eq. 3.2 or 3.3.

After solving the device level optimization, active devices transmit the trained

model wt+1
i back to the server for aggregation. On the other hand, inactive devices

do not receive the current model and freeze their local gradients and local models to

be their past values. We note that we communicate the local gradient information

along with the trained model if we use the objective in Eq. 3.2.

PFLDyn Algorithm. PFLDyn algorithm is based on the local objective as in Eq.

3.3 which is an extension of FedDyn to personalized federated learning.

The server integrates the global gradient information to the server model as ex-

plained in Update1. Since the server meta model already has the global gradient

information, devices do not need extra tranmsmission of the global gradient and they

construct the regularizer as shown in Regularizer method in Algorithm 3. In PFLDyn,

devices communicate only device models.

PFLScaf Algorithm. Using local objective as in Eq. 3.2, we can get to PFLScaf

algorithm which is an extension of SCAFFOLD to personalized federated learning.

The server obtains the device models and device gradients from the active devices.

It then calculates the global gradient and the server meta model as shown in Update2.

The server meta model and the global gradient are transmitted to the devices. De-

vices correct the biased gradient of the local loss with global gradient information as

described in Regularizer method in Algorithm 3. Different from PFLDyn, PFLScaf

communicates the models as well as gradient information.

Customized Transformations. In passing we point out that our proposed method
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allows for arbitrary transformations at the devices. This is important from the per-

spective that it allows for adaptation to new tasks as well as for scaling complexity

of the customized classifier to the amount of available sample data.

Intuitive Justification. The optimal meta model that solves OPT satisfies the

first order condition as,

∑
i∈[m]

∇fi (w∗
i ) = 0, w∗

i = Ti(w
∗).

It is important to highlight the fact that the gradient of the individual device level

meta objectives are not necessarily 0 .i.e (∇fi(w∗
i ) ̸= 0). Indeed, were this to be

the case, it would imply that fully optimizing device meta models would lead to

device specific biases in the meta-model. PFL proposes to sequentially modify device

empirical risk functions to eliminate such data-specific bias. The fact that this is

possible is justified in the following Proposition 3.2.1.

Proposition 3.2.1 For sufficiently large K, if the device meta models in Algorithm

PFLDyn converge, they converge to the optimal meta model as,

lim
t→∞

wt
i = w∞

i =⇒ w∞
i = w∗ ∀i ∈ [m],

where
∑

i∈[m]∇fi (w∗
i ) = 0, w∗

i = Ti(w
∗).

3.2.1 Analysis of PFL

In this section, we present convergence guarantees for PFLDyn Algorithm for con-

vex and nonconvex cases. Convergence rate analysis of PFLScaf Algorithm is mainly

similar so we omit it here. In this context, we bound the number of communication

rounds required to achieve ϵ error in OPT for convex functions and first-order station-

arity condition for nonconvex functions. For simplicity we assume that the number

of SGD steps, K, is sufficiently large such that, in each round, whenever a device is

active, the solution returned is a stationary point of the operative customized loss at
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that time. In particular, say device, i ∈ Pt ⊂ [m] is active at time t ∈ [T ], then the

operative customized loss is described by f t
i (w) = fi(w) +Rt

i(w) where w = Ti(w),

and in this case we assume that K is sufficiently large to render, ∇f t
i (w

t+1
i )=0. While

this assumption may appear impractical, we note that, uniformly across all of our ex-

periments, for small and large-scale datasets, we found that the norm of ∇f t
i (w

t+1
i )

is negligible relative to the size of w for K ≈ 50. Furthermore, note that our proofs

can be extended, and the resulting bounds suffer an additional variance term, which

approaches zero with K.

Centralized Competitor. The centralized meta model w∗ minimizes OPT with access

to all device datasets. Since Algorithm 2 does not share data among devices, we

characterize its performance with the number of communication rounds required to

achieve ϵ difference relative to performance of centralized learner minimizing OPT,

namely,

E
[
F (wT

Alg)
]
− F (w∗) ≤ ϵ, (3.4)

where wT
Alg is the meta model Algorithm 2 finds after T communication rounds, w∗ is

the optimal meta model and expectation is with respect to randomness due to active

device set at each round (Pt) . While the statement 3.4 is tractable for convex {fi◦Ti}

functions, for nonconvex functions, following convention, we state the convergence as

the number of communication rounds required to achieve a stationary point of OPT

with ϵ error as,

E
∥∥∇F (wT

Alg

)∥∥2 ≤ ϵ. (3.5)

Based on convex and nonconvex convergence objectives, we state our theorem as,

Theorem 2 For a suitably chosen α ∈ R, PFLDyn Algorithm, for sufficiently large

K, returns an expected error less than ϵ in T communication rounds as,
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• Convex and L smooth {fi ◦ Ti}i∈[m] functions,

T = O

(
1

ϵ

√
m

P

(
LD +

1

L
G

))
,

• Nonconvex and L smooth {fi ◦ Ti}i∈[m] functions,

T = O

(
1

ϵ

(
L
m

P
∆1 + L2∆2

))
,

where D = ∥w1 −w∗∥2, w∗=argmin
w

F (w), G= 1
m

∑
i∈[m] ∥∇fi (w∗

i ) ∥2,
w∗

i = Ti(w
∗), ∆1=F (w1)− F (w∗), ∆2=

1
m

∑
i∈[m] ∥w1

i −w1∥2.
The expected error is defined as in Eq. 3.4 and in Eq. 3.5 for convex and nonvonex

functions respectively. The expectation is over the randomness of device participation.

Theorem 2 shows that with sufficient number of iterations, Algorithm 2 reaches

to an expected ϵ error for convex and nonconvex device level meta function as in

relations Eq. 3.4 and 3.5 respectively. We see the number of communication rounds

to achieve expected ϵ error scales with 1
ϵ

for both convex and nonconvex settings. We

present results for strongly convex functions in the supplementary section.

3.3 Experiments

Our goal in this section is to tabulate the performance of PFL and its variants against

the state-of-art algorithms on benchmark datasets. We sample device data to synthe-

size various degrees of statistical data heterogeneity and task diversity among devices.

We then report performance and tabulate our results against several metrics includ-

ing oracle performance (centralized data), average customization performance, best

and worst device customization. For each of these, we report the number of model

transmissions required by PFL to achieve target accuracy of the competitor.

Methods. We evaluate PFL variants, namely, PFLDyn (Proto) and PFLScaf

(Proto) that use Proto adaptation; PFLDyn (MAML) and PFLScaf (MAML) that
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use MAML adaptation and personalized FedAvg (Proto) that uses proto adaptation,

P-Avg (Proto). We compare our methods to PerFedAvg (Fallah et al., 2020b) as well

as their agnostic (no personalization) counterparts: FedAvg and no PFL variants.

Observe that prior works in this context (Chen et al., 2018; Jiang et al., 2019) are

essentially those that appear in (Fallah et al., 2020b), and for this reason we present

(Fallah et al., 2020b)’s method and the vanilla FedAvg.

We first start with a summary datasets and models used in this section and we

refer to Appendix A.1.4 for details of the empirical setup. We then continue how we

construct diverse device datasets that reflects heterogeneity among devices. Then,

we explain the metrics and measures we use to compare the methods. Finally, we

present our findings.

Table 3.1: The number of model transmissions relative to one round of
(Fallah et al., 2020b) required to reach the target test accuracy for the
average level personalization performance in the Active Class Induced
Diversity (ACID) scenario. Target accuracies are selected among the
highest accuracy of our methods and the highest accuracy of (Fallah
et al., 2020b). The methods without personalization are omitted due
to their poor performance levels. The best method is highlighted and
the gain with respect to (Fallah et al., 2020b) method is shown.

Dataset Accuracy (Fallah et al., 2020b)
PFLDyn PFLDyn PFLScaf PFLScaf P-Avg

Gain
(Proto) (MAML) (Proto) (MAML) (Proto)

3 Classes per Device

CIFAR-10
92.2 >1000 211 455 618 >1000 797 >4.7×
91.6 815 152 242 514 >1000 334 5.4×

CIFAR-100
90.6 >1000 186 376 480 >1000 838 >5.4×
89.1 961 133 255 328 >1000 383 7.2×

5 Classes per Device

CIFAR-10
88.8 >1000 221 392 666 >1000 783 >4.5×
87.6 794 163 237 436 924 286 4.9×

CIFAR-100
86.5 860 185 223 478 >1000 >1000 4.6×
86.3 718 179 203 466 >1000 954 4.0×

7 Classes per Device

CIFAR-10
86.9 >1000 202 235 622 >1000 843 >5.0×
85.8 925 155 177 452 734 365 6.0×

CIFAR-100
83.0 >1000 200 224 528 >1000 976 >5.0×
82.7 998 186 207 494 >1000 772 5.4×
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Datasets & Models. We use popular datasets with standard train/test splits

such as CIFAR-10, CIFAR-100 (Krizhevsky, 2009). As models, we use a CNN archi-

tecture that has two convolutional layers with two max pooling layers followed by two

fully connected layers and a final softmax layer. We implement methods in PyTorch

framework (Paszke et al., 2019) and use Higer library (Grefenstette et al., 2019) for

MAML adaptation.

Diverse FL datasets. Since heterogeneous device data distribution is a key

challenge in customized federated learning, we perform our experiments with highly

heterogeneous device settings. Following (Fallah et al., 2020b), we model task and

data heterogeneity level of a federated setting in terms of distributional distance be-

tween device dataset joint distributions pi(x, y) such as total variation (TV) distance.

We propose two different ways of inducing divergent task dataset constructions across

devices.

Active Class Induced Diversity (ACID). In this setting, we first assign a fixed sized

class list to each device in which the size of the class list is small. After selecting

the classes, train/test data of each device is randomly constructed from the actual

train/test data splits without replacement according to the class lists. For instance,

in CIFAR-100 dataset, we investigate a setting with 100 devices where we fix the

number of classes in each device to be 5. Since there are overall 100 classes and we

limit number of classes for each device to 5, we have many devices where each of them

have strictly different classes. This results in large TV distance across devices since

there is minimal class overlap. We also experiment with increasing and decreasing

the number of classes per device, and these experiments point to how PFL handles

different levels of task diversity.

Anonymous Label Induced Diversity (ALID). Similar to ACID, we again choose a

fixed number of classes for each device and construct device datasets. For each device,
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we then randomly permute class indices, so that a class index in one device has no

relationship with another device. Clearly the TV distance even when each device has

all of the classes is large in this situation. Our motivation for this study stems from

practical privacy concerns in federated learning, where devices may not wish to reveal

class information but would still want to benefit from federated training.

Performance metrics. PFL minimizes the average performance (Eq. OPT) of

the personalized models among devices.

Pointwise Metric. While average performance is important, an end-user is inter-

ested on her own dataset. It is important to tabulate pointwise device performance.

For this reason we also report the best and worst performing devices.

Relative Target Accuracy. We compare our methods against competing methods

in terms of the required number of transmitted models relative to one communica-

tion round of (Fallah et al., 2020b). This is equal to the number of communication

rounds for all methods except PFLScaf variants. PFLScaf variants communicate two

models in each communication round, so we report 2× of the communication rounds

for PFLScaf variants. In all cases since one of the PFL variants dominates our com-

petitors, we report the ratio of the number of transmitted models required between

our method and the baseline as a measure of gain. If a method can not reach to the

target in the allowed rounds, we mark the number with > sign.

Oracle Accuracy. In Section 3.2.1 we derived convergence guarantees with respect

to an oracle that has centralized data access and optimizes Eq. OPT accordingly. In

this measure, we report the number of communication rounds required to get close

to the target accuracy of an oracle.

Partial Participation. Following federated learning settings, we tested the methods

with 100 devices where 10% of them are active at each round. For CIFAR-10 and

CIFAR-100, we considered both ACID and ALID with 3, 5 and 7 classes per device
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schemes. We refer to Appendix A.1.4 for additional experimental details.

Analysis and Discussions. Table 3.1 shows the gain compared to (Fallah et al.,

2020b) method for various settings of 3, 5 and 7 classes per devices for both datasets

in the ACID setting. Similarly, Table 3.2 demonstrates the device performances for

the ALID scenario. The convergence curves as well as the lowest and the highest level

personalization results are given Appendix A.1.4.

Table 3.2: The number of model transmissions relative to one round of
(Fallah et al., 2020b) required to reach the target test accuracy for the
average level personalization performance in the Anonymous Label In-
duced Diversity (ALID) scenario. Target accuracies are selected among
the highest accuracy of our methods and the highest accuracy of (Fal-
lah et al., 2020b). The methods without personalization are omitted
due to their poor performance levels. The best method is highlighted
and gain with respect to (Fallah et al., 2020b) method is shown.

Dataset Accuracy (Fallah et al., 2020b)
PFLDyn PFLDyn PFLScaf PFLScaf P-Avg

Gain
(Proto) (MAML) (Proto) (MAML) (Proto)

3 Classes per Device

CIFAR-10
90.1 >1000 109 970 290 >1000 169 >9.2×
87.9 792 73 323 184 520 95 10.8×

CIFAR-100
89.8 >1000 156 849 406 >1000 390 >6.4×
83.7 985 53 229 118 656 83 18.6×

5 Classes per Device

CIFAR-10
87.5 >1000 161 846 452 >1000 341 >6.2×
79.6 514 54 88 126 296 64 9.5×

CIFAR-100
83.9 >1000 203 520 296 >1000 233 >4.9×
78.7 983 100 177 146 680 87 11.3×

7 Classes per Device

CIFAR-10
86.7 >1000 224 911 574 >1000 455 >4.5×
76.3 966 57 86 120 292 59 16.9×

CIFAR-100
77.5 >1000 158 568 228 >1000 170 >6.3×
68.3 960 58 151 82 432 58 16.6×

Personalization is needed in both ACID and ALID scenarios. As seen in Figure

A·16 and A·17, no personalization baselines converge to substantially lower average

test accuracy in the ACID scenario. Furthermore, these methods predict the classes

randomly in the ALID scenario due to the label anonymity, which in turn indicates the

need of personalization. Thus, the results of PFL and FedAvg without personalization
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are not tabulated in tables due to their non-comparable performance.

PFLDyn (Proto) leads to significant savings in both ACID and ALID scenarios.

We observe that PFLDyn using Proto adaptation reaches the target accuracy faster

than all the other methods on the average device performance metric in Table 3.1

and 3.2. For instance, in CIFAR-10, ACID 7 classes per device setting, PFLDyn

(Proto) leads to more than 5× communication savings to achieve the same level of

performance compared to (Fallah et al., 2020b) method. This effect is also seen

in Figure A·14 where PFLDyn (Proto) converges faster and to a higher point than

(Fallah et al., 2020b).

PFL based optimization outperforms FedAvg based optimization regardless of adap-

tion function (MAML or Proto). As shown in Table 3.1 and 3.2, the PFL based

methods converge to the target accuracy with fewer number of model transmissions

in nearly all the experiments. As seen in Figure A·14 and A·15, PFL methods achieve

a higher test accuracy compared to (Fallah et al., 2020b). We can infer that PFL is

capable of debiasing meta-model updates at the server allowing for superior device

personalization. Thus, PFL leads to a faster and robust convergence than FedAvg

regardless of the adaption function.

PFL improves the performance of the lowest level personalization. In addition to

the average test accuracy among all devices, PFL based methods converges faster than

(Fallah et al., 2020b) even for the lowest level performing devices in both ACID and

ALID scenarios as shown in Table A.5 and A.6. PFL improves the performance by

finding a better meta model for personalization among all devices. In particularly, the

savings of PFL on the average device performance doesn’t sacrifice the performance

of a subset of devices.

PFL achieves centralized performance. The centralized performance for CIFAR-

10, 5 classes per device ACID and ALID using Proto adaptation is 89.8% and 90%
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respectively. Based on Table 3.1 and 3.2 we see that PFLDyn (Proto) achieves near

the centralized performance around 300 communication rounds. Similarly, the cen-

tralized performance for CIFAR-100, 5 classes per device ACID setting using Proto

adaptation is 89.7% . PFLDyn (Proto) achieves near centralized performance within

400 communication rounds without actually sharing device data.

Proto adaptation is robust to label anonymity. The Proto-based adaptation demon-

strates similar convergence performance in the ALID scenario with anonymous labels

compared to the ACID scenario. In contrast, the performance of the MAML-based

adaption (PFLDyn, PFLScaf and (Fallah et al., 2020b)) degrades significantly in the

ALID scenario. According to Figure A·14 and A·15, the convergence curves of meth-

ods using the Proto adaption are similar in the ACID and ALID scenarios. However,

the MAML-based methods converge to significantly lower average test accuracy. In

addition, the same observation can be found in Table 3.1 and 3.2. For instance,

in the CIFAR-10 5 classes setting, the Proto-based models (PFLDyn, PFLScaf and

P-Avg) require 161, 452 and 341 communication rounds respectively to achieve the

average test accuracy 87.5% in the ALID scenario, while similarly require 163, 436

and 286 rounds to achieve 87.6% in the ACID scenario. But (Fallah et al., 2020b)

can no longer achieve such an accuracy level within 1000 rounds in the ALID scenario

as in the ACID scenario. Thus, the Proto-based adaption is more robust than the

MAML-based adaption in more strictly privacy-preserving scenario when the labels

are anonymous among devices.
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Algorithm 3 PFL Subroutines

function Regularizer(w,wt, gt
i) (& gt in PFLScaf):

PFLDyn: Rt
i(w) = −⟨w, gt

i⟩+ α
2
∥w −wt∥2,

PFLScaf: Rt
i(w) = ⟨w,−gt

i + gt⟩,
Return Rt

i(w)
end function
function Update(wt, K, β,Di,Rt

i):
Set wt+1

i,1 = wt,
fork = 1, 2, . . . K do

Get two minibatches Dk
i , D

k′
i randomly from Di,

Set customized model wt+1
i,k = T̃i(w

t+1
i,k , Dk

i ),
Update meta model

wt+1
i,k+1=wt+1

i,k −β
(
∇f̃i(wt+1

i,k , Dk′
i )+∇Rt

i(w
t+1
i,k )

)
end for
Set wt+1

i = wt+1
i,K+1,

PFLDyn:gt+1
i =gt

i−α
(
wt+1

i −wt
)
≈∇fi◦Ti(w

t+1
i ),

PFLScaf:gt+1
i =gt

i−gt− 1
Kβ

(
wt+1

i −wt
)
≈∇fi◦Ti(w

t),

Return wt+1
i , gt+1

i

end function
function Update1

(
{wt+1

i }i∈Pt

)
:

gt+1 = gt − α 1
m

(∑
i∈Pt

wt+1
i −wt

)
,

wt+1 =
(

1
|Pt|
∑

i∈Pt
wt+1

i

)
− 1

α
gt+1

Return wt+1

end function
function Update2

(
{wt+1

i , gt+1
i }i∈Pt

)
:

gt+1 = gt + 1
m

(∑
i∈Pt

gt+1
i − gt

i

)
,

wt+1 =
(

1
|Pt|
∑

i∈Pt
wt+1

i

)
Return wt+1, gt+1

end function
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Chapter 4

Federated Learning in Heterogeneous

Networks

This chapter targets a more practical FL problem where users support different model

architectures based on the device’s capacity. For instance, consider a FL setting

with many cellphone users where we want to distributively train a model on all

user data (McMahan et al., 2017b). Some users might have the latest release of a

cellphone whereas the rest use old versions. The users with the latest releases would

prefer a different, potentially more complex, model than the user with old cellphones.

Conventional FL as in (McMahan et al., 2017a) fails in this case because devices have

different model architectures.

We investigate the above practical FL problem where we allow devices to have

different architectures based on their capacities. We propose FedHeN that modifies

device training by introducing a novel side objective to the devices with complex

models. The side objective allows FedHeN to jointly train complex and simple archi-

tectures.

We test our method in real-world datasets of CIFAR10 and CIFAR100 and com-

pare it to a naive baseline and the current state-of-the-art method. We show that

FedHeN achieves significant communication savings as well as better performance

compared to the competitors.

Contributions

• We present FedHeN to jointly train a server model with different architectures
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based on device capacities.

• We empirically show that FedHeN achieves significant communication savings

compared to the baselines.

This work is presented in (Acar and Saligrama, 2022).

4.1 Related Work

HeteroFL (Diao et al., 2021) introduces FL with heterogeneous networks problem.

HeteroFL considers a setting where simple architecture is mapped to a subset of the

complex architecture. The server constructs new models by averaging model weights

of all devices based on the mapping. Different from HeteroFL, FedHeN introduces

novel side objectives for complex device training.

Early Exit. Due to their size, big DNNs consume more energy and they are slow

to operate. (Hubara et al., 2016; Yang et al., 2019) propose to quantize/binarize

the weights of DNNs to improve memory and computation costs. (Bolukbasi et al.,

2017) propose to train a big DNN so that the network adaptively early exits in

’easy’ examples to decrease inference costs. (Kaya et al., 2019) propose to add a side

objective on DNN to prevent ’overthinking’ of DNNs for easy examples. Different

from these works, we are interested in FL. FedHeN introduces side objectives to

jointly train models in FL with different architectures.

We further cover some of the new works published after our study. (Kim et al.,

2023) propose a depth-based simple-complex architecture differentiation and use a

self-distillation loss to improve local training further. (Jiang et al., 2023) employ an

adaptive model pruning strategy where devices train models based on their capacities.

(Zhong et al., 2022) propose the Semi-HFL method, using semi-supervised techniques

and an early exit strategy.
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Algorithm 4 FL in Heterogeneous Networks - FedHeN

1: Input: T , E, η, N, {Di}i∈[N ], initial models w1
s,w

1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N ],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTrainingSideObj (wt
c,Dj, E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from all active devices,

18: wt+1
s = 1

|Z|

(∑
i∈Zs

wt+1
s,i +

∑
j∈Zc

[
wt+1

c,j

]
M

)
19: Set wt+1

c ’s sub-net as the updated simple model,
20: [wt+1

c ]M = wt+1
s

21: Set rest of the wt+1
c using complex active devices,

22: [wt+1
c ]M′ = 1

|Z|c

∑
j∈Zc

[
wt+1

c,j

]
M′

23: end for

4.2 Definition and Method

FL setting consists of one server node and N device nodes. Each device i has

a different dataset Di. Let fi : W → R be the loss of using a model on device i’s

dataset. FL solves,

min
w∈W

1

N

∑
i∈[N ]

fi (w)

where w is the NN parameters.

Different from the conventional FL, we are interested in having different architec-

tures in devices. For simplicity, consider a setting where we have a simple architecture,
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Algorithm 5 FedHeN Device Optimizations

1: function ClientTraining (ws,Di, E, η):
2: Start from wi=ws, train E epochs,
3: for E epochs, batch B ⊂ Di do
4: Compute batch gradient, ∇̂fi(wi),
5: Update, wi ← wi − η∇̂fi(wi),
6: Return trained model wi

7: end function
8: function ClientTrainingSideObj (wc,Dj, E, η):
9: Start from wj=wc, train E epochs with side obj.,
10: for E epochs, batch B ⊂ Dj do
11: Compute batch gradient along with side obj.,
12: ∇̂fj(wj), ∇̂fj

(
[wj]M

)
,

13: Update, wj←wj−η
(
∇̂fj(wj)+∇̂fj

(
[wj]M

))
,

14: Return trained model wj

15: end function

ws ∈ Ws, and a complex architecture wc ∈ Wc. Let S ⊂ [N ] and C = [N ]−S be the

devices that have simple and complex architectures respectively. We reformulate our

problem as,

min
ws∈Ws
wc∈Wc

1

|S|
∑
i∈S

fi (ws) +
1

|C|
∑
j∈C

fj (wc)

such that R(ws,wc) = 0 (4.1)

whereR(ws,wc) captures the relationship between simple and complex architectures.

We note that Eq. 4.1 is an ERM objective. If there is no condition (noR(ws,wc) =

0 constraint), one could minimize the objective by separating complex and simple

losses. However, we are not interested in training data, we would like to train models

that perform well on test data. Hence, we introduce R(ws,wc) as a way of regular-

izing the models.

To relate simple and complex architectures, we assume,

Assumption 1 Simple architecture is a sub-network of the complex architecture.

There exists a set of indices,M, of complex architecture such thatWs = {[wc]M |wc ∈
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Table 4.1: IID split, 50 simple and 50 complex devices, 10% partici-
pation rate. The number of communication rounds required to achieve
the target test performance for different methods. The gain in using
FedHeN compared to best baseline method is given.

Dataset Accuracy FedHeN Decouple NoSide Gain

Simple Model

CIFAR-10
84.4 289 943 805 2.8×
83.4 249 731 669 2.7×

CIFAR-100
46.4 296 864 984 2.9×
45.4 250 588 807 2.4×

Complex Model

CIFAR-10
88.5 649 991 941 1.4×
87.5 456 739 669 1.5×

CIFAR-100
46.8 468 963 614 1.3×
45.8 376 752 472 1.3×

Wc} where [wc]M selects the weights of wc based on the index setM.

We encourage weight sharing between simple architecture and the corresponding

sub-network of the complex architecture as in Assumption 1. We let R(ws,wc) =

∥ws − [wc]M ∥2.

To further regularize models, we add a side objective to the complex device train-

ing. Complex devices minimize their losses along with the corresponding sub-network

of simple architecture as,

min
ws∈Ws
wc∈Wc

1

|S|
∑
i∈S

fi (ws)+
1

|C|

(∑
j∈C

fj (wc) +fj ([wc]M)

)

such that R(ws,wc) = 0 (4.2)

We would like highlight some properties of Eq. 4.2,

• Simple architecture is trained on all datapoints instead of on the datapoints

only from the simple devices. Hence, the generalization of simple architecture
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is improved.

• R(ws,wc) correlates simple and complex architecture. A better simple model

leads to a better complex model through R(ws,wc) = 0 condition.

FedHeN Algorithm. FedHeN solves Eq. 4.2 with the steps summarized in

Algorithm 4.

In each round, a random subset of devices become active, Z. We divide set Z

into simple active and complex active device sets as Zs and Zc respectively.

Simple active devices receive the server simple model, wt
s. We compute a local

model wt+1
s,i by starting from wt

s and training it for E epochs on local dataset Di

displayed as ’ClientTraining’ method (Alg. 5). The trained model is transmitted

back to the server.

Complex active devices receive the server complex model, wt
c. We train a local

model starting from wt
c and training it for E epochs using their local dataset, Dj

with gradients of the complex and the simple model shown as ’ClientTrainingSideObj’

method (Alg. 5). Namely, we update the model with summation of batch gradient

of complex model, ∇̂fj(wj), and batch gradient of the corresponding sub-network

(simple) model, ∇̂fj
(
[wj]M

)
. The trained model is transmitted back to the server.

The server collects models from participating devices. The server simple model

is constructed by averaging weights from all active devices, .i.e the simple devices

{wt+1
s,i }i∈Zs as well as the common sub-net of the complex devices

{[
wt+1

c,j

]
M

}
j∈Zc

,

ln. 18 in Alg. 4. The common sub-network of the server complex model is set equal

to the constructed server simple model, ln. 20 in Alg. 4. Finally, the rest of the server

complex model is constructed by averaging the corresponding weights of the active

complex models, .i.e
{[

wt+1
c,j

]
M′

}
j∈Zc

whereM′ corresponds to the sub-network that

is not common with the simple architecture, ln. 22 in Alg. 4.

This completes one round of training of FedHeN. We iterate the same process for
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Table 4.2: Non-IID split, 50 simple and 50 complex devices, 10%
participation rate. The number of communication rounds required to
achieve the target test performance for different methods. The gain in
using FedHeN compared to best baseline method is given.

