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Preface

At the beginning of my PhD, I wanted to pursue my research on interpretations of

machine learning models, a field also referred to as explainable AI (XAI). Such interpre-

tations can be applied to find important regions in the classification of image data or to

validate models [Montavon et al., 2018]. I planned to apply interpretations of machine

learning models to marine datasets. Among numerous approaches, I was mostly inter-

ested in gradient-based interpretation approaches [Simonyan et al., 2013] as these are

similar to the idea that I was considering, which was to use minimum distance pertur-

bations that change the predicted class as interpretations of models. However, gradient-

based interpretations usually generate results that are too noisy for human eyes. Hence,

it is often thought that such results are due to the problem of gradient-based interpreta-

tion methods. To avoid noisy interpretation results, several remedies [Bykov et al., 2022;

Smilkov et al., 2017] have been proposed. Additionally, Ghorbani et al. [2019] showed

that interpretations are vulnerable to slight modification of data points. Thus, when

interpretation algorithms are given almost indistinguishable inputs with the same pre-

dicted class, interpretations of models can differ greatly. Again, it seems the common

viewpoint is that vulnerability of interpretation is due to the problem of common inter-

pretation methods. Therefore, few works [Lakkaraju et al., 2020] have proposed “robust

interpretation methods” that are less vulnerable to the adversarial perturbation of data

points.

Until recently, visual evaluation was commonly used for evaluating interpretation meth-

ods. Because this evaluation can be susceptible to human bias, Adebayo et al. [2018]

suggested using non-visual evaluation of explanations. For instance, they revealed that

a large number of interpretation results do not correlate with model parameters. Specif-

ically, only some methods are dependent on the classification models, which include the

gradient approach [Simonyan et al., 2013], even though it may not necessarily give vi-

sually appealing results. In addition to these findings, the proposed “improvements”

[Bykov et al., 2022; Smilkov et al., 2017] of interpretation methods use average inter-

pretation results to obtain less noisy results. Thus, one can regard their interpretations

as the results of an averaging ensemble model rather than a target classification model.
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Taking all these findings into consideration, it seems common viewpoints overlook the

important possibility that the problems mostly lie in common machine learning models

rather than in the interpretation methods. Specifically, the issues may lie in machine

learning models that make highly accurate predictions but use different reasonings for

their predictions, thus they give unsatisfying interpretation results. If this is correct,

then using interpretation methods that provide visually appealing interpretations and

“robust interpretation methods” [Lakkaraju et al., 2020] can conceal actual issues of

models. Consequently, we may lose the opportunity to improve machine learning mod-

els. To focus on such improvement, I started to explore the gap between machine learning

predictions and human predictions.

One of the widely known differences is the vulnerability of machine learning models

against adversarial examples [Szegedy et al., 2013], which refers to carefully crafted

inputs to fool models by applying almost indistinguishable modifications. While I was

searching for the properties of adversarially robust classifiers, I identified an issue in the

common definition of adversarial robustness. I speculated that this might be the reason

for an important challenge in robust machine learning: the trade-off between natural

accuracy and adversarial robustness. This trade-off means that adversarially robust

classifiers are less accurate in classifying natural (not perturbed) inputs than standard

classifiers. Thus, in paper III, I proposed a new definition of adversarial robustness that

resolves the trade-off, at least on training data.

Soon after creating this new definition of adversarial robustness, I found that the near-

est neighbor (1-NN) classifier becomes the optimally robust classifier for training data

points. However, it is well known that the 1-NN classifier often generalizes poorly on

test data points. Additionally, its generalization power will depend on the dataset and

distance metric. Through further analysis, I found that normally there is greater similar-

ity between the behavior of robust classifiers and 1-NN classifiers than there is between

standard classifiers and 1-NN classifiers. From this, I hypothesized that the trade-off

between natural accuracy and adversarial robustness might be due to the use of not

discriminative distance measures. Specifically, not discriminative distances include dis-

tances where their corresponding 1-NN classifiers perform poorly (see section 2.4 for a

detailed explanation of discriminality). Because robust models behave similarly to 1-NN

classifiers, they will be less accurate in classifying natural inputs. This might also explain

why finding accurate and robust classification was relatively easy [Schott et al., 2018b]

for the MNIST dataset [LeCun et al., 2010], given that the l2 norm-based 1-NN classi-

fier performs well on MNIST (accuracy higher than 0.95). In Chapter 5, I explore the

possible connection between the discriminality of the distance metric and the trade-off.

After noticing that the (poor) choice of distance might be the cause of the trade-off, I

explored the field of learning a dissimilarity measure: metric learning.
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Metric learning learns dissimilarity functions such that similar data points are located

close and dissimilar data points far apart in a learned embedding space. Because mag-

nifying distances with a constant value will not change the orders of distances, it seems

natural to assume that the scale of the distance should not matter in metric learning

models. If metric learning methods are dependent on the scale of the embedding space,

training can be unstable or slower due to the unnecessary scale changes. To prevent the

dependence on scale, metric learning models need to consider the distance-ratio. Hence,

in paper II, I proposed using a distance-ratio-based (DR) formulation in metric learning.

Following this, I experimented with several ideas in related fields. One involved improv-

ing episode training in few-shot learning where randomly sampled support points and

query data points are used in each episode. My idea was to use each data point as both

support and query data points in a modified episode by switching their roles. I found

that training with such a “rolling process” was much faster with respect to the number

of episodes in training. Unfortunately, when their computation time was considered, the

speed gain seemed to be small and was dependent on the model architecture. Hence, I

decided to abandon this research and try different ideas. Another idea I experimented

with was post hoc modification of metric learning models by changing the discrimina-

tive power of embedding space, but this method did not consider the dimensionality of

feature space. However, I could not identify any noticeable benefits of the method em-

ployed, perhaps because I had not considered the dimensionality of embedding. Hence,

I looked for different ideas. While I was thinking about a possible new application of

metric learning methods, I notice that learned embedding may be used for estimating

hierarchical structures of classes.

Given that hierarchical structure information is important in studying biological

datasets, I started to experiment with plankton datasets. While experimenting with

classification based metric learning models, I found that learned models can approxi-

mately estimate class hierarchies. In situations with a known class hierarchy, such an

analysis can also be used for verifying whether a learned class distance matches our

knowledge. Moreover, I also found an unexpected benefit of DR formulation in that

inference performance was higher with DR formulation than when using a standard for-

mulation. In addition to the plankton datasets, these results were also confirmed by two

benchmark datasets. In paper IV, I suggested using classification-based metric learning

models for estimating class hierarchy when this is not available.

There are also ideas that were not investigated during my PhD. Hence, I describe three

of these in section 6.2 as possible future works.
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Abstract in English

The notion of distance is fundamental in machine learning. The choice of distance mat-

ters, but it is often challenging to find an appropriate distance. Metric learning can be

used for learning distance(-like) functions. Common deep learning models are vulnera-

ble to the adversarial modification of inputs. Devising adversarially robust models is of

immense importance for the wide deployment of machine learning models, and distance

can be used for the study of adversarial robustness. Often, hierarchical relationships

exist among classes, and these relationships can be represented by the hierarchical dis-

tance of classes. For classification problems that must take these class relationships into

account, hierarchy-informed classification can be used.

I propose distance-ratio-based (DR) formulation for metric learning. In contrast to the

commonly used formulation, DR formulation has two favorable properties. First, it is

invariant of the scale of an embedding. Secondly, it has optimal class confidence values

on class representatives.

For a large perturbation budget, standard adversarial accuracy (SAA) allows natural

data points to be considered as adversarial examples. This could be a reason for the

tradeoff between accuracy and SAA. To resolve the issue, I proposed a new definition of

adversarial accuracy named Voronoi-epsilon adversarial accuracy (VAA). VAA extends

the study of local robustness to global robustness.

Class hierarchical information is not available for all datasets. To handle this challenge,

I investigated whether classification-based metric learning models can be used to infer

class hierarchy.

Furthermore, I explored the possible effects of adversarial robustness on feature space.

I found that the distance structure of robustly trained feature space resembles that of

input space to a greater extent than does standard trained feature space.
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Sammendrag

Avstandsbegrepet er grunnleggende i maskinlæring. Hvordan vi velger å måle avstand

har betydning, men det er ofte utfordrende å finne et passende avstandsmål. Metrisk

læring kan brukes til å lære funksjoner som implementerer avstand eller avstandslignende

mål. Vanlige dyplæringsmodeller er s̊arbare for modifikasjoner av input som har til

hensikt å lure modellen (adversarial examples, motstridende eksempler). Konstruksjon

av modeller som er robuste mot denne typen angrep er av stor betydning for å kunne

utnytte maskinlæringsmodeller i større skala, og et passende avstandsm̊al kan brukes til å

studere slik motstandsdyktighet. Ofte eksisterer det hierarkiske relasjoner blant klasser,

og disse relasjonene kan da representeres av den hierarkiske avstanden til klasser. I

klassifiseringsproblemer som må ta i betraktning disse klasserelasjonene, kan hierarki-

informert klassifisering brukes.

Jeg har utviklet en metode kalt /distance-ratio/-basert (DR) metrisk læring. I mot-

setning til den formuleringen som normalt anvendes har DR-formuleringen to gunstige

egenskaper. For det første er det skala-invariant med hensyn til rommet det projiseres

til. For det andre har optimale klassekonfidensverdier p̊a klasserepresentantene.

Dersom rommet for å konstruere modifikasjoner er tilstrekklig stort, vil man med stan-

dard adversarial accuracy (SAA, standard motstridende nøyaktighet) risikere at naturlige

datapunkter blir betraktet som motstridende eksempler. Dette kan være en årsak til SAA

ofte g̊ar p̊a bekostning av nøyaktighet. For å løse dette problemet har jeg utviklet en ny

definisjon p̊a motstridende nøyaktighet kalt Voronoi-epsilon adversarial accuracy (VAA,

Voronoi-epsilon motstridende nøyaktighet). VAA utvider studiet av lokal robusthet til

global robusthet.

Klassehierarkisk informasjon er ikke tilgjengelig for alle datasett. For å h̊andtere denne

utfordringen har jeg undersøkt om klassifikasjonsbaserte metriske læringsmodeller kan

brukes til å utlede klassehierarkiet.

Videre har jeg undersøkt de mulige effektene av robusthet p̊a feature space (egenskap-

srom). Jeg fant da at avstandsstrukturen til et egenskapsrom trent for robusthet har
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større likhet med avstandsstrukturen i r̊adata enn et egenskapsrom trent uten robusthet.



List of notations

(Some symbols have different meaning in different chapters. Hence, they appear in

multiple chapters of this list. Notations in Chapter 7 are not listed here.)

Chapter 1 - Introduction

l2 norm distance Euclidean distance.

lp norm distance Generalization of l2 norm distance to p ≥ 1.

∥v∥p lp norm of a vector v.

∥v∥ l2 norm of a vector v.

d(·, ·) Distance (metric) function for measuring dissimilarity of data

points.

X Nonempty input space. X ⊂ RdI .

R The set of real numbers.

dI Dimension of an input space.

Y Set of possible classes.

D Joint data distribution. D ⊂ X × Y .

x (Input) data point.

c Corresponding class of an (original) data point x ∈ X . c ∈ Y .

f(·) Feature mapping (embedding) function. f : X −→ Z .

Z Feature (embedding) space. Z ⊂ RdF .

dF Dimension of a feature space.

ly(x) Logit value for data point x and class y using a feature mapping

function. Logit values are used in softmax classifier.

y Arbitrary class y ∈ Y .

W Weight matrix used for logit calculation.

Wy Weight vector from the matrix W for class y.

by Bias term for class y used for logit calculation.
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p(y|x) Exact probability that a data point x belongs to class y. It is also

known as class probability.

p̂ Estimated probability of an exact probability p. For example,

p̂(y|x) is an estimated probability of p(y|x).
ĉ Predicted class of a data point.

ℓCE(·, ·) The cross-entropy loss function for a data point.

log(·) The element-wise logarithm function.
−→
1 y One-hot vector whose element has the value of 1 for corresponding

element of y.

P̂ (Y|x) Estimated class probability vector (softmax vector) of a data point

x. Its corresponding element of index for class y has value p̂(y|x).
LCE The cross-entropy loss function for a mini-batch.

B Mini-batch. B ⊂ D.

Chapter 2 - Metric learning

dlearned(·, ·) Learned dissimilarity function using metric learning. In general, it

is a pseudometric. dlearned(x1, x2) := d(f(x1), f(x2)) for two data

points x1 and x2.

Ytrain Set of classes used in training phase. Ytrain ⊂ Y .

ℓContrastive Contrastive loss [Hadsell et al., 2006] for a data point pair.

1(·) The indicator function. 1 (True) = 1 and 1 (False) = 0.

m Margin parameter for metric learning models.

ReLU(·) Rectified linear unit function. ReLU(v) = max(0, v) for a value

v.

ℓTriplet Triplet loss [Wang et al., 2014] for a triplet.

N Number of training data points.

O(·) Big O notation.

ṽ Normalized vector of a non-zero vector v. ṽ = v
||v|| .

θy Angle between W̃y and f̃(x).

s Scaling parameter for metric learning models. s > 0.

LNormFace Training loss for NormFace model [Wang et al., 2017] for a mini-

batch.

µy Average embedding of a class y. For Euclidean embedding space,

µy =
1

|Xy |
∑

x∈Xy

f(x).

Xy Set of data points belong to a class y. Xy ⊂ X .
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LLMC Training loss (large margin cosine loss) for CosFace model [Wang

et al., 2018] for a mini-batch.

LArcFace Training loss for ArcFace model [Deng et al., 2019] for a mini-

batch.

α Parameter that controls the stability and speed of updates for

exponential moving average (EMA) [Zhe et al., 2019]. 0 < α < 1.

θ′c Clipped value of the angle θc. θ
′
c := clip(θc,

[
0, π

2

]
).

clip(·, ·) The clipping function that limits a value within a specified range.

SdF−1 Unit spherical (normalized) space. SdF−1 =
{
z ∈ RdF | ∥z∥ = 1

}
.

ϵstab Positive value close to zero used for the numerical stability when

normalizing vectors.

DdF
τ Poincaré ball model with a curvature parameter τ . It is one of

the hyperbolic space models. DdF
τ =

{
z ∈ RdF |τ ∥z∥2 < 1

}
.

τ Curvature parameter of a Poincaré ball model. τ > 0.

⊕ The gyrovector addition symbol.

expτ
x (v) Exponential mapping to map vectors from Euclidean space RdF

into a Poincaré ball model DdF
τ .

x Base point used in a Poincaré ball model DdF
τ .

λτ
x Conformal factor used in a Poincaré ball model DdF

τ . λτ
x = 2

1−τ∥x∥2

ϕ(m) Discriminative function for a margin parameter m [Liu et al.,

2020]. ϕ(m) = Dinter(m)
Dintra(m)

.

Dinter(m) Inter-class variance for a margin m.

Dintra(m) Intra-class variance for a margin m.

YI Class set of interest. YI ⊂ Y .

Xj Set of data points for the j th class in YI .

f̃m(x) Normalized embedding of a data point x for a margin m.

µj(m) Average embedding for the j th class in YI for a margin m.

πratio Embedding space density [Roth et al., 2020]. πratio =
πintra

πinter
.

πinter Average inter-class distance.

πintra Average intra-class distance.
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Zinter Normalization constant for the calculation of πinter. Zinter =

|YI |(|YI | − 1).

Zintra Normalization constant for the calculation of πintra. Zintra =
|YI |∑
k=1

|Xk|(|Xk| − 1).

ρ Measure to assess compression in feature representation by using

spectral decay of an embedding. ρ = KL(UdF ||S).
KL(·||·) The Kullback–Leibler divergence.

UdF dF -dimensional discrete uniform distribution.

S Normalized spectrum of singular values (SV) sorted in descending

order.

R2 Class separation [Kornblith et al., 2021] to measure discriminative

power of a feature representation. R2 = 1− d̄within

d̄total
.

d̄within Average within-class cosine distance.

d̄total Overall average cosine distance.

sim(·, ·) Cosine similarity function. sim(v1, v2) = ṽ1 · ṽ2 for two vectors v1

and v2.

dy,x Distance from a data point x to class y. For example, distance

from feature vector f(x) to the proxy representative of class y can

be used for dy,x.

Chapter 3 - Adversarial robustness

d(·, ·) Distance (metric) function for measuring adversarial robustness

in Chapters 3 and 5.

C Target classifier. C : X → Y .

x Original (unmodified) data point in Chapters 3 and 5.

x′ Perturbed (modified) data point from an original data point x.

x′ ∈ X . It is an adversarial example when C(x′) ̸= C(x) and

d(x, x′) ≤ ϵ [Biggio et al., 2013].

ϵ Allowed perturbation budget.

ct (Specific) target class for a targeted adversarial attack. ct ̸= c.

ℓ(·, ·) Classification loss function. It is based on a target classifier C (or

its softmax outputs).

x′
FGSM Adversarially perturbed data point generated by the FGSM attack

[Goodfellow et al., 2014].

∇ Gradient operator.

sign(·) The element-wise sign function.
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αstep Step size for iterative adversarial attacks.

k Number of iterations for iterative adversarial attacks.

x′
BIM;i Adversarially perturbed data point using the BIM attack [Kurakin

et al., 2016] after i-iteration.

Clipx,ϵ(v) The clip function. It clips (limits) the vector v element-wise such

that the resulting output vector is within ϵ distance (l∞ norm)

from a data point x.

B(x, ϵ) ϵ-ball around a data point x. Mathematically, B(x, ϵ) =

{x′ ∈ X |d(x, x′) ≤ ϵ}.
x′
PGD;i Adversarially perturbed data point using the PGD attack [Madry

et al., 2017] after i-iteration.

r∗ Minimal distance perturbation such that the perturbed position

x + r∗ has a predicted class different from the correct class c.

Mathematically, r∗ = argmin
r:x+r∈X

d(x, x+ r) such that C(x+ r) ̸= c.

r Minimal distance perturbation. It satisfies x+ r ∈ X .

fobj(·) Object function [Carlini and Wagner, 2017]. It satisfies fobj(x +

r) ≤ 0 if and only if C(x+ r) = ct.

λ Hyperparameter for CW attack [Carlini and Wagner, 2017]. Ad-

ditionally, a hyperparameter for TRADES training [Zhang et al.,

2019a]. λ > 0.

R(x) Adversary region for a data point x. It means an allowed region

of the perturbations for a data point x.

a Adversarial accuracy. Mathematically, a = E(x,c)∼D[1(C(x∗) =

c)] for x∗ = argmax
x′∈R(x)

ℓ(x′, c).

x∗ Worst (strongest) adversarially perturbed data point from the

original data points x. Mathematically, x∗ = argmax
x′∈R(x)

ℓ(x′, c).

astd(ϵ) Standard adversarial accuracy by setting R(x) = B(x, ϵ).
ℓAT(x, c) Adversarial training loss for a data point x and its corresponding

class c.

x̂∗ Adversarially perturbed data point using an attack algorithm.

α Parameter for adversarial training [Goodfellow et al., 2014; Madry

et al., 2017]. 0 ≤ α ≤ 1.

ℓTRADES(x, c) TRADES training loss [Zhang et al., 2019a] for a data point x and

its corresponding class c.

Csmooth(·) Smoothed classifier based on a base classifier C(·) for randomized

smoothing [Cohen et al., 2019; Lecuyer et al., 2019].

δ Perturbation noise for randomized smoothing.
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σ Standard deviation of a Gaussian distribution.

N Multivariate Gaussian distribution.

dcombined(·, ·) Combined distance from two distance functions.

Chapter 4 - Hierarchy-informed classification

w Arbitrary node in a tree (or a DAG).

y Arbitrary class (class node).

c Specific class (class node).

dH(·, ·) Hierarchical distance function between classes.

V Set of nodes in a graph.

dH;LCS(·, ·) Hierarchical distance using lowest common subsumer (LCS).

Mathematically, dH;LCS(y1, y2) =
height(lcs(y1,y2))
max
w∈V

height(w)
for classes y1 and

y2. 0 ≤ dH;LCS ≤ 1.

lcs(·, ·) LCS of class nodes.

height(w) Length of the shortest path from node w to a leaf node.

dH;path Hierarchical distance using the shortest path.

p(wchild|wparent;x) Exact conditional probability that a data point x belongs to a

child node wchild given that it belongs to parent node wparent.

wchild Child node.

wparent Corresponding parent node of the node wchild.

y(i) Ancestor of a class node y with height i. y(0) = y. y(height(y)) = Ry.

Ry The highest ancestor of a class node y. When hierarchical struc-

ture is a rooted tree, thus there is only one node without parent,

Ry is a root node.

Leaves(w) The set of class nodes of the subtree rooted by the node w.

LHXE Hierarchical cross-entropy (HXE) loss [Bertinetto et al., 2020] for

hierarchy-informed classification.

λ(c(l)) Weight for edge between node c(l) and node c(l+1) for HXE loss

LHXE. Bertinetto et al. suggested λ(w) = e−αheight(w) for weights.
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α Hyperparameter for HXE loss.
−−→
softy Soft-label vector of a class y for soft-label based [Bertinetto et al.,

2020] hierarchy-informed classification.
−−→
softy;y1 Element for a class y1 of soft-label vector of class y. It is defined

as:
−−→
softy;y1 = exp(−βdH(y,y1))∑

y2∈Y
exp(−βdH(y2,y1))

.

β Hyperparameter for soft-label [Bertinetto et al., 2020]. β ≥ 0.

LSoft Soft-label loss.

sH(·, ·) Hierarchical class similarity defined by Barz and Denzler [2019].

Mathematically, sH(y1, y2) := 1− dH;LCS(y1, y2).

LCORR CORR loss [Barz and Denzler, 2019] for hierarchy informed clas-

sification. It is defined as: LCORR = 1
|B|

∑
(x,c)∈B

(1− cos θc).

LH-spherical Training loss suggested by Mettes et al. [2019] for hierar-

chy informed classification. It is defined as: LH-spherical =∑
(x,c)∈B

(1− cos θc)
2.

Ldisto(W ) Distortion-based penalty term proposed by Garnot and Landrieu

[2021].

s Scaling factor for distortion-based penalty term.

R+ The set of positive real numbers.

DH Hierarchical distance matrix whose (l, k)-th element is the hierar-

chical distance dH(yl, yk).

Chapter 5 - Adversarial robustness and feature space

characteristics

DI Input space distance matrix. lp distance between (input) training

data points was used for the calculation.

DF Feature space distance matrix. Euclidean distance between train-

ing data points on the feature space was used for the calculation.

dDoV Number of dimensions in the normalized singular value spectrum

of a feature space whose variance is higher than average 1
dF−1

.
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Chapter 6 - Discussion and future directions

∡(v1, v2) Angle between two (unit) vectors v1 and v2.

∡min(c) Smallest angle from the proxy W̃c of class c to a different proxy

W̃y′ . Mathematically, ∡min(c) = min
y′∈Y,y′ ̸=c

∡(W̃c, W̃y′).

ϵtiny Tiny number for the proposed training in subsection 6.2.1. ϵtiny >

0.

ui The i-th (unit) principal direction from PCA.

fnew(x) Modified feature from the re-weighting method in subsection 6.2.3.

wi Weight for the i-th principal direction for the re-weighting method

in subsection 6.2.3. wi ≥ 0.

Appendix

B1 l1 ball with radius ϵ1. Mathematically, B1 ={
x ∈ RdI : ∥x∥1 ≤ ϵ1

}
.

B∞ l∞ ball with radius ϵ∞. Mathematically, B∞ ={
x ∈ RdI : ∥x∥∞ ≤ ϵ∞

}
.

ϵ1 The radius of the l1 ball B1. It satisfies the setting ϵ∞ < ϵ1 < dIϵ∞.

ϵ∞ The radius of the l∞ ball B∞. ϵ∞ > 0.

H The convex hull of the union of B1 and B∞.

dcombined Combined distance. It is defined as: dcombined(x1, x2) =

β ∥x2 − x1∥1 + (1− β) ∥x2 − x1∥∞.

β Constant for the combined distance. It is set to β := ϵ1−ϵ∞
ϵ∞(dI−1)

.

Bcombined Ball with radius ϵcombined based on the dis-

tance dcombined. Mathematically, Bcombined ={
x ∈ RdI : dcombined(0, x) = β ∥x∥1 + (1− β) ∥x∥∞ ≤ ϵ1

}
.

ϵcombined Radius of ball based on the combined distance dcombined. It is set

to ϵcombined := ϵ1.

t Value between zero and one used for convex combination of two

vectors.

x1 Vector that belongs to the l1 ball B1. Mathematically, ∥x1∥1 ≤ ϵ1.

x2 Vector that belongs to the l∞ ball B∞. Mathematically, ∥x2∥∞ ≤
ϵ∞.

i∗ Index of x that maximizes its absolute value, thus |vi∗ | = max
1≤i≤dI

|vi|
where vi is value of the point x of index i.
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i∗∗ Index of x that has the second largest absolute value. When

dI = 2, i∗∗ = 3− i∗.

x∗
1 Intentionally chosen vector to be belong to the l1 ball B1.

x∗
2 Intentionally chosen vector to be belong to the l∞ ball B∞.

t∗ Intentionally chosen value between zero and one for convex com-

bination of two vectors.

x∗ Intentionally chosen vector for showing Bcombined ⊄ H when dI >

2.

ω Constant used for showing Bcombined ⊄ H when dI > 2. It is set

to ω := (dI−1)ϵ1ϵ∞
ϵ1+(dI−2)ϵ∞

. It satisfies the two inequalities ϵ∞ < ω and

ϵ1 < 2ω.

αi Value of the vector x∗
1 of index i.

βi Value of the vector x∗
2 of index i.

HA∪B Convex hull of the convex sets A and B.

RHS The set on the right hand side of equation (7.1). Mathematically,

RHS = {ta+ (1− t)b : 0 ≤ t ≤ 1, a ∈ A, b ∈ B}.
a3 Convex combination of two vectors a1 and a2 in the convex set A.

Mathematically, a3 :=
λt1a1+(1−λ)t2a2

λt1+(1−λ)t2
.

b3 Convex combination of two vectors b1 and b2 in the convex set B.

Mathematically, b3 :=
λ(1−t1)b1+(1−λ)(1−t2)b2
λ(1−t1)+(1−λ)(1−t2)

.

γ Convex combination of two values t1 and t2. Mathematically,

γ := λt1 + (1− λ)t2.

λ A value between zero and one used for convex combination.



xxii List of notations



Abbreviations

(Abbreviations in Chapter 7 are not listed here.)

Chapter 1 - Introduction

k-NN classifier k-nearest neighbor classifier.

SVM Support-vector machine.

RGB Red, green, and blue.

CIFAR-10 The name of the dataset introduced by Krizhevsky et al. [2009].

DNN Deep neural network.

CE loss Cross-entropy loss.

Chapter 2 - Metric learning

ReLU A rectified linear unit. A type of activation function.

NormFace Normalized softmax model [Wang et al., 2017; Zhai andWu, 2019].

CosFace A modification of NormFace model by introducing cosine margin

[Wang et al., 2018].

LMCL Large margin cosine loss for CosFace model.

ArcFace A modification of NormFace model by introducing angular margin

[Deng et al., 2019].

EMA Exponential moving average.

AdaCos NormFace model trained by adaptive scaling factor s [Zhang et al.,

2019b].

PCA Principal component analysis.

CUB The abbreviated name of the dataset introduced by Wah et al.

[2011]. The original name is “Caltech-UCSD Birds-200-2011”.
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CARS196 The name of the dataset introduced by Krause et al. [2013].

SOP The abbreviated name of the dataset introduced by Oh Song et al.

[2016]. The original name is “Stanford online products”.

SV Singular values.

DoV Directions of significant variance [Roth et al., 2020].

ImageNet The short name of the dataset introduced by Deng et al. [2009];

Russakovsky et al. [2015]. The original name is “ImageNet large

scale visual recognition challenge (ILSVRC) 2012”.

SD-softmax for-

mulation

A formulation for metric learning using negative of squared dis-

tance (SD) on softmax formulation. (“Softmax-based formula-

tion” in the paper II)

DR formulation Distance-ratio-based formulation for metric learning introduced

in paper II.

Chapter 3 - Adversarial robustness

CNN Convolutional neural network.

LPIPS Learned perceptual image patch similarity [Zhang et al., 2018].

FGSM Fast gradient sign method for adversarial attack [Goodfellow

et al., 2014].

BIM Basic iterative method for adversarial attack [Kurakin et al.,

2016].

PGD Projected gradient descent method for adversarial attack [Madry

et al., 2017].

CW Carlini-Wagner attack [Carlini and Wagner, 2017] for adversarial

attack.

