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Differential privacy is a restriction on data processing algorithms that
provides strong confidentiality guarantees for individual records in the
data. However, research on proper statistical inference, that is, research
on properly quantifying the uncertainty of the (noisy) sample estimate
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regarding the true value in the population, is currently still limited. This
article proposes and evaluates several strategies to compute valid differ-
entially private confidence intervals for the median. Instead of comput-
ing a differentially private point estimate and deriving its uncertainty, we
directly estimate the interval bounds and discuss why this approach is su-
perior if ensuring privacy is important. We also illustrate that addressing
both sources of uncertainty—the error from sampling and the error from
protecting the output—simultaneously should be preferred over simpler
approaches that incorporate the uncertainty in a sequential fashion. We
evaluate the performance of the different algorithms under various pa-
rameter settings in extensive simulation studies and demonstrate how the
findings could be applied in practical settings using data from the 1940
Decennial Census.

KEYWORDS: Robust; Statistical inference; Confidentiality; Disclosure
limitation.

Statement of Significance

Differential privacy is a restriction on data processing algorithms that provides strong
confidentiality guarantees. However, research on properly quantifying the uncertainty
of the (noisy) sample estimate is still limited. This article proposes and evaluates sev-
eral strategies to compute valid differentially private confidence intervals for the me-
dian. Instead of computing a differentially private point estimate and deriving its un-
certainty, we directly estimate the interval bounds and discuss why this approach is
superior in this context. We also illustrate that addressing the error from sampling and
the error from protecting the output simultaneously should be preferred over simpler

approaches.

1. INTRODUCTION

Statistical agencies constantly need to find the right balance between the two
competing goals of disseminating useful information from their collected data
and ensuring the confidentiality of the units included in the database. Many
methods have been developed in the past decades to address this tradeoff.
However, with the advent of modern computing and the massive amounts of
data collected every day, many of the data protection strategies commonly
used at statistical agencies are no longer adequate to protect the data (Abowd
2018; Garfinkel, Abowd, and Martindale 2019). The problem’s difficulty is
amplified by the continual appearance of new data sources that facilitate
attacks.

€202 1290100 0z U0 Jasn jooyog me AlsiaAiun uoisog Aq 6286099/708/€/0 L/a1one/wessl/woo dno-olwapeose//:sdiy wolj papeojumoq



806 Drechsler et al.

One promising strategy to circumvent this dilemma is to rely on formal pri-
vacy guarantees such as those provided by differential privacy (DP) (Dwork,
McSherry, Nissim, and Smith 2006b). These guarantees hold no matter what
background knowledge a potential attacker might possess, or how much com-
putational power they have. However, methodology for differential private sta-
tistical inference has mostly been studied from a theoretical perspective under
asymptotic regimes. Although many algorithms have been proposed to ensure
formal privacy guarantees for various estimation tasks, evaluations of their rel-
ative performance on real data with limited sample sizes and complex distribu-
tional properties are still limited, and only a small fraction of that literature has
focused on inference and associated measures of uncertainty. Section 2.3 sur-
veys related work.

In this article, we address these issues, focusing on one of the key measures
of location: the median. We chose the median for two reasons. On one hand, it
is a widely used summary statistic for skewed variables such as income (see,
e.g., the U.S. Census Bureau’s tables of median incomes for various subgroups
of the population; U.S. Census Bureau 2020a). On the other hand, medians
provide an interesting technical challenge for differentially private computa-
tion. The accuracy of differentially private median computations depends on
the exact data distribution; as a result, providing sound and narrow confidence
intervals appears to require releasing strictly more information about the data
than is required for point estimation.

The discussion of confidence intervals is an important contribution of our
study. None of the previously proposed algorithms for DP median estimation
come equipped with a method for additionally releasing DP uncertainty esti-
mates on the point estimator. In fact, as pointed out above the level of uncer-
tainty in the point estimate is typically data dependent, and hence measuring it
requires additional privacy budget. Thus, the optimal algorithm for differen-
tially private point estimates can be different from the optimal algorithm for
differentially private confidence intervals. Instead of deriving the variance of
some differentially private point estimate, we suggest estimating DP confi-
dence intervals directly. We show that our proposed methodology ensures
proper confidence interval coverage in a frequentist sense and discuss why this
strategy requires less privacy budget than starting from the protected point
estimates.

When designing and analyzing differentially private algorithms it is tempt-
ing to separate the error due to sampling from the error due to privacy and
bound the two separately. A main finding in our work is the limitation of this
approach. We find that one can obtain considerably tighter confidence intervals
by analyzing the relationship between the two sources of error. Unlike
approaches which treat the analysis of the nonprivate algorithm as a black-box,
this involves looking at the different ways that the sampling error can result in
the confidence interval failing to capture the median, and considering how the
error due to privacy affects each of these modalities.
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We assume simple random sampling throughout the article. This assumption
is often violated in survey practice. However, understanding the implications
of complex sampling designs on the privacy guarantees is an open research
problem (Drechsler 2021) and we are not aware of any DP applications that
take complex sampling designs into account. We see our contribution as an im-
portant first step toward the goal of better serving the needs of statistical agen-
cies, while acknowledging the limitations of the current findings.

We evaluate several algorithms for computing differentially private confi-
dence intervals. We discuss algorithms that satisfy two versions of DP: the
strictest version (Dwork et al. 2006b), now known as pure differential privacy,
as well as a slight relaxation, concentrated differential privacy (CDP) (Bun
and Steinke 2016; Dwork and Rothblum 2016). The focus of our study is on
empirical evaluation, using a mix of simulated and real data. Nevertheless, we
found that new methodology and theory was also needed to adapt existing
algorithms for confidence interval computation. We include an application us-
ing data from the U.S. Census 1940 to illustrate how statistical agencies willing
to adopt the methodology could decide which algorithm and parameter settings
to pick for their data release.

