
Boston University
OpenBU http://open.bu.edu
BU Open Access Articles BU Open Access Articles

2022-09-29

Enabling efficient and general
subpopulation analytics in

multidimensional data streams

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version Published version
Citation (published version): A. Manousis, Z. Cheng, R. Ben Basat, Z. Liu, V. Sekar. 2022. "Enabling

Efficient and General Subpopulation Analytics In Multidimensional
Data Streams" Proceedings of the VLDB Endowment, Volume 15,
Issue 11, pp.3249-3262. https://doi.org/10.14778/3551793.3551867

https://hdl.handle.net/2144/47059
Boston University

https://www.bu.edu/library/share-your-open-access-story/

Enabling Efficient and General Subpopulation Analytics in
Multidimensional Data Streams

Antonis Manousis

Carnegie Mellon University

antonis@cmu.edu

Zhuo Cheng

Carnegie Mellon University

zhuoc2@andrew.cmu.edu

Ran Ben Basat

University College London

r.benbasat@cs.ucl.ac.uk

Zaoxing Liu

Boston University

zaoxing@bu.edu

Vyas Sekar

Carnegie Mellon University

vsekar@andrew.cmu.edu

ABSTRACT

Today’s large-scale services (e.g., video streaming platforms, data

centers, sensor grids) need diverse real-time summary statistics

across multiple subpopulations of multidimensional datasets. How-

ever, state-of-the-art frameworks do not offer general and accurate

analytics in real time at reasonable costs. The root cause is the

combinatorial explosion of data subpopulations and the diversity of

summary statistics we need to monitor simultaneously. We present

Hydra, an efficient framework for multidimensional analytics that

presents a novel combination of using a “sketch of sketches” to

avoid the overhead of monitoring exponentially-many subpopu-

lations and universal sketching to ensure accurate estimates for

multiple statistics. We build Hydra as an Apache Spark plugin

and address practical system challenges to minimize overheads at

scale. Across multiple real-world and synthetic multidimensional

datasets, we show that Hydra can achieve robust error bounds and

is an order of magnitude more efficient in terms of operational cost

and memory footprint than existing frameworks (e.g., Spark, Druid)

while ensuring interactive estimation times.

PVLDB Reference Format:

Antonis Manousis, Zhuo Cheng, Ran Ben Basat, Zaoxing Liu, and Vyas

Sekar. Enabling Efficient and General Subpopulation Analytics in

Multidimensional Data Streams. PVLDB, 15(11): 3249 - 3262, 2022.

doi:10.14778/3551793.3551867

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/antonis-m/HYDRA_VLDB.

1 INTRODUCTION

Many large-scale infrastructures (e.g., Internet services, sensor

farms, datacentermonitoring) producemultidimensional data streams

that are growing both in data volume and dimensionality [2, 25, 26,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551867

82]. These multidimensional data contain measurements of met-

rics along with metadata that describe said measurements across

domain-specific dimensions. For instance, video streaming services

analyze user experience issues across dimensions, such as ISP, CDN,

Device, City, etc. [63, 64]. We see similar trends in other domains

e.g., network and data center monitoring [6, 9, 72].

In these settings, analysts need interactive and accurate estimates

of diverse summary statistics across multiple data subpopulations of

their data. For instance, video analysts want to monitor different

statistics of viewer quality across subpopulations of viewers (e.g.,

entropy of bitrate in eachmajor US city, etc.) [63]. Similarly, network

operators want to analyze traffic grouped by combinations of their 5-

tuple (srcIP, dstIP, srcPort, dstPort, protocol) [72]. This is analogous

to classical OLAP cube applications where the number of cube

vertices grows exponentially as more subpopulations are admitted.

In such multidimensional telemetry settings, we ideally want frame-

works offering high fidelity and interactive estimates at low op-

erational cost. However, there are two fundamental challenges.

First, there is a combinatorial explosion of data subpopulations to

monitor, which can result in exponential overhead in operational

costs and resources. Second, estimating multiple statistics entails

compute and/or memory overhead proportional to the number of

statistics of interest.

We find that existing frameworks are fundamentally limited in

terms of the tradeoff across operational cost, accuracy, and esti-

mation latencies they can offer. Exact analytics frameworks (e.g.,

Spark [99], Hive [87], Druid [96]) that rely on horizontal resource

scaling entail poor cost-performance tradeoffs as datasets become

larger. While approximate analytics [39] (e.g., sampling- or sketch-

based analytics) can trade off estimation accuracy for lower cost

and improved interactivity, these too suffer undesirable tradeoffs.

For instance, sampling-based approaches provide generality across

metrics and can handle many subpopulations, but their accuracy

guarantees can be weak. On the other hand, sketch-based analytics

(e.g., [18, 19, 28–30, 40, 49, 50, 88, 89, 98]) can offer robust accuracy

guarantees, but cannot address the combinatorial explosion of data

subpopulations and also incur per-statistic effort.

In this paper, we present Hydra, a framework for efficient and gen-

eral analytics over multidimensional data streams. Hydra builds on

the novel combination of two key ideas. First, to tackle the combi-

natorial explosion of subpopulations, we use a “sketch of sketches”

that enables memory efficient data stream summarization. This

reduces the framework’s data-resident memory footprint by one

to two orders of magnitude compared to Spark- and Druid-based

alternatives and offers robust and provable accuracy guarantees.

Second, to provide high-fidelity estimations simultaneously for

many statistics, we leverage universal sketching [72]. Unlike canon-

ical sketch-based approaches that deploy one custom sketch type

per statistic [50, 88, 89], a universal sketch estimates multiple dif-

ferent summary statistics with only one sketching instance.

To the best of our knowledge, Hydra is the first work to: (a) propose

the combination of a sketch-of-sketches with universal sketching

for the multidimensional telemetry problem. While some prior

works have proposed the concept of a sketch-of-sketches, they do

so for more narrow estimates of interest and do not demonstrate

practical system implementations supporting a broad range of esti-

mates (e.g., [41]); (b) analytically prove the theoretical guarantees

of such a construction; and (c) design a practical end-to-end sys-

tem design and implementation of this idea using the theoretical

analysis. We build a prototype Hydra on Apache Spark but note

that our core design is platform agnostic and can be ported to other

streaming/batching systems as well [5, 85, 96]. We also implement

practical optimizations to mitigate compute bottlenecks to further

reduce Hydra’s runtime and cost.

We evaluate Hydra using two real-world datasets; (1) a 2h-long,

January 2019 CAIDA trace from the equinix-NYC vantage point [7,

10] and (2) an anonymized real-world trace of video QoE from a

video analytics provider capturing the perceived QoE of viewers of

a US-based content provider [12]. To further evaluate the sensitivity

of Hydra-sketch, we also leverage a synthetic multidimensional

dataset drawn from a Zipf distribution with different parameter

values [49, 89].

We compare Hydra against six baselines: A native Spark-SQL im-

plementation for exact analytics, a Spark-based implementation

that uniformly samples incoming data, a sketch-based approach

that allocates one universal sketch instance persubpopulation, Ver-

dictDB [81] (a sampling-based alternative) and two key-value based

implementations (on Apache Spark and Druid) that pre-aggregate

data at ingestion time and provide precisely accurate analytics .

Our evaluation shows that: (1) Hydra offers robust accuracy (mean

error across statistics ≤5%with 90% probability) at 1/10 of the opera-
tional cost of exact analytics frameworks; (2) Hydra’s configuration

heuristics ensure close to optimal accuracy-memory tradeoffs; (3)

Hydra’s memory footprint scales sub-linearly with dataset size

and number of data subpopulations. Combined with performance

optimizations that improve end-to-end runtime by 45%, Hydra

offers 7-20× better query latency than Spark- and Druid-based

alternatives.

2 BACKGROUND AND MOTIVATION

In this section, we present several motivating scenarios, introduce

key aspects of multidimensional telemetry, and discuss the limita-

tions of existing analytics frameworks.

2.1 Motivating Scenarios

Video Experience Monitoring: To maintain their ad- and/or

subscription-driven revenues, video providers need to detect is-

sues that can degrade viewer experience. To that end, analysts first

collect video session summaries (i.e., per viewer measurements

of video quality) and use them to periodically (e.g., every minute)

compute summary statistics of various video quality metrics. This

allows them to monitor viewer experience across multiple subpop-

ulations of viewers [3, 63, 64]. For instance, to track the entropy of

bitrate and the L1 Norm of buffering ratio – a common indicator of

streaming anomalies – for viewers in different cities, analysts may

want to estimate the following query:

SELECT City, Entropy(Bitrate), L1Norm(Buffering)

FROM SessionSummaries

GROUP BY City

Network Flow Monitoring: Network operators commonly rely

on control-plane telemetry frameworks [44, 54] for tasks such as

traffic engineering [46, 72], attack and anomaly detection [84] or

forensics [95]. These frameworks periodically monitor performance

metrics (e.g., flow distributions, per-flow packet sizes, latency, etc.)

across different subpopulations of flows, i.e., network flows grouped

across combinations of packet header fields. For instance, the oper-

ator might want to track indicators of DDoS attacks as follows:

SELECT dstIP, Cardinality(srcIP)

FROM FlowTrace

GROUP BY dstIP

These use cases share a problem structure that is characteristic of

multidimensional telemetry. Queries that involve estimating many

statistics across many data subpopulations appear in various set-

tings, such as A/B testing [59, 65], exploratory data analysis [26, 90],

operations monitoring [16], and sensor deployments [97].

2.2 Requirements and Goals

Drawing on these use cases, we derive three key properties of the

telemetry problem we want to tackle:

1. Multidimensional Data: We define a multidimensional data

record as x = (d1, . . . , dD, m), where di is the value of a

dimension Di andm is the value of metricM . In video, quality

metrics might be bitrate or buffering time whereas dimensions

might be the viewer’s location, their player device, their ISP

or CDN. Metrics and dimensions are domain- and usecase-

specific.

2. Analytics onData Subpopulations: Analytics are estimated

in parallel across subpopulations of the input data. A sub-

population Qi is a collection of data records {x𝑖 } such that
all x𝑖 ∈ Qi match on a subset of dimension values. With a

slight abuse of notation, we define Qi using this set of di-

mension values, i.e., Qi = {Di,1 = di,1 ∧ · · · ∧ Di,l = di,l},
where {Di,1, . . . ,Di,l} ⊆ {D1, . . . ,DD}; e.g., a data subpopula-
tion could be NYC-based viewers using AppleTV.

