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Abstract

Distributed homology, a topological invariant, holds potential as an instrument for uncov-

ering insights into the structural characteristics of complex data. By considering both the

density and connectivity of topological spaces, it offers the potential for a more detailed

and stable understanding of the underlying structure of data sets. This is particularly

beneficial when confronting noisy, real-world data.

Despite its potential, the complexity and unstructured nature of distributed homology

pose hurdles for practical use. This thesis tackles these issues by proposing a novel

pipeline that fuses distributed homology and supervised learning techniques. The goal

is to facilitate the effective incorporation of distributed homology into a wide array of

supervised learning tasks.

Our approach is anchored on the DeepSet network, an architecture adept at managing

set inputs. Using this, we devise a comprehensive framework specifically designed to

handle inputs composed of a set of sets. Furthermore, we present a dedicated architecture

for distributed homology, designed to boost robustness to noise and overall performance.

This approach shows marked improvements over full persistent homology methods for

both synthetic and real data.

While our results may not yet rival state-of-the-art performance on real data, they

demonstrate the potential for distributed invariants to enhance the efficiency of topolog-

ical approaches. This indicates a promising avenue for future research and development,

contributing to the refinement of topological data analysis.
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Chapter 1

Introduction

1.1 Motivation

The basic assumption that motivates the field of Topological Data Analysis (TDA) is that

data has shape and that this shape matters [13]. Based on this assumption, identifying

descriptive quantities of the shape of a space can be a way to detect relevant, low-

dimensional features of potentially high-dimensional spaces. TDA provides with methods

of engineering the features of a dimensionality reduction. The relevant domain of these

features ranges from geometric ones such as angles and volumes to topological features

such as connectivity, holes, and cavities. In the analysis of a space and its structure, we

want to identify properties that can allow us to distinguish between distinct spaces, but

still remains stable to deformation, hence allowing smooth similarity measures between

these structures.

Topological invariants are properties of a space that can be expressed in terms of its

topology. This implies their invariance to continuous deformation and provides us with

the desired stability. Recently the field of topological data analysis has been heavily

focused on the computation or estimation of the full persistent homology [31] of spaces,

and the representation of this invariant through persistence diagrams. Some of the most

commonly used algorithms for these estimations are extremely computationally expensive

[16] and can be sensitive to noise and outliers. As such, estimates of the full persistent

homology may not be the most suitable invariant for all data. In [31] it was shown that

a collection of persistence diagrams from subsets of a space can be a preferable invariant

in many cases. We call this collection distributed persistence. This collection has been
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proven to contain relevant information about the shape of a space for some specific cases

[31], and in some cases even strictly more than the full persistent homology. However, in

general, it is not yet clear exactly what information it embodies.

Machine learning provides a framework for utilizing such hidden information by approx-

imating relations between a vector space and explicitly defined features of its elements.

Especially deep learning excels, compared to other approaches, at solving complex, high-

dimensional problems due to its ability to learn how to do both feature extraction and

feature engineering from its input. Because of these properties, deep learning is also par-

ticularly suited for learning tasks on unstructured data such as distributed persistence.

PersLay [14] is an established deep-learning approach for facilitating the use of machine

learning on persistence diagrams.

In combination, deep learning with PersLay, and distributed persistence may provide

both powerful, descriptive features for classification and regression tasks. Building on this

foundation, this thesis aims to develop a new approach that leverages the potential of

distributed persistence within a deep learning context. By integrating these two elements,

we hope to overcome some of the computational and noise sensitivity challenges associated

with current methods.

1.2 Objective

The primary goal of this thesis is to develop a novel pipeline that leverages the strengths

of distributed homology as a topological invariant and combines it with the power of

supervised learning techniques. This pipeline aims to address the challenges posed by

the unstructured and complex nature of distributed homology and enable its effective

utilization in practical applications. Specifically, the objective is to integrate distributed

homology into the DeepSets framework, a deep learning approach designed for handling

set inputs. By doing so, we seek to capture the intricate structure and latent information

contained within the family of sets that make up the distributed homology.

The key objectives can be summarized as follows:

• Develop a deeper understanding of distributed homology as a topological invariant

in practical applications and its potential for providing insights into the topological

characteristics of data.

2



• Establish a framework for handling set of set inputs in supervised machine learning,

with a strong theoretical backing to ensure reliable performance and applicability.

• Employ this newly constructed framework to integrate distributed homology effec-

tively into practical applications.

• Evaluate the performance and effectiveness of the proposed pipeline on various

supervised learning tasks, demonstrating its ability to reveal intricate patterns and

relationships in geometric data sets.

1.3 Thesis Outline

The outline for the rest of this thesis is as follows:

Chapter 2 - Background Theory introduces the necessary background in machine

learning, topology, and topological data analysis for this thesis.

Çhapter 3 - Related Work describes the current status of the field and prior research

on related topics.

Chapter 4 - Method presents our proposed deep learning framework for integrating

distributed topological information along with details on the implementation.

Chapter 5 - Experiment describes the specifics of how our experiments were conducted.

Results are also presented here.

Chapter 6 - Discussion reviews the results and analyzes the findings of the experiments.

Additionally, we evaluate our approach and make concluding remarks.

Chapter 7 - Future Work outlines ideas for future improvements and experiments.
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Chapter 2

Background Theory

2.1 Machine Learning and Deep Neural Networks

The field of machine learning focuses on creating algorithms and statistical models that

empower computer systems to extract meaningful insights from data. Different optimiza-

tion methods are used to learn how to perform tasks such as classification, regression, or

dimensionality reduction. The field can be broadly divided into three categories: unsu-

pervised, supervised, and reinforcement learning. In this thesis, the two former will be

of interest.

Unsupervised learning involves extracting information from data without prior knowl-

edge of what information to look for. This type of learning focuses on uncovering hidden

patterns and structures in unlabeled data. Common learning objectives include dimen-

sionality reduction, clustering, and anomaly detection. In contrast, supervised learning

aims to extract information about the relationship between observation data and a spe-

cific set of outcomes or features. This is achieved by providing labeled examples that

demonstrate the associations between the observations and their properties of interest.

The model tries to learn the underlying relationship between these two spaces.

Machine learning has numerous applications across various fields, and holds state-

of-the-art solutions for many problems including computer vision, natural language pro-

cessing, weather forecast, and healthcare. It has enabled the development of intelligent

systems that can automate decision-making processes and make predictions on complex

problems that were previously thought to require human intelligence.
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In the subsequent section, we will introduce supervised learning, with a specific em-

phasis on deep learning, discussing how these methods can be applied within topological

data analysis to address persistent challenges and provide potent tools for data analysis.

2.1.1 Supervised Learning

As mentioned, supervised learning is a method for relating observations to specific prop-

erties of those observations. More formally, the task can be formulated as finding a

mapping f : X −→ Y from an input space X (observation space) to an output space Y

with features of particular interest. For example, in image classification, we can make

observations in the space of all images (input space X in this example) and try to find a

mapping to the space {True, False} (output space Y in this example) based on whether

or not each image contains a cat or not. The underlying assumption is that such a func-

tion exists and that it defines the correspondence between elements of X and Y . We

call this function f̂ , the labeling function, and its outputs simply the ground truth.

The goal of the learning process is ideally to uncover this function. However, finding f̂

using conventional methods might prove difficult in many cases, but supervised learning

provides methods for approximating f̂ , by leveraging collected samples of pairs (x, f̂(x))

where x ∈ X and f̂(x) ∈ Y , often referred to as experience.

Supervised learning assumes that we can approximate f̂ and find a solution to our

problem by searching a space of candidate functions F , to find a function f that provides

predictions for the samples in the provided experience. Evaluation of f in this search

is based on a scalar-valued, non-negative function l, called a loss-function. Given a

labeled sample (xi, yi) where yi = f̂(xi), this function measures the error in the prediction

ŷi = f(xi) and the provided label yi. We can more formally express the problem of

supervised learning as finding the function f ∗ that minimizes the expected error over the

distribution of all pairs (x, y) ∼ D:

f ∗ = arg min
f∈F

E∼D[l(f(x), y)]. (2.1)

Ideally, our objective is to solve equation 2.1, which requires complete information

about the distribution D. However, in practice, it is rare to have access to the entirety

of the distribution D, making it difficult to obtain an exact solution. But, assuming that
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we are provided n points (xi, yi) sampled independently from D, we can empirically infer

an approximated solution to eq. 2.1 by averaging the loss over our experience.

f ∗ ≈ arg min
f∈F

1

n

n∑
i=1

l(f(xi), yi) (2.2)

It’s important to note that provided a sufficiently complex space F and a finite number

of samples, finding a function f that offers an optimal solution, that is
∑n

i=1 l(f(xi), yi) =

0 is always possible. At the same time, we are not concerned with the function’s ability

to correctly map the samples provided, seeing as their labels are already known. The real

goal is for the model to generalize its performance to new, unseen data, specifically the

rest of the space X. To evaluate this property of the candidate functions, we make an

approximation based on their performance on a separate set of samples that the model

has not yet seen. From this point on, we refer to the data used by a machine learning

algorithm for searching the function space F as the training data and the data used to

evaluate the generalized performance of the candidate function f provided by this search

as the validation data. Commonly, validation data is utilized to contrast different

model types following their training. However, this added selection stage can introduce

bias towards the specific data present in the validation set. To mitigate this, it is common

to employ a third set of samples to provide an unbiased approximation of the model’s

generalized performance. This independent data subset is referred to as the test data.

When a model yields significantly better performance on the training data than the test

data, in other words, the generalized performance is much worse than the performance

during training, we say that our model is overfitting. When both the performance and

the generalized performance of the model is bad, we say the model is underfitting. Note

that there are no exact bounds for when a model is over- or underfitting, and they both

are subjective and very situational terms.

2.1.2 Deep Learning and Gradient Decent

Many machine learning algorithms use iterative optimization with the loss function as

the objective function to search the space F for the function f ∗ described in eq 2.2. The

efficiency of this process is a crucial part of machine learning, and by making appropriate

assumptions about our search space, we can potentially improve how effectively we ma-

neuver through it. In this section, I will introduce deep learning and the most commonly

used optimization algorithm called gradient descent.
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Deep learning (DL) use neural networks to define the space F . The foundational

concept of neural networks draws inspiration from neurobiology [20]. They consist of

interconnected components referred to as nodes or neurons, mirroring the structure of

the brain [20]. This intricate structure allows for the construction of complex functions

through the composition of numerous simple signals. In the human brain, a signal is

received in a sensory organ and propagates electrical impulses through the brain. This is

analogous to the propagation of input signals in a neural network, however, the impulses

are replaced by compositions of linear transformations and non-linearities. The most

common type of networks are feed-forward, also called fully connected networks, in which

the network structure can be represented as a directed, acyclic graph (DAG). Typically

the network consists of layers of nodes, where each node in a layer is connected to all the

nodes of the next layer, as seen in figure 2.1. The first and the last layer is commonly

referred to as the input- and output layers. Every intermediate layer is called a hidden

layer.

x1

x2

x3

h1

h2

h3

h4

y1

y2

Input layer
Hidden layer

Output layer

Figure 2.1: Neural Network with one hidden layer.

In order to understand how information flows from the input layer to the outputs/pre-

dictions let’s look at how a single neuron operates.

Let’s consider a neural network with P layers, denoted as the input layer (layer 0),

hidden layers (layers 1 to P -1), and the output layer (layer P ). The output of a neuron

in layer p is computed using a non-linear function, called an activation function, applied

to a linear combination of the outputs from the previous layer plus a scalar value called

the bias. Mathematically, for a neuron j in layer p, we can express its output as:

a
(p)
j = σ

n(p−1)∑
k=1

w
(p)
jk a

(p−1)
k + b

(p)
j



7



where:

• a
(p)
j is the output of neuron j in layer p.

