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Abstract

Quality Estimation (QE) models have the po-
tential to change how we evaluate and maybe
even train machine translation models. How-
ever, these models still lack the robustness to
achieve general adoption. We show that State-
of-the-art QE models, when tested in a Paral-
lel Corpus Mining (PCM) setting, perform un-
expectedly bad due to a lack of robustness to
out-of-domain examples. We propose a combi-
nation of multitask training, data augmentation
and contrastive learning to achieve better and
more robust QE performance. We show that
our method improves QE performance signifi-
cantly in the MLQE challenge and the robust-
ness of QE models when tested in the Parallel
Corpus Mining setup. We increase the accu-
racy in PCM by more than 0.80, making it on
par with state-of-the-art PCM methods that use
millions of sentence pairs to train their mod-
els. In comparison, we use thousand times
less data, 7K parallel sentences in total, and
propose a novel low resource PCM method.

1 Introduction

The Quality Estimation (QE) task aims to model
human perception of translation quality and pre-
dict the quality score an expert would give to a
translation using only the source sentence and the
translation. This requires the QE model to rep-
resent the cross-lingual similarity between source
and hypothesis sentences while incorporating dif-
ferent features of the hypothesis sentence such as
fluency, grammaticality and adequacy1.

Human evaluations of machine translation are
costly and time-consuming for a large-scale text
dataset. References to evaluate machine transla-
tion performance are not readily available in many
cases, especially in low-resource languages. Even

1Fluency measures whether a translation is fluent, regard-
less of the correct meaning, while Adequacy measures whether
the translation conveys the correct meaning, even if the trans-
lation is not fully fluent (Snover et al., 2009)

if they do exist, they often assume a single, unique
answer for correct translations, causing bias in the
evaluation. Thus, it is academically and profession-
ally of paramount importance to further develop
reliable Quality Estimation metrics, which can ulti-
mately eliminate the need for references and have
unlimited potential for practical applications in ma-
chine translations.

Parallel Corpus Mining (PCM) is another criti-
cal task that can enable the creation of high-quality
parallel data and reduce the need for considerable
human effort. These mined parallel corpora could
especially be helpful in low resource languages.
On the other hand, current PCM methods require
large amounts of parallel data, which creates a para-
doxical loop that only large companies can break.

Quality estimation is uniquely linked with PCM
since what makes a good translation most of the
time makes a correct parallel too. Considering
the similarity in the underlying goals of these two
tasks, we expect models that can do one to perform,
at least, acceptably in the other. However, Zhao
et al. (2020) have shown that models that can do
corpus mining fail in QE and propose a resource
prudent method to bridge the gap. We show that the
gap exists in the other direction and we introduce
simple and valuable solutions.

In chapters 3 and 4, we introduce our method
MultiQE and its base variants. Since we do not
want to depend on additional cross-lingual data, we
propose using multitask training with monolingual
linguistic inference and semantic similarity data.
We also experiment with using multitask feature
extraction and compare our methods with SoTA
QE methods in the Multilingual Quality Estimate
(MLQE) dataset (Fomicheva et al., 2020b).

In chapter 5, we use data augmentation tech-
niques in combination with multitask training
to train more robust QE models and check
their robustness in the Parallel Corpus Mining
setup using the TATOEBA(Tiedemann, 2020) and
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BUCC(Zweigenbaum et al., 2018) datasets. We use
the term robust QE models to refer to models that
can overcome the problem of just focusing on gram-
maticality/fluency, which causes SoTA QE models
to fail in PCM. Our method outperforms SoTA QE
models on PCM with a substantial margin, up to
0.80 difference in accuracy score in TATOEBA.

In addition, we compare our method with high re-
source methods like LASER (Artetxe and Schwenk,
2019) and LaBSE (Feng et al., 2020) which are
trained on vast amounts of parallel data and achieve
SoTA performances on PCM. Our method essen-
tially offers a better and more robust QE model
that is trained with very little data (thousand times
less data) compared to these models. The goal
in comparing to these high resource methods is
to show that our proposed method achieves good
enough performance to be a viable low resource
PCM method. Our contributions in this paper can
be summarized as below.

• We propose using multitask training for QE
with STS (Semantic Textual Similarity) and
MNLI (Multi-Genre Natural Language In-
ference) and show that even though these
datasets are monolingual, multitask training
can improve QE performance in MLQE sig-
nificantly.