3. Multiple statistics to estimate: For each subpopulation, the

operator wants to estimate various summary statistics e.g.,

heavy hitters, entropy, cardinality, etc. A query qk specifies a

set of subpopulations {Qi} and a statistic g to estimate using
the values mj of xj ∈ Qi .

In practice, operators have three requirements: (1) High fidelity for

a broad set of statistics i.e., robust, apriori configured, error bounds

for as many statistics as possible; (2) Near real-time estimations

and; (3) Low footprint (e.g., cloud compute and memory costs).

2.3 Prior Work and Limitations

Prior work has focused on developing two broad (but not mutually

exclusive) approaches for multidimensional telemetry. The first

enables distributed computations by horizontally scaling the frame-

works’ resources. The second enables approximate analytics that

sacrifice estimation accuracy for improved performance.

1. Horizontal resource scaling: Here we find SQL and NoSQL

analytics frameworks whose distributed design reduces esti-

mation latency through horizontal scaling of server resources

(e.g., Spark [99], Hive [87], Hadoop [85], Dremel [74], Druid [96],

Flink [35]). These frameworks scale their clusters with input

data and can provide precisely exact estimations. However, as

data volume and dimensionality grow, i) deploying such clus-

ters becomes increasingly expensive and ii) the continuous

addition of resources eventually results in marginal estimation

latency gains due to data shuffling overheads [20].

2. ApproximateAnalytics:Approximate analytics frameworks

leverage sampling or data summarization algorithms in order

to trade off accuracy for performance and cost. Sampling-

based frameworks allow for low estimation latency by sam-

pling data either online, at query time (the analyst applies

the sampling operators and parameters as part of the esti-

mation query) [24, 36, 74, 79, 87] or offline, by means of a

pre-processing step that creates data samples to be used at

query time [17, 18, 20, 86].

While there is a rich body of sampling-based efforts, these

have two key shortcomings. First, their accuracy guarantees

are in the form of confidence bounds that are computed af-

ter query estimation has taken place and that depend on the

statistic being estimated and the number of samples used [73].

Therefore, when an estimate does not meet accuracy require-

ments, frameworks often fall back to using other samplers

or precisely exact estimates. Second, to offset the resource

overheads of producing offline samples, frameworks often

make hard apriori choices on what subsets of their data to

create samples for (e.g., BlinkDB [20] that mines query logs for

frequently queried data or VerdictDB [81] that allows users to

identify popular data tables). In contrast, sketch-based analyt-

ics ensure bounded accuracy-memory trade-offs for arbitrary

workloads in sub-linear space [42, 43, 45, 72, 98]. These frame-

works build compact data summaries at ingestion and use

them to estimate statistics with apriori provable error bounds.

We can also combine horizontal resource scaling and approxima-

tions. For instance, both Apache Spark and Druid allow for data

summarization at ingestion time such that incoming data are stored

as a key-value store where the keys are distinct 〈Qi, m𝑗 〉 tuples and

101 102 103

Cost of Analytics ($ Normalized)

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
) Spark-SQL

1 Sketch per Subpopulation
Spark-KV
Druid
Uniform Sampling 1%
Uniform Sampling 10%
VerdictDB
HYDRA

Figure 1: End-to-end cost of analytics. The green-shaded region indicates

the ideal operating regime for Hydra.

the values are their respective counts. These hybrid approaches en-

able data reduction without compromising the framework’s ability

to offer precise estimations.

Qualitative Analysis: Next, we analyze the overhead to process

multidimensional streams and the resident data cost using the above

solutions. Let us denote the dataset size (in terms of the number of

data records) as V and let 𝑄 be the number of data subpopulations.

Assuming D dimensions and that each data record belongs in 2D

different subpopulations, then𝑄 = O(2D×V). In practice, assuming
each dimension has cardinality C, there are O(CD) subpopulations
in the dataset. In practice, we find that O(2D × V) is a tighter
empirical bound for 𝑄 and we will use that moving forward. In

addition, given that the framework needs to estimate O(S) different
statistics, the number of summary statistics to be estimated is an

exponential O(Q×S) = O(2D×V×S). Assuming, as it is the case for
frameworks for precisely exact analytics, that the CPU and memory

requirements for data ingestion and/or statistics estimation scale

linearly with subpopulations, we see that the framework’s runtime,

resource requirements and cost also scale exponentially.

Quantitative Analysis: To corroborate this qualitative analysis,

we evaluate the operational cost for several analytics frameworks

when used in a multidimensional context (Figure 1). Specifically,

we measure their $ cost as a function of their observed accuracy

when asked to estimate in real-time 4 summary statistics from

a 130GB real-world dataset with approximately 5.6 million data

subpopulations. Following the typical cloud billing model [11], we

use the total runtime × the number of cluster nodes used (20) as

a proxy for the $ cost. We provide a detailed description of our

experimental setup and baselines in §6. Ideally, we need a frame-

work whose cost-accuracy tradeoff lies in the top-left, green region,

i.e., it offers the accuracy of a precise analytics framework at the

cost of sampling. However, we observe that the cost gap between

the cheapest (1% uniform sampling) and the most expensive base-

lines (precisely accurate Spark-SQL) is two orders of magnitude

wide. A sketch-based approach where the framework allocates one

sketch per subpopulation, while cheaper than Spark-SQL, remains

expensive as it allocates exponentially many sketch instances, thus

incurring high memory overheads. As discussed in §6, this base-

line uses universal sketching that can simultaneously estimate all

4 statistics of interest per subpopulation with one sketch. Finally,

…

1.

Figure 2: Hydra’s example workflow. Workers perform data ingestion and

querying. The frontend node exposes the query API to the operator and performs

configuration and query plan dissemination.

precise baselines that summarize data at ingestion time, such as

Apache Druid and Spark (denoted as Spark-KV) lie in the middle

between Spark-SQL and sampling.

Key takeaways: Multidimensional telemetry entails a combina-

torial explosion of data subpopulations and summary statistics to

monitor. Balancing cost, accuracy, and estimation latency is chal-

lenging due to the combinatorial explosion in data subpopulations

and the number of summary statistics the framework needs to en-

able. Existing frameworks can only meet a subset of these goals,

which motivates us to rethink how to support such analytics work-

loads at scale.

3 HYDRA: SYSTEM OVERVIEW

To support multidimensional workloads at scale, we envision Hy-

dra as a streaming, sketch-based OLAP framework [4, 96]. Hydra’s

distributed design (illustrated in Figure 2) includes one frontend

and multiple worker nodes and its input are i) streams of multi-

dimensional data, ingested in parallel at the worker nodes and

ii) estimation queries provided by the operator to the frontend

node. Hydra implements two logical operations: Data Ingestion

and Query Estimation.

(1) Data Ingestion: Data Ingestion happens at the worker nodes.

Each worker summarizes an incoming data stream to a local in-

stance of Hydra-sketch. Data summarization happens on a per-

subpopulation basis. Specifically, for every incoming data record,

Hydra first identifies what subpopulations the data record belongs

in and correspondingly updates a novel sketching primitive that

we discuss below, Hydra-sketch. Hydra-sketch instances are con-

figured to ensure accuracy guarantees and low memory footprint

(§4.6).

(2) Query Estimation: Query Estimation involves both frontend

and worker nodes. The frontend receives operators’ queries with i)

the statistics to estimate and ii) the set of subpopulations to estimate

these statistics on. Using this information, it creates a query plan

that is distributed to the worker nodes who execute the queries.

After estimation has taken place, the frontend node collects the

results from the workers and returns them to the operator.

O(S)

Sketches Per Subpopulation Sketch of Sketches

…

Ingestion: (
)

Estimation: ()

HydraSketch

A2,4 A1,3

A1 A3,5 AK

A1,2 A4

A2,4 A1,3

A1 A3,5 AK

A1,2 A4

O(S)

(
)

()

(
)

()

w

r
Q1 Q2 QK

Q1, QK Q1, QK

Q1

)))

Figure 3: Comparison of Ingestion and Estimation (CPU time, space com-

plexity) for different sketch-based designs. We highlight the theoretical im-

provements in space complexity from Hydra’s design ideas.

While the idea of using sketching to optimize analytics is not new,

in our context canonical sketch-based approaches will need to

instantiate up to O(S) sketch instances per subpopulation. This
is inefficient as the framework needs exponentially many sketch

instances, despite a sketch’s ability to summarize a subpopulation’s

data in sub-linear space.

Key Idea:To avoid the above limitations of conventional approaches,

Hydra uses a novel combination of two ideas.

First, we observe that we can reduce the exponential O(Q) =
O(2D×V) ingestion-time, memory cost of sketch-based approaches
through a novel “sketch of sketches”. We show that through a w × r

array of sketch instances (Fig. 3), where w × r � 2D × V , Hy-

dra reduces the memory cost of estimating O(S) statistics from
O(2D×V ×𝑆) to O(w×r×S). The intuition is that, unlike canonical
sketch-based approaches, we can summarize multiple subpopula-

tions into one sketch instance and then query it with predictable

error [41, 89].

Second, to reduce the need for instantiating O(S) different sketch
types forO(S) summary statistics, Hydra leverages universal sketch-
ing [33, 72]. Universal sketching enables replacing O(S) sketches
with a single sketch that simultaneously estimates multiple dif-

ferent statistics per subpopulation. This means that as long the

desired statistics can be estimated with a universal sketch, there

is no limit in the number of statistics that the sketch can estimate

with a fixed memory footprint. This design choice further reduces

the framework’s space complexity from O(w × r × S) to O(w × r).

While these two ideas (sketch of sketches and universal sketching)

have been independently proposed in other narrower contexts, to

the best of our knowledge, we are the first effort to: (1) propose the

combination of these ideas to tackle the multidimensional telemetry

problem; (2) rigorously prove the accuracy-resource tradeoffs of this

construction; and (3) demonstrate a practical end-to-end realization

atop state-of-art horizontally scalable “BigData” platforms.

Table 1: Hydra Notation. The upper subsection introduces notation specific

to the sketch-of-sketches and the lower to universal sketches.

