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Automated Exposure Notification for COVID-19

Leo Samuels1∗, Novak Boskov2, Andreas Francisco Oliveira2, Edwin Sun2, David
Starobinski2, Ari Trachtenberg2, Mayank Varia3, Manan Monga4, Ran Canetti4, Anand
Devaiah5, Gerald V Denis5

In the current COVID-19 pandemic, various Automated Exposure Notification (AEN) systems have been proposed to help
quickly identify potential contacts of infected individuals. All these systems try to leverage the current understanding of
the following factors: transmission risk, technology to address risk modeling, system policies and privacy considerations.
While AEN holds promise for mitigating the spread of COVID-19, using short-range communication channels (Bluetooth)
in smartphones to detect close individual contacts may be inaccurate for modeling and informing transmission risk. This
work finds that the current close contact definitions may be inadequate to reduce viral spread using AEN technology.
Consequently, relying on distance measurements from Bluetooth Low-Energy may not be optimal for determining risks
of exposure and protecting privacy. This paper’s literature analysis suggests that AEN may perform better by using
broadly accessible technologies to sense the respiratory activity, mask status, or environment of participants. Moreover,
the paper remains cognizant that smartphone sensors can leak private information and thus recommends additional
objectives for maintaining user privacy without compromising utility for population health. This literature review and analysis
will simultaneously interest (i) health professionals who desire a fundamental understanding of the design and utility of
AEN systems and (ii) technologists interested in understanding their epidemiological basis in the light of recent research.
Ultimately, the two disparate communities need to understand each other to assess the value of AEN systems in mitigating
viral spread, whether for the COVID-19 pandemic or for future ones.

INTRODUCTION
As COVID-19 cases surged across the world, health author-
ities implemented contact tracing systems to understand
how the virus spread between humans and how to miti-
gate its spread. Traditional methods use infected individu-
als’ information to identify at-risk contacts and inform local
health departments that implement exposure and quaran-
tining protocols with health monitoring. To augment this
process, electronic methods of contact tracing were devel-
oped, but researchers quickly realized their potential for leak-
ing privacy-sensitive metadata (Minami and Borisov, 2010;
Scheck, 2010; Tiwari et al., 2019; Valentino-Devries et al.,
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2018). This risk of private information being leaked also
discourages participation in electronic contact tracing (Ries,
2020). As a result, several groups proposed privacy-aware
Automated Exposure Notification (AEN) systems based on
anonymous Bluetooth Low-Energy (BLE) short-range com-
munications (Canetti et al., 2020; Chan et al., 2020; Rivest
et al., 2020; Trieu et al., 2020; Troncoso et al., 2020). Google
and Apple then collaborated to create the Google/Apple
Exposure Notification system (GAEN), which was publicly
released in mid-May 2020 (Google, 2020).

AEN systems typically utilize the reception of wireless
Bluetooth signals to assess one’s physical proximity within
the range of presumed viral transmission (e.g., up to 2 m
apart for at least 15 minutes (CDC, 2020)). In a common
implementation, AEN-enabled phones broadcast random
numbers (called tokens) and receive similar tokens from
nearby broadcasters. Users diagnosedwith COVID-19 direct
their phones to anonymously upload recently transmitted
tokens to a public token registry, which other users regularly
check to determine whether they may or may not have been
infected. One of the key assumptions underlying modern
AEN systems is that the proximity and duration of contacts
are primary determinants of viral transmission.

This study investigates the basis for this assumption,
starting with a reverse citation search from contemporary
scientific articles related to viral transmission and AEN.
Of approximately 120 articles found, articles with either
low relevance (based on primary subject matter) or low
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impact (based on citation count and source reputation) were
excluded. Out of necessity, due to space constraints, our
summaries in this study are brief, but the reader is invited
to delve further into the cited works to better understand
the claims presented. One overarching observation from
the reverse citation search is that the biological and
epidemiological foundations of current definitions for “close
contacts” show that a broader approach may be needed
to improve automated exposure systems. For example,
many recent studies have shown that individuals can be
infected by respiratory droplets containing viral material
traveling great distances while suspended in air, meaning
that proximity may be a poor metric on its own for assessing
transmission risk (Bazant and Bush, 2021). As a result,
the significant efforts undertaken in modern AENs to extract
reliable distance information from Bluetooth data may have
been misguided (Leith and Farrell, 2020b). This article
concludes with recommendations for improving future AEN
systems from both technological and epidemiological bases.