Dataset Accuracy FedHeN Decouple NoSide Gain

Simple Model

CIFAR-10
79.4 295 986 810 2.7×
78.4 256 816 676 2.6×

CIFAR-100
43.8 278 978 914 3.3×
42.8 239 813 762 3.2×

Complex Model

CIFAR-10
84.2 596 1000 857 1.4×
83.2 519 887 751 1.4×

CIFAR-100
44.8 450 997 498 1.1×
43.8 372 754 456 1.2×

T communication rounds.

Cost of side objective. In passing, we note that side objective adds minimal

cost to the complex devices. Firstly, it is a light weight operation. Complex devices

calculate gradients of the full model, wc. Calculating the gradient with respect to the

simple model, ws, requires less computation. Secondly, the main energy consumption

occurs during transmission of models (Halgamuge et al., 2009).

4.3 Experiments

In this section, we compare FedHeN method to baselines in real-world dataset settings.

We refer to Appendix A.1.3 for a description of the hyperparameters.

FL dataset. We test our method using CIFAR-10 and CIFAR-10 (Krizhevsky,

2009). We split the datasets into 100 clients and randomly activate 10 clients in each

round. We consider both IID and non-IID splits in our experiments. IID split is

constructed by randomly partitioning data into clients. Non-IID split is constructed

using a Dirichlet prior on the labels as in (Yurochkin et al., 2019).



61

(a) (b)

Figure 4·1: Test accuracy vs. communication rounds on CIFAR-10
IID split. a: Simple, b: Complex.

We assume the first 50 devices have simple architecture and the last 50 devices

have complex architecture in all experiments.

Models. We use PreActResNet181 (He et al., 2016b) for the complex architecture.

PreActResNet18 has 4 residual blocks and total of 11.1M parameters.

If we centralize all client datapoints, the complex architecture gets 93% and 73.5%

performance for CIFAR-10 and CIFAR-100 datasets respectively. If we centralize half

of the datapoints as in 50 devices, the complex architecture gets 90.5% and 62.6%

performance for CIFAR-10 and CIFAR-100 datasets respectively.

As a simple architecture, we consider the first 2 residual blocks of PreActRes-

Net18. Then, we add a mix pooling layer (Lee et al., 2016) that learns a weighted

combination of avg pooling and max pooling layers as in (Kaya et al., 2019). The

simple architecture has overall 0.7M parameters.

If we centralize all client datapoints, the simple architecture gets 86% and 63.2%

1BatchNorm layers store data statistics which results in privacy leakage. We use GroupNorm
layers (Wu and He, 2018) instead in all ResNet models.
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performance for CIFAR-10 and CIFAR-100 datasets respectively. If we centralize half

of the datapoints as in 50 devices, simple model gets 84.5%, 55.7% performance for

CIFAR-10 and CIFAR-100 respectively.

Methods. We compare FedHeN to two baselines as,

• Naive Decouple. Decouple minimizes Eq. 4.1 without any R(ws,wc) = 0

constraint. It decouples complex and simple device training. It separately

trains a complex and a simple model using FedAvg. Decouple is summarized

in Algorithm 8.

• NoSide2 (Diao et al., 2021). NoSide is motivated from HeteroFL (Diao et al.,

2021). It minimizes Eq. 4.1 with the same R(ws,wc) as FedHeN. The key

difference is that it does not use side objective in the complex architecture

training. NoSide is summarized in Algorithm 9.

Evaluation Metric. We fix a target test accuracy for server simple and server

complex models. We compare the number of communications rounds to achieve the

target test accuracy for all methods.

Results. Table 4.1 & 4.2 show the number of communication rounds to get target

accuracies in all methods. We highlight the gain of using FedHeN compared to the

best competitor in the last column. We present convergence curves vs. communication

rounds in Figure 4·1, A·18 & A·19 (Appendix A.1.3).

FedHeN leads to significant communication savings. We observe that FedHeN

trains better models uniformly in all the experiments shown in the gain columns of

Table 4.1 & 4.2. For instance, the same simple performance of 43.8% is obtained

using 3.3× less communication with FedHeN in CIFAR-100 non-IID setting. The

2HeteroFL is proposed in a setting where simple model is obtained by shrinking CNN channels
of the complex model different from our setting. Except from the simple model definition, HeteroFL
uses the same R(ws,wc) as FedHeN and it does not add side objective. We name HeteroFL in our
setting as NoSide.
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communication savings ranges from 1.1× to 3.3× in our experiments.

Decouple vs NoSide. Decouple is a naive algorithm. However, it performs close

to NoSide algorithm in CIFAR-10 IID and non-IID settings as shown in Figure 4·1

& A·18. For instance, the same test accuracy for complex model is achieved in 991

and 941 rounds for Decouple and NoSide models in CIFAR-10 IID setting as shown

in Table 4.1.

Simple model in FedHeN achieves similar to centralized accuracy. FedHeN achieves

better simple performance because simple architecture is trained on all datapoints due

to the side objective in complex devices. Moreover, weight sharing between complex

and simple architecture improves simple model’s generalization. For instance, Fed-

HeN’s simple model in CIFAR-10 achieves 88.6% test accuracy in IID split within

1000 communication rounds as shown in Figure 4·1 which is higher than the central-

ized accuracy of simple model. Differently, NoSide and Decouple gets worse simple

performance compared to FedHeN and the centralized model as shown in Figure 4·1,

A·18 & A·19.

Complex model in FedHeN achieves better performance compared to competitors.

Training with side objective improves complex model performance in FedHeN. For

instance, in CIFAR-10 IID setting, FedHeN’s complex model achieves 89.6% test

performance within 1000 communication rounds which is >1% better compared to

the competitors. This is also reflected in the gain values. FedHeN leads to 1.5×

communication savings for complex model.
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Chapter 5

Memory Efficient Online Meta-Learning

In this chapter, we develop a novel method for online meta-learning overcoming draw-

backs of (Finn et al., 2019). Like (Finn et al., 2019) we focus on training deep neural

network models, and consider the setting where task instances are revealed to the

learner episodically. We also attempt to train the model’s initial parameters so that,

on any new task, the model parameters can be rapidly adapted with a small amount

of data by means of gradient descent. Subsequently, the learner then updates its

underlying task-agnostic parameters based on solving the new task.

Linear Memory Scaling. (Finn et al., 2019)’s follow-the-meta-learner (FTML) lever-

ages the well-known follow the regularized leader (FTRL) method in online learning.

While learning task-agnostic model parameters (meta-learning step), FTML recalls

all task instances that have heretofore appeared. This is undesirable and impractical,

and as such leads to linear increase in memory with the number of observed tasks.

One option is to update the meta model only using the current task, but this leads

to significant current task bias. Another possibility is to leverage an online gradi-

ent descent (OGD) algorithm, based on linearization of loss-functions for prior tasks,

but the linearization would be around stale model parameters associated with the

previous tasks. While practical, empirically these options do not lead to meaningful

meta-learning performance.

Memory Efficient Online Meta-Learning (MOML). To overcome memory scaling, we

introduce a fixed-size state-vector, which is dynamically updated after completion
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of an episodic task. The state-vector, which serves the purpose of encoding past

task experiences, parameterizes the regularizer penalty for next episode. As a result,

model parameters retain prior task experience, and utilize this experience to solve

new tasks. Our MOML scheme is not only memory efficient, but is more effective

than FTML. We compare MOML with FTML on current tasks as well as past tasks

(to evaluate catastrophic forgetting), and show that MOML dominates FTML on

several benchmark datasets. We also analyze MOML theoretically and show that for

T tasks, we achieve sub-linear O(
√
T ) regret on convex losses, and O(

√
T ) local regret

for non-convex loss functions.

Contributions

• We present, MOML, a new family of online learning algorithms that do not

explicitly store loss functions from previous rounds.

• We show that MOML has O
(√

T
)

regret guarantees,

• We empirically show that MOML achieves significantly improved memory foot-

print with no perceptible degradation in performance over existing baselines.

This work is published in (Acar et al., 2021c).

5.1 Related Work

Online learning. In vanilla online learning (Shalev-Shwartz, 2007), (possible adversar-

ial) loss functions are sequentially revealed and the learner is trained as well as tested

at each round. The agent aims to minimize cummulative regret that measures how

well the algorithm performs compared to the best possible fixed model in hindsight.

Online learning is a well established field and we refer to extensive studies for more

information (Hazan, 2019; Shalev-Shwartz, 2012). Online gradient descent (OGD)

(Zinkevich, 2003) proposes to take a gradient descent step in each round using the
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current loss. Follow the Regularized Learner (FTRL) (Abernethy et al., 2008) min-

imizes a regularized version of all seen loss functions. Different from meta learning,

the learner is expected to minimize the loss functions, and does not leverage insights

from past experiences. In contrast, our focus is on online meta learning problem

where the agent is expected to meta learn the revealed task instances.

Continual learning, (a.k.a lifelong learning) (Thrun and Pratt, 2012) is related to

online learning, with particular focus on catastrophic forgetting. In this context, the

agent is expected to do well on the seen tasks as well as efficiently learn new task

instances (Chen and Liu, 2018). For instance, Learn-to-Grow framework (Li et al.,

2019b) avoids forgetting previous tasks by expanding the network architecture of the

learner with upcoming tasks. Variational continual learning (Nguyen et al., 2018) is a

method using variational inference on a set which has representative datapoints from

the seen tasks. In contrast, our goal is to reduce the memory footprint, by allowing

for the learner to delete all data instances for past tasks. Additionally, our goal is to

derive regret guarantees as in online learning.

Online meta learning (Finn et al., 2019) proposes to fuse meta learning with online

learning. In online meta learning, an agent is expected to meta learn tasks where the

tasks are sequentially revealed. Prior works have proposed to leverage OGD and

FTRL to the online meta learning problem (Zhuang et al., 2020; Finn et al., 2017).

In the FTML (Finn et al., 2019) approach the goal is to learn initializations of model

parameters (meta-model) so as to allow for quick adaptation to all of the previously

viewed task instances based on taking a few gradient steps from the meta-model. For

this reason, FTML must store data from all seen tasks to update its meta model.

This means that the memory complexity of FTML linearly grows as new tasks arrive

which is impractical. We propose a memory efficient approach, which does not require

storing past past instances.
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Subsequent works such as OSML (Yao et al., 2020) and FTML-VS (Yu et al.,

2020) propose extensions to FTML. OSML is a pipeline that has multiple so called

meta blocks to facilitate the learning of new tasks. FTML-VS aims to decrease the

number of datapoints used during meta training as tasks arrive. Nevertheless, these

methods still require storing datapoints for all seen tasks. Different from these works,

our goal is to bypass storing datapoints corresponding to seen tasks.

We further cover some of the new works published after our study. (Ho et al., 2023)

propose a dynamic-prototype memory replay method, PMR, to decrease memory

complexity by storing a few examples of seen tasks. (VS et al., 2022) consider an

object detection online meta-learning problem and focus on empirical performance

using unsupervised domain adaptation methods. (Zhang et al., 2021b) propose a

Bayesian approach where meta-parameters are constructed using Gaussian mixture

models.

5.2 Definition and Method

The learner’s goal is to train a meta model, chosen from a parameterized model with

parameters w ∈ Rd for the setting where new task instances are sequentially revealed

at each round. Each task has a specific joint distribution denoted as Pt in which task

features x ∈ X and the corresponding labels y ∈ Y are drawn from it (x, y) ∼ Pt.

The agent has access to a limited supervised dataset Dt = {(xi
t, y

i
t)}Nt

i=1 for each task

in order to obtain a task specific model. We define task loss as the expected loss with

respect to Pt as f t(w) = E{x,y}∼PtL ((x, y);w) where L is the loss function that the

model incurs on the data tuple (x, y). Our objective is to get a sublinear rate of the

following regret statement,

RT =
T∑
t=1

f t ◦ U t(wt)− min
w∈Rd

T∑
t=1

f t ◦ U t(w) (5.1)
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where U t is the meta adaptation function that transforms the meta model into a task

specific model using the limited supervised dataset Dt and the agent is compared

against the best fixed meta learner that has access to all loss functions {f t}Tt=1 in

hindsight.

Adaptation function. The regret statement depends on the transformation func-

tion U t for task t. There are many transformations proposed in meta learning field to

obtain a task specific model out of the meta model. In this work, we focus on MAML

(Finn et al., 2017) adaptation. MAML transformation is proposed as,

U t(w) = w − η
1

|Dt|
∑

(x,y)∈Dt

∇L ((x, y);w)

and corresponds to updating the meta model with a step gradient descent using a

meta learning rate η.

MOML Intuition. Before describing the algorithm, we build intuition for our

solution by considering two conventional online learning algorithms: FTRL and OGD.

Let us assume that we have {ℓt}Tt=1 losses in an online setting.

FTRL Algorithm. FTRL updates its model using all seen losses and a regularizer,

namely,

wt+1 = argmin
w

µ

2
∥w∥2 +

t∑
i=1

ℓi(w), (5.2)

where µ is the coefficient on the quadratic regularizer. FTRL must store the history

of all the past observed loss functions. Since the optimal competitor minimizes the

sum of these losses (i.e.
∑T

t=1 ℓ
t(w)), we can view FTRL, with proper regularization,

converging to the optimal competitors risk at the expense of storing all seen task

information.
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OGD Algorithm. Different from FTRL, OGD does not store the seen losses. It

applies one gradient descent step using the currently revealed loss as,

wt+1 = wt − β∇ℓt
(
wt
)

(5.3)

where β is the learning rate. Even though it gets to desired regret guarantees, it is

hard to compare OGD to the best competitor that minimizes the sum of losses (i.e.∑T
t=1 ℓ

t(w)).

The Bias Problem. OGD updates the model with gradients arising from the loss

revealed at that time. Since, the best competitor seeks to optimize the sum of losses,

one could learn the best competitor, by running SGD on the average of all losses as

wk+1 = wk − β
1

T

T∑
t=1

∇ℓt
(
wk
)
. (5.4)

This iteration has the property that it converges to the optimal solution in hindsight

for convex losses and a suitable choice of β.

The difference between OGD update in 5.3 and the competitor update in 5.4

is that the gradient directions are not aligned. More explicitly, the minima of the

current loss is not the same as the competitor, min ℓt(w) ̸= min
∑T

s=1 ℓ
s(w). As such

the gradients have different directions. We propose a solution based on debiasing the

gradient of the current loss, in the hope of taking a step towards the global gradient,

while bypassing the need for recalling past seen instances.

A Toy Example. We illustrate the bias issue for an online learning setting with T =

6 losses where the parameter space is two dimensional. Figure 5·1 shows the contour

plots (for quadratic loss functions) and the corresponding local optimal solutions for

the 5 seen losses; the current revealed loss ℓ6 (w); and the sum of all losses
∑6

t=1 ℓ
t(w).

The learner’s parameters at this time is depicted as ××.

Using the current loss, we can only go towards minima of the cuurent loss where
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Figure 5·1: A two dimensional online learning setting with T = 6
losses. The current loss pulls the model towards its minima. However,
the sum of losses have a different optimum point. Hence, the model
is biased towards the current loss minima. We propose to debias the
gradient so that the model is correctly updated.

the direction is shown with a red arrow, ’biased direction’. However, we would like to

move towards the global minima denoted as the ‘correct direction’ since it points to

the best competitor. The biased direction and the correct directions are not aligned

which we refer as the bias problem.

The Debiasing Concept. Unfortunately, at a round t < T , all of the losses

have not yet been revealed, and as such we can debias based only on the past losses.

We propose to debias the current loss noted as ‘debiasing’ direction in Figure 5·1 by

leveraging the past seen empirical loss functions. Then, we substitute a surrogate

direction with the goal of correcting the biased direction. Our objective is to bypass

the need to recall previous seen instances in computing this correction.

Let us denote the current model as wt. We start with the current model, wt+1
1 =



71

wt and apply K corrected gradient descent steps as,

wt+1
k+1 = wt+1

k − β
(
∇ℓt

(
wt+1

k

)
− dt + ct

)
(5.5)

where k = 1, 2, . . . K, dt debiases the current loss and ct encourages the correct

direction. We note that our proposed solution does not require to store the losses as

such dt and ct terms are updated using only the current loss.

MOML Algorithm. Our proposed method is presented in Algorithm 6. In each

round, the current loss (f t) along with adaptation function (U t) is modified using a

quadratic regularization and it is revealed to the algorithm. A task specific model is

obtained using the transformation and the current meta model wt as wt = U t(wt).

Then, the performance of the task specific model is recorded as f t(wt) = f t ◦U t(wt).

We first update the meta model by optimizing using a quadratic penalty:

Rt(w) = −⟨∇f t−1◦U t−1(wt),w⟩+
α

2

∥∥w −wt
∥∥2 , (5.6)

where ∇f t−1 ◦ U t−1(wt) and wt are the states the model stores. The linear term

debiases the current loss and the second term corrects the direction as in dt and ct

terms defined in update Eq. 5.5.

Subsequently, the algorithm iteratively optimizes the loss function with gradient

corrections as,

wt+1
k+1 = wt+1

k − β
(
∇f t◦U t(wt+1

k ) +∇Rt(wt+1
k )

)
. (5.7)

After K gradient descent updates, the new meta model is obtained wt+1 = wt+1
K+1.

MOML explicitly stores states (∇f t−1 ◦U t−1(wt),w) by way of summarization of

previous task instances, and as such incorporates this information in the constructed

regularizer.
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Algorithm 6 Memory Efficient Online Meta Learning- MOML

Input: T,∇f 0 ◦ U0(w1) = w1 = w1 = 0, α,K, β
for t = 1, 2, . . . T do

Output wt, reveal f t and U t, suffer f t ◦ U t(wt),
Rt(w) = −⟨∇f t−1 ◦ U t−1(wt),w⟩+ α

2
∥w −wt∥2,

wt+1
1 = wt,

for k = 1, 2, . . . K do
wt+1

k+1 = wt+1
k − β

(
∇f t ◦ U t(wt+1

k ) +∇Rt(wt+1
k )

)
end for
wt+1 = wt+1

K+1,
wt+1 = 1

2

(
wt + wt+1 − 1

α
∇f t ◦ U t(wt+1)

)
,

end for

w state is recursively updated as,

wt+1 =
1

2

(
wt + wt+1 − 1

α
∇f t ◦ U t(wt+1)

)
. (5.8)

This completes one round of update mechanism for MOML.

Buffered-MOML (B-MOML). MOML can be extended to the situation where

a fixed size buffer of previous task instances are also used. In this embodiment, we

are allowed to store the latest B losses. For this scenario, the update rule for w is:

wt+1
k+1 = wt+1

k − β
(
∇Lt

B(wt+1
k ) +∇Rt

B(wt+1
k )

)
.

where Lt
B(w) = 1

B

∑B−1
i=0 f t−i ◦ U t−i(w) is the sum of last B losses and

Rt
B(w) =−

〈
1

B

B−1∑
i=0

∇f t−i−1 ◦ U t−i−1(wt−i),w

〉
+

α

2

∥∥w −wt
∥∥2

is the adapted regularizer. We utilize B-MOML in deriving regret bounds for non-

convex (adversarial) setting.

Random Task Buffer. In experiments we also consider storing random tasks in-

stances in our buffer. To do so, we consider a buffer as first-in-first-out (FIFO) queue.

For each new task, we sample a biased coin with parameter p. We accept the new
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task in the buffer and put it at end of our queue, and then delete the first task.

Memory footprint of MOML does not grow over time. Our proposed method does

not require storing all seen task instances. Instead, it accumulates previous task infor-

mation in the auxiliary model (w). Different from MOML, FTML needs to increase

its memory usage in each round since it explicitly stores previous task information.

We note that this leads to significant savings in terms of memory requirement.

MOML can leverage any meta adaptation function (U t). We can use any adapta-

tion function such as MAML, or other objectives such as prototypical adaptation, etc.

MOML leads to a new family algorithms that can be applied to any online learning

setup.

5.2.1 Analysis of MOML

MOML minimizes the following risk in K gradient steps,

min
w∈Rd

f t ◦ U t(w) +Rt(w) (5.9)

To simplify the convergence analysis, we assume that MOML reaches a stationary

point of Eq. 5.9, namely,

∇f t◦U t(wt+1)−∇f t−1◦U t−1(wt)+α
(
wt+1−wt

)
= 0. (5.10)

This assumption is not unrealistic. Indeed, due to our quadratic penalty, in exper-

iments, we have found that MOML is essentially reaches a stationary point (i.e.,

Eq. 5.10) within a small number of gradient steps. In particular, we find that the

residual noise is significantly smaller than the model parameters, and can be ignored

for the purpose of analysis. Nevertheless, we point out that it is possible to extend

our results to include this additional residual noise.

MOML proposes to reach a similar solution without explicitly storing losses from
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previous rounds. We present an intuitive justification for our viewpoint based on

the assumption that MOML is a stable1 algorithm and the sequential updates, wt,

converge, namely, limt→∞ wt = w′. Nevertheless, with this assumption in place, it

follows that MOML, if it converges, converges to a stationary point of the desired loss

function. We state this as a proposition.

Proposition 5.2.1 Suppose f t ◦ U t(·) are a sequence of smooth functions with uni-

formly bounded Lipshitz constant. Furthermore, suppose wt is a bounded convergent

sequence approaching w′. Then, w′ is also a stationary point of the competitor defined

as in Eq. 5.1.

We sketch the proof below. Using Cesaro2 mean argument, if models converge, the

mean model does as well: 1
t

∑
s∈[t] w

s −→
t→∞

w′. If we average Eq. 5.10 over time, we

observe that ∇f t◦U t(wt+1) terms telescope and we get 1
t

∑
s∈[t] w

s+1− 1
t

∑
s∈[t] w

s =

− 1
αt
∇f t◦U t(wt+1). If the gradients are bounded we can assume− 1

αt
∇f t◦U t(wt+1) −→

t→∞

0. Consequently we see that mean model and mean w state converge to the same

model as 1
t

∑
s∈[t] w

s −→
t→∞

w′. If we average update rule of w in Eq. 5.8 over time

and plug these relations we get 1
t

∑
s∈[t]∇f s−1◦U s−1(ws) −→

t→∞
0. Since we assume

wt −→
t→∞

w′, for sufficiently large t, 1
t

∑
s∈[t]∇f s−1◦U s−1(w′) −→

t→∞
0. This is the sta-

tionary point relation of the accumulated losses. Therefore, MOML can be close to

the optimal competitor without actually storing the losses from previous rounds.

As in standard online learning, we assume the losses to have a bounded gradient

∥∇f t ◦ U t(w)∥ ≤ G. We first give a regret statement for convex losses.

Theorem 3 For convex possibly adversarial {f t◦U t}Tt=1 functions and α = O
(√

T
)
,

Algorithm 6 satisfies,

T∑
t=1

f t ◦ U t(wt)−
T∑
t=1

f t ◦ U t(w∗)=O
(√

T
(
∥w∗∥2 + G2

))
,

1Validating this assumption requires additional proof, such as showing the map wt → wt+1

is contractive. In online meta learning, wt convergence is not required since the losses are non-
stochastic. The convergence happens in stochastic loss settings.

2If a sequence {ai}i=1 converges ai −→
i→∞

a′, mean also converges 1
i

∑i
s=1 as −→i→∞

a′.
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where w∗=argmin
w∈Rd

∑T
t=1 f

t ◦ U t(w).

Theorem 3 gives sub-linear, O
(√

T
)

, regret rate for convex functions with bounded

gradients. The dependency on T is optimal since there exists a setting where any

algorithm suffers Ω
(√

T
)

regret for convex adversarial losses (Hazan et al., 2007).

Nonconvex Adversarial. It is well-known (see (Hazan et al., 2017)) that for adver-

sarial nonconvex losses, sub-linear regret for the formulation in Eq. 5.1 is generally

difficult to achieve. One option is to instead evaluate
∑T

t=1 ∥∇ℓt(wt)∥2, but this is not

meaningful, since we want to reach a stationary point for the sum of the losses, and

not each individual loss. As a tractable regret notion, (Hazan et al., 2017) propose

to use

T∑
t=1

∥∥∥∥∥ 1

B

B−1∑
i=0

∇ℓt−i(wt)

∥∥∥∥∥
2

, (5.11)

where we consider a B sized window of the losses. This introduced time window

smoothens the gradient of loss suffered and leads to sub-linear regret. Similar to

(Hazan et al., 2017) algorithm, we use B-MOML to tackle this type of regret notion.

B-MOML gets to O
(

T
B2G

2
)

regret. (Hazan et al., 2017) show a lower bound where

a set of losses of losses is constsructed in a way that any algorithm suffers Ω
(

T
B2

)
.

Based on this result, our regret rate is optimal in terms of T and B dependencies.

We give formal statement and the proof in Appendix A.2.2.

Stochastic Setting with Nonconvex Losses. As another extension, we propose a

different regret notion for nonconvex losses where we do not need to consider a time

window either in the regret statement or in the algorithm. In this notion, at each

time, we assume the losses are chosen uniformly at random without replacement from

a predetermined set of losses, it ∼ [K], {ℓj}Kj=1 and we aim to minimize

T∑
t=1

E

∥∥∥∥∥ 1

K

K∑
k=1

∇ℓk(wt)

∥∥∥∥∥
2

,
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where the expectation is with respect to the random index it of the losses.

Theorem 4 Suppose T is a collection of tasks, and for each τ ∈ T , f τ ◦ U τ is

nonconvex L smooth. We choose tasks it from some task distribution, PT in an IID

fashion. Then, for α = O
(√

T
)
, Algorithm 6 satisfies,

T∑
t=1

E
∥∥Eτ [∇f τ ◦ U τ (wt)]

∥∥2 = O
(√

T
(
∆ + G2L

))
where ∆ = Eτ [f τ ◦ U τ (w1)]−minw Eτ [f τ ◦ U τ (w)].

Theorem 4 gives sub-linear regret rate for a nonconvex losses. For the stochastic

setting, our regret rate is O
(√

T
)

.

Stochastic Setting with Nonconvex Polyak- Lojasiewicz (PL) Losses. The regret

statement in Theorem 4 is motivated from the first order condition of stationary

points. A better statement with respect to the optimum competitor can be obtained

for PL nonconvex losses in the stochastic setting.

Corollary 1 If each loss in Theorem 4 satisfies the (PL) condition, with parameter

µ, it follows that,

T∑
t=1

E
[
Eτ [f τ ◦ U τ (wt)]−min

w
Eτ [f τ ◦ U τ (w)]

]
= O

(√
T

1

µ

(
∆ + G2L

))
.

Corollary 1 gives sub-linear rate with respect to the best competitor. We note

that PL condition allows us to get a similar regret statement as in the convex setting

even for nonconvex losses.

5.3 Experiments

This section displays our empirical comparison of MOML against competing baselines

on standard datasets. We highlight main advantages of our method under various

settings. We use PyTorch framework (Paszke et al., 2019) to train and evaluate our

models. MAML meta training is implemented with Higher (Grefenstette et al., 2019)
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(a) (b)

Figure 5·2: Experiment results on S-MNIST. (a): CTM versus rounds
plot. MOML adapts well to the unseen tasks compared to the baselines.
(b): Smoothed LTM versus rounds. MOML is robust to catastrophic
forgetting.

library. Hyperparameter tuning in an online setting poses challenges, since unlike the

batch setting, we typically do not have a validation set. To overcome this issue we

leverage the Hedge algorithm (Freund and Schapire, 1997) for hyperparameter tuning.

We start by explaining the datasets, models and the baselines used for evaluations.

We refer to Appendix A.1.4 for details of our setup.

Datasets. We evaluate the performance of our approach on three benchmark

datasets: MNIST (LeCun et al., 1998), CIFAR-100 (Krizhevsky, 2009) and miniIm-

ageNet (Vinyals et al., 2016). We state the task generation process for each of the

datasets below.