Adam Adaptive moment optimization [Kingma and Ba, 2014].

DeepFool The name of an attack suggested by Moosavi-Dezfooli et al. [2015].

FAB Fast adaptive boundary attack suggested by Croce and Hein

[2020b].

SAA Standard adversarial accuracy. An adversarial accuracy when us-

ing ϵ-ball for an adversary region R(x).

AT Adversarial training [Goodfellow et al., 2014; Madry et al., 2017].

ST Standard (non-adversarial) training.
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TRADES An adversarial defense method [Zhang et al., 2019a]. The name

stands for “TRadeoff-inspired Adversarial DEfense via Surrogate-

loss minimization.”

MEPs Mutually exclusive perturbations [Tramer and Boneh, 2019]. Two

perturbations are MEPs when robustness to one perturbation type

necessary implies susceptibility to the other.

RST Robust self-training suggested by Carmon et al. [2019].

VAA Voronoi-epsilon adversarial accuracy proposed in paper III.

1-NN classifier The (single) nearest neighbor classifier.

Chapter 4 - Hierarchy-informed classification

DAG Directed acyclic graph structure.

LCS Lowest common subsumer [Barz and Denzler, 2019; Bertinetto

et al., 2020].

WordNet An English word database that includes their semantic relation-

ships [Miller, 1998].

HXE Hierarchical cross-entropy for hierarchy-informed classification

[Bertinetto et al., 2020].

CORR loss Training loss suggested by Barz and Denzler [2019] for hierarchy-

informed classification.

Chapter 5 - Adversarial robustness and feature space

characteristics

SVHN The name of the dataset introduced by Netzer et al. [2011].

MC MC (Mean correlation) value was introduced in paper IV. It is

a measure devised to compare two distance structures based on

rank correlation values.

NPC Nearest prototype classifier.



xxvi Abbreviations



List of publications

This thesis is based on the following papers.

I Ketil Malde and Hyeongji Kim. Beyond image classification: zooplankton identi-

fication with deep vector space embeddings. arXiv preprint arXiv:1909.11380, 2019.

II Hyeongji Kim, Pekka Parviainen, and Ketil Malde. Distance-Ratio-Based For-

mulation for Metric Learning. arXiv preprint arXiv:2201.08676, 2022.

III Hyeongji Kim, Pekka Parviainen, and Ketil Malde. Measuring Adversarial Ro-

bustness using a Voronoi-Epsilon Adversary. In Proceedings of the Northern Lights

Deep Learning Workshop, Volume 4, 2023.

IV Hyeongji Kim, Pekka Parviainen, Terje Berge, and Ketil Malde. Inspecting

class hierarchies in classification-based metric learning models. arXiv preprint

arXiv:2301.11065, 2023.



xxviii List of publications



Contents

Scientific environment i

Acknowledgements iii

Preface v

Abstract in English ix

Sammendrag xi

List of notations xiii

Abbreviations xxiii

List of publications xxvii

1 Introduction 1

1.1 General setting and terminology . . . . . . . . . . . . . . . . . . . . . . . 4

2 Metric learning 7

2.1 Embedding-based metric learning . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Classification-based metric learning . . . . . . . . . . . . . . . . . . . . . 9

2.3 Space for embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



xxx CONTENTS

2.4 Discriminative power of embeddings . . . . . . . . . . . . . . . . . . . . . 14

2.5 Estimating class probability in metric learning . . . . . . . . . . . . . . . 18

3 Adversarial robustness 21

3.1 Adversarial attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Adversarially robust classifiers . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Tradeoff between natural accuracy and adversarial accuracy . . . . . . . 27

4 Hierarchy-informed classification 29

4.1 Determination of hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Hierarchy-informed classification methods . . . . . . . . . . . . . . . . . 31

5 Adversarial robustness and feature space characteristics 35

5.1 Comparing distance structures of feature space and input space . . . . . 36

5.2 Effects of increased MC values on discriminality and dimensionality . . . 37

5.3 Correlation between MC values and representation measures . . . . . . . 40

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Discussion and future directions 43

6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.1 Improving discriminality of an adversarially robust model . . . . . 45

6.2.2 Estimation and enhancement of intra-class variance with metric

learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3 Re-weighting for direct modification of a feature space . . . . . . 46

7 Scientific results 59



CONTENTS xxxi

I Beyond image classification: zooplankton identification with deep vector

space embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

II Distance-Ratio-Based Formulation for Metric Learning . . . . . . . . . . 81

III Measuring Adversarial Robustness using a Voronoi-Epsilon Adversary . . 99

IV Inspecting class hierarchies in classification-based metric learning models 109

Appendix 159

A The convex hull of the union of l1 and l∞ balls and its relation to a

combined distance dcombined based ball . . . . . . . . . . . . . . . . . . . 159



xxxii CONTENTS



Chapter 1

Introduction

Classification is the process of sorting data into categories. Data are assigned to each

category (or class) based on certain characteristics. Thus, the data in each class can

be said to be similar in some way. Similarity can be used for different purposes, such

as comparing data points without considering classes. Similarity can be abstract and is

often difficult to define precisely. So how can we define similarity or dissimilarity?

The notion of dissimilarity can be expressed with a distance, also referred to as a metric

or a metric distance. Euclidean distance, which denotes the concept of physical distance,

is integral to our daily lives. Distance is also used in a wide range of scientific disciplines.

For instance, it is used for the study of protein structures [Jumper et al., 2021]. A distance

function need not be limited to Euclidean distance. Any function that satisfies certain

properties can be considered as a distance.

Distance is a fundamental part of machine learning. It is used in many clustering meth-

ods, including k-means clustering and density-based clustering methods [Ester et al.,

1996]. Additionally, it is used for modeling and the validation process of regression mod-

els. Numerous classification methods use distances for classification. For example, based

on a distance measure, k-nearest neighbor (k-NN) classifiers find neighboring data points

to classify new data points. Support-vector machine (SVM) uses margin in its optimiza-

tion, where margin is defined as twice the distance between the decision boundary and

the shortest training examples of each class.

Euclidean distance, also known as l2 norm distance, is perhaps the most commonly used

and familiar distance. It is used for explaining a multitude of physical phenomena,

including gravity and electric forces. It is defined between two vectors (or two points).

Euclidean distance can be used for comparing images by considering each RGB color

channel value (or each pixel value for grayscale images) as an element of a vector.
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The following example illustrates the use of Euclidean distance for comparing images.

Figure 1.1 displays three images. As shown by the distance values (in the caption),

semantically similar image pairs can have a larger Euclidean distance than semantically

dissimilar image pairs. In other words, Euclidean distance may not necessarily match

semantic dissimilarity.

(a) (b) (c)

Figure 1.1: (a) and (b): Two images (a) and (b) from training data of the CIFAR-10
dataset [Krizhevsky et al., 2009]. (c): shifted image from the first image (a) by one pixel
value in the positive x-axis direction. l2 distance between figures (a) and (b) is 5.5699. l2
distance between figures 1.1 (a) and (c) is 6.8126, which is larger than the previous image
pair. l∞ distance between figures (a) and (b) is 0.4431. l∞ distance between figures (a)
and (c) is 0.7804, which is larger than the previous image pair.

To understand why the mismatch of semantic distance and Euclidean distance occurs, we

need to understand the formal definition of Euclidean distance, namely, l2 norm distance.

Thus, let us consider the mathematical definition and its generalization, known as lp

norm distance (p ≥ 1), which is also commonly used. Let v = (v1, v2, · · · , vn) ∈ Rn be a

n-dimensional vector. Its lp norm, which is denoted as ∥v∥p, is defined as:

∥v∥p =
(

n∑

i=1

|vi|p
) 1

p

, (For 1 ≤ p < ∞)

∥v∥∞ = max
1≤i≤n

|vi|. (For p = ∞)

l2 norm is often denoted as ∥v∥; that is, without explicitly mentioning p = 2 due to

its popular usage. Because of its definition, l∞ norm is also called max norm. For two

n-dimensional vectors u and v, lp norm (distance) between the two vectors is defined

as ∥u− v∥p. From the definition, it is clear that lp norm distance is based on the

element-wise difference values of two vectors. From this, it is possible to understand

how the mismatch occurs. The first column of Figure 1.1c is black and compared with

Figure 1.1a, increased Euclidean distance. Additionally, the colors in the corresponding
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positions seem to be similar for Figures 1.1a and 1.1b. This explains why their distance

is not large. The same trend is shown when we consider l∞ norm distance. (Further

analysis confirms that for Figures 1.1a and 1.1c, most (86.20 %) of the squared value of

l2 norm distance is due to the first column, while the maximum difference of l∞ norm

distance is in the first column.)

The mismatch between lp norm distance and perceptual dissimilarity raises the following

question. Can we find distances (or distance-like functions) that match semantic dissim-

ilarity? To answer this, we first need to understand the formal definition of general

distance.

Mathematically, a distance d(·, ·) is a function that satisfies the following properties for

any three data points x, y, z of a space:

d(x, y) = 0 ⇐⇒ x = y, (⇒: The identity of indiscernibles, (1.1a)

⇐: The indiscernibility of identicals) (1.1b)

d(x, y) ≥ 0, (Non-negativity) (1.1c)

d(x, y) = d(y, x), (Symmetry) (1.1d)

d(x, z) ≤ d(x, y) + d(y, z). (The triangle inequality) (1.1e)

Among these properties, the triangle inequality (1.1e) might be the most useful. It can

be intuitively understood as “the direct path from the data point x to z is the short-

est path between the two data points.” The triangle inequality enables distances to be

bounded without directly computing them, a property that is essential in many neigh-

bor search algorithms as it reduces search space [Schubert, 2021]. Combined with the

other properties, distance function can represent how similar data points are.

Can we find distances that match semantic dissimilarity? Distance-like functions, which

satisfy most of the properties (1.1) of distance, can be found by learning feature extract-

ing functions from data. In machine learning, this process is known as metric learning

and is explained in Chapter 2. I also explore how the performance of metric learning

models can be affected by (extracted) feature space. In addition to metric learning, to

further examine the importance of distance in machine learning, I also explore other

fields of machine learning.

It has been shown that common deep neural network (DNN)-based classifiers are vulnera-

ble to adversarially perturbed data points (input images), known as adversarial examples

[Szegedy et al., 2013]. In human eyes, image adversarial examples are often indistin-

guishable from the original data points. The susceptibility of common machine learning

models is immensely concerning in areas where safety is crucial, such as autonomous
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driving and face verification systems. Hence, the existence of adversarial examples poses

a significant obstacle to the widespread adoption of machine learning models, as they

can be exploited by malicious attackers. Distance serves as a key component in the for-

mal definition of adversarial examples and adversarially robust classification. In Chapter

3, I delve into this field by examining adversarial attacks and robust models.

Often, classes share common characteristics with others. In other words, some classes

are more similar than other classes. Hierarchical structures can represent these relation-

ships, which is especially important in classification of biological and library data. How-

ever, standard classification models overlook these relationships. By contrast, hierarchy-

informed classification models handle existing hierarchical relationships of classes by

incorporating class hierarchy into the training process. Distance is also utilized through

the concept of hierarchical class distance, which denotes the hierarchical distance between

classes. The field of hierarchy-informed classification is explored in detail in Chapter 4.

In Chapter 5, I investigate the influence of adversarial training (popular adversarial

defense method) in feature space and suggest possible effects of distances in the feature

spaces of robust classifiers. In Chapter 6, I explain why distances are important in the

explained fields and suggest possible future works. Research works are presented in

Chapter 7.

1.1 General setting and terminology

Let X be an input space with X ⊂ RdI where dI is the dimension of the input space. Let

Y be a set of possible classes. From data distribution D, data point and class pairs (x, c)

are sampled for x ∈ X and c ∈ Y . There is a feature mapping function f : X −→ Z
where Z ⊂ RdF is a feature space (dF is dimension of the feature space). Unless otherwise

specified, I assume this function is modeled by a DNN. Using this feature mapping f(·),
a classification model outputs logit value ly(x) for y ∈ Y (I denote an arbitrary class as

y). The standard calculation for logit values can be expressed as:

ly(x) = W T
y f(x) + by,

where W is a weight matrix, Wy is a weight vector from the matrix W , and by is a bias

term for class y. These logit values can be used for estimating class probability p(y|x)
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by adopting the following softmax formulation:

p̂(y|x) = ely(x)∑
y′∈Y

ely′ (x)
, (1.2)

where p̂(y|x) is an estimated class probability (I denote estimated probability as p̂ to

contrast it with exact probability p). For each data point x, it is possible to obtain a

predicted class ĉ using estimated probabilities by finding a class that maximizes estimated

class probability p̂(y|x); in other words, by setting ĉ = argmax
y∈Y

(p̂(y|x)). To train a

classifier, cross-entropy (CE) loss is commonly used as an objective function. When

log(·) is the element-wise logarithm function, the point-wise cross-entropy loss between

two probability vectors P and Q is defined as:

ℓCE(P,Q) = −P · log (Q) (Using dot product)

= −
|Y|∑

k=1

Pk log (Qk) , (Using summation) (1.3)

where Pk and Qk represent the k-th element of probability vectors P and Q, respectively.

Let
−→
1 y be the one-hot vector whose element has the value of 1 for the corresponding

element of y. Let P̂ (Y|x) be the estimated class probability vector of data point x;

hence, its corresponding element of index for class y has value p̂(y|x). The vector P̂ (Y|x)
represents the softmax outputs of data point x. Accordingly, the cross-entropy loss of a

mini-batch B ⊂ D is defined as:

LCE =
1

|B|
∑

(x,c)∈B
ℓCE(

−→
1 c, P̂ (Y|x)). (1.4)

Taking into consideration the definition of vectors and CE loss (1.3), the loss can be

simplified as:

LCE = − 1

|B|
∑

(x,c)∈B
log(p̂(c|x)). (1.5)
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Chapter 2

Metric learning

In the introduction (Chapter 1), I posed the question: Can we find distances that match

semantic dissimilarity? In this chapter, I exploremetric learning to answer this question.

Metric learning is a field of machine learning that learns a feature mapping (embedding

function) f(·) that maps similar data points to be close and dissimilar data points to

be far apart on the embedding space, also known as the feature space (or representation

space). Once embedding function is learned, distance on the embedding space can be

calculated using a distance function d(·, ·).

Using the calculated distance from the embedding space, a function dlearned(·, ·) can be

defined as:

dlearned(x1, x2) := d(f(x1), f(x2)),

for any two data points x1 and x2. One can verify that the function dlearned(·, ·) satisfies
most properties of distance in definition (1.1) except for the “identity of indiscernibles”

property (1.1a) (such a function is known as pseudometric in mathematics). When the

feature mapping f(·) (and further modifications) is invertible, the function dlearned(·, ·)
satisfies all properties for distance. Hence, the function dlearned(·, ·) can be considered a

learned dissimilarity between data points. In other words, metric learning is a field that

involves learning a distance(-like) function. Although it is a slight abuse of terminology,

for the sake of simplicity, I refer to this function dlearned(·, ·) as distance.

What are the applications of learned distances? In other words, how can metric learning

be utilized? It can be used for few-shot classification, where a model needs to classify a

query data point from a new class based on a limited number of support points (examples)

only for each new class [Snell et al., 2017]. It can also be used for information retrieval,

where a model needs to find the most similar data points for a query data point [Musgrave
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et al., 2020]. Based on the assumption that augmented data points will be similar

to the original data point, some concepts in metric learning methods have applied in

self-supervised learning [Chen et al., 2020b], which refers to representation learning in

unsupervised settings.

In sections 2.1 and 2.2, I explore two different approaches for metric learning. Section

2.3 describes three popular spaces used in metric learning, while in section 2.4, I de-

scribe how discriminative power and dimensionality of feature space can affect metric

learning performance. Finally, in section 2.5, I describe common formulations used for

the estimation of class probability in some metric learning models.

2.1 Embedding-based metric learning

Embedding-based metric learning methods [Hadsell et al., 2006; Wang et al., 2014] use

direct comparison between embeddings of pairs or triplets of data points.

The contrastive training [Hadsell et al., 2006] uses pairs of data points for metric learning.

To distinguish classes used in training and testing phases, I denote the set of classes used

in training phase as Ytrain ⊂ Y . For a data point pair (xi, xj) and the corresponding

class pair (ci, cj) (where ci, cj ∈ Ytrain), contrastive loss ℓContrastive is defined as:

ℓContrastive = 1(ci = cj) ·
1

2
d(f(xi), f(xj))

2 + 1(ci ̸= cj) ·
1

2
ReLU(m− d(f(xi), f(xj)))

2,

where 1(·) is the indicator function, m > 0 is a margin parameter, and ReLU(v) =

max(0, v) for a value v. When data points xi and xj have the same class (positive pair),

the loss tries to reduce their distance in the embedding space. In the converse scenario

(negative pair), the loss tries to increase their distance in the embedding space up to the

margin m.

The triplet training [Wang et al., 2014] selects triplets such that each triplet (xa, xp, xn)

has an anchor point xa, a positive point xp with the same class as the anchor xa, and a

negative point xn with a different class from the anchor xa. Given a triplet (xa, xp, xn),

triplet loss ℓTriplet is defined as:

ℓTriplet = ReLU(d(f(xa), f(xp))− d(f(xa), f(xn)) +m).

This loss tries to make the anchor-positive distance d(f(xa), f(xp)) smaller than the

anchor-negative distance d(f(xa), f(xn)).
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One drawback of embedding-based metric learning methods is that the complexity of

training is high. Specifically, if we let N be the number of training data points, then the

training complexity of contrastive training is O(N2) and that of triplet training is O(N3).

The high training complexity requires special sample mining algorithms [Schroff et al.,

2015; Wang et al., 2017]; otherwise their training speed will be slow [Kim et al., 2020].

Unlike embedding-based metric learning with high training complexity, classification-

based metric learning methods have O(N) training complexity. This reduced complexity

is made possible by using one class representative [Deng et al., 2019; Liu et al., 2017;

Wang et al., 2017, 2018; Zhai and Wu, 2019] or multiple class representatives [Deng

et al., 2020; Qian et al., 2019] for each class.

2.2 Classification-based metric learning

Before considering classification-based metric learning models, it is useful to recall the

usual setting of a standard softmax classifier. Once a feature mapping f(·) is modeled

by a DNN, the softmax classifier models logit value ly(x) for a data point x and a class

y ∈ Ytrain as:

ly(x) = W T
y f(x) + by, (2.1)

where W is a learnable weight matrix, Wy is a weight vector from the matrix W , and

by is a bias term for class y. From logit values, one can estimate class probability p(y|x)
using the softmax formulation (1.2) and then train the model using the cross-entropy

loss in the equation (1.5).

NormFace [Wang et al., 2017], also known as normalized softmax [Zhai and Wu, 2019],

is one of the simplest classification-based metric learning models. Unlike the softmax

classifier that estimates logit value ly(x) as the expression (2.1), it uses a normalized

space (spherical space) and zero bias terms. Specifically, let us denote a normalized

vector of a non-zero vector v as ṽ, formalized as ṽ = v
||v|| . Denoting the angle between

W̃y and f̃(x) as θy then yields an equation with cosine similarity:

W̃ T
y f̃(x) =

∥∥∥W̃y

∥∥∥
∥∥∥f̃(x)

∥∥∥ cos(θy) = cos(θy).

NormFace models logit value ly(x) as:

ly(x) = sW̃ T
y f̃(x) = s cos(θy), (2.2)

where s > 0 is a scaling parameter. From this, estimated class probability p(y|x) using
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NormFace is calculated as:

p̂(y|x) = es cos(θy)∑
y′∈Ytrain

es cos(θy′ )
. (2.3)

Following this, cross-entropy loss for NormFace is calculated as:

LNormFace = − 1

|B|
∑

(x,c)∈B
log(

es cos(θc)∑
y′∈Ytrain

es cos(θy′ )
),

where B ⊂ D is a mini-batch.

From the NormFace model [Wang et al., 2017], it is common practice to use a class ĉ

that maximizes estimated class probability p̂(y|x) as a predicted class. Because softmax

function (1.2) is an increasing function with respect to logits, it is equivalent to using a

class ĉ that maximizes the logit value. From equation (2.2), we can express this as lĉ(x) =

s cos(θĉ) ≥ s cos(θy) = ly(x) for all y ∈ Ytrain. Because cosine is a decreasing function

within the interval [0, π], we obtain an equivalent expression for the decision boundary:

θĉ ≤ θy for all y ∈ Ytrain. This means that NormFace uses angles between normalized

feature f̃(x) and normalized weight vectors W̃y for classification of a data point x, and

takes the class ĉ with the closest (normalized) weight vector W̃ĉ as a predicted class.

Thus, we can consider a normalized weight vector W̃y as a class representative of class

y. A visualized example is presented in Figure 2.1.

W̃1

W̃2

f̃(x)

θ1 θ2

Figure 2.1: Visualization of NormFace classification results for two classes with W̃1=(0,1)
and W̃2=(1,0). Because f̃(x) is closer to W̃1 than W̃2, data point x is classified as
belonging to class 1.

In classification-based metric learning, a class representative can be modeled by a learn-

able weight vector or an average position (or a normalized average position) of each class

in an embedding space. To distinguish them, I call the former class representative (a

learnable weight vector) a proxy and the latter (an average position of each class) a pro-

totype. In the NormFace model [Wang et al., 2017], normalized weight vectors W̃y are

proxies. These are typically used in the training process of classification-based metric
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learning. A prototype is an average embedding of each class (or normalized average em-

bedding for spherical embedding space). Let us denote the average embedding of class

y as µy. Mathematically, µy is defined as:

µy =
1

|Xy|
∑

x∈Xy

f(x), (2.4)

where Xy ⊂ X is the set of data points belonging to class y and f̃(x) is used instead of

f(x) for normalized embedding space. Then, µy is a prototype of class y (or µ̃y = µy

∥µy∥
is a prototype for normalized embedding).

There are variants of NormFace [Wang et al., 2017] that increase the separation of classes

by introducing margins. CosFace [Wang et al., 2018] introduces a cosine margin. CosFace

uses a new loss called large margin cosine loss (LMCL). It is defined as:

LLMC = − 1

|B|
∑

(x,c)∈B
log(

es(cos(θc)−m)

es(cos(θc)−m) +
∑

y′∈Ytrain−{c}
es cos(θy′ )

).

The decision boundary of CosFace becomes cos(θc) ≥ cos(θy′)+m for all y′ ∈ Ytrain−{c}.
Unlike NormFace [Wang et al., 2017], which is sufficient to be classified as the correct

class c when cosine similarity is larger (or equal) than other classes, CosFace requires

much larger (by the margin m) cosine similarity for class c.

ArcFace [Deng et al., 2019] introduces an angular margin. Its training loss is defined as:

LArcFace = − 1

|B|
∑

(x,c)∈B
log(

es cos(θc+m)

es cos(θc+m) +
∑

y′∈Ytrain−{c}
es cos(θy′ )

).

The decision boundary of ArcFace becomes cos(θc+m) ≥ cos(θy′) for all y
′ ∈ Ytrain−{c}

or, more concisely, θc ≤ θy′−m for all y′ ∈ Ytrain−{c}. To be classified as the correct class

c, ArcFace requires much smaller (by the margin m) angles for class c than NormFace

[Wang et al., 2017]. Figure 2.2 compares the decision boundaries of the three models for

a binary classification scenario.
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(a) (b) (c)

Figure 2.2: Decision boundaries for different models with margin m = 1 when there are
only two classes (class 1 and class 2). (a): NormFace model. (b) CosFace model. (c):
ArcFace model.

Other attempts have been made to improve NormFace [Wang et al., 2017] without using

margins. For instance, Zhe et al. [2019] found that the standard gradient update of the

NormFace model [Wang et al., 2017] can cause an unstable update of proxy positions

as their gradients are affected by data points from different classes. To handle this,

they suggested using exponential moving average (EMA) with normalization for proxy

updates. For a data point x that belongs to class c, the proxy W̃c is updated as:

W̃c =
αf̃(x) + (1− α)W̃c

∥αf̃(x) + (1− α)W̃c∥
,

where 0 < α < 1 is a parameter that controls the stability and speed of updates.

Through an analysis of scaling factor s and margin parameter m in the ArcFace model

[Deng et al., 2019], Zhang et al. [2019b] found that it is possible to control the effects of

both hyperparameters with parameter s only. To address the difficulty of hyperparameter

tuning in achieving optimal performance, they proposed AdaCos, which is a NormFace

model [Wang et al., 2017] trained by the adaptive scaling factor s. Specifically, they

suggested choosing parameter s, which significantly changes the estimation of probability

p(c|x) where c is the class of the data point x. Mathematically, they attempted to use

a scaling factor s that maximizes
∥∥∥∂p(c|x)(θc)

∂θc

∥∥∥, which can be found by approximating the

equation:

∂2p(c|x)(θ′c)
∂θ′2c

= 0, (2.5)

where θ′c := clip(θc,
[
0, π

2

]
) and clip(·, ·) is a function that limits a value within a specified

range.
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2.3 Space for embedding

Euclidean space RdF (dF is the dimension of the feature space) is likely to be the simplest

space for metric learning. Its simplicity enables straightforward arithmetic operations

and average calculations. The standard PCA (principal component analysis) can be used

for analyzing Euclidean embedding spaces, unlike non-Euclidean spaces that require more

complex methods for proper analysis.

While Euclidean space RdF is the most familiar space, non-Euclidean spaces can

be used for metric learning. As explained in section 2.2, spherical space SdF−1 ={
z ∈ RdF | ∥z∥ = 1

}
is a popular non-Euclidean space for embedding space [Barz and

Denzler, 2019; Deng et al., 2019; Wang et al., 2017, 2018] as it exhibits improved perfor-

mance over Euclidean space. In practice, unnormalized feature f(x) ∈ RdF is normalized

for numerical stability as follows:

f̃(x) =
f(x)

||f(x)||+ ϵstab
,

where ϵstab is a positive value close to zero. When ϵstab is ignored, the normalized

feature f̃(x) belongs to SdF−1. Hence, spherical space SdF−1 is also called normalized

space. Euclidean distance and angular distance between features are metric distances in

the spherical space. The Euclidean distance is commonly used in metric learning with

hyperspheres [Deng et al., 2019; Wang et al., 2017, 2018; Zhang et al., 2019b].

Recently, hyperbolic spaces have also been used in metric learning. While there are

several models for hyperbolic spaces, Poincaré ball model DdF
τ =

{
z ∈ RdF |τ ∥z∥2 < 1

}
,

where τ ≥ 0 is a curvature parameter, is a popular space employed in metric learning

[Ermolov et al., 2022; Khrulkov et al., 2020; Yan et al., 2021]. Because it is not a vector

space, it requires so-called gyrovector addition to replace the vector addition. For two

gyrovectors v1, v2 ∈ DdF
τ , gyrovector addition is defined as:

v1 ⊕τ v2 =

(
1 + 2τ ⟨v1, v2⟩+ τ ∥v2∥2

)
v1 +

(
1− τ ∥v1∥2

)
v2

1 + 2τ ⟨v1, v2⟩+ τ 2 ∥v1∥2 ∥v2∥2
.

Using this addition, (geodesic) distance between v1, v2 ∈ DdF
τ is defined as:

d(v1, v2) =
2√
τ
arctanh

(√
τ ∥−v1 ⊕τ v2∥

)
.

To use this space for metric learning, we need to map vectors from Euclidean space RdF
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into the Poincaré model DdF
τ . This so-called exponential mapping is defined as:

expτ
x (v) = x⊕τ

(
tanh

(√
τ
λτ
x ∥v∥
2

)
v√
τ ∥v∥

)

where x ∈ DdF
τ is a base point and λτ

x is a conformal factor defined as λτ
x = 2

1−τ∥x∥2 . The

base point is commonly set to the zero vector
−→
0 .

Using hyperbolic space can be beneficial in two ways. First, Khrulkov et al. [2020] found

that unclear data points and data points from new datasets are mapped close to the

center, while clearer samples are mapped close to the boundary of the ball. Hence, when

the clarity and quality of points in the dataset vary, this can be handled using hyperbolic

embedding. This is not possible in spherical embedding that nullifies magnitudes by

normalization. Second, tree structures can be mapped into a two-dimensional Poincaré

model D2
τ with arbitrarily low distortion [Sarkar, 2012]. Additionally, as explained by

Sala et al. [2018], let us consider three points
−→
0 , v1, v2 ∈ D2

τ with ∥v1∥ = ∥v2∥ = t. As we

approach t to the maximal norm 1√
τ
, the distance d(v1, v2) approaches d(v1,

−→
0 )+d(

−→
0 , v2).

This is similar to the property of the trees. That is, “the shortest path between two

nodes is the path through their parent”. Taking account of both the tree-approximating

capability and the tree-like property, the Poincaré ball model can be advantageous in

handling the underlying hierarchical tree structures of datasets.