Notation Definition

V Input size

D Number of data dimensions

𝑄 Number of data subpopulations

S Number of summary statistics

Sm,n Stream of length m and n distinct keys

w Number of sketches per 2D-sketch row

r Number of rows in 2D-sketch

(𝜖, 𝛿) 0 < 𝜖 < 1 as additive error and 𝛿 is the probability that
the result error is not bounded by 𝜖 (failure probability)

wUS Number of counters per universal sketch row

rUS Number of universal sketch rows

(𝜖US, 𝛿US) 0 < 𝜖US < 1 as additive error in universal sketch and

𝛿US is the failure probability
L Number of universal sketch layers

k Number of keys in universal sketch heavy hitter heaps

4 HYDRA DETAILED DESIGN

We first provide background on sketching to set up the intuition

for Hydra-sketch. We then introduce the basic Hydra-sketch algo-

rithm, formally prove its error bounds, and devise Hydra-sketch

configuration strategies. Table 1 summarizes the notation we use.

4.1 Background on Sketching

Let Sm,n denote a data stream with length m and n distinct keys.

Suppose we want to estimate a frequency-based summary statistic

of the keys (e.g., entropy, cardinality, frequencymoments). A natural

design is to estimate the desired statistic with a key-value data

structure tracking the frequency per key. For instance, for frequency

estimation, we can maintain and increment one counter per key.

While correct, the space complexity is linear in n and not space

efficient (Figure 4).

Input Stream

m: length of stream
n : distinct keys

n

O(n) ingestion
memory

Per-key state

1 2 n

Figure 4: Maintaining per-key state is not space efficient

Hash-basedmappings for space efficiency: To ensure sub-linear

(in n) space complexity, sketching algorithms do not maintain per-

key state but, instead, map multiple keys to the same counters via

hashing. For instance, a simple sketch for frequency estimation

consists of w integer counters, where w � n. Based on the hash of

the key, an element gets mapped to a counter, which is then incre-

mented to maintain an estimate of that key’s frequency. Naturally,

multiple keys colliding introduces some errors (Figure 5).

Multiple independent updates for tighter error bounds: As

defined, this basic mechanism only provides a small probability

that the estimation error will lie within a desirable range of error

values [22]. To overcome this, sketches use independent instances

Input Stream

m: length of stream
n : distinct keys

w

O(w) sub-linear
ingestion memory

Hash-based
mapping

3, 5 7 9

Figure 5: Hashing enables sub-linear memory complexity

(e.g., r arrays) of the counter structure of length w. Each vector

of length w has its own hash function and the w hash functions

are pairwise independent. Thus, ingesting a stream element now

translates to r update operations (e.g., incrementing r integer coun-

ters instead of one). For each key, this sketch produces r different

estimates of the statistic of interest. The final estimate will be a

summary of r estimates (i.e., min, median etc.) (Figure 6) [42]. This

amplifies the probability that the estimation error lies within the

desired range.

Input Stream

m: length of stream
n : distinct keys

w

O(wr) sub-linear
ingestion memory

r
h1

h2

hr

Hash-based mapping
Redundant counters

Figure 6: Independent hashing improves accuracy.

4.2 Tackling Subpopulation Explosion

For now, let us make the simplifying assumption (which we relax

later) that our system only needs to estimate one summary statistic

(e.g., entropy) per data subpopulation. Similar to Figure 4, a starting

point for our design would be to maintain per-subpopulation state,

i.e., allocate one sketch instance for each of the O(2D × V) distinct
subpopulations. This approach, similar to an OLAP cube, is not

scalable as it requires as many sketches as the number of data

subpopulations.

To avoid keeping per-subpopulation state, we borrow from the first

intuition that we saw in the sketch construction in the background

(Figure 5). The basic sketch construction avoidsmaintaining per-key

state by allowing multiple keys to explicitly collide in a hashed key-

value store whose size is less than the number of unique elements.

Note that the basic sketch is maintaining a single counter per array

entry but we want to be able to estimate some statistical summary

of a subpopulation instead. Therefore, instead of keeping a single

counter per array entry, wemaintain a sketch-per-entry. This brings

us to the following construction (Figure 7). We consider a single

array of w (e.g., w � 2D × V) sketches. For each (Q𝑖 , m𝑗) pair, we

hash the Q𝑖 and map it to one of the w sketches, thus colliding

multiple subpopulations to the same sketch. Then, we update the

sketch with m𝑗 and at query time, we estimate the statistic for Q𝑖 .

Analogous to the basic sketch from §4.1, by mapping multiple sub-

populations to one sketch, this baseline construction will have some

: Length of stream
: Aggregations per datapoint

Aggregations in stream

Multidimensional Stream w
Q1 Q2 Q3 Qi Qj …

Hash-based mapping to sketches
O(w) ingestion memory

Figure 7: Hash-based mapping of subpopulations to a sketch vector.

estimation error. To control this, we extend the idea of using redun-

dant counter vectors and pairwise-independent hashes (Figure 6).

That is, we use r arrays of w sketches and use r pairwise-independent

hash functions to map each subpopulation to one sketch per row

(Figure 8). At query time, we return the median of the r estimates.

: Length of stream
: Aggregations per datapoint

Aggregations in stream

w

r

Multidimensional Stream
Q1 Q2 Q3 Qi Qj …

ingestion memory

h1

h2

hr

Figure 8: Redundant sketch vectors and pairwise-independent hashes for

tighter error bounds.

In summary, the above sketch-of-sketch construction maintains a

2D array of sketches to track multiple subpopulations. This reduces

the memory cost of ingestion to𝑂 (w × r) i.e., sub-linear in subpop-
ulations. In §4.5, we formally prove the memory-accuracy tradeoffs

for this construction.

4.3 Enabling Multiple Statistics

The above discussion is based on the simplifying assumption that

we need to only estimate one summary statistic. Since sketching

algorithms are generally custom designed per statistic, to support

𝑂 (S) different summary statistics, we need to create𝑂 (S) sketch-of-
sketches instances. This raises two natural concerns. First, the total

memory cost of this solution becomes𝑂 (w× r×S), i.e., linear to the
number of summary statistics of interest. Second, the framework

cannot offer generality as it cannot estimate summary statistics

that are not already allocated; e.g., some future analysis might

require estimating the entropy of a metric but the framework has

not instantiated an entropy-specific sketch-of-sketch instance.

Our insight here is that the sketch of sketches structure can be com-

binedwith universal sketching [72] to achieve the desired generality

across statistics. A universal sketch is a sketching primitive that

enables the simultaneous estimation of multiple different, apriori

unknown, statistics with one sketch instance. Therefore, instead of

a sketch-of-sketches per statistic, we can use one sketch of univer-

sal sketches. We formally prove this in §4.5 and show that Hydra’s

ingestion cost drops to O(w × r).

Background on universal sketches: A universal sketch can

estimate any summary statistic that belongs to a broad class of

functions, known as Stream-PolyLog [32, 33, 72]. We denote each

function in Stream-PolyLog, as G-sum =
∑
g(fj), where fj is the

frequency of the j-th unique element in the input stream Sm,n and

g is a function defined over fj . If g is monotonically increasing and

upper bounded by O(fj2), then G-sum can be computed by a single

universal sketch with polylogarithmic memory. Universal sketch

provides 𝜖-additive error guarantees to Stream-PolyLog and demon-

strates better memory-accuracy tradeoffs than the composition of

custom sketches when estimating multiple statistics from Stream-

PolyLog in practice [72]. Key statistics of interest can be formulated

via a suitable G-sum ∈ Stream-PolyLog. Such examples include: 𝛼-
Heavy Hitters (𝑓𝑖 ≥ 𝛼Σ𝑓𝑖), L1-Norm (Σ𝑓𝑖), L2-Norm (Σ𝑓 2𝑖) Entropy

(−Σ 𝑓𝑖
𝐿1
log

𝑓𝑖
𝐿1
), and Cardinality (|〈𝑓1, . . . , 𝑓𝑁 〉|). Note that there are

many other summary statistics that can be estimated by combining

statistics, such as standard deviation, histograms, mean, or median.

A statistic that cannot be directly estimated by Hydra-sketch is

quantiles.

The basic building block of universal sketches are L2-Heavy Hitter

(HH) sketches e.g., Count-sketch [75]. Each count-sketch maintains

rCS arrays of wCS counters each, rCS pairwise-independent hash

functions and a max-heap keeping track of the top-𝑘 Heavy Hitters
in the sketch; When updating each count-sketch with a new data

item, the sketch updates a randomly located counter in every row

based on the corresponding hash index to keep track of that data

item’s frequency. The top-𝑘 HH heap is subsequently updated to

reflect the addition of the new item. A universal sketch consists of L

layers of count-sketches. Each count sketch applies an independent

0-1 hash function hl∈[0, L) to the input data stream to sub-sample

at every layer (from the previous layer). These layers then track

the heavy hitters, i.e., the important contributors to the G-sum.

The intuition here is that the layered structure of the universal

sketch is designed for sampling representative elements with di-

verse frequencies, and these elements can be used to estimateG-sum

with bounded errors. If only one layer of heavy hitter sketch were

used, the estimations would lack representatives from less frequent

elements. The heavy-hitters at each layer are processed iteratively

from the bottom layer to the top and the recursively aggregated

result is used to compute the desired statistic. This is an unbiased

estimator of G-sum with bounded additive errors (Theorem 1).

Theorem 1 ([33, 72]). Given a stream Sm,n let us consider a Univer-

sal Sketch US with L = O(log n) layers. If each layer of US provides

an (𝜖US, 𝛿US)-L2 error guarantee, then US can estimate any G-sum

function G ∈ Stream-Polylog to within a (1 ± 𝜖US) factor with prob-

ability 1 − 𝛿US. Satisfying a (𝜖US, 𝛿US)-L2 error guarantee requires
𝑂 (𝑙𝑜𝑔n) Count-Sketch instances with 𝑤CS = O(𝜖−2

US
) columns and

𝑟CS = O(log𝛿−1
US
) rows.

4.4 The Hydra-sketch Algorithm

Combining these ideas gives us the Hydra-sketch algorithm.

(1) Updating Hydra-sketch: Updating Hydra-sketch with a data

record, xj =< d1,j, d2,j, . . . , dD,j,, mj > is a three-step process. At

the first, “fan-out” stage, we compute the 𝑂 (2D) subpopulations

{Q1, . . . ,Q2D } that xj belongs in. Note that while 𝑂 (2D) is an expo-
nential term, it is exponential to the number of dimensions D and,

thus, significantly smaller than the total number of subpopulations

Q, which is exponential to the cardinality of values in each dimen-

sion. Then, we map each Qi to r universal sketches instances using

r pairwise-independent hash functions hk∈[0,r) : Qi → [0,w). For
the k𝑡ℎ row, the index of the universal sketch to update USk is the

hash of Qi using hash function hk . Last, we update each USk with

the metric value m𝑗 .