• σ is the activation function applied element-wise.

• w
(p)
jk is the weight associated with the connection between neuron k in layer (p− 1)

and neuron j in layer p.

• a
(p−1)
k is the output of neuron k in layer (p− 1).

• b
(p)
j is the bias term associated with neuron j in layer p.

• n(p−1) is the number of neurons in layer (p− 1).

The activation function σ introduces non-linearity into the neural network, enabling it

to learn complex, non-linear relationships between inputs and outputs. Common choices

for activation functions include the sigmoid function, tanh function, and rectified linear

unit (ReLU) function. The weights w
(l)
jk and biases b

(l)
j are parameters of the neural

network that need to be learned from the training data. The learning process involves

adjusting these parameters to minimize a loss function and find the optimal solution f ∗

in F .

The space F defined by a neural network is the set of all functions that can be

expressed by the network given appropriate values for all trainable parameters. By re-

stricting the networks to use only differentiable non-linearities (or almost everywhere

differentiable functions like ReLU), we restrict our function space F to differentiable

functions, as can be easily seen from the chain rule. This allows the optimization task

to be performed using gradient-based optimization algorithms, such as gradient descent.

Before we dive into the details of gradient descent, we should note that, when F is given

by a neural network, all the functions f ∈ F can be expressed as the network function

N of parameters defined by the vector θ̂, that is F = {N(θ̂) | θ̂ ∈ H ∈ Rd} where d is

the number of parameters in the network and H is some predefined space. We refer to

the function given by N(θ̂) for some θ̂ as fθ̂. Rewriting eq. 2.2, in terms of this new

formulation, gives us the equation:

θ̂∗ ≈ arg min
Rd

1

n

n∑
i=1

l(fθ̂(xi), yi) (2.3)

Gradient-based optimization means that the gradient ∇[ 1
n

∑n
i=1 l(fθ̂(x), y))] with re-

spect to the parameters θ̂ of the network provides information of the slope of l along all
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dimensions of θ̂. These slopes are used to evaluate the appropriate update for the next

step in the search. The rule for updating the parameters of the network at timestep t is:

θ̂t+1 = θ̂t − α ∗ ∇[
1

n

n∑
i=1

l(fθ̂(xi), yi))], (2.4)

where α is a positive scalar called the learning rate. This manually chosen hyperpa-

rameter indicates the magnitude of change at each iteration. In a locally convex space,

the gradient ∇l will decrease as we approach a local minimum of l. However, even though

we can guarantee convergence to a stationary point under certain weak assumptions [28],

we can not guarantee that this is the global optimum, nor that it is even a local optimum.

2.1.3 Error Decomposition

Recall from eq. 2.1 that when solving problems, we would like to find a function that min-

imizes the expected loss over the entire distribution D of possible samples. As described

in the previous sections, supervised learning provides a framework for approximating such

a solution. In order to make the problem more manageable, we had to make some as-

sumptions to simplify its complexity. Before diving into machine learning, it’s crucial to

realize that this step is essential. Without knowledge about the problem and its potential

solutions, there is no definitive approach that can be considered better than any other in

general. This fact is rooted in the no free lunch theorem. The no-free-lunch theorem

states that if any optimization algorithm is averaged over all possible objective functions,

its performance will be the same as a random or blind search. Mathematically this can

be expressed in the following way:

∑
f∈F

P (f) · Lalg(f) =
∑
f∈F

P (f) · Lrand(f) (2.5)

where F is the set of all possible objective functions, P (f) is the probability distribu-

tion over the objective functions, Lalg(f) is the expected performance of the optimization

algorithm on function f , and Lrand(f) is the expected performance of random search

on function f . The theorem implies that there is no universally superior optimization

algorithm and that the effectiveness of an algorithm is heavily dependent on the specific

problem it is applied to. So when handling a problem, any feasible approach will have to
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introduce constraints on the scope of the optimization and, by extension, introduce some

bias toward the underlying assumption on which the algorithm is based. This bias may

increase the error in our final model compared to the optimal one.

Though constraining the problem is a necessary step, balancing between a concen-

trated and an exploring search is key, and a well-known problem in machine learning

often referred to as the bias-variance trade-off [17]. In order to solve this problem, it

is important to understand the ways that different constraints introduce errors. One

way of summarizing this is by decomposing the error into three main parts based on the

introduced bias. This decomposition is based on the work of Bronstein et al. [10].

Firstly, we restrict the candidate functions to be the pre-defined pool of functions

F , not guaranteeing that it contains the optimal solution. We call the error caused by

this restriction the approximation error. Secondly, we use empirical approximation

to evaluate our solution’s quality which naturally inserts some variance, which we call

the statistical error. Thirdly, we are generally unable to brute force a complete search

through every candidate function in F but instead leverage optimization techniques such

as gradient descent to search for a solution. This allows for a discrepancy between the best

solution we found and the best solution available, and we call this error the optimization

error.

The statistical error is closely related to the concept of overfitting since it measures

the difference in performance on the samples provided and its generalized performance.

The approximation error, on the other hand, measures the difference in generalized per-

formance between the best solution of our candidate space F and the optimal solution.

In general, we want to balance the trade-off between the approximation error and the

computational complexity of evaluating a large number of candidate functions. The opti-

mization error will be of lesser significance to this thesis. A primary focus, however, will

be on the balance between the approximation- and the statistical error, specifically on

how to decrease the approximation error without increasing the statistical error through

careful construction of the function space F . That is, reducing the chance of overfitting

without increasing the degree of underfitting. Figure 2.2 illustrates the intuition behind

this decomposition. The level curves indicate the performance of the models with re-

spect to the true data distribution (blue), and the subsampled experience (pink). Fδ is

our hypothesis space F . εstat and εappr refers to the statistical and approximation error

respectively.
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Figure 2.2: Illustration of the error decomposition solution space. The illustration is
taken from [10].

2.1.4 Model Complexities and Function Spaces

As mentioned, in supervised learning, we define a pool of functions F , from which we

hope to find a suitable function f that approximates the solution to a given problem.

It is necessary to ensure that the space F covers a suitable domain of candidate func-

tions for the process of searching through it to be of any value. In this section, we will

talk about the construction of F and how this construction balances our approximation

and statistical error. Before addressing this issue, remember from section 2.1.2 that we

generally only expect to find a locally optimal or close to a locally optimal solution and

typically don’t expect to find f ∗.

One approach to ensure that F contains a good solution is to increase the complexity

of the neural network. In practice, this means increasing the number of parameters in our

model, by increasing the dimensionality d of the vector θ̂ ∈ Rd, and as such increase the

cardinality, or the number of functions in F . One of the greatest strengths of deep learning

with neural networks is that we can increase the complexity of our model arbitrarily, thus

making the space F include functions that are arbitrarily similar to any function [21].

Although doing this ensures that the space contains a solution as close to optimal as we

want, finding it becomes an increasingly complex problem, and will often increase the

optimization error. In addition, increasing the complexity allows our model function to

adapt to increasingly small data tendencies, which in practice often leads to overfitting,

thus increasing our statistical error. Given the assured existence of a good solution in F ,
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the problem can be tackled from a new viewpoint. That is, finding ways to restrict F

without removing potentially great solutions.

In general, there are two ways of introducing such constraints. One is by the removal

of functions from F . Another is by introducing a measure of preference to the functions

of F . This is often called regularization. Regularizing allows us to prioritize searching

certain functions or types of functions. In theory, how we choose what functions to

prioritize could be done in any way that encodes some preliminary information we might

possess about the problem. However, it is common that this regularization bases its

preferences on the principle presented in Occam´s Razor. Occam’s Razor is a guiding

principle in machine learning that encourages the preference for simpler models over

complex ones [9]. That is, by increasing the preference for less complex functions. In

practice, regularization is often introduced as a scalar-valued function R(θ̂), which we

add to our loss function, and as such, seek to minimize. Adding this to function to eq.

2.4 we get:

θ̂∗ ≈ arg min
θ̂∈Rd

R(θ̂) +
1

n

n∑
i=1

l(fθ̂(xi), yi). (2.6)

L1-Regularization, often called Lasso regularization, is a commonly used regular-

ization term. It penalizes high absolute values for the parameters in a neural network.

For a network fθ̂ with parameters θ̂, the L1 regularization term RL1(θ̂) is introduced as

follows:

RL1(θ̂) = λ ∗
∑
θ∈θ̂

|θ|. (2.7)

The λ -parameter controls the strength of the regularization. A higher value of lambda

will result in stronger regularization, pushing more weights toward zero and promoting

sparsity in the model.

The second option is the removal of functions from F , which is usually a more complex

problem than changing their priority. Firstly because it is typically done through the

alteration of the neural network, and due to the complexity of this structure, this often

requires deep understanding and experience. Secondly, because the removal is a more

definitive action than decreasing their preference, it might have a more significant impact

on our search. However, some of the greatest successes in machine learning have been
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made possible by constructing new network structures that allow us to decrease the size

of the function space F without removing relevant functions [23]. An important concept

that enables these types of constraints is the concept of symmetries in the data and how

to exploit them.

2.1.5 Symmetries

Symmetries is a crucial concept in machine learning, without which supervised learning

in high dimensions would be impossible [24]. It can be used as a tool to reduce problems

of high complexity, and in fact, knowing all symmetries of the data would make learning

the label function trivial. We will revisit this statement, but first we establish a formal

definition of symmetry.

Definition 1 A symmetry of an object is a transformation of that object that leaves it

unchanged.

As an example, let’s say our object x is an image of a butterfly in the space X of all

images of butterflies and define a transformation g : X −→ X that flips the image along

its vertical axis.

Figure 2.3: Image of a butterfly with its symmetric axis. Illustration taken from [1]

We can see that the input is unchanged under the transformation of g. This implies

that g is a symmetry of x, and assuming this holds for all the images in X, we can

13



generalize this by saying that g is a symmetry of X. Several types of symmetries are of

interest when doing machine learning. In particular, we are interested in those symmetries

that leave the input unchanged with respect to our label function. Formally this is a

transformation g of our input space X such that:

f̂(g(x)) = f̂(x), (2.8)

for all x ∈ X. Revisiting the previous statement that knowing all symmetries would

make any classification problem trivial becomes obvious now. Knowing all symmetries

would provide us with transformations between all elements within a given class. Thus,

we would only need to provide one labeled sample for each class to solve the problem

completely. However, this is rarely the case. The more typical concern is to find the

optimal use of information obtained from a given set of symmetric transformations.

Provided some data X with a symmetric transformation g, we know that the label

function f̂ is also invariant to g; thus, it is obvious that our solution f should have

the same property. Including this information in our search for f should increase its

performance, or at the very least, not decrease it since we can guarantee some similarities

between f and f̂ . Explicitly we can guarantee that if f correctly predicts the label of

some xk ∈ X then f will correctly label all of {x |x ∼ xk, x and xk ∈ X}, the equivalence

class of xk. Here ∼ is the equivalence relation given by the transformation g.

In general, there are two ways we can enforce this property on f . The first option is

called data augmentation. This is a pre-processing step of the data where we use the

symmetric transformations of our data to increase the amount of experience available by

including all or some of the transformed, equivalent samples provided by these transfor-

mations. In this way, the model should be able to learn these invariances itself. This

is, however, not necessarily the most efficient approach. Firstly, this does not in general

guarantee complete invariance, and secondly, the computational expense is increased pro-

portionally to the number of symmetric transformations. We can think of this as a way

of decreasing the statistical error by increasing the amount of experience available.

