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Abstract 

Background  Hypertension is a prevalent cardiovascular disease with severe longer-term implications. Conventional 
management based on clinical guidelines does not facilitate personalized treatment that accounts for a richer set of 
patient characteristics.

Methods  Records from 1/1/2012 to 1/1/2020 at the Boston Medical Center were used, selecting patients with either 
a hypertension diagnosis or meeting diagnostic criteria (≥ 130 mmHg systolic or ≥ 90 mmHg diastolic, n = 42,752). 
Models were developed to recommend a class of antihypertensive medications for each patient based on their char-
acteristics. Regression immunized against outliers was combined with a nearest neighbor approach to associate with 
each patient an affinity group of other patients. This group was then used to make predictions of future Systolic Blood 
Pressure (SBP) under each prescription type. For each patient, we leveraged these predictions to select the class of 
medication that minimized their future predicted SBP.

Results  The proposed model, built with a distributionally robust learning procedure, leads to a reduction of 
14.28 mmHg in SBP, on average. This reduction is 70.30% larger than the reduction achieved by the standard-of-
care and 7.08% better than the corresponding reduction achieved by the 2nd best model which uses ordinary least 
squares regression. All derived models outperform following the previous prescription or the current ground truth 
prescription in the record. We randomly sampled and manually reviewed 350 patient records; 87.71% of these model-
generated prescription recommendations passed a sanity check by clinicians.

Conclusion  Our data-driven approach for personalized hypertension treatment yielded significant improvement 
compared to the standard-of-care. The model implied potential benefits of computationally deprescribing and can 
support situations with clinical equipoise.

Keywords  Machine learning, Hypertension prescription, Clinical decision support

Background
Hypertension continues to be a leading factor of death 
and severe health complications [1]. It can cause a series 
of cardiovascular disorders, such as ischemic heart dis-
ease [2], stroke, and heart failure [3]. While nearly half 
of the adults with hypertension in the U.S. have Systolic 
Blood Pressure (SBP) over 140 mmHg, only 24% of these 
hypertensive patients manage to bring their hyperten-
sion under control [4]. The major causes of uncontrolled 
hypertension are complicated, since inappropriate or 
inadequate prescriptions, patient noncompliance, and 
high therapy cost can all lead to treatment failure [5]. 
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Unlike other medical conditions, therapy for hyperten-
sion is easily influenced by peripheral components in the 
biological network [6]. Genetic predisposition, physi-
ological systems, and time-varying environmental factors 
all play important roles in the pathophysiology of hyper-
tension [7].

Despite the consensus that different patient character-
istics and distinct underlying mechanisms of high blood 
pressure would lead to differential responses towards 
antihypertensive drugs, personalized hypertension treat-
ment has not been widely adopted in clinical practice. 
Most clinicians are still following evidence-based clinical 
guidelines that utilize more generalized standard thera-
pies [6]. There is a need to incorporate various consid-
erations in clinical decision making, such as, medication 
interactions, comorbidities, white coat effects (i.e., the 
transient pressor rise triggered by standard BP measure-
ment in the clinical environment) [8, 9], obesity, pseudo-
hypertension, and personal lifestyle choices including 
food and alcohol intake [10, 11]. However, the unknown 
underlying traits for each patient remain elusive to deci-
pher and account for simply by manually integrating 
various data sources. Consequently, precise personalized 
treatment is difficult to attain given the considerable vari-
ety of antihypertensive drug options. Existing studies that 
model hypertension prescriptions are either restricted to 
analysis in certain circumstances and do not provide full 
personalization [12] or are limited to certain hyperten-
sion prescription type [13].

This study proposes a personalization approach for 
hypertension treatment based on Machine Learning 
(ML) algorithms, seeking to maximize the effectiveness 
of hypertensive medications at the individual level. Being 
increasingly adopted in the cardiovascular field, ML is 
expected to facilitate the precision and personalization 
of hypertension therapies [14]. However, there are several 
challenges for ML-driven personalization:

1.	 The sparse and incomplete nature of the Electronic 
Health Records (EHRs) [15–17]. Integrating heteroge-
nous data from different sources, the process of med-
ical data collection is always complex. This usually 
leads to data ‘outliers’ caused by entry errors, incom-
plete information, and irregular lab tests, which can 
significantly reduce the accuracy of ML models. To 
the best of our knowledge no work on personalized 
treatment has dealt with ‘outliers’.