(2) QueryingHydra-sketch:Hydra-sketch’s querying algorithm

takes as input a statistic g and an aggregationQi i.e., the aggregation

to estimate g on. Querying consists of 2 steps. The first involves

identifying the set of r universal sketch instances {USk} that Qi

maps to. Then g is estimated from each USk , and the median value

of these estimations is returned.

Given this basic algorithm, we now focus on formally proving that

Hydra-sketch offers rigorous accuracy guarantees and that it is

usable in practice.

4.5 Accuracy Guarantees

Theorem 2 states the accuracy bounds of Hydra-sketch.

Theorem 2. Let us assume that each Universal Sketch US can approx-

imate the G-sum, for a monotone function 𝑔 within a (1 + 𝜖US)-factor
with probability 1 − 𝛿US > 1/2. Further, let GS be the G-sum applied

to the stream S and G𝑖 when applied to the target subpopulation Q𝑖 .

Then Hydra-sketch with𝑤 = O(𝜖−1) columns and 𝑟 = O(log𝛿−1)
rows, for user defined parameters 𝜖, 𝛿 , provides an estimate Ĝ𝑖 that

with probability 1 − 𝛿 satisfies:

G𝑖 (1 − 𝜖US) ≤ Ĝ𝑖 ≤ G𝑖 (1 + 𝜖US) + 𝜖 · GS (1)

Proof. To bound the error of our algorithm, we analyze the fre-

quency vector 𝑓𝑗 of the stream of elements mapped to each Univer-

sal Sketch instance US 𝑗 = h𝑗 (Q𝑖), where Q𝑖 is the queried subpop-

ulation. The frequencies of all m𝑖 ∈ Q𝑖 are guaranteed to appear in

𝑓𝑗 , since the Update algorithm of §4.4 maps them to US 𝑗 .

Let 𝔔 = {Q1, . . . , } denote all groups in the input stream S, and
let 𝔔 𝑗 =

{
Q𝑘 ∈ 𝔔 | h𝑗 (Q𝑘) = h𝑗 (Q𝑖)

}
denote the set of groups

mapped to US 𝑗 . That is, GS =
∑
Q𝑘 ∈𝔔

∑
m𝑘 ∈Q𝑘

g(𝑓m𝑘).
The quantity which we wish to estimate is G𝑖 �

∑
𝑥 ∈Q𝑖

g(𝑓m), i.e.,
the g-sum of the group Q𝑖 , while the US 𝑗 processes all groups

in 𝔔 𝑗 and thus approximates
∑
Q𝑘 ∈𝔔 𝑗

∑
m𝑘 ∈Q𝑘

𝑔(𝑓m𝑘) = G𝑖 +∑
Q𝑘 ∈𝔔 𝑗 \{Q𝑖 }

∑
m𝑘 ∈Q𝑘

𝑔(𝑓m𝑘). For all 𝑗 ∈ {0, . . . , 𝑟 − 1}, denote by
Ĝ𝑖, 𝑗 the estimate of US 𝑗 , and denote the noise added by the other

groups as 𝑁 𝑗 =
∑
Q𝑘 ∈𝔔 𝑗 \{Q𝑖 }

∑
m𝑘 ∈Q𝑘

𝑔(𝑓m𝑘). Notice that, since
any group in 𝔔 \ {Q𝑖 } has a probability of 1/w of being in 𝔔 𝑗 ,

its expectation satisfies that: E[𝑁 𝑗] =
∑

Q𝑘 ∈𝔔\{Q𝑖 }
∑

m𝑘 ∈Q𝑘 𝑔 (𝑓m𝑘)
w ≤

GS
w . Therefore, according to Markov’s inequality, for any 𝑐 ∈ R+,
Pr[𝑁 𝑗 ≥ 𝑐 · GS

w] ≤ 1/𝑐 . Next, by the correctness of the universal
sketch, we have that,

Pr[Ĝ𝑖, 𝑗 ∉ [(G𝑖 + 𝑁 𝑗) (1 − 𝜖US), (G𝑖 + 𝑁 𝑗) (1 + 𝜖US)]] ≤ 𝛿US .

Since g is part of 𝐺-sum ∈ Stream-PolyLog, it must be monotone,

and thus 𝑁 𝑗 ≥ 0. This means that with probability of at least

1 − 𝛿US − 1/𝑐 both Ĝ𝑖, 𝑗 ∈ [G𝑖 (1 − 𝜖US), (G𝑖 + 𝑁 𝑗) (1 + 𝜖US)] and
𝑁 𝑗 < 𝑐 · GSw simultaneously hold, and thus

G𝑖 (1 − 𝜖US) ≤ Ĝ𝑖, 𝑗 ≤ G𝑖 (1 + 𝜖US) + 𝑐

w
(1 + 𝜖US)GS . (2)

Therefore, we pick w = 𝑐 · (1 + 𝜖US) · 𝜖−1 and a 𝑐 value such that
1 − 𝛿US − 1/𝑐 > 1/2, to get that

Pr
[
G𝑖 (1 − 𝜖US) ≤ Ĝ𝑖, 𝑗 ≤ G𝑖 (1 + 𝜖US) + 𝜖 · GS

]
> 1/2

Recall that the algorithm’s query sets Ĝ𝑖 = median𝑗 Ĝ𝑖, 𝑗 and that

the r rows are i.i.d. and thus a Chernoff bound yields

Pr
[
G𝑖 (1 − 𝜖US) ≤ Ĝ𝑖 ≤ G𝑖 (1 + 𝜖US) + 𝜖 · GS

]
≥ 1 − 𝛿. �

Takeaways: We note the following from Theorem 2. The error

bounds of Hydra-sketch are tunable based on the choice of its

configuration parameters that control (𝜖, 𝛿) and (𝜖US, 𝛿US). In
addition, the upper error bound is additive, which means that it

will allow for loose error bounds in cases where 𝜖 · GS ≈ G𝑖 . We

discuss these takeaways in more detail below.

4.6 Hydra-sketch Configuration

HydraSketch Universal Sketch

r

Count Sketch Array Count Sketch HH Heap

Wcs

rcs
k

W

Figure 9: Hydra-sketch structure and configuration parameters.

We now focus on techniques to tune Hydra-sketch’s parameters.

As illustrated in Figure 9, Hydra-sketch has six configuration pa-

rameters: two parameters (r and w) define the structure of the

sketch arrays and additional four (L, wCS, rCS, and k) determine

the inner structure of the Universal Sketches. The choice of config-

uration parameters of Hydra-sketch affects its empirical accuracy

and memory footprint. For instance, larger w and r values ensure

better estimation accuracy but require more memory.

It is often useful to reason about the relative error of the estimation;
rephrasing Theorem 2, we can write:

Pr

[
−𝜖US ≤ Ĝ𝑖 − G𝑖

G𝑖
≤ 𝜖US + 𝜖 · GS

G𝑖

]
≥ 1 − 𝛿.

and thus

Pr

⎡⎢⎢⎢⎢⎣
���Ĝ𝑖 − G𝑖

���
G𝑖

≤ 𝜖US + 𝜖 · GS
G𝑖

⎤⎥⎥⎥⎥⎦ ≥ 1 − 𝛿.

That is, we have that with probability 1 − 𝛿 , the relative error

is at most 𝜖US + 𝜖 · GS
G𝑖
. Since 𝜖US, 𝜖 , and GS are determined by

the configuration and not a specific subpopulation, we get that

the relative error bound is looser if 𝐺𝑖 is small. Intuitively, if a

subpopulation is very small, the noise we get from the colliding

subpopulations may be larger than its own statistics.

With that in mind, we consider a quantity 𝐺min that denotes the
minimal G-sum for which we want to guarantee some relative error,

e.g., of 20%, with a high probability, e.g., 90%. This means that for

any subpopulation with a higher G-sum, the error is upper bounded

by 𝜖US + 𝜖 · GS
𝐺min

. This allows us to derive configuration heuristics

for Hydra-sketch as follows:

Controlling the probability of error bounds holding: From

Theorem 2, for the error bound of our example to hold with 90%

probability, 1 − 𝛿 = 0.9 and, hence, 𝛿 = 0.1. This translates to r ≈ 3.

Similarly, from Theorem 1, a universal sketch will estimate any

G-sum function within an 𝜖US factor with probability 1 − 𝛿US . For
probability 90%, 𝛿US = 0.1 and, thus, rCS ≈ 3.

Minimizing upper error bound: To minimize the upper error

bound of Hydra-sketch, we need to minimize 𝐸 = 𝜖US + 𝜖 GS
G𝑚𝑖𝑛

under a memory constraint, O(𝑀) = w × wUS . From Theorems 1

and 2, we know that 𝜖 ≈ 1/w and 𝜖US ≈ 1/√wUS . This allows us to

minimize 𝐸 for w and wUS as follows:

1. Solving for 𝜖US : Given the memory constraint, we can write

𝐸 = 𝜖US + GS
𝑀G𝑚𝑖𝑛𝜖2US

. Minimizing 𝐸 over 𝜖US gives us:

𝜖US = 3

√
2GS

𝑀G𝑚𝑖𝑛
⇒ wUS = Θ(𝑀G𝑚𝑖𝑛

GS
)2/3 . (3)

2. Solving for 𝜖: Similarly, we can write 𝐸 =
√

1
𝑀𝜖 + 𝜖 GS

G𝑚𝑖𝑛
.

Minimizing over 𝜖 gives:

𝜖 =

(
2
√
𝑀GS

G𝑚𝑖𝑛

)−2/3
⇒ w = Θ

(√
𝑀GS
G𝑚𝑖𝑛

)2/3
(4)

Controlling remaining universal sketch parameters: Last, we

configure the levels (L) maintained in each universal sketch instance

and the number of heavy keys (k) needed to store at each level’s

heavy hitter heap. From Theorem 1, L = O(log nUS), where nUS is
the average number of distinct subpopulations summarized at a

universal sketch. For the value of k, we empirically set its lower

bound to k = Ω(1/𝜖2
US
). For 𝜖US = 0.1, this translates to 𝑘 ≈ 100.