• We propose a robustness test for QE models
through the PCM setting showing that SoTA
QE models fail this test. We test how our mul-
titask training method performs and propose
using negative data augmentation to improve
robustness further. We demonstrate that multi-
task training and negative data augmentation
improve the robustness of QE models with an
0.80 increase in accuracy in the TATOEBA
challenge.

• We propose a viable low resource corpus min-
ing approach involving a sentence embedding
model trained with the contrastive loss on the
QE dataset and our robust QE model. We
show that our method performs better under
low resource conditions and is even compara-
ble in high resource settings to SoTA in Paral-
lel Corpus Mining.

2 Related Work

2.1 Quality Estimation
State of the art in QE In sentence-level Quality
Estimation, multilingual language models as well

as machine translation models are used for getting
sentence representations as features to train qual-
ity estimation models (Yankovskaya et al., 2019),
(Kim et al., 2017), (Zhou et al., 2019) (Peters
et al., 2018). Similarly TransQuest (Ranasinghe
et al., 2020) uses a cross-lingual transformer lan-
guage model, XLM-R (Conneau et al., 2019), to
extract features for sentence-level Direct Assess-
ment scores and achieves SoTA performance in
WMT-2020 QE task. This MonoTransQuest archi-
tecture will be used as our baseline.

Multitask Learning in QE Multitask learning
is shown to be effective for QE. Kim et al. (2019)
create a combined loss focusing on all QE tasks at
once. They train a bilingual BERT to extract sen-
tence representations. This model simultaneously
predicts word quality tags(GOOD or BAD from the
word level QE task) HTER score and takes the last
hidden layer as the features for sentence level QE.
They limit their work to signals from the MLQE
dataset’s word and sentence level tasks and do not
apply to external datasets, unlike our work.

External Signals in QE Lo (2019) enhance
their embeddings with semantic role labels and
show that it improves QE performance, demon-
strating the importance of semantic features in QE.
Martins et al. (2017) use part of speech tagging and
show that it can also improve the QE performance.

Usage of NLI and STS Pretraining the back-
bone via multitask training, using NLI and STS,
has been shown to improve performance in trans-
lation evaluation with references. By allowing the
backbone network to learn the cross relations be-
tween sentences from different aspects, Sellam et al.
(2020) use this framework by including the linguis-
tic inference task and achieve SoTA performance
on machine translation evaluation with references.
Another method that performs comparably is (Kane
et al., 2020), where the authors use separately pre-
trained models to extract features and later train a
final layer to evaluate translations with references.

2.2 Cross-Lingual Alignment

Motivation for Alignment Zhao et al. (2020) find
that cross-lingual encoders such as XLM (Lam-
ple and Conneau, 2019) and M-BERT make mis-
takes in QE. They realize that the same sentence
in different languages are not close to each other
in the multilingual embedding space due to chang-
ing sentence structures, which they call semantic
mismatch. Zhao et al. (2020) show that aligned em-



beddings perform much better than directly using
the backbone. Since we want to benefit from mono-
lingual datasets, we wanted to check how aligned
feature extractors would fare against regular multi-
task training and the current SoTA in QE.

Motivation for Translation Recent work has
shown that in some cases, translating one of the
sentences can also work just as well as alignment
(Conneau et al., 2018). Hence we also compare
translating one of the sentences to aligning the rep-
resentations of the non-English sentences from the
XLM-R model similar to Conneau et al. (2018).

2.3 Parallel Corpus Mining

State of the art in PCM For Parallel Corpus Min-
ing, models are generally trained on large paral-
lel corpora. Artetxe and Schwenk (2019) train an
encoder-decoder network on large scale translation
data and use the encoder output as an embedding
space to compare sentences. Yang et al. (2020)
train a network on the translation ranking problem,
sampling a number of negative examples from the
corpus for each input sentence.

Motivation for using QE in PCM Reimers and
Gurevych (2020) train a cross-lingual language
model(student) to imitate the embedding space
of another sentence embedding model(teacher)
trained on a related task like paraphrase detection,
STS or NLI. They show that the usage of external
tasks can improve performance in PCM. Although
their method is remarkable, it still requires a lot of
parallel data to align the XLM-R with the embed-
dings of the new network. We also observe that
alignment under low resource conditions is not very
effective. During our experiments, we looked into
viable ways of using QE data for training models
to perform well in PCM with low resource limita-
tions in mind. Since all these methods use a large
amount of parallel data from a variety of sources
and datasets, introducing a method that can achieve
similar scores with very little data is an important
goal to achieve.