AEN is a promising and novel approach for effective
and privacy-protecting mitigation of viral spread. To be
successful, however, the technologists who develop the AEN
system and the scientists who research viral transmission
may need to understand the fundamental limitations of their
disparate knowledge bases more deeply.

Current Contact Definitions
The current definitions of a close contact vary throughout the
world. The United States Center for Disease Control (CDC)
defines a close contact (as of August 11th, 2022) as:

“Someone who was less than 6 feet away from an
infected person (laboratory-confirmed or a clinical diagnosis)
for a cumulative total of 15 minutes or more over a 24-hour
period” (CDC, 2020).

On the other hand, theWorld Health Organization (WHO)
defines a close contact as:

“Anyone who had direct contact or was within 1 metre
for at least 15 minutes with a person infected with the virus
that causes COVID-19, even if the person with the confirmed
infection did not have symptoms” (WHO, 2020).

The European Centre for Disease Prevention and
Control (ECDC) defines a contact most like the CDC as:

“[anyone] having had face-to-face contact with a COVID-
19 case within 2 meters and > 15 minutes,” (ECDC, 2020).

However, the ECDC also includes other criteria to define
a contact, such as having direct physical contact with an
infected person.

All these close contact definitions appear to be based
on early observational studies completed in the 1930s and
40s. For example, a study by Wells et al. in 1934 observed
that large, 0-1 mm diameter, emitted respiratory droplets
landed, on average, within 3-6 feet of their source. A different
study in 1941 found that 0-1mm diameter droplets traveled

on average 2-3 feet from their source (Turner et al., 1941).
Both papers indicated that smaller droplets expelled from
the mouth and nose evaporated into “droplet nuclei,” which
are dry, possibly pathogen-carrying respiratory particles that
have the ability to travel 6 feet by air currents.

The CDC seems to have added the cumulative 15
minutes over 24 hours exposure rule after an outbreak
investigation at a prison in Vermont (Pringle et al., 2020).
Before this outbreak, a correctional officer spent one minute
each with six incarcerated individuals while separated 6
feet apart and wearing full protective gear. However, the
correctional officer developed COVID-19, and the CDC
confirmed the guard had not interacted with anyone infected
in the 14 days before he became sick. This CDC guideline
suggests that viral transmission risk may not necessarily
depend on exposure at one instance of 15 minutes but could
be additive through shorter exposures over a 24-hour period.

MODERN ANALYSIS OF RESPIRATORY DROPLET
SPREAD
Although early studies provided support for the current dis-
tancing guidelines, they assumed a simple dichotomy of
droplet size: small or large. In reality, there is a wide spec-
trum of droplet sizes up to 1mm that travel different distances
based on their size and external conditions (Bowen, 2010).

Distance
Using high-speed imaging technologies, researchers visu-
alized expelled droplets and found that larger droplets fell
within 1-2 meter (m) diameters, whereas smaller ≤ 50µm
diameter droplets evaporated much quicker yet stayed sus-
pended in the air within 6-8m (Bourouiba et al., 2014). Using
a model simulation, one group found that larger droplets ≥
50µm, from sneezing, traveled more than 6m (Xie et al.,
2007). Another analysis found that ≤ 30µm saliva droplets
are weakly affected by gravity and can travel more than
2m (Zhu et al., 2006). As many have demonstrated, droplets
can travel well beyond 2m.