2.	 Personalized recommendations under sparse patient 
history. To make personalized recommendations, an 
ML model cannot see into the future and can only 
rely on the prediction of counterfactual outcomes 
under each prescription. Only when the prescrip-
tion recommended by the model is the same as the 

administered one, we have ground truth assessment 
of the outcome. There are several models built for 
personalized chronic disease treatment using a so-
called contextual bandits approach [18, 19], which 
can learn from historical data of the same individual 
and make predictions. However, this methodol-
ogy highly relies on frequent patient visits and rich 
historical information that is hard to find in sparse 
EHRs. There is a need to make recommendations 
even for patients with sparse history.

3.	 Interpretability of the ML prescriptive model. While 
ML is superior to traditional approaches in handling 
large amounts of data at our disposal, ML adoption 
in health-care settings is limited by the lack of inter-
pretability and comprehensiveness. Clinicians and 
patients cannot make medical decisions just based 
on a black-box model designed and evaluated in a 
narrower scenario, which may not have access to all 
information about a specific patient [20]. It is impor-
tant for the decision makers to understand not just 
the mechanism of the algorithm, but how and why 
the model proposes each option. For instance, recent 
work has developed hypertension treatment predic-
tion models using Deep Learning (DL) methods [21, 
22]. While DL models often result in accurate pre-
dictions, it is hard to interpret and rationalize the 
results. Moreover, studies show that for harmonized 
EHRs data, a DL model did not show superior ben-
efits compared with traditional methods [23].

In this paper, our objective is to design a model able to 
generate a personalized hypertension prescription based 
on each individual patient profile, including demograph-
ics, vital signs, past medical history, and clinical test 
records. To that end, we predict the future SBP by using 
the past outcomes of patients who had the most similar 
profiles. We adopt a robustified regression procedure to 
immunize predictions against outliers in the EHR data 
that could bias the result [24]. Our algorithm is based on 
a regression-informed K-Nearest Neighbor (KNN) [25] 
approach. Unlike other non-linear approaches such as DL 
or random forests [26], this method is more reliable than 
a simple linear model but maintains interpretability and 
comprehensibility. The predictive power of the prescrip-
tive model has been shown to satisfy certain theoretical 
guarantees [27]. We incorporated a randomized prescrip-
tive policy to add robustness to the model and only adopt 
the recommended prescription if the SBP improvement 
over the previous regimen exceeds a certain threshold.

To help the prescribers interpret the model, we ran-
domly sampled 350 cases, listed the recommended 
prescriptions, and the corresponding patient profiles. 
Moreover, we summarized affinity profiles built by the 
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model. These cases were manually reviewed by clinicians 
at Boston Medical Center (BMC) to make sure that the 
prescriptive model is capable of maintaining a balance 
between contraindications and antihypertensive efficacy.

Materials and methods
Dataset
We extracted data from Boston Medical Center (BMC) 
Electronic Health Records (EHRs) from January 1, 2012, 
to January 1, 2020. The dataset included all patients who 
satisfied one or more of the following conditions: (i) 
patients who had a hypertension diagnosis; (ii) patients 
with high blood pressure in the problem list included in 
their record; and (iii) patients with recorded SBP meas-
urement exceeding 130  mmHg or a Diastolic Blood 
Pressure (DBP) measurement exceeding 90  mmHg. We 
identified 42,752 such patients who also met the follow-
ing criteria:

•	 Patients have in the system at least 2 SBP measure-
ments in 180 days (2 defined periods).

•	 Received at least one type of cardiovascular medica-
tion, including Calcium Channel Blockers (CCBs), 
Thiazide diuretics, Angiotensin Receptor Blockers 
(ARBs), ACE inhibitors (ACEi), Beta-blockers, Loop 
diuretics, and Mineralocorticoid-Receptor-Antago-
nists (MRAs).