3 Quality Estimation

3.1 Method

We compare three different approaches to incorpo-
rating STS and NLI tasks into QE. The first one
is direct multitask training. The second and third
methods use pretraining separate backbone archi-
tectures on these tasks and using them to extract
features. Because the STS and NLI backbones are

trained on monolingual data, we either use cross-
lingual alignment of sentence embeddings or trans-
late the non-English sentence to English.

3.1.1 Multitask Training
In this method, we train a single backbone XLM-R
model with three classification heads on the STS-B,
MNLI and QE tasks. This model will be referred
to as MultiQE Multitask. By not doing any explicit
alignment, we test if the XLM-R model trained for
a cross-lingual task (QE) will benefit from multi-
task training that includes monolingual data. In
Figure 1a, we illustrate the structure of the multi-
task learning framework.

The model is first trained for three epochs and,
later, only the quality estimation head with the
backbone is fine-tuned for another epoch on QE
following insights from Sellam et al. (2020)

3.1.2 Multitask Feature Extraction
We train three backbones on the STS-B, MNLI and
QE datasets and use the extracted features from
these models to train a final layer for predicting
QE scores. For this model, we compare two ap-
proaches: the first one is named MultiQE Align-
ment and is explained in section 3.1.3; the second
one is MultiQE Translation, where, instead of align-
ing sentence embeddings, we translate the non-
English sentence to English with Google Translate
before inputting the sentence pairs to STS and NLI
backbones. In Figure 1b, we show the general ar-
chitecture of MultiQE Alignment and Translation.
In this architecture, translation and alignment are
not used simultaneously. When we use translation,
the alignment part is not used and vice versa.

3.1.3 Cross-lingual Alignment model
We chose to tackle the semantic mismatch problem
with a cosine similarity based sentence alignment
similar to Conneau et al. (2018). This alignment
pushes the sentence embeddings of the sentences in
the non-English languages towards the embeddings
of the translations of those sentences in English.

We align the STS and NLI input feature extrac-
tors in MultiQE Alignment, using data we get
from OPUS with the cosine similarity objective
in Equation 1. Given a set of parallel sentences
X = {(xi, yi) | i = 1, 2, ...,K}, we fine tune the
model to minimize LA in Equation 1.

LA(X) =
∑

(xi,yi)∈X
(1− cos(xi, yi)) (1)



(a) Multitask pretraining for QE: MultiQE Multitask. The three
classification heads share the same backbone and the backbone
weights are trained during all three phases. Only the head for
QE is used after training for obtaining the QE score. Here the
classification heads are only a linear layer on top of the mean
pooled output

(b) Multitask feature extraction for QE: MultiQE Align-
ment/Translation. All three backbones are pre-trained on the
respective tasks with classification heads on top. The outputs
of the backbones are mean pooled to create sentence features.
The final QE Head is a two layer fully connected network that is
trained on the MLQE dataset.

Figure 1: MultiQE Models.

Dataset Size Language Pairs Usage

TATOEBA <1K en-de, en-zh, ne-en, si-en To test performance on Parallel Corpus Mining
BUCC <8k en-de, en-zh To test performance on Parallel Corpus Mining
MLQE 7K(Train) 1K(Test) en-de,en-zh,ro-en,et-en,ne-en,si-en To train all MultiQE models and test them for QE performance
OPUS(JW & GNOME) 25K(Train) 3K(Test) en-de,en-zh,ro-en,et-en,ne-en,si-en To train and test the alignment module in MultiQE Alignment

Table 1: Parallel datasets, their sizes and how they are used in our methods. The MLQE dataset is created by
employing annotators on outputs of machine translation models on the corresponding language. The sentence
pairs are labeled on the quality of the translation.

We test the effectiveness of the alignment using
the 3K test sentences we have put aside and mea-
sure the cosine similarity before and after align-
ment, which increases on average from 0.64 to
0.96.

4 Quality Estimation Experiments

This section will go over the dataset, results, signif-
icance test, and ablation study for our experiments
on the MLQE dataset.