Let us now see how we can use these guidelines in practice. As an

example, let us assume we want the relative error of estimation

to not exceed 0.2 with 90% probability for subpopulations where

G𝑖/GS ≥ 10−3. Thus, G𝑚𝑖𝑛 = 10−3 · GS. Let us also assume that
𝜖US = 𝜖 · GS

G𝑚𝑖𝑛
= 0.1. From Eq. (3), we can get an estimate of

memory needed, 𝑀 ≈ 106 needed. Note that here 𝑀 measures

“units of wUS” i.e., counters. Thus, 𝜖US = 0.1 and wUS = Θ(102).
From O(𝑀) = w · wUS , we can further see that also w = Θ(102).
In §6, we show that these strategies can achieve near optimal trade-

offs. We acknowledge that implementing this workflow assumes

that the operator has some prior knowledge about the workload

i.e., a rough estimate of the number of subpopulations. We believe

this is not an unreasonable requirement in many practical settings.

5 IMPLEMENTATION

This section discusses our implementation of Hydra and the prac-

tical performance challenges we faced. Our prototype of Hydra-

sketch can be found in [13].

Baseline Implementation and Workflow:We implement Hy-

dra’s workflow (§3) on top of Apache Spark [99] as Spark’s exten-

sibility allowed us to easily prototype design alternatives. However,

Hydra’s workflow can easily fit into different analytics frameworks

e.g., Druid [96].

Data ingestion happens at the worker nodes. Each worker node

splits its input into ∼64MB partitions, allocates one Hydra-sketch
instance per partition and updates it with that partition’s data. We

implement these and Hydra-sketch instances as Spark RDDs. To

allocate appropriately configured Hydra-sketch instances, workers

rely on configuration manifests distributed by the frontend node.

As a result of splitting input data into smaller batches, each worker

node maintains multiple instances of Hydra-sketch. The design

of Hydra enables sketch merging due to the well-known linearity

property of frequency-based sketches. Therefore, during data inges-

tion, worker nodes merge Hydra-sketch instances of fully ingested

partitions until Hydra is left with one Hydra-sketch instance to

query. For sketch merging, we use Spark’s “treeAggregation” mod-

ule [1], thus mitigating the risk of performance bottlenecks.

Query estimation involves both the frontend and the worker nodes.

The operator inputs the desired queries and the frontend then

generates a query plan for the worker nodes to execute. Estimation

results are collected at the frontend node.

An accuracy-improving heuristic: Recall from §4.4 that after

Q𝑖 is mapped to a universal sketch, that sketch only stores the

frequencies of metric values m𝑗 . This design, however, does not

keep track of which subpopulation Q𝑖 each m𝑗 maps to. As a re-

sult, a universal sketch will return the same estimations for all

subpopulations whose data it stores. Our heuristic is simple: In-

stead of updating each universal sketch withm𝑗 , we can use a more

fine-grained key, i.e., the concatenation of the metric value and its

corresponding subpopulation. This way, heavy hitter heaps will

maintain heavy counts for each (Q𝑖 , m𝑗) pair and will be able to

differentiate between them.

Implementation optimizations: To further reduce the system’s

runtime, we introduce a few optimizations:

(1) One Large Hash per (Q𝑖 , m𝑗) Pair: Updating Hydra-sketch

(Q𝑖 , m𝑗) requires O(r × L) hash computations, r to identify the
universal sketches to update and up to L per universal sketch. We

reduce the number of hashes to O(1) by computing one large 128-
bit hash and breaking it down into substrings of variable lengths and

treating each substring as a separate hash. Prior analysis [47, 67]

shows that different substrings from the same long hash provide

sufficient independence.

(2) One Layer Update: In prior universal sketching implementa-

tions, the algorithm keeps a heap to track frequent keys per layer.

For each datapoint update, the universal sketching needs to update

two of its layers on average. In Hydra-sketch, we follow [97] and

update only the lowest sampled layer per datapoint. This technique

reduces the layers updated to one per datapoint, while providing

an equivalent implementation.

(3) Heap-only sketch merge Merging two Hydra-sketch in-

stances involves iterating over two 2D universal sketches arrays

HS1 and HS2 and merging each pair (HS1
𝑘,𝑙
, HS2

𝑘,𝑙
). This means

iterating over the universal sketch layers, summing up correspond-

ing counters, recomputing the heavy elements and re-populating

the heavy hitter heaps. However, we find that we can only merge

the heavy hitter heaps instead of all counters.

6 EVALUATION

We now evaluate Hydra using real-world and synthetic datasets.

We provide a sensitivity analysis of our design, and evaluate our

configuration strategies and optimizations. In summary:

1. Hydra offers ≤ 10sec query latencies and is 7-20× smaller

than existing analytics engines.

2. Hydra offers ≤5% mean errors (combined across statistics)

with 90% probability for a broad set of summary statistics at

1/10 of the $ cost of exact analytics engines.

3. Thanks to Hydra’s sub-linear (to the number of subpopula-

tions) memory scaling, Hydra achieves close to an order of

magnitude improvement in operational cost compared to the

best exact analytics baseline.

4. Hydra’s sketch configuration strategies ensure near-optimal

memory-accuracy tradeoffs.

5. Hydra’s performance optimizations improve end-to-end sys-

tem runtime by 45% compared to a deployment that uses the

basic Hydra-sketch design.

6.1 Experimental Methodology

Setup:We evaluate Hydra on a 20-node cluster of m5.xlarge (4CPU

- 16GB memory) AWS servers [11]. In practice, we observe that

nodes have ≈10-11GB of available main memory. We allocate 3

CPUs for Hydra and its input data is CSV files that are streamed

from AWS S3. We configure Hydra-sketch using the heuristics of

§4.6 to ensure a conservative lower error bound of -10% (i.e., 𝜖US =
0.1) and upper bound of 20% with 90% probability for G𝑚𝑖𝑛/GS =
2 · 10−3. We also use the performance optimizations of §5. While

these bounds are conservative, they ensure a memory footprint of

< 100MB per Hydra-sketch instance; our results show that the

actual errors were much smaller.

Datasets: We use two real-world datasets and a synthetic trace.

Each dataset maps to a different usecase. First, we use CAIDA

flow traces [10] collected at a backbone link of a Tier1 US-based

ISP. The total trace is up to 130GB in initial size and flow data

can be clustered in up to approximately 5.6M subpopulations Q𝑖 .

Given that we analyze m𝑗 metric values per subpopulation, this

dataset contains up to 506M distinct 〈Q𝑖 ,m𝑗 〉 pairs. Second, we
use a real-world trace of video session summaries corresponding

to one major US-based streaming-video provider. The size of the

video-QoE trace is approximate 5GB, with data that we cluster in

up to 700k subpopulations and up to 25M 〈Q𝑖 ,m𝑗 〉 pairs. Third, we

generate synthetic traces following Zipf distribution with varying

skewness (e.g., 0.7 to 0.99).

Summary statistics:We evaluate Hydra’s accuracy using L1/L2

norms, entropy and cardinality i.e., statistics that map to the queries

described in §2. For each subpopulation, we compute the precise

value of each statistic as ground truth and then estimate the relative

error with respect to Hydra’s accuracy.

Evaluation baselines: For our experiments, we compare Hydra

against several baselines: From the space of precise analytics we

compare with: (1) Spark-SQL: This is a traditional SQL implemen-

tation where incoming data record is stored as a row in one (logical)

data table. At estimation time, we create a Key-Value store, where

the keys are distinct subpopulations Qi and the values are lists of

metric values m𝑗 per subpopulation; (2) Spark-KV: Here, we sum-

marize incoming data at ingestion time and maintain a Key-Value

store where the keys are distinct 〈Q𝑖 , m𝑗 〉 pairs and the values
are their respective frequency counts; (3) Druid: This is similar

to Spark-KV but uses Druid’s data roll-up feature to generate the

key-value store.

From the space of approximate analytics engines, we compare

against: (1) Uniform Sampling:We implement 10% uniform sam-

pling at ingestion time and then apply the Spark-KV approach to

the sub-sampled data that contains ≈ 82M distinct 〈Q𝑖 ,m𝑗 〉 pairs;
(2) VerdictDB [81]: We deploy VerdictDB on Amazon Redshift

and use the default nodes of that service (20 dc2.large nodes, each

with 2CPU, 15GB memory and 160GB NVMe-SSD as storage) as

backend SQL engine. VerdictDB builds offline samples, so we cre-

ate hash-based sample tables for cardinality metric and uniform

sample tables for L1 and L2 norm. We set sampling rate = 1% for

both sample tables. VerdictDB does allow entropy estimations; (3)

One Universal Sketch per subpopulation.

6.2 End-to-End Evaluation of Hydra

To evaluate Hydra end-to-end we investigate whether the system

meets operators’ requirements as outlined in §2. To that end, we

investigate three questions:

What isHydra’s operating cost compared to our baselines?We

measure the normalized query estimation $ cost for 4 statistics

for the CAIDA dataset (130GB, 5.6M subpopulations, 506 distinct

〈Q𝑖 ,m𝑗 〉 pairs). We estimate their normalized cost as VerdictDB on
Amazon Redshift constrained us to specific servers with a different

pricing model.

Figure 1 depicts Hydra’s cost-accuracy tradeoff. Hydra’s cost is

∼2 orders of magnitude smaller than that of Spark-SQL. That is
because Spark-SQL processes the entire dataset at query time and

because estimation happens at the frontend node. Hydra’s estima-

tion cost is also an order of magnitude lower than Druid’s which

uses data summaries created at ingestion. However, as we will see

later, Druid’s ingestion is very inefficient. The best performing,

precisely accurate baseline is Spark-KV that produces frequency

counts for the resulting 506 KV-pairs at ingestion time and uses

that for estimating statistics. Spark-KV is ∼7×more expensive than

Hydra.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Subpopulation Size Gi/GS

−20

−10

0

10

20

30

40

Er
ro

r
(%

)

Upper 20% Bound
Lower -10% Bound
Gmin/Gs

(a) L2-Norm.

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Subpopulation Size Gi/GS

−20

−10

0

10

20

30

40

Er
ro

r
(%

)

Upper 20% Bound
Lower -10% Bound
Gmin/Gs

(b) Entropy.

0.000 0.002 0.004 0.006 0.008 0.010 0.012
Subpopulation Size Gi/GS

−20

−10

0

10

20

30

40

Er
ro

r
(%

)

Upper 20% Bound
Lower -10% Bound
Gmin/Gs

(c) L1-Norm.

0.000 0.005 0.010 0.015 0.020
Subpopulation Size Gi/GS

−20

−10

0

10

20

30

40

Er
ro

r
(%

)

Upper 20% Bound
Lower -10% Bound
Gmin/Gs

(d) Cardinality.