Infectivity
A central question about which droplets can carry

infectious virus particles remains. One experiment collected
aerosol samples from six COVID-19 patients and found
viable (capable of replicating) SARS-CoV-2 RNA in aerosols
≤ 5µm (Santarpia et al., 2020). However, this study did
not explore how long these aerosols can remain infectious.
Through investigating the duration of viability, one study
found viable SARS-CoV-2 RNA in aerosols which had
remained in the air for 3 hours (Van Doremalen et al., 2020).
Researchers further wanted to examine the viability of SARS-
CoV-2 compared to other viruses. Comparing the stability
of SARS-CoV-2 to SARS-CoV and MERS-CoV, scientists
discovered that SARS-CoV-2 remained viable for a longer
time period, with some lasting up to 16 hours (Fears et
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al., 2020). Through investigating viral aerosol viability with
different respiratory actions, one study compared the number
of viable influenza particles from coughing and breathing
in 53 influenza-infected subjects and concluded that 53%
produced viable influenza particles from coughing and 42%
from breathing (Lindsley et al., 2016). These works suggest
that viral aerosols may be capable of remaining infectious
after being expelled and for relatively long time periods.

Aerosols
While large droplets appear to primarily fall within

2m, smaller aerosols that can remain suspended for
longer may provide a primary route for viral transmission.
While attempting to explain the prevalence of aerosols,
one experiment discovered that violent exhalations are
mainly composed of a turbulent, moist gas cloud that may
allow droplets to avoid evaporation longer than isolated
droplets (Bourouiba, 2020). The research on the sizes
of respiratory droplets that travel more than 2m differs in
its findings. While one study found that most expelled
droplets had diameters ≤ 2µm (Johnson and Morawska,
2009), another study discovered a slightly larger expelled
droplet majority of 6µm (Chao et al., 2009). A different
paper determined that 1-10µm droplets were much more
prevalent than larger 100-1000µm droplets in the cough of
healthy human subjects. Moreover, these smaller droplets
were only found when subjects spoke (Somsen et al., 2020).
In contrast, while these studies focused on the respiratory
emissions of healthy people, a different study compared
exhalations of healthy versus sick individuals. Hersen et
al. analyzed the breath of 78 volunteers, 43 of whom had
respiratory illnesses and 35 of whom were healthy (2008).
The symptomatic volunteers emitted larger concentrations of
respiratory particles than the healthy volunteers, especially
around the 0.5µm aerosol size. Furthermore, another study
found that particle emission rate is positively correlated with
speech frequency and volume (Asadi et al., 2019). While the
literature debates the majority size of emitted droplets, the
research agrees that humans exhale many small aerosols.

The literature thus suggests that the majority of emitted
droplets are small aerosols that are capable of carrying
viable viruses further than 2m and remain suspended in
the air for longer periods of time. As a result, AEN
systems utilizing close-contact guidelines solely focusing on
2m distancing and time may be missing other potentially
significant pathways of viral transmission.

REAL-WORLD LIMITATIONS OF CURRENT
GUIDELINES
Real-world examples of aerosol transmission, mask use
effectiveness and the ways by which environmental factors
impact droplet spread may also inform our understanding of
defining a close contact for COVID-19.

Aerosol Transmission
As presented above, the current epidemiological literature
suggests that humans generate small aerosols that carry
infectious viruses and travel further than 2m. There are many
instances where small aerosols may have played a dominant
role in infection (Guy, 2021; Li et al., 2020; Park et al., 2020;
Shen et al., 2020). One of these instances occurred in
March 2020 when a 61-member choir practiced for 2.5 hours,
and one person was symptomatic of COVID-19 (Hamner,
2020). The choir participants were socially distanced, but
87% of the group developed COVID-19, possibly because
the symptomatic person emitted infectious aerosols that
spread throughout the room. Although there is no direct
evidence to measure whether or not aerosols caused the
choir or other outbreaks, Hamner’s article suggests credible
mechanisms of how small particles could provide a route of
viral transmission.