4.1 Datasets

We used the Semantic Textual Similarity -
Benchmark(STS-B) dataset for the STS task. This
task measures the degree of meaning similarity
between sentences with a score ranging from 1-
5. STS-B is a collection of English sentence
pairs extracted from different publicly available
sources.(Cer et al., 2017) (Wang et al., 2018)

For the natural language inference tasks, we
use the Multi-Genre Natural Language Inference
(MNLI) dataset. The MNLI dataset includes
both written and spoken text from various sources.
(Williams et al., 2018). The task is to predict the
label of entailment, neutral, or contradiction based
on a premise and a hypothesis text.

For training and testing on the QE task, we
use the Multilingual Quality Estimation (MLQE)
dataset, which is derived chiefly from Wikipedia
articles (Fomicheva et al., 2020a) and contains

language pairs from high (en-de, en-zh), medium
(ro-en, et-en), and low (ne-en, si-en) resource lan-
guages. Each pair has human labels for 7K train,
1K validation and 1K test translation pairs. Quality
scores are collected by showing source sentences
with translations to 3 experts and averaging the
normalized scores.

For the cross-lingual alignment (section 3.1.3),
we use sentence pairs from the JW(Agić and Vulić,
2019) and GNOME(Tiedemann, 2012) dataset. We
use a small subset(25K) to do the alignment and
3K sentences to test the quality of the alignment,
taking low resource conditions into account.

4.2 Results

We evaluate our models on the MLQE test set and
use Pearson Correlation with human judgment as
our primary measure. The results of our methods
are in Table 2. We include (Kepler et al., 2019) be-
cause it was used as the baseline in the WMT2020
QE challenge. MonoTransQuest is included be-
cause it achieves SoTA performance in QE and
is the winning entry of the 2020 WMT QE chal-
lenge. We use the MonoTransQuest model with no
ensemble to have a meaningful comparison.

In Table 2, we find that multitask training (Mul-
tiQE Multitask) and translation (MultiQE Trans-
lation) outperform SoTA on all of the language
pairs with MultiQE Multitask leading in 4 out of
the 6 language pairs. Comparing MultiQE Align-



Models en-de en-zh ro-en et-en ne-en si-en

OpenKiwi (Kepler et al., 2019) 0.145 0.190 0.684 0.477 0.386 0.373
MonoTransQuest* (Ranasinghe et al., 2020) 0.408 0.471 0.881 0.754 0.769 0.634
MultiQE Translation(Ours) 0.406 0.486 0.889 0.762 0.767 0.665
MultiQE Alignment(Ours) 0.415 0.483 0.881 0.756 0.772 0.656
MultiQE Multitask(Ours) 0.418 0.512 0.879 0.755 0.777 0.675

Table 2: Pearson Correlation with Human Judgment. We observe that multitask training gives the best performance
in 4 out of 6 language pairs, while for the mid-resource languages translating the non-English sentence outperforms
other methods. We can infer that QE performance can be improved with monolingual NLI and STS data. *Results
are reproduced using the Transquest pre-trained model zoo and testing scripts.

ment and MultiQE Translation with MonoTran-
sQuest, all our methods are comparable with previ-
ous SoTA if not better.

Among our methods, MultiQE Multitask per-
forms better and is more computationally efficient
than MultiQE Alignment and Translation. Since
the alignment and translation methods use multiple
backbones, they require more computational power
in training and inference.

4.2.1 William’s Test
Correlation scores by themselves are not enough
to make conclusions. Therefore, we perform a
William’s test to check the significance and the
inter-correlation between the outputs of the meth-
ods. The William’s test is performed with the lan-
guage pair en-zh. If we look at Figure 2a, the P-
values are below 0.05, suggesting that our increases
in correlation are statistically significant.

In Figure 2b, we find that MultiQE Translation,
Alignment, and MonoTransQuest models correlate
highly with each other, while MultiQE Multitask
can be separated from the others. We would expect
a certain level of correlation among these methods
because they are run on the same task. However,
the high correlation among the first three methods
is mainly due to their shared pre-trained backbones.

4.3 Ablation Study

Given that the MultiQE Multitask model gives the
best performance in QE, we perform the ablation
study on this model. The results below (Table 3) are
for the en-zh language pair. The scores represent
Pearson Correlation with Human Judgment. The
ablation study explores the effect of these datasets
in the pretraining stage. Hence, it does not take out
the final QE fine-tuning. Looking at Table 3 we
observe that STS helps the performance more than
MNLI.

Models en-zh

Multitask MNLI 0.444
Multitask STS 0.456
Multitask QE + MNLI 0.485
Multitask QE + STS 0.495
Multitask MNLI + STS 0.471
Multitask QE + MNLI + STS 0.512

Table 3: Ablation study for the multitask pretraining
step of MultiQE Multitask. We observe that the STS
dataset improves QE performance more than the MNLI
dataset.