Sequential MNIST (S-MNIST): Similar to Rainbow MNIST (Finn et al., 2019), we

construct S-MNIST dataset consisting of diverse MNIST classification tasks. We

generate a large-scale dataset consisting of 1000 tasks where train/test set of each

task include transformations such as rotations, axes flip, cropping and scaling. These

transformations are applied to class instances of each task. We note that unlike
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Rainbow MNIST (Finn et al., 2019) where a specific transformation is used in each

task, we allow a more diverse tasks by including different transformations among

classes within each task.

5 way-CIFAR-100 : Similar to (Finn et al., 2019), we construct a sequence of 5-

way classification tasks within CIFAR-100 dataset. There are overall 200 tasks and

train/test set of each task contains a 5-class combination from the 100 classes. Since

only 5 classes are chosen out of 100 classes for each task, this generation ensures

that the tasks are diverse, and particularly challenging for the online meta learning

setting.

5 way-miniImagenet : miniImageNet dataset is collected as a subset ILSVRC-2012

(Deng et al., 2009) where there are a total of 100 classes with 600 images in each

class. miniImageNet has realistic RGB images and it is harder compared to CIFAR100

dataset. Similar to 5 way-CIFAR-100, in 5 way-miniImageNet, we generate 100 tasks

where each task has 5 classes from miniImageNet dataset.

Realistic Test-Bed. We note that S-MNIST and 5-way CIFAR-100 tasks are harder

than the corresponding ones in (Finn et al., 2019). Firstly, our setting is large scale

where there are 1000 and 200 tasks for S-MNIST and 5 way-CIFAR-100 respectively

compared to 60 and 50 tasks in prior work. Secondly, we have fewer number of training

data per task in our setting, and in particular, 60 and 250 training datapoints for

S-MNIST and 5 way-CIFAR-100 datasets respectively. In contrast, (Finn et al., 2019)

has 900 and 2000 datapoints. We note that in online meta learning, we must leverage

common knowledge across different tasks, since we do not have sufficient data for any

one task. Our task generation resembles a more realistic and large-scale experimental

test-bed. As a result, FTML performance is significantly lower than that reported in

prior work.

Models. We use fully connected network architecture for S-MNIST experiments.
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The model takes flattened version of the image and passes through one hidden layer

of size 200 neurons with ReLU non linearity followed by the softmax layer. For 5

way-CIFAR-100, we use a CNN architecture consisting of two convolutional layers

with 64 5× 5 filters, two max pooling layers, two fully connected layers with hidden

sizes as 384 and 192 and a final output layer. In 5 way-miniImageNet, we use a similar

CNN architecture where we have three convolutional blocks and max pooling layers

followed by two fully connected layers of size 400 and 100 and a final softmax layer.

(a) (b)

Figure 5·3: Experiment results on 5 way-CIFAR-100. (a): CTM
versus rounds plot. MOML adapts well to the unseen tasks compared
to the baselines. (b): Smoothed LTM versus rounds plot. MOML is
robust to catastrophic forgetting.

Methods. We compare MOML algorithm against two types of baselines. First

set of baselines meta learns tasks such as FTML (Finn et al., 2019) and Meta OGD

(MOGD). As described, FTML is an extension of FTRL in online meta learning

setting where the algorithm stores all seen task instances. Similarly, we define Meta

OGD (MOGD) where the algorithm extends OGD (Zinkevich, 2003) using the meta

losses at each iteration. Different from FTRL, MOGD does not store losses. Our

second set of baselines follows (Finn et al., 2019) and includes train on everything
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(TOE) and train from scratch (FS). In TOE baseline, we do not meta learn a model,

instead we store all tasks and learn one predictive model. During inference first fine

tune TOE baseline using MAML and then record its performance. In FS baseline,

we adapt a random model to each task using the limited data.

Performance Metrics. We report performance on three different metrics. These

are Current Task Metric, Long-Term Task Metric and Task Learning Efficiency Met-

ric.

Current Task Metric (CTM). We evaluate our models with respect to the current

revealed task instance. We first allow the meta model to adapt to the current task

using MAML adaptation and record its performance on task test data. We note that

meta model is adapted directly before being trained on the task similar to the regret

statement (Eq. 5.1).

Long-Term Task Metric (LTM). Different from CTM, we also look at the perfor-

mance with respect to the previous tasks. At each round, we adapt the current meta

model to each of the previous tasks using the limited data and record the perfor-

mances with task test data. Then, we consider the average performance among the

seen tasks. This metric measures catastrophic forgetting, and our goal is to ensure

that past experiences are not forgotten. We note that the meta model is first adapted

to the old tasks using associated training data in evaluating catastrophic forgetting

and LTM.

Task Learning Efficiency Metric. Similar to (Finn et al., 2019), we record the

number of datapoints required to achieve a sufficient performance on the current task

instance.

Analysis and Discussions. We report average CTM as well as LTM accuracy

for all methods in Table 5.1. We present CTM and LTM versus rounds plots in Figure

5·2, 5·3 and 5·4 for S-MNIST, 5 way-CIFAR-100 and 5 way-miniImageNet settings
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respectively. We further test the effect of number of classes in each task on CIFAR-

100 dataset and report the performances of MOML and FTML for the setting where

each task has 3, 4 or 5 classes in Table 5.2.

MOML adapts well to unseen tasks, improving upon competing methods. MOML

gets to similar or higher accuracy in CTM compared to the baselines in Table 5.1 and

5.2. For instance, in 5 way-CIFAR-100 setting, MOML reaches 5% higher accuracy

than FTML. As another example, Figure 5·2 shows that MOML strictly dominates

all baselines after 100 rounds. These findings show that MOML can easily adapt new

task instances.

MOML is task efficient. MOML achieves 80% test accuracy on new task instances

by using less amount of limited data compared to FTML in S-MNIST as shown in

Appendix A.1.4. The findings show that MOML is more task efficient and it can

easily adapt to new task instances.

MOML is robust to catastrophic forgetting. MOML implicitly encodes past expe-

rience without explicitly storing it. This is evident in Table 5.1 and 5.2. For instance,

in S-MNIST setting, MOML improves 5% LTM over FTML baseline. This shows that

unlike competitors, MOML has superior performance on previously observed tasks.

MOML decreases memory complexity. Among the meta learning methods, MOML

and MOGD do not store seen task instances. Different from these methods, FTML

remembers all seen task information and minimizes the accumulated sum of losses.

Not storing task instances for MOGD leads to performance degradation in comparison

to FTML (Table 5.1). On the other hand, MOML outperforms both methods without

storing previous data.

Meta learning is necessary for good generalization. TOE baseline learns one

predictive model for all tasks. Since tasks are diverse, its performance is strictly

3For miniImageNet, MOML performances reported in Table 5.1 is B-MOML with buffer of 10
tasks.
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Table 5.1: Performances for S-MNIST, 5way-CIFAR-100 and 5way-
miniImageNet. TOE is not tabulated for 5way-CIFAR-100 and 5way-
miniImageNet due to its poor performance.

CTM LTM

S-MNIST

TOE 71.22 63.73

FS 71.15 71.14

MOGD 74.63 74.07

FTML 80.62 82.49

MOML 85.82 87.49

5 way-CIFAR-100

FS 31.58 31.60

MOGD 49.92 50.21

FTML 50.68 54.50

MOML 55.83 60.78

5 way-miniImageNet

FS 20.90 20.81

MOGD 49.08 56.86

FTML 56.77 63.12

MOML3 56.23 64.27

lower than the methods that meta learns tasks even though we allow fine tuning

during inference time. Similarly, FS does not use meta learning and directly adapts

the model for each task. it performs poorly on both CTM and LTM (see Table 5.1).

Ablation study on B-MOML. B-MOML, a variant of MOML algorithm, de-

scribed in Section 5.2, allows for storing B tasks in a buffer. We test B-MOML to see

the effect of buffer size. Table 5.3 displays B-MOML performance with buffer sizes

as 0, 5, 10. We note that B = 0 corresponds to original MOML algorithm where we

do not store previous tasks.

MOML and B-MOML performances are comparable. We observe that storing seen

task instances improves performance on new task and reduces the catastrophic for-
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Table 5.2: MOML and FTML performances for 3, 4 and 5 way-
CIFAR-100 settings.

K-way

3 4 5

CTM

FTML 67.07 58.19 50.68

MOML 69.10 60.85 55.83

LTM

FTML 61.84 54.70 54.50

MOML 72.15 62.79 60.78

Table 5.3: Ablative study of B-MOML with 0, 5 and 10 size buffers
where B = 0 is original MOML.

Buffer Size, B

0 5 10

S-MNIST

CTM 85.82 84.21 84.33

LTM 87.49 87.54 87.77

5 way-CIFAR-100

CTM 55.83 56.37 56.70

LTM 60.78 63.76 65.24

getting in Table 5.3. In particular, LTM performances are improved with B-MOML.

However, the change in CTM performance is marginal. For instance, increasing buffer

from 0 to 10 increases CTM by only 1% in CIFAR-100 . We can infer that MOML

effectively summarizes past task information.

Latest B-buffer is more effective than random B-buffer. As described in Section

5.2, we consider B-MOML variants where we allow buffers with the latest-B and a

random variant of a fixed size. Table 5.4 shows that latest-B Buffer is somewhat more

effective than the random case for MOML.
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(a) (b)

Figure 5·4: Experiment results on 5 way-miniImageNet. (a): CTM
versus rounds plot. MOML adapts well to the unseen tasks compared
to the baselines. (b): Smoothed LTM versus rounds plot. MOML is
robust to catastrophic forgetting.

Table 5.4: Ablative study of buffer storing schemes of B-MOML.

Buffer Size, B

5 10

S-MNIST

CTM

Random 83.30 84.07

Last 84.21 84.33

LTM

Random 86.09 86.97

Last 87.54 87.77

5 way-CIFAR-100

CTM

Random 56.40 55.07

Last 56.37 56.70

LTM

Random 64.37 64.37

Last 63.76 65.24
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Chapter 6

Scaffolding a Student to Instill Knowledge

In this chapter, we focus on carefully guiding a powerful model’s predictions to a

smaller model to improve the generalization of the small model. One of the primary

issues in KD (Hinton et al., 2015), where soft predictions of the student and a powerful

teacher model is matched, is that the loss function is somewhat blind to the student’s

capacity to interpolate. In particular, when the student’s capacity is significantly

lower than the teacher’s, we expect the student to follow the teacher only on those

inputs realizable by the student.

We are led to the following question: What can the teacher provide by way of

predictive hints for each input, so that the student can leverage this information to

learn to its full capacity?

Our Proposal: Scaffolding a Student to Distill Knowledge (DiSK). To

address this question, we propose that the teacher, during training, not only set a

predictive target, t(x), but also provide hints on hard to learn inputs. Specifically,

the teacher utilizes its model to output a guide function, g(x), such that the student

can selectively focus only on those examples that it can learn.

• if g(x) ≈ 1, teacher discounts loss incurred by the student on the input x.

• if g(x) ≈ 0, teacher signals the input x as learnable by student.

With this in mind we modify the KL distance in the KD objective and consider,

DKL(t(x), ϕ(s(x), g(x))), where ϕ(s, g), which will be defined later, is such that,
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ϕ(s, 0) = s if g offers no scaffolding. We must impose constraints on the guide func-

tion g to ensure that only hard-to-learn examples are scaffolded. In the absence of

such constraints, the guide can declare all examples to be hard, and the student would

no longer learn. We propose to do so by means of a budget constraint B(s, g) ≤ δ

to ensure that the guide can only help on a small fraction of examples. While more

details are described in Sec. 6.3, we note that, in summary, our proposed problem

is to take the empirical linear combination of the aforementioned KL distance and

a cross-entropy term as the objective, and minimize it under the empirical budget

constraint.

We emphasize that g(x) is used only during training . The inference logic for the

student remains the same as there is no need for g(x) during inference. The guide

function supported student training has three principal benefits. The benefits are

explored in Sec. 6.1.

• Censoring Mechanism. Our guide function censors examples that are hard

to learn for the student. In particular, when there is a large capacity gap, it is

obvious that the student cannot fully follow the teacher. For this reason, the

teacher must not only set an expectation for the student to predict, but also

selectively gather examples that the student has the ability to predict.

• Smoothen the Loss landscape. We also notice in our synthetic experiments

that whenever scaffolding is powerful, and can correct student’s mistakes, the

loss landscape undergoes a dramatic transformation. In particular, we notice

fewer local minima in the loss viewed by the guided student.

• Good Generalization. The solution to our constrained optimization problem

in cases where the guide function is powerful can ensure good student gener-

alization. Specifically, we can bound the statistical error in terms of student

complexity and not suffer additional complexity due to the teacher.
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Contributions. We summarize our main results.

• We develop a novel approach to KD that exploits teacher representations to

adjust the predictive target of the student by scaffolding hard-to-learn points.

This novel scaffolding principle has wider applicability across other KD variants,

and is of independent interest.

• We design a novel response-matching KD method (Gou et al., 2021) which is

particularly relevant in the challenging regime of large student-teacher capacity

mismatch. We propose an efficient constrained optimization approach that

produces powerful training scaffolds to learn guide functions.

• Using synthetic experiments, we explicitly illustrate the structural benefits of

scaffolding. In particular, we show that under our approach, guides learn to

censor difficult input points, thus smoothening the student’s loss-landscape and

often eliminating suboptimal local minima in it.

• Through extensive empirical evaluation, we demonstrate that the proposed

DiSK method;

– yields large and consistent accuracy gains over vanilla KD under large

student-teacher capacity mismatch (upto 5% and 2% on CIFAR-100 and

Tiny-Imagenet).

– produces student models that can get near-teacher accuracy with signif-

icantly smaller model complexity (e.g. 8× computation reduction with

∼ 2% accuracy loss on CIFAR-100).

– improves upon KD even under small student-teacher capacity mismatch,

and is even competitive with modern feature matching approaches.

This work is published in (Kag et al., 2023).
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6.1 Illustrative Examples

We present two synthetic examples to illustrate the structural phenomena of the

censoring mechanism and smoothening of student’s loss landscape enabled by the

scaffolding approach DiSK, which lead to globally optimal test errors. We defer exact

specification of the algorithm to Sec.6.3.

Example 1 (1D Intervals). Consider a toy dataset with one dimensional fea-

tures x ∈ [0, 9] and binary class labels y ∈ {Red,Blue} as shown in Figure 6·1. There

are two Blue labelled clusters as in [2, 3] and in [5, 7]. The remaining points are la-

belled as Red. We sample 1000 i.i.d. data points as the training set and 100 data

points as the test set with balanced data from both classes. We describe the details

of the experiment setup such as models and learning procedure in Appx. A.1.5.

Teacher T belongs to the 2-interval function class, and the capacity-constrained

student S belongs to the 1-interval function class. Since teacher capacity is suffi-

cient to separate the two classes without error, it learns the correct classifier (see

Figure 6·1). In contrast, the best possible student hypothesis cannot correctly sep-

arate the two classes. Hence, the student will have to settle onto one of the many

local minima. We show these minima and the contour plot for the student in Fig-

ure 6·1. We present the results of training student models with different initializations

in Table 6.1.

KD suffers from bad local minima. KD loss landscape contains many local minima

(see Figure 6·1). Due to a big gap between student and teacher capacity, it is unable

to help the student discern between these minima. Hence, KD fails to distinguish

between the different minima (see Table 6.1).

DiSK censors interval [2, 3] and in addition focuses training on learnable data-

points. If we analyze the guide function at the end of the training, we see that it

covers (censors) the first Blue cluster. Indeed, both clusters are not simultaneously



89

Table 6.1: The number of times each method lands on various local
minima in two toy problems for 100 runs.

Dataset 1D Intervals 2D Gaussians

Minima A B C (Global) A B C D (Global)

Accuracy 67% 83% 87% 70% 80% 90% 100%

Cross-Entropy 35 64 1 73 12 9 6

KD 30 67 3 1 11 31 57

DiSK 9 1 90 0 0 3 97

learnable with the available student capacity. Once we censor the interval [2, 3],

then the problem becomes realizable for the student model. The guide function thus

captures the excess capacity of the data.

DiSK smoothens loss landscape. The guide function and the budget constraint

enable our method to have a smooth loss landscape thanks to the guide-function

censoring points, which eliminate the local minima. Hence, DiSK solution lands in

the global minimum with high probability.

(a) (b) (c)

Figure 6·1: (a): 1D Intervals. Data distribution on x-axis [0, 9].
Teacher T learns the correct decision boundary with 2-intervals and it
is the global minima for this binary classification task. Student S has
many bad local minima, and one global minima that best describes the
decision boundary with 1-interval. (b): KD training. Loss contour
plot shows the various local minima exist. (c): DiSK training. Loss
contour plot shows the bad local minima no longer exist.

Example 2 (2D Gaussians). Consider another toy dataset with two dimen-
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sional features x ∈ R2 and three class labels y ∈ {Red,Green,Blue}. Here we wish

to show that DiSK can allow for globally optimal solutions reaching 100% accuracy,

which appears unachievable with cross-entropy minimization regardless of data size.

Figure 6·2.a shows the labelled data. There are six cluster centers, two with each

class label. Data points are drawn using Gaussian balls around the cluster centers

with small radii. We sample 1000 i.i.d. data points as the training set and 1000 data

points as the test set with equal representation from all three classes. We provide

details (hypothesis classes, learning procedure, etc.) in Appx. A.1.5.

The teacher is a 3-layer neural network with 8, 16, and 3 neurons. The student is

a 2-layer neural network with 2 and 3 neurons. We point out that the teacher being

an over-parameterized network in this feature space, easily learns the correct decision

boundary. While the student being severely constrained network suffers in learning

the task. Different training runs lead to different local minima. We show teacher

solution and student local minima in Figure 6·2.a. The contour plots for the student

models under KD loss and DiSK loss are shown in Figure 6·2.b-6·2.c using (Li et al.,

2018).

The results are similar to the 1D example - KD converges to a poor local minimum

with at least 43% of the initializations, while in contrast, DiSK escapes these by

focusing on the learnable part of the input space (Fig. 6·2.c), converging to the global

minimum nearly always (Table 6.1).

To conceptualize our findings in these examples, let us attempt to intuitively infer

the example-censoring, landscape-smoothening, and good generalization, by utilizing

the following conditions that appear to be satisfied for these synthetic examples.

Realizability. Suppose we are in a situation where the guide function g ∈ G is suf-

ficiently powerful that there is a student and guide function capable of interpolation,

i.e., predictions supported by the guide function, ϕ(s, g), interpolates to mimic the
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labels.

Example: For instance, consider a binary classification problem with the labels y ∈

{−1, 1}. Let ϕ(s, g) = y(s + g) with s(w) ∈ [−1, 1]. Our realizability condition is

that we always satisfy y(s(w) + g(w)) > 0. As such, this leads to the condition

that if ys(w) ≤ 0, then yg(w) > 0. Therefore, E[1[ys(w)<0]] ≤ E[1[ys(w)<0,yg(w)>0]] ≤

E[1[yg(w)>0]].

Small Guide Function Capacity. In addition to realizability suppose the class of

guide functions g ∈ G has a small capacity (for instance, small VC dimension). For

our case this condition is satisfied because our guidance function is obtained by using

an MLP on teacher’s last layer features.

Example: Continuing with the example above, say we now have m training in-

stances, (wi, yi), i ∈ [m], ĝ(w) is guide function output of DiSK. We can infer by

standard statistical learning results (Shalev-Shwartz and Ben-David, 2014) that, for

the estimated function ĝ ∈ G, it follows with probability greater than 1 − η that

E[1[yĝ(w)>0]] ≤ 1
m

∑m
i=1 1[yiĝ(wi)>0] +

√
V C(G)+log 1

η

m
. As a result, we can say that

if there is a student, s(w) (not necessarily that output by DiSK), which comple-

ments ĝ(w) and satisfies realizability, then with probability greater than 1 − η:

E[1[ys(w)<0]] ≤ 1
m

∑m
i=1 1[yiĝ(wi)>0] +O

(√
V C(G)+log 1

η

m

)
.

Remarks. The key point is that the student capacity is considerably larger since

we typically train an entire DNN, and student complexity-based bound can be vac-

uous. While the guidance function does bound the student generalization error in

terms of guide function complexity, there are strong caveats— we require the strong

assumption of realizability on the entire domain, and additionally, while the guide

function can witness student error, we are not in a position to precisely estimate it

without additional training data. Furthermore, the RHS is a relaxed bound on the

student training error. This motivates having a budget constraint to ensure that
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(a) (b) (c)

Figure 6·2: (a): 2D Gaussians. Data distribution on R2. Teacher
T learns the correct decision boundary with 3 layer NN and it is the
global minima for this three-way classification task. While student S
has many bad local minima, and one global minima that best describes
the decision boundary with 2 layer NN. (b): KD training. Loss contour
plot shows the various local minima in the loss landscape. (c): DiSK
training. Loss contour plot shows the bad local minima no longer exist
(wider minima, join two adjust minima, remove bad local minima).

student learns with small training error.

6.2 Related Work

We refer the reader to (Gou et al., 2021) for a comprehensive survey on knowledge

distillation.

Response Matching. (Zeng and Martinez, 2000; Bucila et al., 2006) distill the

response of an ensemble of classifiers into a single neural network by creating a pseudo-

labeled dataset using the ensemble of classifiers. (Ba and Caruana, 2014) extend this

to the setting with the neural network as the teacher. (Hinton et al., 2015) propose

vanilla KD that distills knowledge from an ensemble of neural networks into a single

network by matching their output logits. This work provided a simple recipe for

aligning the teacher and student predictive distributions using the Kullback-Leibler
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(KL) divergence. Recently, (Beyer et al., 2022) modify the KD procedure to include

patient and consistent teacher resulting in substantial gains. Knowledge consistency

is enforced by using the same aggressive data augmentation and image views in the

student as in the teacher. Patience is promoted using a very long training schedule.

This results in a computationally very expensive training process.

(Stanton et al., 2021) analyze response matching KD and suggests that difficulty

in optimization leads to poor knowledge distillation. Thus, the teacher and student

predictions do not always match, even on the training data. (Cho and Hariharan,

2019) study vanilla KD through the lens of mismatched student and teacher capac-

ities. They show that small students are unable to mimic complex teachers. They

propose early stopping teacher training as to remedy to achieve a student-learnable

teacher. The above works fail miserably when the gap between student and teacher

complexities is large. Specifically, the student cannot learn the complex teacher deci-

sion boundaries primarily due to the small student capacity. It becomes imperative

to selectively choose only easy-to-learn data points and transfer the teacher knowl-

edge from these points and ignore the hard-to-learn data points during distillation.

Thus, our proposal targets the problem of severe capacity gaps between student and

teacher models. Additionally, our experiments with standard student and teacher

configurations show that DiSK is still competitive when the capacity difference is

small.

Feature Matching. In response matching, teacher supervision is limited to its

logits. We can enforce intermediate layer feature matching for refined teacher supervi-

sion. FitNets (Romero et al., 2015) extend the KD by including the feature matching

in the middle layers. (Zagoruyko and Komodakis, 2017) use feature map attention

as the teacher supervision. (Tung and Mori, 2019) preserve pairwise similarity in

feature maps amongst data points during the distillation. (Chen et al., 2022) modify
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the student by projecting the student features onto the teacher feature space and by

reusing the teacher classifier. While our work focuses primarily on selective distilla-

tion in vanilla KD for simplicity. We can easily extend the proposed framework to

incorporate it into feature-matching distillation.

Privileged Information. (Vapnik and Izmailov, 2015) propose the ‘learning

under privileged information‘ (LUPI) framework wherein a support vector machine

is trained using privileged information unavailable during the inference stage. Later,

(Lopez-Paz et al., 2016) unify LUPI and vanilla KD into generalized distillation,

wherein the teacher is learned using the privileged information. Next, the student is

trained using the ground truth and the teacher labels. These works rely on privileged

information in the application domain and are shown to work on toy setups. Since our

guide function, g is available only during training, it can be thought of as privileged

information from a teacher.

Curriculum Learning & Hard Instance Mining. Curriculum Learning (CL)

(Bengio et al., 2009; Hacohen and Weinshall, 2019; Graves et al., 2017) sorts the

data based on their hardness as measured by some scoring function ( ex., predictive

entropy, softmax margin score, etc. ). It presents the data points during training in

the order of increasing hardness. Similarly, Hard Instance Mining (HIM) (Zhou et al.,

2020) reduces the weight of the easy example and increases the weight on hard inputs

to promote hard-example learning. We point out that our method is only conceptually

related to these works via input hardness. Our method helps the student with hard

examples by providing explicitly discounted help g. We learn the helper function g

(through teacher representation) that decides whether the student needs help on a

given input. Thus, we do not prioritize learning hard examples keeping in mind the

fact that student capacity is much smaller than the teacher.
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6.3 Definition and Method

Notation. Let X and Y = {1, . . . , C} be the feature and label spaces respectively,

focusing on a C-class classification task. We assume that we have a training set of

N i.i.d. data points D = {xi, yi}Ni=1, where xi ∈ X and yi ∈ Y . We use symbols S

and T to denote the student and teacher models respectively. Let lS(x) ∈ R|Y| and

lT (x) ∈ R|Y| be the score vector, logits, predicted by S and T on input x. We use τ

as the temperature used to soften the probability distribution. We write the resulting

softened student and teacher probabilities as sτ (x) and tτ (x), i.e.,

sτ (x) = softmax

(
lS(x)

τ

)
; tτ (x) = softmax

(
lT (x)

τ

)
The standard prediction probabilities correspond to s1(x) and t1(x). We will use

sτy(x) to denote the yth coordinate in sτ (x), and similarly tτy(x). The hard prediction

of the student is pS(x) = arg maxy∈Y s1y(x), and similarly pT (x) = arg maxy∈Y t1y(x)

for the teacher.

We use g(x) ∈ [0, 1] to denote the helper guide function for the student and

teacher pair (S, T ). Guide takes input x and any other feature processed by (S, T )

pair and decides whether or not the student needs help on the input x. Finally, we

define ReLU activation as (·)+ = max(0, ·).

Vanilla Knowledge Distillation KD relaxes the 0−1 error between the student

predictions and the true labels y using the cross-entropy loss LCE. Then, KD denotes

the distance between the student and teacher softened probability distributions using

the KL divergence. We summarize the corresponding losses as,

LCE(s) = − 1

N

N∑
i=1

log s1yi(xi); Lτ
KL(s) = − 1

N
τ 2

N∑
i=1

∑
y

tτy(xi) log
sτy(xi)

tτy(xi)

For hyperparameters α ∈ [0, 1], τ > 0, KD minimizes a mixture of the above losses,
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as shown below

Lτ,α
KD(s) = αLCE(s) + (1− α)Lτ

KL(s). (6.1)

Selective Knowledge Distillation. KD attempts to transfer the knowledge

from the teacher to the student on all training data points, which is a sub-optimal

objective when there is a capacity mismatch between the student and the teacher.

Instead, we propose distilling selective knowledge (DiSK) to allow the student to

selectively ignore some hard-to-learn data points during training, transferring the

teacher’s knowledge only on easy-to-learn inputs, and matching the learning to stu-

dent capacity. Our objective is to minimize

min
s,g,δ

1

N

N∑
i=1

distance(t(xi);ϕ(s, g)(xi))︸ ︷︷ ︸
Distance between T and S with help of g

subject to
1

N

N∑
i=1

g(xi)1{yi ̸=argmaxysy(xi)} ≤ δ︸ ︷︷ ︸
Support budget constraint on g

(6.2)

where ϕ interpolates student predictions based on the guide’s help. The divergence

term helps in minimizing the distributional distance between the teacher and student

probabilities after the guide g is included. While the budget term in the optimization

constrains the helper g to provide help only when necessary, the amount of help given

to the student should be within the budget δ ∈ [0, 1].

Function g Construction. As previously stated, we use the teacher’s last layer

features and soft predictions as input to the guide g. The guide is structured as a

light-weight three-layer neural network with these inputs, with a sigmoid activation

at the last layer. We re-emphasise that g is not used at inference time, and only aids

training. More details are left to Appx.A.1.5.