The algorithms we developed are all sound in the nonparametric, frequentist
sense: when run with nominal coverage 1 — o the probability that the true pop-
ulation median is contained in the computed confidence interval is at least
1 — o, where the probability is taken over the entire process of sampling from
the population and computing the private confidence intervals based on the
drawn sample. Rubin (1996) terms this property confidence validity to distin-
guish it from randomization validity, which would require that the actual cov-
erage rate matches the nominal coverage rate exactly (see Rubin 1996 for a
discussion why the former should generally be preferred over the latter). Since
all algorithms rely on nonparametric strategies for computing the confidence
intervals, the proposed intervals are confidence valid for every i.i.d distribution
on observations.'

Using nonparametric approaches is especially important under privacy con-
straints. This is because the typical safeguards around using parametric
assumptions—such as visualizing the data and running goodness-of-fit tests—
require using some of the privacy budget. Therefore, any potential gains in ac-
curacy from using parametric models will likely be lost as more noise will
have to be infused in the final output. However, without checking the paramet-
ric assumptions the analyst risks that the algorithms will produce misleading
uncertainty measures. We illustrate this point in section 5, where we demon-
strate that erroneously assuming a log-normal distribution for the income data
used in our application will give severely biased results.

1. We will use the term valid confidence interval in the remainder of the article, whenever the in-
terval is confidence valid in Rubin’s sense.

€202 1290100 0z U0 Jasn jooyog me AlsiaAiun uoisog Aq 6286099/708/€/0 L/a1one/wessl/woo dno-olwapeose//:sdiy wolj papeojumoq



808 Drechsler et al.

We find that a specific algorithm, a variant of the exponential mechanism
(McSherry and Talwar 2007), is the best choice across a range of settings. We
also study in depth another DP algorithm, which provides slightly wider confi-
dence intervals but has additional practical benefits.

The remainder of the article is organized as follows: In section 2, we present
background on DP and nonprivate confidence intervals. In section 3, we dis-
cuss the design of private confidence intervals and give an overview of the two
algorithms to be considered. In section 4, we present the results from extensive
simulation studies that evaluate the performance of the algorithms under vari-
ous parameter settings. Section 5 illustrates how the methodology could be ap-
plied in practice by replicating one of the income tables published by the U.S.
Census Bureau using publicly available data from the 1940 U.S. Census. The
notation defined in this section and elsewhere in the study is summarized in ta-
ble S1 of the supplementary material online.

2. PRELIMINARIES
2.1 Confidence Intervals for the Median

Throughout this article we will refer to the median of the underlying popula-
tion P as the population median, denoted med(P), and the median of a given
sample as the sample median. Let P C A(R) be the set of possible population
distributions over the data domain R. Let I be the set of intervals in R. Given
a failure probability o € [0, 1] and database size n € N, we say that a function
M : X" — Iy achieves the nominal coverage rate 1 — o for the set P if for all
P € P, Pr(med(P) € M(y)) > 1 — «, where the randomness is taken over
both the randomness in M and the randomness in the sample y ~ P". We will
refer to Pr(med(P) € M(y)) as the actual coverage of M on database y.

Even if one is not concerned with privacy, researchers often prefer nonpara-
metric approaches when computing confidence intervals for the median to
avoid parametric assumptions that are seldom met in practice. A common non-
parametric confidence interval for the median is computed using the order sta-
tistics of the sample (Lehmann and D’ Abrera 1975, theorem 5, p. 182) If P has
continuous CDF then the rank of the population median med(P) in a simple
random sample of size n drawn from P is distributed as the binomial
Bin(n, 1/2).? For a dataset y € R", let Y(x) be the k-th order statistic (the k-th
smallest value in y).

Lemma 2.1 (Nonprivate (1 — )-confidence interval). Let F'g;, be the CDF of
the binomial randomvariable Bin(n,1/2),N¢ =maxen{m| Fpin(m—1) <a/2}
and NO=mingen{m|Fgn(m+1)>1—a/2}. For any dataset yeR",

2. The assumption that P has continuous CDF can be made with essentially no loss of general-
ity—see supplementary material online C.
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let cif(y)=yume) and cif(y)=yup). Then the function M:x"— Ig,
from the set of size n datasets to the set of intervals in R, given by
M(y)=[ci}(y),cif(y)] achieves nominal coverage 1—a for A(R) (the
set of all distributions on R).

This approach is fully nonparametric, which—as discussed in the introduc-
tion—is especially important given privacy constraints. Note that a confidence
interval does not directly output a point estimate for the median itself. In the
absence of privacy constraints, one can simply additionally release the sample
median med(y) as a point estimate for the population median. However, under
privacy constraints, rather than allocating some of the privacy budget to pro-
viding a point estimate of the median, it is often preferable to allocate the entire
budget to estimating the confidence interval, then use the midpoint of that in-
terval as a point estimate of the median.

2.2 Differential Privacy

Since our algorithms often include hyperparameters, we state a definition of
DP for algorithms that take as input not only the dataset, but also the desired
privacy parameters and any required hyperparameters. Let X be a data uni-
verse (e.g., R for medians) and X" be the space of datasets of size n. Two data-
sets y,y € X" are neighboring, denoted y ~ y/, if they differ on a single
record. Let H be the space of hyperparameters and ) be an output space. To
build some intuition, let us first define pure and approximate DP.

Definition 2.1((¢,$)-DP (Dwork, Kenthapadi, McSherry, Mironov, and
Naor 2006a; Dwork et al. 2006b). Given privacy parameters € > 0 and
6 €10,1], a randomized mechanism M : X" x H — Y is (e, 6)-differen-
tially private if for all datasets y ~y € X", hyperparams € H, and
events £ C Y,

Pr[M(y, hyperparams) € E] < &° - Pr[M (Y, hyperparams) € E] + 9,
where the probabilities are taken over the randomness induced by M.