Features
For each qualified patient, we collected their demo-
graphics (age, sex, race, language, marital status, ZIP 
code), past blood pressure records, past medical his-
tory, vital signs, symptoms, medication history, labora-
tory tests results, cigarette usage, information for their 
social needs and depression test scores. Information on 
social needs was extracted from the ‘THRIVE’ survey 
program implemented at BMC. Specifically, THRIVE is 
a custom screening program created by BMC which sur-
veys patients on their unmet social needs in eight differ-
ent domains: transportation, ability to secure caregiving 
for family members, ability to pay for utilities, education, 
food, housing, employment issues, and ability to pay for 
medications. All records were de-identified before anal-
ysis. The study was approved by the Boston University 
Medical Campus and Boston University Institutional 
Review Boards.

Records timeline design
We split patients’ treatment history based on ‘visits’ to 
reflect the effect of prescriptions. Each ‘visit’ is defined 
to occur every 90 days from the patient’s first SBP record 
in our observation period (2012–2019) until the last 

recorded SBP measurement. A ‘visit’ is therefore a peri-
odic review period of the patient’s health status rather 
than an actual visit to the clinic. The SBP measurements, 
vital signs and all other time-varying features were all 
captured and averaged over each visit (90-day period). 
The current prescription of each visit is the drug (or 
drugs, if multiple) used during the current period. The 
future outcome is defined as the averaged SBP meas-
urement in mmHg 90 to 180 days after the current visit 
(i.e., during the next or the following visit). This time 
lag is chosen because previous studies have defined 
drug persistence as consistently refilling antihyperten-
sive prescriptions in the subsequent clinic visits within 
90–180  days of a previous dispensing [28–30]. Patient 
visits without valid future outcomes are dropped. In total, 
we obtained 432,096 valid visits and defined 144 features 
for each visit.

Prescriptive policy design
Our prescriptive model considers monotherapy of 7 
types of antihypertensive drugs: Calcium Channel Block-
ers (CCBs), Thiazide diuretics, Angiotensin II Receptor 
Blockers (ARBs), ACE Inhibitors (ACEi), Beta-Blockers, 
Loop diuretics, Mineralocorticoid Receptor Antagonists 
(MRAs). We did not consider specific combinations of 
drugs as an option because drug combinations are often 
associated with complex medical constraints and compli-
cations, and there are many different combinations one 
would need to consider. Effective antihypertensive drug 
combinations usually require all the classes having dif-
ferent and complementary mechanisms of actions [31]. 
Instead, the model provides a list of recommended agents 
and their associated confidence probabilities, leaving to 
the physician the option of prescribing a combination of 
agents in the recommended list.

The patient’s current prescription is also included in 
the menu of options for the future prescription. Since 
frequently changed prescriptions can cause concerns 
about high health care costs and slow transient peri-
ods, we opted to maintain the current treatment where 
possible. The new prescription will be considered only 
if the improvement on SBP control is over a pre-speci-
fied threshold. Specifically, as detailed in [24, 32], if the 
expected improvement of the proposed prescriptions on 
the current SBP is not substantial, the current prescrip-
tion is adopted instead of the proposed one. A thresh-
old of SBP reduction above which the improvement is 
considered substantial enough is determined in [24, 32] 
using certain distributional assumptions on the predicted 
SBP.

To achieve best performance on future SBP reduction, 
the most straightforward idea is to choose the drug that 
yields the lowest predicted SBP. However, this approach 
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may let potential prediction errors mislead clinicians and 
discard comparable alternatives that could be a better 
selection in some cases. As a result, we opted for a ran-
domized recommendation policy that prescribes a drug 
with a probability inversely proportional to its exponenti-
ated predicted SBP. For example, the prescription model 
may suggest Drug A with probability pA , Drug B with 
probability pB , and Drug C with probability pC . These 
probabilities can be interpreted as confidence levels, or 
as the likelihood that the recommended drug will lead to 
the minimal future SBP. This has the effect of improving 
the robustness of the model by exploration and showing 
to the physician all agents with a significant likelihood of 
leading to the minimum future SBP. It has been shown 
statistically that such randomized strategy can achieve 
nearly optimal future outcomes if an appropriate param-
eter is chosen [24, 32].