The second approach relates to section 2.1.4 and is about restricting F to contain only

functions that share the invariances of L. This approach can potentially decrease both

the optimization- and the statistical error without increasing the approximation error.

For deep learning with neural networks, F is defined through the architecture of

the network, so to make this restriction, we need to design networks that enforce the
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desired properties. Maybe the most established and successful of such approaches are

the convolutional neural networks (CNN) introduced in LeCun et al. [23] for image

processing and classification that exploits the invariance to translation in images [24].

The primary architectural component in a CNN that harnesses translation symmetry

is the convolutional layer. In this layer, a set of learnable filters (also known as con-

volutional kernels) slide or convolve across the input image. Each filter captures local

patterns or features in the image by performing a dot product between its weights and a

corresponding spatially local region of the input. By exploiting the symmetry of trans-

lation through shared filter weights, the CNN can effectively learn local features that

are agnostic to their specific spatial positions in the image. This allows the network to

generalize well across different locations and achieve translation invariance. In 2.4

Convolution
Convolution

Figure 2.4: Illustration of translation invariance in the convolution operation of CNN.

2.2 Topology and Shapes

Topology is a field in mathematics that studies the properties of geometric objects that

remain unchanged under continuous deformations, such as stretching and twisting. These

are properties that pertain to the structure and connectivity of space on a global scale.

The significance of studying topology lies in the realization that many geometric problems

are primarily concerned with the fundamental structural aspects of a space, rather than its

exact shape. A good example of such problems appear in fields where problems typically

can be represented as graphs such as in network analysis and neuroscience, since graphs

are inherently topological objects [19].

In recent years the popularity of topologically focused algorithms such as t-SNE [12],

UMAP [25] and Mapper [29] has grown [31], implying the relevancy of evaluating the
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structural features in real-world data. A significant concern for the field of TDA has

been finding appropriate topological invariants to summarize the relevant topological in-

formation of a space. Until quite recently, most approaches were based on deterministic

algorithms. These kinds of algorithms do not typically consider the respective proba-

bilities associated with different regions in the feature space of the data, which is often

relevant in realistic, noisy data. Hence they may not always be the most reasonable ap-

proach, as they can generally struggle with sensitivity to outliers. Stability with respect

to different kinds of noise is by and large a desired property in machine learning, and re-

cently new approaches in TDA that try to provide this have been proposed. This will be

considered in section 2.3.4. However, in order to analyze and evaluate different methods

throughout this thesis, I will first introduce some necessary background in topology and

topological data analysis.

Definition 2 For an arbitrary set X and a set of subsets τ of X, τ is a topology on X

if the following holds.

1. ∅ and X is in τ .

2. The union of the elements of any subcollection of τ is in τ .

3. The intersection of the elements of any finite subcollection of τ is in τ .

The topology of a space is a definition of its open sets and establishes the fundamental

structure that underlies the properties of the space. Typically these open sets, as defined

by the topology, are thought of as neighborhoods of elements in a set.

Definition 3 If X is a set, a basis for a topology on X is a collection B of subsets of X

such that:

1. For each x ∈ X, there is at least one element of B that contains x.

2. If x belongs to the intersection of two basis elements B1 and B2, then there is a

basis element B3 containing x such that B3 ⊂ B1 ∩B2.
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By utilizing the basis to define the open sets, we gain the advantage of establishing

the topology of a space without the need to explicitly enumerate all open sets. This

approach grants us flexibility in representing the space and enables efficient analysis and

characterization of its topological properties.

The construction of a topology from a basis is done by taking the unions of sets within

the basis and considering them as open sets. These unions, along with the empty set,

serve as the foundation for the topology. To ensure that the resulting structure meets

the requirements of a topological space, specifically requirement number three in the

definition, we also include all possible intersections of these unions.

For machine learning purposes, it is reasonable to limit the scope of relevant spaces

to ones where we have a way of assessing the similarity of elements. We will focus on

metric spaces, which are spaces that have a metric defined on them.

Definition 4 A metric on a set X is a function d: X × X → R having the following

properties:

1. Identity. d(x,x) = 0, for all x ∈ X

2. Non-Negativity. d(x,y) > 0, whenever x 6= y for all x, y ∈ X.

3. Symmetry. d(x,y) = d(y,x), for all x, y ∈ X

4. The triangle inequality. d(x, z) + d(z, y) ≥ d(x,y), for all x, y, z ∈ X

Provided a metric, we can construct the metric topology on a space. The metric

topology asserts the neighborhood analogy as it uses the proximity of elements to define

the open sets of X. This will be the only type of topology considered in this thesis.

Definition 5 If d is a metric on a space X. Let Bd(x, ε) = {y | d(x, y) < ε}, called the

ε-ball centered at x. Then the collection of all ε-balls for x ∈ X and ε > 0 is a basis for

the metric topology induced by d.

A topological invariant of a space is a property that can be expressed in terms of its

topology. This implies that as long as the topology is preserved, any deformation and

transformation on the space is ignored. It follows that for any space X, other distinct

spaces exist that share all topological properties of X(all continuous deformations of X,

for example). We say that these spaces are homeomorphic to X, which means that

from a topological perspective, they are equivalent, implying a one-to-one mapping exists

between their open sets.
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2.2.1 Homology

A common goal of analyzing the structure or shape of a space is often to be able to dis-

tinguish between similar spaces and those that are not. When making such a distinction

based on topology, direct comparison of their open sets is often complicated and not done

in practice. Instead, we make comparisons based on properties derived from the topology,

the most common of which being the homology. In this section, I will briefly introduce

this concept and give a general overview of its purpose. In section 2.2.2, we will look at

this concept in more detail in an applied setting.

Homology is a fundamental tool in algebraic topology that allows us to assign alge-

braic objects, called homology groups, to topological spaces. These groups quantitatively

capture some of the topological structure of a space. Specifically, by associating homol-

ogy groups to a space, we can detect and quantify the presence of holes, tunnels, voids,

or other topological features. These groups provide information about the number and

dimensions of these features in a given space. Spaces with different homology groups are

topologically distinct and cannot be transformed into one another through continuous

deformations. We say that these spaces are not homeomorphic.

We will now look more formally at the concept of homology, particularly for the cases

commonly encountered in machine learning.

2.2.2 Persistent Homology

Many computer science tasks handle large, high dimensional data sets which often con-

tain relevant topological properties [31], and the field of research called computational

topology overlaps the field of topology and computer science. A particular property

that is important to note when transitioning from the theoretical field of topology to

machine learning is that these data sets are commonly assumed to be sets sampled from

an underlying distribution or a geometric object like a manifold, and it usually is the

properties of this underlying structure that are of interest. Figure 2.5 shows a set of

point clouds sampled from a geometric object with various kinds of noise.
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Figure 2.5: Point cloud sampled for the underlying shape of a chair, with various kinds
of noise. Illustration taken from [2]

As mentioned in section 2.2.1, we seek to compute the homology groups of a space

in order to compare and distinguish between different spaces. We assume, as mentioned

above, that capturing properties of the underlying distribution is the main objective.

Computing the homology of this space might not be possible if the full information about

the topology of the space is not available, and as such, we resort to computing the

persistent homology instead. The concept behind persistent homology is to track how

the homology groups of a space change over a range of different parameter values. This

allows one to identify a space’s most persistent or stable topological features across a

range of scales or parameters and to distinguish them from transient or spurious features.

These parametric values define how we assume the underlying distribution around our

samples to be shaped. For this thesis, we will only consider radius-based approaches

that use an increasing radius around points to define the expansion of the space. We

will now look more formally into the computation and theory of persistent homology

and start with its most fundamental building block. A simplex is the generalization of

triangles and tetrahedrons to arbitrary dimensions. For instance, a 0-simplex is a point;

a 1-simplex is a line; a 2-simplex is a triangle, and so on. A k-simplex is defined by a set

of k+1 endpoints. For a k-simplex σ we use the notation σ = (v0, ..., vk), where (v0, ..., vk)

is the set of endpoints.

0-simplex 1-simplex 2-simplex
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Simplices are fundamental building blocks in algebraic topology and are used to con-

struct more complex topological spaces when combined in larger families. When these

families are closed under taking subsets, we call them complexes or simplicial com-

plexes.

Definition 6 A simplicial complex K is a family of simplexes closed under taking

subsets. That is if σ ∈ K and τ ⊆ σ, then also τ ∈ K.

Simplicial complexes allow us to represent complex topological structures using simple

building blocks and create a rigorous mathematical foundation for topological analysis.

From these complexes, we can extract chains of elements from different dimensions called

k-chains.

Definition 7 Let K be a simplicial complex. A k-chain is the finite formal sum

N∑
i=1

ciσi

where each ci ∈ {0, 1} and each σi is a k-simplex in K.

Intuitively, k-chains represent a collection of k-simplices and are used to evaluate

larger k-dimensional regions of a simplicial complex.

Definition 8 Let K be a simplicial complex and σ a k-simplex σ = (v0, ..., vk). Then the

boundary of σ is defined as

δσ =
k∑
i=0

(v0, v1, ..., vi−1, vi+1, ..., vk) (2.9)

Similarly, the boundary of a k-chain C is

δC =
N∑
j=0

ciδσi (2.10)

Definition 9 A cycle is a k-chain with an empty boundary, that is, δσ = 0 for some

k-chain σ.
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Details on the construction of simplicial complexes will be discussed later in this

section. We assume that a pre-constructed simplicial complex has been provided to us

for now. As mentioned, we wish to analyse this structure using its homology groups,

which we now have defined as a sufficient background for expressing more formally.

Definition 10 The kth homology group of a simplicial complex is the quotient group

Hk = Zk/Bk,

where Zk are all the k-cycles and Bk are all the k-boundaries.

Intuitively, any k-cycle that is not a boundary of some (k+1)-chain in the complex is

considered a non-zero element of the homology group. Given some space X, the dimen-

sion of Hk(X) is called the kth Betti number, which is a topological invariant of X. For

example, the 0-th homology group H0(X) is isomorphic to the group generated by the

connected components of X, because a 0-cycle is a formal linear combination of points.

The basic idea of homology is to study the properties of continuous maps between topo-

logical spaces in terms of how they transform cycles and boundaries. By looking at how

cycles and boundaries are mapped under a continuous function, we can define algebraic

maps between homology groups that measure how the topology of the space changes.

Roughly speaking, we can say that the homology of a space counts the number of holes a

space has in each dimension. A cycle can be thought of as a chain of some dimension that

forms a closed loop, and whenever this cycle encapsulates something that is not present

in the space, or more precisely, is not a boundary, there is a hole.

Definition 11 A filtered simplicial complex is a sequence of simplicial complexes

K0 ⊆ K1 ⊆ K2... ⊆ KN

Filtered simplicial complexes are a collection of simplicial complexes created by se-

quentially adding new simplices and all their sub-simplices to an existing complex. The

persistent homology groups of the space are the homology groups for each of the

simplicial complexes. This sequence captures the structural change in the space as we

gradually change the value of different parameters.
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Figure 2.6: A filtered simplicial complex constructed from a radius-based approach. Il-
lustration taken from [22].

2.2.3 Alpha Complex

For this thesis, we will focus on radius-based approaches, which use a growing radius

around each point as the parameter, which we vary in order to construct several simplicial

complexes. Specifically, we will consider the alpha complex [27].