The key intuition for this definition is that the distribution of outputs on input
dataset y is almost indistinguishable from the distribution of outputs on input
dataset y'. Therefore, given the output of a differentially private mechanism, it
is impossible to confidently determine whether the input dataset was y or y'. If
0 =0, then we refer to this as e-pure differential privacy. If 5 > 0, we refer to
(e, 0)-approximate differential privacy. For strong privacy guarantees, the
privacy-loss parameter is typically taken to be a small constant <1 (note that
e® ~ 1+ ¢ as ¢ — 0). However, in practice, larger values of ¢ are occasion-
ally used to satisfy utility constraints while providing some level of nontrivial
privacy guarantee.
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810 Drechsler et al.

The algorithms in this article actually satisfy a version of DP called concen-
trated differential privacy (CD). This notion of privacy lies between the more
common notions of pure differential privacy and approximate differential pri-
vacy. While still satisfying a rigorous notion of privacy, this will allow our
algorithms to be significantly more accurate than their corresponding purely
differentially private counterparts. For most of our algorithms little accuracy is
gained from transitioning to approximate DP. Additionally, CDP has the desir-
able property of being a one-parameter property, which allows for simpler pri-
vacy accounting. For a further discussion of concentrated DP, see
supplementary material online B.

Our goal is to design differentially private algorithms that achieve the nomi-
nal coverage rate. That is, they output an interval that captures the true param-
eter with probability at least 1 — o, where the probability includes both the
sampling uncertainty and any randomness in the algorithm.

2.3 Related Work

Computing confidence intervals for the median is one of the most fundamental
statistical tasks. However, finding a differentially private estimator for this task
that is accurate across a range of datasets and parameter regimes is surprisingly
nuanced. There has been a significant amount of prior work on differentially
private point estimators for the median (Nissim, Raskhodnikova, and Smith
2007; Bun and Steinke 2019; Asi and Duchi 2020; Alabi, McMillan, Sarathy,
Smith, and Vadhan 2020; Tzamos, Vlatakis-Gkaragkounis, and Zadik 2020)
and other quantiles (Gillenwater, Joseph, and Kulesza 2021). To the best of
our knowledge, none of these works addressed DP confidence intervals for the
median. However, there has been significant work on DP confidence intervals
for other estimation tasks like (Gaussian or sub-Gaussian) mean estimation
(Karwa and Vadhan 2018; Gaboardi, Rogers, and Sheffet 2019; Du, Foot,
Moniot, Bray, and Groce 2020; Biswas, Dong, Kamath, and Ullman 2020),
and linear regression (Barrientos, Reiter, Machanavajjhala, and Chen 2019;
Evans and King 2022). There are also several works on designing more gen-
eral DP confidence intervals using bootstrapping, or a technique called
subsample-and-aggregate (Nissim et al. 2007), to account for the combined un-
certainty from sampling and noise due to privacy (D’Orazio, Honaker, and
King 2015; Brawner and Honaker 2018; Barrientos et al. 2019; Ferrando,
Wang, and Sheldon 2020; Evans, King, Schwenzfeier, and Thakurta 2021).
These algorithms typically require a parametric model on the data or a normal-
ity assumption on the quantity being estimated; neither hold in our setting.

The areas of differentially private Bayesian inference (Dimitrakakis,
Nelson, Mitrokotsa, and Rubinstein 2014; Wang, Fienberg, and Smola 2015b;
Foulds, Geumlek, Welling, and Chaudhuri 2016; Heikkila, Lagerspetz, Kaski,
Shimizu, Tarkoma, et al. 2017; Bernstein and Sheldon 2018, 2019; Gong
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2019) and hypothesis testing (Vu and Slavkovic 2009; Wang, Lee, and Kifer
2015a; Gaboardi, Lim, Rogers, and Vadhan 2016; Degue and Ny 2018;
Couch, Kazan, Shi, Bray, and Groce 2019) study related problems of quantify-
ing uncertainty, but specific goals differ. Wang (2018), Du et al. (2020) and
Biswas et al. (2020) perform experimental evaluations of DP confidence inter-
vals, however they focus on different estimators (linear regression and mean
estimation) and focus on large datasets of at least 1,000 observations.

To the best of our knowledge, our work is unique in focusing on nonparamet-
ric differentially private confidence intervals for the median. This approach
allows us to define algorithms that provide accurate and private confidence inter-
vals without requiring distributional assumptions on the underlying population.

3. DESIGNING DP CONFIDENCE INTERVALS

While there are several algorithms in the literature for privately estimating or-
der statistics, there is no straightforward way to extend these algorithms to re-
lease a confidence interval. Providing such a measure of uncertainty for the
sample median is especially important for differentially private statistics since
randomness in the algorithm provides an additional source of uncertainty.

Naively, one might hope to obtain a private confidence interval by simply
privately estimating the order statistics described in lemma 2.1 and adding a
data independent, fixed-width interval around the order statistic point esti-
mates. The issue is that differentially private algorithms for order statistics do
not (and cannot) operate by adding data-independent noise to the statistics™;
thus, there is no single-fixed width interval that will be generally valid for pri-
vately estimated order statistics. Privately releasing an estimate of the amount
of uncertainty introduced by algorithms that add data-dependent noise is chal-
lenging since it may depend subtly on the entire data distribution. This will be
evident in the algorithms described in section 3.2.