There has also been work done simulating the risk
due to potential virus-carrying aerosol particles. Bazant
and Bush recently showed how to calculate the cumulative
exposure time (CET) before a person reaches the risk of
contracting the virus (2021). For a well-mixed room and a
constant number of viral aerosols, this CET is proportional
to room volume, the airflow rate, and the filtration efficacy
of the masks worn. Furthermore, it is inversely related
to the infectiousness of air particles and the relative viral
transmissibility. Hence, larger rooms with better ventilation
and higher mask efficacy lead to lower aerosol contraction
risk. The choir incident investigation suggested that aerosols
may play a significant role in infection, and the research
on simulations of ambient conditions may also guide an
improved automated determination of infection risk.

Masks
Understanding mask filtration efficacy and their utility in
reducing viral transmission are needed in order to assess
the value of incorporating them within an AEN system.

a) Masks and Particle Spread
One of the most cited studies on masks involved 246
individuals with respiratory illnesses who were randomly
assigned to either wear a mask or not for 30 minutes.
For unmasked participants, 26-30% of emitted droplets (>
5µm) and 35-56% of aerosols (≤ 5µm) contained viral
coronavirus, influenza and rhinovirus RNA. For masked
participants, no coronavirus droplets or aerosols were
found, although 4-38% of influenza and rhinovirus RNA was
found in both droplets and aerosols (Leung et al., 2020).
Similarly examining exhaled virus, another study collected
and measured influenza RNA from 37 volunteers while
masked or unmasked. They concluded that surgical masks
(i) almost blocked coarse > 5 µm particles, (ii) reduced fine
particle emission 2.8-fold and coarse particles 25-fold and
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(iii) overall decreased particle shedding by 3.4-fold compared
to no masks (Milton et al., 2013). While these two studies
focused on droplets larger or smaller than 5 µm, Papineni
and Rosenthal in 1997 specifically found that the most
ubiquitous particles exhaled from a P100 mask were 1µm,
2µm and 8µm. Lastly, exploring the efficacy of masks in
general, one analysis found that while many masks block the
forward momentum of cough droplets, air escapes from the
sides, even when wearing a tightly fitted N95 mask (Tang et
al., 2009). Overall, these studies suggest that using masks
may decrease the risk of particle spread, which may be
relevant for AEN systems depending on the size and number
of particles needed to transmit infection.

b) Inhalation
While many mask studies focus on the filtration efficiency for
exhaling particles, several works investigate mask filtration
performance for inhaling particles. In one study, N95
masks showed a filtration efficiency of 89.6%, surgical masks
33.3%, bandanas 11.3% and dust masks 6.1% (Bowen,
2010). Another study found that surgical masks may reduce
influenza virus inhalation by 1.1x to 55x, with an average of
6x, depending on the mask design (Booth et al., 2013). As
a result, face masks may filter exhalations more effectively
than inhalations, with some types of masks being more
capable than others. These studies suggest that mask-
wearing detection might be a useful consideration for AEN.

c) Real-World Evidence of Mask Use
In community settings, mask effectiveness appears to
be a function of various factors. One study compared
the efficacies of different mask types in public health
settings, randomly assigning medical or cloth masks to
1,607 healthcare workers in Hanoi, Vietnam. Infection rates
and lab-tested particle penetration were significantly higher
for cloth masks than for medical masks (Macintyre et al.,
2015). Further comparing different masks, researchers
found that N95 masks significantly lowered respiratory
infection rates among 1,441 Beijing healthcare workers,
but medical masks did not do the same (Macintyre et al.,
2011). On the other hand, one analysis found no significant
differences in efficacy between N95 and cloth masks among
2,371 healthcare workers during peak respiratory illness
season (Radonovich et al., 2019). Another paper discovered
comparable results through a meta-analysis of 1 randomized
trial and 12 full tests (Bartoszko et al., 2020). These
conclusions display mixed results for mask effectiveness
in reducing viral infection, with some finding certain masks
more advantageous for protection, while others finding no
difference in safety between mask types.