5 Parallel Corpus Mining Experiments

In the PCM experiments, we will use MultiQE
Multitask because it performs the best in Table 2.

5.1 Motivation

The initial motivation behind testing QE models on
PCM sparked from the observation that QE models
sometimes assign scores close to 1 to hypothesis
sentences that are simple and correct even if they
are entirely unrelated to the reference sentence. A
sentence like ’December 14, 1964’ would get a
high score with many references, most likely be-
cause they were never translated wrong and never
received a bad score. Stemming from this observa-
tion, we wanted a natural setting where we could
subject QE models to various sentence pairs and
see if they were failing in a particular manner and if
we could remedy this. Corpus mining was a good
candidate because we would have to check every
hypothesis sentence for each reference creating a
variety of pairs and we would also have the gold la-
bels for correct pairs. Essentially we used the PCM
setup as a stress test for QE models. Observing
how QE models failed this test and through solving
both the computation and performance problems,



(a) P-values (b) Correlation

Figure 2: P-values for the Williams Test and Correlation between model predictions. Note that all MultiQE models
outperform MonoTransQuest significantly with p ≤ 0.05. Additionally, we observe that the three methods in the
bottom three rows correlate highly while MultiQE Multitask’s behavior is different.

we have introduced a novel low resource corpus
mining method based on the QE task.

5.2 Datasets
We evaluate our models for PCM on the BUCC
(Zweigenbaum et al., 2018) and TATOEBA (Tiede-
mann, 2020) datasets. In the BUCC challenge,
the goal is to extract ground-truth parallel sen-
tences that are injected into relevant Wikipedia ar-
ticles. The injected parallel sentences come from
the News Commentary Dataset (Tiedemann, 2012).
The performance is evaluated with the F1 score.
In the TATOEBA challenge, the task is to find
the translation for each sentence. The TATOEBA
challenge contains translation pairs from various
sources of more than 100 language pairs. For high
resource language pairs, we use the 1000 sentence
test set from LASER repository2 because the meth-
ods we compare to (Reimers and Gurevych, 2020;
Artetxe and Schwenk, 2019; Feng et al., 2020) also
used this test set. However, for low resource lan-
guages that are not present in the LASER reposi-
tory, we use the TATOEBA (2021-08-07) dataset.

5.3 Method
Here we will introduce our negative data augmen-
tation scheme and how we offer to solve the com-
putational cost problem by training a sentence em-
bedding model with contrastive loss.

5.3.1 Model Training
For parallel corpus mining, we use a scoring model,
MultiQE Multitask, and a filtration model. The
scoring model takes sentence pairs as inputs and
when the size of the corpus to mine gets larger, the
cost for computing scores of all sentence pairs gets
too high as explained in Reimers and Gurevych

2https://github.com/facebookresearch/LASER

(2019). To tackle this, we train a sentence embed-
ding model to do pre-filtration of the raw corpus
to reduce the search space to a reasonable size.
The filtration model is only used for pre-filtration
and not the final sentence pair scoring. For small
datasets, the scoring model can be used alone.

The sentence filtration model is trained on the
MLQE training data using a contrastive loss. For
a set of sentence pairs I = {(xi, zi) | i =
1, 2, ...., N}, we sample a subset of n negative
samples for each xi to form the set Î such that
Î = {(xi, zjj 6=i) | i, j = 1, 2, ...., N}. Here, we
choose n to be 3, exclude samples from I that have
a lower quality score than 0.7, and include them
in Î . The labels, YF for filtration, for each pair in
set I are 1 and the labels for each pair in Î are 0.
The filtration model is later trained on the two sets
using the loss function given in Equation 2 from
Hadsell et al. (2006):

LF (I, YF ) =
(1− YF )

1
2D(I)2 + (YF )

1
2{max(0,m−D(I)}2

(2)
D(I) represents the similarity metric given a set

of sentence pairs I and the subscript F denotes that
the labels and loss are for the filtration model. We
calculate D(I) as the cosine similarity between the
embeddings (G(xi), G(zi)) of the two sentences
(xi, zi) where G is the embedding network

D(I) =
~G(xi)· ~G(zi)

‖G(xi)‖‖G(zi)‖
(3)