2.4 Discriminative power of embeddings

Several approaches, including the use of margins [Deng et al., 2019; Wang et al., 2018] and

an adaptive scaling factor [Zhang et al., 2019b], strive to increase separation between the

data points belonging to different classes. Popular usage of these methods has given rise

to the following questions. How can we measure the discriminative power (discriminality)

of a learned representation? What are the effects of discriminality on representations?

Moreover, is it always beneficial to have higher discriminality?

Liu et al. [2020] studied the CosFace model [Wang et al., 2018] on few-shot classification

tasks by varying the margin parameter m. They defined the discriminative function

ϕ(m) to measure discriminative power for spherical embeddings. This is based on the

inter-class variance Dinter(m) and the intra-class variance Dintra(m). Let us denote the

class set of interest as YI ⊂ Y and the set of data points for the j th class in YI as Xj.

When feature space is learned with margin m, we denote the embedding of a data point

x as f̃m(x) and the average embedding for the j th class as µj(m). Following this, the
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variances Dinter(m) and Dintra(m) are defined as:

Dinter(m) =
1

|YI |(|YI | − 1)

|YI |−1∑

j=1

|YI |∑

k=1,k ̸=j

∥µj(m)− µk(m)∥2,

Dintra(m) =
1

|YI |

|YI |∑

j=1

1

|Xj|
∑

xi∈Xj

∥f̃m(xi)− µj(m)∥2. (2.6)

Discriminative function ϕ(m) is the ratio between the two variances and is formulated

as:

ϕ(m) =
Dinter(m)

Dintra(m)
. (2.7)

With varying margin values, Liu et al. [2020] assessed the changes of variances and the

discriminative function on training classes, also known as base classes, and unseen classes

during the training phase, which are often referred to as novel classes. They found that

as the margin increased, discriminative (function) value ϕ(m) increased for base classes.

By contrast, the discriminative value decreased for novel classes. This was due to the in-

crease of intra-class variance Dintra(m) while inter-class variance Dinter(m) changed little

for novel classes. Similarly, as they increased margin parameter m, few-shot accuracy

increased for base classes while accuracy decreased for novel classes. From these obser-

vations, they suggested using a CosFace model [Wang et al., 2018] with negative margin

m for few-shot classification.

Liu et al. [2020] explained their observations by visualizing data distributions. With

a larger margin, data points will be more closely located to the prototypes of the base

classes in the embedding space. When data points from the same novel class are mapped

closely to multiple base prototypes (peaks), their intra-class variance will increase.

Roth et al. [2020] examined various metric learning models using metric learning perfor-

mance measures. They defined an assessment measure πratio named “embedding space

density”, which is similar to the reciprocal of the discriminative function [Liu et al.,

2020]. To avoid confusion, I express the measure with the mathematical symbol πratio.

This measure is also based on two values: average inter-class distance πinter and average

intra-class distance πintra. These are defined as:

πinter =
1

Zinter

∑

k,l,k ̸=l

d(µk, µl),
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πintra =
1

Zintra

|YI |∑

k=1

∑

xi,xj∈Xk

d(f̃(xi), f̃(xj)),

where Zinter and Zintra are the normalization constants. These constants can be expressed

as the equations Zinter = |YI |(|YI |−1) and Zintra =
|YI |∑
k=1

|Xk|(|Xk|−1). (Note that although

Roth et al. used a different formulation of πintra for the equation presented in their paper

and for their code, their implementation of average intra-class distance πintra used class-

wise normalization instead of only applying normalization at the end.) The measure

πratio is the ratio between two distances and is formulated as:

πratio =
πintra

πinter

. (2.8)

They used cosine distance on embedding for the distance function d(·, ·). (It is not

actually a distance as it violates the triangle inequality [1.1e]. The square root of the

cosine distance is distance.)

By splitting data classes into training and test classes, Roth et al. [2020] assessed the

value of the πratio on training data and evaluated test class performances for three

datasets: CUB200-2011 [Wah et al., 2011], CARS196 [Krause et al., 2013], and Stanford

Online Products (SOP) [Oh Song et al., 2016]. They found that πratio is positively cor-

related (CUB200-2011: 0.79, CARS196: 0.65, SOP: 0.22) with generalization on novel

classes. Because πratio is approximately the reciprocal of the discriminative function and

evaluated performances are affected by the discriminative power on test classes, this

finding is similar to the observations of Liu et al. [2020].

In addition to πratio, Roth et al. [2020] defined a measure ρ to assess the spectral decay

of embedding on training data. Its value is defined as:

ρ = KL(UdF ||S), (2.9)

where KL(·||·) is the Kullback–Leibler divergence, UdF is dF -dimensional discrete uni-

form distribution, and S is the normalized spectrum of singular values (SV) sorted in

descending order. A small ρ value means that learned embedding contains many “direc-

tions of significant variance (DoV)” as less flattening of representation occurs. In other

words, value ρ can measure compression in feature representation.

Using the same three datasets, Roth et al. [2020] studied the relation between ρ val-

ues and metric learning performances. They found that they are negatively correlated

(CUB200-2011: −0.80, CARS196: −0.85, SOP: −0.63). This indicates that having more

DoV is beneficial in terms of generalization power as there can be considerable distribu-
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tion shifts in test data, which will be negatively impacted by strong compression.

Based on the results, the authors proposed a ρ-regularization for embedding-based metric

learning. Specifically, they suggested randomly switching negative data points with the

positive data points in their loss. The goal was to avoid excessively strong compression

during training. They experimentally demonstrated that their regularization can reduce

the ρ value and improve recall performance.

Kornblith et al. [2021] studied the effects of different training losses on the transferability

of representations. They trained 8 models with different losses on the ImageNet ILSVRC

2012 dataset [Deng et al., 2009; Russakovsky et al., 2015]. Next, they evaluated model

accuracy on the ImageNet test set and different datasets to study the transferability of

representations. They proposed a value R2 to measure class separation in embedding

spaces. This is based on the average within-class cosine distance d̄within and the overall

average cosine distance d̄total. These values are defined as:

d̄within =

|YI |∑

k=1

∑

xi,xj∈Xk

1− sim(f(xi), f(xj))

|YI ||Xk|2
, (2.10)

d̄total =

|YI |∑

k=1

|YI |∑

l=1

∑

xi∈Xk, xj∈Xl

1− sim(f(xi), f(xj))

|YI |2|Xk||Xl|
, (2.11)

where sim(·, ·) is cosine similarity, formalized as sim(v1, v2) = ṽ1 · ṽ2. Class separation

R2 ∈ [0, 1] is then defined as:

R2 = 1− d̄within

d̄total
.

Kornblith et al. [2021] observed that models that achieved higher accuracy on ImageNet

test data also exhibit less transfer accuracy. When they used a modified model of the

NormFace [Wang et al., 2017] with varying scaling factor s, they found that class sepa-

ration R2 has a generally positive relationship with (test) accuracy on ImageNet data.

Conversely, they reported a negative correlation (rank correlation: −0.93, p value: 0.002)

between class separation and transfer accuracy. In subsequent experiments, they specu-

lated that representations with higher class separation would overfit the training classes

but not necessarily training data points. Hence, the authors explained that these repre-

sentations perform poorly in classifying new classes even though they can achieve high

test accuracy on trained classes.

Overall, the three papers [Kornblith et al., 2021; Liu et al., 2020; Roth et al., 2020]



18 Metric learning

indicate that more discriminative models increase performance in terms of classifying

new data points from the trained classes. However, these models can reduce DoV due to

excessive feature compression. Alternatively, they can map data points from the same

novel class into multiple prototypes. In all cases, more discriminative models can achieve

lower performances on novel classes and datasets. Therefore, recklessly increasing the

discriminative powers of models can be detrimental when it comes to new tasks with

significantly shifted distributions. Unless these issues are managed properly, caution is

needed when increasing discriminative powers.

2.5 Estimating class probability in metric learning

A large number of metric learning models [Deng et al., 2019; Goldberger et al., 2004; Snell

et al., 2017; Wang et al., 2017, 2018] use estimation of class probabilities. These include

models that utilize a classification loss such as cross-entropy during training. These

approaches are beneficial when the certainty of classification needs to be estimated.

The most commonly used estimation formulation is to apply negative of squared distance

(SD) on softmax formulation (1.2), which I term “SD-softmax formulation”. Mathemat-

ically, the estimated class probability of p(y|x) is defined as:

p̂(y|x) = e−sd2y,x

∑
y′∈Y

e
−sd2

y′,x
, (2.12)

where s is a scaling factor and dy,x is distance from the data point x to class y. For in-

stance, NormFace [Wang et al., 2017] is equivalent to using the formulation (2.12) on

normalized embedding by defining the distance dy,x with proxy representatives. Pro-

totypical networks [Snell et al., 2017] also use the formulation (2.12) by defining the

distance dy,x with local prototypes.

An alternative estimation is to apply the negative of (non-squared) distance on softmax

formulation (1.2), as suggested by Garnot and Landrieu [2021]. This formulation is

defined as:

p̂(y|x) = e−sdy,x

∑
y′∈Y

e−sdy′,x
. (2.13)

The authors observed that using formulation (2.13) achieved significantly better results

than SD-softmax formulation.
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In paper I, the first author proposed using metric learning rather than the standard

softmax classifier for a challenging classification problem: plankton classification. The

number of classes in plankton classification is often large. Moreover, the choice of plank-

ton categories might differ between researchers. The fact that softmax outputs are only

available for training classes can be problematic when classifying unseen classes for dif-

ferent plankton datasets. On the other hand, because metric learning learns distance

function, it can be directly employed for classifying novel classes by using support points

for each novel class to estimate class prototypes. Our experiment revealed that using

triplet training [Wang et al., 2014] achieved comparable test accuracy on trained classes

and moderate accuracy in classifying novel classes.

Paper II was motivated by the analyzed limitations of the SD-softmax formulation (2.12).

That is, 1) training loss based on the formulation is dependent on the scale of embedding

space and 2) estimated class probabilities p̂(y|x) are not maximized at the class repre-

sentatives. To manage these limitations, I proposed an alternative formulation named

distance-ratio-based (DR) formulation for metric learning.

Theoretically, using DR formulation will avoid scale change during training process.

More precisely, we can avoid unnecessary model updates that do not change relative

locations in the embedding space. Additionally, using DR formulation will be advanta-

geous when proxy representatives are used for metric learning because data points can

easily converge to corresponding proxies that maximize probabilities p̂(y|x). In experi-

ments with Euclidean space embedding, using DR formulation yielded generally faster

training and improved performance on few-shot classification tasks.



20 Metric learning



Chapter 3

Adversarial robustness

Over the last decade, deep neural networks (DNNs) have generated promising results

and been successfully applied in various tasks [Gatys et al., 2015; Jumper et al., 2021;

OpenAI, 2022; Ramesh et al., 2022]. For instance, a convolutional neural network (CNN)

model [He et al., 2015] surpassed human level top-5 classification accuracy (94.9%) [Rus-

sakovsky et al., 2015] on the ImageNet 2012 [Deng et al., 2009] classification dataset.

However, DNNs have also been shown to be vulnerable [Szegedy et al., 2013] to ad-

versarial examples, which are defined as examples carefully modified from the original

examples with (commonly) only imperceptible changes. The existence of adversarial ex-

amples enables malicious attacks to exploit the vulnerability of models. For instance,

the susceptibilities of automatic driving [Kong et al., 2020] and face-recognition systems

[Sharif et al., 2016] raise concerns regarding the adoption of machine learning models.

Mathematically, when we have a distance metric d(·, ·), a target classifier C : X −→ Y
and an original data point x, an adversarial example is defined as a data point x′ that

satisfies:

C(x′) ̸= C(x) (3.1)

where d(x, x′) ≤ ϵ for perturbation budget ϵ [Biggio et al., 2013]. To only allow im-

perceptible changes, the budget ϵ is often set to be small. l2 norm and l∞ norm are

commonly used for the distance metric d(·, ·). However, to handle the limitation of lp

norms explained in the introduction (Chapter 1), one can also use different distances like

Wasserstein distance [Wong et al., 2019] and Learned Perceptual Image Patch Similarity

(LPIPS) [Laidlaw et al., 2021; Zhang et al., 2018].

In section 3.1, I explore various adversarial attack algorithms. The adversarial accuracy

of classification models and defense methods against adversarial attacks are described in
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section 3.2. In section 3.3, I explore the crucial issue of adversarially robust classifiers

that often have reduced natural accuracy compared to standard classifiers. Hence, there

is a tradeoff between natural accuracy and adversarial accuracy. I then describe several

suggested hypotheses to explain the tradeoff.

3.1 Adversarial attacks

Depending on the accessibility of attackers on a target model, adversarial attacks can be

divided into white-box attacks and black-box attacks [Chen et al., 2020a]. A white-box

attack occurs when an attacker has access to all of the target model, including model

architecture and weights. Because the gradient with respect to the input is accessible

for a white-box attack case, an attacker can use gradient-based attacks to generate

adversarial examples. More common scenarios are when an attacker has only limited

access to the target model. The attack method used in these cases is called a black-box

attack. As classification models output either a predicted class ĉ alone or a predicted

class probability (score) vector P̂ (Y|·), black-box attacks can be further divided into

decision-based and score-based attacks. The common approach for a decision-based

attack is to train a surrogate model and use white-box attack on the surrogate model as

an attack against the target model [Papernot et al., 2017]. Chen et al. [2020a] proposed

a different approach for a decision-based attack using gradient-direction estimation and

a bin-search algorithm. In this thesis, I focus on white-box attacks.

Depending on the goal of the attackers, attacks can be divided into targeted and untar-

geted attacks. A targeted attack tries to fool a target classifier so that a perturbed data

point is classified as a specific (target) class that differs from the original class. For a

data point x, its corresponding class c, and a target class ct ̸= c, the attacker’s goal is to

generate a perturbed data point x′ ∈ X such that C(x′) = ct. Conversely, an untargeted

attack tries to fool a target classifier so that the perturbed image is misclassified, which

means there is no specific target class. For a data point x, with corresponding class c,

the attacker’s goal is to generate a perturbed data point x′ ∈ X such that C(x′) ̸= c.

Usually, the condition d(x, x′) ≤ ϵ, for perturbation budget ϵ, is added for both targeted

and untargeted attacks. Unless specified otherwise, I focus on untargeted attacks.

Let us consider attack algorithms that use a fixed perturbation budget ϵ to generate

adversarial examples. When l∞ norm is used for measuring the change (distance) of

perturbation, the Fast Gradient Sign Method (FGSM) [Goodfellow et al., 2014] can be

utilized to generate adversarial examples. It is motivated by the approximate linear

behaviors of DNNs. Specifically, given an perturbation budget ϵ and a classification
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loss function ℓ(·, ·) used for training, an adversarially perturbed data point x′
FGSM is

generated as:

x′
FGSM = x+ ϵ sign(∇xℓ(x, c)).

where sign(·) is the element-wise sign function. Using sign(·) function exploits the near

optimal changes (assuming the near linear behavior) for a fixed l∞ norm budget ϵ.

The Basic Iterative Method (BIM) [Kurakin et al., 2016] extends the FGSM algorithm by

iteratively applying an adversarial moving and clipping (projection) process. Typically,

the BIM method will generate stronger perturbed data points than FGSM as DNN

models are not exactly linear. Given a step size αstep and a number of iterations k, an

adversarially perturbed data point x′
BIM;k is generated as:

x′
BIM;0 = x, x′

BIM;i+1 = Clipx,ϵ

(
x′
BIM;i + αstep sign(∇xℓ(x

′
BIM;i, c))

)
. (3.2)

Here, the function Clipx,ϵ(v) clips (limits) the vector v element-wise such that the result-

ing output vector is within ϵ distance (l∞ norm) from the data point x.

The Projected Gradient Descent (PGD) [Madry et al., 2017] uses the same iterative steps

as in equation (3.2). Instead of initializing from the original data position, formalized as

x′
BIM;0 = x, PGD starts from a random initial position x′

PGD;0 ∈ B(x, ϵ) where B(x, ϵ) is
an ϵ-ball around x. Using a random initial position enables multiple local maxima to be

explored, which will be beneficial for robust optimization of classifiers.

While fixing the perturbation budget ϵ is a popular approach, there are attack algorithms

that do not specify a perturbation budget. For an original data point x, these methods

find the minimal distance perturbation r∗ such that the perturbed position x+ r∗ has a

predicted class different from the correct class c. Mathematically, the minimal distance

perturbation r∗ is defined as:

r∗ = argmin
r:x+r∈X

d(x, x+ r) such that C(x+ r) ̸= c. (3.3)

A CW (Carlini-Wagner) attack [Carlini and Wagner, 2017] considers a targeted attack

with target class ct ̸= c. In so doing, the corresponding definition of r∗ can be obtained

by substituting the constraint C(x+ r) ̸= c into C(x+ r) = ct into the expression (3.3).

To reformulate the constraint, Carlini and Wagner introduced an object function fobj(·)
such that C(x + r) = ct if and only if fobj(x + r) ≤ 0. There are multiple possible

object functions using logit values or softmax outputs of classification models. Using an

object function fobj(·), the authors rewrote the problem of finding the minimal distance
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perturbation as:

minimize d(x, x+ r) such that fobj(x+ r) ≤ 0. (3.4)

Instead of directly solving the problem (3.4), they suggested solving an alternative for-

mulation defined as:

minimize d(x, x+ r) + λfobj(x+ r), (3.5)

where λ > 0 is a hyperparameter. That is, they relaxed the constraint into restraint.

They then used an Adam optimizer [Kingma and Ba, 2014] to minimize the alternative

formulation (3.5).

The DeepFool attack [Moosavi-Dezfooli et al., 2015] estimates the minimal distance

perturbation r∗ by iteratively updating the orthogonal projection in which it considers

the target model as a locally linear classifier. Each projection is followed by the clipping

operation to ensure elements (pixel values) of input images are within [0, 1]. Thus, their

combined process is not an exact projection. Croce and Hein [2020b] proposed the FAB-

attack, which improves the DeepFool attack by using exact projection on the decision

boundary close to the original point.

3.2 Adversarially robust classifiers

The vulnerability of DNN models [Szegedy et al., 2013] motivates us to find models

that are robust against adversarial perturbations. To achieve this, we first need to

evaluate the robustness of classification models. Adversarial accuracy [Madry et al.,

2017; Tsipras et al., 2018] is one of the most commonly used measures of adversarial

robustness. Unlike standard (natural) accuracy that uses an original data point x and

its corresponding class c, adversarial accuracy uses adversary region R(x) and class c

to calculate accuracy, where adversary region R(x) refers to the allowed region of the

perturbations for the data point x. Specifically, adversarial accuracy a is defined as:

a = E(x,c)∼D[1(C(x∗) = c)] for x∗ = argmax
x′∈R(x)

ℓ(x′, c), (3.6)

where ℓ(·, ·) is classification loss based on the target classifier C (or its softmax outputs).

While cross-entropy loss is commonly used for DNN classifiers, the zero-one loss can be

used for non-differentiable classifiers.

Typically, ϵ-ball B(x, ϵ) is used for modeling an adversary region R(x) [Madry et al., 2017;
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Tsipras et al., 2018]. In this case, we refer to adversarial accuracy as standard adversarial

accuracy (SAA). Based on the definition (3.6), for a max perturbation budget ϵ, SAA

astd(ϵ) is defined as:

astd(ϵ) = E(x,c)∼D[1(C(x∗) = c)] for x∗ = argmax
x′∈B(x,ϵ)

ℓ(x′, c).

A classification model with relatively high adversarial accuracy is called an (adversari-

ally) robust classifier (model).

Adversarial training (AT) [Goodfellow et al., 2014; Madry et al., 2017] is one of the most

successful methods for defending against adversarial attacks. Unlike standard training

(ST) that only uses the original data points to train DNNs (ST may also use non-

adversarially augmented data points), AT also uses adversarially perturbed data points

and the class of the original data point x to train neural networks. It is useful here

to refer back to the definitions in section 1.1 regarding point-wise cross-entropy loss

ℓCE(·, ·), one-hot vector
−→
1 c, and the estimated class probability vector (the softmax

outputs) P̂ (Y|·). The AT loss ℓAT(x, c) for a data point x is defined as:

ℓAT(x, c) = αℓCE(
−→
1 c, P̂ (Y|x)) + (1− α)ℓCE(

−→
1 c, P̂ (Y|x̂∗))

= −αp̂(c|x)− (1− α)p̂(c|x̂∗), (3.7)

where x̂∗ is an adversarially perturbed data point using an attack algorithm and 0 ≤
α < 1 is an AT parameter. Parameter value α = 0 [Madry et al., 2017] and α = 0.5

[Goodfellow et al., 2014] are commonly used in AT. By guiding adversarially perturbed

data point x̂∗ to have the same estimated class c as the original x, AT increases robustness

against adversarial attacks.

The TRADES [Zhang et al., 2019a] is a different form of adversarial training that guides

adversarially perturbed data point x̂∗ to have the same estimated class probability vector

as the original x. Specifically, TRADES loss ℓTRADES(x, c) for a data point x is defined

as:

ℓTRADES(x, c) = ℓCE(
−→
1 c, P̂ (Y|x)) + 1

λ
ℓCE(P̂ (Y|x), P̂ (Y|x̂∗))

= −p̂(c|x)− 1

λ
P̂ (Y|x) · log(P̂ (Y|x̂∗)),

where λ > 0 is a hyperparameter and adversarially perturbed data point x̂∗ maximizes

ℓCE(P̂ (Y|x), P̂ (Y|x̂∗)), in contrast to original AT. Compared to the standard AT loss in

equation (3.7) that uses the one-hot vector
−→
1 c in the second term, the TRADE loss uses

the original estimated class probability vector P̂ (Y|x) for adversarially perturbed data
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point x̂∗.

While adversarial training methods [Goodfellow et al., 2014; Madry et al., 2017; Zhang

et al., 2019a] have exhibited empirical success in increasing adversarial accuracy, adver-

sarially trained models can be defeated by stronger attack algorithms. One would want

classifiers with no adversarial examples under certain conditions. In this regard, certi-

fied defenses [Cohen et al., 2019; Hein and Andriushchenko, 2017; Lecuyer et al., 2019;

Wong and Kolter, 2018] guarantee that the predicted class is invariant within a radius.

One approach to achieving certifiable robustness is to make a classifier invariant within

an adversarial polytope C(B(x, ϵ)), which is the set of outputs for inputs within a ball

B(x, ϵ). Wong and Kolter [2018] used a convex outer bound of adversarial polytope for

certified defense. Another approach for certified defense is randomized smoothing [Co-

hen et al., 2019; Lecuyer et al., 2019]. Randomized smoothing uses a base classifier to

construct a smoothed classifier for adversarial defense. Specifically, for a base classifier

C(·), randomized smoothing defines the smoothed classifier Csmooth(·) as:

Csmooth(x
′) = argmax

y∈Y
p(C(x′ + δ) = y) for δ ∼ N (0, σ2I),

where δ is perturbation noise and σ is standard deviation.

Although most adversarial defenses are focused on defending only one type of attack,

these models can still be vulnerable to other types of attacks [Schott et al., 2018a].

Tramer and Boneh [2019] investigated whether it is possible to achieve robustness against

multiple types of attacks. They defined pairs of perturbation types as mutually exclu-

sive perturbations (MEPs) when robustness to one perturbation type necessarily implies

susceptibility to the other. They demonstrated that for the synthetic distribution sug-

gested by Tsipras et al. [2018], l1 and l∞ perturbations are MEPs, which indicate it is

not possible to achieve robustness against multiple attack types.

Croce and Hein [2020a] suggested a provably robust classifier against all lp type attacks

for all p ≥ 1. (While this could be confusing for readers as it appears to contradict the

findings of Tramer and Boneh [2019], it does not need to be. The proof about MEPs is

for the particular distribution.) They showed that a guarantee for both l1 and l∞ norm

based balls with the same center ensures a guarantee for all lp. From this, they used

the convex hull of the union of l1 and l∞ balls for provable robustness. Our analysis in

Appendix A suggests that their defense can be regarded as a robustness guarantee on a

subset of a ball, where this ball is based on a combined distance dcombined(·, ·) and this

distance is defined as dcombined(x1, x2) = β ∥x2 − x1∥1+(1−β) ∥x2 − x1∥∞ for a constant

β ∈ (0, 1).
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Engstrom et al. [2019] assessed the feature mapping f(x) learned by adversarial training

(AT) and compared it with that of standard training (ST). Through a process named

representation inversion, for the representation (feature vector) of a target image, they

reconstructed a visually similar image with adversarially trained feature mapping which

was not possible with ST. Hence, they found that adversarially trained feature mapping

f(x) is approximately invertible. Additionally, when they visualized a feature by max-

imizing a specific feature component, they found that the visualized features of robust

models capture high-level features.

Inspired by the human-aligned properties of adversarially trained feature mapping [En-

gstrom et al., 2019], Salman et al. [2020] assessed the transfer classification of adversari-

ally trained models. Transfer classification is a classification task that involves extracting

features from a trained model and classifying new classification tasks using the features

obtained. The authors experimentally demonstrated that adversarially trained models

perform better than models undergoing standard training in transfer classification.

3.3 Tradeoff between natural accuracy and adver-

sarial accuracy

Although finding adversarially robust classifiers is important, there is a tradeoff between

natural accuracy and adversarial accuracy [Tsipras et al., 2018; Zhang et al., 2019a].

This phenomenon obstructs the adoption of robust models in multiple applications as

robust models have lower standard (natural) accuracy than standard models. Therefore,

it is crucial to identify why this tradeoff occurs and how to avoid or reduce it if possible.

There are several hypotheses that explain the tradeoff.

One hypothesis is that the tradeoff between accuracy and adversarial accuracy is in-

evitable [Tsipras et al., 2018; Zhang et al., 2019a]. Tsipras et al. [2018] explained the

tradeoff by providing a toy example that both high standard accuracy and high robust

accuracy cannot be achieved simultaneously. However, Nakkiran [2019] argued that hu-

mans are both an accurate and robust classifier, and thus argued that the tradeoff is

not inherent in general. He suggested that the tradeoff may be due to the required high

model complexity of robust classifications. Another hypothesis suggested by Kim and

Wang [2019]; Suggala et al. [2019] (and also paper III) is that the tradeoff originates from

the standard definition of adversarial accuracy that allows to genuinely change classes

of samples for large perturbation budget ϵ. They suggested an alternative definition of

adversarial robustness using a reference classifier. Yang et al. [2020b] argued that the

tradeoff is not inherent and common perturbation budget ϵ values are not large enough
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to change classes. To obtain a model that is both accurate and robust, they suggested

that it may be necessary to use augmentation techniques to reduce generalization errors,

in addition to imposing local Lipschitzness for robustness. Schmidt et al. [2018] and

Raghunathan et al. [2020] suggested that the tradeoff originates, at least partially, from

the reduced generalization power of adversarially trained classifiers. Schmidt et al. ex-

plained that the sample complexity of robust learning can be vastly greater than that of

standard training. Raghunathan et al. [2020] provided cases where some augmentations

like adversarial perturbations can harm the generalization of models. To limit this, they

suggested using robust self-training (RST) [Carmon et al., 2019] by exploiting unlabeled

data points.

Recently, Wu et al. [2021] have found that adversarially robust training methods increase

inter-class similarity on the penultimate layer of a neural network. Such change can

reduce the discriminative power of classification models and thus lessen the generalization

power of classifiers [Kornblith et al., 2021]. To explain the increased inter-class similarity,

they suggested that forcing both adversarially perturbed points and original points to

the same predicted class may make their distributions closer, and also increase inter-class

similarity.

Paper III is motivated by the tradeoff between natural accuracy and standard adversar-

ial accuracy (SAA). As in Kim and Wang [2019] and Suggala et al. [2019], I speculated

that the tradeoff is due to the definition of adversarial robustness which allows percep-

tual classes of images to be changed for a large perturbation norm ϵ. As identified by

Yang et al. [2020b], commonly used ϵ values might not be large enough to change classes

of samples. However, being robust only against small perturbation ϵ value enables at-

tackers to fool the models with larger perturbation. Ghiasi et al. [2019] demonstrated

that even certifiably robust models can be spoofed by their attack, which exploits large

perturbation budget ϵ while maintaining the semantic class of images.