3.1 Accounting for All Sources of Randomness

Accurate and tight coverage analysis is a crucial component of designing good
algorithms. Overly conservative coverage estimates can result in confidence
intervals that are wider than necessary. Differentially private confidence inter-
vals need to account for two sources of error; sampling error and error due to
privacy. Sampling error, also present in the nonprivate context, captures how

3. Algorithms that enforce privacy constraints by simply adding noise to the nonprivate estimate
must add noise whose standard deviation is roughly proportional to how much the statistic of in-
terest can vary on worst case neighboring datasets. Since order statistics can be very sensitive to
the input dataset, this means any data independent noise addition method will result in noise that
will overwhelm the signal (Nissim et al.2007).
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812 Drechsler et al.

well the realized sample y represents the underlying population P. The error
due to privacy takes into account the additional randomness in M as a result of
the privacy guarantee. Our experimental results highlight that it is important to
carefully exploit the dependence between the two sources of randomness.

As a primer, let us first consider the coverage analysis of the nonprivate al-
gorithm described in lemma 2.1. This coverage analysis relies on the fact that
if P is continuous then for all m € [n],

Pr(rank,(med(P)) = m) = Pr(Bin(n, 1/2) = m).

There are two ways that the interval [ci}(y),ci},(y)] can fail to capture
med(P); med(P) < cif(y) ormed(P) > ci} (y). Let us focus on the proba-
bility of the first type of failure, med(P) < cif(y). Forevery P € A¢(R),

Pr(med(P) < cij(y)) =Pr(med(P) < yay) < Fein(Ny — 1) < /2,

where Fpg;, is the CDF of the binomial random variable Bin(#n, 1,/2). The prob-
ability of failure at the upper end of the confidence interval is analogous.

Now, let us turn to the coverage analysis of a p-CDP algorithm
M: X" xH — Ip. Let M(y) = [M(y),,M(y),]. A naive way to analyze the
coverage error of M is to attempt to find ; and f, such that assuming f3; denotes
the failure probability for the nonprivate confidence interval, the M(y) contains
the nonprivate interval [c ifl , ciy] with probability 1 — f8,. Then M has cover-
age at least 1 — (f8, + f3,). Even if §; and f3, are chosen carefully, this analysis
can be overly conservative. In particular, it assumes that the only way that M (y)
can succeed in containing med(P) is if both med(P) € [c iﬁ' , ci[g,'] and
[c iﬁ‘ , cif}} C M(y). Neither of these events are inherently necessary.

A more careful analysis of the relationship between the sampling error and
the error due to privacy results in a tighter coverage analysis. As in the nonpri-
vate setting, there are two ways that M(y) can fail to contain med(P). We will
focus on analyzing the probability that med(P) < M(y),.

Pr(med(P) < M(y),) = iPr(rank).(med(P)) =m)-Pr(med(P) < M(y), | rank,(med(P)) =m)
m=0

(€]

1) = iPr(Bin(n, 1/2)=m)-Pr(med(P) < M(y), | rank,(med(P)) =m)
m=0

Now, we have reduced the problem to analyzing the failure probability condi-
tioned on the empirical rank of med(P) in the dataset y. This is a helpful reduc-
tion since, as we will see in the following section, most of our algorithms will
come with accuracy guarantees on the rank of M(y),. Accuracy guarantees of
this form can then be exploited, via equation (1), to obtain a coverage analysis
of M. As we will illustrate in our experiments below, there is a stark difference
between the performance of algorithms designed using the naive analysis, and
those using the more careful analysis.
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3.2 Private Confidence Intervals: ExpMech and CDFPostProcess

We will evaluate the performance of two algorithms for releasing CDP con-
fidence intervals for the median in this article; ExpMech and
CDFPostProcess.

The first algorithm, which we call ExpMech, is efficient and satisfies the
stronger privacy guarantee of pure DP. It outputs the tightest, or close to the
tightest confidence intervals in a majority of parameter regimes we studied. It
is based on the exponential mechanism (McSherry and Talwar 2007), a stan-
dard tool from DP. The exponential mechanism has been used in prior work
to give DP point estimates for the median (Dwork and Lei 2009; Thakurta
and Smith 2013; Johnson and Shmatikov 2013; Alabi et al. 2020; Asi and
Duchi 2020). Our extension to providing confidence intervals for the median,
while using similar ideas to prior work, requires a careful coverage analysis
that is new to this work.

The CDFPostProcess algorithm partially addresses a common frustration
with differentially private data analysis; that exploratory data analysis to visual-
ize the dataset and verify findings typically requires additional privacy budget.
For many tasks, this means allocating privacy budget away from the primary
task resulting in a noisier algorithm. A key feature of CDFPostProcess is
that it releases a full CDP estimate to the empirical CDF without consuming add-
tional privacy budget. It is then notable, and perhaps surprising, that in many set-
tings this algorithm performs almost as well as ExpMech, which releases no
side information. We will focus on a particular CDF estimator based on the tree-
based mechanism introduced in Li, Hay, Rastogi, Miklau, and McGregor
(2010); Dwork, Naor, Pitassi, and Rothblum (2010), and Chan, Shi, and D.
Song (2011) and further refined in Honaker (2015).

A full description of both algorithms can be found in the supplementary ma-
terial online accompanying this article. We also experimented with several
other algorithms that are not discussed in this section since they are outper-
formed by ExpMech and CDFPostProcess in the majority of parameter
regimes. Brief descriptions of these additional algorithms can be found in the
supplementary material online. All our algorithms require hyperparameters
(for a discussion, see supplementary material online H.

4. SIMULATION STUDIES

In this section we present extensive simulation studies to evaluate the different
algorithms under various parameter settings.* We focus on log-normal data, as
an example of a skewed distribution for which the median would generally be

4. Code for producing these simulations can be found at https://github.com/anonymous-conf-
medians/dp-medians.
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preferred over the mean. We expect many of our findings to extend to other
types of skewed data. We evaluate the performance of the two algorithms de-
scribed in section 3.2, as well as the nonprivate confidence interval described
in lemma 2.1, in terms of width of confidence interval, coverage, and bias.
Since we rely on a log-normal distribution for our simulations, a simple para-
metric approach can also be exploited: given that mean and median match for
symmetric distributions, we can compute a confidence interval for the mean on
the log-scale and exponentiate the bounds of this confidence interval to obtain
the interval on the original scale. We add this parametric confidence interval in
our evaluations. However, we emphasize that such a strategy will only give
valid results if the parametric assumptions are met. In section 5.2, we illustrate
the negative consequences if this is not the case.