For the purpose of this analysis, a few common rela-
tive contradictions and disease specific preferences were 
incorporated in our prescriptive model. All the rules fol-
lowed the professional suggestions from BMC clinicians 
and are based on ACC/AHA hypertension treatment 
guidelines [4]:

•	 If pulse < 60, do not use Beta-Blockers;
•	 If potassium > 4.5, do not use ACEi or ARBs;
•	 If creatinine of 2 or greater, do not use ACEi or ARBs 

or Thiazide diuretics;
•	 If potassium > 5, do not use MRAs;
•	 If patient has diabetes, should likely be on an ACEi or 

ARBs;
•	 If patient has systolic heart failure, should likely be on 

a Beta-Blocker.

Models and evaluation scheme
We developed ML models to predict optimal prescrip-
tions for patients with hypertension. A prediction-
based prescriptive model was developed to analyze 
outcomes under each possible medication. The goal is 
to find the treatment that minimizes future SBP based 
on the medical history of a group of similar patients. 
Our methods incorporate K-Nearest Neighbors (K-NN) 
on a regression-weighted metric, which can capture 
the similarity between patients’ most predictive char-
acteristics and model the future SBP accordingly. For 
example, if we want to estimate a patient’s future SBP 
under Thiazide diuretics, we first train a regression 
model with all patient visits that were under Thiazide 
diuretics to predict the future SBP. Suppose this regres-
sion model fits a set of coefficients β = (β1, ...,βp) to 
predictive variables x = (x1, ..., xp) and predicts the SBP 
of a patient as y = p

i=1
xiβi , where p is the number 

of variables used for the prediction. Then, the coeffi-
cients β of the regression model are used to identify the 
importance of each feature in predicting the SBP out-
come. The absolute values of coefficients form weights 
in measuring the distance between this patient and all 
the other patient visits that were under Thiazide diu-
retics. More specifically, we define a distance metric 
between two patients characterized by predictive vari-
ables x =

(

x1, . . . , xp
)

 and z =
(

z1, . . . , zp
)

 by

and use this metric to find the K nearest neighbors to 
any particular patient with features x under Thiazide diu-
retics. Once the closest visits from the treatment group 
are identified, we consider their SBP values at their 
next visit (say y1 . . . , yK  ) and use their average, given 
by ŷ(x) = 1

K

∑K
i=1 yi , to estimate the SBP of the patient 

with features x at her next visit. The same procedure is 
repeated for all the prescription options included in the 
model. Let M the total number of prescription options 
and denote by ŷm(x) the predicted next-visit SBP for 
a patient with features x under prescription m. Then, 
prescription m is recommended for this patient with 
probability e−ξ ŷm(x)/

∑M
i=1 e

−ξ ŷj(x) , where ξ is a tunable 
parameter.

Four (regression) algorithms were compared to test the 
best performance in future SBP reduction: Distribution-
ally Robust Linear Regression (DRLR)-informed KNN 
(the proposed model), Ordinary Least Square Regression 
(OLS)-informed KNN, the Least Absolute Shrinkage and 
Regression Operator (LASSO) regression [33], and Clas-
sification and Regression Trees (CART) [34]. The new 
regularized regression technique DRLR was developed 
based on Distributionally Robust Optimization (DRO) 
with an ambiguity set built using a Wasserstein metric 
[24]. In short, regression is formulated as a game, where 
an adversary picks a probability distribution from the 
ambiguity set and expected loss is evaluated using that 
distribution. The modeler then selects model parameters 
to minimize that worst-case expected model loss. The 
approach can mitigate the impact of outliers by hedg-
ing against a family of probability distributions that are 
close to the empirical distribution of the training data. 
Various theoretical results in [24] establish such robust-
ness properties and establish probabilistic performance 
guarantees.