The MultiQE Multitask model for scoring on
the other hand, is trained on the MLQE with two
variations. The first model is trained on the training
set from MLQE datasets as before (section 3.1.1),
and the second model, which we will call MultiQE
Multitask + DA(Data Augmentation), is trained
with augmenting the dataset similar to our method

https://github.com/facebookresearch/LASER


en-de en-zh ne-en si-en

Score Datasize Score Datasize Score Datasize Score Datasize

MonoTransQuest (Ranasinghe et al., 2020) 0.07 7K 0.05 7K 0.12 7K 0.20 7K
LASER (Artetxe and Schwenk, 2019) 0.99 8.7M 0.95 8.3M 0.38∗ 0 0.55 796K
LaBSE (Feng et al., 2020) 0.97 100M 0.95 100M 0.85 20M+ 0.92 20M+
Knowledge Distillation (Reimers and Gurevych, 2020) 0.97 25M 0.94 12M+ 0.41∗ 0 0.12∗ 0
MultiQE Multitask (Ours) 0.03 7K 0.64 7K 0.53 7K 0.46 7K
MultiQE Multitask + DA (Ours) 0.97 7K 0.95 7K 0.86 7K 0.74 7K

Table 4: Accuracy for the TATOEBA:Similarity Search Challenge and the amount of parallel data used by that
model for that language pair. Our method achieves SoTA performance in 2 out of the 4 language pairs while it
is also comparable in en-de. Our method also outperforms LASER on si-en where this method has an order of
magnitude closer data with our method. This is especially interesting since it strengthens the argument that our
method performs better in low resource regimes. ∗ signifies that the method does not have support for that language
pair, but they can have access to data for similar languages.

en-de en-zh Average

Score Datasize Score Datasize Score Datasize

mUSE (Yang et al., 2020) 88.5 60M+ 86.9 60M+ 87.7 60M+
LASER (Artetxe and Schwenk, 2019) 95.4 8.7M 91.7 8.3M 93.5 8.4M
LaBSE (Feng et al., 2020) 95.9 100M 93.0 100M 94.4 100M
Knowledge Distillation (Reimers and Gurevych, 2020) 90.8 25M 87.8 12M+ 89.3 18M+
MultiQE Multitask + DA (Ours) 85.4 7K 75.1 7K 80.2 7K

Table 5: F1 Scores for the BUCC 2020 Corpus Mining Challenge and the amount of parallel data used by that
model for that language pair. Our method gets a lower score than the SoTA. However, when the extracted false
positives were manually inspected, we found that most were viable sentence pairs. The issue with the BUCC
dataset has been discussed in previous work in Reimers and Gurevych (2020). We analyzed the reference sentences
from the news dataset and observed that our method gave the correct parallel the highest score with close to 100%
accuracy.

for contrastive learning here, but instead of having
labels 0 and 1, as in YF , here we keep the original
quality scores as the label set and give the negative
samples a quality score of 0 and once again train
our model in a multitask learning framework with
the STS and MNLI data until convergence.

5.3.2 Corpus Mining Inference

TATOEBA has an equal number of sentences in
both languages and we know that every sentence
has a pair; the goal is to find the best sentence
for each input. The test sets are reasonably small,
so we directly use the scoring model to create the
score matrix and pick the hypothesis with the high-
est score for each reference.

Because the BUCC filtering task has a more ex-
tensive test set, we do corpus mining in two stages.
First, we use the trained filtration model to com-
pute the sentence embedding for each sentence.
Then we calculate the similarity matrix represent-
ing the similarities by multiplying the embedding
vectors corresponding to every possible sentence
pair. Then, for each sentence in the source and
target domain, top-n sentences are selected to be

scored. The trained MultiQE Multitask model then
scores these sentences. Then, for each sentence
in the source and target domain, the best poten-
tial pair is selected by eliminating sentences whose
scores are below a threshold. The QE scores that
the MultiQE Multitask model provides range from
0-1 and the threshold score is determined similar
to Reimers and Gurevych (2020) as the score that
gives the best F1 score on the train set. The sen-
tence selection is made in both directions and the
intersection of the forward and the backward set is
selected as the final filtered set.

5.4 Experiments

In table 4 we show that our proposed method of
multitask training and data augmentation is ex-
tremely effective in improving the robustness of
QE models. We obtain an average performance
increase of 0.80 in accuracy compared to the SoTA
QE method. We compare our method with Tran-
squest (Ranasinghe et al., 2020) because both meth-
ods use XLM-R as the backbone and train on the
exact same QE data. Our method performs compa-
rably or better than extremely high resource meth-



German English Translation(Google Translate)

Nach dem Ende des Krieges erholte sich die Stadt
aber rasch und wuchs beständig weiter.