4.1 Data Description

To visualize the distribution of the noisy confidence intervals, we run each pri-
vate algorithm 5 times on 100 independently drawn datasets. Let xy, . .., X0,
each contain n= 1,000 i.i.d. draws from the underlying log-normal distribu-
tion. The underlying normal random variable has mean & = In(1.5) and stan-
dard deviation of either 6 =1 or ¢ =5.

4.2 Utility Measures

We consider two main utility measures in our experiments. The first measure
is the relative width of the CDP confidence interval M(y) compared to the
width of the nonprivate confidence interval, [cif,ci}]. For a dataset
y€D" o€l0,1], and interval I = [I1,Iy], the relative width is defined as
rel-width*(y,I) = % We are concerned with the distribution of

cif,(y)—cif(y

rel-width*(y, I) when I = M(y). We expect the private confidence intervals to
be wider than the nonprivate intervals, so if I = M(y) then we expect
rel-width*(y) > 1 with high probability. If rel-width*(y) < 2, then the addi-
tional uncertainty due to privacy is less than the uncertainty due to sampling.
We are interested in the distribution of the relative width over multiple trials,
so for each algorithm we show boxplots of this metric over 500 trials (100
datasets times 5 trials of the DP mechanism on each).

The second utility measure is an empirical estimate of the actual cov-
erage of the DP confidence interval. For intervals I,...,Ir and distribu-
tion P, let covT(P,Il,...,IT):%ZIT:1 lnea(prer,- Given neN and a
confidence interval M, for all 7€ [T], let y, ~ P" and I, = M(y,) then
covrp(M) = covr(P,1,,...,Ir) gives an estimate of the actual coverage
of M on the distribution P. We estimate the coverage over 5,000 trials
(1,000 drawn samples of size n=1,000 times 5 trials of the DP mecha-
nisms on each). The actual coverage may, and in many settings will,
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Figure 1. Relative Widths of DP Confidence Intervals as We Vary (a) Dataset
Size n, (b) Dataset Standard Deviation o, (c) Privacy Parameter p, and (d) Size of
Range |R|. The data are generated from a log-normal distribution with mean
u=In(1.5). Parameters are varied one at a time. All other parameters are fixed at their
default values: standard deviation 6,=1.0, number of datapoints n = 1,000, privacy
parameter p=0.5, granularity 6=0.05 (for all except ExpMech, where we use
0=0.01), and nominal coverage rate #=0.05. By definition, rel-width*(y,I)=1 when
I=[ci}, ci}].

exceed the nominal coverage (which is achieved by all the confidence
intervals discussed).

4.3 Results and Discussion

4.3.1 Comparison among algorithms. Figure 1 demonstrates the perfor-
mance of our two CDP confidence interval algorithms across a range of param-
eter regimes on log-normal data, in terms of the relative width metric. Notice
that in a variety of regimes, including large n, large p and large o, both CDP
algorithms provide confidence intervals that are at most twice the width of the
nonprivate confidence interval with high probability. Our results indicate that
ExpMech provides the tightest, or close to the tightest, confidence intervals in
most parameter regimes we studied. This algorithm is the most targeted of the
CDP algorithms we discuss and is carefully calibrated to not waste privacy
budget on estimating additional information about P. It is a good general
choice when one is solely interested in confidence intervals for the median.
There are a few regimes in which CDFPostProcess outperforms ExpMech
which we will discuss in this section.
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The CDFPostProcess algorithm is appealing in practice since it allows a
CDP estimate of the CDF to be released without consuming additional privacy
budget. Surprisingly, in a variety of parameter regimes, CDFPostProcess
provides confidence intervals that are almost as tight as those obtained by
ExpMech. In fact, when ¢, is large, CDFPost Process can result in tighter
confidence intervals than ExpMech (figure 1b). We explore this further in sup-
plementary material online K. Conversely, when o, is small, or |R] is large,
CDFPostProcess is not a good choice. These are regimes where
CDFPostProcess spends a lot of its privacy budget estimating the CDF in
regions that are far from the median. These regimes are better served by the
algorithms BinSearch + CDF and NoisyBinSearch discussed in the
supplementary material online. Not surprisingly, the nonprivate parametric
confidence interval is shorter than its nonparametric counterpart in most of the
simulation runs.

4.3.2 Actual coverage analysis. A key component of the algorithmic design
of each of the CDP confidence intervals was the coverage analysis. We dis-
cussed in section 3.1 how a careful coverage analysis that leverages the rela-
tionship between the two sources of the randomness potentially results in a
much tighter coverage analysis than the naive analysis that separates the sour-
ces of randomness. Our experimental results presented in figure 2 highlight
two key findings regarding the coverage; that the careful analysis does result in
substantially tighter intervals, and that the actual coverage of the CDP confi-
dence intervals is still notably above the nominal coverage.

Figure 2a compares the relative width of the different confidence intervals.
ExpMechUnion and CDFPostProcessUnion refer to the versions of
ExpMech and CDFPostProcess resulting from the naive coverage analy-
sis. While the relative width is only slightly reduced for ExpMech, the relative
width of CDFPostProcess is almost halved if the improved approach is
used to produce the confidence intervals. These findings are also reflected in
figure 2b, which compares the actual coverage of the naive coverage analyses
of ExpMechUnion and CDFPostProcessUnion and the more careful
analyses described in section 3.1. While theoretically we can show that the
careful analysis will result in actual coverage that is much closer to the target
coverage, figure 2a shows that this improvement is practically relevant. While
the improved analysis only leads to modest reduction in the overcoverage for
ExpMech, the changes for CDFPostProcess are more substantial. The
naive approach results in coverage rates that are close to 1 irrespective of the
target failure rate . The improved approach leads to coverage rates that are
much closer to the nominal coverage rates.