Under each prescription group, data were randomly 
split into a training set (80%), a validation set (10%), and 
a test set (10%). To avoid contamination of the validation/
test sets with training data, visits from the same indi-
vidual were included only into a single set. The predicted 

||x − z||β =

√

√

√

√

p
∑

i=1

(xi − zi)2β
2
i ,
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SBP reduction under each prescription type was com-
pared with the true outcome under standard of care and 
the counterfactual outcome corresponding to following 
the previous regimen.

Results
Table 1 summarizes the basic statistics of the entire data-
set and the specific subgroups identified. Most of the 
patients in our dataset are older adults with a mean age of 
60.93. The average SBP among all patient visits was above 
130 mmHg. The dataset included patients with 10 differ-
ent races, with the majority being Black patients (49.68%) 
or White patients (26.10%). The percentage of Black 
patients is significantly higher than other races. Through 
all patient visits, ACEi was the most common active 
prescription. While almost 1/3 of patient visits were on 
ACEi, only 2.21% of them were on MRA.

The performance of the prescriptive model is shown 
in Table 2. Two strategies with different policies to pre-
scribe actions were compared (deterministic vs. rand-
omized). The performance was tested under five different 
(random) splits of the data into training and test sets. We 
calculated the mean (over the five splits) SBP reduction 
under the model recommended prescription and the 
true reduction under standard of care. All models under 
two specific strategies outperform the current prescrip-
tion and standard of care. The best outcome is achieved 
by DRLR-informed KNN, which can achieve mean SBP 
reduction of 14.22 mmHg±0.5 . This amount of reduction 

is 70.30% better than the SBP reduction under stand-
ard of care. The other models also gained better con-
trol than the standard prescription with 59.04–22.99% 
higher SBP reduction compared to the standard of care. 
However, even the second-best model, OLS-informed 
KNN, achieved 6.61% lower reduction compared to the 
best model. This shows the superiority of our robus-
tified DRLR procedure against outliers in terms of the 
improvement in outcomes. The performance of the ran-
domized strategy did not differ much from the perfor-
mance of the deterministic one. Still, considering that the 
randomized rule gives more flexibility for the prescriber 
to explore suboptimal options in the model and to avoid 
potential medical contradictions, the randomized policy 
is preferable.

Sub-models were developed for each prescription in 
the patients’ menu of treatment options. The potential 
outcome under a particular treatment was estimated by 
the corresponding sub-model, which is trained on patient 
visits that were previously on this treatment. We sum-
marized the top 10 predictive features by assembling the 
feature importance scores (regression coefficient magni-
tudes) from all the sub-models in our best prescriptive 
model (DRLR-informed KNN). The results are shown in 
Fig. 1, with the features shown on the x-axis and the cor-
responding importance scores shown on the y-axis. All 
the features in the figure were positively correlated with 
the future predicted SBP. The most predictive feature is 
the SBP value in the current period, which has signifi-
cantly higher importance score than others. The SBP val-
ues of the past two periods and the current period DBP 
also showed great influence on the prediction. Among 
all the clinical features, ‘Oxygen saturation’ is the most 
important one in preicting SBP. The larger variation of 
‘Oxygen saturation’ may represent those medically frag-
ile patients who have other comorbidities or even acute 
or subacute illnesses that impact their oxygen saturation. 

Table 1  Dataset summary statistics

*Data is calculated through all patient visits
† Accounted for both monotherapies and drug combinations

Features All patients N = 42,792

Mean age* 60.93

Mean SBP (mmHg)* 136.11

Female 22,445 (52.45% of N)

Male 20,345 (47.54% of N)

White Patients 11,170 (26.10% of N)

Black Patients 21,260 (49.68% of N)

Hispanic Patients 3,946 (9.22% of N)

Ever Cigarette User 11,790 (27.55% of N)

Hypertension drugs used† All Patient Visits (M = 432,096)

Calcium Channel Blockers (CCBs) 115,450 (26.72% of M)

Thiazide diuretics 92,290 (21.36% of M)

Angiotensin II Receptor Blockers (ARBs) 43,072 (9.97% of M)