To overcome such issues of SAA, alternative definitions of adversarial robustness can be

used based on a reference classifier [Kim and Wang, 2019; Suggala et al., 2019]. However,

the meaning of robustness will be dependent on the choice of the reference model. By

using Voronoi cells [Khoury and Hadfield-Menell, 2019] based on data points, in paper III

I suggested a new definition of adversarial accuracy named Voronoi-epsilon adversarial

accuracy (VAA) that avoids the tradeoff in definition, even for a large ϵ value without an

external classifier. VAA enables the study of global robustness of classifiers and shows

the connection with the SAA. I demonstrated that the nearest neighbor (1-NN) classifier

maximizes VAA.
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Hierarchy-informed classification

While common classification methods treat all misclassifications equally, the severity of

misclassifications may be vastly different. For example, when a self-driving system ob-

serves an object, mistaking a person as a tree will be more dangerous than mistaking

a streetlight as a tree [Bertinetto et al., 2020]. Additionally, some classification prob-

lems require the classification of a large number of classes and there can be underlying

hierarchical relationships among classes. In such cases, it will be hard to obtain highly

accurate classifiers. If there are multiple classifiers with comparable accuracy, it is desir-

able to choose a classifier whose predicted class is hierarchically similar to the true class.

These explanations demonstrate the importance of classification models that take into

account the hierarchical relationships of classes. By incorporating class hierarchy, these

models can improve “hierarchy-informed performance,” which is model performance by

considering predefined hierarchical structures.

Section 4.1 explains the representations of hierarchical structures and hierarchical dis-

tance of classes. Here, I describe methods for determining class hierarchy structures. In

section 4.2, I explore three approaches to hierarchy-informed classification.

4.1 Determination of hierarchy

Hierarchical relationships of classes are usually represented by a tree structure. In a class

hierarchical structure, classes are represented as leaf nodes (i.e., nodes with no children),

and directions of edges represent inclusion relationships. Therefore, if there is an edge

from node w1 to node w2, it denotes that node w1 includes node w2. When there is

a unique node without a parent node, that node is the root node. For instance, the

“animals” node in Figure 4.1a is the root node. Because each class has a corresponding
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leaf node and vice versa, I regard class and class node as interchangeable. In this chapter,

I denote an arbitrary node as w, an arbitrary class (class node) as y, and a special class

(class node) as c. As visualized in Figure 4.1a, the tree structure allows only one parent

node for a node. Unlike a tree, a directed acyclic graph (DAG) allows multiple parent

nodes for a node. This enables us to represent more complex relationships among classes.

Because a tree structure is easier to handle than a DAG structure, it is more commonly

used to model the hierarchical structure of classes [Barz and Denzler, 2019; Bertinetto

et al., 2020; Garnot and Landrieu, 2021]. Hence, in this thesis, I focus solely on a tree

structured class hierarchy.

animals

mammals fish

dog cat deer shark guppy

(a)

animals

mammals pets fish

dogcatdeer guppy shark

(b)

Figure 4.1: (a) Example of a tree structure. Each node has, at most, one parent node
in a tree hierarchy. (b) Example of a DAG structure where “cat”, “dog”, and “guppy”
classes have more than one parent node.

From a predefined hierarchical tree, one can derive hierarchical distances dH for any two

classes. These can be used for hierarchy-informed classification and measuring the hier-

archical performances of classification models. There are two ways to define hierarchical

distance between two classes: lowest common subsumer (LCS) [Barz and Denzler, 2019;

Bertinetto et al., 2020] and the shortest path [Garnot and Landrieu, 2021]. Barz and

Denzler [2019] used LCS to define hierarchical distance. When V is the set of nodes,

they defined the hierarchical distance between classes y1 and y2 as:

dH;LCS(y1, y2) =
height(lcs(y1, y2))

max
w∈V

height(w)
,

where lcs(·, ·) is the LCS of class nodes and height(w) is the length of the shortest path

from node w to a leaf node, also known as a class node. Note that LCS-based hierarchical

distance dH;LCS satisfies 0 ≤ dH;LCS ≤ 1.

Let us consider the tree structure in Figure 4.1a. When hierarchical distance is defined

by LCS, the hierarchical distance between “dog” and “cat” classes is 1
2
, formalized as
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dH;LCS(dog, cat) = 1
2
. Similarly, the distance between “dog” and “shark” classes is

2
2
= 1, formalized as dH;LCS(dog, shark) = 1. When hierarchical distance is defined by

the shortest path distance, the hierarchical distance between “dog” and “cat” classes is

2, formalized as dH;path(dog, cat) = 2, as the shortest path is through the “mammals”

node. Similarly, the distance between “dog” and “shark” classes is 4, formalized as

dH;path(dog, shark) = 4.

How can a class hierarchical structure be determined? There are several approaches

to defining hierarchical structures. Class hierarchy can be defined by domain experts

[Garnot and Landrieu, 2021] when there is rich knowledge of the classes. It can be

extracted from a WordNet database [Miller, 1998], which is a English word database

that contains their semantic relationships. When such approaches are not available, class

hierarchical structure can be inferred from a trained classifier by estimating hierarchical

distances. One such approach introduced by Godbole [2002] is to use the confusion

matrix of a classifier to estimate class relations. When there are two similar classes y1 and

y2, then a classifier might predict data points in class y1 as class y2, and vice versa. Hence,

he suggested using normalized rows (row vectors) of the confusion matrix to represent

classes and distance between two row vectors as an estimation of hierarchical distance.

When hierarchical distances are estimated, hierarchical structure can be inferred using

a hierarchical clustering algorithm such as the neighbor-joining method [Saitou and Nei,

1987].

4.2 Hierarchy-informed classification methods

Hierarchical information can be incorporated into DNN classifiers in three distinct ways:

changing architecture, modifying cross-entropy loss calculation, and metric learning.

For a tree structure, there is a unique path from highest node to each class node (i.e.,

each leaf node). Thus, there is a unique factorization of a class probability along the

path in the tree, a fact that can be used for hierarchy-informed classification.

Redmon and Farhadi [2017] estimated class probability by considering the conditional

probabilities between the parent node and child node. For instance, when we apply their

estimation method in Figure 4.1a, the class probability p(dog|x) is estimated as:

p̂(dog|x) = p̂(dog|mammals; x)p̂(mammals|animals; x)p̂(animals|x),

where p̂ represents an estimated probability and p̂(animals|x) = 1. They employed a

modified architecture using softmax for each parent node to its children nodes in order
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to directly estimate conditional probability p(wchild|wparent;x) where wchild is a child node

and wparent is the corresponding parent node of wchild.

Bertinetto et al. [2020] proposed two approaches that modify the calculation of cross-

entropy loss: hierarchical cross-entropy and soft-labels. As in Redmon and Farhadi

[2017], hierarchical cross-entropy (HXE) exploits the fact that class probability p(y|x) can
be calculated by the product of conditional probabilities due to the unique factorization

of tree paths. When we denote nodes from a class node y to its highest ancestor node Ry

as y(0) = y, y(1), · · · , y(height(y)) = Ry, the factorization of the estimated class probability

can be expressed as:

p̂(y|x) =
(height(y))−1∏

l=0

p̂(y(l)|y(l+1);x). (4.1)

The estimated conditional probabilities can be calculated using the class probabilities as

follows:

p̂(y(l)|y(l+1);x) =

∑
y1∈Leaves(y(l))

p̂(y1|x)
∑

y2∈Leaves(y(l+1))

p̂(y2|x)
,

where Leaves(w) denotes the set of class nodes of the subtree rooted by the node w.

HXE loss is then defined as:

LHXE = − 1

|B|
∑

(x,c)∈B

(height(c))−1∑

l=0

λ(c(l)) log(p̂(c(l)|c(l+1);x)),

where λ(c(l)) is the corresponding weight for edge between node c(l) and node c(l+1).

When weights λ(c(l)) = 1 for all index l, HXE is equivalent to the standard cross entropy

(1.5) due to equation (4.1). The authors suggested choosing λ(w) = e−αheight(w) for

weights where α > 0 is a hyperparameter. The term log(p̂(c(l)|c(l+1);x)) corresponds to

the information associated with the edge between node c(l) and c(l+1). Thus, HXE can

be regarded as weighing the information associated with these edges differently.

Bertinetto et al.’s [2020] soft-label method modifies one-hot vectors in cross-entropy loss

(1.4) into soft-labels using predefined hierarchical distances. Specifically, soft-label vector
−−→
softy is defined for each class y ∈ Y . Its element for class y1 is defined as:

−−→
softy;y1 =

exp (−βdH(y, y1))∑
y2∈Y

exp (−βdH(y2, y1))
,
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where β ≥ 0 is a hyperparameter. Accordingly, soft-label loss LSoft is:

LSoft = − 1

|B|
∑

(x,c)∈B

−−→
softc · log(P̂ (Y|x)) (Using dot product)

= − 1

|B|
∑

(x,c)∈B

∑

y1∈Y

−−→
softc;y1 log(p̂(y1|x)) (Using summation),

where P̂ (Y|x) is the estimated class probability vector of data point x. For an appropriate

hyperparameter β, the loss LSoft forces the model to estimate higher class probability on

classes hierarchically similar to the true class. (Even though the authors described this

method as a “label-embedding” approach, it did not consider distance nor similarity in

feature space. Hence, I do not categorize their approach as metric learning approach.)

Metric learning can be used for hierarchy-informed classification. A common approach

is to prefix the positions of proxy representatives - weight vectors W̃y - of classification-

based metric learning using hierarchical information [Barz and Denzler, 2019; Jayathilaka

et al., 2021; Mettes et al., 2019]. This is then followed by moving data points into the

corresponding position for each class. For instance, Barz and Denzler [2019] prefixed

proxies for spherical space by defining hierarchical class similarity sH(·, ·) as sH(y1, y2) :=
1− dH;LCS(y1, y2) for y1, y2 ∈ Y . Next, they made the inner product of two proxies W̃y1

and W̃y2 match the corresponding class similarity sH(y1, y2). They proposed the CORR

loss for training embedding using prefixed proxies. This loss is defined as:

LCORR =
1

|B|
∑

(x,c)∈B

(
1− W̃ T

c f̃(x)
)
=

1

|B|
∑

(x,c)∈B
(1− cos θc),

where B ⊂ D is a mini-batch and θc is the angle between W̃c and f̃(x).

Instead of matching the inner product of proxies, Mettes et al. [2019] suggested optimiz-

ing proxies to have the same rank as class similarity by using ranking loss based on class

triplets. To train embedding, they proposed a similar formulation to CORR loss, which

is defined as:

LH-spherical =
∑

(x,c)∈B

(
1− W̃ T

c f̃(x)
)2

=
∑

(x,c)∈B
(1− cos θc)

2.

In contrast to approaches that use fixed proxies for incorporating hierarchical information

in metric learning, Garnot and Landrieu [2021] suggested only penalizing distortion

between proxy distance matrix and hierarchical distance matrix using Euclidean space
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as an embedding. Their distortion-based penalty is defined as:

Ldisto(W ) =
1

|Y|(|Y| − 1)
min
s∈R+

|Y|∑

k,l,k ̸=l

(
s d(Wk,Wl)−DH(k, l)

DH(k, l)

)2

,

where s is a scaling factor and DH is a hierarchical distance matrix whose (l, k)-th

element is the hierarchical distance dH(yl, yk). This penalty Ldisto guides any distance

between proxy pair to its corresponding hierarchical distance using an appropriate scale

factor.

Depending on the datasets, hierarchical information of classes may be unavailable. To

address this challenge, in paper IV, I investigated whether learned proxy representatives

of classification-based metric learning models can estimate class hierarchical relation-

ships and achieve adequate hierarchy-informed performance, which is metric learning

performance and classification performance by considering the hierarchical relationships

of classes. Such analysis can also be beneficial when the hierarchical relationships of

classes are known because we can verify whether learned class relationships match exist-

ing ones. For my experiments, I trained a softmax classifier and metric learning models

on a spherical embedding space with several training options. When I trained models

without a predefined hierarchy, using DR formulation in paper III achieved better hierar-

chical inference performance and better hierarchy-informed performance in two measures

than using the NormFace model [Wang et al., 2017]. Estimating class relationships using

proxies is more advantageous than a confusion matrix based approach [Godbole, 2002],

which can be problematic when there are only small number of data points in classes.

Additionally, the confusion matrix based approach requires separate training and evalua-

tion (validation) processes for hierarchical inference. Using proxies of classification-based

metric learning is more convenient as it automatically learns such proxies during training.



Chapter 5

Adversarial robustness and feature

space characteristics

DNN classifiers learn a complex feature mapping function f(·) to solve classification

problems. The transformed (feature) space usually has higher discriminality compared

to the input space, which is beneficial for achieving high generalization performances.

One of the results presented in paper III is that adversarially robust classifiers have locally

(within ϵ-balls containing original data points) equivalent classifications with the nearest

neighbor (1-NN) classifier based on the same distance metric for robustness (equivalent

findings are described in Khoury and Hadfield-Menell [2019]; Yang et al. [2020a,b]). 1-

NN classifiers are distance-based models. Because an adversarially robust classifier will

be locally similar to an (input) distance-based classifier, adversarial training (AT) will

likely ensure that the feature spaces of adversarially robust models more closely resemble

the input space. One way to investigate this is by analyzing the distance structure, which

denotes the collection of pairwise-distance values between data points for a given space.

Specifically, we can expect the similarity between the distance structure of a feature space

of an adversarially trained model and the input space distance structure to be greater

than the similarity between the distance structure of a feature space of a standard (non-

robust) model and the input space distance structure. As increased resemblance to the

input space can also alter characteristics of feature space such as discriminative power

and dimensionality (see section 2.4 for details), this will result in changes of classification

and transfer performance.

In section 5.1, I investigate whether the distance structure of an adversarially trained

feature space more closely resembles the input space distance structure than does the dis-

tance structure of a standard model. Section 5.2 revisits the characteristic measurements

of spaces and suggests possible effects of increased resemblance to input space on mod-
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els. In section 5.3, I explore whether resembling input distance structure is correlated

with the characteristics of the feature space. In section 5.4, I discuss the implications of

the relationships identified in this chapter.

5.1 Comparing distance structures of feature space

and input space

In this part of the thesis, I investigate whether distance structures of the feature spaces

of adversarially robust models more closely resemble the distance structure of input space

than does the distance structure of a standard model. To achieve this, using CIFAR-10

[Krizhevsky et al., 2009] and SVHN [Netzer et al., 2011] datasets, I assessed the mean

correlation (MC) values introduced in paper IV. MC is a measure devised to compare

two distance structures based on rank correlation values. Because each element of a

distance matrix represents the distance between two data points (or between two class

representatives in paper IV), MC value is calculated from two distance matrices (with

the same size). MC will take a value between −1 and 1 as it is a similarity measure. High

MC indicates that the distance structures of the matrices are similar (correlated). MC

close to 0 indicates the distance structures of the matrices are not correlated. For the

current assessment, I calculated MC from input space distance matrix DI and feature

space distance matrix DF . If it is confirmed that the distance structures of the feature

space of robust models more closely resemble the distance structure of input space than

do the distance structures of the feature space of standard models, we would expect MC

values for adversarially trained models to be higher than for a standard model.

Table 5.1 presents the MC values for standard training (ST) and adversarial training

(AT) for the CIFAR-10 dataset with the same network architecture. The corresponding

results for the SVHN dataset are provided in Table 5.2. The results revealed that AT

increased MC values. Most notably, increasing perturbation budget ϵ for AT increased

the MC values. These results suggest that AT would make the distance structures of

feature outputs of models more similar to that of the input space. What are the possible

effects of this on feature space?
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Table 5.1: MC values between two distance matrices DI and DF for the CIFAR-10
dataset. For the input space distance matrix DI , distance between training data points
was calculated using both l2 and l∞ norm distances. For the feature space distance
matrix DF , Euclidean distance (l2 norm) between training data points on the feature
space was calculated for various training options.

Distance

Method
ST

AT

(l2 norm, ϵ = 0.25)

AT

(l2 norm, ϵ = 0.5)

AT

(l2 norm, ϵ = 1.0)

AT

(l∞ norm, ϵ = 8
255

)

l2 norm 0.0818 0.1586 0.2109 0.3003 0.2719

l∞ norm 0.0517 0.1239 0.1689 0.2229 0.1914

Table 5.2: MC values between two distance matrices DI and DF for the SVHN dataset.
Both distance matrices DI and DF are calculated as in Table 5.1. Note that AT models
for the SVHN dataset were trained also with natural images as full AT could not easily
converge.

Distance

Method
ST

AT

(l2 norm,

ϵ = 0.25)

AT

(l2 norm,

ϵ = 0.5)

AT

(l2 norm,

ϵ = 1.0)

AT

(l∞ norm,

ϵ = 8
255

)

AT

(l∞ norm,

ϵ = 12
255

)

l2 norm -0.0118 0.0301 0.1003 0.1737 0.0134 0.0371

l∞ norm -0.0061 0.0576 0.1490 0.2162 0.0307 0.0619

5.2 Effects of increased MC values on discriminality

and dimensionality

Before explaining the possible effects of increased MC values, I revisit the characteristics

of spaces described in section 2.4. Discriminality (discriminative power) measures rep-

resent the degree of closeness to the corresponding class representatives (or other data

points with the same class) compared to the overall distances of a space. Class separation

R2, which is a discriminality measure proposed by Kornblith et al. [2021], is positively

related to standard (non-transfer) test accuracy. Another discriminality measures is dis-

criminative value ϕ [Liu et al., 2020]. As in equation (2.7), discriminative value ϕ is

defined as the ratio of inter class variances Dinter to intra class variances Dintra. While

the discriminality of feature space was considered by using learned features in equations

(2.4), (2.6), (2.10), and (2.11), discriminality can also be assessed for input space by

directly using data points x for calculation.
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Roth et al. [2020] defined a measure ρ to assess “the amount of directions of significant

variance (DoV)”. This can represent the amount of compression (flattening) that occurs

in feature mapping. Small ρ value means more DoV and less compression. Roth et al.

identified a negative correlation between ρ value and performance on novel classes (unseen

classes during the training phase). They explained that retaining high dimensionality

will be beneficial for generalization when there is a considerable amount of distribution

shift, such as in the classification of novel classes.

The first possible effect of increased MC values is discriminality of learned features. If

data points are not discriminative enough according to the distance metric for adversarial

robustness, in our case the input distance metric, AT with the same distance metric can

diminish the discriminality of learned features. This may reduce the generalization power

of the models in standard (non-transfer) classification [Kornblith et al., 2021]. This is one

possible reason for the tradeoff between standard accuracy and adversarial robustness.

The second possible effect is the amount of directions of significant variance (DoV)

[Roth et al., 2020]. If input dimension dI is high dimensional and lp norm is used for

robustness, high dimensional distance relationships on the input space may be reflected

in the learned feature space. Hence, AT may increase the amount of DoV. This may

explain why adversarially trained models usually transfer more effectively [Salman et al.,

2020].

To investigate the discriminative power of input space distances, I assessed two dis-

criminative measures: discriminative value ϕ [Liu et al., 2020] and class separation R2

[Kornblith et al., 2021] using (input) data points. Because there is no standard refer-

ence value for comparison, these values alone may not be sufficient to determine whether

the input space is discriminative. Therefore, I also assessed the test accuracy of two

distance-based models using input space information: 1-NN (single nearest neighbor)

classifier and NPC (nearest prototype classifier). If input space is highly discriminative,

then distance information will be helpful in classification, and thus we can expect high

test accuracy of distance-based classifiers (higher than 0.8 for instance). Note that 1-NN

test accuracy is based on local (neighbor) distance, which is in contrast to discrimina-

tive measures ϕ, R2, and NPC test accuracy that are based on global statistics. The

results are summarized in Table 5.3. With respect to discriminative measures based on

global statistics, SVHN dataset has less discriminative input features than the CIFAR-10

dataset. The reverse was the case for 1-NN test accuracy. Thus, the SVHN dataset has

more discriminative input features when it comes to a local distance measure. Given that

the test accuracy of both distance-based classifiers is smaller than 0.5, the discriminative

powers of input spaces are not high in either dataset.
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Table 5.3: Discriminative value ϕ, class separation R2, and test accuracy of 1-NN (single
nearest neighbor) classifier and NPC (nearest prototype classifier) of input space using
two distance metrics on two datasets.

Dataset CIFAR-10 SVHN

ϕ (l2 norm) 0.1635 0.0021

ϕ (l∞ norm) 0.1804 0.0073

R2 0.0550 0.0016

1-NN (l2 norm) 0.3546 0.4236

1-NN (l∞ norm) 0.1816 0.3113

NPC (l2 norm) 0.2771 0.1003

NPC (l∞ norm) 0.2136 0.1171

Previously, I suggested that AT may reduce discriminality. To test this, I assessed

inter class variances Dinter, intra class variances Dintra, and discriminative values ϕ on

feature space (after normalization) [Liu et al., 2020]. I also assessed class separation R2

[Kornblith et al., 2021]. To measure changes in the amount of DoV from AT, I counted

the number of dimensions in the normalized singular value spectrum of feature space

whose variance is higher than 1
dF−1

, and denoted this value as dDoV. Higher dDoV value

indicates there are more principal directions that have higher variances than average,

which indicates less compression of the data. Additionally, ρ values [Roth et al., 2020]

are calculated as defined in section 2.4.

Table 5.4 presents the investigated values for the CIFAR-10 dataset. The corresponding

results for the SVHN dataset are shown in Table 5.5. Similar to the observations of

Wu et al. [2021] who found that AT increased inter-class similarity, I observed decreased

inter-class variance Dinter from AT. However, in contrast to their observations, which

showed decreased intra-class variance from AT, there was increased intra-class variance

Dintra from AT. Furthermore, AT decreased discriminative value ϕ and class separation

R2. This indicates the possible existence of the suggested effect AT on discriminative

power. AT increased the number of dimensions in singular value spectrum dDoV, but

inconsistent changes were observed in ρ values. This also supports the suggested effect

of AT on the dimensionality of feature space. In most cases, increasing the budget ϵ of

AT magnified the changes.
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Table 5.4: Inter class variances Dinter, intra class variances Dintra, discriminative values
ϕ, class separation R2, number of dimensions in singular value spectrum dDoV, and ρ
with different training options on the CIFAR-10 dataset. These values were calculated
for normalized representations.

Method ST AT
(l2 norm, ϵ = 0.25)

AT
(l2 norm, ϵ = 0.5)

AT
(l2 norm, ϵ = 1.0)

AT
(l∞ norm, ϵ = 8

255
)

Dinter 1.0245 0.6783 0.6500 0.5376 0.5312

Dintra 0.0683 0.1312 0.1513 0.2606 0.1991

ϕ 15.0003 5.1692 4.2946 2.0631 2.6684

R2 0.8709 0.6993 0.6590 0.4814 0.5456

dDoV 32 51 76 75 71

ρ 2.4053 1.6701 0.9996 1.4570 1.3003

Table 5.5: Inter class variances Dinter, intra class variances Dintra, and discriminative
values, class separation R2, number of dimensions in singular value spectrum dDoV, and
ρ with different training options on the SVHN dataset. These values were calculated for
normalized representations.

Method ST
AT

(l2 norm,
ϵ = 0.25)

AT
(l2 norm,
ϵ = 0.5)

AT
(l2 norm,
ϵ = 1.0)

AT
(l∞ norm,
ϵ = 8

255
)

AT
(l∞ norm,
ϵ = 12

255
)

Dinter 1.2494 0.7214 0.5972 0.4889 0.8629 1.0091

Dintra 0.0468 0.0578 0.1215 0.2735 0.0564 0.0671

ϕ 26.6981 12.4786 4.9135 1.7879 15.2928 15.0282

R2 0.9231 0.8488 0.6885 0.4458 0.8731 0.8711

dDoV 21 35 48 52 34 31

ρ 2.3753 2.8203 2.5358 2.2234 2.6031 2.5739

5.3 Correlation between MC values and representa-

tion measures

To investigate whether resembling input distance relationships is correlated with char-

acteristics of the feature spaces, I performed a correlation analysis on the results by

calculating both the Pearson correlation coefficient and Spearman’s rank correlation

coefficient between MC values (mean correlations in Tables 5.1 and 5.2) and representa-

tion measures (discriminative and dimensionality measures in Tables 5.4 and 5.5). Using

these measures, my analysis will reveal whether representation measures are correlated

with the MC value, which measures the degree to which the feature distance structure is

similar to input distance structure. If correlations are found, this will support the sug-

gested effects of AT on representation, albeit not conclusively. Because MC values based

on both l2 and l∞ norms are significantly correlated (p-value < 0.01) with coefficients

higher than 0.98 in both datasets, I only used l2 norm-based MC values for analyses.
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The results are presented in Table 5.6. These reveal that discriminative power ϕ is neg-

atively correlated with the MC value (only marginally significant in terms of Pearson’s

correlation). Class separation R2 has a significant negative correlation with MC value.

dDoV has a positive correlation with mean correlation values but with marginal or non-

significant results. ρ value has a negative correlation with mean correlation values, but

this was not significant in any of the cases.

Table 5.6: Correlations between mean correlation (MC) values (in Tables 5.1 and 5.2)
and representation measures (in Tables 5.4 and 5.5). Representation measures include
discriminative values ϕ, class separation R2, number of dimensions in singular value
spectrum dDoV, and ρ value. The letter “M” indicates marginal p-value (between 0.01
and 0.05). “*” indicates significant p-value (between 0.001 and 0.01). “**” indicates
highly significant p-value (< 0.001).

CIFAR-10 SVHN

Pearson Spearman Pearson Spearman

ϕ −0.9058M −1.0000∗∗ −0.9082M −0.9429∗

R2 −0.9917∗∗ −1.0000∗∗ −0.9860∗∗ −0.9429∗

dDoV 0.9115M 0.7000 0.9337∗ 0.8286M

ρ −0.7513 −0.6000 −0.5271 −0.3714

The table reveals a (1) negative correlation between MC value and discriminative mea-

sures (ϕ and R2) and (2) positive correlation between similarity to input distance struc-

ture and dimensionality of features dDoV. These suggest that if AT forces feature space

distance structure to become more similar to the input distance structure then, corre-

spondingly, feature space discriminality may be decreased and feature dimensionality

may be increased.

5.4 Discussion

The identified relationships in this chapter can be summarized as follows. First, AT

may force feature space to more closely resemble the distance structure of the input

space. Consequently, AT may reduce discriminative powers of representations (ϕ and

R2). Moreover, by mimicking the distance relationships in the input space, AT may

increase the number of directions of significant variance (dDoV). If the decrease of dis-

criminative power in the AT model is due to increased resemblance to the distance

structure of the input space, this has important implications. Because the discrimina-

tive power of input features is not high enough in the datasets considered, as shown in
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Table 5.3, adhering to lp norm of input space as a distance measure implies that the cor-

responding robust models will have less discriminative features space than ST models.

Thus, with respect to generalization performances, the accuracy-robustness tradeoff may

be inevitable in both datasets. However, the tradeoff can be avoided when a more ad-

vanced distance metric is used such that discriminative power based on the distance is

high. This highlights the importance of devising and using advance metrics. However,

one limitation with this work is that I only studied two data sets. In particular, both

have low input space discriminality. To study the relationship between the resemblance

to the distance structure of the input space and discriminality of feature space more

generally, it would be useful to experiment with synthetic datasets that have varying

degrees of (input) discriminality and dimensions.



Chapter 6

Discussion and future directions

In this thesis, I investigated different fields of machine learning: metric learning (Chapter

2), adversarial robustness (Chapter 3), and hierarchy-informed classification (Chapter

4). Moreover, in Chapter 5, I explored the possible effects of adversarial robustness on

a feature space. In this chapter, I highlight the significance of distance in the explored

fields, summarize the contributions of my research in these areas, and suggest possible

future works.

6.1 Discussion

Metric learning is concerned with learning a feature mapping f(·) such that distance on

the feature (embedding) space represents dissimilarity between data points. Therefore,

metric learning can be regarded as learning a distance. In section 2.4, I explored how

the discriminative power of learned feature space can affect the performance of models.

The fact that the feature space represents the similarity of data points highlights the

importance of the characteristics of distance regarding model performances. In paper I,

the first author proposed using metric learning for the classification of plankton images.

Using metric learning models can be advantageous in classifying data points from novel

plankton classes as it does not require retraining of the embedding function. In paper II, I

proposed distance-ratio-based (DR) formulation for metric learning, which has two useful

properties. First, the corresponding loss is not affected by the scale of an embedding.

Second, it outputs the optimal (maximum or minimum) classification confidence scores

for each class representative.

Distance plays an important role in adversarial examples and robustness. For instance,

it has been used in formally defining adversarial examples [Biggio et al., 2013] and the
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commonly employed ϵ-ball-based definition [Madry et al., 2017; Tsipras et al., 2018] of

adversarial accuracy. A number of analytical results highlight the importance of the

choice of distance for adversarial robustness. While Croce and Hein [2020a] suggested a

model provably robust against all lp attacks (p ≥ 1), comprising multiple perturbation

types, my analysis in Appendix A shows that their defense used a subset of a ball based

on a combined distance dcombined(·, ·). This suggests that it is possible to achieve robust-

ness against multiple attacks by being robust to a single attack type (dcombined atttack).