Despite the substantial improvement, figure 3 shows that all the CDP algo-
rithms exhibit actual coverage higher than the nominal coverage for moderate
values for p. As expected, figure 3a reveals that the coverage rates get closer to
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Figure 2. Comparing the Performance (in Terms of Relative Widths and Actual
Coverage Rates) of Naive versus More Carefully Constructed DP Confidence
Intervals on Log-Normal Data with Parameters pu = In(1.5),6, = 5.0. (a)
Relative widths of confidence intervals as we vary number of datapoints, n, from 100
to 1,500. Nominal coverage rate « = 0.05 and privacy parameter p = 0.5. (b)
Actual coverage rate of confidence intervals as we vary the nominal failure rate, o,
from 0.05 to 0.25. Dataset contains n = 1,000 datapoints. Privacy parameter p = 1.0.

the nominal coverage rate for increasing values of p as each algorithm trends
toward outputting the nonprivate confidence interval [ci}, ci},] when p = oo
(we use an unconventionally large value of « = 0.2 to better visualize the dif-
ference in convergence rates for the different algorithms). Figure 3b shows the
actual coverage rates as n increases. Note that the nonzero granularity in both
private algorithms prevents the actual coverage from approaching the actual
coverage of the nonprivate algorithms. The granularity is held constant in these
simulations, but could be decreased with n to limit its effect. Over-coverage
does not necessary correspond to substantially larger confidence intervals. We
see in figure 1 that in a wide range of parameter regimes our CDP algorithms
still result in confidence intervals that are at most twice as wide as their nonpri-
vate counterparts. However, it does suggest an opportunity for improvement.
An important question for future work is to what degree this over-coverage is
necessary? In particular, is there an inherent tension between the privacy guar-
antee, and learning enough about the dataset to accurately quantify the
uncertainty?

In many estimation tasks defining a nonparametric confidence interval that
gives close to nominal coverage rates is difficult. Without information regard-
ing the underlying distribution, the confidence intervals need to be wide
enough to ensure valid coverage rates for any possible distribution. This can
result in the nonparametric confidence intervals having higher than expected
actual coverage when the data is drawn from a nice distribution. This effect is
one possible explanation for the fact that the CDP confidence intervals have ac-
tual coverage higher than 1 — o in figure 2a. In fact, we see evidence of this in
the analysis of ExpMech. The error of the exponential mechanism is data de-
pendent (and hence distribution dependent), but in our coverage analysis we
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Figure 3. Actual Coverage Rate of DP Confidence Intervals as We Vary (a)
Privacy Parameter p and (b) Number of Datapoints n on Log-Normal Data. (a)
Actual coverage rate as we vary privacy parameter, p, from 0.01 to 10,000. Dataset
contains n = 1,000 datapoints sampled i.i.d. from a log-normal distribution with
parameters g = In(1.5),6, = 5.0. Nominal coverage rate @ = 0.2. (b) Actual cover-
age rate as we vary number of datapoints, 7, from 100 to 10,000. Dataset contains n
datapoints sampled i.i.d. from a log-normal distribution with u = In(1.5),6, = 5.0.
Nominal coverage rate @ = 0.2. Privacy parameter p = 1.0.

are forced to use the worst case error of the exponential mechanism over all
datasets.

4.3.3 Bias. The goal of this work was to design algorithms that output valid
confidence intervals for the median, not to estimate the median itself. An ad
hoc estimate of the median can be obtained from a confidence interval by tak-
ing the estimate to be the mid-point of the interval. This approach is preferable
in the DP context since it allocates its entire budget to the object of interest (the
confidence interval) and we discussed in section 3 some of the reasons why di-
rect estimators of the median are difficult to generalize to CDP confidence
intervals. For all of our CDP algorithms, as well as the nonprivate confidence
interval, this results in a biased estimator for the median, if the underlying dis-
tribution is skewed. In figure 4, we explore the bias of the inherited median
estimators. As expected, the bias increases with the skew of the data. The bias
of most of the DP algorithms is not substantially different from the bias for the
nonprivate estimate. This implies that most of the bias can be attributed to the
ad-hoc strategy of using the mid-point of the confidence interval as the point
estimate for the median. As mentioned earlier, one benefit of
CDFPostProcess is that it comes with additional information about the dis-
tribution which could potentially be used to release a less biased estimate of
the median. We leave this for future work.

5. REAL DATA APPLICATION

In this section, we illustrate how the findings from the previous sections could
inform the implementation of a differentially private median release strategy in
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Figure 4. Bias of the Algorithms (Difference between the Center of the
Confidence Intervals Obtained and the True Median, Averaged over 5 Trials on
100 Datasets) for Log-Normal Data with Parameters 4 = 1.0 and 6, Varied from
2to 8.

practice. We also demonstrate what level of accuracy one could reasonably ex-
pect for realistic applications. Our motivating example is the median income
tables published by the U.S. Census Bureau for various subgroups of the popu-
lation. Specifically, we aim to replicate a subset of statistics from table Al,
Income Summary Measures by Selected Characteristics: 2018 and 2019,
which appears in Semega, Kollar, Shrider, and Creamer (2020). This table
reports median household income broken down by Type of household, Race
and Hispanic Origin of Householder, Age of Householder, Nativity of
Householder, Region, and Residence. For each of the 32 subgroups specified,
the table provides the estimated median income and estimated margin of error
(based on o = 0.1) for 2018 and 2019. The estimates are computed using the
Current Population Survey, 2019 and 2020 Annual Social and Economic
Supplements (CPS ASEC).