ACE Inhibitors (ACEi) 129,800 (30.04% of M)

Beta-Blockers 86,171 (19.94% of M)

Loop diuretics 35,316 (8.17% of M)

Mineralocorticoid Receptor Antagonists 
(MRAs)

9,550 (2.21% of M)

Table 2  The reduction in future Systolic Blood Pressure (SBP) in 
mmHg

Current regimen refers to the predicted outcome if the patient continues on the 
current prescription in the record. Standard of care refers to true outcome under 
the regimen prescribed by clinicians; mean (standard deviation)

Algorithm SBP reduction (mmHg)

Deterministic Randomized

LASSO − 10.71 (0.34) − 10.73 (0.35)

CART​ − 10.24 (0.55) − 10.28 (0.54)

OLS + KNN − 13.28 (0.34) − 13.27 (0.34)

DRLR + KNN − 14.22 (0.5) − 14.21 (0.49)

Current regimen − 8.31 (0.08)

Standard of care − 8.35 (0.07)
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Moreover, the older patients were generally more likely 
to have high SBP since ‘Age’ is the fourth significant fea-
ture with positive correlation with the outcome. There is 
also evidence supporting the possible roles of neutrophils 
and Red Blood Cell Distribution Width (RDW) in arterial 
hypertension and other cardiovascular diseases [35–37]. 
One explanation is the possible mechanism via the over-
all inflammatory milieu causing arterial stiffness or subtle 
changes of myocardial or endocrine function [35].

Since the model is prescribing monotherapy, only 
30.68% of the recommendations from the DRLR + KNN 
algorithm indicated continuing the current prescrip-
tion, and 28.91% of the algorithmic recommendations 
matched the standard of care. In the cases where the pre-
scriptive model recommended switching from the given 
therapy, the average reduction of SBP under algorithmic 
therapy is 14.65 mmHg, which is 13.48% better than the 
average reduction achieved by continuing the current 
medication in the record.

We randomly generated 350 samples from our best 
prescriptive algorithm (DRLR-informed KNN model), 
each with the corresponding patient features and the 
model’s recommended treatment. Examples of gener-
ated patients’ samples have been provided in Additional 
file 1. For each recommended prescription with the best 
SBP outcome, we summarized the corresponding neigh-
borhood profile the model has learnt and used to gen-
erate the optimal decision. For example, in the ‘ACEi’ 

profile, we included all patients who were recommended 
to take ACEi in the future and summarized the features 
over all their corresponding neighborhoods found by the 
model. In this way, we sought to interpret the decision-
making process of the model and generalize the patient 
characteristics that point to a certain prescription type. 
All these results were validated through a sanity check 
by BMC clinicians, to ensure that the recommendations 
from our model are clinically rational. Among the 350 
generated cases, 307 of them (87.71%) have passed the 
sanity check. A number of 19 out of the remaining 43 
recommendations were not endorsed due to the nature 
of monotherapy setting of the model, which reduced 
the recommendation to one of the drugs from the drug 
combination in the record. This process is also known as 
deprescribing, and clinicians decided not to take this into 
account since it is still rare in the clinic and the effects 
may vary on a case-by-case basis. The additional cases 
that did not pass the sanity check had to do with medica-
tions that may be used for other reasons (e.g., beta block-
ers are also used for arrhythmias) and contra-indications 
the model did not capture.

Discussion
Feasibility of deprescribing
Deprescribing refers to the process of tapering off or 
stopping medications to prevent adverse drug reactions 
and achieve better health management [38, 39]. Among 
all the patient visits, 9,196 of them were originally on 
multiple antihypertensive medication types, where they 
were able to achieve on average an 8.07  mmHg SBP 
reduction by following the standard of care. However, fol-
lowing the prescriptive model recommendations, led to 
a 14.33 mmHg SBP reduction, on average, by monother-
apy, which is 77.57% better than the standard outcomes. 
Among these 9,196 patients on combo drugs, 7,241 of 
them (78.74%) indeed achieved better SBP reduction 
than the standard of care. We summarized the profile for 
these 7,241 patients in Table 3. The mean age of them is 
65.05, which is higher than the mean age over the entire 
dataset (60.93). Compared to other patients, they have a 
higher chance to have medical contradictions, since more 
of them have diagnoses of other diseases, including dia-
betes and chronic systolic heart failure. The percentage of 
these patients with a diabetes diagnosis is 20.99%, which 
is higher than the percentage in the entire dataset.