My proposed measure of adversarial robustness in paper III, Voronoi-epsilon adversarial

accuracy (VAA), aims to overcome the tradeoff between accuracy and adversarial accu-

racy for large ϵ values. Furthermore, I define global Voronoi-epsilon robustness as a limit

of the Voronoi-epsilon adversarial accuracy, and demonstrate that the nearest neighbor

(1-NN) classifier maximizes this. One of the findings from the paper is the local equiva-

lence of adversarially robust classifiers with the nearest neighbor (1-NN) classifier. Given

that 1-NN classifiers are distance-based models, this indicates that the local robustness

will be affected by the choice of distance measure for adversarial robustness. Moreover,

the experiments in Chapter 5 suggest that for adversarially robust models, the distance

structure of feature space will resemble the distance structure of input space. Such re-

semblance may also change the generalization power of the robust models and transfer

performances, further highlighting the importance of the choice of distance in adversarial

robustness.

Distance has crucial roles to play hierarchy informed classifications. From a tree struc-

ture, we can obtain hierarchical distances between classes. Conversely, when we do not

know the hierarchical structure of classes, we can use class distances to infer the hierar-

chy tree through hierarchical clustering algorithms. Hierarchical class distances are also

used in measuring the performance of hierarchy informed classifications. Moreover, hi-

erarchical distances are used for metric learning-based hierarchy-informed classifications

by prefixing or guiding the positions of proxy representatives. Paper IV suggests estimat-

ing hierarchical class distances from classification-based metric learning models. When

we know class hierarchy, we can verify whether learned semantic distances of the model

match our prior knowledge. In a situation without a known hierarchy of classes, esti-

mated hierarchical class distances can be used for inferring a hierarchical tree. The paper

also demonstrates the advantages of using the DR formulation, which was introduced

in paper II. Specifically, DR formulation leads to improved hierarchical inference perfor-

mance and better hierarchy-informed performance measures (i.e., measures considering

predefined hierarchical structures) compared to the SD-softmax formulation.
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6.2 Future works

I have devised possible applications and methods for adapting metric learning models

that require further investigation. These are now summarized as possible future works.

6.2.1 Improving discriminality of an adversarially robust model

Although further investigation is required, Wu et al. [2021] suggested that the reduction

of discriminality could be an important factor in the accuracy-robustness tradeoff so I

employed this in Chapter 5. If true, it will be worth exploring metric learning methods

that increase discriminality such as the NormFace model [Wang et al., 2017] and adaptive

scaling factor [Zhang et al., 2019b] (both are explained in section 2.2). Specifically,

NormFace loss can be used for training natural data points x with class c, with an

additional loss (such as the second term in expression [3.7]) for adversarial robustness.

Let ∡(v1, v2) be the angle between two unit vectors v1 and v2, and ∡min(c) be the smallest

angle from the proxy W̃c of class c to a different proxy W̃y′ , formalized as ∡min(c) =

min
y′∈Y,y′ ̸=c

∡(W̃c, W̃y′). The additional loss for adversarial robustness should then enforce

the following condition:

∡(f̃(x̂∗), W̃c) <
∡min(c)

2
,

where x̂∗ is an adversarially perturbed data point using an attack algorithm. This

condition will classify x̂∗ as class c without moving f̃(x̂∗) too closely to the proxy Wc.

Given the decision boundary of ArcFace [Deng et al., 2019], which can be written as

∡(f̃(x̂∗), W̃c) ≤ ∡(f̃(x̂∗), W̃y′) −m, the condition can be met by using ArcFace loss for

x̂∗ with negative margin m(c) = −∡min(c)
2

+ ϵtiny for a tiny number ϵtiny > 0 (a more

complex formulation might be needed depending on the range of angles).

6.2.2 Estimation and enhancement of intra-class variance with

metric learning

Metric learning methods learn feature representations such that classification can be

geometrically understood and learned distances resemble semantic dissimilarity. Lin

et al. [2018] analyzed a learned metric learning model trained on an image dataset by

subtracting the corresponding prototypes from their feature vectors to obtain residual

feature vectors. They observed that regardless of their classes, the residual feature
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vectors of data points with similar poses are located closely on the residual (feature)

space. This observation indicates that metric learning models can automatically learn

intra-class variances such as image poses. When no augmentation is applied for training,

analyzing a metric learning model would enable researchers to estimate existing intra-

class variances.

How can the estimated intra-class variance of data be utilized? Let us consider two image

data points x1 and x2 with the same class. One of these (x2 for example) can be obtained

by modifying characteristics, such as the pose, angle, and color, of the other data point.

Thus, one may consider that data points are obtained by augmenting different data

points with certain combinations of transformations. In this view, existing intra-class

variance in the data reflects the data generation process. Hence, with intra-class variance

estimated, we can apply augmentation that mimics the data generation process. Doing

so will enable the distribution of augmented data points to mimic the distribution of

actual data points, but with increased variance. This can be helpful in improving model

performance as a trained model with such augmentation may also be adept at classifying

test data points. Further investigation will be required to verify the effectiveness of such

augmentation.

6.2.3 Re-weighting for direct modification of a feature space

As explained in section 2.4, previous analyses [Kornblith et al., 2021; Liu et al., 2020;

Roth et al., 2020] of learned representations have revealed that characteristics such as dis-

criminative power ϕ and DoV affect the generalization power of metric learning models

on downstream tasks. Several approaches have been suggested to change these charac-

teristics in the training phase. These include using negative margin [Liu et al., 2020]

and regularization to avoid excessive compression of representation [Roth et al., 2020].

However, instead of modification during the training phase, we could directly modify the

learned representations to change the characteristics of a feature space. For instance, for

Euclidean embedding, we can apply principal component analysis (PCA) to identify the

principal directions of features. After centering the features, a feature vector f(x) can

be represented by the obtained directions as follows:

f(x) =

dF∑

i=1

(f(x) · ui)ui,

where ui is i-th (unit) principal direction. We then simply apply weights for each prin-

cipal direction to obtain a modified feature fnew(x). Mathematically, modified feature
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fnew(x) can be defined as:

fnew(x) =

dF∑

i=1

wi(f(x) · ui)ui,

where wi ≥ 0 is the weight for the i-th principal direction. When the feature vectors

are concentrated on the corresponding class representatives, class representatives and

features will be roughly spanned by a small number of principal directions. In this case,

setting small weights for the first few principal directions and larger weights for the

rest would reduce the discriminative power of the representation by spreading feature

positions. Such post hoc change has an advantage in that it does not require retraining

of feature mapping when we encounter multiple tasks with varying distribution shifts.

Future work should investigate whether this proposed re-weighting can effectively change

discriminative power and DoV. One of the important investigations will be to verify

whether the re-weighting method can improve performances even with the distortion of

feature space. If it is confirmed that this is negative, it will suggest that there is an

unknown characteristic of learned features that affect performance which require further

investigation.
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Abstract

Zooplankton images, like many other real world data types, have
intrinsic properties that make the design of effective classification systems
difficult. For instance, the number of classes encountered in practical
settings is potentially very large, and classes can be ambiguous or overlap.
In addition, the choice of taxonomy often differs between researchers
and between institutions. Although high accuracy has been achieved in
benchmarks using standard classifier architectures, biases caused by an
inflexible classification scheme can have profound effects when the output
is used in ecosystem assessments and monitoring.

Here, we propose using a deep convolutional network to construct a
vector embedding of zooplankton images. The system maps (embeds)
each image into a high-dimensional Euclidean space so that distances
between vectors reflect semantic relationships between images. We show
that the embedding can be used to derive classifications with comparable
accuracy to a specific classifier, but that it simultaneously reveals important
structures in the data. Furthermore, we apply the embedding to new classes
previously unseen by the system, and evaluate its classification performance
in such cases.

Traditional neural network classifiers perform well when the classes
are clearly defined a priori and have sufficiently large labeled data sets
available. For practical cases in ecology as well as in many other fields this
is not the case, and we argue that the vector embedding method presented
here is a more appropriate approach.

1 Introduction

In classification problems, the goal is to map each input to one of a discrete set of
classes. A typical example is labeling images according to objects pictured, e.g.,
distinguishing pictures of cats from pictures of dogs. The output of a classifier
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can be a single value, but is often a vector where each element represents the
classifier’s confidence that the input belongs to the corresponding class.

Recently, deep neural networks have been used with great success for many
classification tasks. Often, these classifiers apply a softmax function (a gen-
eralization of the logistic function to multiple outputs) to generate the final
output. This scales the output vector so that the scores for the classes sum to
one, resembling a set of probabilities for the class assignment.

This approach is commonly used for image classification, where it has been
overwhelmingly successful for many benchmark data sets. Yet, it relies on a
set of assumptions that can be naive in many practical situations. Here, we
will use the classification of zooplankton images to illustrate why a vector space
embedding can be a more appropriate approach.

1.1 Zooplankton classification

Plankton constitute a fundamental component of aquatic ecosystems, and since
they form the basis for many food chains and also rapidly adapt to changes
in the environment, monitoring plankton diversity and abundances is a central
input to marine science and management [ICES, 2018].

Imaging systems are being deployed to scale up sampling efforts [Stemmann and Boss, 2012,
Benfield et al., 2007], but the manual curation process remains expensive and
time consuming [ICES, 2018]. Recently, automated classifiers based on deep
neural networks have been developed and applied successfully to benchmark
problem sets, but deployment in a practical marine management situation poses
some challenges.

For standard classifiers, the set of target classes is an integral part of the
structure of the classifier. In other words, the set of target classes must be
finite and known in advance. In contrast, plankton communities often con-
sists of surprisingly large numbers of species (e.g., [Huisman and Weissing, 1999,
Schippers et al., 2001]), with highly varying abundance. Even if all species
were known, many would not be represented in the training data, and the
long-tailed abundance distribution poses a challenge to standard methods
[Van Horn and Perona, 2017]. A further complication is the various forms of
artifacts, including detritus, clusters of multiple specimens, and pieces of fragile
plankton that break apart during processing [Benfield et al., 2007].

In addition, different researchers may operate with different taxonomies, or
otherwise suffer from inconsistent annotation [Malde et al., 2019]. It is symp-
tomatic that comparing the ZooScan data set used here with another, similar
data set [Orenstein et al., 2015] with around 100 classes, we find that only three
of the classes are shared. Two of those represent artifacts (bubble and detritus),
and only one plankton taxon (coscinodiscus) was present as a class in both
data sets. While it is possible to train classifiers separately for each taxon-
omy, this diminishes the total value of the data and inhibits comparisons and
reproducibility.

Several automated systems for plankton classification have been developed
and applied to benchmark data sets (e.g, [Luo et al., 2018, Dai et al., 2016,
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Lee et al., 2016]), but report problems stemming from the severe class imbalance
in the data. In addition, image quality is often poor, and image sizes can vary
enormously. In practice, automation is still mainly used to aid or supplement
a manual curation process [Uusitalo et al., 2016]. For interactive processes,
methods that reveal more of the structure of the data are more useful than
categorical class assignments [ICES, 2018].

1.2 Vector embeddings as an alternative

Here we explore vector embedding of the input space as an alternative to the
standard approach. Each input is mapped to a vector in a high-dimensional
space with no a priori relationship between classes and dimensions. Instead,
the mapping (or embedding) is constructed to reflect some concept of similarity
between inputs. In our case, class membership represents similarity, and the
goal of the embedding is to map inputs from the same class to vectors that are
close to each other, and inputs belonging to different classes to vectors that are
farther apart.

Compared to traditional classification, the embedding models the structure
of the input space with high resolution. This is important when the system deals
with new classes of inputs. Whether two inputs belong to the same or different
classes can be determined solely from the distance between their corresponding
vector space embeddings. Similarly, new classes can be constructed based on
clusters or other structure in the embedding vector space, without retraining or
other modifications to the system.

One application where neural networks that output embeddings have been ap-
plied with particular success, is face recognition [Taigman et al., 2014, Schroff et al., 2015].
Not unlike plankton classification, the goal is to identify a large number of
classes (for face recognition, each individual person represent one class). Thus
we have a classification problem with an unknown, large, and possibly open-
ended number of classes, often with very sparse data and poor annotation.
As for face recognition, it is important to be able to identify classes from
few samples, so called low-shot, one-shot [Fei-Fei et al., 2006], and zero-shot
[Larochelle et al., 2008, Yu and Aloimonos, 2010] classification.

Inspired by this, we here apply a vector embedding approach to the task of
classifying zooplankton images, and compare the results to using a straightfor-
ward classifier based on the Inception v3 [Szegedy et al., 2016] neural network
architecture. We show how classes form clusters in the embedding space, discuss
confoundings, and explore how the vector embedding performs on previously
unseen classes.
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2 Methods

2.1 Data set

Recently, a large set of ZooScan [Gorsky et al., 2010, Grosjean et al., 2004] im-
ages of plankton was made available to the public [Elineau et al., 2018]. The
data set consists of monochromatic images organized into 93 categories, most of
them representing zooplankton taxa. In addition, several error categories exist,
with names like artefact, detritus, and bubble. Abundances range from the 39
images labeled Ctenophora, up to the 511,700 labeled detritus. Three of the four
most abundant categories represent various types of artifact.

The images vary widely in size. We converted the images to a standard size
of 299x299 pixels. Smaller images were padded up to this size, while larger
images were scaled down. The resized images were then used to construct data
sets for training, validation, and testing. For training, we used 65 non-artifact
classes with abundances above 500, in addition to bubble. From each class, 100
random images were selected to serve as a validation set, and then another 100
images for the test set. The remaining images constituted the training set.

A second test set consisted of 100 images sampled randomly from each of
the 38 classes not represented in the other sets. For the classes with less than
100 images, all images were used.

2.2 Standard neural network classifier

To provide a baseline for achievable classification accuracy, we used the convolu-
tional neural network Inception v3, initialized with weights pre-trained on the
ImageNet data set [Deng et al., 2009]. The default 1000-class output layer was
replaced with a 65-class softmax output to match the number of classes.

The network was trained using the SGD optimizer with a learning rate of
0.0001 and momentum of 0.9, using a categorical cross-entropy cost function.
During training, mean square error and accuracy were reported.

All neural networks were implemented using Keras [Chollet et al., 2015] with
a Tensorflow [Abadi et al., 2016] backend, and run on a computer with RTX2080
Ti GPU accelerators (Nvidia Corporation, Santa Clara, California, USA).

2.3 Siamese networks

The particular embedding technique we will investigate here is called siamese
networks [Bromley et al., 1994, Hoffer and Ailon, 2015, Wang et al., 2014], in a
variant using what is called a triplet loss function. The network is given three
inputs, one from a randomly selected class (the anchor), one randomly sampled
from the same class (the positive) and a random sample from another class (the
negative). The cost function J is designed to reward a small distances from the
anchor to the positive and a large distance from the anchor to the negative.

J(a, p, n) = max(0, ||a− p||2 − ||a− n||2 + α)
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The parameter α serves as a margin to avoid the network learning a trivial,
zero-cost solution of embedding all inputs in the same point.

For vector space embedding, we again used Inception v3, but replaced the
softmax with a global average pooling layer and a 128-dimensional vector output
layer. The output vector was further constrained to unit length, so that the
vector embedding results in a point on a hypersphere with a radius of one.

Training was performed using the SGD optimizer and a batch size of 20. The
learning rate was set to decay of 0.9 and an initial value of 0.01. The margin
parameter α was initially set to 1.0, but raised to 1.3 after 20 iterations, and to
1.5 after 30 iterations.

2.4 Classification from a vector space embedding

A vector space embedding does not directly present a classification, but we can
use any of a number of methods suitable for euclidean spaces. An advantage of
vector space embeddings is to allow the use of unsupervised methods, and when
no known data is available, classes can be determined using standard approaches
like $k$-means clustering.

Here, we will compare classifications in the embedding space using two simple
supervised methods. First, using data with known classes we calculate the
centroids for each class and assign new data to the class represented by the
closest centroid. Alternatively, we use nearest neighbor classification (kNN, using
the approximative algorithm BallTree from Scikit-learn [Pedregosa et al., 2011])
against data with known classifications.

3 Results

3.1 Baseline classification

Inception v3 was trained for 220 epochs on the 65-class training data set, the
metrics are shown in Fig. 1. The classifier reaches 80% accuracy on validation
data after 67 epochs, and appears to converge to approximately 86% accuracy
after around 150 epochs.

We select the classifier trained for 200 epochs, and use it to classify the test
set. Total accuracy was 87.7%, a table with more detailed results for the different
classes can be found as supplementary information.

3.2 Training the vector embedding

For validation, we calculated the centroid of the embeddings for each category
of plankton. We define the cluster radius to be the average distance from the
centroid for each image in the validation set. During training, we calculate the
cluster radius (Suppl. Fig 1) and the change in centroid (Suppl. Fig 2) for every
class in the training set. As training progresses, cluster radii shrink, while the
magnitude of the changes to the embedding decreases. In some cases, large
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Figure 1: Training Inception v3 for plankton classification. The loss (solid) and
accuracy (dashed) for training (purple) and validation (green) data are shown
as training progresses.

magnitude changes affect many or all clusters simultaneously, indicating larger
scale rearrangements in the embedding.

We can also check if we are able to correctly predict the correct class by
assigning each image to the closest centroid. The results are shown in Suppl
Fig. 3. Both analyses show rapid improvement for 10 iterations, slower gains
the next 20, and only small improvements after 30 iterations. In the following,
we use the network trained for 30 iterations to construct the vector embeddings.

3.3 Clusters in the embedding space

As training progresses, clusters start to emerge in the embedding space. A t-SNE
[Maaten and Hinton, 2008] rendering is shown in Fig. 2, where the structure of
the input data is evident.

3.4 Classification in the embedding space

For classification using kNN, we investigate possible choices for the parameter
k. We split the validation data set in two (50 instances for each class in
each partition), and used one partition as a reference to classify the other.
Experimenting with different values of k indicates that k = 10 might be a good
value to use (see supplementary figure).

Fig. 3 shows the F1 scores using the default classifier on the whole data set.
In addition, we show the centroid-based classification in the embedded space
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Figure 2: The data projected into the embedding space and displayed using a
t-SNE rendering. Class centroids are marked by black crosses.
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and kNN classification using various values of k, splitting the test set into equal
partitions for reference and an evaluation.

We see that performance is comparable across most classes, but there are some
classes where the standard classifier gives different performance from the embed-
ding. The standard classifier outperforms the embedding for nauplii Cursacea
(class 65, F1 scores of 0.93 and 0.69) and nauplii Cirripedia (class 12, F1 0.97
and 0.51). A substantial difference is also observed for egg Cavolinia inflexa
(class 64, F1 0.93 and 0.33) and egg Actinopterygii (class 17, F1 0.94 and 0.70).
In contrast, the embedding has better performance for Calanoida (class 36, F1
0.50 and 0.96) and larvae Crustacea (class 36, F1 0.62 and 0.84).
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Figure 3: F1-scores across classes in the test set for centroid-based classification
in black and kNN using various values for k in gray. The standard classifier
perfomance is shown in purple.

To elucidate the misclassifications, the ten most commonly occurring con-
foundings with kNN (k = 10) are shown in Table 1.

Not unexpectedly, confoundings occur between classes of organism fragments
or parts. The most commonly occurring confounding consists of the two classes
of tails, and confounding Chaetognatha with the class of its tails is the third
most common occurrence (see also Fig. 4, middle row). In addition, species are
confounded with their different stages, e.g., we see confounding between different
forms of the Diphyidae species (Fig. 4, top row).

We also see pairs of similar species being confounded with each other (e.g.,
Oncaeidae with Harpacticoida, and Eucalanidae with Rhincalanidae).
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Table 1: Commonly seen confoundings in the test data set.
True class Predicted class rate

tail Appendicularia tail Chaetognatha 0.380
Oncaeidae Harpacticoida 0.260
Chaetognatha tail Chaetognatha 0.260
Euchaetidae Candaciidae 0.220
Eucalanidae Rhincalanidae 0.200
Harpacticoida Oncaeidae 0.180
nectophore Diphyidae gonophore Diphyidae 0.180
Rhincalanidae Eucalanidae 0.180
Centropagidae Euchaetidae 0.160
Limacidae Limacinidae 0.160

Figure 4: Example of plankton images that are difficult to resolve. Upper row,
from the left: Decapoda, zooa Decapoda, and larvae Crustacea. Middle row:
tail Appendicularia, tail Chaetognatha, and Chaetognatha. Second row shows
variants of Abylopsis, from the left: eudoxie, gonophore, and nectophore.
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Figure 5: F1-scores across classes for centroid-based classification (black) and
kNN using various values for k (gray).

3.5 Previously unseen classes

For the previously unseen classes, we use the same approach of dividing the test
set in two and using one part for reference and the other for evaluation. The
results are shown in Fig. 3. Here we see that performance is highly variable.
Using centroid classification, the highest performing classes were Rhopalonema
(number 17, F1 0.86), badfocus artifact (number 28, F1 0.82), and egg other
(number 11, 0.83). The lowest scoring classes were Euchirella (number 26, F1
0.07), Aglaura (number 23, 0.19), and multiple other (number 27, F1 0.29).
Several low performing classes are caused by confusing the Abylopsis tetragona
variants (number 14, gonophore, F1 0.38, number 16 eudoxie, F1 0.11, and
number 25, nectophore, F1 0.26). kNN classifications outperforms centroids
slightly for several classes, but the overall picture remains the same.

Again we see that a large fraction of the confoundings occur between variants
of species, in particular Abylopsis tetragona (Fig. 4, bottom row). In addition,
there is several cases of confounding between artifact classes.

4 Discussion

Using the average F1 score over the classes, the standard deep learning classifier
achieves a score of 0.87 on the data set. Using our vector space embedding and
classifying using kNN (k=10), we achieve a score of 0.84. The standard classifier
thus outperforms the embedding, but not by a large margin.
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Table 2: Commonly seen confoundings in previously unseen classes.
True class Predicted class rate

eudoxie Abylopsis tetrag nectophore Abylopsis tet 0.320
Scyphozoa ephyra 0.280
Rhopalonema Aglaura 0.260
gonophore Abylopsis tetr nectophore Abylopsis tet 0.240
Calocalanus pavo Euchirella 0.240
nectophore Abylopsis tet eudoxie Abylopsis tetrag 0.220
badfocus artefact detritus 0.200
Calocalanus pavo part Copepoda 0.180
Echinoidea larvae Annelida 0.180
artefact badfocus artefact 0.180
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Figure 6: A t-SNE rendering of the data in the unseen classes after 30 iterations.
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Interestingly, the vector space embedding performs better on several classes.
The standard classifier often mislabels many species as Calanoida, resulting in a
low F1 score of 0.50, while the embedding classifier achieves an F1 score of 0.96
for this class. In contrast, the standard classifier appears to be better at precisely
separating classes with very similar morphology, for instance classes of eggs or
nauplii. As similar classes are embedded close to each other, they are more
difficult to differentiate. Although the proximity is semantically meaningful, this
reduces accuracy somewhat. For maximizing absolute classification performance,
an ensemble using both methods is likely to be optimal.

In contrast to classification, the embedding is able to better capture the
underlying structure of the data. This has many potential uses, for instance to
identify misclassified data, or to allow switching to a different taxonomy. In this
way, the embedding can be used actively to evaluate and even refine the choice
of classes used.

As a more challenging test case, we applied the embedding approach to
data in classes not present in the training data. Here we achieve a more
modest performance, with an average F1 score of 0.61. Some of the classes gave
particularly poor results, while other classes were accurately identified. Even
for classes where performance is too low to be used directly, the information
provided by the embedding can guide and accelerate manual or semi-interactive
processing. We believe training with more diverse data is likely to improve
generality of the embedding.

The use of very simple schemes used to compare classification performance
in the embedding space (i.e., centroid clustering and kNN) is a deliberate choice.
More complex schemes may be able to give better classification performance,
but our goal here is to emphasize the ability of the embedding to capture the
structure of the input. Using a complex non-linear classifier on the embedding
vectors would defeat this purpose, since it would be more difficult to separate
complexity captured by the embedding from complexity captured by the final
classification stage.

5 Conclusions

Classification of zooplankton is an important task, but the inherent complexity
and other limitations of the data requires more flexibility than that provided
by standard classifiers. Earlier attempts have successfully been able to classify
benchmark data sets [Py et al., 2016, Lee et al., 2016], but achieve high accu-
racy at the expense of removing low abundance or otherwise difficult classes
[Luo et al., 2018].

Here we have shown that using a deep learning vector space embedding, we
can model important structure in the data, while retaining the flexibility to
perform classification with accuracy comparable to state of the art classifiers.
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7 Availability

The data set and software used here is publicly available as described above.
Source code for network construction, training, and analysis can be found as
GitHub repositories at

https://github.com/ketil-malde/plankton-siamese and https://github.
com/ketil-malde/plankton-learn

An interactive rendering of the data sets and classifications using https:
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https://projector.tensorflow.org/?config=https://home.malde.org/

vector_embeddings/
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Figure 1: Cluster radius for the 65 individual categories (gray) and the average (black) as training
progresses.
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Figure 2: Output change measured as the distance cluster centroids move between iterations.
Individual centroids are shown in gray and the average in black.
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Figure 3: Prediction accuracy from assigning each image to the nearest centroid. Only the
validation set is shown. Accuracy plateaus at 0.838 after 30 iterations, and decreases slightly after
35.

Figure 4: Classification performance using the kNN algorithm for different values of k.
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Table 1: Accuracy per class on the test set using Inception v3 for classification. Confounders are
the most frequent incorrect labels reported when the error occurs in more than 5% of the cases.
Class Recall Confounders Class Recall Confounders
Acantharea 82 Phaeodaria (12) Harpacticoida 86 Oncaeidae (8)
Acartiidae 93 Calanoida (7) Hyperiidea 76 Calanoida (7)
Actinopterygii 95 larvae Crustacea 47 calyptopsis (22)
Annelida 84 Limacidae 58 Limacinidae (36)
Bivalvia Mollusca 93 Limacinidae 87
Brachyura 98 Luciferidae 72 Decapoda (15)
bubble 97 megalopa 94
Calanidae 74 Calanoida (24) multiple Copepoda 79 Calanoida (7)
Calanoida 97 nauplii Cirripedia 97
calyptopsis 91 nauplii Crustacea 99
Candaciidae 74 Calanoida (16) nectophore Diphyidae 88 gonophore Diphyidae (9)
Cavoliniidae 91 nectophore Physonectae 94
Centropagidae 60 Calanoida (39) Neoceratium 90 seaweed (6)
Chaetognatha 96 Noctiluca 97
tail Chaetognatha 39 Obelia 95
Copilia 92 Oikopleuridae 99
Corycaeidae 94 Oithonidae 95 Calanoida (5)
Coscinodiscus 99 Oncaeidae 89 Corycaeidae (5)
Creseidae 95 Ophiuroidea 93
cyphonaute 100 Ostracoda 94
cypris 81 Ostracoda (13) Penilia 99
Decapoda 92 Phaeodaria 95 Foraminifera (5)
zoea Decapoda 6 Podon 76 Evadne (17)
Doliolida 96 Pontellidae 94
egg Actinopterygii 95 Rhincalanidae 77 Eucalanidae (21)
egg Cavolinia inflexa 82 egg Actinopterygii (5) Salpida 92
Eucalanidae 78 Calanoida (9) Sapphirinidae 85
Euchaetidae 65 Calanoida (32) scale 82 Noctiluca (5)
eudoxie Diphyidae 80 nectophore Diphyidae (13) seaweed 86
Evadne 95 tail Appendicularia 85 Chaetognatha (5)
Foraminifera 87 tail Chaetognatha 49 Chaetognatha (39)
Fritillariidae 87 Oikopleuridae (10) Temoridae 97
gonophore Diphyidae 84 nectophore Diphyidae (12) zoea Decapoda 92 Decapoda (6)
Haloptilus 91 Calanoida (5)
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ABSTRACT

In metric learning, the goal is to learn an embedding so that data points with the same class are close
to each other and data points with different classes are far apart. We propose a distance-ratio-based
(DR) formulation for metric learning. Like softmax-based formulation for metric learning, it models
p(y = c|x′), which is a probability that a query point x′ belongs to a class c. The DR formulation
has two useful properties. First, the corresponding loss is not affected by scale changes of an em-
bedding. Second, it outputs the optimal (maximum or minimum) classification confidence scores
on representing points for classes. To demonstrate the effectiveness of our formulation, we conduct
few-shot classification experiments using softmax-based and DR formulations on CUB and mini-
ImageNet datasets. The results show that DR formulation generally enables faster and more stable
metric learning than the softmax-based formulation. As a result, using DR formulation achieves
improved or comparable generalization performances.