Following the end of the war the city continued to
expand.

After the end of the war, the city recovered quickly
and steadily continued.

Während einer Pestepidemie im Jahr 1541 starben
rund 180 Personen, ein Viertel der Bevölkerung.

During an epidemic of the plague in 1541 around
180 people died, a total of one fourth of the town’s
residents.

During a Pestepidemie in 1541, around 180 people
died, a quarter of the population.

Eine Arbeitslosenversicherung gab es bis dahin nur
im Bundesstaat Wisconsin (eingeführt 1932,
wirksam wurde sie ab 1934).

Unemployment insurance in the United States
originated in Wisconsin in 1932.

There was unemployment insurance only in the state
of Wisconsin (introduced in 1932, it was effective
from 1934).

Mehrere Universitäten in den Niederlanden bieten
Studiengänge an, die die deutsche Sprache und
Kultur vermitteln sollen.

At academic level, 20 universities offer Dutch
studies in the United States.

Several universities in the Netherlands offer courses
that should convey the German language and culture.

Im Juli 1994 war er nach dem Tod des Staatschefs
Kim Il-sung an der Organisation der
Trauerfeierlichkeiten beteiligt.

He was a member of the funeral committee for Kim
Il-sung in 1994.

In July 1994 he was involved in the organization of
mourning ceremonies after the death of the head of
state of State.

Im Jahr 1965 wurden dann die bestehenden
politischen Parteien aufgelöst und ein künstliches
Zweiparteiensystem geschaffen, das als „relative
Demokratie“ bezeichnet wurde.

Instead, in 1965, the government banned all existing
political parties and created a two-party system.

In 1965, the existing political parties were dissolved
and created an artificial two-party system designated
"relative democracy".

Am 22. Juni 1940 war der Waffenstillstand
Hitlerdeutschlands mit dem besiegten Frankreich (de
facto eine Kapitulation) unterschrieben worden.

France was defeated and had to sign an armistice
with Nazi Germany on June 22, 1940.

On 22 June 1940, the ceasefire of Hitler Germans
had been signed with defeated France (de facto a
surrender).

Das Jahr 2004 wurde von den Vereinten Nationen
zum "Reisjahr" erklärt.

On December 16, 2002, the UN General Assembly
declared the year 2004 the International Year of
Rice.

The year 2004 was explained by the United Nations
on the "rice year".

Der Durchschnitt eines Haushalts bestand aus 3,55
Personen und die durchschnittliche Familie aus 3,54
Personen.

The average household size was 4.05 and the
average family size was 4.32.

The average of a household consisted of 3.55 people
and the average family of 3.54 people.

Table 6: A Random selection of false-negative pairs that the MultiQE Multitask + DA extracted from the BUCC
de-en task. We can clearly see that while these sentences are labeled as negatives, they are actually meaningful
parallel sentences supporting the existing arguments in the literature regarding the BUCC dataset.

ods like LASER (Artetxe and Schwenk, 2019) and
Knowledge Distillation (Reimers and Gurevych,
2020) that require a lot more parallel data. Hence,
these results become significant if we consider
them together with the amount of parallel data used
to train these models, which can be found in the
same table.

The results are similar for the BUCC challenge
(Table 5), where our method achieves comparable
scores to SoTA methods that are trained on more
than thousand times the data. We can claim com-
parability because the F1 score in the BUCC task
needs to be understood with a grain of salt. In
Table 6 we give some random examples of false
negatives that are included in our model’s selection
of parallel sentences. As we can see, many of these
sentences are as good parallels as the gold label
set. As we have mentioned in Section 5, the BUCC
task injects news commentary data into Wikipedia
and expects any method to only extract the injected
data. This implicitly assumes that there are no cor-
rect parallel sentences within Wikipedia. Hence,
the error our model displays is not failing to find
correct parallels for hypothesis sentences but find-
ing parallels within the Wikipedia corpus. We have
manually analyzed 200 sentences and found that
155 of them can actually be considered good par-
allels. This issue has been discussed in previous

work as well (Reimers and Gurevych, 2019; Jones
and Wijaya, 2021).