Figure 10: Error distribution for different data subpopulations for Hydra (blue) and uniform sampling (orange). Red lines indicate the error threshold.

AppSet1 AppSet2 AppSet3 AppSet4
AppSet

−20

−10

0

10

20

30

40

Es
tim

at
io

n
Er

ro
r

(%
)

Error bound
L2
Entropy
L1
Cardinality

Figure 11: Hydra’s estimation error for the CAIDA dataset.

Regarding approximate analytics baselines, we observe that Ver-

dictDB, while very accurate (∼98% mean accuracy for 1% sampling,

exhibits large estimation times, comparable to worst-case estima-

tion times in the original VerdictDB paper [81]. When normalized

by server cost, VerdictBD’s cost is comparable to Spark-SQL. Hy-

dra’s operational cost is on par with a sampling approach that

uniformly samples 10% of all data but whose error can be very

large. Perhaps surprisingly, the 10% baseline exhibits higher cost.

This is because this baseline still needs to process ≈ 82M KV pairs

and still requires more memory than Hydra. In the case of the

smaller video-QoE dataset (not shown due to lack of space), Hydra

is only 3× cheaper than Spark-SQL and approximately as costly as

Spark-KV. This smaller gap is due to the smaller size of the dataset.

In §6.3, we look at the empirical runtime and memory requirements

that explain the observed cost results.

Does Hydra enable interactive query latencies? Figure 12 il-

lustrates Hydra’s runtime as a function of the dataset size and the

number of data subpopulations for the CAIDA dataset. We can see

that Hydra’s query time is ∼11sec for 5.6 million data subpopu-
lations, almost one order of magnitude (7×) smaller than that of
Spark-KV. We find this to be an acceptable query latency for a

framework that is configured to periodically run estimations on

streaming data (e.g., every minute) and large volumes of subpopu-

lations. Due to the centralized statistics estimation of Spark-SQL,

execution would fail for dataset sizes larger than 30GB. However,

even for small input, the querying latency of Spark-SQL is∼2 orders
of magnitude larger than Hydra’s. Druid’s ingestion would prema-

turely terminate for dataset sizes ≥60GB because the framework
(a) indexes data upon ingestion and (b) is optimized for reads over

writes [8]. We did not focus on improving Druid’s ingestion.

Is Hydra accurate and general across summary statistics? To

evaluate Hydra’s accuracy and generality, we look at the accuracy

of four different sets containing different numbers of summary

statistics. Figure 11 depicts the boxplot of empirical estimation er-

ror for each statistic. Positive error values indicate overestimation

errors and negative error values indicate underestimation. For all

application sets, Hydra operates under the same resource budget

and configuration as described previously. We find that estimating

multiple summary statistics does not incur accuracy reduction, com-

pared to when individual statistics are estimated. This highlights

Hydra’s generality, which is enabled by the fact that information

maintained in the universal sketches is statistic-agnostic and is

equally used for multiple statistics of interest. Hydra’s median

estimation error is almost 0 for the L2-norm, -5.7% and -5.5% for en-

tropy and L1 norm respectively and 9.8% for cardinality estimation.

We can observe that the estimated errors are well within the accu-

racy threshold that we set. However, for cardinality, we observe a

higher median and variance in error values. This is due to a large

concentration of G𝑖 ’s near G𝑚𝑖𝑛 . Recall from the discussion of §4.6

that Hydra’s error is loosest when G𝑖 ≈ G𝑚𝑖𝑛 and this allows for

higher error variance.

Figure 10 corroborates this observation by depicting the distribution

of estimation error values for all summary statistics as a function

of the subpopulation’s normalized G-sum i.e., G𝑖/GS. Note that
for values of G𝑖/GS ≈ G𝑚𝑖𝑛/GS the variance of empirical error
becomes larger as that is the region where the error is allowed to

approach our worst-case error bound. Cardinality estimation using

one universal sketch per subpopulation yields estimations with

< 7% error. The figure also compares Hydra with uniform sampling

and highlights the high variance in error that sampling exhibits.

We observe the same behavior for the video-QoE dataset with a

mean error across statistics of ∼6%.

6.3 Detailed Analysis of Hydra-sketch

First, we compare Hydra-sketch’s memory footprint to that of

our baselines. Second, we show that our configuration strategies

converge to a near-optimal configuration with respect to memory

and runtime. Lastly, we show that our performance optimizations

reduce Hydra’s runtime by 45%.

101

102

103

Ti
m

e
(s

)

Hydra Ingest
Spark KV Ingest
Druid Ingest
Sampling Ingest
VerdictDB Ingest

0 50 100
Dataset Size (GB)

101

102

Ti
m

e
(s

)

2 4 6
Data Subpopulations (Millions)

Spark SQL
Hydra Query
Spark KV Query
Druid Query
Sampling Query
VerdictDB Query

Figure 12: Runtime for CAIDA Dataset

Memory Footprint vs. Subpopulations: Figure 13 shows mem-

ory footprint as a function of the number of subpopulations mon-

itored for the CAIDA dataset. Hydra follows the theoretically-

expected sub-linear memory scaling as the dataset size and sub-

populations increase. Indeed, while we observe that for smaller

datasets, a Spark-KV implementation might be preferable in terms

of memory footprint (as the size of the sketch instances might even

exceed that of the input), this trend is very quickly reversed. This

is an observation that is also confirmed for the video-QoE dataset.

0 25 50 75 100 125
Dataset Size (GB)

102

103

104

105

M
em

or
y

Fo
ot

pr
in

t (
M

B)

1 2 3 4 5 6
Data Subpopulations (Millions)

Spark SQL
Druid

Uniform Sampling
Spark KV

HYDRA
Univ.Sketch/Subpopulation

Figure 13: Memory footprint per dataset size and subpopulation. VerdictDB

numbers do not expose memory utilizations.

Configuration Heuristics: Figure 14 depicts the relationship be-

tween the memory footprint of Hydra-sketch and its estimation

error for different configurations. The estimation error of the fig-

ure is that of the L1-Norm of the CAIDA dataset. The optimal

configurations simultaneously minimize the estimation error and

Hydra-sketch memory footprint (marked with red stars). The or-

ange diamond configuration is the suggested configuration based

on the configuration strategies discussed in §4. Thus, our strategies

result in a configuration comparable to the optimal configurations.

This observation holds across all summary statistics and datasets.

Analysis of Performance Optimizations: Figure 15 depicts the

cumulative improvement in Hydra’s performance using the per-

formance optimizations of §5. Each datapoint corresponds to a

different Hydra-sketch configuration (the Pareto frontier of Fig-

ure 14) and we run each configuration twice, once for the basic

Hydra-sketch design and once with the performance optimiza-

tions. The performance optimizations further reduce the memory

50 100 150 200 250 300 350 400
Memory (MB)

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Er
ro

r
(%

)

HYDRA Configurations
Optimal Configuration
Heuristic Configuration

Figure 14: Hydra’s configuration strategies are close to optimal

footprint of Hydra-sketch and the total system runtime. Table 2

captures Hydra’s runtime reduction after each performance opti-

mization. The baseline is Hydra without optimizations; overall, we

see a total performance improvement of 45%.

Table 2: Runtime improvements with performance optimizations

Baseline Heap-only

Merge

One Hash One Layer

Update

100% 92% 64% 55%

0 200 400 600
Memory (MB)

0

10

20

30

Er
ro

r
(%

)

150 200 250
Total Runtime (s)

Basic Design Optimized Design

Figure 15: Comparison of the Pareto frontiers of basic and the optimized

Hydra-sketch implementation for the same configurations.

Skewness of Dataset: Figure 16 highlights the difference in esti-

mation accuracy for two synthetic datasets generated with a zipfian

distribution. The subpopulations are samples from a zipfian distri-

bution with parameters 𝛼 = 0.7 and 𝛼 = 0.99 respectively (a value
of 𝛼 = 0 indicates a perfectly uniform distribution). Our experiment

confirms our intuition that the more skewed dataset ensures a bet-

ter (memory, error) tradeoff. In practice, many real-world datasets

are skewed and thus can benefit from being analyzed by Hydra.

7 RELATEDWORK

MapReduce-basedAnalytics Frameworks: There are various an-

alytics frameworks that are based on the MapReduce paradigm [51,

85]. Dryad [61] introduced the concept of user-defined functions in

general DAG-based workflows. Apache Drill and Impala [68] are

limited to SQL variants. Apache Spark [99] leverages a DAG-based

execution engine and treats unbounded computation as micro-

batches. Apache Flink [35] enables pipelined streaming execution

for batched and streaming data, offers exactly-one semantics and

0 250 500 750 1000 1250
Memory (MB)

0

10

20

30

Er
ro

r
(%

)

40 60 80 100
Total Runtime (s)

α=0.7 α=0.99

Figure 16: Impact of data skewness on Hydra’s memory footprint and

runtime. We use a synthetic dataset where subpopulation sizes are sampled

from a Zipfian distribution with parameter 𝛼 .

supports out-of-order processing. Hydra could be built on top of

Apache Flink.

Stream Processing Frameworks: This line of research focuses

on the architecture of stream processing systems, answering ques-

tions about out-of-order data management, fault tolerance, high-

availability, load management, elasticity etc. [5, 14, 15, 21, 23, 27, 35,

60, 66, 76]. Fragkoulis et al. analyze the state of the art of stream

processing engines [48].

High-dimensional Data Cubes:Data cubes have been an integral

part of online analytics frameworks and enable pre-computing and

storing statistics for multidimensional aggregates so that queries

can be answered on the fly. However, data cubes suffer from the

same scalability challenges as Hydra. Prior works have focused on

mechanisms to identify the most frequently queried subsets of the

data cube and optimize operations that are performed only on a

small subset of dimensions at a time [52, 56, 57, 69, 71].

Data Aggregations: The aggregation-based queries that we dis-

cussed in §2 appear in multiple streaming data systems [20, 26, 31,

44, 55, 83, 96] that motivate Hydra. Many of the above frameworks

enable approximate analytics but do not fully satisfy operators’

requirements as outlined in §2.

Sampling-based Approaches: Multiple analytics frameworks

use sampling to provide approximate estimations [18, 37, 78, 92].

BlinkDB [20] builds stratified samples on its input to reduce query

execution time given specific storage budgets. STRAT [38] also

uses stratified sampling but instead builds a single sample. Sci-

BORQ [86] builds biased samples based on past query results but

cannot provide accuracy guarantees.