1 Introduction

Modeling probability p(y = c|x′), which is a probability that a query point x′ belongs to a class c, plays an important
role in discriminative models. Standard neural network based classifiers use the softmax activation function to estimate
this probability. When lc(x′) is the logit (pre-softmax) value from the network for class c and the point x′ and Y is a
set of classes, the softmax function models p(y = c|x′) as:

p̂(y = c|x′) = exp(lc(x
′))∑

y∈Y
exp(ly(x′))

, (1)

where p̂(y = c|x′) is an estimation of the probability p(y = c|x′).
Standard classifiers work well on classifying classes with enough training examples. However, we often encounter
few-shot classification tasks that we need to classify points from unseen classes with only a few available examples
per class. In such cases, standard classifiers may not perform well (Vinyals et al., 2016). Moreover, standard classifiers
do not model similarity between different data points on the logit layer. Metric learning methods learn pseudo metrics
such that points with the same classes are close, and points with different classes are far apart on the learned embedding
spaces. As a result, metric learning models can work well on classifying classes with a few examples (Chen et al.,
2019), and they can be used to find similar data points for each query point (Musgrave et al., 2020).

Several metric learning models (Goldberger et al., 2004; Snell et al., 2017; Allen et al., 2019) use softmax-based
formulation to model p(y = c|x′) by replacing logits lc(x′) in Equation (1) with negative squared distances between
data points on embedding spaces. We found that 1) softmax-based models can be affected by scaling embedding
space and thus possibly weaken the training process. Moreover, 2) they do not have the maximum (or minimum)
∗kim.hyeongji@hi.no
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confidence scores2 on representing points of classes. It implies that when the softmax-based formulation is used for
metric learning, query points do not directly converge (approach) to points representing the same class on embedding
space, and query points do not directly diverge (be far apart) from points representing different classes. As a result,
metric learning with softmax-based formulation can be unstable.

To overcome these limitations, we propose an alternative formulation named distance-ratio-based (DR) formulation to
estimate p(y = c|x′) in metric learning models. Unlike softmax-based formulation, 1) DR formulation is not affected
by scaling embedding space. Moreover, 2) it has the maximum confidence score 1 on the points representing the
same class with query points and the minimum confidence score 0 on the points representing the different classes.
Hence, when we use DR formulation for metric learning, query points can directly approach to corresponding points
and directly diverge from points that represent different classes. We analyzed the metric learning process with both
formulations on few-shot learning tasks. Our experimental results show that using our formulation is less likely to be
affected by scale changes and more stable. As a result, our formulation enables faster training (when Conv4 backbone
was used) or comparable training speed (when ResNet18 backbone was used).

1.1 Problem Settings

Problem Setting. Let X ⊂ RdI be an input space, Z = RdF be an unnormalized embedding space, and Y be a set
of possible classes. The set Y also includes classes that are unseen during training. From a joint distribution D, data
points x ∈ X and corresponding classes c ∈ Y are sampled. An embedding function fθ : X → Z extracts features
(embedding vectors) from inputs where θ represents learnable parameters. We consider the Euclidean distance d(·, ·)
on the embedding space Z .

In this paper, we only cover unnormalized embedding space RdF . One might be interested in using normalized
embedding space S(dF−1) =

{
z ∈ RdF | ‖z‖ = 1

}
. For normalized embedding space, one can still use Euclidean

distance or angular distance (arc length) as both are proper distances.

To compare softmax-based and distance-ratio-based formulation that estimate p(y = c|x′) for metric learning, in
this work, we use prototypical network (Snell et al., 2017) for explanation and experiments. We do this because the
prototypical network is one of the simplest metric learning models.

1.2 Prototypical Network

Prototypical network (Snell et al., 2017) was devised to solve few-shot classification problems, which require to
recognize unseen classes during training based on only a few labeled points (support points). It is learned by episode
training (Vinyals et al., 2016) whose training batch (called an episode) consists of a set of support points and a set of
query points. Support points act as guidelines that represent classes. Query points act as evaluations of a model to
update the model (embedding function fθ) in a training phase and to measure few-shot classification performances in
a testing phase.

Using embedding vectors from support points, prototypical network calculates a prototype pc to represent a class c. A
prototype pc is defined as:

pc =
1

|Sc|
∑

(xi,yi)∈Sc
fθ(xi),

where Sc is a set of support points with class c. (When |Sc| is fixed with K = |Sc|, a few-shot learning task is called
a K-shot learning task.)

We can use the Euclidean distance with a prototype pc on the embedding space to estimate how close a query point x′
is to a class c. We denote the distance as dx′,c. Mathematically, dx′,c is:

dx′,c = d(fθ(x
′),pc) (2)

Using this distance dx′,c, prototypical network estimates the probability p(y = c|x′). We will explain later about the
softmax-based formulation and our formulation for this estimation. Based on the estimated probability, training loss
L is defined as the average classification loss (cross-entropy) of query points. The loss L can be written as:

L = − 1

|Q|
∑

(x′,y′)∈Q
log(p̂(y = c|x′)), (3)

2Confidence score (value) is an estimated probability of p(y = c|x′) using a model.

2



Distance-Ratio-Based Formulation for Metric Learning A PREPRINT

where Q is a set of query points in an episode and p̂(y = c|x′) is an estimation of the probability p(y = c|x′).
Based on the training loss L, we can update the embedding function fθ.

1.3 Metric Learning with Softmax-Based Formulation

In the original prototypical network (Snell et al., 2017), the softmax-based formulation was used to model the proba-
bility p(y = c|x′). The softmax-based formulation is defined by the softmax (in Equation (1)) over negative squared
distance −d2x′,c. Thus, the formulation can be written as:

p̂(y = c|x′) =
exp(−d2x′,c)∑

y∈YE
exp(−d2x′,y)

, (4)

where YE is a subset of Y that represents a set of possible classes within an episode. (When |YE | is fixed with
N = |YE |, a few-shot learning task is called a N -way learning task.)
We denote the value in Equation (4) as σc(x′). When we use σc(x′) to estimate the probability p(y = c|x′), we denote
the corresponding loss (defined in Equation (3)) as LS .

The softmax-based formulation can be obtained by estimating a class-conditional distribution p(x′|y = c) with a
Gaussian distribution. Based on this, in Appendix A, we explain why an average point is an appropriate point to
represent a class when we use the softmax-based formulation.

1.3.1 Analysis of Softmax-Based Formulation

To analyze the formulation in Equation (4), let us consider a toy example. In this example, there are only two classes
c1 and c2 and corresponding prototypes pc1 and pc2 . Let us consider a query point x′ that has distance dx′,c1 and
dx′,c2 as in two cases in Table 1. When we compare case (a) and 2 times scaled case (case (b)), we can check that the
loss Ls is much smaller for the scaled case (6.1442× 10−6). In other words, simply scaling an embedding can change
the confidence score and thus corresponding training loss. It implies that embedding can be scaled to reduce training
loss. Thus, using softmax-based models may weaken a training process by allowing unnecessary model updates that
do not change relative locations of data points.

To inspect the locations that maximize or minimize confidence scores, in Figure 1, we visualized the estimated prob-
ability p̂(y = red|x′) using three prototypes pred, pgreen, and pblue. For the softmax-based model in Figure 1a
(Goldberger et al., 2004; Snell et al., 2017; Allen et al., 2019), the maximum confidence value is not even at the pro-
totype pred. It implies that when we train an embedding with training loss LS , query points with the red class do not
converge directly to the prototype pred. In Figure 1a, the prototypes with different classes pgreen and pblue are not the
points that minimize confidence values. It means that query points with red class do not directly diverge (get far apart)
from prototypes pgreen and pblue. As prototypes do not provide direct guidelines for query points, metric learning
with softmax-based formulation can be unstable.

Table 1: A toy example with different dx′,c1 and dx′,c2 , and the corresponding values. We assumed the query point x′
has class c1 to calculate the losses. In this table, we set ρ = 2 for DR formulation. δ is defined in Section 2.

Cases dx′,c1 dx′,c2 σc1 (x
′) δc1 (x

′) Ls LDR

Case (a) 1 2 0.95257 0.80000 0.048587 0.22314

Case (b) 2 4 0.99999 0.80000 6.1442 × 10−6 0.22314

2 Metric Learning with Distance-Ratio-based Formulation

To handle the limitations of softmax-based formulation in metric learning, we propose an alternative form called
distance-ratio-based (DR) formulation for estimating probability p(y = c|x′). When we use distance dx′,c as in
Equation (2), DR formulation is defined as:

p̂(y = c|x′) =
1

dρ
x′,c∑

y∈YE

1
dρ
x′,y

=
dx′,c

−ρ
∑
y∈YE

dx′,y
−ρ , (5)
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(a) σred(x
′) (b) δred(x′) with ρ = 1 (c) δred(x′) with ρ = 2

Figure 1: Visualization of estimations of p(y = red|x′) based on softmax-based formulation and distance-ratio-based
formulation.

where ρ > 0 is a learnable parameter. When dx′,c = 0 and dx′,c′ > 0 for all c′ 6= c, we define p̂(y = c|x′) as 1
and p̂(y = c′|x′) as 0. As this formulation uses ratios of distances for classification, we call it as distance-ratio-based
formulation. (One can check that Equation (5) can be obtained by replacing the negative squared distance −d2x′,c in
Equation (4) with −ρ ln(dx′,c).)

Let us denote the value in Equation (5) as δc(x′). Then, when we use DR formulation to estimate the probability
p(y = c|x′), we denote the corresponding training loss (defined in Equation (3)) as LDR. Based on the training loss
LDR, we can update the embedding function fθ and also the learnable parameter ρ.

2.1 Analysis of Distance-Ratio-Based Formulation

To analyze our formulation, let us consider when we change the scale of an embedding space. When we scale embed-
ding with a scale parameter α > 0, then the corresponding estimation of probability p(y = c|x′) with DR formulation
is:

p̂(y = c|x′) =
1

(αdx′,c)
ρ

∑
y∈YE

1

(αdx′,y)
ρ

=

1
αρdρ

x′,c∑
y∈YE

1
αρdρ

x′,y

=

1
αρ

1
dρ
x′,c

1
αρ

∑
y∈YE

1
dρ
x′,y

=

1
dρ
x′,c∑

y∈YE

1
dρ
x′,y

(6)

Equation (6) shows that when we use our formulation, scaling an embedding has no effect on the confidence scores
and thus the training loss. (This property can also be checked from the cases (a) and (b) in Table 1.)

In addition to the scale invariance property, δc(x′) has an additional property that has optimal confidence scores on
prototypes. In detail, if we assume d(pc,pc′) > 0 for ∀c′ ∈ YE with c′ 6= c, then the following two equations hold:

lim
x′→pc

δc(x
′) = 1 (7)

lim
x′→pc′

δc(x
′) = 0 (8)

This property can be checked from Figures 1b and 1c that visualize the estimated probability p̂(y = red|x′) using
DR formulation. Proof of the property is in Appendix B. As prototypes provide optimal guidelines for query points,
when we used DR formulation, query points can easily get close to the prototypes with their corresponding classes
(pc) and get far away from the prototypes with different classes (pc′ ). Hence, metric learning with DR formulation
can be stable.

3 Experiments

3.1 Experiment Settings

In our experiments, we wanted to investigate the effectiveness of the distance-ratio-based (DR) formulation com-
pared to the softmax-based formulation. For that, we trained prototypical networks (Snell et al., 2017) based on two
formulations for each experiment: softmax-based (ProtoNet S) and DR formulation (ProtoNet DR).
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(a) Data: CUB, Backbone:
Conv4

(b) Data: CUB, Backbone:
ResNet18

(c) Data: mini-ImageNet,
Backbone: Conv4

(d) Data: mini-ImageNet,
Backbone: ResNet18

Figure 2: Training and validation accuracy curves for two different backbones on 1-shot learning tasks.

(a) Data: CUB, Backbone:
Conv4

(b) Data: CUB, Backbone:
ResNet18

(c) Data: mini-ImageNet,
Backbone: Conv4

(d) Data: mini-ImageNet,
Backbone: ResNet18

Figure 3: Training and validation accuracy curves for two different backbones on 5-shot learning tasks.

We implement 1-shot and 5-shot learning tasks with five classes for each episode (5-way). Details of the settings are
described in the following paragraphs. Codes for our experiments are available in https://github.com/hjk92g/
DR_Formulation_ML.

Dataset We conduct experiments using two common benchmarks for few-shot classification tasks: CUB (200-2011)
(Wah et al., 2011) and mini-ImageNet dataset (Vinyals et al., 2016). The CUB dataset has 200 classes and 11,788
images. We use the same 100 training, 50 validation, and 50 test classes split as Chen et al. (2019). The mini-
ImageNet dataset is a subset of the ImageNet dataset (Deng et al., 2009) suggested by Vinyals et al. (2016). It has
100 classes and 600 images per class. We use the same 64 training, 16 validation, and 20 test classes split as Ravi &
Larochelle (2017); Chen et al. (2019). For both datasets, we apply data augmentation for training data. Applied data
augmentation includes random crop, left-right flip, and color jitter.

Backbone (Architecture) We use two different backbones as embedding functions fθ for each experiment: Conv4
(Snell et al., 2017) and ResNet18 (He et al., 2016). The Conv4 consists of four convolutional blocks. Each block is
composed of a 64-filter 3× 3 convolution, batch normalization, a ReLU activation function, and a 2× 2 max-pooling
layer. It takes 84× 84 sized color images and outputs 1600 dimensional embedding vectors. The ResNet18 backbone
is the same as in He et al. (2016). It contains convolutions, batch normalizations, ReLU activation functions like the
Conv4, but it also has skip connections. It takes 224×224 sized color images and outputs 512 dimensional embedding
vectors.

Optimization Backbones are trained from random weights. We use Adam optimizer (Kingma & Ba, 2014) with a
learning rate 10−3. To investigate training steps, we save training information and validation accuracy for each 100
training episodes, and we call each of these steps a checkpoint. For 1-shot classification tasks, we train embedding
for 60,000 episodes (600 checkpoints). For 5-shot classification tasks, we train embedding for 50,000 episodes (500
checkpoints). Based on validation accuracies on each checkpoint, we select the best model among the checkpoints.

To implement our DR formulation, we modify the implementation of the standard softmax-based prototypical network
(Snell et al., 2017) by replacing negative squared distance −d2x′,c in Equation (4) by −ρ ln(dx′,c). For numerical
stability, we add a small positive value 10−10 before taking square root in the calculation of Euclidean distance dx′;c.
For the DR formulation, we use ln(ρ) ∈ R to model ρ = exp(ln(ρ)). We set the initial parameter for ln(ρ) as 2.0.
Based on this initial value, log(ρ) value is trained for all experiments.

To analyze the local training steps, for each checkpoint (every 100 episodes of training), we checked the positions
of episode points (both support and query points) on embedding space just before the weight updates and right after
the weight updates. When we consider positions on embedding space, we denote a matrix that represents the original
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(a) Data: CUB, Backbone:
Conv4

(b) Data: CUB, Backbone:
ResNet18

(c) Data: mini-ImageNet,
Backbone: Conv4

(d) Data: mini-ImageNet,
Backbone: ResNet18

Figure 4: Norm ratio φ curves for two different datasets and backbones on 1-shot learning tasks. Note that the ranges
of the y-axis are smaller in (b) and (d) than (a) and (c).

(a) Data: CUB, Backbone:
Conv4

(b) Data: CUB, Backbone:
ResNet18

(c) Data: mini-ImageNet,
Backbone: Conv4

(d) Data: mini-ImageNet,
Backbone: ResNet18

Figure 5: Norm ratio φ curves for two different datasets and backbones on 5-shot learning tasks. Note that the ranges
of the y-axis are smaller in (b) and (d) than (a) and (c).

positions of episode points as Xorigin and the corresponding matrix with updated weights as Xnew. We assume these
matrices are mean-centered. When the matrices are not mean-centered, we center the matrices so that an average point
is located at zero. Then, we model the matrix Xnew as a modification of α∗Xorigin for an unknown scale parameter
α∗. Based on this model onXnew, we calculated a score called norm ratio φ that measures the relative effect of scaling
(0 ≤ φ ≤ 1). It is defined as:

φ =

∥∥Xnew − α̂∗Xorigin

∥∥
F

‖Xnew −Xorigin‖F
, (9)

where ‖·‖F is the Frobenius norm and α̂∗ is an estimated scaling parameter by minimizing the numerator of Equation
(9). Norm ratio φ is close to 0 when the major changes are due to scaling. Norm ratio φ is close to 1 when a magnitude
of an embedding is not changed. A detailed explanation for the norm ratio is in Appendix C.1.

In addition to norm ratio φ, to analyze the location changes of query points relative to the positions of prototypes, for
each checkpoint, we also calculated other proposed measures called con-alpha ratio ψcon

α̂∗ , div-alpha ratio ψdiv
α̂∗ , and

con-div ratio ψcon
ψdiv

. We use the same estimated scale parameter α̂∗ as defined in the previous paragraph and Appendix
C.1. Value ψcon measures a degree of convergence of query points to the prototypes with the same class. Con-alpha
ratio ψcon

α̂∗ is the corresponding value after adjusting scale changes. It is smaller than 1 when query points get close
to the prototypes with the same classes after adjusting the scale changes. Value ψdiv measures a degree of divergence
(separation) of query points to the prototypes with different classes. Div-alpha ratio ψdiv

α̂∗ is the corresponding value
after adjusting the scale changes. It is larger than 1 when query points get far apart from the prototypes with different
classes after adjusting the scaling. Con-div ratio ψcon

ψdiv
is defined as con-alpha ratio ψcon

α̂∗ divided by div-alpha ratio
ψdiv
α̂∗ . It measures a relative degree of intended convergence of query points compared to divergence to the prototypes

with different classes. Detailed explanations for these measures are in Appendix C.2.

3.2 Experiment Results

Using the Conv4 backbone (Figures 2a, 2c, 3a, and 3c), we can observe that utilization of the DR formulation helps
to train faster than using the softmax-based prototypical networks (Snell et al., 2017). When using the ResNet18
backbone, the differences are smaller in 1-shot learning tasks (Figures 2b and 2d) or reversed in 5-shot tasks (Figures
3b and 3d).
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Table 2: Few-shot classification accuracies (%) for CUB and mini-ImageNet datasets. Each cell reports mean accuracy
based on 600 random test episodes and the corresponding 95% confidence interval from a single trained model.

Backbone Method CUB mini-ImageNet

1-shot 5-shot 1-shot 5-shot

Conv4 ProtoNet S 50.46 ± 0.88 76.39 ± 0.64 44.42 ± 0.84 64.24 ± 0.72

ProtoNet DR 57.13 ± 0.95 76.50 ± 0.66 48.71 ± 0.78 65.90 ± 0.69

ResNet18 ProtoNet S 72.99 ± 0.88 86.64 ± 0.51 54.16 ± 0.82 73.68 ± 0.65

ProtoNet DR 73.33 ± 0.90 86.63 ± 0.49 54.86 ± 0.86 72.93 ± 0.64

Figures 4 and 5 visualize the changes of norm ratio φ. Tables 3 to 10 (in Appendix C.3) report geometric means
and statistical test results on norm ratio values. In all the experiments with the Conv4 backbone, norm ratios φ were
significantly smaller when we used the softmax-based formulation than the DR formulation. In other words, there
were more scale changes in embedding when we used the softmax-based formulation. It indicates that when we use
the Conv4 backbone, using softmax-based formulation can be more prone to weaken the training process due to the
unnecessary scale changes. When using the ResNet18 backbone, norm ratio values were very close to 1 (geometric
mean at least 0.99705) on both formulations.

Tables 3 to 10 (in Appendix C.3) also report geometric means, proportions of properly learned cases (ψcon
α̂∗ < 1,

ψdiv
α̂∗ > 1, ψconψdiv

< 1), and statistical test results on con-alpha ratio ψcon
α̂∗ , div-alpha ratio ψdiv

α̂∗ , and con-div ratio ψcon
ψdiv

.

When we consider con-alpha ratio ψcon
α̂∗ for 1-shot learning tasks, the properly converged cases (ψcon

α̂∗ < 1) were
significantly more frequent when we used DR formulation. It means that in 1-shot training, our DR formulation model
is more stable in decreasing distances between query points and prototypes with the corresponding classes. When
we consider div-alpha ratio ψdiv

α̂∗ , for all the experiments, the properly diverged cases (ψdiv
α̂∗ > 1) were significantly

more frequent when we used the DR formulation. It indicates that the DR formulation-based model is more stable in
increasing the distance between query points and prototypes with different classes.

Table 2 reports few-shot classification accuracies on test episodes. First, we consider the results when the Conv4
backbone was used for training. Except for the 5-shot classification task on the CUB dataset, which resulted in
comparable accuracies (difference was 0.11%), the test accuracies were higher with the DR formulation. The accuracy
differences ranged from 1.66% to 6.67%.

Now, we consider the results with the ResNet18 backbone in Table 2. First, the accuracy gaps were reduced. Chen
et al. (2019) also observed this phenomenon when they compared accuracy gaps with different backbones using several
few-shot learning models. While the differences were small in the 1-shot classification task (differences were 0.34%
or 0.70%), using DR formulation achieved higher accuracies. For the 5-shot classification task on the mini-ImageNet
dataset, using DR formulation achieved 0.75% lower accuracy.

4 Discussion

In this work, we address the limitations of softmax-based formulation for metric learning by proposing a distance-ratio-
based (DR) formulation. DR formulation focuses on updating relative positions on embedding by ignoring the scale
of an embedding space. It also enables stable training by using each representing point as an optimal position. Our
experiments show that using DR formulation resulted in faster training speed in general and improved or comparable
generalization performances.

When distance dx′,c is a distance between a query point x′ and the nearest support point with class c, distance ratio
dx′,c1
dx′,c2

for two different classes c1 and c2 has been utilized in previous literature. By setting c1 as the nearest class and

c2 as the second nearest class from a query point x′, Júnior et al. (2017) have used the distance ratio named nearest
neighbor distance ratio (NNDR) for handling open-set classification problems (Geng et al., 2020). Independently,
Jiang et al. (2018) have utilized the inverse value

dx′,c2
dx′,c1

to define trust score, which is an alternative value for confi-
dence value of the standard softmax classifiers. Unlike these works that directly use distance-ratios without modeling
confidence values, distance-ratio-based (DR) formulation models probability p(y = c|x′) using distance ratios.

To output confidence scores that are either 0 or 1 on some areas, sparsemax (Martins & Astudillo, 2016), sparsegenlin,
and sparsehourglass (Laha et al., 2018) were proposed as alternatives for softmax formulation in non-metric learning
cases. Unlike DR formulation, which has a confidence score 0 or 1 only on (countable) representing points, these
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formulations have areas (sets of uncountable points) that output confidence score 0 or 1. Such property is inappropriate
for metric learning as confidence scores can be 1 even for non-representing points, and thus query points do not need
to converge very close to the corresponding representing points.

Recent works (Wang et al., 2017; Liu et al., 2017; Wang et al., 2018a,b; Deng et al., 2019) proposed to use modifi-
cations of the standard softmax classifier for metric learning. These modified softmax classifiers showed competitive
performances on metric learning (Musgrave et al., 2020). Unlike traditional metric learning models that use data
points or prototypes, which are obtained from data points, to represent classes, they use learnable parameter vectors to
represent classes. They use cosine similarity on normalized embedding space S(dF−1). That is equivalent to using the
softmax-based formulation with Euclidean distance. While scale dependency of the softmax-based formulation can
be addressed due to normalization, the softmax-based formulation still lacks the second property of DR formulation.
Thus, a representing parameter vector may not be a vector that maximizes the confidence value. To handle this issue,
DR formulation can also be used as an alternative by using Euclidean or angular distance on normalized embedding
space (see example in Appendix E).

In addition to the supervised metric learning, cosine similarity on a normalized representation space is also used in
contrastive self-supervised learning (Chen et al., 2020) and in recent data augmentation strategy (Khosla et al., 2020)
which uses supervised contrastive loss. DR formulation can also be applied to these models for possible performance
improvements.

While using DR formulation resulted in faster or comparable training speed in most experiments, in Figure 3b and 3d,
we observe slightly slower training speed in 5-shot learning with the ResNet18 backbone. We speculate the reason
is that an average point is not an optimal point to represent a class in DR formulation (explained in Appendix A.2),
unlike softmax-based formulation (explained in Appendix A.1). To investigate this, in Appendix D, we conduct 5-shot
learning experiments with nearest neighbor-based models instead of using an average point to represent a class.

Our experiment results showed that the scale changes of softmax-based prototypical networks are decreased dra-
matically when the ResNet18 was used as a backbone. One possible reason for this phenomenon can be the skip
connections in residual modules (He et al., 2016) and the fact that the scale of the input layer is fixed. It requires
further investigation to draw a conclusion.

References

Kelsey Allen, Evan Shelhamer, Hanul Shin, and Joshua Tenenbaum. Infinite mixture prototypes for few-shot learning.
In International Conference on Machine Learning, pp. 232–241. PMLR, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pp. 1597–1607. PMLR, 2020.

Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer look at few-shot
classification. arXiv preprint arXiv:1904.04232, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee, 2009.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin loss for deep
face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
4690–4699, 2019.

Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recognition: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2020.

Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and Russ R Salakhutdinov. Neighbourhood components analysis.
Advances in neural information processing systems, 17:513–520, 2004.

John C Gower, Garmt B Dijksterhuis, et al. Procrustes problems, volume 30. Oxford University Press on Demand,
2004.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Heinrich Jiang, Been Kim, Melody Y Guan, and Maya R Gupta. To trust or not to trust a classifier. In NeurIPS, pp.
5546–5557, 2018.

Pedro R Mendes Júnior, Roberto M De Souza, Rafael de O Werneck, Bernardo V Stein, Daniel V Pazinato, Waldir R
de Almeida, Otávio AB Penatti, Ricardo da S Torres, and Anderson Rocha. Nearest neighbors distance ratio open-
set classifier. Machine Learning, 106(3):359–386, 2017.

8



Distance-Ratio-Based Formulation for Metric Learning A PREPRINT

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu,
and Dilip Krishnan. Supervised contrastive learning. Advances in Neural Information Processing Systems, 33,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Anirban Laha, Saneem A Chemmengath, Priyanka Agrawal, Mitesh M Khapra, Karthik Sankaranarayanan, and Har-
ish G Ramaswamy. On controllable sparse alternatives to softmax. arXiv preprint arXiv:1810.11975, 2018.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep hypersphere embed-
ding for face recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
212–220, 2017.

Henry B Mann and Donald R Whitney. On a test of whether one of two random variables is stochastically larger than
the other. The annals of mathematical statistics, pp. 50–60, 1947.

Andre Martins and Ramon Astudillo. From softmax to sparsemax: A sparse model of attention and multi-label
classification. In International conference on machine learning, pp. 1614–1623. PMLR, 2016.

Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric learning reality check. In European Conference on
Computer Vision, pp. 681–699. Springer, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. International Conference on
Learning Representations, 2017.

Nicu Sebe, Michael S Lew, Ira Cohen, Ashutosh Garg, and Thomas S Huang. Emotion recognition using a cauchy
naive bayes classifier. In Object recognition supported by user interaction for service robots, volume 1, pp. 17–20.
IEEE, 2002.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in Neural
Information Processing Systems, 30:4077–4087, 2017.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. In
Advances in neural information processing systems, pp. 3630–3638, 2016.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-200-2011
dataset. California Institute of Technology, 2011.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere embedding for face
verification. In Proceedings of the 25th ACM international conference on Multimedia, pp. 1041–1049, 2017.

Feng Wang, Jian Cheng, Weiyang Liu, and Haijun Liu. Additive margin softmax for face verification. IEEE Signal
Processing Letters, 25(7):926–930, 2018a.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
Large margin cosine loss for deep face recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5265–5274, 2018b.

9



Distance-Ratio-Based Formulation for Metric Learning A PREPRINT

APPENDIX

A Using an Average Point to Represent a Class

Here, we consider what is an appropriate point to represent a class c based on given support points. We denote a set of
support points with class c as Sc.