The alpha complex is constructed from the Delaunay triangulation, and is a subcom-

plex of the Delaunay-complex, meaning that for any radius δ the alpha-complex α(S)

for some point set S is contained in the Delaunay complex. The Delaunay complex is in

turn strongly related to the Voronoi cells. For a finite set of points, S ⊂ X, where X

is the set of points in some a metric space (X, d), the Voronoi-cells is a segmentation of

X into a finite set of regions, such that each region contains exactly one element s from

S and all points in X where the distance to s is smaller than to any other point of S.

Mathematically the Voronoi region Rk associated to a point sk in (X, d) can be expressed

as:

Rk = {x ∈ X | d(x, sk) ≤ d(x, sj) for all j 6= k} (2.11)

The Delaunay-complex consists of the points S and a k-simplex is included whenever a

set of k+1 points have adjacent Voronoi cells. See figure:
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(a) Pointset S (b) Voronoi Cells (c) Delaunay Graph over
Voronoi Cells

Figure 2.7: Pointset with Voronoi Cells and the corresponding Delaunay Graph.

The alpha-complex uses, as mentioned, an increasing radius δ to create balls around

each point in S. The parameter δ can grow arbitrarily, however, the balls around a point

are constrained by the Voronoi cells. Whenever the intersection of a set of k+1 balls is

non-empty a k-simplex is added. This is typically done for all dimensions up to some pre-

determined integer value but could be computed for infinite dimensions. Some natural

limitations, however, exist so that this never has to be done. Firstly given some dataset

D of size m where the elements are from Rd, we know that there are no subsets larger

than m. This implies that the homology groups Hn for n > m are trivial. Secondly, when

working with data of dimension d, we know there are no holes of dimensions n > d. So

we would need to compute the homology groups at max up to a dimension of min{m, d}.

Figure 2.8: Alpha-complex at a given radius. The balls around each point are constrained
by its Voronoi cell. Illustration retrieved from Atienza et al. [8]
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2.2.4 Persistence Diagrams

As the filtration parameter is changed in our filtered simplicial complex, topological

features appear and disappear. These events are encoded in the changing Betti numbers

we extract by computing the homology. By recording the appearance and disappearance

of these features by their filter values, we can represent the lifetime of different topological

features by these two numbers, often called the birth and death values.

The complete information about the change in topological features of the space can

be displayed in what is known as a persistence diagram. This diagram consists of a set

of points in the plane, each representing the lifetime of a topological feature. This forms

a set-like structure where each point corresponds to a particular topological feature, and

the entire set collectively encodes the topology of the data.

Each point’s x-coordinate represents the birth scale, and the y-coordinate corresponds

with the death scale. The diagonal line y = x represents features that are born and die

at the same scale, while points above this line correspond to longer-lived features.

Importantly, we keep track of the dimension of each topological feature as well as

its lifetime. This is done by combining multiple diagrams, one for each dimension of

homology, effectively forming a set of persistence diagrams.

Figure 2.9: Peristence diagram for some point cloud.

Persistence diagrams serve both as a visual tool and a mathematical representation for

extracting information about the topological structure of a data set. Importantly, they
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are stable with respect to small perturbations in the input data. This stability property

ensures that minor changes in the data set do not drastically alter the persistence diagram,

making them robust to this kind of noise. However, this is not the only type of noise likely

to occur in real data sets. Furthermore, persistence diagrams enable the comparison of

different spaces, thereby facilitating the analysis and understanding of their topological

characteristics.

However, it’s worth noting that the multidimensional set structure of persistence

diagrams poses challenges when incorporating them into traditional machine learning

models. In the upcoming sections, we’ll explore strategies to tackle these challenges, such

as vectorization methods and specific deep learning architectures designed to handle such

inputs.

2.3 Sets and Vectorizations

For the entirety of this chapter, we have discussed machine learning approaches that focus

on mappings for an input space X to an output space Y , where X particularly is a vector

space. In practice, most machine learning approaches require an input of fixed dimensions

[32]. When working with inputs that form a set, we need to find a suitable, vectorized

representation. Furthermore, this vectorization should preserve the properties of the

set, the most important of which is its permutation invariance. Since a set of elements

has no natural ordering, any ordered representation of its elements is equivalent. As an

example, we can express a permutation invariant function f on a set {x1, x2, x3} as any

function satisfying:

f(x1, x2, x3) = f(x2, x3, x1) = ... = f(x3, x2, x1), (2.12)

for every permutation of {x1, x2, x3}. When working with general data structures,

preserving the inherent symmetries of the data is crucial. In the case of sets, the number

of symmetric elements has a factorial scaling with respect to the number of elements,

making it even more important here.

An additional challenge is the sensitivity to the number of elements in the set. We

do not want to place restrictions on the size of the input sets. Thus it is important that

even sets of different sizes would have vectorized representations of the same dimensions,

since two sets that are embedded in distinct vector spaces are harder to compare.
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We call vectorizations that preserve both of these properties for valid set functions.

To preserve the permutation invariance under a vectorization f , we have the following

result from Zaheer et al. [32]

Theorem 2.3.1 A function f(X) operating on a set X having elements xi from a count-

able universe is a valid set function, i.e., invariant to the permutation of instances in X,

iff it can be decomposed in the form ρ(
∑n

i=0 φ(xi)), for suitable transformations φ and ρ.

which states that any permutation invariant function on a set can be described as

a transformation ρ of the sum over each set element after individually applying the

transformation φ. We call the transformation φ the feature extractor, and ρ the

downstream transformation. In the theorem, the sum operator is used for the set

aggregation, but we can expand on this restriction with the results in Soelch et al. [30] to

show that the summation operator can be exchanged with any sum-isomorphic operator,

such as the mean or the max. In the following sections, we will examine some standard

manual methods and how to construct trainable vectorizations using neural networks.

2.3.1 Vectorizations

For general sets the most common vectorizations are simple scalar-valued aggregation

functions such as the sum-, mean- or max-functions. We will call these functions sum-

mary functions. These functions summarize a particular statistic of the set but do

typically not capture all relevant properties. However, in combination, the summary

functions can be expressive and versatile

For vectorizations of persistence diagrams, Ali et al. [7] proposes an approach that

uses a collection of these summary functions called persistence statistics. Defined as:

Definition 12 The persistence statistics of dimension k persistence diagram µ con-

sists of:

• the mean, the standard deviation, the median, the interquartile range, the full range,

the 10th, 25th, 75th and 90th percentiles of the births p, the deaths q, the midpoints
p+q
2

and the lifespans q - p for all intervals [p, q] in µk counted with multiplicity.

• the total number of points in µk.
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• the entropy of µk as defined in [7].

However, there are some additional properties that we want to preserve in persis-

tence diagrams specifically, which the persistence statistics do not. Particularly we want

invariance with respect to points along the diagonal. That is points with persistence 0.

One of the most common vectorizations used, that preserves this property is persis-

tence images. They were introduced by Adams et al. [6]. Their construction starts with

choosing a grid of pixels that covers the range of birth and death times of the points in

the persistence diagram. Each pixel represents a small interval of time, and its value is

determined by a weight function that measures the number or intensity of points in the

persistence diagram that fall within that time interval. There are several weight functions

that can be used to define a persistence image, such as the Gaussian kernel. Typically

the weight function aims to capture information about the density of points in the region

as well as their persistence.

Once the grid and weight function is chosen, the persistence image is obtained by

convolving the weight function with the persistence diagram, essentially projecting the

points onto the pixel grid and summing their weights. The resulting image represents a

smoothed and continuous version of the persistence diagram.

2.3.2 DeepSet

As seen in theorem 2.2.1, any set function can be described by two transformations, one

operating on each element of the set and one operating on the sum of the transformed

elements. This fact inspires a general framework for learning set functions called DeepSet,

presented by Zaheer et al. [32]. The feature extractor and the downstream network, ρ and

φ, are replaced with universal approximators which transfer the universality properties to

the domain of set functions [32]. Specifically, DeepSets replaces the feature extractor and

the downstream function with two independent neural networks of any kind. Although

the polling function is a fixed hyper-parameter of the model, the two transformations are

trainable and allow for learning set vectorization that is specialized for the given task

[32].

ρ(
n∑
i=0

φ(xi)) (2.13)
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This architecture provides a general baseline for designing models for handling set

structures. Because of its general structure, many applications use a design based on

DeepSet, but with specialized modifications. DeepSets offers several advantages as a vec-

torization method for sets. Primarily, the replacement of the transformations φ and ρ

with trainable neural networks allows the model to learn and adapt the set vectoriza-

tion specifically to the given task at hand. These have been shown to be effective in a

variety of applications, including point cloud classification, graph classification, and text

classification [32].

2.3.3 PersLay

PersLay is a supervised approach to vectorizing persistence diagrams introduced in

Carrière et al. [14]. It is a deep learning method that maps a persistence diagram to

a trainable feature vector using Deep Sets in a way that aims to learn a representation

of the topological information in the diagrams.

PersLay is for the most part an application of DeepSets to a concrete domain than

a new approach. Still, in the paper, some specific architectural design choices are made

to display the ability of the DeepSet approach to recreating other vectorizations, such

as persistence landscapes and persistence images. For general purposes, however, no

significant constraints on the topology of the neural network are added in the PersLay

architecture, except for a weighting mechanism. The weighting function is implemented

by including a second parallel network in the feature extractor, assigning each point in

the diagram a scalar-valued weight. This weight is multiplied by the feature vector.

ρ(
n∑
i=0

φ(xi) ∗ w(xi)) (2.14)

The advantage of PersLay over other vectorization methods is that it can capture more

complex topological features of the data, as well as noise and perturbations. It is also a

fast and scalable method, making it suitable for large datasets. But most importantly,

since this method is trainable, it can adapt its representation to the task at hand and is

able to learn what features to encode and which to ignore.
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2.3.4 Distributed Persistence

Although persistence diagrams are great tools for summarizing and comparing topological

structures, they fail to provide a few desired properties. Firstly, as mentioned, persistence

diagrams are stable with respect to small perturbations in the data. This is a great

property to have when working with such noise. However, this is not the only type

of noise likely to appear in typical real-world data. Including additional incorrect or

bad samples is arguably a more common problem, and full persistence diagrams do not

provide any stability guarantees with respect to this. We can formalize this property

slightly by conjecturing that we would like stability with respect to small changes in the

underlying probability distribution from which our samples are drawn. This includes a

notion of probability to the analysis by assigning probabilities to points or regions in the

data and would allow us to overcome the challenges related to sensitivity to outliers. This

consideration is something that the computation of full persistence diagrams is missing

when using a radius-based complex such as the alpha complex.

Distributed persistence introduced by Solomon et al. [31] is a method for studying

the topology of a space which, instead of computing the homology groups of the entire

dataset at once uses subsampling and computes the persistent homology or other topo-

logical invariants of many smaller subsets. It has been proposed to sample m subsets

from the pool of subsets of size k and compute the persistent homology of each of these,

for some m and k. Previous work has also been done on other subsampling schemes,

such as using all subsets of size at most k. However, this thesis’s primary focus will be

sampling subsets of a given size. The paper [31] provides a theoretical foundation for this

distributed persistence approach’s stability, inverse stability and its interpolation between

topological and geometric information. However, this foundation is based on the criteria

that both the topological invariant and complete information about the samples of each

subset are provided. The structure that consists of a labeled set of subsets and their

topological invariants is a way more complex structure to handle in a machine learning

setting, so the approach we will consider is the one proposed by [15] without labels.