6 Discussion

We show that semantic similarity and linguistic
inference improve QE performance. We test for
significance and show that our methods outperform
SoTA QE methods(Table 2).

This intuition that pretraining with related tasks,
especially with STS and NLI, is helpful for eval-
uating translations is in line with background and
findings from Sellam et al. (2020) and Kane et al.
(2020). Moreover, QE benefiting from monolin-
gual data shows that XLM-R can utilize the labels
in monolingual datasets to make better inferences
in a cross-lingual task. This is most likely because
it is already a cross-lingual language model.

Additionally, we show that multitask training for
QE can improve the robustness of the model. We
demonstrate improvements in accuracy around
0.50 in the TATOEBA experiments (Table 4)
over other SoTA QE model. The robustness in
the corpus mining task can be attributed to embed-
ding information learned from the NLI and STS
tasks and the distribution of these datasets, where
we have negative samples that allow our model to
learn to eliminate unrelated sentences.

We show that SoTA QE models yield unexpect-



edly poor performance in a PCM setting(Table 4).
This is mainly due to how the QE data is created.
The dataset only consists of sentence pairs gener-
ated by NMT models, which are translations of
each other. They are either good or bad transla-
tions in a grammatical sense, but there are no non-
translations, i.e., sentence pairs that are grammati-
cal but are just unrelated. Hence a model trained on
QE data only focuses on fluency and grammatical-
ity and may unexpectedly rewards basic sentences
where NMT models do not make mistakes because
they always have a quality score of 1. To remedy
this problem, we used negative data augmentation
to "balance" the dataset and showed that this im-
proves the performance on PCM, resulting in an
additional 0.30 increase and a total of 0.80 in-
crease in accuracy(Table 4).

Our QE models process input sentences as pairs,
bringing up the computational cost problem. Solv-
ing this with the sentence filtration model we
train using contrastive loss enables the use of our
QE method in large filtration tasks. Making it a
good low resource corpus mining method that can
achieve on par results with SoTA methods (Tables
4 and 5). The importance of this contribution is am-
plified when we consider that our method is trained
only using 7K parallel sentences compared to other
PCM methods, which are trained on the order of
millions of sentences.

Throughout our experiments, we keep low re-
source limitations in mind. While we acknowl-
edge that collecting more data across different fam-
ilies of languages is an option to scale methods to
low resource languages. We argue that exploring
the improved usage of less data with better labels
promises another important avenue to make useful
methods like QE or PCM available in low resource
languages.

7 Future Work

To further our work, we plan to explore contrastive
loss fine-tuning with self-supervision to improve
QE performance planning and further reduce the
need for labels. Self-supervised learning is an ex-
citing way of forcing a neural language evaluator to
abstain from certain mistakes. This approach can
force invariance or target to reduce certain types of
errors. The nature of the information attained by
the network is primarily dependent on the negative
sample generation process.

Another interesting avenue to explore is using

QE in active learning for machine translation as a
scheduling or training signal.
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A Appendix A

In this part, we will look over the distribution of
QE scores for the language pairs in the MLQE
dataset. The MLQE dataset is constructed - source
sentences from Wikipedia are selected and trans-
lated using NMT methods; expert translators then
score the outputs following FLORES methodology.
This in turn had a few critical effects. As we men-
tioned in the paper, the first is that no sentence has
been paired with grammatically correct sentences
but is not related to that sentence. Every hypothesis
sentence is intended to be a reasonable translation
of that source sentence.

The second outcome we have observed is that
the QE model essentially adapts to the errors of the
NMT model. The QE models only encounter low
scores in the type of errors that NMT models are
prone to making. Vice-versa, they see high scores,
generally 1s in basic sentences where NMTs never
make errors. This creates a specific type of error in
QE performance where sentences that are easy to
translate or need no virtual translation besides a few
dictionary operations always receive high scores
from the QE model no matter the source sentence,
e.g., "June 10 1981" and "10. Juni 1981" from
en-de. These types of elementary sentences were
the highest scoring candidates for sometimes thou-
sands of sentences in the BUCC dataset, constantly
receiving scores close to 1.

The distribution of the scores is mostly consis-
tent with our findings. We only see that the low
resource language pairs seem to have a better dis-
tribution across the board. While this seems to be
a better case, it is not because the problem we men-
tioned does not exist, but because the NMT models
that do the translation for these low resource lan-
guages perform worse.

Figure 3: Distribution of QE scores from the MLQE
datasets train split for all 6 language pairs
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