d) Mask Efficacy
Challenges in understanding the variables around commu-
nity masking and transmission are long-standing and per-

sistent (Kellogg, 1919). Bundgaard et al. (2020) randomly
assigned 4,862 people to either wear surgical masks or not
in a Danish community with moderate infection rates, some
amount of social distancing and infrequent mask usage. The
study was powered to observe a 50% infection reduction,
but they did not find a statistically significant reduction of
COVID cases for those who were masked. By analyzing
the effectiveness of physical interventions to reduce infec-
tion, other researchers also did not find a reduction in viral
transmission (Jefferson et al., 2020). Similarly, after evaluat-
ing 35 COVID-19 reports, a study found that face masks did
not significantly reduce infection risk (Coclite et al., 2020).
Contrarily, one analysis found that when masks were first
mandated on April 6th, 2020, COVID-19 cases declined by
about 75% after 20 days in comparison to a control group
with no masks (Mitze et al., 2020). Another research group
tracked COVID-19 infection rates of 9,850 healthcare work-
ers fromMarch 1st-April 30th, 2020 and found that COVID-19
cases increased from 0 to 21% with non-mandated mask-
wearing but decreased thereafter to 11.46% with masks
required (X. Wang et al., 2020). In addition, the CDC associ-
ated mask mandates showcased a small but statistically sig-
nificant decrease in daily growth rates of COVID-19 cases
and deaths within 20 days of rule implementation (Guy,
2021). These findings collectively demonstrate the impor-
tance of further research into the role of masks as part of a
successful mitigation strategy and informing risk models for
AEN systems.

Environment
Small indoor environments with poor ventilation may result
in higher COVID-19 risk. A research group found that out of
320 outbreaks in China, 318 occurred indoors (Qian et al.,
2020). Similarly, a different group analyzed 25,000 COVID-
19 cases and found that only 6% of cases were totally or
partially outdoors (Weed and Foad, 2020). Investigating
the role of ventilation with various viruses, one research
group reviewed and analyzed ten COVID-19 studies and
discovered a strong association between building ventilation
and airborne infection of SARS, tuberculosis, measles and
influenza (Li et al., 2007). Additionally, a study found that the
number of droplets halved in 30 seconds in a room with a
door and window open, while the droplet number halved in
5 minutes in a closed room (Somsen et al., 2020). These
data demonstrate that ventilation and setting can inform risk
modeling for AEN systems.

Overall, there is evidence that the current close contact
definitions are too narrow to capture SARS-CoV-2 transmis-
sion modalities fully. Therefore, by focusing on large droplet
transmissions, scientists may be neglecting potentially signif-
icant elements of transmission such as small aerosols, mask
filtration and environmental conditions. Considering these
factors may increase the efficacy of current close contact
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rules in reducing viral communication.

TECHNICAL APPROACHES
Next, this study will focus on the ability of AEN systems to
prevent COVID-19 outbreaks by reviewing the effectiveness
of these systems and their privacy concerns. Motivated
by the previous sections describing the challenges of using
distance as a measure of risk, this paper reviews two
measurements that could aid AEN systems that utilize a
more comprehensive definition for a contact.

Effectiveness
Though it is still unclear whether AEN is an effective
approach for reducing virus transmission, there is some
early analysis suggestive of efficacy. Researchers evaluated
the NHS COVID-19 app launched in England and Wales
in September 2020 and found that 16.5 million individuals
use the app regularly, which is 49% of the population with
compatible phones. The paper’s authors inferred that the
app may have helped prevent more than 224,000 infections
from October to December 2020 (Wymant et al., 2021).
In an unreviewed pre-print, one study examined the effect
of the SwissCovid COVID-19 contact-tracing app in Zurich.
They found that the app sent quarantine instructions to an
equivalent of 5% of exposed contacts that were told to
quarantine by manual contact tracing and 17% of those
people tested positive (Menges et al., 2021). More data is
needed to understand the impact of AEN, but there is some
suggestion of its efficacy in identifying viral spread.

Privacy
Public trust is important for widespread adoption and, hence,
the usefulness of AEN applications. To ensure trust,
applications must require users’ consent during installation,
provide an opt-out option from data collection and be
transparent in what information it shares. Additionally,
no identifiable information regarding a person should be
collected or divulged to any institution until that information
is obfuscated and de-identified.