29



Chapter 3

Related Work

Several articles have explored the topic of distributed persistence and multiple variations

have been proposed. One of the earliest works in this area was the distributed algorithm

for persistent homology proposed by Boissonnat et al. in 2011. The algorithm is based

on the idea of computing the persistent homology of local neighborhoods of the data

and then merging them together to obtain the global persistent homology. The authors

showed that their algorithm can scale to very large datasets and can be implemented

in a distributed and parallelized manner. However, their approach differs from the one

considered in this thesis as it uses local subsamples while we consider globally uniformly

sampled subsets.

In the paper, Chazal et al. a new distributed algorithm for computing persistent

homology of large datasets is proposed. The algorithm is based on the idea of randomly

sampling the subsets. It was shown that their algorithm can achieve significant speedup

and scalability compared to a serial implementation, while still producing accurate re-

sults. In their approach, they consider an aggregate of persistence landscapes computed

from a collection of n random subsamples of size m and their Vietoris-Rips-filtrations.

They also discuss the theoretical properties of their algorithm, including the stability

of the computed persistent homology with respect to perturbations of the data and the

trade-offs between communication costs and discriminating power. In Solomon et al. [31]

a similar subsampling scheme is applied, but they consider a set of labeled topological

invariants instead of aggregating the set of invariants. However, under the condition of

including labels for the subsets, they prove the stability of the approach with respect to

perturbations and show that it has a globally stable inverse. One of the main contribu-

tions made in [31] is also proof that their method interpolates between topological and

geometric information.
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In Solomon et al. [31] a case study on a simple point cloud dataset was conducted.

Here it is highlighted how full persistence computation with radius-based filtrations lacks

robustness to noise and is unable to capture information about density in space. They

also show how a distributed approach, the one proposed by Chazal et al. [15], overcomes

this problem by smoothly interpolating its computed invariants when noise is added.

This suggests that this topological invariant also as an unlabeled set contains relevant

information for distinguishing and comparing spaces even with noise. Finally, the paper

lists a number of open problems for future work in distributed persistence, two of which

are closely related to the objectives of this thesis. They mention the open question

of finding good vectorized representations of the persistence diagram constructed from

the collection of subsamples, and also what information is contained in the unlabeled

subsamples.

Vectorization of persistence diagrams has been an important topic of research for many

years in topological data analysis. In Ali et al. [7] a survey of multiple such vectorizations

is conducted and their performance for various supervised machine learning tasks is com-

pared. In this comprehensive study, it was shown that the persistence statistics proposed

by the authors performed very well and better than other commonly used approaches for

several of the well-known datasets used, including FMNIST and SHREC14. The paper

considered approaches in the context of supervised machine learning and also considers

trainable methods, but separates the vectorizations from the supervised learning process

which differs from our approach.

In 2017 Zaheer et al. [32] introduced DeepSets, a neural network architecture for

learning vectorized representations of sets. Its design ensures the criteria for a valid set

function. Later, in 2019, PersLay was introduced by Carrière et al. [14]. This neural

network architecture extends the design requirements from the DeepSet to specialize in

the transformation of persistence diagrams. The PersLay architecture enforced a method

for weighting the elements of the diagrams and continued this functionality which has

been commonly used in other vectorizations such as persistence images and landscapes.

In their paper Carrière et al. [14] demonstrated its effectiveness in shape recognition and

object classification tasks using persistence diagrams obtained from 3D shape data.

In a more recent study, Bubenik et al. [11] (2021) compared PersLay to other per-

sistence diagram vectorization methods in various applications, including image analysis

and protein classification, and showed that it outperformed some of the other methods

in certain contexts.
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Chapter 4

Method

As a topological invariant, distributed homology has shown promise in providing insights

into the topological characteristics of complex data [31]. Being a theoretical framework

that considers both the density and connectivity of topological spaces, it offers the po-

tential for a more nuanced understanding of the underlying structure of datasets. By

taking a probabilistic approach to homology computation, distributed homology has the

possibility to reveal intricate patterns and relationships that may not be readily apparent

through traditional methods, especially for realistic noisy data.

Despite its proven richness in encoding important information about data with shape,

the unstructured and complex nature of distributed homology poses challenges for its

effective utilization in practical applications.

In response to this challenge, this thesis proposes a novel pipeline that combines

the power of distributed homology with the expressiveness and flexibility of supervised

learning techniques. Specifically, we adopt the DeepSets framework, a deep learning

approach designed to handle set inputs, to capture the intricate structure of distributed

homology. By incorporating DeepSets into our pipeline, we aim to unlock the latent

information contained within distributed homology, thereby enabling seamless integration

into the domain of supervised learning tasks.

4.1 DSSN

In this section, I introduce DSSN (Deep Set of Set Network), a general framework for

inserting inputs of set, where each element of the set is itself a set (a set of sets), into a

supervised machine learning pipeline.
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In section 2.3.2, we saw that any valid set function could be decomposed into a feature

extractor, an aggregate operator, and a downstream function. By simple insertion, we can

infer the general structure of any function operating on a set of sets while still satisfying

the conditions of a valid set function. Assume you have a family of m sets X, where X

is a family of subsets of some point cloud S. Then any valid function for sets of sets can

be decomposed as:

ρ1(
m∑
i=0

ρ2(

ni∑
j=0

φ(xij))), (4.1)

where ρ1, ρ2, φ are suitable transformations. The inner summation
∑n

j=0 φ(xij) cap-

tures the processing of each individual element of the inner sets, while the outer summa-

tion
∑m

i=0 ρ2(·) combines the processed results for each set in the family. By inserting

neural networks for various transformations in this equation we get models capable of

learning appropriate functions, and we call this general architecture DSSN. Equation 4.1

gives the universal structure of any valid set of set functions.

The DSSN framework provides a flexible structure that allows for the inclusion of

various vectorization methods of persistence diagrams by insertion in place of the inner

transformation
∑n

j=0 φ(xij). For instance, techniques such as persistence images and

persistence statistics can be easily integrated into the DSSN architecture.

4.2 DDPN

We also propose a more specialized architecture, the DDPN (Deep Distributed Persis-

tence Network) for encoding distributed homology specifically. This is a DSSN that is

specifically designed for processing a family of persistence diagrams that includes a neural

network architecture inspired by PersLay [14]. It copies the idea of a parallel weighting

function in the feature extractor for the vectorization of the diagrams, however, some

modifications were found that improve performance. Firstly, we assign a scalar valued

weight to each dimension of the set embedding individually. Secondly, this weighting

is based only on the dimension of the topological feature, not on its birth, death or

persistence.

ρ1(
m∑
i=0

ρ2(

ni∑
j=0

φ(xij)� w(ẋij))) (4.2)
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where ρ1, ρ2, φ and w are replaced by 4 separate fully connected neural networks. For

clarity:

• w : {0, 1}3 → Rq1, takes only the one-hot-encoding of the dimension of each topo-

logical feature a gives a trainable weighting of each of the output dimensions for a

point.

• φ : R3 → Rq1, is the feature extractor that maps the points of the persistence

diagrams to a q1 dimensional embedding.

• ρ2 : Rq1 → Rq2 , receives the vectorized persistence diagrams embedded in q1 and

acts as the feature extractor on the set of these. The diagrams are mapped to q2

dimensions.

• ρ1 : Rq2 → Rc, takes the aggregated set representation as input. It further processes

the aggregated representation and produces the final model output.

The elements of the inner set in, xij, no longer refer to subsets of S but rather the set

of points in the persistence diagram of such a subset. Here ẋij is the one-hot-encoding of

xij and � is the element wise multiplication.

The motivation for this approach is simple. By not putting additional constraints on

any of the building blocks, the network can learn any valid set function, including the

labeling function. Including the dimension weighting w in the inner set function rather

than a more general DeepSet provides a less general network, but more specialized to

the specific tasks of processing persistence diagrams. We will discuss the functionality

of this w in chapter 6. Doing feature engineering, such as pre-computing the persistence

diagram representations using persistence images or statistics as mentioned in section

2.3.1, can greatly simplify the optimization problem and allows us to reduce the size of

our hypothesis space of potential solutions. Still, with sufficient domain coverage in the

provided experience, learnable approaches should be able to find a solution that is at

least as suitable.
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Figure 4.1: Overview of the full DDPN pipeline.

4.2.1 Implementation Details

A significant reason behind the growth of machine learning in recent years is the remark-

able increase in computation power and efficiency. This progress has been facilitated

by the emergence of specialized computing units such as GPUs, which have accelerated

the training process of machine learning systems and enabled the handling of large-scale

datasets that were previously impractical or even infeasible to process. Parallelization,

in particular, has played a pivotal role in this advancement. Unlike traditional sequential

computing, where a single processor performs tasks sequentially, parallelization allows
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multiple processors to work simultaneously, leading to significantly faster computation.

Neural networks, among other machine learning algorithms, are inherently parallelizable,

as their computations can be decomposed into smaller, independent tasks that can be ex-

ecuted concurrently. Popular frameworks like PyTorch support parallelization and GPU

computing, with critical components often implemented in high-performance program-

ming languages like C++. Leveraging these implementations is highly advantageous for

practical purposes. However, although PyTorch supports set-like inputs, it currently lacks

implementations that support parallelizing sets of varying sizes or sets of sets.

One critical aspect of PyTorch implementations is the assumption that inputs are

tensors, and computations rely on the computational graph and back-propagation. Ten-

sors require all their corresponding elements to have the same dimension. However, when

dealing with sets, each set may have a different size. This introduces a challenge with two

possible solutions: either utilizing a dynamic data structure that allows for varying-sized

inputs or ensuring that all sets have the same size by inserting or removing elements, a

process known as padding.

DDPN V.1

In the initial solution, the model was implemented without padding and utilized Python

lists as a data structure allowing variable-size elements. Each batch where represented

as a list of samples, where each sample was in itself a list of nested tensors.

This approach, however, sacrificed the benefits of PyTorchs efficient implementation

and suffered greatly in terms of both speed and efficiency. Although efforts where made to

increase performance using high performance languages like Cython and C, none yielded

satisfactory results.

DDPN V.2

A key challenge when using padding to match tensor sizes is that adding new elements

to a set through padding can potentially impact the model’s output. Ensuring that the

model remains invariant to these padded elements, while maintaining its handling of the

original elements, is generally a non-trivial problem.

However, as mentioned in 2.2.4, a desired property of any persistence diagram vec-

torization is invariance to elements along the diagonal. By incorporating this invariance
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into the architecture, we can guarantee the preservation of a symmetric property and

simultaneously resolve the padding problem.

In the second iteration of DDPN (DDPN V.2), the dynamic data structure was dis-

carded, and the architecture was modified to address the invariance property described

above. Padding was also introduced by appending all-zero vectors to the inner sets, en-

suring that the size of each inner set matches the size of the largest set in the mini-batch.

In the case of PersLay, which was specifically designed to handle persistence diagrams,

a weighting function was introduced. While the underlying reasoning for this design choice

is not explicitly mentioned in the paper, including such a weighting function and ensuring

that it assigns zero weights to zero elements solves the padding problem. In practice, the

weighting function can be implemented as a regular fully connected network with no bias

in any layers, ensuring that zero-vectors are not transformed. It is unclear whether the

inclusion of the weighting function in the PersLay paper was motivated by the same line

of reasoning.

By adopting this new approach and incorporating padding into the input tensors,

both computational speed and performance were drastically improved.

Note that this approach can be transfered to the general DSSN structure as well

without loss of its generality, trough a binary weighting function.

All experiments in this thesis where conducted using the DDPN V.2.
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Chapter 5

Experiment

The experiments in this thesis have two main goals. Firstly, the aim is to investigate

the impact of different parameter choices on the distributed persistence computation. To

understand the unstructured information within distributed persistence across various

parameter values, a series of experiments will be conducted in a supervised setting. The

performance of the models will be used as a basis for comparing the input’s expressive

power and gaining insights into the encoded information.