Relaxed Losses, Lagrangian & Optimization Algorithm. We relax Eq. 6.2

and construct a Lagrangian by integrating the constraint into the minimization.
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Budget constraint relaxation. We relax the indicator loss in the budget to a cross-

entropy, and treat δ as a hyperparameter to get

Lδ
budget(s, g) =

[
− 1

N

N∑
i=1

g(xi) log s1yi(xi)− δ

]
+

(6.3)

We view the scaffold as a way for the student to interpolate the uncensored data. It

suggests that a good initialization for the budget is the error of cross-entropy trained

model when the student does not have the teacher supervision. Thus, we scan the

budget in a small interval around this initialization.

Distillation objective. Motivated from KL loss, we construct a distance loss with

guide function as,

Lτ,K
dist(s, g) = − 1

N
ττt,s,D

N∑
i=1

∑
y

tτy(xi) log
(
sτt,s,Dy (xi) + 1y∈topK(tτ (xi))g(xi)

)
(6.4)

We point out two modifications in the distillation loss. First, Ldist explicitly adds

guide value to softened student probabilities in selected class indices. The class in-

dices guide function adds value are picked as top K classes based on the teacher

probabilities for any input xi where K is a hyperparameter of our method. The rest

of the class indices do not get any value from g. Second, we use different temperature

parameters for teacher and student. Temperature parameter for teacher, τ , is a hy-

perparameter. The student temperature is found by minimizing the KL loss between

teacher softened probabilities and the student softened probabilities over the training

dataset, .i.e τt,s,D = arg minτ ′
∑

i KL(tτ (xi), s
τ ′(xi)).

Similar to KD, we incorporate standard cross entropy loss between student model

predictions and the ground truth labels for stability. We construct our Lagrangian

by combining Eq. 6.3 and 6.4 as,

Lτ,K,δ,α
DiSK (s, g, λ) = αLCE(s) + (1− α)Lτ,K

dist(s, g) + λLδ
budget(s, g) (6.5)
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Algorithm 7 DiSK: Distilling Selective Knowledge.

1: Input: Training data D = {(xi, yi)}Ni=1, Teacher t,
2: Parameters: τ , K, α, λmin, λmax, Number of iterations R, λT cosine period,

Budget δ,
3: Initialize: s, randomly initialize g, λ = λmin,
4: for r = 1 to R do
5: Randomly Shuffle Dataset D
6: g ← arg ming Lτ,K,δ,α

DiSK (s, g, λ)

7: s← arg mins αLCE(s) + (1− α)Lτ,K
dist(s, g)

8: λ← λmin + (λmax − λmin)×
(1−cos

r mod λT
λT

π)

2

9: end for
10: Return : s

where α is a hyper-parameter and λ is the dual parameter of DiSK.

We optimize Obj. 6.5 using a primal dual update scheme as explained in Algorithm

7.

Primal Parameter Updates (s, g). We learn the student s and the guide function

g using alternating minimization. We approximate arg min with running SGD for

a small number of epochs on the full dataset. In each iteration, we first learn the

guide function g to select the data partition from which the knowledge needs to be

distilled. Next, given the function g, we learn the student using the help g. We

empirically found that not optimizing the student model on budget loss gives more

stable results. Hence, we minimize the student model only on the distillation and

cross-entropy losses.

Dual Parameter Update (λ) Intuition. Although it is tempting to optimize the

above via a dual ascent and primal descent scheme (wherein the dual parameter λ is

increased by residual term in the constraint until constraint satisfaction), recent work,

(Sun and Sun, 2021), has proposed to decrease the λ in the non-convex regime. In-

spired by this, we update the dual parameter by a fixed schedule between [λmin, λmax].

λmin encourages exploration and allows student model to distill knowledge from all
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Table 6.2: Model Statistics. We compute the storage (number of
parameters) and computational requirements (number of multiply-
addition operations) of the models.

Architecture
CIFAR-100 Tiny-Imagenet

Architecture
CIFAR-100

MACs Params MACs Params MACs Params

Teacher

ResNet10-ℓ 64M 1.25M 255M 1.28M

ResNet10 253M 4.92M 1013M 5M ResNet32x4 1083M 7.4M

ResNet18 555M 11.22M 2221M 11.27M Wide-ResNet-40-2 327M 2.25M

ResNet34 1159M 21.32M 4637M 21.38M

Student

ResNet10-xxs 2M 13K 8M 15K ResNet8x4 177M 1.2M

ResNet10-xs 3M 28K 12M 31K ShuffleNetV2 44.5M 1.4M

ResNet10-s 4M 84K 16M 90K Wide-ResNet-16-2 101M 700K

ResNet10-m 16M 320K 64M 333K Wide-ResNet-40-1 83M 570K

MobileNetV2x2 22M 2.4M

points. On the other hand, λmax enforces the constraint and forces the student model

to learn on uncensored inputs. We choose R ≈ 4λT , so that the algorithm is exposed

to a few exploratory periods. For the final period, we increase λ monotonically so

that budget is more strictly enforced at termination.

Computational Efficiency. Algorithm 7 trains both student and guide networks.

The guide network being small (three-layer MLP) relative to the student (CNN

model), the additional cost in training the guide is relatively insignificant, and as

such DiSK efficiency is similar to KD.

6.4 Experiments

We evaluate DiSK in various capacity mismatch scenarios on benchmark datasets.

Datasets. We use publicly available CIFAR-100 (Krizhevsky, 2009), Tiny-Imagenet

(Le and Yang, 2015) datasets. CIFAR-100 contains 50K training and 10K test images

from 100 classes with size 32× 32× 3. While Tiny-Imagenet contains 100K training

and 10K test images from 200 classes with size 64× 64× 3. We provide the dataset

setup and data augmentations used in detail in Appx. A.1.5.

Models. We evaluate standard convolutional models on these datasets includ-
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ing ResNet(He et al., 2016), Wide-ResNet(Zagoruyko and Komodakis, 2016), Mo-

bileNet(Sandler et al., 2018), and ShuffleNet(Ma et al., 2018). Table 6.2 shows the

storage and computational requirements of all the models used in this work. We

provide explicit model configurations in Appx. A.1.5, including the tiny models we

generate from the ResNet architectures.

Methods. We study performance against standard cross-entropy (CE) based

learning and the vanilla KD methods. For each method, we train models for 200

epochs using SGD as the optimizer with 0.9 momentum and 0.1 learning rate. See

Appx. A.1.5 for more training details. We have recorded the mean in our results as

the variance of 3 trials in our experiments is not larger than 0.1 in most cases.

We perform evaluations in different settings. Below, we explain individual setups.

We cover more ablative experiments in Appx. A due to page limit.

Large Capacity Mismatch Setting. We distill knowledge from a teacher model

into a student model where the student has much less capacity compared to the

teacher model. We use four large capacity ResNet teachers and five tiny ResNet

students and train these students using CE, KD, and DiSK methods. Performances,

and the gains of DiSK are reported in Table 6.3.

Small Capacity Mismatch Setting. While DiSK has been designed for the

scenario when student capacity is very low, we further evaluate it in the setting where

teacher and student capacities are similar, to probe how far the power of the method

extends. The model classes used are the standard choice for this scenario (Chen et al.,

2022; Tung and Mori, 2019). Performance is reported in Table 6.4.

Table 6.4 further reports the results of the feature matching distillation methods:

FitNets (Romero et al., 2015), SemCKD (Chen et al., 2021), and SimKD (Chen et al.,

2022). Such methods can often outperform response matching KD on large students,

due to student representations that are more aligned with the teacher, but typically
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at an increased training cost. While feature matching methods are not the main

focus of our work (and in principle scaffolding idea can be extended to them), we

observe that DiSK often improves upon their performance without any direct feature

matching.

Experiment results. Below, we highlight salient features of DiSK based on

empirical data.

DiSK outperforms the baselines uniformly across all datasets and student sizes. As

shown by Table 6.3, DiSK significantly improves the student performance in CIFAR-

100 and the (more challenging) Tiny-Imagenet dataset, respectively showing accuracy

gains of up to 5% and 2% compared to KD. These gains are consistent across a wide

range of student and teacher capacities.

DiSK achieves better performance with worse teachers than KD does with even

the best teachers. In Table 6.3, we point out that the student performance increases

for KD as the teacher complexity is increased for a given student. But note that for

the same student, DiSK achieves much better performance with even worse teacher.

For instance, for the ‘ResNet10-m‘ student, KD accuracy increases from 66.96% to

68.09% by using high capacity teachers. But ‘ResNet10-m‘ trained with even the

worst teacher ( ‘ResNet10-ℓ‘ ) achieves 70.03% accuracy. This saves a lot of resources

in any application as large teacher requires more training time, and larger compute

resources.

DiSK is competitive even in small capacity difference setting. As shown by Ta-

ble 6.4, DiSK does not loose its competitive edge over the KD even when the student is

relatively similar sized as teachers, and shows gains of up to 2.5% relative to KD. We

conjecture that the observed gains arise from the fact that DiSK provides scaffolding

for hard points to the student in initial training stages, which promotes the student

to learn easy examples first. As training progresses, DiSK removes the discounted
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help from hard inputs. As a result, the student evolves from simpler hypothesis to

the ones consistent with both easy and hard inputs. This justifies our dual parameter

(λ) update in Algorithm 7, wherein we periodically increase and decrease λ to enforce

and relax the budget constraint.

DiSK students achieve near teacher accuracy while saving up to 8× MACs & 5×

Params. As reported in Table 6.3, student (‘ResNet10-m‘) trained with the teacher

(‘ResNet10-ℓ‘) achieves close to the teacher accuracy of 71.99%. In this process,

it saves 4× compute and requires 4× less parameters. Similarly, student (‘Shuf-

fleNetV2‘) trained with the teacher (‘ResNet32x4‘) achieves close to the teacher ac-

curacy of 81.45%. In this process, it saves 24× compute and requires 5× less param-

eters.

DiSK cleverly selects a subset of datapoints and smoothens the loss landscape. As

illustrated in Figure 6·1 and 6·2, DiSK judiciously selects a subset of hard-to-learn

data points for the students and provide discounted help to the student focus on eas-

ily learnable inputs. As a result, it eliminates some bad local minima in the student

loss-landscape, and smoothens tihs surface.

DiSK enables the student to reach saturation capacity. In Table 6.3, the perfor-

mance of KD often suffers as the teacher size is increased, e.g., student (‘ResNet10-

s’) accuracy decreases substantially with the teacher ‘ResNet34’ versus the teacher

‘ResNet18’. In contrast, DiSK saturates the student performance across different

teachers. For instance, student (‘ResNet10-m‘) accuracy is ≈ 70% for all the teach-

ers. Thus, we point out that DiSK enables the student to reach saturation. This may

be due to the fact that guide g identifies the same set of ‘easy’ points across different

teachers.
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Table 6.3: DiSK performance under large capacity mismatch on
CIFAR-100 & Tiny-Imagenet: We draw mismatched teachers and stu-
dents from the ResNet family, and report accuracy of CE trained teach-
ers and students, performance of students distilled using KD and DiSK,
and gains of the latter relative to KD.

Architecture
CIFAR-100 Tiny-Imagenet

Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain Teacher CE KD DiSK Gain

ResNet10-ℓ

ResNet10-xxs

71.99

32.05 32.64 37.56 4.92

52.14

17.44 17.59 18.62 1.03

ResNet10-s 52.16 54.92 58.14 3.22 34.65 35.77 37.43 1.66

ResNet10-m 65.24 66.96 70.03 3.07 44.74 46.01 48.03 2.02

ResNet10

ResNet10-xxs

75.25

32.05 34.25 37.84 3.59

56.04

17.44 17.96 18.55 0.59

ResNet10-s 52.16 54.95 58.36 3.41 34.65 36.11 37.37 1.26

ResNet10-m 65.24 67.27 70.15 2.88 44.74 46.08 48.19 2.11

ResNet18

ResNet10-xxs

76.56

32.05 34.16 37.8 3.64

62.48

17.44 17.47 18.53 1.06

ResNet10-s 52.16 55.76 58.11 2.35 34.65 35.59 37.5 1.91

ResNet10-m 65.24 68.09 69.86 1.77 44.74 45.91 47.7 1.79

ResNet34

ResNet10-xxs

80.46

32.05 33.93 37.78 3.85

63.06

17.44 17.67 18.91 1.24

ResNet10-s 52.16 54.19 58.02 3.83 34.65 35.43 37.68 2.25

ResNet10-m 65.24 66.78 69.89 3.11 44.74 45.89 47.6 1.71

Table 6.4: DiSK performance with small capacity mismatch on
CIFAR-100. We pick standard student and teacher configurations used
in the KD literature, and report accuracies and gains similarly to Table
6.3. Feature matching KD baselines are due to (Chen et al., 2022).

Architecture

CIFAR-100

Response Matching KD Feature Matching KD

Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD*

ResNet32x4

ResNet8x4

81.45

73.89 76.25 76.92 0.67 74.32 76.23 78.08

ShuffleNetV2 73.74 79.13 80.23 1.1 75.82 77.62 78.39

Wide-ResNet-16-2 74.26 76.28 77.67 1.39 74.70 75.65 77.17

MobileNetV2x2 69.24 76.05 77.24 1.19 73.09 73.98 75.43

Wide-ResNet-40-2

ResNet8x4

78.41

73.89 75.15 76.05 0.9 75.02 75.85 76.75

ShuffleNetV2 73.74 75.81 78.33 2.52 - - -

Wide-ResNet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56

MobileNetV2x2 69.24 73.92 76.32 2.40 - - -

*SimKD accuracy is not emphasized as it employs additional layers beyond the
given student architecture and thus not directly comparable to other methods.
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Chapter 7

Future Work

This chapter gives some future directions in limited data settings. We mainly focus

on federated learning and provide preliminary results in improving performance.

7.1 Synthetic data generation

Synthetic data generation can be an essential technique to increase the data amount in

limited training data settings. Different synthetic data-generating methods include

generative adversarial networks (GAN) (Goodfellow et al., 2020), diffusion models

(Sohl-Dickstein et al., 2015), and stable diffusion (Rombach et al., 2022). GANs

train a generator and discriminator model simultaneously, where the discriminator

aims to detect synthetically generated examples. Diffusion models impose hierarchical

autoencoder models to have an iterative process. Recently, stable diffusion further

advances diffusion models and tackles high-resolution images. We refer to surveys for

a detailed investigation (Nikolenko, 2019; Lu et al., 2023).

Potential benefits.

• Currently, stable diffusion generates very real-looking images. Using real-looking

synthetic images might boost the performance.

• The same idea can be extended to non-federated learning settings where the

data is limited.

Potential issues.
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• Data generation is usually slow for stable diffusion models. We want to inves-

tigate more on the fast inference of data generation techniques to be used in

federated learning.

• Generating images based on client data might lead to privacy problems. For

instance, (Carlini et al., 2023) can generate an image almost identical to the

training data. Such information leakage would raise privacy concerns in feder-

ated learning.

7.2 Improving generalization with side losses

The data in each client is limited in federated learning, and a DNN easily overfits

if proper precautions are not taken. We prose to prevent overfitting by utilizing

already in-use side objectives from different disciplines. We plan on incorporating

two different losses explained in the following paragraphs.

Robustness. We plan to add a robustness loss similar to the ones in self-

supervised learning methods (Chen and He, 2021; Grill et al., 2020). Robustness

loss aims to align the predictions of two different data augmentations of the same

image, allowing the model to be robust to the augmentations that promote the gen-

eralization.

How to do it? While we can use sophisticated constrained optimization techniques,

we preliminary show results on a simple fixed Lagrangian setting by adding the ro-

bustness loss to the cross-entropy loss for each device. We leave the investigation as

future work.

Distillation. We slightly change the problem and assume that a more powerful

teacher model is available to the clients during training. We add distillation loss in

the cross-entropy training. We motivate this problem in the following paragraphs.



106

Would clients have resources for the teacher model? Clients would only forward

propagate data using the teacher model, which costs less than backward propagation.

Hence, clients can support a more complex architecture if the teacher requires similar

resources as backpropagating the client model.

Is this a practical problem? Consider a setting where we would like to customize

models for each client using a small number of gradient steps, as in MAML (Finn

et al., 2017). In such a setting, an already trained teacher model can not be used

for the clients since fine-tuning the teacher model is not supported due to its size.

Therefore, we need to train a simpler client model with the help of the teacher model.

How to do it? We test the naive idea of using the vanilla KD distillation loss

(Hinton et al., 2015) during the local training instead of cross-entropy loss. We can

use novel ideas like DiSK (Kag et al., 2023) or SimKD (Chen et al., 2022). We leave

the investigation as future work.

Finally, we can combine the robustness and the distillation to improve the per-

formance further. The modifications explained modify the local cross-entropy loss.

Utilizing advanced federated learning algorithms such as FedDyn (Acar et al., 2021a)

lead to better models.

7.2.1 Definition and Loss Formulation

We follow a similar notation as in Chapter 2. We target the following objective,

arg min
w∈Rd

 1

m

∑
k∈[m]

Lk(w)

 ; Lk(w) =
1

Nk

∑
i∈[Nk]

ℓ(w; (xi
k, y

i
k)) (7.1)

where, m is number of devices, w is the parameter vector of the neural network model,

ℓ is cross-entropy loss, {xi
k, y

i
k}i∈[Nk] is the local dataset at device k and Lk(w) is the

kth device’s empirical loss. Chapter 2 introduces FedDyn as a communication-efficient

way to solve the federated learning problem with provable convergence guarantees.
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This chapter changes the local losses using robustness and distillation. We sum-

marize the local loss changes in the following.

Robustness. We add a loss that penalizes different model outputs for two aug-

mentations of the same data point. Briefly, during training, we change the local loss

at device k to,

α

 1

Nk

∑
i∈[Nk]

ℓ(w; (xi
k, y

i
k))


+ (1− α)

 1

Nk

∑
i∈[Nk]

Ex̂i
k,ẋ

i
k∼T (xi

k)
τ 2KL

(
wτ
(
ẋi
k

)
,wτ

(
x̂i
k

)) (7.2)

where, τ is temperature parameter, x̂i
k and ẋi

k are different augmentations of the

same data point xi
k, wτ (x) is the softened model prediction probability vector for

datapoint x, the first term is the standard cross-entropy loss, the second term is the

robustness loss that aligns model outputs for different augmentations of the same

input, and α ∈ [0, 1] is a hyperparameter that trades offs between two terms.

Clarification for the cross-entropy loss. We also draw an augmentation of the data

points in constructing the local cross entropy loss in Eq. 7.1. Since data augmentation

is a common technique, it is not emphasized in the algorithm details in Chapter 2.

We explicitly state the augmentation for robustness loss since the construction uses

different augmentations by definition, but we keep the cross-entropy one as it is for

simplicity.

Distillation. Similar to robustness, we add vanilla distillation loss to prevent

overfitting. During training, we change the local loss at device k to,

α

 1

Nk

∑
i∈[Nk]

ℓ(w; (xi
k, y

i
k))

+ (1− α)

 1

Nk

∑
i∈[Nk]

τ 2KL
(
wτ
(
xi
k

)
,wτ

(
xi
k

)) (7.3)

where, τ is temperature parameter, w is the teacher model, wτ (x) is the softened
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output probability vector of the model on data point x, the first term is the standard

cross-entropy loss, the second term is the distillation loss that encourages the model

to follow softened teacher outputs, and α ∈ [0, 1] is a hyperparameter that trades offs

between two terms.

Robustness and Distillation. In experiments, we first separately test the ro-

bustness and the distillation losses. We further combine both losses and try the

merged version. We give the integrated version as well for the sake of completeness.

During training, we change the local loss at device k to,

α

 1

Nk

∑
i∈[Nk]

ℓ(w; (xi
k, y

i
k))

+ (1− α)

 1

Nk

∑
i∈[Nk]

τ 2KL
(
wτ
(
xi
k

)
,wτ

(
xi
k

))
+ (1− α)

 1

Nk

∑
i∈[Nk]

Ex̂i
k,ẋ

i
k∼T (xi

k)
τ 2KL

(
wτ
(
ẋi
k

)
,wτ

(
x̂i
k

)) (7.4)

How to optimize the losses? We introduced some modifications in the local losses

for training. We can use any federated optimization method to train a server model,

such as FedAvg (McMahan et al., 2017a), or FedDyn (Acar et al., 2021a).

7.2.2 Experiments

We test the proposed variations using a real-world dataset. We give the details of the

experiment in the following paragraphs.

Dataset. We use CIFAR100 (Krizhevsky, 2009) as our dataset in the experiments.

We split the dataset identically and independently into 100 devices, where each device

gets a random 5 data points per class in a total of 500. We activate 10% of the devices

during federated learning training in each participation round.

Model architecture. We use PreActResNet (He et al., 2016b) as our client

model. ResNet family operates on batch norm layers by definition, which store run-

ning mean and std estimates. Sharing running estimates might lead to privacy con-
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cerns, so we replace all batch norm layers with group norm (Wu and He, 2018) layers

that do not store running estimates. We use PreActResNet-18 (≈ 11M parameters)

as a client model. For distillation loss, we use PreActResNet-34 (≈ 21M parameters)

as a teacher model.

Methods. We test different variants of the optimization algorithms and the

losses. We report performances of:

• the standard FedAvg baseline with the standard cross-entropy loss,

• the FedDyn method with the standard cross-entropy loss,

• the FedAvg method with the robustness idea as the local losses in Eq. 7.2,

• the FedAvg method with the distillation idea as the local losses in Eq. 7.3, and

• combination of all ideas as the FedDyn method with the robustness and the

distillation idea as the local losses in Eq. 7.4.

Parameters. We use a batch size of 50, local epochs of 5, weight decay of

5 × 1e − 4, SGD optimizer, an initial learning rate of 0.1, learning rate decay of

0.998 for each round a temperature parameter of 3.5 for robustness and distillation

variants. α parameter in the FedDyn method is set to 0.1. α trade-off parameter of

0.1 is used for Eq. 7.3 and Eq. 7.4. α trade-off parameter of 0.5 is used for Eq. 7.2.

We use extensive augmentation techinques as RandomCrop, ‘RandomHorizontalFlip‘,

AutoAugment (Cubuk et al., 2019), Cutout (DeVries and Taylor, 2017) with a window

size of 16, and Mean-Std-Normalization. We compare the federated models to the

centralized training. In centralized training, we use a batch size of 128, weight decay

of 5 × 1e − 4, a cosine scheduler learning rate where the initial learning rate is 0.1,

and train the model for 300 epochs.

Evaluation. Decreasing communication costs is the ultimate goal of federated

learning. To compare methods, we fix a common target test accuracy. Then, we
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Table 7.1: CIFAR100, 100 devices, 10% participation rate, IID split.
Comparison of methods. The number of communication rounds for
each method to get the same accuracy is reported. The gain to FedAvg
with cross-entropy baseline is given in parentheses.

Accuracy

FedAvg FedDyn FedAvg FedAvg FedDyn

CE CE Distillation Robustness
Distillation

Robustness

67.0 1634 (1.00) 419 (3.90) 403 (4.05) 808 (2.02) 250 (6.54)

66.0 1071 (1.00) 399 (2.68) 381 (2.81) 742 (1.44) 241 (4.44)

report the number of communication rounds to achieve the target accuracy for all

methods.

Results. We plot the convergence curves of the methods in Figure 7·1. We

report the corresponding number of communication rounds to achieve a common

target accuracy in Table 7.1.

Centralized training. If we centralize the dataset, the client model (ResNet18 with

group normalization layers) gets to 74.2% accuracy with cross-entropy training. The

model achieves 81.2% and 77.8% if we train using the distillation loss (Eq. 7.3) and

the robustness loss (Eq. 7.2), respectively.

FedDyn-based optimization gets to close centralized performance. FedDyn with

CE loss training achieves 71.8% accuracy at 1200 communication rounds, whereas

FedAvg with CE training can only get 66.4%. Similarly, FedDyn with distillation

and robustness losses training gets to 81.2% accuracy. FedDyn de-biases the local

training objective, leading to high communication savings to achieve near-centralized

performance levels.

Changing local loss from cross-entropy to distillation or robustness improves train-

ing. Keeping the optimization method as FedAvg and only changing cross-entropy

loss to distillation or robustness leads to high communication savings and better final

models. For instance, as reported in Table 7.1, FedAvg with the robustness loss leads
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Figure 7·1: CIFAR100, 100 devices, 10% participation rate, IID split.
Convergence curves.

to 2× gain over FedAvg with cross-entropy loss to achieve test accuracy of 67%. Fig-

ure 7·1 shows that FedAvg with the distillation loss achieves 75.8% accuracy, whereas

FedAvg with the cross-entropy loss gets to 66.4% accuracy.

Distillation leads to a better model compared to robustness. Table 7.1 and Fig-

ure 7·1 show that distillation is more powerful than robustness. One explanation is

that we can access a powerful teacher model for distillation-based training, whereas

robustness-based training only uses extra realizations of the augmentations. For in-

stance, Table 7.1 shows that FedAvg with distillation loss leads to 2× gain over

FedAvg with robustness loss to achieve 67% test accuracy.

FedDyn-based optimization with both losses gives the best model. Combining all
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innovations leads to the best model in training. Table 7.1 reports that FedDyn with

both distillation and robustness losses leads to a 6.5× gain over the standard baseline

of FedAvg with cross-entropy loss. Moreover, Figure 7·1 shows that FedDyn with

both distillation and robustness losses achieves as much as 81.2%, significantly higher

than other methods within the 1200 communication rounds.

Next Steps.We list potential next steps in the following.

• The experiments are conducted using naive variants of distillation and fixed La-

grangian ideas. Using more sophisticated ideas might improve the performance.

• Only the IID split is tested in the experiments. Comparing methods in more

challenging non-IID splits would make the differences between the methods

more straightforward.

• We use only the robustness idea to improve generalization without a power-

ful teacher. Testing with different loss formulations, such as stability, might

improve performance.



113

Chapter 8

Conclusions

This thesis focuses on the algorithms in limited data settings. Each chapter targets

a different problem and proposes solutions that avoid overfitting by training gen-

eralizable models. We test the proposed algorithms with real-world datasets and

show significant gains compared to the competitors. We highlight the benefits of our

approaches in the following.

• Chapter 2. Our proposed method, FedDyn, focuses on the data heterogeneity

problem in federated learning. As a solution, FedDyn adds a novel dynamic

regularizer to local loss functions for each device without any extra transmission

costs. We further give convergence guarantees of our method by being agnostic

to the heterogeneity levels.

• Chapter 3. Our method, PFL, targets the personalization problem in feder-

ated learning. Our solution has provable convergence guarantees for arbitrary

heterogeneous settings and further increases the users’ privacy by supporting

anonymization of the local label set.

• Chapter 4. We tackle the supporting different architectures problem in federated

learning and propose FedHen as a solution. FedHen places a hierarchy between

different architectures and trains simple architectures as a subset of the complex

ones in each device without increasing communication costs.

• Chapter 5. Our method, MOML, targets the memory footprint complexity
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problem in online meta-learning. MOML successfully summarizes the experi-

ments from earlier task rounds so that it discards the data of the earlier rounds,

preventing the memory footprint from growing linearly with more rounds. We

give a sub-linear regret analysis of our method.

• Chapter 6. We focus on the distillation problem where a powerful, already-

trained teacher model helps train a student model. Our proposed method,

DiSK, selectively distills knowledge from the teacher model on the learnable

training points and ignores the over-capacity information on the hard-to-learn

data points.

Finally, we mention some interesting future directions with preliminary results.