Since we want to assess the accuracy of the CDP estimates, we use in-
come data from the 1940 Decennial Census (Ruggles, Flood, Foster,
Goeken, Pacas, et al. 2021), which enables us to compare the noisy esti-
mates to the true values in the population. We restrict the population data
to heads of households in the mountain division region (Arizona, Colorado,
Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming) and focus on
the variables type of household (two categories), metropolitan area (two cat-
egories) and age (two categories). To mimic the illustrative application de-
scribed above, we repeatedly sample from this population and treat the
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resulting data as the survey from which the (noisy) estimated medians will
be computed. For simplicity, we draw 1 percent simple random samples
without replacement. We acknowledge that the sampling design for the CPS
ASEC is far more complex. However, understanding the subtle effects of
complex sampling designs on the privacy guarantees is currently an area of
active research and is beyond the scope of this article.

The variable we use for our evaluations is “INCWAGE,” which “reports
each respondent’s total pre-tax wage and salary income for the previous year.”
The amounts are displayed in “contemporary dollars,” which means they are
not adjusted for inflation. In the 1940’s dataset, the variable is topcoded at
5,001 dollars. We remove all N/A and missing values from the dataset, and
only consider records corresponding to the head of each household. We note
that we do not propose simply dropping all cases with missing values in prac-
tice as this will likely introduce bias. However, properly integrating any non-
response adjustments into the DP algorithms is beyond the scope of the article.
Thus, we treat the fully observed data on household heads as our population of
interest. Finally, for the purpose of error analysis we treat the empirical distri-
bution of the entire population dataset (from which we sample 1 percent) as
the true underlying distribution P.”

5.1 Selecting the Algorithm and Hyperparameters

To generate the privatized confidence intervals, we use the algorithm identified
as the winner in a wide range of regimes in the simulation studies: ExpMech.
The hyperparameters are set to R = [0,5001], and 0 = 5. The lower and upper
bounds are chosen based on the assumption that the threshold used for top cod-
ing is public knowledge and that the median income will not be less than zero.
The granularity parameter 0 is chosen based on Census Bureau data visualiza-
tions that report median incomes from 1967 to present, which are rounded to
the nearest $100 (U.S. Census Bureau 2020b) indicating that a granularity
of $5 for 1940 median incomes is likely sufficient for data users. We split
the overall privacy budget of p = 0.5 equally across three characteristics:
type of household, metropolitan status, and age.

5.2 Parametric versus Nonparametric Approaches

As indicated above, it is beneficial under privacy constraints to use nonpara-
metric approaches over parametric approaches. This is because the usual

5. Note that many respondents report incomes rounded to the nearest $5, $10, or $50, which
results in substantial overcoverage even for the nonprivate confidence intervals due to the spikes
in the data. Therefore, we add a negligible amount of noise (N(0,0.01)) to each population in-
come data point, so that the distribution being sampled is continuous. See supplementary material
online C for further discussion.
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Figure 5. Comparing Nonprivate Parametric versus Nonparametric Confidence
Intervals under Model Mismatch. The data contain incomes of family households
(n=9,142) based on a a 1 percent sample of mountain division households in the
1940 Decennial Census. The PDF of data shows that about 35 percent of the reported
incomes are zero, which means that the data do not follow a log-normal distribution.
Accordingly, the log-normal confidence interval is biased toward zero, while the non-
parametric confidence interval captures the true population median.

guardrails around using parametric assumptions—such as visualizing the data
and running goodness-of-fit tests—require privacy budget. Therefore, an ana-
lyst using private algorithms will find it more difficult to notice failures of para-
metric assumptions. Additionally, these failures will likely result in misleading
uncertainty measures.

Figure 5 illustrates the dangers of using a parametric approach. The figure
shows the empirical CDF of incomes from a 1 percent sample of family house-
holds in the Mountain region from the 1940 Decennial Census. Income data
are typically assumed to be log-normally distributed; however, the data shown
in figure 5 do not satisfy this assumption, as demonstrated by the large percent-
age of datapoints at 0. Due to this mismatch, a parametric confidence interval®
computed under the assumption of log-normality (shown in green) is biased
away from the true median (in cyan). Under privacy constraints, one would
need to use privacy budget in order to visualize the distribution of the data and
to notice this failure of the assumption. Therefore, it is preferable to instead
compute a nonparametric confidence interval (as shown in purple) which main-
tains confidence validity.

6. The parametric confidence interval is generated by log-transforming the data, computing a nor-
mal 95% confidence interval for the mean of the log-transformed data, and back-transforming the
limits of the confidence interval. More sophisticated parametric approaches exist in the literature;
however, we focus on this one because it has the most natural private analog.
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5.3 Results

Results based on the first simulation run are included in table 1. The CDP con-
fidence intervals and median estimate are the result of a single run of
ExpMech so this table is indicative of what we would expect in practice. The
CDP point estimates for the median incomes are chosen as the midpoint of the
corresponding CDP confidence intervals. Note that we could also leverage a
prior assumption of the right-skewness of income data by choosing the CDP
point estimator from the left half of the CDP confidence interval, rather than
from its center, but we leave this type of parametric estimation to future work.
We leverage the assumption that the incomes are nonnegative, so we set the
lower endpoint of the CDP confidence intervals at the maximum of the output
of the algorithm and zero. However, we compute the point estimates before the
truncation step to avoid introducing bias. The table also provides nonprivate
and private 90 percent confidence intervals (the margin of error reported in the
Census tables could be computed as the half-width of these intervals).