Different applications worldwide have met these guide-
lines with varying levels of success. For example, China’s
application must be used by all citizens, and it also requests
considerable personal information (Klar and Lanzerath,
2020). User movement is then restricted based on color-
coded access dependent on the application’s evaluation of
threat. On the other hand, Iceland’s application, IRakning C-
19, has taken clear steps toward user privacy, requiring con-
sent, an opt-out option and automatic deactivation and data
deletion after the pandemic. Roughly 38% of eligible citizens
utilize this app, and this is a relatively high proportion of the
population compared to other countries (Hamilton, 2020).

A broader study conducted by UK researchers found
that most applications provide clear information on contact
tracing procedures and addresses concerns of users’

privacy, but some do not request user permission for data
sharing or disclose which may allow third-parties to access
their data (Sun et al., 2021). Moreover, over half utilize
at least one deprecated cryptographic algorithm, casting
doubts on their ability to guarantee minimal levels of security.
Based on the current data, user consent and personal
information protection may encourage wider adoption of
AEN.

Distance Measurement
Most modern mobile phones are equipped with Bluetooth
Low Energy (BLE), an energy-efficient short-range radio.
Bluetooth periodically sends out beacon messages across
three different radio channels, allowing other BLE-equipped
devices to capture beacon transmissions for evaluation by
the operating system. Although one may infer the distance
between two phones from the strength of these BLE signals,
there are several scenarios that could mask the relationship
between true distance and received signal strength. For
example, the transmission power of the broadcasting device
may vary across devices, as illustrated by some sample
measurements collected (Table 1). Two smartphones were
set up in an isolated environment, and the Bluetooth of both
phones was turned on. As the phones advertise their BLE
signals (tokens), the measured Received Signal Strength
Indicator (RSSI) values were read on the receiving end,
and the minimum and maximum RSSI values were reported
over a short time interval. The measurements support
that a considerable variation of RSSI is observed, even
in controlled settings, and that different devices measure
different RSSI at the same distance. Other factors impacting
RSSI include occlusive, absorptive, or reflective surfaces,
such as furniture or human bodies (since they can affect
signal propagation) (Leith and Farrell, 2020b). The angle and
polarization of the phone signal can also impact RSSI (Hatke
et al., 2020).

To test BLE accuracy, a research group measured the
signal strengths of mobile phone BLE for people in three
settings: walking outside in a city, sitting at a table and sitting
on a train. In the first situation, two individuals walking behind
each other with a 1m gap produced similar signal strength
to that of two people side by side with a 2m gap. In the
second scenario, signal strength between four people sitting
around a table decreased significantly when phones were in
their owner’s pockets and not on a table. Finally, in a train,
the signal strength decreased as people spread apart except
when moving from 3.5m to 4m. This decrease was likely due
to surface reflections (Leith and Farrell, 2020b).

A similar experiment looked at participants using the
Google/Apple Exposure Notification contact tracing app on
a European commuter train while placed less than 2m
apart for 15 minutes. Signal strength attenuation stayed
roughly constant at around 52dB from 1-2.5m apart, then
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Table 1. The Received Signal Strength Indicators (RSSI) between an iPhone 11 and a OnePlus 7 phone. RSSI is an estimated measure
of power in dBm (decibel-milliwatts) that one device receives from another. A higher value (closer to 0) indicates a stronger connection.
The parentheses in the second and third columns report the minimum and maximum RSSI that the two devices collected from each
other at the distances shown in the first column. For the iPhone 11, the RSSI received from the OnePlus 7 varied between -45 and -51 at
a distance of 1 foot, was constant at -59 at a distance of 3 feet, and was unable to transmit at a distance of 6 feet. For the OnePlus 7, the
RSSI received from the iPhone 11 at 1 foot ranged between -44 to -46, increased to a range of -36 to -46 at a distance of 3 feet and
decreased to a range of-54 to -58 at a distance of 6 feet. Thus, different devices report a range of differing RSSI even when measured at
the same distance.