The potential benefits shown on deprescribing are 
interesting, since it is recognized by both the 8th report 
of the Joint National Committee for the Prevention, 
Detection, Evaluation and Treatment of Hyperten-
sion (JNC8) [40] and the 2013 guidelines of the Euro-
pean Society of Hypertension and the European Society 
of Cardiology (ESHESC) [41] that patients with SBP 

Fig. 1  Top 10 predictive features summarized over all the 
sub-models in DRLR-informed KNN. Historical SBP_1tau and Historical 
SBP_2tau refer to the Systolic Blood Pressure (SBP) values in previous 
periods. DBP: Diastolic Blood Pressure. Neutrophils%: Neutrophils 
as percent of blood leukocytes. Lymphocytes%: Lymphocytes as 
percent of blood leukocytes
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20  mmHg above treatment goals should take combina-
tions of antihypertensive agents for efficient hypertension 
control. However, deprescribing is increasingly encour-
aged among patients under control and older people with 
multi-morbidities, for whom the risk and burden of the 
drugs may outweigh their effectiveness [39, 42]. In fact, 
a clinical trial has shown that antihypertensive medica-
tion reduction was noninferior compared with the usual 
care among older patient, with respect to the proportion 
of patients with SBP lower than 150 mmHg at 12 weeks 
[43]. Moreover, studies have shown that deprescribing 
of sedatives and nonsteroidal anti-inflammatory drugs 
is cost-effective [44, 45]. In fact, the potential harms and 
long-term benefits of many cardiovascular drugs are still 
unknown [39], thus, clinicians should tailor appropriate 
treatment type more carefully, especially with the addi-
tion of new medications.

Neighborhood profile analysis
Seven neighborhood profiles were built to summarize 
patients’ characteristics the model has captured for each 
prescription group. Figure  2 shows the corresponding 
percentage of certain subgroups in each neighborhood 
profile. If the percentage of group A in the drug X neigh-
borhood is higher than the overall percentage of A in the 
whole test set, it implies that group A may generally get 
better response under drug X. Most of the male patients 
fit into ACEi and Beta-Blockers, as the correspond-
ing neighborhoods both comprise around 48% of male 
patients, which is 14.29% higher than the overall male 
percentage. On the other hand, female patients are more 
likely to be recommended an ARB since 77.26% of the 
ARB neighborhood consists of females.

Black patients generally achieved better response on 
MRAs compared with other medication types, where 

86.14% of the MRAs neighborhood consists of Black 
patients. Whereas White patients do better on a Beta-
Blocker, and the percentage of them in the correspond-
ing neighborhood is 83.2%, higher than their overall 
percentage. Some hypotheses have been put forward 
to explain the favor of different prescriptions for Black 
and White patients [46–49]. Nevertheless, race is a 
social construct that usually comes with other environ-
mental and socioeconomic factors that could be a proxy 
of unmeasured variables, as opposed to some essential 

Table 3  Summarized statistics of patients with effective 
deprescribing

Percentages in all patient visits are calculated as a fraction of the total number 
of patient visits in the test set (N = 31,758). The population in the effective 
deprescribing cohort consists of patients with better SBP control under 
deprescribing (M = 7241). All diseases refer to the corresponding diagnosis in 
ICD9/ICD10 (International Classification of Diseases) codes

All patient visits Visits with 
effective 
deprescribing

Mean age 60.93 65.05

Diabetes 44.69% 54.07%

Chronic systolic heart failure 2.32% 3.25%

Atherosclerotic heart disease 13.23% 18.86%

Peripheral vascular disease 7.29% 11.02%

Fig. 2  Subgroup analysis in the neighborhood profiles for each 
recommended prescription type. The y-axis shows the corresponding 
percentage of certain subgroups in each drug type neighborhood 
profile. If the percentage of group A in the drug X neighborhood 
is higher than the overall percentage of A in the whole test set, it 
implies that group A may generally get better response under drug 
X. CCBs: Calcium Channel Blockers; ARBs: Angiotensin Receptor 
Blockers; ACEi: ACE inhibitors; MRAs: Mineralocorticoid-Receptor-An
tagonists
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physiologic difference. Thus, it is hard to obtain a clear 
explanation towards such racial difference.