The nonprivate median estimates are closer to the true values than the DP
estimates for all sub-populations. However, for many statistics, the difference
between the point estimates is small relative to the width of the confidence in-
terval indicating that the bias introduced by the ad-hoc approach of using the
center of the confidence interval to estimate the median is minor. Except for
the householders aged 65 and above, the relative increase in uncertainty also
seems to be acceptable. The relative increase in confidence interval length
ranges between 20.7 and 81.7 percent, that is, the uncertainty from data protec-
tion is always less than the uncertainty from sampling. The large relative in-
crease of the confidence intervals for householders aged 65 and above can be
explained by noting that the width of the CDP intervals is lower bounded by
the granularity parameter (which we chose to be § = 5), which leads to a large
relative uncertainty if the nonprivate interval has width close to zero. However,
the absolute increase in uncertainty is still acceptable.

In figures 6 and 7, we explore the performance of ExpMech and the nonpri-
vate algorithm over 1,000 randomly sampled datasets. Figure 6, which con-
tains boxplots showing the width of the private and nonprivate confidence
intervals, confirms the findings based on one simulation run. While the private
confidence intervals are typically wider than the nonprivate intervals, the in-
crease in width is less than a multiplicative factor of two for all sub-
populations except for head of households older than 65 and is less than $100
in all sub-populations. The figure also reports the actual coverage rates for the
nonprivate and private confidence intervals. The actual coverage rates are com-
puted over 1,000 simulation runs and 20 trails of the CDP algorithm within
each simulation run. While the nonprivate actual coverage rates are close to the
nominal 90 percent coverage, the CDP confidence intervals overcover substan-
tially with actual coverage rates between 95.9 and 100 percent.
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Figure 6. Comparing Widths of 90 Percent ExpMech and Nonprivate
Confidence Intervals. Algorithms are run on 1,000 samples of income data by se-
lected characteristics from the 1940 Decennial Census (the DP algorithm is run 20
times for each sample). Actual coverage rates are displayed for each algorithm.
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Figure 7. Comparing Distribution of Point Estimates. ExpMechMidPoint is the
private median estimator obtained by taking the mid-point of the confidence interval
produced by ExpMech. Algorithms are run on 1,000 samples of income data by se-
lected characteristics from the 1940 Decennial Census. Population medians by charac-
teristic are denoted by the cyan lines. For the Age > 65 category, both the private and
nonprivate estimators consistently return zero (0).

Figure 7 evaluates the bias introduced by taking the mid point of the confi-
dence interval as a point estimate for the median. It contains boxplots showing
the variability of the private and nonprivate point estimates (where
ExpMechMidPoint is the private median estimator obtained by taking the
midpoint of the confidence interval produced by ExpMech). The whiskers of
the boxplots indicate the Sth and 95th quantile of the empirical distribution of
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the point estimates computed over 1,000 trials. For most of the estimates, the
range of the boxplots overlap to a large extent and similar to table 1 the bias is
small relative to the variability in the estimates. The only estimate for which
we find noticeable bias in the private midpoint median estimate is for nonfam-
ily households. The bias arises because of the large fraction of zeros among
this sub-population in the original data. Since 51 percent of the records in the
original data report an income that is essentially zero (except for the small
amount of noise that we introduce to make our data approximately continu-
ous), the sample median will also be close to zero in many simulation runs.
However, any point estimator based on the midpoint of a confidence interval
(private or nonprivate) will almost always be strictly positive since the upper
limit of this confidence interval will almost always be larger than the 51* quan-
tile in the population, that is, almost always be larger than zero. So, while in
some specific settings the bias of the midpoint estimator may be notable, typi-
cally the bias is small compared to the variance of both of the private and non-
private median estimates.

6. CONCLUSION

In this article, we designed and evaluated several strategies to obtain differen-
tially private confidence intervals for the median. We demonstrated that ac-
counting for both sources of randomness, the sampling error as well as the
error from the DP algorithm, simultaneously allowed us to give tighter confi-
dence bounds than relying on naive approaches that account for the two com-
ponents sequentially. Our simulation results showed that an algorithm
ExpMech produced reliable and consistent confidence intervals which were
less than twice the width of the nonprivate confidence intervals in a wide vari-
ety of parameter regimes. An algorithm CDFPostProcess provides confi-
dence intervals that are almost as tight, or slightly tighter, than ExpMech in a
variety of regimes. This algorithm is practically appealing since it releases a
wealth of additional information about the distribution P without consuming
additional privacy budget.

The private confidence intervals in the application based on the 1940
Decennial Census were not substantially wider than the intervals in the nonpri-
vate setting, illustrating that the extra uncertainty due to data protection can be
small in practice. We also found that the bias introduced by the ad-hoc strategy
of using the midpoint of the confidence interval to estimate the median was
limited for most estimates in our real data application. We also note that the
CDFPostProcess algorithm allows us to release a direct estimate of the me-
dian without consuming additional privacy budget.

We saw in our experiments on both simulated and real data that the actual cover-
age rate of our private confidence intervals was often (sometimes substantially)
higher than the nominal coverage rate. An interesting open question is whether this
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is inherent for nonparametric CDP confidence intervals for the median.
Furthermore, if this is unavoidable, then what distributional assumptions are re-
quired to narrow the gap between the actual coverage and nominal coverage rates?

Finally, perhaps the strongest limitation of our study is the reliance on the
assumption that the sample is drawn using simple random sampling with re-
placement. Such a sampling design will never be used in the survey context in
practice. Thus, the important next step will be to extend the methodology to al-
low for more complex designs.

Supplementary Materials

Supplementary materials are available online at academic.oup.com/jssam. The
Supplementary material contains further details, psuedocode, and privacy anal-
ysis for the ExpMech and CDF post -process algorithms. We also provide
comparison to several other potential algorithms for producing confidence
intervals for the median that are outperformed by ExpMech and CDF post -
process in most regimes.
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