Chapter 7.1 is about improving training using the recent data generation techniques

with an application in federated learning. Chapter 7.2 proposes to change local losses

in federated learning and conducts a preliminary empirical investigation where our

approaches lead to significant communication gains.
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Appendix A

Appendix

A.1 Experiment Details and More Ablations

A.1.1 FedDyn

Synthetic Data

Dataset. We introduce a synthetic dataset to reflect different properties of FL by

using a similar process as in (Li et al., 2020a). The datapoints (xj, yj) of device i

are generated based on yj = arg max(θ∗
ixj + b∗i ) where xj ∈ R30×1, yj ∈ {1, 2, . . . 5},

θ∗
i ∈ R5×30, and b∗i ∈ R5×1. (θ∗

i , b
∗
i ) tuple represents the optimal parameter set for

device i and each element of these tuples are randomly drawn from N (µi, 1) where

µi ∼ N (0, γ1). The features of datapoints are modeled as (xj ∼ N (νi, σ)) where σ

is a diagonal covariance matrix with elements σk,k = k−1.2 and each element of νi

is drawn from N (βi, 1) where βi ∼ N (0, γ2). The number of datapoints in device i

follows a lognormal distribution with variance γ3. In this generation procees, γ1, γ2

and γ3 regulate the relation of the optimal models for each device, the distribution of

the features for each device and the amount of datapoints per device respectively.

We simulate different settings by allowing only one type of heterogeneity at a time

and disabling the randomness from the other two. For instance, if we want to disable

type 1 heterogeneity, we draw one single set of optimal parameters (θ∗, b∗) ∼ N (0,1)

and use it to generate datapoints for all devices. Similarly, νi is set to 0 to disable type

2 heterogeneity and γ3 is set to 0 to disable type 3 heterogeneity. We consider four
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settings in total, including type 1, 2, and 3 heterogeneous as well as a homogeneous

setting. The number of devices is set to 20 and the number of datapoints per device

is on average 200 in the generation process.

Models. We test FedDyn, SCAFFOLD, FedAvg and FedProx using a multiclass

logistic classification model with cross entropy loss. We keep batch size to be 10,

weight decay to be 10−5.

We test learning rates in [1, .1] and epochs in [1, 10, 50] for all three algorithms. α

parameter of FedDyn is chosen among [.1, .01, .001]; K parameter of SCAFFOLD is

searched in [20, 200, 1000] which corresponds to the same amount of computation us-

ing above epoch list; and µ regularization hyperparameter of FedProx in [0.01, .0001].

Table A.4 reports the number models transmitted relative to one round of FedAvg

to achieve the target training loss for best hyperparameter selection in various settings

with 10% device participation. As shown, FedDyn leads to communication savings

in each of the settings in range 1.1× to 7.6×.

Real Data

Datasets. MNIST, EMNIST-L, CIFAR-10 and CIFAR-100 are used for image clas-

sification tasks and Shakespeare dataset is used for a next character prediction task.

The image size is (1×28×28) in MNIST and EMNIST; (3×32×32) in CIFAR-10 and

CIFAR-100 with overall 10 classes in MNIST and CIFAR-10; 62 classes in EMNIST;

and 100 classes in CIFAR-100. We choose the first 10 letters from the letter section

of EMNIST (named it as EMNIST-L) similar to (Li et al., 2020a) work. Features in

Shakespeare dataset consists of 80 characters and labels are the following characters.

Overall, there are 80 different labels for datapoints.

We use the usual train and test splits for MNIST, EMNIST-L, CIFAR-10 and

CIFAR-100. The number of training and test samples of the benchmark datasets are

summarized in Table A.1.
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To generate IID splits, we randomly divide training datapoints and assign them

to devices. For non-IID splits, we utilize the Dirichlet distribution as in (Yurochkin

et al., 2019). Firstly, a vector of size equal to the number of classes are drawn using

Dirichlet distribution for each device. These vectors correspond to class priors per

devices. Then one label is sampled based on these vectors for each device and an

image is sampled without replacement based on the label. This process is repeated

until all datapoints are assigned to devices. The procedure allows the label ratios

of each device to follow a Dirichlet distribution. The hyperparameter of Dirichlet

distribution corresponds to statistical heterogeneity level in the device datapoints.

Overall, for a 100 device experiment, each device has 600, 480, 500 and 500 datapoints

in MNIST, EMNIST-L, CIFAR-10 and CIFAR-100 respectively. For these datasets,

three different federated settings are generated including an IID and two non-IID

Dirichlet settings with .6 and .3 priors. Figure A·3 shows the heterogeneity levels for

MNIST dataset in these different settings. The amount of most occurred class labels

that consume 40%, 60% and 80% of device data are shown in the histogram plots.

For example, every class label is equally represented in IID setting hence 4, 6 and

8 classes occupy 40%, 60%, and 80% of the local datapoints for each device. If we

consider non-IID settings, we see 80% of local data belongs to mostly 4 or 5 different

classes for Dirichlet .6; and 3 or 4 different classes for Dirichlet .3 settings.

To generate unbalanced data, we sample datapoint amounts from a lognormal

distribution. Controlling the variance of lognormal distribution gives unbalanced

data per devices. For instance, in CIFAR-10, balanced and unbalanced data settings

have standard deviation of data amounts among devices as 0 and 0.3 respectively.

LEAF (Caldas et al., 2018) is used to generate the Shakespeare dataset used in

this work. The LEAF framework allows to generate IID as well as non-IID federated

settings. The non-IID dataset is the natural split of Shakespeare where each device
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corresponds to a role and the local dataset contains this role’s sentences. The IID

dataset is generated by combining the sentences from all roles and randomly dividing

them into devices. In this work, we consider 100 devices and restrict number of

datapoints per device to 2000.

Models. We use fully connected neural network architectures for MNIST and

EMNIST-L. Both models take input images as a vector of 784 dimensions followed

by 2 hidden layers and a final softmax layer. The number of neurons in the hidden

layers are 200 and 100 for MNIST and EMNIST-L respectively. These models achieve

98.4% and 95.0% test accuracy in MNIST and EMNIST-L if trained on datapoints

from all devices. The model considered for MNIST is the same model used in original

FedAvg work (McMahan et al., 2017a).

For CIFAR-10 and CIFAR-100, we use a CNN consisting of two convolutional

layers with 64 5× 5 filters, two 2× 2 max pooling layers, two fully connected layers

with 394 and 192 neurons, and finally a softmax layer. The models achieve 85.2%

and 55.3% test accuracy in CIFAR-10 and CIFAR-100 respectively. Our CNN model

is similar to the used for CIFAR-10 in the original FedAvg work (McMahan et al.,

2017a), except that we don’t use Batch Normalization layers.

For the next character prediction task (Shakespeare), we use an LSTM. The model

converts an 80 character long input sequence to a 80×8 sequence using an embedding.

This sequence is fed to a two layer LSTM with hidden size of 100 units. The output

of stacked LSTM is passed to a softmax layer. Overall, this architecture achieves a

test accuracy of 50.8% and 51.2% in IID and non-IID settings, respectively, if trained

on data from all devices. We report both IID and non-IID performance here because

the datasets are randomly regenerated out of the whole Shakespeare writing hence

train and test split is different for both cases. This Neural Network model is the same

model used in the original FedProx study (Li et al., 2020a).
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In passing, we note here that, we are not after state of the art model performances

for these datasets, our aim is to compare the performances of these models in federated

setting using FedDyn and other baselines.

Hyperparameters. We consider different hyperparameter configurations for dif-

ferent setups and datasets. For all the experiments, we fix batch size as 50 for MNIST,

CIFAR-10, CIFAR-100 and EMNIST-L datasets and as 100 for Shakespeare dataset.

We note here that µ, α and K hyperparameters are used only in FedProx, FedDyn

and SCAFFOLD respectively. K is the equivalent of epoch for SCAFFOLD algorithm

and we searched K values to have the same amount of local computation as in other

methods. For example, if each device has 500 datapoints, batch size is 50 and epoch

is 10, local devices apply 100 SGD steps which is equivalent to K being 100.

MNIST. As for the 100 devices, balanced data, full participation setup, hyperpa-

rameters are searched for all algorithms in all IID and Dirichlet settings for a fixed 100

communication rounds. The search space consists of learning rates in [.1, .01], epochs

in [10, 20, 50], Ks in [120, 240, 600], µs in [1, .01, .0001] and αs in [.001, .01, .03, .1].

Weight decay of 10−4 is applied to prevent overfitting and no learning rate decay

across communications rounds is used. The selected configuration for FedAvg is .1

learning rate and 20 epoch; for FedProx is .1 learning rate and .0001 µ; for FedDyn

is .1 learning rate, 50 epoch and .01 α; and for SCAFFOLD is .1 learning rate and

600 K for all IID and Dirichlet settings. These configurations are fixed and their

performances are obtained for 500 communication rounds.

For the partial participation, 100 devices, balanced data setup, the selected con-

figuration for FedAvg is .1 learning rate and 10 epoch; for FedProx is .1 learning rate

and .0001 µ; for FedDyn is .1 learning rate, 50 epoch and .01 α; and for SCAFFOLD

is .1 learning rate and 600 K for all IID and Dirichlet settings except that α is chosen

to be .03 for 10% IID setting. 0.998 learning rate decay per communication round is
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used and weight decay of 10−4 is applied to prevent overfitting for all methods.

For the centralized model, we choose learning rate as .1, epoch as 150 and learning

rate is halved in every 50 epochs.

EMNIST-L. We used similar hyperparameters as in MNIST dataset. The configu-

ration for FedAvg is .1 learning rate and 20 epoch; for FedProx is .1 learning rate and

10−4 µ; for FedDyn is .1 learning rate, 50 epoch and 0.005 α; and for SCAFFOLD is

.1 learning rate and 500 K for all IID and Dirichlet full participation settings.

The selected configuration for FedAvg is .1 learning rate and 10 epoch; for FedProx

is .1 learning rate and .0001 µ; for FedDyn is .1 learning rate, 50 epoch; and for

SCAFFOLD is .1 learning rate and 500 K for all IID and Dirichlet partial settings.

α is chosen to be .003 for 10% and 1% IID; .005 for 10% Dirichlet .6 and 1% Dirichlet

.3 ; .001 for 1% Dirichlet .6 and .01 for 10% Dirichlet .3 settings. 0.998 learning

rate decay per communication round is used and weight decay of 10−4 is applied to

prevent overfitting for all methods.

For the centralized model, we choose learning rate as .1, epoch as 150 and learning

rate is halved in every 50 epochs.

CIFAR-10. The same hyperparameters are applied to all the CIFAR-10 experi-

ments, including: 0.1 for learning rate, 5 for epochs, and 10−3 for weight decay. The

learning rate decay is selected from the range of [0.992, 0.998, 1.0]. The α value is

selected from the range of [10−3, 10−2, 10−1] for FedDyn. The µs value is selected

from the range of [10−2, 10−3, 10−4].

For the centralized model, we choose learning rate as .1, epoch as 500 and learning

rate decay as .992.

CIFAR-100. The same hyperparameters are applied to the CIFAR-100 experi-

ments with 100 devices. including: 0.1 for learning rate, 5 for epochs, and 10−3 for

weight decay. The learning rate decay is selected from the range of [0.992, 0.998, 1.0].
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The α value is selected from the range of [10−3, 10−2, 10−1] for FedDyn. The µs value

is selected from the range of [10−2, 10−3, 10−4].

As for 500 device, balanced data, 10% participation, IID setup, .1 learning rate,

.0001 µ, 10−3 weight decay applied. Epochs in [2, 5] and corresponding Ks in [4,10]

searched. αs in [.1, .01, .001] are considered for FedDyn. Epoch of 2 is selected for

FedDyn, FedAvg and FedProx, K of 4 is selected for SCAFFOLD. .01 α value is

selected for FedDyn. The same parameters are chosen for 500 device, balanced data,

10% participation, Dirichlet .3 setup.

As for 100 device, unbalanced data, 10% participation, IID and Dirichlet .3 set-

tings, epoch of 2 is selected for FedDyn, FedAvg and FedProx, K of 20 is selected for

SCAFFOLD. .1 α value is applied for FedDyn. .0001 µ is used in FedProx.

For the centralized model, we choose learning rate as .1, epoch as 500 and learning

rate decay as .992.

Shakespeare. As for 100 devices, balanced data, full participation setup, the hy-

perparameters are searched with all combinations of learning rate in [1], epochs in

[1, 5], Ks in [20, 100], µs in [.01, .0001] and αs in [.001, .009, .01, .015]. Weight decay

of 10−4 is applied to prevent overfitting and no learning rate decay across communi-

cations rounds is used. The selected configuration for FedAvg is 1 learning rate and

5 epoch; for FedProx is 1 learning rate, 5 epoch and .0001 µ; for FedDyn is 1 learning

rate, 5 epoch and .009 α; and for SCAFFOLD is 1 learning rate and 100 K in IID

and non IID settings.

For the partial participation, 100 devices, balanced data setup, we choose 1 learn-

ing rate and 5 epoch for FedAvg; 1 learning rate, 5 epoch and .0001 µ for FedProx; 1

learning rate and 100 K for SCAFFOLD; and 1 learning rate and 5 epoch for FedDyn

in all cases. α is .015 and .001 for 10% and 1% settings respectively. No learning

rate decay is applied for 10% settings and a decay of .998 is applied for 1% settings.
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Weight decay of 10−4 is applied to prevent overfitting.

For the centralized model, we choose learning rate as 1, epoch as 150 and learning

rate is halved in every 50 epochs.

Additionally, we performed gradient clipping to prevent overflow in weights for all

methods. We found out that, this increases stability of algorithms.

Convergence Plots. We give convergence plots of experiments. The convergence

plots of moderate and large number of devices in different device distributions are

shown in Figure A·4 and A·5 for CIFAR-10 and CIFAR-100 datasets. Similarly,

convergence curves of different participation levels and distributions are plotted in

Figure A·6, A·7, A·8, A·9 and A·10 for all datasets. Finally, Figure A·12 and A·13

show convergence plots for balanced data and unbalance data in different device

distributions.

We emphasize that convergence curves show accuracy achieved with respect to

rounds communicated. However, the metric we want to minimize, the amount of

information transmitted, is not the same as number of communication rounds. For

instance, SCAFFOLD transmits two models including state of devices per communi-

cation round. This difference is accounted in the tables.

We observed that averaging all device models gives more stable convergence curves

hence we report the performance of the average model from all devices in each com-

munication round. We note that we do not modify the algorithms, this part is only

for reporting purposes.

Additional to experiments stated, we test our algorithm with a more complex

model. We consider ResNet18 (He et al., 2016a) structure on CIFAR-10 IID, 100

devices, balanced data, 10% participation setting. Batch normalization layers have

inherent statistics which can be problematic in FL. Therefore, we use group nor-

malization (Wu and He, 2018) instead of Batch normalization in ResNet18. The
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convergence curves are shown in Figure A·11. FedDyn still outperforms the baseline

methods in a higher capacity model setup.

Sensitivity Analysis of FedDyn

α is an important parameter of FedDyn. Indeed, it is the only hyperparameter of the

algorithm when devices have access to an optimization solver. In theory, α balances

two problem dependent constants as shown in Theorem 5, Theorem 6 and Theorem 7.

Consequently, optimal value of α depends on these constants. Since these constants

are independent of T , the value of α does not asymptotically affect convergence rate.

To test sensitivity, we consider CIFAR-10, IID, 100 devices, 10% participation

setting. Figure A·1.a shows convergence plots for different α configurations while

keeping all other parameters constant in FedDyn. Figure A·1.b presents the best

achieved test accuracy with respect to different α values. We see that best test

performance is obtained when α = 10−1. We note that all configurations converge,

but some of them converges to a better stationary points. This aligns with the theory

because we guarantee convergence to a stationary point.

(a) (b)

Figure A·1: CIFAR-10 - α sensitivity analysis of FedDyn.
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Comparison to A Full Participation Method

Recently, FedSplit (Pathak and Wainwright, 2020) is introduced to target non IID

data distributions among devices. The work simplifies FL setting by considering full

device participation. It characterizes FedAvg convergence and shows that FedAvg

should do only one step update per device in each round to achieve global minima if

device losses are different. In such cases, FedAvg becomes decentralized SGD. After

pointing out this inconsistency, FedSplit is given as a potential solution.

In this work, we aim to solve FL problem with four principle characteristic which

are partial participation due to unreliable communication links, massive number of

devices, heterogeneous device data and unbalanced data amounts per device. Partial

participation is a critical property, because, it is inconceivable that we will not be in

a situation where we have all devices participating in each round. However, FedSplit

does not support partial participation.

Nevertheless, we adapt FedSplit to partial participation setting with the following

changes. If a device is not active in the current round, its model zt+1
k = ztk and

its intermediate state z
t+ 1

2
k = z

t−1+ 1
2

k are frozen. For the server model, we have two

options. First option is to keep the server model as average of all device models,

xt = 1
m

∑
k∈m ztk, which is named as FedSplit All. Second option is to have the server

model as the average of only current round’s active devices xt = 1
|Pt|
∑

k∈Pt
ztk, which

is named as FedSplit Act. In passing, we do not claim that these modifications are

optimal.

For empirical evaluation, we consider CIFAR-10, 100 devices, 100% and 10%

participation settings. Figure A·2.a and A·2.b show comparison between FedSplit and

FedDyn for 100% and 10% participation levels respectively. FedSplit All and FedSplit

Act are the same in full participation setting hence shown as one method. We observe

that FedDyn performs better than FedSplit in both cases. We see that FedSplit All
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Table A.2: Number of parameters transmitted relative to one round
of FedAvg to reach target test accuracy for balanced data and unbal-
anced data in IID and Dirichlet .3 settings with 10% participation.
SCAFFOLD communicates the current model and its associated gra-
dient per round, while others communicate only the current model. As
such number of rounds for SCAFFOLD is one half of those reported.

Local Data Dataset Accuracy FedDyn SCAFFOLD FedAvg FedProx

Balanced

IID

CIFAR-10
84.5 637 1852(2.9×) 1000+(>1.6×) 1000+(>1.6×)
82.3 240 512(2.1×) 994(4.1×) 825(3.4×)

CIFAR-100
51.0 522 1854(3.6×) 1000+(>1.9×) 1000+(>1.9×)
40.9 159 286(1.8×) 822(5.2×) 873(5.5×)

Dirichlet (.3)

CIFAR-10
82.5 444 1880(4.2×) 1000+(>2.3×) 1000+(>2.3×)
80.7 232 594(2.6×) 863(3.7×) 930(4.0×)

CIFAR-100
51.0 561 1884(3.4×) 1000+(>1.8×) 1000+(>1.8×)
42.3 170 330(1.9×) 959(5.6×) 882(5.2×)

Unbalanced

IID

CIFAR-10
84.0 335 1152(3.4×) 1000+(>3.0×) 1000+(>3.0×)
82.3 213 548(2.6×) 834(3.9×) 834(3.9×)

CIFAR-100
53.0 386 1656(4.3×) 1000+(>2.6×) 1000+(>2.6×)
48.2 209 800(3.8×) 968(4.6×) 945(4.5×)

Dirichlet (.3)

CIFAR-10
82.5 524 1998(3.8×) 1000+(>1.9×) 1000+(>1.9×)
80.1 274 652(2.4×) 893(3.3×) 1000+(>3.6×)

CIFAR-100
52.0 503 1928(3.8×) 1000+(>2.0×) 1000+(>2.0×)
47.3 234 942(4.0×) 871(3.7×) 1000+(>4.3×)



127

Table A.3: Number of parameters transmitted relative to one round
of FedAvg to reach target test accuracy for 1% participation regime
in the IID, non-IID settings. SCAFFOLD communicates the current
model and its associated gradient per round, while others communicate
only the current model. As such number of rounds for SCAFFOLD is
one half of those reported.

Dataset Accuracy FedDyn SCAFFOLD FedAvg FedProx

IID

CIFAR-10
82.6 660 1544(2.3×) 892(1.4×) 1000+(>1.5×)
81.6 543 1150(2.1×) 603(1.1×) 707(1.3×)

CIFAR-100
39.8 409 1982(4.8×) 428(1.0×) 512(1.3×)
38.8 396 1862(4.7×) 392(1.0×) 454(1.1×)

MNIST
98.3 529 956(1.8×) 644(1.2×) 451(0.9×)
97.3 145 290(2.0×) 151(1.0×) 143(1.0×)

EMNIST-L
94.9 483 1136(2.4×) 826(1.7×) 1000+(>2.1×)
93.9 210 554(2.6×) 216(1.0×) 238(1.1×)

Shakespeare
43.0 170 460(2.7×) 188(1.1×) 151(0.9×)
42.0 148 342(2.3×) 149(1.0×) 142(1.0×)

Dirichlet (.6)

CIFAR-10
81.0 561 1510(2.7×) 977(1.7×) 841(1.5×)
80.0 436 1100(2.5×) 673(1.5×) 623(1.4×)

CIFAR-100
36.6 355 1996(5.6×) 341(1.0×) 352(1.0×)
35.6 342 1876(5.5×) 317(0.9×) 342(1.0×)

MNIST
98.2 486 1502(3.1×) 863(1.8×) 754(1.6×)
97.2 180 332(1.8×) 199(1.1×) 166(0.9×)

EMNIST-L
94.8 405 1230(3.0×) 504(1.2×) 1000+(>2.5×)
93.8 195 576(3.0×) 256(1.3×) 294(1.5×)

Dirichlet (.3)

CIFAR-10
79.0 590 1580(2.7×) 955(1.6×) 738(1.3×)
78.0 452 1272(2.8×) 653(1.4×) 497(1.1×)

CIFAR-100
36.1 343 1990(5.8×) 317(0.9×) 342(1.0×)
35.1 321 1866(5.8×) 294(0.9×) 314(1.0×)

MNIST
98.2 521 954(1.8×) 951(1.8×) 974(1.9×)
97.2 157 318(2.0×) 169(1.1×) 177(1.1×)

EMNIST-L
94.4 442 1860(4.2×) 481(1.1×) 1000+(>2.3×)
93.4 241 694(2.9×) 286(1.2×) 279(1.2×)

Non-IID

Shakespeare
43.8 158 388(2.5×) 159(1.0×) 153(1.0×)
42.8 143 318(2.2×) 146(1.0×) 145(1.0×)
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such as device 10 and 25 have non overlapping classes. After fixing the class list,

we distribute training and test data instances for each device based on its class list

without replacement from the training and test split of the original dataset. This

construction gives a training set of size 500 datapoints and a test set of size 100

datapoints for each device. Different from ACID, in ALID setting, we further permute

class labels for each device. We use the same label permutation for the training and

test dataset of a device.

Models. We use a convolutional network in our experiments similar to the one in

(McMahan et al., 2017a; Acar et al., 2021a). Our architecture has two convolutional

layers with 64 filter size and 5× 5 kernels. Each convolutional layers are followed by

a max pooling layer. After the second max pooling layer, we use two fully connected

layers of size 384 and 192 with ReLU activation. Finally, we use a softmax layer to

get predictions.

Hyperparameters. We fix the batch size as 50, the number of SGD steps as

K = 50, the learning rate as β = 0.1 and the weight decay as 0.001 in our experiments.

To avoid divergence, we set a learning rate decay across communication rounds as

0.997.

MAML adaptation has two hyperpameters. First one is the adaptation learning

rate which is used to customize to the device model (η). Second hyperparameter is

the number of gradient steps. This quantifies the number gradient updates to reach a

device model from the meta model. We search the adaptation learning rate in range

{0.1, 0.01} and the number of gradient steps in range {1, 5}.

Different from MAML, Proto adaptation is a non parametric adaptation and it

does not have extra hyperparameters.

Lastly, PFLDyn has α parameter. We search this parameters in range {0.1, 0.01}.

We run each method with the aforementioned hyperparameter search list for 100
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communication rounds. Then, we pick the best performing configuration for each

method and continue to run them for 1000 communication rounds.

Convergence curves. We give the convergence curves for CIFAR-10 and CIFAR-

100 in Figure A·14 and A·15 respectively. We see that PFL based methods using

Proto adaptation outperforms the baselines.

No personalization baselines strictly under-perform compared to personalization

methods which shows a need to do personalization. We further investigate a case

where no personalization methods are given a chance to personalize during inference

time. We note that this does not effect training procedure. In no personalization

baselines, the server model is used as the device model at each device without per-

sonalization. We consider another inference where the server model is personalized

at each device using Proto or MAML adaptation. We found out that Proto adap-

tation gives higher performance than MAML adaptation. However, the performance

is still worse than PFLDyn (Proto). We present no personalization baselines with

using direct server model and Proto adaptation in inference time as well as PFLDyn

(Proto) for CIFAR-10 and CIFAR-100 in Figure A·16 and A·17 respectively. Methods

that perform poorly are omitted from the plots. Even though customization during

inference time helps, PFLDyn (Proto) still outperforms the baselines.

The highest and the lowest level of personalization comparison. The Average

level personalization metric has been reported in Table 3.1 and 3.2. We report the

comparison of methods in the highest and the lowest level of personalization metrics

for ACID and ALID settings in Table A.5 and A.6 respectively. Similar to Table 3.1

and 3.2, PFLDyn (Proto) method outperforms (Fallah et al., 2020b).

Implementation best practices. We give some subtle details of the implementation

we think as useful practices in the following.

• No personalization baselines draw one batch of data at each round of SGD
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steps. Different from no personalization baselines, we draw two batches of data

for P-Avg (MAML), (Fallah et al., 2020b) and PFL based methods. For MAML

adaptation, first batch is used to customize the meta model into device model

and the second batch is used to take gradient with respect to the meta model as

in (Finn et al., 2017). For Proto adaptation, first batch is used to construct the

class representations ci,kw for all classes k in device i. Then, the second batch is

used to calculate the loss of this representation. The first and second batches

corresponds to support and query samples respectively according to (Snell et al.,

2017).

• During inference time, we adapt meta model using all available training data

data for each device. Namely, if MAML adaptation is used, the meta model is

updated with the gradient using all training data. In case of proto adaptation,

class representations are derived using all available training data. This is for

reporting purposes.

• Personalized federated learning is an iterative process where a global meta model

is updated over communication rounds. To increase stability of the algorithm,

we perform gradient clipping at each device in each round. This stabilizes the

cases where device meta models diverge.

• Gradient clipping increases stability. However, even with clipping some device

meta models can diverge. This failure in one device causes the server meta

model to diverge. To avoid this effect, we check each device before averaging

the parameters. If a device meta model has been diverged, we do not include

that device in our server model update. We found that this is a rare case but

it improves the stability of the algorithms.

• We report performance of the meta model in our tables and figures. There are
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two options for the meta model which are average of active device meta models

and average of all device meta models. We found that having average of all

devices meta models give smoother curves than former one. We note that this

is just for reporting purposes and we do not change the training dynamics.

Ablative Analysis of PFL

Analysis of α parameter. We test the sensitivity of α hyperparameter in CIFAR-

10, 5 class per device ALID setting using Proto adaptation. By freezing other hyper-

parameters, we train PFLDyn (Proto) models with α varies in a logarithmic range

as {10−2, 10−1.5, 10−1, 10−0.5, 100}. The highest average test accuracies obtained are

{89.0%, 89.5%, 90.0%, 89.9%, 89.0%}. The performances are close to each other as

such they differ within 1% for the α range.

miniImageNet dataset (Vinyals et al., 2016). We further compare the al-

gorithms in miniImageNet dataset. miniImageNet dataset is a subset of ImageNet

ILSVRC-2012 (Deng et al., 2009). There are a total of 100 classes where each class

has 600 images. The images in miniImageNet are more realistic and harder than

CIFAR-100. To use miniImageNet in personalized setting, we first split dataset into

training and test data points as such it becomes a dataset consists of 50000 training

and 10000 test points. Then, we repeat the federated dataset generation procedure

as explained in Appendix A.1.2.