Secondly, the thesis will evaluate the performance of the DDPN (Distributed Deep

Persistence Network) and other DSSN (Deep Set-based Neural Network) architectures

for supervised machine learning tasks, specifically point cloud classification. To establish

a baseline, the proposed methods will be compared to traditional full persistent homol-

ogy approaches across all architectures. Furthermore, the trainable approaches utilizing

DeepSets, introduced by us, will be compared to non-parametric methods, such as the

one tested in Solomon et al. [31].

5.1 Pre-processing

In this section, I will cover the parts of the pipeline that precede the training of the models

in the machine learning pipeline. This includes the normalization of the point clouds as

well as how persistence diagrams, both for full persistence and distributed persistence,

are computed. Additionally, we will cover how the input is represented.

38



Sampling Scheme

The construction of the distributed persistence used in the experiments is based on the

approach first suggested by Chazal et al. [15], which is described in detail in section

2.3.4. The procedure begins with sampling a fixed number m of subsets, each containing

a fixed size of k points, uniformly from the given point cloud. For each sampled subset,

the filtered sequence of alpha complexes is computed. Subsequently, persistent homology

is calculated, and the corresponding persistence diagrams are extracted. All topological

computations are handled using the GUDHI [3] library.

Normalization

Normalization refers to the process of scaling the input data so that it falls within a

specific range. This can potentially be a very important step in a machine-learning

pipeline since many machine-learning algorithms are optimized for data that conform to

a normal distribution. For neural networks, as utilized in this thesis, most schemes that

are used for the initialization of the network weights assume normalized inputs [18]. Even

though they are typically able to learn how to handle inputs that are not normalized,

they tend to train and converge faster when this step is included. By normalizing the

inputs, we can also remove any bias towards certain input features that might be present

in the raw data due to their scale [18].

We will use Min-Max scaling on the point clouds for normalization. Remember that re-

scaling does not change the topological properties of the clouds, see section 2.2. MinMax-

scaling fixes the range of the data to be exactly [0,1]. We are not scaling the inputs

directly, but rather the distribution of distances between points in the point cloud. How-

ever, since we sample points from the cloud and use distances as filtration values in the

alpha complex, by fixing the radius of the clouds to be exactly 1, we can ensure that any

distance is in the range [0,2]. Consequently, the birth, death, and persistence values lie

within this range as well.

Given a point cloud P of elements from R3 we do a normalisation of the radius of P

with MinMax using the following formula:

Pnorm = {x/rmax | x ∈ P}, (5.1)

39



where rmax is given by rmax = max
x∈P
|x|, when all point clouds are centered in origo.

This transformation scales each dimension by the same scalar and as such preserves all

angles, making it preferable when evaluating geometrically distinct spaces.

A second approach was considered where each dimension of the point cloud is scaled

independently. This is preferable from a topological viewpoint since a greater range of

parameter values is utilized, however since we are evaluating the geometric information

contents as well, it was discarded.

Input Representation DDPN

The DDPN model learns a representation of the input persistence diagrams during train-

ing. However, it is important to clarify how these diagrams are represented as they are

fed into the model. Each sample is represented as a family of padded persistence dia-

grams. These diagrams are represented as vectors, where each vector element consists of

the birth, death, and persistence (death - birth) values of a topological feature. Addition-

ally, a one-hot encoding is included to indicate the dimension of the topological feature.

We will be considering point clouds in 3D, and remembering from section 2.2.3, there is

no need to consider homology groups of higher dimensions, so the one-hot-encoding is

three-dimensional as well.

To illustrate, consider an example where a 1-dimensional hole is born at δ = 0.2 and

destroyed at δ = 0.9. The representation of this persistence diagram would be as follows:

0.2 0.9 0.7 0 1 0

In this representation, the first two elements (0.2 and 0.9) correspond to the birth and

death values of the 1-dimensional hole, respectively. The third element (0.7) represents

the persistence value, calculated as the difference between the death and birth values. The

remaining elements (0, 1, 0) form the one-hot encoding, indicating that the topological

feature is 1-dimensional. This one hot encoding corresponds to the vector ẋij from eq.

4.2.

Each persistence diagram comprises a set of such vectors. For efficiency reasons, each

diagram is padded with zero vectors, ensuring that all diagrams within a mini-batch

contain the same number of points. This padding mechanism helps maintain consistency

in the input dimensions and allows for streamlined batch processing during training. In

section 4.2.1 the background for this is discussed in further detail.
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5.2 Pilot

For initial studies, of both the properties and information contents of the distributed

persistence approach, as well as the performance of various models, a pilot study was

conducted using a synthetic data set. Specifically, this pilot aims to gain insight into how

various parameters of the distributed persistence approach affect the overall performance

of different models and what kind of information is preserved. The two crucial parameters

of the distributed persistence approach are the number of subsets m and the size of each

of these subsets k. One initial assumption we want to evaluate is whether or not it is

strictly better to increase the parameter m. We compare the resulting performances

against a baseline using full persistent homology of the clouds and various models.

Importantly, the goal was also to gain insight into the various hyper-parameters of

the DDPN and their effect on the model’s final performance. Ultimately we aim to find

a well-performing model in order to make a reasonable estimate of the performance of

our approach on real data.

5.2.1 Data

For this pilot, we constructed a synthetic data set of 3D point clouds for classification

tasks which we will refer to as PointClouds. The data set consists of 750 clouds evenly

distributed over 5 classes: filled cube, box (cube surface), torus, ball, and sphere. Each

cloud in the data set is created using the tadasets-library [5] by sampling (250-2500)

points uniformly from one of these manifolds. Additionally, varying levels of Gaussian

noise are added to the samples, but there are corresponding samples in all classes with

matching noise levels. This noise is added by setting the noise parameter [5] to i/150

for the i-th cloud of each class. Finally, for all sets of corresponding samples, a random

re-scaling of the dimensions is applied. The rescaling factor of each dimension is sampled

uniformly and independently from [0.5, 2]. The clouds are centered at origo.

The classes were selected to cover a suitable range of topologically and geometrically

distinct spaces. A torus contains both a 1-hole and a 2-hole. Both a sphere and a box

contain only a 2-hole, but they are clearly distinguishable from a geometric standpoint.

The same is true for cubes and spheres which are both simply connected spaces, that is

without any holes, but still are geometrically different.
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(a) Cube (b) Box (c) Torus

(d) Ball (e) Sphere

Figure 5.1: Sample from every class of the PointClouds dataset without noise. The points
are colored by their Z-value for clarity.

5.2.2 Models

Network Architechtures

Equation 4.1 provides a general description of a deep-learning approach using distributed

persistence, and the DSSN network embodies this structure without additional con-

straints. Different models and specialized architectures, can be constructed by inserting

well-known vectorizations in replacement for the trainable segments of this architecture,

will be tested. Specifically, the component we will modify and experiment with the most

in the models is the function for persistence diagram vectorization, ρ2(
∑n

j=0 φ(xij)).

We will experiment with three vectorization methods. Two common deterministic

approaches to vectorizing persistence diagrams: persistence images and statistical vec-

torizations as described in section 2.3.1. Both vectorizations have previously been suc-

cessfully applied to similar classification problems. Additionally, persistence images were
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used to argue for the value of distributed persistence in [31] and are thus included in our

study for comparison.

Let v be either of these three vectorizations, and xi be the set of points of the persis-

tence diagram of the i-th subset, then the structure of the two models used will look like

this:

ρ1(
m∑
i=0

v(xi)), (5.2)

ρ1(
m∑
i=0

ρ2(v(xi))), (5.3)

In equation 5.2 we take a simple aggregate of a set of vectorized persistence diagrams,

while in equation 5.3 we handle the diagrams as elements in a set for a standard DeepSet

model, by applying a feature extractor to the vectorized representations. In addition to

these two, we will test the DDPN network using a PersLay [14] inspired feature extractor

for the inner vectorization.

Across all experiments and models, the dimension-wise mean operator will be used as

the set function for the aggregate of the set of persistence diagrams.

A summary of all model architectures can be seen in table 5.1. Here Ω is the persis-

tence statistics and β is the persistence image vectorization.

Inner Vectorization Outer Vectorization Downstream Network
IMG-M β(xi) mean(·) ρ11(·)
STAT-M Ω(xi) mean(·) ρ21(·)
STAT-DS Ω(xi) mean

(
ρ12(·)

)
ρ21(·)

DDPN sum(φ(xij) ∗ w(ẋij)) mean
(
ρ22(·)

)
ρ31(·)

Table 5.1: Model architectures for pilot experiments.

φ,w, ρ21, ρ
3
1, ρ

1
2, ρ

2
2 are fully connected neural networks, and ρ11 is a CNN. All of these

neural network architectures are described in detail in Appendix A.

The decision to apply only one model using persistent images was driven by the

observation that it exhibited poorer performance compared to the other approaches.

This aligned with our initial assumptions and the observations made by [7].
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Distributed Persistence Parameters

There are two main parameters of the distributed persistence calculation, and we seek to

explore their effects with these experiments. The first of these is the number of random

subsamples drawn from a point cloud, that is the size m of the family X of subsets

of S for some point set S. Secondly, we use a fixed size for all of these subsets, and

this constant is presumably an important parameter that we call k. For each network

architecture covered in section 5.2.2 and summarized in table 5.1, we will train a model

for each parameter combination in a pre-defined set for distributed persistence.

A complete list of all parameter values used in the experiment is displayed in table

5.2.

Data-parameters Values
k : 2, 5, 50, 100, 500, FULL
m : 1, 3, 10, 31, 100, 316, 1000

Table 5.2: Range of parameter values for distributed presistence.

We introduce a naming convention for use throughout this chapter for convenience

when referring to a specific model and the data on which it was trained. We use subscript

as an indication of the parameter m and superscript as a reference to the subset size k.

As an example, a DDPN model trained on data with parameters m = 100 and k = 50 is

referred to as DDPN50
100

5.2.3 Training, Model Selection, and Hyper-parameter Space

In this section, we will cover the details of the training pipeline as well as the model

selection and tuning of certain hyper-parameters.

Fixed Parameters

There are a large set of optimizable hyper-parameters in the training pipeline and the

optimal combination may vary significantly for the different models. By fixing some of

these across all models it might be easier to isolate the effect of the parameters we aim

to evaluate. On the other side, ensuring that these fixed parameters are not better suited

for one model than another is hard. Either way, the performance of our models might
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be affected in unwanted ways. We decided to hold several parameters constant across as

many experiments in consideration of the computational expense.

A simple hold-out validation scheme is used across all experiments. Additionally, all

experiments and models use the same train-, validation-, and test split of 250/250/250

samples respectively. Traditionally a larger portion of the data is used for training,

however, we found this training size to be sufficient and we saw no reason to compromise

the estimates of the generalized performance by reducing their size. As the loss function,

we use CrossEntryopyLoss [26] with the Adam optimizer.

Model Selection

For each (architecture, data parameter)-combination we train a set of models covering a

small grid search of hyper-parameters, the model with the best validation performance

was chosen.

The learning rate starts at 1e−2 and using a scheduler it is reduced by 5% every fifth

epoch. All models are trained for 1000 epochs and validated every 25. The state of the

model at the checkpoint with the highest generalized performance is saved.

Hyper-parameter Search

The architectures described in section 5.2.2 are the only ones used. Since the same

architecture is used across multiple inputs with varying sizes and variance the general

idea was to create an adequately large and complex network to handle all data sets and

we experiment with different degrees of regularization, specifically L1 regularization and

the λ-parameter described in 2.1.4.