Online Aggregation: Online Aggregation frameworks [58, 70,

80] continuously refine approximate answers at runtime. In these

frameworks, it is up to the user to determine when the acceptable

level of accuracy is reached and to terminate estimation. Naturally,

this approach is unsuitable for multidimensional telemetry that

needs to estimate multiple statistics across data subpopulations.

Data Summaries: Data “synopses” (e.g., wavelets, histograms,

sketches, etc.) have been extensively used for data analytics [19, 34,

43, 53, 62, 72, 91, 93]. These data summaries can either be lossless

or lossy and they aim to provide efficiency for multidimensional

analytics. However, these approaches are tailored to a narrow set

of estimation tasks. Gan et al. develop a compact and efficiently

mergeable quantile sketch for multidimensional data [50].

Several prior efforts explore nested sketches as a solution to the

multidimensional distinct counting problem [41, 88, 89, 94]. The

CountMin Flajolet-Martin (CM-FM) replaces each integer counter

of count-min sketch with a distinct counting sketch [41]. The CM-

FM, while making a step in the right direction for multidimensional

analytics, is limited both in terms of the generality and accuracy

guarantees it offers [88]. Prior work by Ting et al. also targets on

cardinality estimation in multidimensional data [88, 89] but focuses

on improving the sketch error bounds. Similar to Hydra, they

observe that in distinct counting sketches, accuracy guarantees

depend on the characteristics of the underlying data. Their key

observation is that the distribution of errors in each counter can

be empirically estimated from the sketch itself. By first estimating

this distribution, count estimation becomes a statistical estimation

and inference problem with a known error distribution. However,

computing such error distributions, is computationally heavy in

streaming settings as it involves computing maximum likelihood

estimators.

8 DISCUSSION AND FUTUREWORK

Hydra ensures coverage across subpopulations and accuracy guar-

antees with good resource utilization for subpopulations whose

G𝑖 >= G𝑚𝑖𝑛 . It is up to the operator to determine G𝑚𝑖𝑛 . We believe

that this is more versatile than pre-selecting specific subpopulations

for which accuracy guarantees should apply. Given a G𝑚𝑖𝑛 thresh-

old, Hydra self-selects the subset of important subpopulations.

Hydra opens up avenues for future work. For example, an open

question is how to enable dynamic sketch reconfiguration given

changingworkloads or operator goals. Also, amore system-oriented

avenue would involve investigating the applicability of Hydra in

the context of in-band network telemetry as part of programmable

network elements [77].

9 CONCLUSIONS

Today’s large-scale services require interactive estimates of dif-

ferent statistics across subpopulations of their multidimensional

datasets. However, the combinatorial explosion of subpopulations

complicates offering multidimensional analytics at a reasonable

cost to the operator. We propose Hydra, a sketch-based frame-

work that leverages Hydra-sketch to summarize data streams in

sub-linear memory to the number of subpopulations. We show

that Hydra is an order of magnitude more efficient than existing

analytics engines while ensuring interactive estimation times.

ACKNOWLEDGMENTS

We thank the reviewers for their feedback. This work was supported

in part by the CONIX Research Center, one of six centers in JUMP, a

Semiconductor Research Corporation (SRC) program sponsored by

DARPA, ERDF Project AIDA (POCI-01-0247-FEDER-045907), and

NSF awards No. CNS-1513764, CNS-1565343, CNS-2106946, CNS-

2107086, SaTC-2132643, and the Kavcic-Moura research award. The

authors would also like to thank the Red Hat Collaboratory at

Boston University for their support.

REFERENCES
[1] 2014. Spark treeAggregate and treeReduce. https://github.com/apache/spark/

pull/1110. (2014). [Online; accessed 16-July-2022].
[2] 2015. Kafka tops 1 trillion messages per day at linkedin. https://www.datanami.

com/2015/09/02/kafka-tops-1-trillion-messages-per-day-at-linkedin/. (2015).
[Online; accessed 16-July-2022].

[3] 2015. SURUS - Anomaly detection at Netflix. https://netflixtechblog.com/rad-
outlier-detection-on-big-data-d6b0494371cc. (2015). [Online; accessed 16-July-
2022].

[4] 2016. Approximate Algorithms in Apache spark: Hyperloglog and Quan-
tiles. https://databricks.com/blog/2016/05/19/approximate-algorithms-in-
apache-spark-hyperloglog-and-quantiles.html. (2016). [Online; accessed 16-
July-2022].

[5] 2017. Kafka Streams. https://kafka.apache.org/documentation/streams/. (2017).
[Online; accessed 16-July-2022].

[6] 2018. EC2 DNS Resolution Issues in the Asia Pacific Region. https://aws.amazon.
com/message/74876/. (2018). [Online; accessed 16-July-2022].

[7] 2019. CAIDA Trace. https://www.caida.org/catalog/datasets/monitors/passive-
equinix-nyc/. (2019). [Online; accessed 16-July-2022].

[8] 2019. Druid Ingestion Performance. https://stackoverflow.com/questions/
54578482/druid-parquet-poor-ingestion-performance#54580535. (2019). [Online;
accessed 16-July-2022].

[9] 2019. EBS Service Event in the Tokyo Region. https://aws.amazon.com/message/
56489/. (2019). [Online; accessed 16-July-2022].

[10] 2021. CAIDA Network Flow Traces. https://www.caida.org/catalog/datasets/
overview/. (2021). [Online; accessed 16-July-2022].

[11] 2022. Amazon AWS EC2 pricing . https://aws.amazon.com/ec2/pricing/on-
demand/. (2022). [Online; accessed 16-July-2022].

[12] 2022. Conviva - Real-time Streaming Video Intelligence. https://www.conviva.
com/. (2022). [Online; accessed 16-July-2022].

[13] 2022. HYDRA repository. https://github.com/antonis-m/HYDRA_VLDB. (2022).
[Online; accessed 16-July-2022].

[14] 2022. IBM Streams. https://www.ibm.com/cloud/streaming-analytics. (2022).
[Online; accessed 16-July-2022].

[15] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch
Cherniack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag Maskey, Alex Rasin,
Esther Ryvkina, et al. 2005. The design of the borealis stream processing engine..
In Cidr, Vol. 5. 277–289.

[16] Lior Abraham, John Allen, Oleksandr Barykin, Vinayak Borkar, Bhuwan Chopra,
Ciprian Gerea, Daniel Merl, Josh Metzler, David Reiss, Subbu Subramanian, et al.
2013. Scuba: Diving into data at facebook. Proceedings of the VLDB Endowment
6, 11 (2013), 1057–1067.

[17] Swarup Acharya, Phillip B Gibbons, and Viswanath Poosala. 2000. Congressional
samples for approximate answering of group-by queries. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data. 487–498.

[18] Swarup Acharya, Phillip B Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.
1999. The aqua approximate query answering system. In Proceedings of the 1999
ACM SIGMOD international conference on Management of data. 574–576.

[19] Pankaj K Agarwal, Graham Cormode, Zengfeng Huang, Jeff M Phillips, Zhewei
Wei, and Ke Yi. 2013. Mergeable summaries. ACM Transactions on Database
Systems (TODS) 38, 4 (2013), 1–28.

[20] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden,
and Ion Stoica. 2013. BlinkDB: queries with bounded errors and bounded response
times on very large data. In Proceedings of the 8th ACM European Conference on
Computer Systems. 29–42.

[21] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,
Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle. 2013.
Millwheel: Fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment 6, 11 (2013), 1033–1044.

[22] Noga Alon, Yossi Matias, and Mario Szegedy. 1996. The Space Complexity of
Approximating the Frequency Moments. In Proc. of ACM STOC.

[23] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, RajeevMotwani, Utkarsh Srivastava, and JenniferWidom. 2016. Stream:
The stanford data stream management system. In Data Stream Management.
Springer, 317–336.

[24] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD international conference on management of data. 1383–1394.

[25] A Asta. 2016. Observability at Twitter: technical overview, part i, 2016. (2016).
[26] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and

Sahaana Suri. 2017. Macrobase: Prioritizing attention in fast data. In Proceedings
of the 2017 ACM International Conference on Management of Data. 541–556.

[27] Magdalena Balazinska, Hari Balakrishnan, Samuel Madden, and Michael Stone-
braker. 2005. Fault-tolerance in the Borealis distributed stream processing system.
In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data. 13–24.

[28] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2020.
Faster and more accurate measurement through additive-error counters. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 1251–1260.

[29] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Vargaftik. 2021.
SALSA: self-adjusting lean streaming analytics. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 864–875.

[30] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo C Luizelli, and ErezWaisbard.
2017. Constant time updates in hierarchical heavy hitters. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 127–140.

[31] Lucas Braun, Thomas Etter, Georgios Gasparis, Martin Kaufmann, Donald Koss-
mann, Daniel Widmer, Aharon Avitzur, Anthony Iliopoulos, Eliezer Levy, and
Ning Liang. 2015. Analytics in motion: High performance event-processing and
real-time analytics in the same database. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 251–264.

[32] Vladimir Braverman and Stephen R Chestnut. 2014. Universal sketches for
the frequency negative moments and other decreasing streaming sums. arXiv
preprint arXiv:1408.5096 (2014).

[33] Vladimir Braverman and Rafail Ostrovsky. 2010. Zero-one frequency laws. In
Proceedings of the forty-second ACM symposium on Theory of computing. 281–290.

[34] Chiranjeeb Buragohain and Subhash Suri. 2009. Quantiles on Streams. (2009).
[35] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[36] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. 2008. Scope: easy and efficient parallel processing of
massive data sets. Proceedings of the VLDB Endowment 1, 2 (2008), 1265–1276.

[37] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly Detection:
A Survey. ACM Comput. Surv. 41, 3, Article 15 (July 2009), 58 pages. https:
//doi.org/10.1145/1541880.1541882

[38] Surajit Chaudhuri, Gautam Das, and Vivek Narasayya. 2007. Optimized stratified
sampling for approximate query processing. ACM Transactions on Database
Systems (TODS) 32, 2 (2007), 9–es.

[39] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approximate query
processing: No silver bullet. In Proceedings of the 2017 ACM International Confer-
ence on Management of Data. 511–519.

[40] Xiaoqi Chen, Shir Landau-Feibish, Mark Braverman, and Jennifer Rexford. 2020.
Beaucoup: Answering many network traffic queries, one memory update at a
time. In Proceedings of the Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures, and protocols
for computer communication. 226–239.