We consider ALID, 5 classes per device setting with 100 deivices and 10% partic-

ipation ratio. Table A.7 shows the performances of methods. As seen in the table,

PFLDyn (Proto) leads to high communication savings.
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A.1.3 FedHen

Algorithm 8 Algorithm Decouple

1: Input: T , E, η, initial models w1
s,w

1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N ],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTraining (wt
c,Dj, E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from simple active devices,
18: wt+1

s = 1
|Zs|
∑

i∈Zs
wt+1

s,i

19: Set wt+1
c using weights from complex active devices,

20: wt+1
c = 1

|Zc|
∑

i∈Zc
wt+1

c,i

21: end for
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Algorithm 9 Algorithm NoSide

1: Input: T , E, η, initial models w1
s,w

1
c ,

2: for t = 1 . . . T do
3: Randomly sample active devices, Z ⊂ [N ],
4: Divide Z into simple and complex devices, Zs,Zc

5: # Client Optimization
6: for i ∈ Zs do
7: Receive the server simple model, wt

s,
8: wt+1

s,i = ClientTraining (wt
s,Di, E, η)

9: Transmit wt+1
s,i back to the server.

10: end for
11: for j ∈ Zc do
12: Receive the server complex model, wt

c,
13: wt+1

c,j = ClientTraining (wt
c,Dj, E, η)

14: Transmit wt+1
c,j back to the server.

15: end for
16: # Server Optimization
17: Set wt+1

s using weights from all active devices,

18: wt+1
s = 1

|Z|

(∑
i∈Zs

wt+1
s,i +

∑
j∈Zc

[
wt+1

c,j

]
M

)
19: Set wt+1

c ’s sub-net as the updated simple model,
20: [wt+1

c ]M = wt+1
s

21: Set rest of the wt+1
c using complex active devices,

22: [wt+1
c ]M′ = 1

|Z|c

∑
j∈Zc

[
wt+1

c,j

]
M′

23: end for

Decouple Algorithm. We present Decouple methods in Algorithm 8. Decouple

fully decouples simple and complex architecture training. We explain the method in

detail below.

In each round, a random subset of devices become active, Z. Z is then divided

into simple active and complex active device sets as Zs and Zc respectively. Sim-

ple active devices receive the server simple model. A local model is trained using

’ClientTraining’ method (Alg. 5). The trained model is transmitted back to the

server. Complex active devices follow a similar process where they receive the server

complex model. Then, a local model is trained using ’ClientTraining’ method. The

trained model is transmitted back to the server.
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The server simple model is constructed by averaging weights from all active simple

devices, {wt+1
s,i }i∈Zs . The server complex model is constructed using the all active

complex devices,
{
wt+1

c,j

}
j∈Zc

.

NoSide Algorithm. NoSide method is presented in Algorithm 9. We explain

the method in detail below.

In each round, a random subset of devices become active, Z. We divide set Z into

simple active and complex active device sets as Zs and Zc respectively. Simple and

complex device training is the same as in Decouple method where each active device

receive the current server model based on their capacity, then train a local model

using ’ClientTraining’ method and transmit the trained model back to the server.

The server step is the same as in FedHeN method. The server simple model

is constructed by averaging weights from all active devices, .i.e the simple de-

vices {wt+1
s,i }i∈Zs as well as the common sub-net of the complex active devices{[

wt+1
c,j

]
M

}
j∈Zc

. The common sub-architecture of the server complex model is set

equal to the constructed server simple model. The rest of the server complex model

is constructed by averaging the corresponding weights of the active complex models,

.i.e
{[

wt+1
c,j

]
M′

}
j∈Zc

.

Hyperparameters. We train each method for 1000 communication rounds. Each

active device trains models for E = 5 epochs with learning rate as η = 0.1. We use

SGD optimizer during training and clip gradients (at norm 10) to improve stability.

If a device model fails in training, .i.e gets NaN weights, we ignore that device in

server model construction only for that round. The methods are implemented using

PyTorch library (Paszke et al., 2019).

Figures and Algorithms. Decouple and NoSide are summarized in Algorithm

8 and 9 respectively. The convergence curves of FedHeN, Decouple and NoSide are

presented in Figure 4·1, A·18 and A·19.
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Reporting Results. Methods average only active devices to set server models.

This introduces noise in convergence curves and communication gain calculations. We

report/present model performances when we average all devices (all complex devices

for server complex model and all simple devices for server simple model). We note

that this is just for the reporting purposes and the training is performed as stated in

Algorithm 4, 8 & 9.

A.1.4 MOML

Experiment Details

We cover details of experiments in this section. We use PyTorch framework (Paszke

et al., 2019) to train and evaluate our models. MAML meta training is implemented

with Higher (Grefenstette et al., 2019) library. We explain the datasets and the

baselines used for evaluations. We implement FTML baseline since there is no official

implementation from (Finn et al., 2019).

Algorithm 6 stores a state as ∇f t−1 ◦ U t−1(wt). Updating this state requires one

full pass on the training dataset. To avoid this, we utilize the first order condition

stated in Eq. 5.10. Using the first order condition, we linearly update∇f t−1◦U t−1(wt)

states as ∇f t◦U t(wt+1) = ∇f t−1◦U t−1(wt)−α (wt+1−wt) in our implementation.

Performance metrics. We give details of CTM, LTM and Task Learning

Efficiency Metrics.

Current Task Metric (CTM). We consider the performance with respect to the

current revealed task. At each round, the meta model is adapted using the revealed

limited supervised data of the current task and the performance is recorded on the

test set. Since we are using the meta model trained on previous losses, this metric

shows how models perform in a new task. CTM corresponds to 1
T

∑T
t=1 f

t ◦ U t(wt)

performance where wt is the meta model that is not trained on loss t.
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Long-Term Task Metric (LTM). We consider the performance with respect to

previous tasks. At each round, the meta model is adapted using the revealed limited

supervised data of the each previous and the performance is recorded on the test set.

Then we compute the mean performance of all previous tasks as the LTM. Since we are

using the current meta model as a initialization of previous tasks, this metric measures

the ability of catastrophic forgetting. LTM corresponds to 1
T

∑T
t=1 f

t ◦ U t
(
wT+1

)
performance.

Task Learning Efficiency Metric. At each round before updating the meta model,

we record the number of data points required to achieve a sufficient performance on

the current revealed task instance. For S-MNIST dataset, each task contains fixed

number training data samples. We randomly sample a subset of training data of

current task and adapt the meta model on this subset of data and record performance

on the test data of current task. We use [0, 10, 20, 30, 40, 50, 60] as the size of subset

where 0 means we directly test current task on meta model. For CIFAR-100, we use

[0, 50, 100, 150, 200, 250] as the size of subset.

Task Learning Efficiency is recorded on top of the meta model trained on previous

losses. In this metric, we allow meta models to be updated using the current task.

It is a metric to measure the ability to adapt to a new task. Figure A·20 shows

comparison of smoothed task efficiency results of MOML, FTML and FS on both S-

MNIST and 5-way CIFAR-100 where shadow corresponds to the standard deviation

of multiple runs. In general, both meta learning methods need less number of data

samples to reach a threshold accuracy with more rounds. This means after revealing

more tasks, both methods improve Task Learning Efficiency. We note that FS is not

a meta learning methods as such its task efficiency does not improve with rounds as

expected.

MOML needs to see less data as new tasks arrive. For example, in S-MNIST,
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MOML requires maximum 45 datapoints to achieve 80% accuracy after 300 tasks

whereas FTML achieves the same point with 600 tasks. Similarly in CIFAR-100

dataset, MOML only needs 180 datapoints to achieve 55% accuracy after 110 rounds

which is better than FTML.

Hyperparameters. We use SGD optimizer with learning rate of 0.1 and with

weight decay of 10−3. The batch size is set to 10, 20, and 50 for S-MNIST, CIFAR-100,

and miniImageNet datasets respectively.

We notice that MOGD baseline improves if we do more than one gradient descent

update for meta backbone. Hence, we use K > 1 updates in the experiments. Similar

to other meta learning methods, we consider the number of gradient descent updates

as an hyper parameter for MOGD method.

We search K values in range {10, 20}, {100, 200}, and {100, 200} for S-MNIST,

CIFAR-100, and miniImageNet. In MAML adaptation, we consider the number of

gradient steps in {1, 5} and the adaptation learning rates in {0.1, 0.01}. Different

from these parameters, MOML has one extra parameter as α. We search α values in

range {1, 5, 10}, {1, 0.1.0.01}, and {0.1, 0.01, 0.001} for S-MNIST, CIFAR-100, and

miniImageNet respectively.

Algorithm 10 Hedge

Input: γ ∈ [0, 1], T, {ei}ni=1experts,p1 = [0, 1]n probability vector initialized to
uniform probability,
for t = 1, 2, . . . T do

Observe new loss and adaptation function f t, U t,
Suffer the average loss of the experts using pt as

∑n
i=1 p

t
if

t ◦U t(wt
i) where wt

i is
the recent model in expert ei,
Let experts update their model based on their configurations,
Update p vector as pt+1

i = 1
Z
pt
iγ

ℓti where Z =
∑n

i=1 p
t
iγ

ℓti and ℓti is the loss of
expert i in the current round.

end for

Parameter tuning. Tuning hyper parameters is a problem in online learning
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Algorithm 11 MOML ∇=0

Input: T,w1 = w1 = 0, α,K, β
for t = 1, 2, . . . T do

Output wt, reveal f t and U t, suffer f t ◦ U t(wt),
Rt(w) = α

2
∥w −wt∥2,

wt+1
1 = wt−1,

for k = 1, 2, . . . K do
wt+1

k+1 = wt+1
k − β

(
∇f t ◦ U t(wt+1

k ) +∇Rt(wt+1
k )

)
end for
wt+1 = wt+1

K+1,
wt+1 = 1

2
(wt + wt+1) ,

end for

as such we do not observe the tasks beforehand. To address this issue, we test the

methods using Hedge algorithm (Freund and Schapire, 1997). For each method, we

train experts using different configurations by changing the hyperparameters. Then,

we consider these experts as black boxes and run Hedge method, Algorithm 10, on

top of them. Hedge has one parameter γ that trade-offs the confidence on the experts.

We fix it to be γ = 0.1 in our setting.

Hedge algorithm allows us to avoid parameter tuning as such we do not set a con-

figuration in advance. However, it requires to train all experts in parallel. Our tables

are based on Hedge Algorithm as such we do not pick a hyperparameter configuration

instead, we report the configuration Hedge algorithm chooses in each round.

Further Ablative Analysis of MOML

Different Model Architectures. We examine the effect of the model architecture.

We consider 5-way CIFAR-100 setting and test the methods using with a model that

has 5 CNN layers different from the model with 2 CNN layers. Table A.8 shows the

results for this architecture. As seen from Table A.8, our results indicate that MOML

is superior to the competitors in this setting as well.

Non-overlapping Classes Experiment. We consider a setting where tasks
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have completely non-overlapping classes. We constructed tasks with 5 classes out of

CIFAR-100 dataset. Since the tasks are non-overlapping, we have in total 20 tasks.

Table A.9 shows the results for this non-overlapping class setting. We note that this

setting is not ideal. As such meta learning needs large number of tasks whereas there

are only 20 tasks. Nevertheless, MOML outperforms the competitors.

Ablation study on ∇ state. MOML introduces a regularizer Rt(w) (Eq. 5.6)

to modify task objectives. Rt(w) consists of two states which are ∇f t−1 ◦ U t−1(wt)

and wt. According to Proposition 5.2.1, w and w converge to the same model. The

linear term with ∇f t−1 ◦ U t−1(wt) state can be interpreted as an adjustment to the

optimization problem. To see the effect of this term, we test a variant of MOML where

this linear term is assumed to be 0 in Algorithm 11 . Table A.10 shows comparison

between original MOML and the variant with eliminating the linear term (MOML

[∇=0]) on S-MNIST and 5-way CIFAR-100 settings.

MOML is better than MOML ∇=0 variant. The linear term improves the perfor-

mance of MOML. For instance, in 5 way-CIFAR-100, there is an increase of 4.5%

in CTM accuracy as seen in Table A.10. This improvement is consistent with our

theory. As such the linear term debiases the current loss and it is essential in deriving

regret guarantees of MOML.

A.1.5 DISK

Details for Illustrative Example (1D Intervals)

Dataset Overview. We generate a synthetic toy dataset with one dimensional

features x ∈ [0, 9] and binary class labels y ∈ {Red,Blue}. We use σ(x) to denote

the sigmoid function with a scaled by parameter κ > 0, i.e., σ(x) = 1
1+exp(−κx)

.

Function Classes. Let H be the 1-interval function class parametrized by two
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variables {a, b}, i.e., for h ∈ H

h(x; a, b) = σ(x− a)− σ(x− b); 0 < a < b < 9

Similarly, let F be the 2-interval family parametrized by four variables {a, b, c, d},

i.e., for f ∈ F

f(x; a, b, c, d) = h(x; a, b) + h(x; c, d); 0 < a < b < c < d < 9

Note that any function in H behaves as an indicator for the interval (a, b). Similarly,

any function in F behaves as an indicator for two exclusive intervals {(a, b), (c, d)}.

Data Generation. We assume that the data is generated using the function

f ∗ ∈ F with parameters (a∗, b∗, c∗, d∗). Dataset is sampled with balanced data from

both classes. We label x as red if f ∗(x) < 0.5, otherwise we label the point as blue.

We sample 1000 i.i.d. data points as the training set and 100 data points as the test

set. Figure 6·1 shows the train data. We draw an independent validation set of 100

data points for hyper-parameter tuning.

Large Capacity Teacher T belongs to the 2-interval function class F and is

learnt with all the training data points. We learn the teacher with cross-entropy loss.

We use the SGD optimizer with momentum 0.9, learning rate 0.1, weight decay 0.01,

and minimize the loss for 200 epochs. Note that the teacher recovers the underlying

function f ∗ as shown by the two intervals in Figure 6·1.

Capacity Constrained Student S belongs to the 1-interval function class H

and it has access to all the training dataset. Note that best possible hypothesis in H

cannot recover the performance of the function f ∗ and hence the student will have to

settle on one of the many local minima. We show these minima as well the contour

plot for the student in the Figure 6·1. We learn the student with three different loss

functions ( cross-entropy LCE, vanilla KD Lτ,α
KD(s) , and DiSK Algorithm 7 ). We use
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similar training setup as the teacher in terms of the optimizer and training steps. For

DiSK method, our guide function g has similar capacity as the student but utilizes

the teacher features to learn the decision as to which points are hard-to-learn for the

student. For both, KD and DiSK, we scan the α hyper-parameter over the range

{0.0, 0.1, 0.5, 0.9, 1.0}. Similarly, we scan the temperature τ in the range {1, 2, 4}.

For DiSK, we scan the different hyper-parameters in the following ranges: (a)

τs ∈ {1, 2, 4}, (b) K ∈ {1, 2, 3}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λT ∈ {20, 50}, (e)

Budget δ ∈ {0.1, 0.05, 0.0}, and (f) λmax ∈ {1, 5, 10, 20, 50, 100, 1000}. We replace the

arg min in Algorithm 7, with three gradient steps.

Note that although the hyper-parameter scan looks daunting, the default hyper-

parameters: τs = τ (teacher temperature), K = 2, λmin = 0.1, λmax = 50, δ = 0.0

(approximate error of the global minima), λT = 50, work well in this setup as well as

the 2D gaussian example described below.

Vanilla KD suffers from local minima. The loss landscape of the Vanilla

KD contains many local minima (see Figure 6·1(b)). Since there is a big gap between

student and teacher capacity, the teacher is unable to help the student discern between

these bad minima. Hence, Vanilla KD leads to one of the bad local minima with high

probability (see Table 6.1).

DiSK removes bad local minima. In contrast, DiSK deletes harder points from the

landscape and as a result settles onto the global minima for S with high probability

(see Figure 6·1(c) and Table 6.1 where one cluster of blue points have been removed).

Note that this also removes bad minima from the S loss landscape. Finally, DiSK

learns the student that has the best performance.

Details for Illustrative Example (2D Gaussians)

Dataset Overview & Data Generation. We generate a synthetic toy dataset

with two dimensional features x ∈ R2 and three class labels y ∈ {Red,Green,Blue}.
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We generate six cluster centers. We assign a color to each cluster center and spread

input features around these centers. We list the cluster centers along with their class

labels as Red: (0, 0), Blue: (1.5, 0), Green: (3, 0), Blue: (0, 1.5), Green: (1.5, 1.5),

and Red: (3, 1.5).

Given a cluster center c , we draw input features x using a Gaussian ball with

radius r = 0.05 around the center using multi-variate Gaussian N (c, rI), where I is

the Identity matrix.

Figure 6·2.a shows the labelled data. We sample 1000 i.i.d. data points as the

training set and 1000 data points as the test set with equal representation from all

three classes.

Function Classes. We use two feed-forward neural networks as function classes

in this example. Let ϕ(·) denote the Batch-Norm followed by ReLU operation.

Let H be the two feed-forward layer neural network. Any h ∈ H can be written

as

h(x) = W2ϕ(W1x)

where W1 ∈ R2×2 and W2 ∈ R3×2. Note that h has only two neurons and hence a

very small network.

Let F be the three feed-forward layer neural network. Any f ∈ F can be written

as

f(x) = Ŵ3ϕ(Ŵ2ϕ(Ŵ1x))

where Ŵ1 ∈ R8×2, Ŵ2 ∈ R16×8 and Ŵ3 ∈ R3×2.

Note that f has 8 neurons in first and 16 neurons in the second layer. The final

layer in above networks is the classifier layer that transforms the features into the

class probabilities.

Large Capacity Teacher T is a 3 layer neural network with 8, 16 and 3 neurons.

In between each feed-forward layer, we have batch-norm and ReLU activation non-
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linearity. We point out that the teacher being an over-parameterized network in this

feature space, easily learns the correct decision boundary. We show this decision

boundary in the Figure 6·2.a. We learn the teacher with cross-entropy loss. We use

the SGD optimizer with momentum 0.9, learning rate 0.1, weight decay 0.01, and

minimize the loss for 200 epochs.

Capacity Constrained Student S is a 2 layer neural network with 2 and 3

neurons. Similar to the teacher, we have batch-norm and ReLU non-linearity in

between the feed-forward layers. Since the student is severely constrained as compared

to the teacher, it suffers in learning the task. Different training runs lead to some

popular local minima. We show the teacher solution as well as the student local

minima in Figure 6·2.a. For DiSK method, our guide function g has similar capacity

as the student but utilizes the teacher features to learn the decision as to which points

are hard-to-learn for the student. The contour plots for the student models under

KD loss and DiSK loss are shown in Figure 6·2.b-6·2.c using the visualization toolkit

described in (Li et al., 2018). We following similar setup for hyper-parameter tuning

as in Sec. A.1.5.

We see a similar result as in 1D example. KD suffers from bad local minima and

converges to the global minima with only 43% of the initializations. Differently, DiSK

escapes the local minima solutions and focus on the learnable part of the input space

as shown in Figure 6·2.c. Our method converges to the global minima with very high

probability ( see Table 6.1).

Dataset Details

We use publicly available CIFAR-100 (Krizhevsky, 2009), Tiny-Imagenet (Le and

Yang, 2015) and ImageNet-1K (Russakovsky et al., 2015) datasets. CIFAR-100 con-

tains 50K training and 10K test images from 100 classes with size 32× 32× 3. While

Tiny-Imagenet contains 100K training and 10K test images from 200 classes with size
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64×64×3. Imagenet contains 1.2M training and 100K test images from 1000 classes

with size 224× 224× 3.

For the CIFAR-100 and Tiny-Imagenet datasets, we use data augmentations in-

cluding ‘RandomCrop‘, ‘RandomHorizontalFlip‘, ‘AutoAugment‘(Cubuk et al., 2019),

‘Cutout‘ (DeVries and Taylor, 2017), and ‘Mean-Std-Normalization‘. We use the same

augmentation strategy in all our experiments, across baselines and different model

families.

For the Imagenet-1K dataset, following the previous work (Chen et al., 2022), we

use the ‘RandomCrop‘, ‘RandomHorizontalFlip‘, and ‘Mean-Std-Normalization‘.

Model Details

In this section, we list the model characteristics as well as their accuracy obtained

using standard cross-entropy (CE) loss. Table A.11 lists all the models used in large

capacity mismatch setting. While Table A.12 lists all the models in the small capacity

mismatch setting. Below, we describe individual model for completeness.

Large Student-Teacher Capacity Mismatch All models in the Table A.11

belong to the same ResNet family and use the standard ‘BasicBlock‘ as the building

block. It consists of a convolutional block, followed by four residual block stages, fol-

lowed by the adaptive average pooling layer and the classifier layer. Different capacity

models in this family differ only in the number of repetitions of the residual block

and the number of filters in each stage. Below, we write the different of repetitions

and the number of filters for the four different residual stages.

• ResNet34 : [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [3, 4, 6, 3].

• ResNet18 : [64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [2, 2, 2, 2].

• ResNet10 :[64, 128, 256, 512] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].
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• ResNet10-ℓ : [32, 64, 128, 256] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].

• ResNet10-m : [16, 32, 64, 128] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].

• ResNet10-s : [8, 16, 32, 64] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].

• ResNet10-xs : [8, 16, 16, 32] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].

• ResNet10-xxs : [8, 8, 16, 16] filters and repeats the ‘BasicBlock‘ [1, 1, 1, 1].

Small Student-Teacher Capacity Mismatch Definitions of all models in the

Table A.12 are borrowed from (Chen et al., 2022). We refer the reader to their official

github repository (https://github.com/DefangChen/SimKD.git) for the exact def-

inition. We trained these models on our end using the data augmentations mentioned

above and found that our cross-entropy baseline as well as the vanilla KD baselines

are much better than the ones reported in their work.

Guide Function Our guide function g is a three layer feed-forward network. It

uses the last layer features and logits of the teacher as the input. It has 64, 128, and

1 neurons in the three layers. We include batch-norm followed by ReLU non-linearity

between these layers. The final layer contains a sigmoid activation to contain the

scaler output in the range [0, 1].

Warm Start We note that we warm start each student model by first training

them with cross entropy loss without teacher. We observe that the warm start benefits

both DiSK and KD. Note that, we do not change the algorithms. We only start from

a CE pre-trained student model.

Hyper-parameters

For both, KD and DiSK, we scan the α over the range {0.0, 0.1, 0.5, 0.9, 1.0}. As per

recommendations from previous works(Chen et al., 2022; Cho and Hariharan, 2019;

Tung and Mori, 2019), we use τ = 4 as the temperature in Eq. 6.1.
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For DiSK, we scan the different hyper-parameters in the following ranges: (a)

τs ∈ {1, 2, 4}, (b) K ∈ {1, 3, 5, 10, 20, 50}, (c) λmin ∈ {0.01, 0.1, 1, 5, 10}, (d) λmax ∈

{1, 5, 10, 20, 50, 100, 1000}, (e) Budget δ within 0.2 distance from the cross-entropy

trained student model’s error, and (f) λT ∈ {20, 50}. We replace the arg min in the

Algorithm 7, with three SGD steps over the entire dataset. For all our experiments

(both KD and DiSK), we use the popular cosine learning rate scheduler for the SGD

optimizer 0.1 learning rate, 0.9 momentum and 5e − 4 weight decay. We use 200 as

the batch size.

Note that the default hyper-parameters: τs = τ (teacher temperature), K = 20,

λmin = 0.1, λmax = 50, δ = approximate error of the global minima (replaced by the

cross-entropy error), λT = 50, work well in most of our experiments.

We point out that the denominator N in the budget constraint should be cali-

brated for the correct numerical implementation. Instead of N we use the number of

wrong student predictions as the normalizer, i.e.,
∑N

i=1 yi ̸= arg maxy sy(xi) as this is

the term that appears in the Eq. 6.2 alongside the g term in the budget constraint.

We note that we use similar parameters to train with CE in ResNet based models.

Improving CE training would improve DiSK and KD as well since both are initialized

with the CE trained model.

Different Experiment Setups

Scaling upto ImageNet setting. We show that DiSK scales easily to the large-scale

ImageNet-1K dataset. We train two configurations with DiSK, namely (a) ResNet18

student and ResNet50 teacher, and (b) ViT-Tiny student and ViT-Large teacher. We

borrow these models from the timm(Wightman, 2019) library. Table A.13 shows the

DiSK performance on these two configurations along with the baseline. It clearly

shows that DiSK scales well to ImageNet-1K setup and achieves significant improve-

ments over the baselines.
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Extensions beyond Vanilla KD.

In this section, we discuss potential extension of our method beyond Vanilla KD to

feature based distillation as well as self-supervised distillation.

Feature based KD methods. Let fs and ft denote the features for the student

and teacher respectively and Ψ denote the operator such that Ψ(fs) lies in the same

feature space as ft . Commonly used feature transfer strategy is to minimize the

distance between these two representations via loss function such as mean-squared

error as shown below by the loss Lft.

Lft = − 1

N

N∑
i=1

∥Ψ(fs(xi))−ft(xi)∥2; Lft−g = − 1

N

N∑
i=1

(1−g(xi))∥Ψ(fs(xi))−ft(xi)∥2

(A.1)

A simple extension of this feature alignment loss to the selective distillation is shown

by the loss Lft−g that weighs each data point with the helper function decision.

Table A.14 shows this feature matching extension for the SimKD(Chen et al., 2022)

scheme. We leave question of finding better selective distillation losses in feature

alignment to future work.
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Table A.5: The number of model transmissions relative to one round
of (Fallah et al., 2020b) required to reach the target test accuracy for
the highest and the lowest level personalization performance in the Ac-
tive Class Induced Diversity (ACID) scenario. Target accuracies are
selected among the highest accuracy of our methods and the highest
accuracy of the competing method (Fallah et al., 2020b). The meth-
ods without personalization are omitted due to their poor performance
levels. The best method is highlighted and gain with respect to (Fallah
et al., 2020b) method is shown.

Test Performance Dataset Accuracy (Fallah et al., 2020b)
PFLDyn PFLDyn PFLScaf PFLScaf P-Avg

Gain
(Proto) (MAML) (Proto) (MAML) (Proto)

Highest Level
Personalization

3 Classes per Device

CIFAR-10
100.0 381 83 111 118 874 154 4.6×
99.0 106 64 86 106 186 54 2.0×

CIFAR-100
100.0 >1000 144 388 >1000 >1000 539 >7.0×
99.0 312 76 170 990 990 112 4.1×

5 Classes per Device

CIFAR-10
99.0 297 199 265 680 886 352 1.5×
98.0 221 114 199 224 518 170 1.9×

CIFAR-100
99.0 >1000 463 168 148 >1000 294 >6.0×
98.0 121 165 166 92 532 60 2.0×

7 Classes per Device

CIFAR-10
96.0 358 142 134 422 656 170 2.7×
95.0 288 123 128 336 646 161 2.3×

CIFAR-100
98.0 363 286 >1000 532 >1000 397 1.3×
97.0 329 285 320 370 >1000 281 1.2×

Lowest Level
Personalization

3 Classes per Device

CIFAR-10
80.0 >1000 522 638 780 >1000 483 >2.1×
79.0 512 312 211 474 >1000 482 2.4×

CIFAR-100
75.0 >1000 254 949 750 750 714 >3.9×
66.0 950 127 365 660 660 275 7.5×

5 Classes per Device

CIFAR-10
76.0 >1000 240 698 982 >1000 284 >4.2×
75.0 585 207 159 582 892 213 3.7×

CIFAR-100
71.0 857 238 150 674 >1000 848 5.7×
70.0 817 235 148 510 >1000 284 5.5×

7 Classes per Device

CIFAR-10
77.0 782 180 306 708 >1000 487 4.3×
76.0 409 123 305 492 742 393 3.3×

CIFAR-100
73.0 >1000 195 287 616 >1000 825 >5.1×
71.0 307 160 252 362 672 538 1.9×
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Table A.6: The number of model transmissions relative to one round
of (Fallah et al., 2020b) required to reach the target test accuracy for
the highest and the lowest level personalization performance in the
Anonymous Label Induced Diversity (ALID) scenario. Target accura-
cies are selected among the highest accuracy of our methods and the
highest accuracy of the competing method (Fallah et al., 2020b). The
methods without personalization are omitted due to their poor perfor-
mance levels. The best method is highlighted and gain with respect to
(Fallah et al., 2020b) method is shown.