The specific range of parameter values can be seen in the table 5.3.

Hyper-parameters Values
Batch Size : 16, 64

λ : 0, 0.001, 0.01

Table 5.3: Hyperparamters.
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5.2.4 Results

Table 5.4 shows a table of the generalized test performance of all architectures. The

optimal hyper-parameters combination found during model selection for all models is

displayed in figure A.3. We display the full range of values for the parameter m, but not

all parameters in the range. The complete list can be found in Appendix A.

IMG-M STAT-M STAT-DS DDPN

k
m

1 100 1000 1 100 1000 1 100 1000 1 100 1000

2 24.8 36.0 55.6 20.0 37.2 46.4 23.1 48.8 65.2 24.4 54.4 74.0
5 23.2 46.4 68.8 35.6 70.0 82.0 24.0 60.8 84.4 22.4 67.2 87.2
50 51.2 83.2 90.0 47.2 95.2 94.4 58.8 92.0 94.8 58.0 96.0 95.2
100 59.2 91.2 90.4 69.6 93.6 96.4 68.4 93.2 97.2 69.2 93.6 92.4
500 74.8 82.0 - 82.4 89.6 - 77.6 86.4 - 80.4 92.4 -

FULL 74.0 - - 72.0 - - 72.4 - - 78.8 - -

Table 5.4: Accuracy in percentages of all model architectures for each combination of the
parameter values m = 1, 100, 1000 and k = 2, 5, 50, 100, 500, FULL.

Across all models and subset sizes, there is a clear indication that increasing the

parameter m for training and validation data simultaneously is strictly advantageous.

This effect is particularly apparent for small subsets combined with the DeepSet-based

approaches. It can also be observed that for these instances the DeepSets outperforms

the STAT-M models, however, for the opposite cases, where m is small and k is larger,

STAT-M tends to perform better.

Importantly, for sufficiently large values of both m and k, a distributed approach

greatly outperforms full persistence-based models.

It is clear that persistence images do not give similar performances to the other ap-

proaches, and for that reason, we will not include them in further analysis.

Table A.3 in appendix A shows that there are no clear patterns in terms of the

relationship between the data parameters and the batch size. A tendency towards a lower

L1 term for the larger inputs can be observed, implying a smaller need for regularization

for these parameters.

Figure 5.2 shows the performance of the STAT-M and the DDPN architecture for

various subset sizes k as a function of the number of subsets in the distributed persistence,

m. We see as a general trend across all models, that increasing values for m has a positive
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impact on model performance. This effect seemingly decreases with the performance of

the model.

(a) STAT-M (b) STAT-DS

(c) DDPN

Figure 5.2: Each subfigure displays the accuracy of all models MODELk of given archi-
tecture as a function of m.

To further analyze the effect of the number of subsets we investigate the resulting

performance of various values for m during training and inference independently. We

refer to these as mtrain and mval. In figure 5.3 a series of heatmaps of the generalized

performance of each of the models STAT-Mk, STAT-DSk and DDPNk when trained on

a certain mtrain and validated against all the other values for m. The heatmaps show

similar effects to the results in figure 5.2 giving a clear indication that increased m

is advantageous for performance. However, there is a slight shift in terms of optimal

performance towards higher validation data sizes. In fact, increasing mtrain significantly

above mval has a negative impact on performance. This is especially true for small values

for mval during inference. This effect is present in the results from all architectures.
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(a) STAT-M, k = 2 (b) STAT-M, k = 5 (c) STAT-M, k = 50

(d) STAT-DS, k = 2 (e) STAT-DS, k = 5 (f) STAT-DS, k = 50

Figure 5.3: Heatmaps showing the relative accuracy on test data for all combinations of
the parameters mtrain and mval.

The heatmap shown in figure 5.4 emphasizes the consistency of the observation that

increasing mval has a stronger positive effect on performance than during training, across

all subset sizes. It displays the average performances of each column in figure 5.3.

(a) STAT-M (b) STAT-DS

Figure 5.4: Shows the normalized sum of the heatmaps from figure 5.3 across all the
k-values 2, 5, 50.
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In figure 5.5 we display the confusion matrix of a selection of similarly performing

models to evaluate the balance of geometric and topological information contents of the

data sets they were trained on. All the models are all based on the same architecture in

order to reduce variable parameters in the comparisons. There do not seem to be clear

patterns supporting our prior assumptions, however, a weak tendency towards better

performance on the torus class can be observed. This is also the most topologically

complex shape, which corresponds to some degree with the theory from [31].

(a) k = 5, m = 1000 (b) k = 50, m = 10

(c) k = 100, m = 10 (d) k = 500, m = 100

Figure 5.5: Confusion matrices of various STAT-M models.
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5.3 ModelNet10

In the second experiment, we apply the distributed persistence method to a well-known

dataset, ModelNet10 [4] and make a comparative study based on the best-performing

models developed in the pilot study. ModelNet10 contains a range of different geometric

objects for point cloud classification and is commonly used as a baseline problem for

shape recognition models. We will compare the performance of our approaches against

similar full persistence models.

5.3.1 Data

ModelNet10 is a subset of the ModelNet40 data set and consists of 4,899 CAD (Computer

Aided Design) models distributed over 10 classes. The object classes are compiled by a

list of the ten most common objects in the world, based on statistics collected from the

SUN-database [4]. From these CAD objects a point cloud is sampled uniformly.

It is important to note that many of the underlying geometric objects are actually

simply connected spaces from a topological point of view. Meaning that we also in

this experiment will be able to evaluate the type of information preserved under various

parameters of the distributed homology pipeline.
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Figure 5.6: Samples of CAD shapes from all classes of the ModelNet10 data set. Illus-
tration taken from [33].

The data is divided into a train/test split of 3991/908. We do not further split the

training data into training and validation since no model-selection process was performed

on this data. The classes and the object distribution across these classes can be seen in

table 5.5.

Class Name Train Test Total
bathtub 106 50 156

bed 515 100 615
chair 889 100 989
desk 200 86 286

dresser 200 86 286
monitor 465 100 565

nightstand 200 86 286
sofa 680 100 780
table 392 100 492
toilet 344 100 444
total 3991 908 4899

Table 5.5: Class distribution of ModelNet10.

For each forward pass, we sample 6000 points from each given in the batch, from

which we then compute the distributed persistences.
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5.3.2 Models

Because of time restrictions, we will use some of the best-performing models from the

pilot study and apply them directly to the ModelNet10 data set. We will in additionally

compare each of the networks to the baseline using full persistent homology.

The models used for this experiment are DDPN50
100, DDPN5

1000 and STAT-DS100
100.

Preferably we would like to evaluate the STAT-DS100
1000 but because of computational lim-

itations, we were not able. For comparison we train two baseline models, STAT-DSFULL

and DDPNFULL, both selected based on performance in the pilot.

5.3.3 Hyper-parameters

We use the same parameters as used during the pilot, except we run a fixed number of

100 epochs, batch size of 64, and no regularization.

5.3.4 Results

Table 5.6 shows the results of the experiments by the accuracy on the test set. The

results align with those from the pilot study, showing clearly that distributed persistence

outperforms traditional full persistence.

Model Accuracy
DDPN5

1000 70.1
DDPN50

100 68.8
DDPNFULL 55.8
STAT-DS100

100 65.2
STAT-DSFULL 51.9

Table 5.6: Generalized performance, as accuracy in percent, for various models on the
ModelNet10 data set.

Although the scope of this experiment is limited and not comprehensive enough to

draw definitive conclusions, the results further reinforce the observations made in the

pilot study. They highlight a clear discrepancy between full persistence-based approaches

and distributed ones. The DDPN networks demonstrate the best overall performance,

however, it is worth noting that the DDPN51000 model outperforms the DDPN50100 model
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on this particular data set, which adds an intriguing aspect to the findings. Knowing the

geometric properties of this data set, as discussed in section 5.3.1, this can potentially

be considered supportive observations for the theoretical background which shows that

smaller k focuses the information content toward geometric features.

It is important to note that there is a noticeable discrepancy between the state-of-

the-art performance on this data set and the performance of all our models [4].
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Chapter 6

Discussion

Here we analyze our results and present the main findings of our experiments. Addition-

ally, we will evaluate the strengths and weaknesses of both the method in itself, but also

our experimental setup and the potential shortcomings of our experiments.

6.1 Main Findings

6.1.1 Analysis

Parameters of distributed persistent homology

The results of our experiments show that our pipeline outperforms the baseline across

a wide range of parameters. This holds both the parameters related to distributed per-

sistence as well as the architectures and models employed. Notably, we observe that

variations in both m and k have a smooth impact on the model’s performance, indicating

their stability in a supervised setting.

While increasing m, particularly during inference, appears to consistently improve

performance, we achieve optimal results not at the highest values of k, but rather at

intermediate values. This observation aligns with the continuous interpolation of infor-

mation captured by our topological invariant, as shown in [31]. It suggests that in data

sets where both geometric and topological features are relevant, the subset sizes yielding
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the best performance lie within the intermediate range rather than at the extreme ends

of the parameter spectrum.

Furthermore, it is worth noting that even for large subsets where the subset topology

closely resembles that of the original point cloud, our approach outperforms the baseline

when a sufficient number of subsets is considered. This underscores the effectiveness of a

distributed approach in effectively filtering out noise and outliers.

Model Comparison

The results in table 5.4 show that the DDPN model slightly outperforms the other models

for almost all subset sizes, making it the highest-performing model for all values of k

except k = 100. This highlights the flexibility and effectiveness of a trainable approach

in capturing the relevant information from the persistence diagrams.

It is worth noting that the performance discrepancy between the DDPN model and

the other models primarily exists for the largest values of m. This can be attributed to

the requirement for a sufficient amount of training data to effectively train deep learning

models compared to pre-constructed vectorizations. Deep learning models typically have

a higher capacity to learn complex patterns and representations when provided with a

larger amount of training data.

We consider the effects of the various models particularily interesting for the smallest

value of k, specifically k = 2. In this case, both the DeepSet vectorization of the set of

persistence images and each individual diagram vectorization exhibit a significant increase

in performance compared to the STAT-M2 model. This suggests that for the smallest

of subsets the persistence statistics are not optimal, and that DeepSets increases the

effectiveness of our model in these cases.

For small values of m, we observe that the overall performance of all models be-

comes quite similar. However, the non-parametric vectorizations of the STAT-M ap-

proach demonstrates a slight advantage in this scenario. This indicates that when the

number of subsets is small, the simplicity and flexibility of feature engineering methods

are effective and comparable to the more complex deep learning models.
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Hyper-parameters of DeepSets

We have iterative and manually tested several key parameters of the DDPN architecture

as a part of the model evaluation process in the pilot studies, and made several obser-

vations to improve performance. We will cover some of the most interesting findings

here.

We found that a learning rate of 1e−2 yielded significantly better results than other

values. In particular, we observed that lower learning rates converged quickly to solutions

with worse performance on both training and validation data indicating that a sub-

optimal local minimum was entered. Typically decreasing the batch size can reduce this

problem by increasing the variance of each update, however, this was not true for the

DeepSet approaches.

Searching for appropriate sizes for the various networks φ, ρ, and w did not yield such

clear results, and this is still a poorly understood challenge from our side. We found that

the embedding sizes q1 and q2 were significant parameters, but there was a wide range of

well-performing values and a combination of values for all data inputs, which we found

surprising. In general, the networks appeared very robust to these mentioned parameters.