Device Used

Distance (ft) iPhone 11 OnePlus 7

1 (-45, -51) (-44, -46)

3 -59 (-36,-46)

6 N/A (-54,-58)

sharply increased at 3m and then decreased to 60dB at
4m. The researchers then applied Swiss, German and
Italian detection rules to the app data. They found that
the Swiss and German parameters triggered no contact
notifications while Italian rules generated a false positive and
false negative rate of 50% each. Furthermore, when only
evaluating the impact of a human body, a handbag, or walls,
they found that signal strength significantly fluctuated when
the signal path was altered (Leith and Farrell, 2020b).

Due to the BLE signal strength variability and several
factors impacting it, one study demonstrated that ultrasonic
sound measurements could supplement BLE implementa-
tions and significantly improve the accuracy of the distance
estimates. The speed of sound is relatively constant, and
two devices can jointly calculate the distance between them
with the help of time-tagged (ultrasonic and inaudible) acous-
tic pulses. Unlike BLE, ultrasound typically does not pene-
trate walls and other large obstacles, possibly matching virus
movement restrictions for better contact estimation. How-
ever, receiving ultrasound signals typically requires access
to a smartphone’s microphone, which may also capture sen-
sitive information (e.g., speech and background noise) in the
process. The privacy risk for this technology must therefore
be offset by the potential benefit of establishing a more accu-
rate contact distance (Meklenburg et al., 2020).

Though BLE is ubiquitous in modern smartphones, there
are reliability issues with using the technology to consistently
measure distance. Future AEN systems may wish to
supplement BLE with other technologies, such as ultrasonic
sound, if distance computation is a defining feature.

Indoor – Outdoor
The potential significance of indoor versus outdoor (IO)
detection makes it a valuable consideration for AEN appli-
cations. Most IO automated detection approaches involve
Machine Learning (ML) models on a set of smartphone sen-
sor measurements. For example, learning-based IO detec-
tion on Global System for Mobile Communications (GSM)

data is 97% accurate on data comparable to the one used
to train the model (W. Wang et al., 2016). Unfortunately, the
collected data calibrates the model according to the envi-
ronmental conditions. Hence, in order to produce efficient
IO detection across many environments, users would need
GSM data that fits all possible environments. To address this
issue, a group of researchers developed a semi-supervised
online system wherein a user collects initial training data.
Two specified ML algorithms are then trained on the data
and update themselves on unlabeled data through an online
co-training method. This method achieved 91% accuracy in
environments in which it had not been trained (Radu et al.,
2014). In short, if users are willing to collect (or download)
training data, then AEN systems can reasonably rely on IO
prediction. Furthermore, if these models are trained on the
user’s device and data (which stays solely within the phone),
and no communication is made with the AEN app, then IO
detection can be privacy-preserving.

Mask Detection
Although the precise effectiveness of masks is debated,
masks have been shown to filter droplets that may be
involved in transmission. Thus, it is possible that mask
detection may help assess a user’s risk of infection and
transmission. To test the effectiveness of mask detection,
heuristic experiments were conducted on mask detection by
embedding an open-source Bluetooth-enabled Ruuvi device
inside a mask. The Ruuvi can detect whether a mask is
being worn based on changes in humidity and temperature
(in this case, rising to 90% and 30◦C, respectively when the
mask is worn). Accelerometer data can also help identify a
user’s activity, whether walking or coughing more frequently.
Others have performed similar experiments on a “smart-
mask” with humidity and temperature sensors, including
particulate matter (PM) sensors (which detect higher aerosol
concentrations, particularly 0.3-0.5µm particles) (Masna
et al., 2020). Given its Bluetooth capability, the smart
mask can be integrated into an Android application with a
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machine learning module to categorize the infection risk.
Finally, there have been efforts to utilize ubiquitous image
recognition techniques in detecting individuals that do or do
not wear masks in public spaces. Technologists developed a
highly accurate neural network-based mask detector called
RetinaFaceMask that utilizes multiple feature maps and
feature pyramid networks for object detection (Jiang et
al., 2020). Although this method is shown to be highly
accurate and efficient, it may raise privacy concerns as it
requires image or video input that may involve unconsenting
individuals.