Test Performance Dataset Accuracy (Fallah et al., 2020b)
PFLDyn PFLDyn PFLScaf PFLScaf P-Avg

Gain
(Proto) (MAML) (Proto) (MAML) (Proto)

Highest Level
Personalization

3 Classes per Device

CIFAR-10
100.0 >1000 84 92 126 216 173 >11.9×
99.0 153 59 73 86 114 83 2.6×

CIFAR-100
100.0 >1000 133 685 342 >1000 184 >7.5×
97.0 134 30 49 62 126 44 4.5×

5 Classes per Device

CIFAR-10
99.0 >1000 110 641 478 >1000 547 >9.1×
96.0 123 79 99 172 360 78 1.6×

CIFAR-100
100.0 >1000 683 445 >1000 >1000 628 >2.2×
97.0 552 122 143 124 446 41 13.5×

7 Classes per Device

CIFAR-10
98.0 >1000 245 475 432 >1000 350 >4.1×
91.0 343 70 83 138 300 74 4.9×

CIFAR-100
94.0 >1000 185 450 272 968 225 >5.4×
88.0 948 63 144 120 478 82 15.0×

Lowest Level
Personalization

3 Classes per Device

CIFAR-10
73.0 >1000 114 813 350 >1000 278 >8.8×
69.0 710 100 250 280 586 166 7.1×

CIFAR-100
73.0 >1000 192 721 662 >1000 692 >5.2×
61.0 391 78 256 188 846 109 5.0×

5 Classes per Device

CIFAR-10
72.0 >1000 100 245 306 988 263 >10.0×
61.0 349 60 68 142 292 55 6.3×

CIFAR-100
69.0 >1000 330 634 552 >1000 209 >4.8×
64.0 896 258 243 300 898 153 5.9×

7 Classes per Device

CIFAR-10
75.0 >1000 177 423 546 >1000 241 >5.7×
63.0 402 54 74 130 276 60 7.4×

CIFAR-100
65.0 >1000 165 400 206 >1000 155 >6.5×
56.0 934 58 231 104 434 65 16.1×
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(a) (b)

(c) (f)

Figure A·19: Test accuracy vs. communication rounds on CIFAR-10.
a & b: IID split simple and complex. c & d: non-IID split simple and
complex.
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(a) (b)

Figure A·20: Experiment results of Task Learning Efficiency. (a): S-
MNIST with efficiency threshold as 80%, (b): 5-way CIFAR-100 with
proficiency threshold as 55%.

Table A.11: Models used in large capacity mismatch setting along
with storage and computational requirements.

Architecture
CIFAR-100 Tiny-Imagenet

CE Acc. MACs Params CE Acc. MACs Params

Teacher

ResNet10-ℓ 71.99 64M 1.25M 52.14 255M 1.28M

ResNet10 75.25 253M 4.92M 56.04 1013M 5M

ResNet18 76.56 555M 11.22M 62.48 2221M 11.27M

ResNet34 80.46 1159M 21.32M 63.06 4637M 21.38M

Student

ResNet10-xxs 32.05 2M 13K 17.44 8M 15K

ResNet10-xs 42.99 3M 28K 25.89 12M 31K

ResNet10-s 52.16 4M 84K 34.65 16M 90K

ResNet10-m 65.24 16M 320K 44.74 64M 333K
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Table A.12: Models used in in small capacity mismatch setting along
with storage and computational requirements.

Architecture
CIFAR-100

CE Acc. MACs Params

Teacher
ResNet32x4 81.45 1083M 7.4M

Wide-ResNet-40-2 78.41 327M 2.25M

Student

ResNet8x4 73.89 177M 1.2M

ShuffleNetV2 73.74 44.5M 1.4M

Wide-ResNet-16-2 74.29 101M 700K

Wide-ResNet-40-1 72.81 83M 570K

MobileNetV2x2 69.24 22M 2.4M

Table A.13: Imagenet-1K: We pick some student and teacher con-
figurations to show that we can scale DiSK to ImageNet dataset with
significant improvements in Top-1 accuracy. We borrow model defi-
nitions from timm(Wightman, 2019) repository including the convolu-
tional and transformer vision models.

Teacher Student CE KD DiSK

ResNet50 ResNet18 69.73 71.29 72.35

ViT-Large (Patch 16, Res. 224) ViT-Tiny (Patch 16, Res. 224) 75.45 - 77.86

Table A.14: DiSK performance against feature matching KD on
CIFAR-100: Similar setup as in Table 6.4. We integrate DiSK within
SimKD (Chen et al., 2022) (see Appx. A.1.5) The gains of using DiSK
over KD and using SimKD + DiSK over SimKD are reported. Feature
matching KD baselines are due to (Chen et al., 2022).

Architecture
Response Matching KD Feature Matching KD

Accuracy (%) Accuracy (%)

Teacher Student Teacher CE KD DiSK Gain FitNet SemCKD SimKD SimKD + DiSK Gain

Wide-ResNet-40-2
ResNet8x4

78.41
73.89 75.15 76.05 0.9 75.02 75.85 76.75 77.13 0.38

Wide-ResNet-40-1 72.81 74.44 75.92 1.48 74.17 74.4 75.56 76.21 0.65
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A.2 Proof of Theorems

A.2.1 FedDyn

Convex Analysis

Definition 1 Lk is L smooth if

∥∇Lk(x)−∇Lk(y)∥ ≤ L∥x− y∥ ∀x,y

Smoothness implies the following quadratic bound,

Lk(y) ≤ Lk(x) + ⟨∇Lk(x),y − x⟩+
L

2
∥y − x∥2 ∀x,y (A.2)

If {Lk}mk=1s are convex and L smooth we have

1

2Lm

∑
k∈[m]

∥∇Lk(x)−∇Lk(x∗)∥2 ≤ ℓ(x)− ℓ(x∗) ∀x (A.3)

−⟨∇Lk(x), z − y⟩ ≤ −Lk(z) + Lk(y) +
L

2
∥z − x∥2 ∀x,y, z (A.4)

where ℓ(x) = 1
m

∑m
k=1 Lk(x) and ∇ℓ(x∗) = 0.

We state convergence as,

Theorem 5 For convex and L smooth {Lk}mk=1 functions and α ≥ 25L, Algorithm 1

satisfies

E

[
ℓ

(
1

T

T−1∑
t=0

gt

)
− ℓ(w∗)

]

≤ 1

T

10α
∥∥w0 −w∗

∥∥2 + 100
m

P

1

α

 1

m

∑
k∈[m]

∥∇Lk(w∗)∥2
 = O

(
1

T

)

where gt = 1
P

∑
k∈Pt

wt
k, w∗ = argmin

w
ℓ(w).

If α = 30L
√

m
P

, we get the statement in Theorem 1. Throughout the proof, we

utilize similar techniques as in SCAFFOLD (Karimireddy et al., 2019) convergence.
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We define a set of variables which are useful in the analysis. Algorithm 1 freezes wk

and its gradients if the device is not active. Let’s define virtual {w̃t
k} variables as

w̃t
k = arg min

w
Lk(w)− ⟨∇Lk(wt−1

k ),w⟩+
α

2
∥w −wt−1∥2 ∀k ∈ [m], t > 0 (A.5)

We see that w̃t
k = wt

k if k ∈ Pt and w̃t
k doesn’t depend on Pt. First order condition

in Eq. A.5 and in device optimization give

w̃t
k −wt−1 =

1

α
(∇Lk(wt−1

k )−∇Lk(w̃t
k)) ∀k ∈ [m];

wt
k −wt−1 =

1

α
(∇Lk(wt−1

k )−∇Lk(wt
k)) ∀k ∈ Pt (A.6)

wt consists of active device average and gradient parts. Let’s express active device

average and its relation with the server model as,

gt =
1

P

∑
k∈Pt

wt
k; gt = wt +

1

α
ht (A.7)

Due to linear update of∇Lk, h state in the server becomes as ht = 1
m

∑
k∈[m]∇Lk(wt

k).

Let’s define some quantities that we would like to control.

Ct =
1

m

∑
k∈[m]

E∥∇Lk(wt
k)−∇Lk(w∗)∥2, ϵt =

1

m

∑
k∈[m]

E∥w̃t
k − gt−1∥2

Ct tracks how well local gradients of device models approximate the gradient of opti-

mal model. If models converge to w∗, Ct will be 0. ϵt keeps track of how much local

models change compared to average of device models from previous round. Again,

upon convergence ϵt will be 0.

After these definitions, Theorem 5 can be seen as a direct consequence of the

following Lemma,

Lemma 1 For convex and L smooth {Lk}mk=1 functions, if α ≥ 25L, Algorithm 1
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satisfies

E∥gt −w∗∥2 + κCt ≤ E∥gt−1 −w∗∥2 + κCt−1 − κ0E
[
ℓ(gt−1)− ℓ(w∗)

]
where κ = 8m

P
1
α

L+α
α2−20L2 , κ0 = 2 1

α
α2−20αL−40L2

α2−20L2

Lemma 1 can be telescoped in the following way,

κ0E
[
ℓ(gt−1)− ℓ(w∗)

]
≤
(
E∥gt−1 −w∗∥2 + κCt−1

)
−
(
E∥gt −w∗∥2 + κCt

)
κ0

T∑
t=1

E
[
ℓ(gt−1)− ℓ(w∗)

]
≤
(
E∥g0 −w∗∥2 + κC0

)
−
(
E∥gT −w∗∥2 + κCT

)
If α ≥ 25L, κ0 and κ become positive. By definition, we also have Ct sequences

as positive. Eliminating negative terms on RHS gives,

κ0

T∑
t=1

E
[
ℓ(gt−1)− ℓ(w∗)

]
≤ E∥g0 −w∗∥2 + κC0

Applying Jensen on LHS gives,

E

[
ℓ

(
1

T

T∑
t=1

gt−1

)
− ℓ(w∗)

]
≤ 1

T

1

κ0

(
∥g0 −w∗∥2 + κC0

)
= O

(
1

T

)
which proves the statement in Theorem 5.

Similar to fundamental gradient descent analysis, ∥gt−w∗∥2 is expressed as ∥gt−

gt−1 + gt−1 −w∗∥2 and expanded in the proof of Lemma 1. The resulting expression

has (gt − gt−1) and ∥gt − gt−1∥2 terms. To tackle these extra terms, we state the

following Lemmas and prove long ones at the end.

Lemma 2 Algorithm 1 satisfies

E
[
gt − gt−1

]
=

1

αm

∑
k∈[m]

E
[
−∇Lk(w̃t

k)
]
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Proof.

E
[
gt − gt−1

]
= E

[(
1

P

∑
k∈Pt

wt
k

)
−wt−1 − 1

α
ht−1

]

= E

[
1

P

∑
k∈Pt

(
wt

k −wt−1 − 1

α
ht−1

)]

= E

[
1

αP

∑
k∈Pt

(
∇Lk(wt−1

k )−∇Lk(wt
k)− ht−1

)]

= E

[
1

αP

∑
k∈Pt

(
∇Lk(wt−1

k )−∇Lk(w̃t
k)− ht−1

)]

= E

 1

αm

∑
k∈[m]

(
∇Lk(wt−1

k )−∇Lk(w̃t
k)− ht−1

)
=

1

αm

∑
k∈[m]

E
[
−∇Lk(w̃t

k)
]

where first equation is from definition in Eq. A.7. The following equations come

from Eq. A.6 and w̃t
k = wt

k if k ∈ Pt respectively. Fifth equation is due to taking

expectation while conditioning on randomness before time t. If conditioned on ran-

domness prior to t, every variable except Pt is revealed and each device is selected

with probability P
m

. Last one is due to definition of ht = 1
m

∑
k∈[m]∇Lk(wt

k). □

Similarly, ∥gt − gt−1∥2 is bounded with the following,

Lemma 3 Algorithm 1 satisfies

E∥gt − gt−1∥2 ≤ ϵt

Proof.

E∥gt − gt−1∥2 =E

∥∥∥∥∥ 1

P

∑
k∈Pt

(
wt

k − gt−1
)∥∥∥∥∥

2

≤ 1

P
E

[∑
k∈Pt

∥∥wt
k − gt−1

∥∥2]

=
1

P
E

[∑
k∈Pt

∥∥w̃t
k − gt−1

∥∥2] =
1

P

P

m

∑
k∈[m]

E
∥∥w̃t

k − gt−1
∥∥2 = ϵt
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where first equality comes from Eq. A.7. The following inequality applies Jensen.

Remaining relations are due to w̃t
k = wt

k if k ∈ Pt, taking expectation by conditioning

on randomness before time t and definition of ϵt.□

We need to further bound excess ϵt term arising in Lemma 3. We introduce two

more Lemmas to handle this term.

Lemma 4 For convex and L smooth {Lk}mk=1 functions, Algorithm 1 satisfies(
1− 4L2 1

α2

)
ϵt ≤ 8

1

α2
Ct−1 + 8L

1

α2
E
[
ℓ(gt−1)− ℓ(w∗)

]
Lemma 5 For convex and L smooth {Lk}mk=1 functions, Algorithm 1 satisfies

Ct ≤
(

1− P

m

)
Ct−1 + 2L2P

m
ϵt + 4L

P

m
E
[
ℓ(gt−1)− ℓ(w∗)

]
E [ℓ(gt−1)− ℓ(w∗)] terms constitute LHS of the telescopic sum. Let’s express

∥gt −w∗∥2 term as,

E∥gt−w∗∥2 = E∥gt−1 −w∗ + gt − gt−1∥2

=E∥gt−1 −w∗∥2 + 2E
[〈
gt−1 −w∗, g

t − gt−1
〉]

+ E∥gt − gt−1∥2

=E∥gt−1 −w∗∥2 +
2

αm

∑
k∈[m]

E
[〈
gt−1 −w∗,−∇Lk(w̃t

k)
〉]

+ E∥gt − gt−1∥2

≤E∥gt−1 −w∗∥2 +
2

αm

∑
k∈[m]

E

[
Lk(w∗)− Lk(gt−1) +

L

2
∥w̃t

k − gt−1∥2
]

+ E∥gt − gt−1∥2

=E∥gt−1 −w∗∥2 −
2

α
E
[
ℓ(gt−1)− ℓ(w∗)

]
+

L

α
ϵt + E∥gt − gt−1∥2 (A.8)

where we first expand the square term and use Lemma 2. Following inequality is due

to Eq. A.4.

Let’s scale Lemma 4 and 5 with α L+α
α2−20L2 and 8m

P
1
α

L+α
α2−20L2 respectively. We note

that the coefficients are positive due to the condition on α. Summing Eq. A.8, Lemma
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3, scaled versions of Lemma 5 and 4 gives the statement in Lemma 1. □

We give the omitted proofs here.

Lemma 6 ∀{vj}nj=1 ∈ Rd, triangular inequality satisfies∥∥∥∥∥
n∑

j=1

vj

∥∥∥∥∥
2

≤ n
n∑

j=1

∥vj∥2

Proof.

Using Jensen we get,
∥∥∥ 1
n

∑n
j=1 vj

∥∥∥2 ≤ 1
n

∑n
j=1 ∥vj∥2. Multiplying both sides with

n2 gives the inequality. □

Lemma 7 Algorithm 1 satisfies

E
∥∥ht
∥∥2 ≤ Ct

Proof.

E
∥∥ht
∥∥2 =E

∥∥∥∥∥∥ 1

m

∑
k∈[m]

∇Lk(wt
k)

∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥ 1

m

∑
k∈[m]

(
∇Lk(wt

k)−∇Lk(w∗)
)∥∥∥∥∥∥

2

≤ 1

m

∑
k∈[m]

E
∥∥∇Lk(wt

k)−∇Lk(w∗)
∥∥2 = Ct

First equality is due to server update rule of h vector; second adds (∇ℓ(w∗) = 0);

third applies Jensen Inq.; and last one is the definition of Ct. □

Proof of Lemma 4

ϵt =
1

m

∑
k∈[m]

E∥w̃t
k − gt−1∥2 =

1

m

∑
k∈[m]

E

∥∥∥∥w̃t
k −wt−1 − 1

α
ht−1

∥∥∥∥2
=

1

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w̃t

k)− ht−1∥2

=
1

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w∗) +∇Lk(w∗)−∇Lk(gt−1)

+∇Lk(gt−1)−∇Lk(w̃t
k)− ht−1∥2



173

≤ 4

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w∗)∥2 +

4

α2

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w∗)∥2

+
4

α2

1

m

∑
k∈[m]

E∥∇Lk(w̃t
k)−∇Lk(gt−1)∥2 +

4

α2
E∥ht−1∥2

≤ 4

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w∗)∥2 +

4

α2

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w∗)∥2

+
4

α2

1

m

∑
k∈[m]

E∥∇Lk(w̃t
k)−∇Lk(gt−1)∥2 +

4

α2
Ct−1

≤ 8

α2
Ct−1 +

4L2

α2
ϵt +

8L

α2
E
[
ℓ(gt−1)− ℓ(w∗)

]
where first and second come from Eq. A.7 and A.6. Following inequalities come from

Lemma 6, 7, smoothness and Eq. A.3. Rearranging terms gives the Lemma.□

Proof of Lemma 5

Ct =
1

m

∑
k∈[m]

E∥∇Lk(wt
k)−∇Lk(w∗)∥2

=

(
1− P

m

)
1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w∗)∥2

+
P

m

1

m

∑
k∈[m]

E∥∇Lk(w̃t
k)−∇Lk(w∗)∥2

=

(
1− P

m

)
Ct−1

+
P

m

1

m

∑
k∈[m]

E∥∇Lk(w̃t
k)−∇Lk(gt−1) +∇Lk(gt−1)−∇Lk(w∗)∥2

≤
(

1− P

m

)
Ct−1 +

2P

m

1

m

∑
k∈[m]

E∥∇Lk(w̃t
k)−∇Lk(gt−1)∥2

+
2P

m

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w∗)∥2

≤
(

1− P

m

)
Ct−1 +

2L2P

m
ϵt +

2P

m

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w∗)∥2

≤
(

1− P

m

)
Ct−1 +

2L2P

m
ϵt +

4LP

m
E
[
ℓ(gt−1)− ℓ(w∗)

]
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where first equality comes from taking expectation with respect to Pt; second equality

comes from definition of Ct. Inequalities follow from Lemma 6, smoothness and Eq.

A.3 respectively.□

Strongly Convex Analysis

We state convergence for µ strongly convex and L smooth {Lk}mk=1 functions as,

Theorem 6 For µ strongly convex and L smooth {Lk}mk=1 functions and

α ≥ max
(
5m
P
µ, 30L

)
, Algorithm 1 satisfies

E

[
ℓ

(
1

R

T−1∑
t=0

rtgt

)
− ℓ(w∗)

]

≤ 1

rT−1

20α
∥∥w0 −w∗

∥∥2 + 400
m

P

1

α

 1

m

∑
k∈[m]

∥∇Lk(w∗)∥2


where gt = 1
P

∑
k∈Pt

wt
k, r =

(
1 + µ

α

)
, R =

∑T−1
t=0 rt, w∗ = argmin

w
ℓ(w).

If α = max
(
5m
P
µ, 30L

)
we get the statement in Theorem 1. We will use the same

{w̃t
k}, gt, Ct, ϵt variables defined in Eq. A.5, A.6, A.7.

With these definitions in mind, Theorem 6 can be seen as a direct consequence of

the following Lemma,

Lemma 8 For µ strongly convex and L smooth {Lk}mk=1 functions,

if α ≥ max
(
5m
P
µ, 30L

)
, Algorithm 1 satisfies

r
(
E∥gt −w∗∥2 + κCt

)
≤ E∥gt−1 −w∗∥2 + κCt−1 − κ0E

[
ℓ(gt−1)− ℓ(w∗)

]
where κ = 8m(L+α)

z
,

κ0 = 2α3P+2α2Pµ−2α2mµ−40α2LP−80αL2P−40αLPµ+8αLmµ+16L2mµ−80L2Pµ
αz

,

z = α3P + α2Pµ− α2mµ− 20αL2P + 4L2mµ− 20L2Pµ, r =
(
1 + µ

α

)
.
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Let’s multiply Lemma 8 with rt−1 and telescope as,

κ0r
t−1E

[
ℓ(gt−1)− ℓ(w∗)

]
≤rt−1

(
E∥gt−1 −w∗∥2 + κCt−1

)
− rt

(
E∥gt −w∗∥2 + κCt

)
κ0

T∑
t=1

rt−1E
[
ℓ(gt−1)− ℓ(w∗)

]
≤
(
E∥g0 −w∗∥2 + κC0

)
− rT

(
E∥gT −w∗∥2 + κCT

)
If α ≥ max

(
5m
P
µ, 30L

)
, κ0 and κ become positive. Dividing both sides with

R =
∑T−1

t=0 rt and eliminating negative terms on RHS gives,

κ0
1

R

T∑
t=1

rt−1E
[
ℓ(gt−1)− ℓ(w∗)

]
≤ 1

R

(
E∥g0 −w∗∥2 + κC0

)
Applying Jensen on LHS gives,

E

[
ℓ

(
1

R

T∑
t=1

rt−1gt−1

)
− ℓ(w∗)

]
≤ 1

R

1

κ0

(
∥g0 −w∗∥2 + κC0

)
We have 1

R
= r−1

rT−1
≤ 1

rT−1 . Combining two inequalities, we get,

E

[
ℓ

(
1

R

T∑
t=1

rt−1gt−1

)
− ℓ(w∗)

]
≤ 1

rT−1

1

κ0

(
∥g0 −w∗∥2 + κC0

)
which proves the statement in Theorem 6.

The proof of Lemma 8 is similar to the convex analysis. We generalize Eq. A.4

to strongly convex functions for{Lk}mk=1s are µ strongly convex and L smooth as,

−⟨∇Lk(x), z − y⟩ ≤ −Lk(z) + Lk(y) +
L

2
∥z − x∥2 − µ

2
∥x− y∥2 ∀x,y, z (A.9)

Since strongly convex functions are convex functions and we only change Eq. A.4,
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we can directly use Lemma 2, 3, 4 and 5. Let’s rewrite ∥gt −w∗∥2 expression as,

E∥gt −w∗∥2 = E∥gt−1 −w∗ + gt − gt−1∥2

=E∥gt−1 −w∗∥2 + 2E
[〈
gt−1 −w∗, g

t − gt−1
〉]

+ E∥gt − gt−1∥2

=E∥gt−1 −w∗∥2 +
2

αm

∑
k∈[m]

E
[〈
gt−1 −w∗,−∇Lk(w̃t

k)
〉]

+ E∥gt − gt−1∥2

≤ 2

αm

∑
k∈[m]

E

[
Lk(w∗)− Lk(gt−1) +

L

2
∥w̃t

k − gt−1∥2 − µ

2
∥w̃t

k −w∗∥2
]

+ E∥gt−1 −w∗∥2 + E∥gt − gt−1∥2

=E∥gt−1 −w∗∥2 −
2

α
E
[
ℓ(gt−1)− ℓ(w∗)

]
+

L

α
ϵt −

µ

α

1

m

∑
k∈[m]

E∥w̃t
k −w∗∥2

+ E∥gt − gt−1∥2

≤E∥gt−1 −w∗∥2 −
2

α
E
[
ℓ(gt−1)− ℓ(w∗)

]
+

L

α
ϵt −

µ

α
E∥gt −w∗∥2

+ E∥gt − gt−1∥2 (A.10)

where we first expand the square term and use Lemma 2. Following inequalities use

Eq. A.9 and Lemma 9. Rearranging Eq. A.10 gives,

(
1 +

µ

α

)
E∥gt −w∗∥2

≤ E∥gt−1 −w∗∥2 −
2

α
E
[
ℓ(gt−1)− ℓ(w∗)

]
+

L

α
ϵt + E∥gt − gt−1∥2

(A.11)

Let’s define z = α3P + α2Pµ− α2mµ− 20αL2P + 4L2mµ− 20L2Pµ. Let’s scale

Lemma 4 and 5 with α(L+α)(Pα+Pµ−mµ)
z

and 8m(L+α)(α+µ)
αz

respectively. We note that

the coefficients are positive due to the condition on α. Summing Eq. A.11, Lemma

3, scaled versions of Lemma 5 and 4 gives the statement in Lemma 8. □

We give Lemma 9 and its proof here.
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Lemma 9 Algorithm 1 satisfies

− 1

m

∑
k∈[m]

E∥w̃t
k −w∗∥2 ≤ −E∥gt −w∗∥2

Proof.

E∥gt −w∗∥2 =E

∥∥∥∥∥ 1

P

∑
k∈Pt

(
wt

k −w∗
)∥∥∥∥∥

2

≤ 1

P
E

[∑
k∈Pt

∥∥wt
k −w∗

∥∥2]

=
1

P
E

[∑
k∈Pt

∥∥w̃t
k −w∗

∥∥2] =
1

m

∑
k∈[m]

E
∥∥w̃t

k −w∗
∥∥2

where first equality comes from Eq. A.7. The following inequality applies Jensen.

Remaining relations are due to w̃t
k = wt

k if k ∈ Pt and taking expectation by condi-

tioning on randomness before time t. Rearranging the terms gives the statement in

Lemma.□

Nonconvex Analysis

We state convergence for nonconvex L smooth {Lk}mk=1s as,

Theorem 7 For nonconvex and L smooth {Lk}mk=1 functions and α ≥ 20Lm
P
, Algo-

rithm 1 satisfies

E

[
1

T

T∑
t=1

∥∥∇ℓ(gt−1)
∥∥2]

≤ 1

T

3α
(
ℓ(w0)− ℓ∗

)
+ 30L3m

P

1

α

 1

m

∑
k∈[m]

E∥w0
k −w0∥2

 = O

(
1

T

)

where gt = 1
P

∑
k∈Pt

wt
k, ℓ∗ = min

w
ℓ(w).

If α = 30Lm
P

, we get the statement in Theorem 1. We will use {w̃t
k} and gt variables

as defined Eq. A.5, A.6, A.7. Since we aim to find a stationary in the nonconvex
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case, let’s define a new Ct and keep ϵt the same as,

Ct =
1

m

∑
k∈[m]

E∥wt
k − gt∥2, ϵt =

1

m

∑
k∈[m]

E∥w̃t
k − gt−1∥2

Similarly, Ct tracks how well local models approximate the current active device

average. Upon convergence Ct and ϵt will be 0.

Theorem 7 can be seen as a direct consequence of the following Lemma,

Lemma 10 For L smooth {Lk}mk=1 functions, if α ≥ 20Lm
P
, Algorithm 1 satisfies

E
[
ℓ(gt)

]
+ κCt ≤ E

[
ℓ(gt−1)

]
+ κCt−1 − κ0E

∥∥∇ℓ(gt−1)
∥∥2

where κ = 4L3P α+L
α

2m−P
z

, κ0 = 1
2α

α2P 2−4αLP 2−32L2m2−16L2Pm−24L2P 2

z
,

z = α2P 2 − 32L2m2 + 16L2Pm− 20L2P 2.

Lemma 10 can be telescoped as,

κ0E
∥∥∇ℓ(gt−1)

∥∥2 ≤ (E [ℓ(gt−1)
]
− ℓ∗ + κCt−1

)
−
(
E
[
ℓ(gt)

]
− ℓ∗ + κCt

)
κ0

T∑
t=1

E
∥∥∇ℓ(gt−1)

∥∥2 ≤ (E [ℓ(g0)
]
− ℓ∗ + κC0

)
−
(
E
[
ℓ(gT )

]
− ℓ∗ + κCT

)
If α ≥ 20Lm

P
, we have κ0 and κ as positive quantities. By definition, we also have

Ct sequences as positive. Eliminating negative terms on RHS and summing over time

give,

E

[
1

T

T∑
t=1

∥∥∇ℓ(gt−1)
∥∥2] ≤ 1

T

1

κ0

ℓ(w0)− ℓ∗ + κ

 1

m

∑
k∈[m]

E∥w0
k −w0∥2


which proves the statement in Theorem 5.