Hypertensive treatment initiation for non‑diabetic drug 
naïve patients
Designed for personalized hypertension treatment, our 
model aims to make suggestions in real-world scenarios 
that have true clinical equipoise. One of the cases is the 
prescribing scenario with non-diabetic and antihyper-
tensive drug naïve patients. We found 7,945 non-dia-
betic patient visits among the test set who did not take 
any antihypertensive medication previously. The benefit 
of using the algorithm amounted to a 15.56 mmHg SBP 
reduction on average, which is 9.42% higher than the 
average gain from the model. We summarized the opti-
mal prescription types recommended by the algorithm 
for these patients in Fig.  3. Among all the therapies, 
most of the patients were recommended to initialize 
with monotherapy of Thiazide diuretics or CCBs. This is 
consistent with the ACC/AHA hypertension treatment 
guideline, where prescription for drug-naïve patients is 
recommended to come from one of the four classes: Thi-
azide diuretics, CCBs, ACEi or ARBs [4]. It has also been 
proved in randomized trials that CCBs and Thiazide diu-
retics are more effective as the initial treatment for Black 
subjects [50, 51]. Interestingly, 9.47% of patients were 
recommended to take combination therapies, for whom 
the current averaged SBP (152.50  mmHg) is 12.04% 
higher than the mean SBP of the whole dataset. The very 
high blood pressure may explain their requirement of 
more intense treatment.

Limitations
Although the model can significantly improve hyper-
tension control on standard of care, this study has sev-
eral limitations. First, since it is a retrospective study, 
only the outcomes with administered prescriptions were 
observed. The counterfactual outcomes under other 
medications are unknown and can only be estimated by 
the predictive model. All the results and improvements 
we showed here are still worth to be tested in a real clini-
cal trial. Second, there are actually a lot of factors aside 
from the magnitude of SBP reduction that need to be 
considered in the routine HTN management, including 
tolerance of past regimens, allergies, dosage for current 
medications, best medication for other chronic condi-
tions, etc. Given the nature of the dataset, we cannot 
account for some of these, which could limit pragmatic 
clinical utility in an all-hypertensive patients use case.

Conclusions
This study developed a prescriptive model that deter-
mines the optimal therapies for patients based on their 
specific characteristics. Our proposed robustified algo-
rithm DRLR-informed KNN is developed to accommo-
date outliers in the EHR data, and it achieved 70.30% 
larger (−  14.22  mmHg±0.5 ) SBP reduction than stand-
ard of care, with the results being 7.08% better than the 
2nd best model. Neighborhood profiles and patients’ 
recommendations samples were generated to interpret 
the decision-making process of the model. 87.71% of the 
randomly sampled cases passed the professional sanity 
check by BMC clinicians. The results imply that:

1.	 personalized hypertension treatment by ML methods 
can provide good support for medical decision-mak-
ing, leading to improved drug efficacy;

2.	 the feasibility of deprescribing may be underesti-
mated since it shows considerable benefits computa-
tionally;

3.	 although developed in limited scenarios, prescrip-
tive algorithm can still provide promising insights on 
situations with clinical equipoise like drug initializa-
tions.

Abbreviations
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ML	� Machine learning
EHRs	� Electronic health records
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Fig. 3  Model recommended prescription type for non-diabetic 
medication-naïve patients. CCBs: Calcium Channel Blockers; ARBs: 
Angiotensin Receptor Blockers; ACEi: ACE inhibitors; MRAs: Mineraloc
orticoid-Receptor-Antagonists
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