We observed that including batch normalization for the downstream networks, across

all DSSN models has a significant, positive impact for all data sets.

6.2 Strengths and Weaknesses

In this section, we will give an post-experiment summary of our experimental work and

analysis. We aim to discuss the strengths of our analysis and methodology as well as

acknowledging the shortcomings and weaknesses of our study.

6.2.1 Weaknesses

DDPN Studies

Firstly, during our experimentation with the DDPN architecture and DeepSets in general,

we encountered numerous challenges related to hyper-parameter tuning. These types of
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networks have unique requirements that do not necessarily align with our intuition from

standard neural networks. Due to the limited research and usage of DeepSets in practical

applications there is limited knowledge about the effect of various parameters. As a

result, we had to spend considerable time searching for functional parameter combinations

specific to these models. This non-standard aspect of hyper-parameter tuning could

potentially introduce a weakness in our comparisons, as it may limit the generalizability

of our findings. In particular, there is a bias in our methodology with regards to the time

spent optimizing the architechtures.

Some of the results of this process are described in section 6.1.1. This is potentially

a weakness of our comparisons.

Limited Hyper-parameter Search

An important consideration that extends the discussion on comprehensiveness in the

previous section is the limited exploration of hyper-parameters in our model evaluation

and selection process. This limitation primarily stems from the substantial time invest-

ment required for developing and implementing the DDPN network, as described in the

subsequent section (4.2.1).

In our experiments, we trained a total of six models for each architecture on each

dataset in the initial experiment. This reduced variance in our performance estimates for

each architecture. However, conducting an even more extensive hyper-parameter search

would have been desirable. It is worth noting that we tested only one architectural design

for each type of the three model types across all data parameters. This is not ideal since

this is in general an important parameter, which can greatly increase performance when

tuned. Nevertheless, we argue that a model type that demonstrates good performance

across diverse inputs holds inherent value, thus justifying the comparisons made in our

study.

Furthermore, it is important to acknowledge that we did not perform a dedicated

process of model evaluation or selection on the ModelNet10 data set. Instead, our model

selection was based on the performance observed on a different data set, with the pri-

mary aim of comparing our approach to established baselines using well-known data.

Consequently, there is potential for performance improvements across all models when

evaluated directly on the ModelNet10 data set. Future studies should consider conduct-

ing rigorous model evaluation and selection procedures tailored specifically to the target

data set.
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ModelNet10

ModelNet10 data set consists of shapes from which we extract point clouds for classifi-

cation tasks. Remember from 5.3.1 most of the underlying object shapes in ModelNet10

are simply connected spaces, which means that topological approaches, in general, treat

them as equivalent. Consequently, ModelNet10 may not be the most suitable data set

to benchmark our models specifically from a topological perspective. This hypothesis

is strengthened by the fact that a small subset size of k = 5 outperformed the other

parameters on ModelNet10 while larger values like k = 100 and k = 50 gave the best

results in the pilot study with more topologically distinct classes.

To further strengthen the evaluation of our models, it would have been advantageous

to compare their performance on data sets where other topological approaches have been

applied. Such data sets would provide a more comprehensive understanding of the models’

capabilities and their ability to capture and utilize topological information effectively.

By examining the performance of our models on data sets with diverse shapes and

topological structures, we could gain valuable insights into their strengths and weaknesses

in handling different types of data. This broader comparison would provide a more

robust assessment of our models’ performance and their suitability for various topological

analysis tasks.

6.2.2 Strengths

End-to-End Learning

The DSSN framework enables end-to-end learning, meaning that the entire model, in-

cluding the feature extraction and downstream processing components, can be jointly

optimized during training. This end-to-end learning approach eliminates the need for

manual feature engineering or handcrafted representations, which can be time-consuming

and challenging in topological analysis tasks. By learning the optimal representation and

processing steps directly from the data, the DSSN approach offers the potential for im-

proved performance and efficiency in capturing and utilizing topological information.
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Robustness and Stability

Although evaluating a limited set of networks across several data sets is unlikely to extract

the full potential in terms of performance for all cases, models that perform well across

a wide range of parameters show robustness which we think is a desirable trait in itself.

The DDPN network provides desired stability with respect to small perturbations

in the input data as it only operates on continuous functions. This means that minor

changes in the dataset, such as noise or small variations in the point cloud representation,

do not drastically alter the persistence diagrams or the model’s predictions. This stability

property is advantageous in real-world applications where input data can be noisy or

subject to small variations. It ensures that the model’s predictions remain reliable and

consistent even in the presence of such perturbations, enhancing the robustness and

reliability of the approach.

Generality

The DSSN framework is built on a strong theoretical foundation, providing a completely

general solution, suitable for a wide array of problem domains since it can approximate

any valid set of set function. By minimizing restrictions on the solution space, the DSSN

framework offers flexibility in handling different types of data and tasks. Additionally, it

offers optionally for straightforward insertion of feature engineered, hand-crafted vector-

izations that are already established within the TDA field.

6.3 Conclusion

This thesis has demonstrated the potential of distributed persistence as a topological in-

variant for effectively capturing the characteristics of noisy data in comparison to conven-

tional full persistence methods in practical applications. We have successfully showcased

how the distributional approach overcomes sensitivity challenges and provides valuable

insights into complex data sets.

Through the introduction and application of our novel framework, DSSN (Deep Set

of Set Network), we have illustrated the practical utilization of distributed persistence.

While our results on the ModelNet10 data set do not reach the standard set by other
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state-of-the-art approaches, we have convincingly outperformed our baselines, indicating

the effectiveness of our proposed approach for topological analysis.

By integrating DeepSets with our specialized architecture, DDPN (Deep Distributed

Persistence Network), we have successfully improved the performance of our framework.

This integration has also demonstrated the potential benefits of employing trainable

vectorizations when sufficient data is available.

Furthermore, leveraging the performance of the supervised model, we have gained a

deeper understanding of the relationship between model performance and the configura-

tion of distributed persistence.
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Chapter 7

Future Work

The results of the experiments conducted in this thesis strongly indicate that a distributed

approach to persistent homology computation in a supervised learning framework out-

performs the traditional full persistence computation for radius-based methods.

However, additional comparative studies are required in order to establish a strong

empirical foundation for this statement. Particularly, we would have liked to evaluate our

approach on more topologically separable data sets especially ones where topologically

focused approaches have previously been applied successfully. This is both to substantiate

the results from our experiments, but also to see if this could establish new state-of-the-

art performances on such data sets. Additionally, a more extensive comparison that

covers a wider range of hyper-parameters for all architectures would greatly strengthen

the conviction of our results.

Furthermore, the possibility of utilizing the strengths of transfer learning is intriguing

for these distributed approaches, especially given the observations made around varying

the parameter value m during training and validation. Experimenting with how the fea-

ture extractors in particular could transfer their learned representations to other models

with varying parameters for the distributed persistence could potentially increase the

efficiency and generalization ability of this method.

During our work on the experiments of this thesis, it has become apparent that there

are many hyper-parameters and architectural features of the DeepSet architecture that

are not understood sufficiently. Some of our discoveries are covered in chapter 6, but a

detailed survey investigating these in further detail would help progress the work with

DeepSets substantially. Especially the embedding sizes of the feature extractors, the
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balance of expressivity of the different networks as well as the need for a high learning

rate are among the most interesting questions to answer.

Lastly, there is an open question as to how the inclusion of labels for each subset

would affect the performance of this approach, especially for smaller subset sizes. After

all, the theoretical foundation laid down in [31] was based on labeled subsets rather than

the ones considered here. How to introduce this information in practice is a difficult

problem, particularly if included as exact labels. However, we conjecture that some

useful information about the relationship between subsets can be included through a

similarity measure such as the Hausdorf-distance [ref] or the Earth Mover-distance. The

relative distance between all subsets would provide enough information to construct a

fully connected graph. A Graph Neural Network over a DeepSet extractor would allow

for communication between the vectorized persistence diagrams about the similarity of

their points. For small subsets in particular this might be useful information as they

might often be sampled from very different regions of the underlying point cloud.
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Appendix A

Appendix

A.0.1 Hyper-parameters of models in Pilot

Table A.1: Selected hyper-parameters for STAT-M models in Pilot.

STAT-M

k
m

1 100 1000

2 (64, 0.001) (64, 0.001) (16, 0.001)
5 (16, 0.001) (64, 0.01) (64, 0.01)
50 (16, 0.0) (64, 0.001) (64, 0.001)
100 (64, 0.01) (64, 0.0) (64, 0.0)
500 (64, 0.0) (16, 0.0) -

FULL 0 - -

Table A.2: Selected hyper-parameters for STAT-DS models in Pilot.

STAT-M

k
m

1 100 1000

2 (64, 0.0) (16, 0.0) (16, 0.0)
5 (16, 0.001) (64, 0.0) (64, 0.001)
50 (16, 0.0) (64, 0.001) (16, 0.001)
100 (16, 0.001) (16, 0.0) (64, 0.0)
500 (64, 0.0) (64, 0.0) -

FULL 0 - -

Table A.3: Selected hyper-parameters for DDPN models in Pilot.

STAT-M

k
m

1 100 1000

2 (16, 0.001) (16, 0.001) (16, 0.0)
5 (64, 0.01) (16, 0.001) (64, 0.001)
50 (16, 0.001) (16, 0.0) -
100 - - -
500 - - -

FULL 0 - -
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A.0.2 Networks

Table A.4 shows the feature extractor φ of the DDPN network.

Layer No. Nodes Activation
Linear 1 12 LeakyReLU
Linear 1 16 -

Table A.4: Fully connected network, φ.

The w network consists of only a single layer without any non-linearities. Bias is

crucially not included as a parameter in this network.

Layer No. Nodes Activation
Linear 1 16 -

Table A.5: Fully connected network, w.

The shared downstream network of both STAT approaches, ρ21 is shown in table A.6.

Layer No. Nodes Activation
Linear 1 128 ReLU

BatchNorm 1 - -
Linear 2 64 ReLU

BatchNorm 2 - -
Linear 3 64 ReLU

BatchNorm 3 - -
Linear 4 32 ReLU

BatchNorm 4 - -
Linear 5 5 -

Table A.6: Fully connected network, ρ21.

Table A.7 shows the downstream network of the DDPN architecture.

Layer No. Nodes Activation
BatchNorm 1 - -

Linear 1 32 LeakyReLU
BatchNorm 2 - -

Linear 3 5 LeakyReLU

Table A.7: Fully connected network, ρ31.

The feature extractor of the STAT-DS network, ρ12:
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ρ12

Layer No. Nodes Activation
Linear 1 64 LeakyReLU
Linear 2 64 LeakyReLU

Table A.8: Fully connected network, ρ12.

ρ22 acts both as a part of the downstream network of the inner vectorization in the DDPN

and as a feature extractor of the outer vectorization.

Layer No. Nodes Activation
Linear 1 40 LeakyReLU
Linear 2 64 -

Table A.9: Fully connected network, ρ22.

The details of this CNN architecture can be seen in figure A.10. The inputs are persis-

tence images computed using GUDHI [3] with the following hyper-parameters: bandwidth

= 0.1, resolution = 20, range = 2.

Layer No. Channels/Nodes Kernel Size Padding Stride Activation
Convolution 1 6 5 2 2 ReLU
BatchNorm 1
Convolution 2 6 5 1 1 ReLU
BatchNorm 2
Convolution 3 6 5 0 1 ReLU
BatchNorm 3
Convolution 4 6 3 0 1 ReLU

Flatten
Linear 1 32 ReLU

BatchNorm 4
Linear 2 5 -

Table A.10: CNN architecture for ρ11.
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