The proof of Lemma 10 builds on Eq. A.2 where we upper bound ℓ(gt) with

ℓ(gt−1). Eq. A.2 gives (gt − gt−1) and ∇ℓ(gt−1) on RHS. We state a set of Lemmas

to tackle these terms. We note here that Lemma 2 and 3 holds since ϵt is the same

as in convex case.
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To bound excess ϵt term, we introduce two more Lemmas as

Lemma 11 For L smooth {Lk}mk=1 functions, Algorithm 1 satisfies(
1− 4L2 1

α2

)
ϵt ≤ 8L2 1

α2
Ct−1 + 4

1

α2
E
∥∥∇ℓ(gt−1)

∥∥2
Lemma 12 For L smooth {Lk}mk=1 functions, Algorithm 1 satisfies

Ct ≤ 2
m− P

2m− P
Ct−1 + 2

P

2m− P
ϵt + 2

m

P
E
∥∥gt − gt−1

∥∥2
Using Eq. A.2 we get,

E
[
ℓ(gt)

]
− E

[
ℓ(gt−1)

]
− L

2
E∥gt − gt−1∥2 ≤ E

[〈
∇ℓ(gt−1), gt − gt−1

〉]
=

1

α
E

〈∇ℓ(gt−1),
1

m

∑
k∈[m]

−∇Lk(w̃t
k)

〉
≤ 1

2α
E

∥∥∥∥∥∥ 1

m

∑
k∈[m]

(
∇Lk(w̃t

k)−∇Lk(gt−1)
)∥∥∥∥∥∥

2

− 1

2α
E
∥∥∇ℓ(gt−1)

∥∥2
≤ 1

2α

1

m

∑
k∈[m]

E
∥∥∇Lk(w̃t

k)−∇Lk(gt−1)
∥∥2 − 1

2α
E
∥∥∇ℓ(gt−1)

∥∥2
≤L2

2α
ϵt −

1

2α
E
∥∥∇ℓ(gt−1)

∥∥2 (A.12)

where first equality uses Lemma 2. The following inequalities are due to ⟨a, b⟩ ≤
1
2
∥b + a∥2 − 1

2
∥a∥2, Jensen Inq. and smoothness.

Let’s define z = α2P 2− 32L2m2 + 16L2Pm− 20L2P 2 and scale Lemma 12, 3 and

11 with z0 = 4L3P α+L
α

2m−P
z

,

z1 = L
2

+ z0
2m
P

, and z2 = LP 2 α
2
L+α
z

respectively. We note that the coefficients are

positive due to the condition on α. Summing Eq. A.12, scaled versions of Lemma 3,

11 and 12 gives the statement in Lemma 10. □

Lastly, we note that the convergence analysis is given with respect to L2 norm in

the gradients. L2 norm arises in the analysis because Eq. A.2 has L2 norm due to
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our definition of smoothness. Furthermore, the analysis can be extended to different

norms. To do so, smoothness needs to be defined with respect to primal and dual

norms as in Eq. 3 in (Nesterov et al., 2020).

We give the omitted proofs here.

Proof of Lemma 11

ϵt =
1

m

∑
k∈[m]

E∥w̃t
k − gt−1∥2 =

1

m

∑
k∈[m]

E

∥∥∥∥w̃t
k −wt−1 − 1

α
ht−1

∥∥∥∥2
=

1

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(w̃t

k)− ht−1∥2

=
1

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(gt−1) +∇Lk(gt−1)

−∇Lk(w̃t
k)−∇ℓ(gt−1) +∇ℓ(gt−1)− ht−1∥2

≤ 4

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(gt−1)∥2 +

4

α2

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w̃t
k)∥2

+
4

α2
E∥∇ℓ(gt−1)∥2 +

4

α2
E∥∇ℓ(gt−1)− ht−1∥2

≤ 4

α2

1

m

∑
k∈[m]

E∥∇Lk(wt−1
k )−∇Lk(gt−1)∥2 +

4

α2

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(w̃t
k)∥2

+
4

α2
E∥∇ℓ(gt−1)∥2 +

4

α2

1

m

∑
k∈[m]

E∥∇Lk(gt−1)−∇Lk(wt−1
k )∥2

≤8L2

α2
Ct−1 +

4L2

α2
ϵt +

4

α2
E∥∇ℓ(gt−1)∥2

where first, second and third come from definition of ϵt, Eq. A.7 and A.6. The

following inequalities are due to Lemma 6, Jensen Inq. and smoothness. Rearranging

terms gives the Lemma.□

Proof of Lemma 12

Ct =
1

m

∑
k∈[m]

E∥wt
k − gt∥2 =

1

m

∑
k∈[m]

E∥wt
k − gt−1 + gt−1 − gt∥2
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≤
(

1 +
P

2m− P

)
1

m

∑
k∈[m]

E∥wt
k − gt−1∥2

+

(
1 +

2m− P

P

)
1

m

∑
k∈[m]

E∥gt − gt−1∥2

=
P

m

(
1 +

P

2m− P

)
1

m

∑
k∈[m]

E∥w̃t
k − gt−1∥2

+

(
1− P

m

)(
1 +

P

2m− P

)
1

m

∑
k∈[m]

E∥wt−1
k − gt−1∥2

+

(
1 +

2m− P

P

)
E∥gt − gt−1∥2

=
P

m

(
1 +

P

2m− P

)
ϵt +

(
1− P

m

)(
1 +

P

2m− P

)
Ct−1

+

(
1 +

2m− P

P

)
E∥gt − gt−1∥2

where we start with definition of Ct. First inequality is due to ∥a+b∥2 ≤ (1 + z) ∥a∥2+(
1 + 1

z

)
∥b∥2 for z > 0. The following equality takes expectation conditioned on ran-

domness before time t. Since each device is selected with probability P
m

, wt
k is a

random variable that is equal to w̃t
k with probability P

m
. Otherwise, it is wt−1

k . Final

equality is due to definitions of ϵt and Ct.□

PFL

In this section, we mainly follow the analysis in (Karimireddy et al., 2019) and

(Acar et al., 2021a) by modifying device functions so that we now need to consider

fi ◦ Ti. Additionally, we set variance to be 0 (σ = 0) and allow for arbitrary SGD

updates to ensure reaching a stationary point at each round. We refer to the FedDyn

proof presented above for a detailed analysis.

We give proof of Proposition 3.2.1.
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Proof of Proposition 3.2.1

As stated in Proposition 3.2.1, we assume that the device meta models converge.

Then, gis converge as, limt→∞ wt
i = w∞

i =⇒ limt→∞ gt
i = ∇fi

(
w∞

i,i

)
where w∞

i,i =

Ti(w
∞
i ).

Convergence of gis and the update rule, gt+1
i = gt

i − α
(
wt+1

i −wt
)
, imply w∞

i =

w∞ and w∞
i,i = Ti(w

∞) i.e. each device meta model converges to the same meta

model. Rearranging the server update gives gt = α
(
−wt + 1

|Pt|
∑

i∈Pt
wt

i

)
. Since we

have w∞
i = w∞ for all is, we get limt→∞ gt = 0. Using server update we conclude that

limt→∞ gt = 1
m

∑
i∈[m]∇fi (w∞

i ) = 0 where w∞
i = Ti(w

∞). Hence, PFL eliminates

the bias coming from heterogeneity of devices and it converges to a stationary point

of the personalized federated learning objective OPT. □

A.2.2 MOML

Convex Analysis

Assumption 2 (Stationary point) We assume that MOML finds a stationary point

of the risk it minimizes. Formally, at each round, MOML satisfies

∇f t ◦ U t(wt+1)−∇f t−1◦U t−1(wt) + α
(
wt+1 −wt

)
= 0.

This assumption can be achieved by tuning parameter K. Parameter K controls

the correctness of the solution as such it would introduce O
(

1
K

)
noise at each round.

Choosing K = O
(√

T
)

would be sufficient.

Assumption 3 (Bounded gradients with G) {f t ◦ U t}Tt=1 functions have bounded

gradients with G .i.e

∥∇f t ◦ U t(w)∥ ≤ G ∀w, t

Theorem 8 For adversarial convex {f t ◦U t}Tt=1 functions we have, Algorithm 6 sat-
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isfies,

RT =
T∑
t=1

f t ◦ U t(wt)−
T∑
t=1

f t ◦ U t(w∗) ≤ α∥w∗∥2 +
3

α

T∑
t=1

∥∇f t ◦ U t(wt)∥2,

where w∗=argmin
w∈Rd

∑T
t=1 f

t ◦ U t(w).

If we plug in α = O
(√

T
)

and bound gradients with G in Theorem 8, we recover

Theorem 3.

Proof.

We divide LHS with two terms as,

RT =

(
T∑
t=1

f t ◦ U t(wt)− f t ◦ U t(wt+1)

)
+

(
T∑
t=1

f t ◦ U t(wt+1)− f t ◦ U t(w∗)

)

where first term corresponds to the cost we incur by not using wt+1 and the second

term quantifies how good wt+1 is with respect to the competitor.

For the sake of simplicity, let us define the local states with the gradient as

λt = ∇f t ◦ U t(wt+1). (A.13)

We bound individual terms with the following Lemmas,

Lemma 13 Algorithm 6 satisfies,

f t ◦ U t(wt)− f t ◦ U t(wt+1) ≤ 3

α
∥∇f t ◦ U t(wt)∥2

+
α

4

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
+

α

4

∥∥∥∥wt −
(
wt +

1

2α
λt−1

)∥∥∥∥2 +
α

16
∥λt∥2

Lemma 14 Algorithm 6 satisfies,

f t◦U t(wt+1)− f t ◦ U t(w∗)
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≤α

(∥∥∥∥w∗ −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥w∗ −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)

+
1

4α

(
∥λt−1∥2 − ∥λt∥2

)
− α

2

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2 − 1

4α
∥λt∥2

If we plug in Lemma 13 and 14 in the regret statement we get,

RT ≤α

(
T∑
t=1

∥∥∥∥w∗ −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥w∗ −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)

+
α

4

(
T∑
t=1

∥∥∥∥wt −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)

+
1

4α

(
T∑
t=1

∥λt−1∥2 − ∥λt∥2
)

+
3

α

T∑
t=1

∥∇f t ◦ U t(wt)∥2 − 3

16α

T∑
t=1

∥λt∥2

≤α
∥∥∥∥w∗ −

(
w1 +

1

2α
λ0

)∥∥∥∥2 +
α

4

∥∥∥∥w1 −
(
w1 +

1

2α
λ0

)∥∥∥∥2 +
1

4α
∥λ0∥2

+
3

α

T∑
t=1

∥∇f t ◦ U t(wt)∥2 = α ∥w∗∥2 +
3

α

T∑
t=1

∥∇f t ◦ U t(wt)∥2

where the second inequality is due to telescoping and ignoring non-positive terms

and the last equality comes from the initial conditions λ0 = w1 = w1 = 0. This

completes the proof of Theorem 8. □

We give proof of Lemmas here. We first state two relations that are useful in the

proof.(
wt+1 +

1

2α
λt

)
−
(
wt +

1

2α
λt−1

)
=

(
1

2

(
wt + wt+1 − 1

α
λt

)
+

1

2α
λt

)
−
(
wt +

1

2α
λt−1

)
=

1

2

(
−wt + wt+1 − 1

α
λt−1

)
= − 1

2α
λt,

(A.14)

where the equalities are due to w update (Eq. 5.8) and first order condition (Eq.

5.10) respectively.
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Proof of Lemma 13

f t◦U t(wt)− f t ◦ U t(wt+1) ≤ ⟨∇f t ◦ U t(wt),wt −wt+1⟩

≤∥∇f t ◦ U t(wt)∥∥wt −wt+1∥

≤ 3

α
∥∇f t ◦ U t(wt)∥2 +

α

12
∥wt −wt+1∥2

≤ 3

α
∥∇f t ◦ U t(wt)∥2 +

α

4

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
+

α

4

∥∥∥∥wt −
(
wt +

1

2α
λt−1

)∥∥∥∥2 +
α

4

∥∥∥∥(wt+1 +
1

2α
λt

)
−
(
wt +

1

2α
λt−1

)∥∥∥∥2
=

3

α
∥∇f t ◦ U t(wt)∥2 +

α

4

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
+

α

4

∥∥∥∥wt −
(
wt +

1

2α
λt−1

)∥∥∥∥2 +
α

16
∥λt∥2

where inequalities come from convexity, Cauchy–Schwarz Eq., 2⟨w1,w2⟩ ≤ 1
c
∥w1∥2 +

c∥w2∥2 and triangular inequality respectively. Last equality is due to Eq. A.14. □

We state a useful relation to be used in the proof of Lemma 14.

Proposition A.2.1

−α
∥∥∥∥wt +

1

2α
λt−1

∥∥∥∥2 + α

∥∥∥∥wt+1 +
1

2α
λt

∥∥∥∥2 + ⟨λt,wt+1⟩

=
1

4α

(
∥λt−1∥2 − ∥λt∥2

)
− α

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2 − 1

4α
∥λt∥2

Proof of Lemma 14

f t◦U t(wt+1)− f t ◦ U t(w∗) ≤ ⟨∇f t ◦ U t(wt+1),wt+1 −w∗⟩ = ⟨λt,wt+1 −w∗⟩

=α

(∥∥∥∥w∗ −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥w∗ −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)

− α

∥∥∥∥wt +
1

2α
λt−1

∥∥∥∥2 + α

∥∥∥∥wt+1 +
1

2α
λt

∥∥∥∥2 + ⟨λt,wt+1⟩

=α

(∥∥∥∥w∗ −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥w∗ −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)
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+
1

4α

(
∥λt−1∥2 − ∥λt∥2

)
− α

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2 − 1

4α
∥λt∥2

≤α

(∥∥∥∥w∗ −
(
wt +

1

2α
λt−1

)∥∥∥∥2 − ∥∥∥∥w∗ −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
)

+
1

4α

(
∥λt−1∥2 − ∥λt∥2

)
− α

2

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2 − 1

4α
∥λt∥2

where we use convexity, Eq. A.13, A.14 and Proposition A.2.1.

We give the proof of the proposition here.

Proof of Proposition A.2.1

Let us expand LHS and state it as a polynomial of wt+1, .i.e A∥wt+1∥2+⟨wt+1,w′⟩+

w′′

LHS =− α

∥∥∥∥wt +
1

2α
λt−1

∥∥∥∥2 + α

∥∥∥∥1

2

(
wt + wt+1 − 1

α
λt

)
+

1

2α
λt

∥∥∥∥2 + ⟨λt,wt+1⟩

=− α

∥∥∥∥wt +
1

2α
λt−1

∥∥∥∥2 +
α

4

∥∥wt + wt+1
∥∥2 + ⟨λt,wt+1⟩

=− α

∥∥∥∥wt +
1

2α
λt−1

∥∥∥∥2 +
α

4

∥∥wt + wt+1
∥∥2 + ⟨λt−1 + αwt − αwt+1,wt+1⟩

=∥wt+1∥2
(α

4
− α

)
+
〈
wt+1,

α

2
wt + αwt + λt−1

〉
− α

∥∥∥∥wt +
1

2α
λt−1

∥∥∥∥2 +
α

4

∥∥wt
∥∥2

=∥wt+1∥2
(
−3α

4

)
+

〈
wt+1,

3α

2
wt + λt−1

〉
− 3α

4

∥∥wt
∥∥2 − 1

4α

∥∥λt−1
∥∥2 − ⟨wt,λt−1⟩ (A.15)

where we use w and λ updates. Similarly if we expand RHS we get,

RHS =
1

4α

(
∥λt−1∥2 − ∥λt∥2

)
− α

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2 − 1

4α
∥λt∥2

=
1

4α
∥λt−1∥2 − 1

2α
∥λt−1 + αwt − αwt+1∥2 − α

∥∥∥∥wt+1 −
(
wt+1 +

1

2α
λt

)∥∥∥∥2
=

1

4α
∥λt−1∥2 − 1

2α
∥λt−1 + αwt − αwt+1∥2
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− α

∥∥∥∥wt+1 −
(

1

2

(
wt + wt+1 − 1

α
λt

)
+

1

2α
λt

)∥∥∥∥2
=

1

4α
∥λt−1∥2 − 1

2α
∥λt−1 + αwt − αwt+1∥2 − α

4

∥∥wt+1 −wt
∥∥2

=∥wt+1∥2
(
−α

2
− α

4

)
+
〈
wt+1, αwt + λt−1 +

α

2
wt
〉

+
1

4α
∥λt−1∥2 − α

4
∥wt∥2 − 1

2α
∥λt−1 + αwt∥2

=∥wt+1∥2
(
−3α

4

)
+

〈
wt+1,

3α

2
wt + λt−1

〉
− 3α

4

∥∥wt
∥∥2 − 1

4α

∥∥λt−1
∥∥2 − ⟨wt,λt−1⟩ (A.16)

where we use w and λ updates.

We have Eq. A.15 is equal to Eq. A.16 so the statement holds. □

Nonconvex Analysis

We prove regret statements of B-MOML and Theorem 4 with the following subsec-

tions.

(Hazan et al., 2017) regret with B-MOML

Assumption 4 (Stationary point) Similar to Assumption 2, we assume that B-

MOML finds a stationary point of the risk it minimizes. Formally, at each round,

B-MOML satisfies

1

B

B−1∑
i=0

∇f t−i ◦ U t−i(wt+1)− 1

B

B−1∑
i=0

∇f t−i−1 ◦ U t−i−1(wt−i) + α
(
wt+1 −wt

)
= 0.

We use Assumption 3 and 4 in this subsection.

Theorem 9 For adversarial nonconvex functions, B-MOML satisfies,

T∑
t=1

∥∥∥∥∥ 1

B

B−1∑
i=0

∇f t−i ◦ U t−i(wt)

∥∥∥∥∥
2

≤ 8
T

B2
G2
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Proof. Let us define St
B(w) = 1

B

∑B−1
i=0 ∇f t−i ◦ U t−i(w). Then, we have,∥∥∥∥∥ 1

B

B−1∑
i=0

∇f t−i ◦ U t−i(wt)

∥∥∥∥∥
2

= ∥∇St
B(wt)∥2 = ∥

(
∇St

B(wt)−∇St−1
B (wt)

)
+∇St−1

B (wt)∥2

≤ 2∥∇St−1
B (wt)∥2 + 2∥∇St

B(wt)−∇St−1
B (wt)∥2

= 2∥∇St−1
B (wt)∥2 +

2

B2

∥∥∇f t ◦ U t(wt)−∇f t−B ◦ U t−B(wt)
∥∥2

≤ 2∥∇St−1
B (wt)∥2 +

8

B2
G2 (A.17)

where inequalities come from triangular Inq. and Assumption 3.

We assume α = 0. If α = 0 we see that 1
B

∑B−1
i=0 ∇f t−i◦U t−i(wt+1) = ∇St

B(wt+1) =

0.

Plugging these relations in Eq. A.17, we get,∥∥∥∥∥ 1

B

B−1∑
i=0

∇f t−i ◦ U t−i(wt)

∥∥∥∥∥
2

≤ 2∥∇St−1
B (wt)∥2 +

8

B2
G2 = 2∥λt−1∥2 +

8

B2
G2 =

8

B2
G2

(A.18)

Summing Inq. A.18 over time gives the statement in Theorem 9. □

T collection of tasks type regret

Assumption 5 (Smoothness) We assume {f t ◦U t}Tt=1 functions to be L smooth .i.e

∥∇f t ◦ U t(w1)−∇f t ◦ U t(w2)∥ ≤ L∥w1 −w2∥ ∀w1,w2, t

Smoothness imply the following inequality,

f t ◦ U t(w2)− f t ◦ U t(w1) ≤
〈
∇f t ◦ U t(w1),w2 −w1

〉
+

L

2
∥w2 −w1|2 ∀w1,w2, t

(A.19)

We use Assumption 2, 3 and 5 as well definition in Eq. A.13 for this subsection.
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Theorem 10 Suppose T is a collection of tasks, and for each τ ∈ T , f τ ◦ U τ is L

smooth. We choose tasks it from some task distribution, PT in an IID fashion. Then

it follows that,

T∑
t=1

E
∥∥Eτ [∇f τ ◦ U τ (wt)]

∥∥2 ≤ 4α∆ + T
G2L2

α2
+ T

1

α

11

2
G2L.

where ∆ = Eτ [f τ ◦ U τ (w1)]−minw Eτ [f τ ◦ U τ (w)]

If we have α = O
(√

T
)

, we get the bound in Theorem 4. Theorem 10 is can be

derived from the following Lemma,

Lemma 15 Algorithm 6 satisfies,

E
∥∥Eτ∇f τ ◦ U τ (wt)

∥∥2
≤4α

(
E

[
Eτf

τ ◦ U τ

(
1

2

(
wt−1 + wt

))]
− E

[
Eτf

τ ◦ U τ

(
1

2

(
wt + wt+1

))])
+

G2L2

α2
+

1

α

11

2
G2L

If we sum Lemma 15 over time we get

T∑
t=1

E
∥∥Eτ∇f τ ◦ U τ (wt)

∥∥2
≤4α

(
E

[
Eτf

τ ◦ U τ

(
1

2

(
w0 + w1

))]
− E

[
Eτf

τ ◦ U τ

(
1

2

(
wT + wT+1

))])
+ T

G2L2

α2
+ T

1

α

11

2
G2L

≤4α∆ + T
G2L2

α2
+ T

1

α

11

2
G2L

which is the statement in Theorem 10.

We use smoothness bound (Eq. A.19) to prove Lemma 15. First, we present a

set of Lemmas that are useful to handle various terms and invoke these to prove this

statement.



190

Lemma 16 Define ρt = 1
2

(wt + wt+1). Then, in Algorithm 6, we have,

ρt − ρt−1 = − 1

2α
λt

Proof.

1

2

(
wt + wt+1

)
− 1

2

(
wt−1 + wt

)
=

1

2

(
wt + wt+1

)
−wt − 1

2α
λt−1

=
1

2

(
−wt + wt+1

)
− 1

2α
λt−1 = − 1

2α
λt

where first equality uses definition of wt (Eq. 5.8) and the last one comes from the

first order condition (Eq. 5.10). □

Lemma 17 Algorithm 6 satisfies,

E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−λt

〉]
≤ 1

α

5

2
G2L +

1

2α2
G2L2 − 1

2
E∥Eτ∇f τ ◦ U τ (wt)∥2

We use smoothness Eq. A.19 on Eτ [f τ ◦ U τ ] as,

E
[
Eτ

[
f τ ◦ U τ

(
ρt
)]]
− E

[
Eτ

[
f τ ◦ U τ

(
ρt−1

)]]
≤E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,ρt − ρt−1

〉]
+

L

2
E∥ρt − ρt−1∥2

=
1

2α
E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−λt

〉]
+

L

8α2
E∥λt∥2

≤ 1

α2

5

4
G2L +

1

4α3
G2L2 − 1

4α
E∥Eτ∇f τ ◦ U τ (wt)∥2 +

LG2

8α2

where we use Lemma 16, 17 and bound ∥λ∥ with Assumption 3. Rearranging terms

give the statement in Lemma 15. □

Corollary 1 is a direct consequence of Theorem 10 in case of Polyak- Lojasiewicz

(PL) functions. It gives a statement with respect to the best fixed competitor.

Proof of Corollary 1 Let’s apply PL condition on LHS of Theorem 10. We get,

T∑
t=1

E
[
Eτ [f τ ◦ U τ (wt)]−min

w
Eτ [f τ ◦ U τ (w)]

]
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≤ 1

2µ

T∑
t=1

E
∥∥Eτ [∇f τ ◦ U τ (wt)]

∥∥2 = O

(√
T

1

µ

(
∆ + G2L

))
This is the Corollary statement. □

We give proof of Lemma 17 here. We state two more Lemmas that are used in

the proof.

Lemma 18 Difference of consecutive meta models can be bounded as,

∥wt+1 −wt∥ ≤ 5

2

1

α
G

Proof.

If we subtract the first order condition (Eq. 5.10) for consecutive times, we get,

λt − λt−1 = λt−1 − λt−2 − α(wt+1 −wt) + α(wt −wt−1) (A.20)

Rearranging Eq. A.20 gives,

wt+1 −wt =
1

α
(2λt−1 − λt − λt−2) + (wt −wt−1)

=
1

α
(2λt−1 − λt − λt−2) +

1

2
(wt −wt−1)− 1

2α
λt−1

=
1

α
(2λt−1 − λt − λt−2) +

1

2α
λt−2 − 1

2α
λt−1 − 1

2α
λt−1

=
1

α

(
λt−1 − λt − 1

2
λt−2

)
where we use update rule of wt and λt in the second respectively. Since λ states store

gradient information as in Eq. A.13 and gradients are bounded (Assumption 3), we

can write,

∥wt+1 −wt∥ =
1

α

∥∥∥∥λt−1 − λt − 1

2
λt−2

∥∥∥∥ ≤ 1

α

∥∥λt−1
∥∥+

1

α

∥∥λt
∥∥+

1

2

1

α

∥∥λt−2
∥∥ ≤ 5

2

1

α
G.

where we relax norm as ∥a + b∥ ≤ ∥a∥+ ∥b∥. □
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Lemma 19

E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
≤ 1

2α2
G2L2 − 1

2
E∥Eτ∇f τ ◦ U τ (wt)∥2

Proof.

E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
=E

[
E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉
|Ht

]]
=E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇Eτf

τ ◦ U τ (wt)
〉]

≤− 1

2
E∥Eτ∇f τ ◦ U τ (wt)∥2

+
1

2
E
∥∥∇Eτf

τ ◦ U τ
(
ρt−1

)
−∇Eτf

τ ◦ U τ (wt)
∥∥2

where first equality comes from tower property noting that both ρt−1 and wt are

independent of loss observed at time t, f t ◦ U t. The inequality comes from ⟨a, b⟩ ≤
1
2
∥b + a∥2 − 1

2
∥a∥2. We bound the second term as

E
∥∥∇Eτf

τ ◦ U τ
(
ρt−1

)
−∇Eτf

τ ◦ U τ (wt)
∥∥2

≤L2E
∥∥ρt−1 −wt

∥∥2 ≤ 1

4
L2E

∥∥wt−1 −wt
∥∥2 ≤ 1

4α2
L2E

∥∥λt−1 − λt−2
∥∥2 ≤ L2G2

α2

where we use smoothness, definition of ρt−1, the first order condition (Eq. 5.10) and

bound on gradients. Combining both inequalities gives the statement in the lemma.

□

Proof of Lemma 17

E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−λt

〉]
= E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt+1)

〉]
=E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
+ E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,∇f t ◦ U t(wt)−∇f t ◦ U t(wt+1)

〉]
≤E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
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+ E
[∥∥∇Eτf

τ ◦ U τ
(
ρt−1

)∥∥ ∥∇f t ◦ U t(wt)−∇f t ◦ U t(wt+1)∥
]

≤E
[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
+ E

[
GL∥wt −wt+1∥

]
≤E

[〈
∇Eτf

τ ◦ U τ
(
ρt−1

)
,−∇f t ◦ U t(wt)

〉]
+

5

2

1

α
G2L

≤5

2

1

α
G2L +

1

2α2
G2L2 − 1

2
E∥Eτ∇f τ ◦ U τ (wt)∥2

where we use Cauchy–Schwarz Eq., smoothness, gradient bound, Lemma 18 and 19

respectively. □
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