Rollout
Ensuring the public understands the technology at their dis-
posal is crucial to effective adoption. A properly conducted
and open educational effort is essential to maximizing the
potential of AEN systems. Using trusted voices, such as
health care providers and community leaders, to educate
the public can also help drive understanding and adop-
tion. Public technology comprehension is especially impor-
tant because once users reject AEN (and, say, remove the
corresponding app), there are questions about whether they
will ever install it (or its relations) again. At the very least, a
coordinated rollout campaign will help people understand the
technology and the choices available, culminating in whether
they decide to adopt or decline the use of AEN systems.
These systems’ public health, privacy and utility implications
are important to communicate in a rollout campaign. Addi-
tionally, system activation and deactivation on phones should
be taught in these rollout campaigns. Having technical sup-
port available to those who have questions is important and
can help with any technical problems that may arise after
deployment.

DISCUSSION
AEN systems have shown promise for mitigating viral
spread. As previously discussed, in England and Wales,
some estimates suggested that AEN may have aided in
preventing over 224,000 infections in early 2020 (Wymant
et al., 2021). Moreover, AEN sent quarantine instructions to
a small percentage of exposed individuals whose potential
sickness was confirmed by manual tracing (Menges et al.,
2021). The AEN marriage of technology and epidemiology
has been designed to utilize short-range radio-frequency
communications, common to modern smartphones, as a
proxy for tracing the contacts of infectious individuals.
Crucially, they can do so while preserving the privacy of the
users. However, to be effective, their use must be based on
sound epidemiological models, most notably the definition
of what may be a possible contact exposure. Additional
policies should be built on the current understanding of viral
transmission to provide a foundation for further refinement
and implementations, thereby making AEN more viable as a

public health tool for transmission mitigation.
The current scientific literature on respiratory droplet

dissemination, mask efficiency and environmental setting
can shed new light on additional parameters for defining
a COVID-19 close-contact. The following speculative
guidelines may be useful to complement the current system
of contact-tracing apps:

1. Guidelines for proper ventilation could be useful in
reducing infection risk, as ventilation in indoor environ-
ments appears to have a significant effect on droplet and
aerosol distribution.

2. Monitoring respiratory activity may be advantageous in
determining occupants’ infection risk because different
respiratory activities, such as sneezing or coughing,
generate varying amounts of differently sized droplets.

3. Proximity to an infected individual (within 6 feet for more
than 15 minutes) may not be an effective indicator of
viral transmission, as viral aerosols and droplets may
spread quite far and even remain suspended in the
air. Moreover, though masks may block large exhaled
respiratory droplets, they do not appear to effectively
intercept smaller aerosols that may be implicated in
transmission.

4. The evidence on community mask effectiveness is
mixed: some studies found that mask-wearing reduced
the number of COVID-19 cases while others found no
significant effect. In terms of personal efficacy, masks
may efficiently filter exhalations but not inhalations. As
such, diagnosis of infection risk may need to consider
the mask status of all participants.

5. Inequitable access to technology may amplify the
disparities in health care and put vulnerable people at
greater risk. The next versions of this technology should
be accessible to the broadest possible population,
regardless of socioeconomic status or location. This
can involve different strategies, such as utilizing widely
available and cost-effective hardware platforms and
state or federal-level assistance for those needing
access to this technology.

In this study, the biological underpinnings of the close-
contact definition, which is at the heart of almost all mod-
ern exposure notification applications, were investigated.
Review of the literature points to two notable conclusions: (i)
the current distance-time definitions of close contact maywell
be insufficient to properly mitigate disease spread through
AEN systems and (ii) the focus on accurate distance mea-
surements from Bluetooth-Low Energy communication may
be consequently misguided. As a result, several additional
technologies were outlined that could be employed to provide
privacy-cognizant exposure notification mechanisms that are
more effective in mitigating both the current COVID-19 pan-
demic and future pandemics.
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