A.1 Softmax-Based Formulation

The softmax-based formulation can be considered as an estimation of probability p(y = c|x′) when Gaussian dis-
tribution is used to estimate class-conditional distribution p(x′|y = c). Mathematically, we consider an estimation
p̂(x′|y = c) as:

p̂(x′|y = c) =
1

σ
√
2π

exp

(
−1

2

(
d(fθ(x

′), rc))
σ

)2
)
,

where σ is a standard deviation of the distribution and rc is a representing point of class c. When we fix σ = 1√
2

, we
get a simpler equation:

p̂(x′|y = c) =
1√
π
exp

(
−d(fθ(x′), rc))2

)

Based on this equation and support points, we use MLE (maximum likelihood estimation) approach to find a good
estimation for representing point rc. To maximize the likelihood, let us denote the corresponding likelihood function
as L(rc;Sc). It satisfies equations:

L(rc;Sc) =
∏

(xi,yi)∈Sc
p̂(xi|y = yi)

=
1

√
π
|Sc| exp


−

∑

(xi,yi)∈Sc
d(fθ(xi), rc))

2




As the sum
∑

(xi,yi)∈Sc
d(fθ(xi), rc))

2 is minimized by the average points of support points on embedding space, rc =

pc =
1

|Sc|
∑

(xi,yi)∈Sc
fθ(xi) becomes MLE solution.

A.2 Distance-Ratio-Based (DR) Formulation

For special case ρ = 2, DR formulation can be considered as a limit distribution of p(y = c|x′) when Cauchy
distribution is used to estimate class-conditional distribution p(x′|y = c). Mathematically, we consider equation
(Sebe et al., 2002):

p̂(x′|y = c) =
γ

π (γ2 + d(fθ(x′), rc)2)
,

where γ is a parameter of the distribution and rc is a representing point of class c. Then, when γ approaches 0 with
uniform probability for p̂(y = c), the limit distribution of p̂(y = c|x′) (defined using Bayes theorem) becomes the DR
formulation.
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When we denote the corresponding likelihood function as L(rc;Sc), it satisfies the equation:

L(rc;Sc) =
(γ
π

)|Sc| 1∏
(xi,yi)∈Sc

(γ2 + d(fθ(xi), rc)2)

For MLE, when γ is very close to 0, we need to minimize product defined as:

∏

(xi,yi)∈Sc
d(fθ(xi), rc)

2 =


 ∏

(xi,yi)∈Sc
d(fθ(xi), rc)




2

The points that minimize the product are rc = fθ(xi) for (xi, yi) ∈ Sc. It means that when we consider K-shot
classification with K > 1, using an average point would not be an optimal point to represent a class.

B Proof of Equations (7) and (8)

Property When d(pc,pc′) > 0 for ∀c′ ∈ YE with c′ 6= c, then the following two equations hold:
lim
x′→pc

δc(x
′) = 1 (7)

lim
x′→pc′

δc(x
′) = 0 (8)

Proof. First, let us assume d(pc,pc′) > 0 for c′ 6= c.

dx′,c′ = d(fθ(x
′),pc′) ≥ |d(fθ(x′),pc)− d(pc,pc′)| = |dx′,c − d(pc,pc′)| (∵ The reverse triangle inequality from

the triangle inequality).

lim
x′→pc

dx′,c′ ≥ lim
x′→pc

|dx′,c − d(pc,pc′)| = |
(

lim
x′→pc

dx′,c

)
− d(pc,pc′)| = |0− d(pc,pc′)| = d(pc,pc′) > 0.

As lim
x′→pc

dx′,c′ > 0, we get lim
x′→pc

1
dρ
x′,c′

<∞.

Thus, we also get lim
x′→pc

(
∑

y∈YE ,y 6=c
1

dρ
x′,y

)
<∞. Let us denote the limit value as C1.

lim
x′→pc

δc(x
′) = lim

x′→pc

1
dρ
x′,c∑

y∈YE

1
dρ
x′,y

= lim
x′→pc

1

1 + dρx′,c

∑
y∈YE ,y 6=c

1
dρ
x′,y

=
1

1 + lim
x′→pc

(
dρx′,c

∑
y∈YE ,y 6=c

1
dρ
x′,y

)

=
1

1 + lim
x′→pc

dρx′,c lim
x′→pc

(
∑

y∈YE ,y 6=c
1

dρ
x′,y

) (10)

=
1

1 + 0× C1
= 1

We proved Equation (7).

With a similar process as above, we get lim
x′→pc′

dx′,c > 0 and lim
x′→pc′

dρx′,c > 0. Let us denote the later limit value as

C2.

lim
x′→pc′

1
dρ
x′,c′

= lim
x′→pc′

(
1

dx′,c′

)ρ
=∞, and thus lim

x′→pc′

∑
y∈YE ,y 6=c

1
dρ
x′,y

=∞.

With a similar process as in Equation (10), we get an equation:

lim
x′→pc′

δc(x
′) =

1

1 + lim
x′→pc′

dρx′,c lim
x′→pc′

(
∑

y∈YE ,y 6=c
1

dρ
x′,y

) =
1

1 + C2 ×∞
= 0

11



Distance-Ratio-Based Formulation for Metric Learning A PREPRINT

We proved Equation (8).

C Proposed Ratios to Analyze Training Process and Their Results

C.1 Norm Ratio φ

To check the effect of scale changes in metric learning, we introduce norm ratio φ to measure irrelevance to scale
change. It is based on the positions of episode points (both support and query points) on embedding space. Let us
denote the original positions of embedding outputs as matrix Xorigin and updated positions as matrix Xnew. When
these matrices are not mean- centered, we center the matrices so that an average point is located at zero. Then, we
consider Xnew as a modification of scaled original data matrix α∗Xorigin for an unknown scaling parameter α∗.
Mathematically, we consider the decomposition:

Xnew = α∗Xorigin + (Xnew − α∗Xorigin)

As the scaling parameter α∗ is unknown, we estimate α∗ using Procrustes analysis (Gower et al., 2004). Procrustes
analysis is used for superimposing two sets of points with optimal changes. We denote an estimated value for α∗ as
α̂∗ and define it as:

α̂∗ = argmin
α∈R

‖Xnew − αXorigin‖F , (11)

where ‖·‖F is the Frobenius norm.

Let us denote the Frobenius inner product as 〈·, ·〉F . Then, for ‖Xorigin‖F 6= 0, we get the equations:

‖Xnew − αXorigin‖2F = 〈Xnew − αXorigin, Xnew − αXorigin〉F
= ‖Xnew‖2F + α2 ‖Xorigin‖2F − 2α 〈Xorigin, Xnew〉F

= ‖Xorigin‖2F

(
α− 〈Xorigin, Xnew〉F

‖Xorigin‖2F

)2

+ ‖Xnew‖2F −
〈Xorigin, Xnew〉2F
‖Xorigin‖2F

Thus, we get α̂∗ =
〈Xorigin,Xnew〉F

‖Xorigin‖2
F

=
Tr (XToriginXnew)

‖Xorigin‖2
F

for ‖Xorigin‖F 6= 0.

Once we get an estimated α∗, norm ratio φ is defined as:

φ =

∥∥Xnew − α̂∗Xorigin

∥∥
F

‖Xnew −Xorigin‖F

Norm ratio φ is at most one because of our definition of α̂∗ in Equation (11). Thus, 0 ≤ φ ≤ 1.

When major changes are due to scaling of an embedding space, Xnew ≈ α̂∗Xorigin, and thus φ ≈ 0. On the other
hand, when changes are irrelevant to scaling, Xnew − α̂∗Xorigin ≈ Xnew −Xorigin, and thus φ ≈ 1.

C.2 Con-Alpha Ratio ψcon
α̂∗ , Div-Alpha Ratio ψdiv

α̂∗ , and Con-Div Ratio ψcon
ψdiv

Inspired by the rate of convergence in numerical analysis, we also introduce more measures to analyze the training
processes. As we are using episode training with the prototypical network (Snell et al., 2017), we expect a query point
x′ with class c to get closer to the prototype pc on the embedding space. Similarly, we expect a query point x′ to get far
apart from prototypes with different classes (pc′ ). To measure the degree (speed) of convergence or divergence with
prototypes, we denote the original parameters of the embedding function as θorigin and updated parameters as θnew.
Then, fθorigin represents the original embedding function, and fθnew represents the updated embedding function. We
denote a query point with an index j as x′j . We use the following value ψy,j to check if a query point gets closer to or
far away from a prototype py . It is defined as:

ψy,j =
d(fθnew(x

′
j),py)

d(fθorigin(x
′
j),py)

Case ψy,j < 1 means that the j th query point gets closer to the prototype py for y ∈ YE . Case ψy,j > 1 means that
the j th query point gets far apart from the prototype py .

12
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Based on ψy,j values, we can estimate an average degree of convergence to the corresponding class (denoted as ψcon)
and an average speed of divergence from different classes (denoted as ψdiv). These values are calculated by taking
geometric means of ψy,j values. Mathematically, we define ψcon and ψdiv as:

ψcon =


 ∏

y=y′j ,y∈YE
ψy,j




1
|Isame|

,

ψdiv =


 ∏

y 6=y′j ,y∈YE
ψy,j




1
|Idiff|

,

where y′j is the class of j th query point, Isame is the set of prototype-query index pairs with same classes, and Idiff is
the set of prototype-query index pairs with different classes.

As these values can also be affected by scaling, we use normalized values using the estimated α∗. We call the corre-
sponding values ψcon

α̂∗ and ψdiv
α̂∗ as con-alpha ratio and div-alpha ratio, respectively. Con-alpha ratio ψcon

α̂∗ represents a
degree of convergence of query points to the prototypes with the same class after adjusting scale changes. When query
points get close to prototypes with the same classes (compared to the scale change), on average, con-alpha ratio ψcon

α̂∗

will be smaller than 1. Div-alpha ratio ψdiv
α̂∗ represents a degree of divergence of query points to the prototypes with

different classes after adjusting scale changes. When query points get far apart from prototypes with the other classes
(compared to the scale change), on average, the div-alpha ratio ψdiv

α̂∗ will be larger than 1. When we divide con-alpha
ratio ψcon

α̂∗ with div-alpha ratio ψdiv
α̂∗ , we get another value ψcon

ψdiv
called con-div ratio. It measures a relative degree of

convergence of query points to prototypes with the same class compared to divergence to the prototypes with different
classes. We expect the con-div ratio ψcon

ψdiv
to be smaller than 1 for appropriate training.

C.3 Results of Proposed Measures

Table 3 to 10 show the analysis results of norm ratio ψ, con-alpha ratio ψcon
α̂∗ , div-alpha ratio ψdiv

α̂∗ , and con-div ratio
ψcon
ψdiv

on few-shot classification tasks. Results are based on only one experiment for each formulation. For each
experiment, statistical tests are applied using 600 training checkpoints for 1-shot learning or 400 training checkpoints
for 5-shot learning. Mann–Whitney U test (Mann & Whitney, 1947) is applied to check if the obtained values using
two formulations are significantly different. We report the proportions of properly learned counts (properly learned
cases: con-alpha ratio ψcon

α̂∗ < 1, div-alpha ratio ψdiv
α̂∗ > 1, and con-div ratio ψcon

ψdiv
< 1). Fisher’s exact test is applied to

check if the obtained counts using two formulations are significantly different. In tables, significant p-values (< 0.01)
are written in bold text.

Table 3: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 1-shot task for CUB data
with Conv4 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.97218 0.99898 < 10−120

Con-alpha ratio ψcon
α̂∗ 0.99710 0.87000 0.99762 0.95667 0.00244 < 10−7

Div-alpha ratio ψdiv
α̂∗ 1.00060 0.63667 1.00076 0.80833 0.61722 < 10−10

Con-div ratio ψcon
ψdiv

0.99650 0.96833 0.99687 0.99500 0.05251 0.00077
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Table 4: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 1-shot task for CUB data
with ResNet18 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.99778 0.99789 0.88640

Con-alpha ratio ψcon
α̂∗ 0.98729 0.94833 0.98835 0.99333 0.34990 < 10−5

Div-alpha ratio ψdiv
α̂∗ 1.00257 0.72500 1.00247 0.86000 0.11755 < 10−8

Con-div ratio ψcon
ψdiv

0.98476 0.99500 0.98592 0.99667 0.02294 1.00000

Table 5: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 1-shot task for mini-
ImageNet data with Conv4 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.97620 0.99940 < 10−126

Con-alpha ratio ψcon
α̂∗ 0.99776 0.85500 0.99805 0.95000 0.07212 < 10−7

Div-alpha ratio ψdiv
α̂∗ 1.00075 0.67500 1.00087 0.83333 0.07522 < 10−9

Con-div ratio ψcon
ψdiv

0.99701 0.95333 0.99718 0.99000 0.41342 0.00016

Table 6: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 1-shot task for mini-
ImageNet data with ResNet18 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.99889 0.99705 < 10−15

Con-alpha ratio ψcon
α̂∗ 0.99194 0.95000 0.99207 0.98333 0.11545 0.00187

Div-alpha ratio ψdiv
α̂∗ 1.00177 0.67167 1.00179 0.88167 0.35608 < 10−17

Con-div ratio ψcon
ψdiv

0.99019 0.99500 0.99030 0.99500 0.68248 1.00000

Table 7: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 5-shot task for CUB data
with Conv4 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.98439 0.99863 < 10−61

Con-alpha ratio ψcon
α̂∗ 0.99885 0.81500 0.99906 0.87250 < 10−4 0.03188

Div-alpha ratio ψdiv
α̂∗ 1.00095 0.70500 1.00114 0.91500 0.02577 < 10−13

Con-div ratio ψcon
ψdiv

0.99791 0.92000 0.99793 0.97000 0.29667 0.00281
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Table 8: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 5-shot task for CUB data
with ResNet18 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.99790 0.99928 < 10−14

Con-alpha ratio ψcon
α̂∗ 0.99435 0.96999 0.99482 0.98250 0.22264 0.088458

Div-alpha ratio ψdiv
α̂∗ 1.00210 0.78000 1.00202 0.96750 0.05866 < 10−15

Con-div ratio ψcon
ψdiv

0.99227 0.99250 0.99281 0.99500 0.11123 1.00000

Table 9: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 5-shot task for mini-
ImageNet data with Conv4 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.98565 0.99930 < 10−69

Con-alpha ratio ψcon
α̂∗ 0.99917 0.79500 0.99934 0.79500 0.04840 1.0

Div-alpha ratio ψdiv
α̂∗ 1.00110 0.78000 1.00144 0.96000 0.00054 < 10−14

Con-div ratio ψcon
ψdiv

0.99807 0.94750 0.99790 0.97250 0.40437 0.10306

Table 10: Analysis results of norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio on 5-shot task for mini-
ImageNet data with ResNet18 backbone.

Measures ProtoNet S ProtoNet DR Mann–Whitney
U test Fisher’s exact test

Geometric
mean Proportion Geometric

mean Proportion

Norm ratio φ 0.99925 0.99914 0.22914

Con-alpha ratio ψcon
α̂∗ 0.99465 0.96250 0.99554 0.97500 0.00810 0.41691

Div-alpha ratio ψdiv
α̂∗ 1.00163 0.72750 1.00195 0.95000 0.20071 < 10−17

Con-div ratio ψcon
ψdiv

0.99303 0.99000 0.99360 1.0000 0.01124 0.12406

(a) Data: CUB, Backbone:
Conv4

(b) Data: CUB, Backbone:
ResNet18

(c) Data: mini-ImageNet,
Backbone: Conv4

(d) Data: mini-ImageNet,
Backbone: ResNet18

Figure 6: Training and validation accuracy curves for two different backbones on 5-shot classification task (experiment
with nearest neighbors based model).
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D 5-shot Learning Experiment with Nearest-Neighbor based Model

5-shot learning with the ResNet18 backbone (in Figures 3b and 3d) showed a slightly slower training speed when
using DR formulation than using softmax-based formulation. To investigate if the reason is that a mean point is not
an optimal point to represent a class in formulation (explained in Appendix A.2), we try an additional experiment
using nearest neighbors (1-NN) instead of the prototypical network (Snell et al., 2017). In detail, in stead of using a
prototype to define a distance to a class as in Equation (2), we use a distance defined as:

dx′;c = min
(xi,yi)∈Sc

d(fθ(x
′), fθ(xi)),

where Sc is a set of support points with class c. This distance represents a distance to the nearest support point
on embedding space. Thus, the corresponding model becomes a differentiable nearest neighbor (1-NN) classifier.
Here, we train differentiable 1-NN classifiers for 5-shot classification based on two formulations for each experiment:
softmax-based (1-NN S) and distance-ratio-based (DR) formulation (1-NN DR).

Figure 6 shows the training and validation accuracy curves when we use differentiable 1-NN classifiers. It shows that
using DR formulation enables faster (Figure 6a, 6b, 6c) or almost comparable (slightly slower) (Figure 6d) training
also for 5-shot tasks.
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E An Example of a Normalized Embedding Space

To show the limitation of using cosine similarity in normalized embedding, we consider an example on a normalized
embedding space S2. r1 = (0, 0, 1), g1 = (0, 1, 0), and b1 = (1, 0, 0) are parameter vectors that represent red, green,
and blue classes, respectively. In this example, we consider estimated probabilities p̂(y = red|x′) and the maximizing
and minimizing positions using different models. (We used numerical optimization to get maximizing and minimizing
positions of p̂(y = red|x′).)
Figure 7 shows p̂(y = red|x′) and the maximizing and minimizing positions for models that use cosine similarity
(NormFace (Wang et al., 2017), SphereFace (Liu et al., 2017), CosFace (Wang et al., 2018b)=AM-softmax (Wang
et al., 2018a), ArcFace (Deng et al., 2019)). All cosine similarity-based models take a different position than r1 as the
position that maximizes p̂(y = red|x′). Also, these models take different positions than g1 and b1 as the positions that
minimize p̂(y = red|x′).
Figure 8 shows p̂(y = red|x′) and the maximizing and minimizing positions for models that use angular distance.
In both models, we use angular distances with parameter vectors. By using angles (angular distances), we use the
equations (4) and (5) to calculate p̂(y = red|x′). The angle-based softmax-based model takes a different position
than r1 as the position that maximizes p̂(y = red|x′). It takes −r1 as the position that minimizes p̂(y = red|x′).
Angle-based DR formulation-based model takes r1 as the position that maximizes p̂(y = red|x′). It takes g1 and b1
as the positions that minimize p̂(y = red|x′). The example shows that using DR formulation helps data points to
converge directly to the corresponding parameter vectors and data points can also diverge from parameter vectors for
different classes.

(a) (b) (c) (d)

Figure 7: Visualization of p̂(y = red|x′) for normalized embedding. Color is close to black when the value is small
(close to zero). Color is close to dark red when the value is large (close to one). Models use cosine similarity. We
used scaling parameter 2.0 for all models and margin 2 (with k = 0) in SphereFace (Liu et al., 2017). We used 0.25
as margins in CosFace (Wang et al., 2018b) and ArcFace (Deng et al., 2019).

(a) (b)

Figure 8: Visualization of p̂(y = red|x′) for normalized embedding. The same visualization was used as Figure 7.
Models use angular distance. We used ρ = 2 for DR formulation.
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Abstract

Previous studies on robustness have argued that
there is a tradeoff between accuracy and adversar-
ial accuracy. The tradeoff can be inevitable even
when we neglect generalization. We argue that
the tradeoff is inherent to the commonly used def-
inition of adversarial accuracy, which uses an ad-
versary that can construct adversarial points con-
strained by ϵ-balls around data points. As ϵ gets
large, the adversary may use real data points from
other classes as adversarial examples. We propose
a Voronoi-epsilon adversary which is constrained
both by Voronoi cells and by ϵ-balls. This adver-
sary balances two notions of perturbation. As a re-
sult, adversarial accuracy based on this adversary
avoids a tradeoff between accuracy and adversar-
ial accuracy on training data even when ϵ is large.
Finally, we show that a nearest neighbor classifier
is the maximally robust classifier against the pro-
posed adversary on the training data.

1 Introduction

By applying a carefully crafted, but imperceptible
perturbation to input images, so-called adversarial
examples can be constructed that cause classifiers
to misclassify the perturbed inputs [Szegedy et al.,
2014]. Defense methods like adversarial training
[Madry et al., 2018] and certified defenses [Wong
and Kolter, 2018] against adversarial examples have
often resulted in decreased accuracies on clean sam-
ples [Tsipras et al., 2019]. Previous studies have
argued that the tradeoff between accuracy and ad-
versarial accuracy may be inevitable in classifiers

∗Corresponding Author: hjk92g@gmail.com

[Tsipras et al., 2019, Dohmatob, 2019, Zhang et al.,
2019].

1.1 Problem Settings

Problem  etting. Let X ⊂ Rdim be a nonempty
input space and Y be a set of possible classes. Data
points x ∈ X and corresponding classes cx ∈ Y
are sampled from a joint distribution D. The dis-
tribution D should satisfy the condition that cx is
unique for all x. The set of the data points is a
finite, nonempty set X. A classifier f assigns a
class label from Y for each point x ∈ X . l(y1, y2)
is a classification loss function for y1, y2 ∈ Y and
it satisfies the necessary condition:

∀y1, y2, y3, y4 ∈ Y,
l(y1, y2) ≤ l(y3, y4) =⇒1(y1 = y2) ≥ 1(y3 = y4).

L(x, y) is a classification loss based on the classifier
f provided an input x ∈ X and a label y ∈ Y.
Mathematically, L(x, y) := l(f(x), y).

To simplify the analysis, we do not consider gen-
eralization.

1.2 Adversarial Accuracy (AA)

For a classifier, (natural) accuracy a is the expecta-
tion of a correct classification of data sampled from
the data distribution. Mathematically, it is defined
as:

a = E(x,cx)∼D [1 (f(x) = cx)] .

Adversarial accuracy is a commonly used mea-
sure of adversarial robustness of classifiers [Madry
et al., 2018, Tsipras et al., 2019]. It is defined by
an adversary region R(x) ⊂ X , which is an allowed
region of the perturbations for a data point x.

https://doi.org/10.7557/18.6827

© The author(s). Licensee Septentrio Academic Publishing, Tromsø, Norway. This is an open access article distributed
under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).
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Definition 1 (Adver arial accuracy). Given an
adversary that is constrained to an adversary region
R(x), adversarial accuracy a is defined as:

a = E(x,cx)∼D [1 (f(x∗) = cx)] ,

where x∗ = argmax
x′∈R(x)

L(x′, cx).

The choice of R(x) will determine the adversarial
accuracy that we are measuring. Commonly con-
sidered adversary region is B(x, ϵ), which is a ϵ-ball
around a data point x based on a distance metric
d [Biggio et al., 2013, Madry et al., 2018, Tsipras
et al., 2019, Zhang et al., 2019].

Definition 2 (Standard adver arial accu-
racy). When the adversary region is B(x, ϵ), we
refer to the adversarial accuracy a as standard ad-
versarial accuracy (SAA) astd(ϵ). For SAA, we de-
note R(x) as Rstd(ϵ;x).

astd(ϵ) = E(x,cx)∼D [1 (f(x∗) = cx)] ,

where x∗ = argmax
x′∈Rstd(ϵ;x)

L(x′, cx).

This adversary region B(x, ϵ) is based on an
implicit assumption that there might be an ade-
quate single epsilon ϵ that perturbed samples do
not change their classes. However, this assumption
has some limitations. We explain that in the next
section.

1.3 The Tradeoff Between Accuracy
and Standard Adversarial Accu-
racy

The usage of ϵ-ball-based adversary can cause the
tradeoff between accuracy and adversarial accu-
racy. When the two clean samples x1 and x2 with
d(x1, x2) ≤ ϵ have different classes, achieving lo-
cal SAA higher than 0 on these two points implies
misclassification. We illustrate this with a toy ex-
ample.

1.3.1 Toy Example

Let us consider an example visualized in Figure 1a.
The input space is R2. There are only two classes
A and B, i.e., Y = {A,B}. We use the l2 norm as
a distance metric in this example.

Let us consider a situation when ϵ = 1.0 (see
Figure 1c). In this case, clean samples can also be

considered as adversarial examples. For example,
the point (2, 1) can be considered as an adversarial
example originating from the point (1, 1). If one
choose a robust model based on SAA, one might
choose a model with excessive invariance. For ex-
ample, one might choose a model that predicts
points belong to B((1, 1), 1) (including the point
(2, 1)) have class A. Or, one can choose a model
that predicts points belong to B((2, 1), 1) (includ-
ing the point (1, 1)) have class B. In either case,
the accuracy of the chosen model is smaller than 1.
This situation explains the tradeoff between accu-
racy and standard adversarial accuracy when large
ϵ is used. It originates from the overlapping adver-
sary regions from the samples with different classes.

To avoid the tradeoff between accuracy and ad-
versarial accuracy, one can use small ϵ values. Ac-
tually, a previous study has argued that commonly
used ϵ values are small enough to avoid the trade-
off [Yang et al., 2020b]. However, when small ϵ
values are used, we can only analyze local robust-
ness, and we need to ignore robustness beyond the
chosen ϵ. For instance, let us consider our example
when ϵ = 0.5 (see Figure 1b). In this case, we ig-
nore robustness on B((−2, 1), 1.0)−B((−2, 1), 0.5).
Models with local but without global robustness
enable attackers to use large ϵ values to fool the
models. Ghiasi et al. [2019] have experimentally
shown that even models with certified local robust-
ness can be attacked by attacks with large ϵ val-
ues. Note that their attack applies little semantic
perturbations even though the perturbation norms
measured by lp norms are large.

These limitations motivate us to find an alterna-
tive way to measure robustness. The contribu-
tion of thi paper are a follow .

• We propose Voronoi-epsilon adversarial accu-
racy (VAA) that avoids the tradeoff between
accuracy and adversarial accuracy. This allows
the adversary regions to scale to cover most of
the input space without incurring a tradeoff.
To our best knowledge, this is the first work to
achieve this without an external classifier.

• We explain the connection between SAA and
VAA. We define global Voronoi-epsilon robust-
ness as a limit of the Voronoi-epsilon adversar-
ial accuracy. We show that a nearest neighbor
(1-NN) classifier maximizes global Voronoi-
epsilon robustness.
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(a)

(b)

(c)

Figure 1: (a): Plot of the two-dimensional toy
example. Data points are colored based on their
classes (class A: red and class B: blue). (b): Vi-
sualization of the adversary regions for SAA when
ϵ = 0.5. The regions are colored differently depend-
ing on their classes (class A: magenta and class B:
cyan). The decision boundary of a single nearest
neighbor classifier is shown as a dashed black curve.
(c): Visualization of the adversary regions for SAA
when ϵ = 1.0. The overlapping adversary regions
from the samples with different classes are colored
in purple.

2 Voronoi-Epsilon Adversar-
ial Accuracy (VAA)

Our approach restricts the allowed region of the
perturbations to avoid the tradeoff originating from
the definition of standard adversarial accuracy.
This is achieved without limiting the magnitude of
ϵ and without using an external model. We want to
have the following property to avoid the tradeoff.

∀xi, xj ∈ X, xi ̸= xj =⇒ R(xi) ∩R(xj) = ∅ (1)

When Property (1) holds for the adversary re-
gion, we no longer have the tradeoff as xi /∈ R(xj)
for xi ̸= xj . In other words, a clean sample
cannot be an adversarial example originating from
another clean sample. We propose a new adversary
called a Voronoi-epsilon adversary that combines
the Voronoi-adversary introduced by Khoury and
Hadfield-Menell [2019] with an ϵ-ball-based adver-
sary. This adversary is constrained to an adversary
region V or(x)∩B(x, ϵ) where V or(x) is the (open)
Voronoi cell around a data point x ∈ X. V or(x)
consists of every point in X that is closer than
any xclean ∈ X − {x}. Mathematically, V or(x) =
{x′ ∈ X |d(x, x′) < d(xclean, x

′), ∀xclean ∈ X − {x}}.
Then, Property (1) holds as V or(xi)∩V or(xj) = ∅
for xi ̸= xj .

Based on a Voronoi-epsilon adversary, we define
Voronoi-epsilon adversarial accuracy (VAA).

Definition 3 (Voronoi-ep ilon adver arial ac-
curacy). When a Voronoi-epsilon adversary is
used for the adversary, we refer to the adversar-
ial accuracy as Voronoi-epsilon adversarial accu-
racy (VAA) aV or(ϵ). For VAA, we denote R(x) as
RV or(ϵ;x), i.e., RV or(ϵ;x) = V or(x) ∩ B(x, ϵ).

aV or(ϵ) = E(x,cx)∼D [1 (f(x∗) = cx)]
1

where x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

Figure 2 shows the adversary regions for VAA
with varying ϵ values. When ϵ = 0.5, the re-
gions are same with SAA except for the points
(1.5, 1), (1.5,−1) and (2,−1.5). Even when ϵ is
large (ϵ > 0.5), there is no overlapping adversary

1Using the expectation here is a slight abuse of notation,
since aV or(·) is defined on a finite set. We retain it for
consistency with previous definitions, and understand it to
mean the empirical average.
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region, which was a source of the tradeoff in SAA.
Therefore, when we choose a robust model based on
VAA, we can get a model that is both accurate and
robust. Figure 2c shows the single nearest neighbor
(1-NN) classifier would maximize VAA. The adver-
sary regions cover most of the points in R2 for large
ϵ.