[41] Jeffrey Considine, Marios Hadjieleftheriou, Feifei Li, John Byers, and George
Kollios. 2009. Robust approximate aggregation in sensor data management
systems. ACM Transactions on Database Systems (TODS) 34, 1 (2009), 1–35.

[42] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jermaine. 2012.
Synopses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases 4, 1–3 (2012), 1–294.

[43] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream
summary: the count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[44] Chuck Cranor, Theodore Johnson, Oliver Spataschek, and Vladislav Shkapenyuk.
2003. Gigascope: A stream database for network applications. In Proceedings of
the 2003 ACM SIGMOD international conference on Management of data. 647–651.

[45] Marianne Durand and Philippe Flajolet. 2003. Loglog counting of large cardinal-
ities. In European Symposium on Algorithms. Springer, 605–617.

[46] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer Rexford,
and Fred True. 2001. Deriving traffic demands for operational IP networks:
Methodology and experience. IEEE/ACM Transactions On Networking 9, 3 (2001),
265–279.

[47] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting algorithms
for data base applications. Journal of computer and system sciences 31, 2 (1985),
182–209.

[48] Marios Fragkoulis, Paris Carbone, Vasiliki Kalavri, and Asterios Katsifodimos.
2020. A Survey on the Evolution of Stream Processing Systems. arXiv preprint
arXiv:2008.00842 (2020).

[49] Edward Gan, Peter Bailis, and Moses Charikar. 2020. Coopstore: Optimizing
precomputed summaries for aggregation. Proceedings of the VLDB Endowment
13, 12 (2020), 2174–2187.

[50] Edward Gan, Jialin Ding, Kai Sheng Tai, Vatsal Sharan, and Peter Bailis. 2018.
Moment-based quantile sketches for efficient high cardinality aggregation
queries. arXiv preprint arXiv:1803.01969 (2018).

[51] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. In Proceedings of the nineteenth ACM symposium on Operating systems
principles. 29–43.

[52] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data cube: A re-
lational aggregation operator generalizing group-by, cross-tab, and sub-totals.
Data mining and knowledge discovery 1, 1 (1997), 29–53.

[53] Michael Greenwald and Sanjeev Khanna. 2001. Space-efficient online computa-
tion of quantile summaries. ACM SIGMOD Record 30, 2 (2001), 58–66.

[54] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-driven streaming network telemetry.
In Proceedings of the 2018 conference of the ACM special interest group on data
communication. 357–371.

[55] Alex Hall, Alexandru Tudorica, Filip Buruiana, Reimar Hofmann, Silviu-Ionut
Ganceanu, and Thomas Hofmann. 2016. Trading off accuracy for speed in
PowerDrill. (2016).

[56] Jiawei Han, Jian Pei, Guozhu Dong, and Ke Wang. 2001. Efficient computation of
iceberg cubes with complex measures. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data. 1–12.

[57] Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. 1996. Implement-
ing data cubes efficiently. Acm Sigmod Record 25, 2 (1996), 205–216.

[58] Joseph M Hellerstein, Peter J Haas, and Helen J Wang. 1997. Online aggregation.
In Proceedings of the 1997 ACM SIGMOD international conference on Management
of data. 171–182.

[59] Daniel N Hill, Houssam Nassif, Yi Liu, Anand Iyer, and SVN Vishwanathan.
2017. An efficient bandit algorithm for realtime multivariate optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1813–1821.

[60] J-H Hwang, Magdalena Balazinska, Alex Rasin, Ugur Cetintemel, Michael Stone-
braker, and Stan Zdonik. 2005. High-availability algorithms for distributed stream
processing. In 21st International Conference on Data Engineering (ICDE’05). IEEE,
779–790.

[61] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. 59–72.

[62] Jeffrey Jestes, Ke Yi, and Feifei Li. 2011. Building wavelet histograms on large
data in mapreduce. arXiv preprint arXiv:1110.6649 (2011).

[63] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui
Zhang. 2016. CFA: A Practical Prediction System for Video QoE Optimization.
In Proceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation (NSDI’16). USENIX Association, Berkeley, CA, USA, 137–150.
http://dl.acm.org/citation.cfm?id=2930611.2930621

[64] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. 2013. Shedding light on
the structure of internet video quality problems in the wild. In Proceedings of
the ninth ACM conference on Emerging networking experiments and technologies.
ACM, 357–368.

[65] Ramesh Johari, Pete Koomen, Leonid Pekelis, and David Walsh. 2017. Peeking
at a/b tests: Why it matters, and what to do about it. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1517–1525.

[66] Seyed Jalal Kazemitabar, Ugur Demiryurek, Mohamed Ali, Afsin Akdogan, and
Cyrus Shahabi. 2010. Geospatial stream query processing using Microsoft SQL
Server StreamInsight. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1537–
1540.

[67] Adam Kirsch and Michael Mitzenmacher. 2006. Less hashing, same performance:
building a better bloom filter. In European Symposium on Algorithms. Springer,
456–467.

[68] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
et al. 2015. Impala: A Modern, Open-Source SQL Engine for Hadoop.. In Cidr,
Vol. 1. 9.

[69] Laks VS Lakshmanan, Jian Pei, and Jiawei Han. 2002. Quotient cube: How to
summarize the semantics of a data cube. In VLDB’02: Proceedings of the 28th
International Conference on Very Large Databases. Elsevier, 778–789.

[70] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggre-
gation via random walks. In Proceedings of the 2016 International Conference on
Management of Data. 615–629.

[71] Xiaolei Li, Jiawei Han, and Hector Gonzalez. 2004. High-dimensional OLAP: A
minimal cubing approach. In Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30. 528–539.

[72] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One sketch to rule them all: Rethinking network flow mon-
itoring with univmon. In Proceedings of the 2016 ACM SIGCOMM Conference.
101–114.

[73] Qingzhi Ma and Peter Triantafillou. 2019. Dbest: Revisiting approximate query
processing engines with machine learning models. In Proceedings of the 2019
International Conference on Management of Data. 1553–1570.

[74] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330–339.

[75] Gregory T Minton and Eric Price. 2014. Improved concentration bounds for
count-sketch. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms. SIAM, 669–686.

[76] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

[77] Hun Namkung, Zaoxing Liu, Daehyeok Kim, Vyas Sekar, Peter Steenkiste, Guyue
Liu, Ao Li, Christopher Canel, Adithya Abraham Philip, Ranysha Ware, et al.
Sketchlib: Enabling efficient sketch-based monitoring on programmable switches.
NSDI.

[78] Christopher Olston, Edward Bortnikov, Khaled Elmeleegy, Flavio Junqueira, and
Benjamin Reed. 2009. Interactive Analysis of Web-Scale Data.. In CIDR. Citeseer.

[79] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, andAndrew
Tomkins. 2008. Pig latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of
data. 1099–1110.

[80] Niketan Pansare, Vinayak Borkar, Chris Jermaine, and Tyson Condie. 2011.
Online aggregation for large mapreduce jobs. Proceedings of the VLDB Endowment
4, 11 (2011), 1135–1145.

[81] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018. Ver-
dictdb: Universalizing approximate query processing. In Proceedings of the 2018
International Conference on Management of Data. 1461–1476.

[82] Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin
Meza, and Kaushik Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory
time series database. Proceedings of the VLDB Endowment 8, 12 (2015), 1816–1827.

[83] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freedman.
2014. Aggregation and degradation in jetstream: Streaming analytics in the
wide area. In 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14). 275–288.

[84] Anirudh Ramachandran, Srinivasan Seetharaman, Nick Feamster, and Vijay
Vazirani. 2008. Fast monitoring of traffic subpopulations. In Proceedings of the
8th ACM SIGCOMM conference on Internet measurement. 257–270.

[85] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The hadoop distributed file system. In 2010 IEEE 26th symposium on mass storage
systems and technologies (MSST). Ieee, 1–10.

[86] Lefteris Sidirourgos, Martin L Kersten, Peter A Boncz, et al. 2011. Sciborq:
scientific data management with bounds on runtime and quality.. In CIDR, Vol. 11.
296–301.

[87] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. 2009. Hive: a
warehousing solution over a map-reduce framework. Proceedings of the VLDB
Endowment 2, 2 (2009), 1626–1629.

[88] Daniel Ting. 2018. Count-min: optimal estimation and tight error bounds using
empirical error distributions. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2319–2328.

[89] Daniel Ting. 2019. Approximate distinct counts for billions of datasets. In Pro-
ceedings of the 2019 International Conference on Management of Data. 69–86.

[90] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and
Neoklis Polyzotis. 2015. Seedb: Efficient data-driven visualization recommenda-
tions to support visual analytics. In Proceedings of the VLDB Endowment Interna-
tional Conference on Very Large Data Bases, Vol. 8. NIH Public Access, 2182.

[91] Jeffrey Scott Vitter and Min Wang. 1999. Approximate computation of multidi-
mensional aggregates of sparse data using wavelets. Acm Sigmod Record 28, 2
(1999), 193–204.

[92] Lu Wang, Robert Christensen, Feifei Li, and Ke Yi. 2015. Spatial online sampling
and aggregation. Proceedings of the VLDB Endowment 9, 3 (2015), 84–95.

[93] Zhewei Wei, Ge Luo, Ke Yi, Xiaoyong Du, and Ji-Rong Wen. 2015. Persistent
data sketching. In Proceedings of the 2015 ACM SIGMOD international conference
on Management of Data. 795–810.

[94] Qingjun Xiao, Shigang Chen, Min Chen, and Yibei Ling. 2015. Hyper-compact
virtual estimators for big network data based on register sharing. In Proceedings
of the 2015 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. 417–428.

[95] Yinglian Xie, Vyas Sekar, David A Maltz, Michael K Reiter, and Hui Zhang. 2005.
Worm origin identification using random moonwalks. In 2005 IEEE Symposium
on Security and Privacy (S&P’05). IEEE, 242–256.

[96] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. 2014. Druid: A real-time analytical data store. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data. 157–168.

[97] Mingran Yang, Junbo Zhang, Akshay Gadre, Zaoxing Liu, Swarun Kumar, and
Vyas Sekar. 2020. Joltik: enabling energy-efficient" future-proof" analytics on
low-power wide-area networks. In Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking. 1–14.

[98] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic Measure-
ment with OpenSketch. In 10th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 13). 29–42.

[99] Matei Zaharia, Reynold S Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J
Franklin, et al. 2016. Apache spark: a unified engine for big data processing.
Commun. ACM 59, 11 (2016), 56–65.