Ob ervation 1. Let dmin be the nearest dis-
tance of the data point pairs, i.e., dmin =

min
xi,xj∈X,xi 6=xj

d(xi, xj). Then, the following equiv-

alence holds.

aV or(ϵ) = astd(ϵ), (2)

when ϵ < 1
2dmin.

Observation 1 shows that VAA is equivalent to
SAA for sufficiently small ϵ values. This indicates
that VAA is an extension of SAA that avoids the
tradeoff when ϵ is large. The proof of the observa-
tion is in Appendix A.1. We point out that equiv-
alent findings were also mentioned in Yang et al.
[2020a,b], Khoury and Hadfield-Menell [2019].

As explained in Section 1.3.1, studying the local
robustness of classifiers has a limitation. Attack-
ers can attack models with only local robustness
by using large ϵ values. The absence of a tradeoff
between accuracy and VAA enables us to increase
ϵ values and to study global robustness. We define
a measure for global robustness using VAA.

Definition 4 (Global Voronoi-ep ilon robu t-
ne  ). Global Voronoi-epsilon robustness aglobal is
defined as:

aglobal = lim
ϵ→∞

aV or(ϵ).

Global Voronoi-epsilon robustness considers the
robustness of classifiers for most points in X (all
points except for Voronoi boundary V B(X), which
is the complement set of the unions of Voronoi
cells.). We derive the following theorem from global
Voronoi-epsilon robustness.

Theorem 1. A single nearest neighbor (1-NN)
classifier maximizes global Voronoi-epsilon robust-
ness aglobal on training data. 1-NN classifier is
a unique classifier that satisfies this except for
Voronoi boundary V B(X).

(a)

(b)

(c)

Figure 2: Visualization of the adversary regions for
VAA with varying ϵ values. The data points and
regions are colored as in Figure 1. (a): When ϵ =
0.5. (b): When ϵ = 1.0. (c): When ϵ = 3.5.
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When lp norm with 1 < p < ∞ is used as a
distance metric, a data point will almost never lie
on the Voronoi boundary V B(X) in practical sit-
uations with only finite number of available train-
ing data points. Note that Theorem 1 only holds
for exactly the same data under the exclusive class
condition as mentioned in the problem settings 1.1.
It does not take into account generalization. The
proof of the theorem is in A.2.

3 Discussion

In this work, we address the tradeoff between ac-
curacy and adversarial robustness by introducing
the Voronoi-epsilon adversary. Another way to ad-
dress this tradeoff is to use a Bayes optimal clas-
sifier [Suggala et al., 2019, Kim and Wang, 2020].
Since this is not available in practice, a reference
model must be used as an approximation. In that
case, the meaning of adversarial robustness is de-
pendent on the choice of the reference model. VAA
removes the need for a reference model by using
the data point set X and the distance metric d to
construct adversary. This is in contrast to Khoury
and Hadfield-Menell [2019] who used Voronoi cell-
based constraints (without ϵ-balls) for an adversar-
ial training purpose, but not for measuring adver-
sarial robustness.

By avoiding the tradeoff with VAA, we can ex-
tend the study of local robustness to global robust-
ness. Also, Theorem 1 implies that VAA is a mea-
sure of agreement with the 1-NN classifier. For suf-
ficiently small ϵ values, SAA is also a measure of
agreement with the 1-NN classifier because SAA is
equivalent to VAA as in Observation 1. This im-
plies that many adversarial defenses [Goodfellow
et al., 2015, Madry et al., 2018, Zhang et al., 2019,
Wong and Kolter, 2018, Cohen et al., 2019] with
small ϵ values unknowingly try to make locally the
same predictions with a 1-NN classifier.

In our analysis, we do not take into account gen-
eralization, and robust models are known to often
generalize poorly [Raghunathan et al., 2020]. Many
defense models use softmax classifiers and the final
classifications of softmax classifiers are done on the
trained feature representations. The close relation-
ship between adversarially robust models and the
1-NN classifier revealed by Observation 1 and The-
orem 1 indicates that feature representations are

affected by the distance relationship in the input
space. It will be worth exploring if that can ex-
plain the reduced discriminative power [Wu et al.,
2021] of robust models and their decreased gener-
alization power.

Acknowledgment 

We thank Dr. Nils Olav Handegard, Dr. Yi Liu,
and Jungeum Kim for the helpful feedback. We
also thank Dr. Wieland Brendel for the helpful
discussions.

References

B. Biggio, I. Corona, D. Maiorca, B. Nelson,
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A Appendix

A.1 Proof of Observation 1

To prove Observation 1, we introduce the following
lemma.

Lemma 1. When N is the number of data points,
let x2, · · · , xN ∈ X − {x} be the sorted neigh-
bors of a data point x ∈ X. Mathematically,
d(x, x2) ≤ d(x, x3) ≤ · · · ≤ d(x, xN ). Then, when
ϵ < 1

2d(x, x2), the following equation holds.

RV or(ϵ;x) = B(x, ϵ). (3)

Proof. Lemma 1
We only consider when ϵ < 1

2d(x, x2).
Let x′ ∈ B(x, ϵ). Then, d(x, x′) ≤ ϵ.
1
2d(x, x2) ≤ 1

2d(x, xclean), ∀xclean ∈ X − {x}.
Due to the triangle inequality, 1

2d(x, xclean) ≤
1
2d(x, x

′) + 1
2d(x

′, xclean).
When we combine the above inequalities,
d(x, x′) ≤ ϵ < 1

2d(x, x2) ≤ 1
2d(x, xclean) ≤

1
2d(x, x

′) + 1
2d(x

′, xclean), ∀xclean ∈ X − {x}.
Then, 1

2d(x, x
′) < 1

2d(x
′, xclean) =

1
2d(xclean, x

′), ∀xclean ∈ X − {x}. Thus,
x′ ∈ V or(x).
Hence, B(x, ϵ) ⊂ V or(x) and RV or(ϵ;x) =
B(x, ϵ) ∩ V or(x) = B(x, ϵ).

Now, we prove Observation 1.

Proof. Ob ervation 1
dmin ≤ d(x, xi), ∀x, xi ∈ X,x ̸= xi.
When ϵ < 1

2dmin, ϵ <
1
2dmin ≤ 1

2d(x, xi), ∀x, xi ∈
X,x ̸= xi. Thus, RV or(ϵ;x) = B(x, ϵ), ∀x ∈ X due
to the equation (3) in Lemma 1.
Then, aV or(ϵ) is same with astd(ϵ) as RV or(ϵ;x) =
B(x, ϵ) = Rstd(ϵ;x), ∀x ∈ X.

A.2 Proof of Theorem 1

To prove Theorem 1, we introduce the following
lemma.

Lemma 2. By changing ϵ and x ∈ X, x′ that satis-
fies x′ ∈ RV or(ϵ;x) can fill up X except for Voronoi
boundary V B(X). In other words, V B(X)c =

X − V B(X) ⊂ ⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

Proof. Lemma 2
Let x′ ∈ V B(X)c.
Note that mathematically, V B(X) =( ⋃
x∈X

V or(x)

)c

.

Hence, V B(X)c =

(( ⋃
x∈X

V or(x)

)c)c

=
⋃
x∈X

V or(x).

∃x ∈ X such that x′ ∈ V or(x).
Let ϵ∗ = d(x, x′). Then, d(x, x′) ≤ ϵ∗ and
x′ ∈ V or(x).
x′ ∈ B(x, ϵ∗) ∩ V or(x) = RV or(ϵ

∗;x) ⊂
⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

We proved V B(X)c ⊂ ⋃
ϵ≥0

( ⋃
x∈X

RV or(ϵ;x)

)
.

Now, we prove Theorem 1.

Proof. Part 1
First, we prove that a 1-NN classifier maximizes
global Voronoi-epsilon robustness. We denote the
1-NN classifier as f1−NN and calculate its global
Voronoi-epsilon robustness.
For a data point x ∈ X, let x′ ∈ RV or(ϵ;x) =
B(x, ϵ) ∩ V or(x).
x′ ∈ V or(x) ⇐⇒ d(x, x′) < d(xclean, x

′), ∀xclean ∈
X − {x}.
As x′ ∈ RV or(ϵ;x) ⊂ V or(x), x is unique nearest
data point in X and thus f1−NN (x′) = cx.
When x∗ = argmax

x′∈RV or(ϵ;x)
L(x′, cx),

aV or(ϵ) = E(x,cx)∼D [1 (f1−NN (x∗) = cx)] =
E(x,cx)∼D [1] = 1.
aglobal = lim

ϵ→∞
aV or(ϵ) = lim

ϵ→∞
1 = 1. Thus, f1−NN

takes the maximum global Voronoi-epsilon robust-
ness 1.

Part 2
Now, we prove that if f∗ maximizes global Voronoi-
epsilon robustness, then f∗ becomes the 1-NN
classifier except for Voronoi boundary V B(X).
Let f∗1 be a function that maximizes global
Voronoi-epsilon robustness.
From the last part of the part 1, when we calculate
global Voronoi-epsilon robustness of f∗1, it should
satisfy the equation aglobal = 1.
For a data point x ∈ X and ϵ1 < ϵ2, RV or(ϵ1;x) =
B(x, ϵ1)∩V or(x) ⊂ B(x, ϵ2)∩V or(x) = RV or(ϵ2;x).
Thus, for a data point x ∈ X and ϵ1 < ϵ2,
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L(x∗1, cx) ≤ L(x∗2, cx) where x∗1 =
argmax

x′∈RV or(ϵ1;x)
L(x′, cx) and x∗2 =

argmax
x′∈RV or(ϵ2;x)

L(x′, cx). From the definition of L,

l(f∗1(x∗1), cx) ≤ l(f∗1(x∗2), cx). From the neces-
sary condition of classification loss l, we obtain the
inequality 1

(
f∗1(x∗1) = cx

)
≥ 1

(
f∗1(x∗2) = cx

)
.

aV or(ϵ1) = E(x,cx)∼D
[
1
(
f∗1(x∗1) = cx

)]
≥

E(x,cx)∼D
[
1
(
f∗1(x∗2) = cx

)]
= aV or(ϵ2) for

ϵ1 < ϵ2. In other words, aV or(ϵ) is a monotonically
decreasing (non-increasing) function.
aV or(ϵ) = 1, ∀ϵ ≥ 0 (∵ If aV or(ϵ

∗) < 1 for an
ϵ∗ > 0, then it is a contradictory to aglobal = 1 as
aV or(ϵ) is a monotonically decreasing function.)
1 = aV or(ϵ) = E(x,cx)∼D

[
1
(
f∗1(x∗) = cx

)]
where

x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

As the calculation is based on the finite set X,
f∗1(x∗) = cx (∵ 1

(
f∗1(x∗) = cx

)
= 1) where

x∗ = argmax
x′∈RV or(ϵ;x)

L(x′, cx).

As x∗ are the worst case adversarially perturbed
samples, i.e., samples that output mostly differ-
ent from cx, f

∗1(x′) = cx = f1−NN (x′) where
x′ ∈ RV or(ϵ;x).
By changing ϵ and x ∈ X, x′ that satisfies
x′ ∈ RV or(ϵ;x) can fill up X except for V B(X)
(∵ Lemma 2). Hence, f∗1 is equivalent to f1−NN
except for Voronoi boundary V B(X).
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Abstract

Most classification models treat all misclassifications equally. However, different classes
may be related, and these hierarchical relationships must be considered in some
classification problems. These problems can be addressed by using hierarchical
information during training. Unfortunately, this information is not available for all
datasets. Many classification-based metric learning methods use class representatives in
embedding space to represent different classes. The relationships among the learned
class representatives can then be used to estimate class hierarchical structures. If we
have a predefined class hierarchy, the learned class representatives can be assessed to
determine whether the metric learning model learned semantic distances that match our
prior knowledge. In this work, we train a softmax classifier and three metric learning
models with several training options on benchmark and real-world datasets. In addition
to the standard classification accuracy, we evaluate the hierarchical inference
performance by inspecting learned class representatives and the hierarchy-informed
performance, i.e., the classification performance, and the metric learning performance
by considering predefined hierarchical structures. Furthermore, we investigate how the
considered measures are affected by various models and training options. When our
proposed ProxyDR model is trained without using predefined hierarchical structures,
the hierarchical inference performance is significantly better than that of the popular
NormFace model. Additionally, our model enhances some hierarchy-informed
performance measures under the same training options. We also found that
convolutional neural networks (CNNs) with random weights correspond to the
predefined hierarchies better than random chance.

Introduction

Neural network-based classifiers have shown impressive classification accuracy. For
instance, a convolutional neural network (CNN) classifier [1] surpassed human-level
top-5 classification accuracy (94.9%) [2] on the 1000-class classification challenge on the
ImageNet dataset [3]. Most training loss functions in neural network classifiers treat all
misclassifications equally. However, in practice, the severity of various misclassifications
may differ considerably. For instance, in an autonomous vehicle system, mistaking a
person as a tree can result in a more catastrophic consequence than mistaking a
streetlight as a tree [4]. In addition, some classification tasks include a large number of
classes, such as the 1000-class ImageNet classification challenge, and hierarchical
relationships may exist among these classes. When several classification models
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achieved similar accuracy, one would prefer to choose models in which the wrongly
predicted classes are “hierarchically” close to the ground-truth classes. To address the
severity of misclassifications and relationships among classes, hierarchical information
can be used. For instance, predefined hierarchical structures can be incorporated into
training by replacing standard labels with soft labels based on this hierarchical
information [4]. Some metric learning approaches also use hierarchical information [5–7].

In general, metric learning methods learn embedding functions in which similar data
points are close and dissimilar data points are far apart according to the distance metric
in the learned embedding space. For class-labeled datasets, data points in the same
class are regarded as similar, while data points in different classes are regarded as
dissimilar. Metric learning can be applied in image retrieval tasks [8] to identify relevant
images or few-shot classification tasks [9, 10], which are classification tasks with only a
few examples per class. Usually, metric learning methods assume that there are no
special relations among classes, i.e., a flat hierarchy is assumed. However, a predefined
class hierarchy can be incorporated into the training process of metric learning models
to improve the hierarchy-informed performance [5–7].

Class hierarchical structures can be defined in several ways. Hierarchical structures
can be defined by domain experts [6] or extracted from WordNet [11], which is a
database that contains semantic relations among English words. For instance, ImageNet
classes [3] are organized according to WordNet. However, hierarchy determination from
WordNet requires that a class name or its higher class is in the WordNet database.
When these approaches are not applicable, hierarchy can be inferred by estimating the
class distance matrix based on learned classifiers. For instance, the confusion matrix of
a classifier can be used to estimate relations among class pairs [12]. Each row in the
confusion matrix can be treated as a vector, and the distance between these vectors can
be calculated to estimate the class hierarchical structure. However, this approach can
be cumbersome for hierarchy-informed classification tasks, as they require separate
training and evaluation (validation) processes to determine the hierarchical structure.
Moreover, this approach becomes challenging when some classes contain a very small
number of data points, as some elements in the confusion matrix may be uninformative.
One type of metric learning model uses a unique position in embedding space (class
representative) to represent each class [13–16]. Class representatives can also be used to
infer hierarchical structures by considering their distances [6, 17]. This approach does
not require a separate training process, as class representatives can be learned
automatically.

On the other hand, when we have a predefined hierarchy, the learned class
representatives can improve our understanding of the trained metric learning model.
For example, we can determine if the semantic distance learned by a metric learning
model matches our prior knowledge (that is, the predefined hierarchy). For instance,
when a model has been trained to classify species, we can determine if the model
regards a dog as closer to a cat than to a rose. Furthermore, these inspections can be
used to evaluate the trustworthiness of a model. However, previous works have paid
little attention to the relationships among class representatives. In this work, we assess
several metric learning methods and training options by focusing on their learned class
representatives and hierarchy-informed performance. Moreover, we attempt to
determine conditions that improve the hierarchy inference performance and evaluate
whether such models enhance the hierarchy-informed performance. We also investigate
different training options with predefined hierarchies for comparison.

Problem settings

The predefined hierarchical distance, i.e., the distance between two classes, often needs
to be considered when training models with hierarchical information and evaluating
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model performance. Barz and Denzler [5] and Bertinetto et al. [4] used bounded ([0, 1])
dissimilarity based on the height of the lowest common ancestor (LCA) between two
classes. In this work, similar to Garnot and Landrieu [6], we define the hierarchical
distance as the shortest path distance between two classes. For instance, in the
predefined hierarchical tree shown in Fig. 1, the hierarchical distance between the
classes “tiger” and “woman” is 4 (= 2 + 2), as we need to move two steps upward and
two steps downward to move from one class to the other. Similarly, the hierarchical
distance between the classes “tiger” and “shark” is 6. Hierarchical structures can be
expressed as trees or directed acyclic graph (DAG) structures [18]. In this work, we
consider tree-structured hierarchies. In other words, each node cannot have more than
one parent node.

Fig 1. Pruned CIFAR100 tree structure for visualization. The whole
hierarchical structure is shown in a table in S2 Appendix.

Let X ⊆ RdI be an input space and Y be a set of classes. The data points x ∈ X
and corresponding classes c ∈ Y are sampled from the joint distribution D. The feature
mapping f : X → Z extracts feature vectors according to the inputs, where Z = RdF is
a raw feature space. In this work, we assume that this mapping is modeled by a neural
network.

Softmax classification

The softmax classifier is commonly used in neural network-based classification tasks.
The softmax classifier estimates the class probability p(c|x), which is the probability
that data point x belongs to class c, as follows:

p(c|x) =
exp(lc(x))∑

y∈Y
exp(ly(x))

, (1)

where logit ly(x) is the neural network output according to input x ∈ X and class y ∈ Y .
Usually, logit ly(x) is calculated as:

ly(x) = WT
y f(x) + by, (2)

where the feature vector f(x) is an output of a penultimate layer, Wy is a weight vector,
and by is a bias term for class y. The probability p(c|x) estimated by the model is often
called the confidence value (score). Based on the estimated class probabilities, we can
use the cross-entropy loss to train the model. This loss measures the difference between
the predicted and target probability distributions. The cross-entropy (CE) loss of a
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mini-batch B ⊆ D is defined as:

LCE = − 1

|B|
∑

(xi,ci)∈B
log(p(ci|xi)). (3)

Metric learning

While softmax classifiers are commonly used in deep learning classification, metric
learning approaches can be beneficial, as they better control data points in embedding
space. Hence, metric learning can provide information on the similarity between
different data points. Metric learning approaches can be divided into two categories:
(direct) embedding-based methods and classification-based methods. Embedding-based
methods [19,20] directly compare data points in embedding space to train an embedding
function (feature map) f(·). Because embedding-based methods compare data points
directly, they must be trained with pairs (using the contrastive loss) or triplets (using
the triplet loss) of data points. Thus, embedding-based methods have high training
complexity and require special mining algorithms [13] to prevent slow convergence
speeds [14]. On the other hand, classification-based methods [13,15,16,21,22] use class
representatives to represent classes. According to the classification loss (cross-entropy
loss), class representatives guide data points to converge to class-specific positions.
Classification-based methods converge faster than embedding-based methods due to
their reduced sampling complexity (training with single data points). In this paper, we
focus on classification-based metric learning methods.

NormFace

NormFace [13], which is also known as normalized softmax [23], modifies Eq. 2 in the
softmax classifier. NormFace was motivated by the normalization of features during
feature comparisons to improve face verification during the testing phase. To apply
normalization during both the testing and training phases, NormFace normalizes the
feature (embedding) vectors and weight vectors and uses a zero bias term. Previous
experiments on metric learning models [8] have shown that NormFace and its
variants [15,16,24] achieved competitive performance on metric learning tasks.

We denote ṽ = v
‖v‖ for any nonzero vector v and the angle between vectors W̃y and

f̃(x) as θy. Then, as
∥∥∥W̃y

∥∥∥ = 1 =
∥∥∥f̃(x)

∥∥∥, we obtain the following equation:

W̃T
y f̃(x) =

∥∥∥W̃y

∥∥∥
∥∥∥f̃(x)

∥∥∥ cos θy = cos θy. (4)

According to Eq. 4, the class probability p(c|x) estimated by NormFace can be
expressed as:

p(c|x) =
exp(sW̃T

c f̃(x))∑
y∈Y

exp(sW̃T
y f̃(x))

=
exp(s cos θc)∑

y∈Y
exp(s cos θy)

, (5)

where s > 0 is a scaling factor. NormFace learns embeddings according to this
estimation and the cross-entropy loss in Eq. 3.

We next investigate the geometrical meaning of the NormFace classification results.
If a data point x is classified as belonging to class c by NormFace, according to Eq. 5,
we obtain exp(s cos θc) ≥ exp(s cos θy), i.e., cos θc ≥ cos θy. As the cosine function is a
monotonically decreasing function in the interval (0, π), we obtain θc ≤ θy. In terms of

angles, the normalized embedding vector f̃(x) is closer (or equally close) to W̃c than
W̃y. As we can classify data points using normalized weight vectors according to this
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geometrical interpretation, we can consider W̃y as the class representative for a class
y ∈ Y. Fig. 2 visualizes the above explanation.

Fig 2. Visualization of NormFace classification results for two classes with
W̃1=(0,1) and W̃2=(1,0). As f̃(x) is closer to W̃1 than W̃2, data point x is classified
as belonging to class 1.

Proxies and prototypes

Although NormFace [13] uses a learnable weight vector as a class representative for each
class, the average point for a class can also be used as a class representative. To prevent
confusion, we define two kinds of class representatives for each class: a proxy
representative and a prototype representative. We refer to the learnable weight vectors
as proxy representatives. In NormFace, the weight vectors W̃y are proxies. In this work,
the proxy representative are used to define the training loss and directly update the
network. Note that we can predefine the proxy representatives, and the proxies can be
fixed. On the other hand, we refer to the (normalized) average embedding for each class
as a prototype representative. We denote the average embedding for class y as vector
µy. In normalized space, this vector is defined as:

µy =
1

|Xy|
∑

x∈Xy
f̃(x),

where Xy ⊆ X is a set of data points in class y. Then, the prototype representatives are
defined as µ̃y =

µy
‖µy‖ . A metric learning method known as the prototypical network [9]

was devised for few-shot learning tasks. During the training process, this network uses
local prototypes based on special mini-batches known as episodes. In their work, the
authors used unnormalized average embedding as prototypes because they considered
Euclidean space. In this paper, we do not use prototypes for training, and (global)
prototypes using training data are used only for evaluation.

Note that the proxy and prototype representatives are not necessarily the same. For
instance, when we train the model with fixed proxies, the positions of the prototypes
change during training, while the positions of the proxies remain fixed. Moreover, the
confidence values are not necessarily maximized at the proxies [25]. In this case, the
data points may not converge to their proxies. This concept is explained further in the
next subsubsection.

SD softmax and DR formulation

In our previous work [25], we analyzed a softmax formulation for metric learning in
which negative squared distances were used as logit values. We called this formulation
the “softmax-based formulation” in our previous paper. In this work, we refer to this
formulation as “squared distance (SD) softmax” to prevent confusion with the standard
softmax formulation shown in Eq. 1.
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We denote the class representative for class y as Ry and the distance to class y as
dx,y := d(f(x), Ry) according to the distance function d(·, ·). For the normalized

embeddings, we define dx,y := d(f̃(x), Ry) by assuming that point Ry is normalized.
Then, the class probability p(c|x) estimated using the SD softmax formulation is:

p(c|x) =
exp(−d2x,c)∑

y∈Y
exp(−d2x,y)

. (6)

The SD softmax formulation uses the difference in the squared distance for training.
Consider the following equation:

∥∥∥W̃y − f̃(x)
∥∥∥
2

=
∥∥∥W̃y

∥∥∥
2

+
∥∥∥f̃(x)

∥∥∥
2

− 2W̃T
y f̃(x) = 1 + 1− 2 cos θy.

Then, we obtain:

s cos θy − s = −s
2

∥∥∥W̃y − f̃(x)
∥∥∥
2

.

Thus, we obtain the equation:

exp(s cos θc)∑
y∈Y

exp(s cos θy)
=

exp(s cos θc − s)∑
y∈Y

exp(s cos θy − s)
=

exp(− s2
∥∥∥W̃c − f̃(x)

∥∥∥
2

)

∑
y∈Y

exp(− s2
∥∥∥W̃y − f̃(x)

∥∥∥
2

)
, (7)

(This equation is taken from [13]). The above equation shows that the NormFace
formulation in Eq. 5 can be considered an SD softmax formulation 6 that uses the
Euclidean distance on a hypersphere with radius

√
s
2 .

In [25], we found that the SD softmax formulation had two main limitations. First,
the estimated probability and corresponding loss may be affected by scaling changes.
However, while this limitation must be considered when a Euclidean space is used, this
limitation can be addressed by using normalized embeddings, as in the NormFace
model [13]. The second limitation is that the estimated class probabilities are not
optimized at the class representatives. For instance, the maximum estimated class
probability p(c|x) is not found at the class representative of class c. The NormFace
model also encounters this issue. In the example shown in Fig. 2 with scaling factor
s = 2, point (− 1√

2
, 1√

2
) is the point that maximizes the confidence value of class 1.

To address the above limitations, we proposed the distance ratio (DR)-based
formulation [25] for metric learning models. Mathematically, the DR formulation
estimates the class probability p(c|x) as:

p(c|x) =

1
dsx,c∑

y∈Y
1

dsx,y

=
d−sx,c∑

y∈Y
d−sx,y

. (8)

The DR formulation uses ratios of distances for training.
Moreover, the DR formulation [25] resolves the above two limitations of the SD

softmax formulation. In the example shown in Fig. 2, for any scaling factor s, point
(0, 1) = W̃1 is the point that maximizes the confidence value of class 1. Thus, our
experiments showed that the DR formulation has faster or comparable training speed in
Euclidean (unnormalized) embedding spaces.
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Exponential moving average (EMA) approach

Zhe et al. [21] theoretically showed that, while training NormFace [13], the commonly
used gradient descent update method for the proxies based on the training loss cannot
guarantee that the updated proxies approach the corresponding prototypes. To address
this issue, they proposed using the normalized exponential moving average (EMA) to
update the proxies. Mathematically, when updating a proxy for a data point x in class
c, the proxy W̃c is updated as:

W̃c :=
αf̃(x) + (1− α)W̃c∥∥∥αf̃(x) + (1− α)W̃c

∥∥∥
, (9)

where 0 < α < 1 is a parameter that controls the speed and stability of the updates.
Their experimental results showed that the EMA approach achieved better performance
than the standard NormFace model on multiple datasets.

Adaptive scaling factor approach

Based on previous observations that the convergence and performance of NormFace
models [13] depend on the scale parameter s, Zhang et al. [22] proposed AdaCos, which
is a NormFace model trained by using the adaptive scale factor s in Eq. (5). Moreover,
they suggested to use parameter s, which significantly changes the probability p(c|x)
estimated by Eq. (5), where c is the class of data point x. In other words, they

attempted to find a parameter s that maximizes
∥∥∥∂p(c|x)(θc)∂θc

∥∥∥ by approximating an s

value that satisfies the equation:

∥∥∥∥
∂2p(c|x)(θ′c)

∂θ′2c

∥∥∥∥ = 0, (10)

where θ′c := clip(θc, 0,
π
2 ) and clip(·, ·, ·) is a function that limits a value within a

specified range. They proposed two AdaCos models: static (fixed) and dynamic
versions. The static model determines a good scale parameter s before training the
NormFace model based on observations of the angles between the data points and
proxies. In the static model, the scale parameter s is not updated. The dynamic model
updates the scale parameter s during each iteration based on the current angles between
the data points and proxies.

CORR loss

In contrast to previous metric learning approaches that ignored hierarchical
relationships among classes, Barz and Denzler [5] used normalized embeddings to
achieve hierarchy-informed classification. First, they predefined the positions of the
proxies using a given hierarchical structure. These proxies are fixed, i.e., they are not
updated during training. Then, they used the predefined proxies to train the models
according to the CORR loss. For a data point x in class c, the CORR loss ensures that
the embedding vector f̃(x) is close to the corresponding proxy W̃c. The CORR loss of a
mini-batch B ⊆ D is defined as:

LCORR =
1

|B|
∑

(xi,ci)∈B

(
1− W̃T

ci f̃(xi)
)

=
1

|B|
∑

(xi,ci)∈B
(1− cos θci), (11)

where θci is the angle between W̃ci and f̃(xi).
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Methods

We investigated several methods and training options. The details of the settings are
described in the following sections. The codes for our experiments will be available in
https://github.com/hjk92g/Inspecting_Hierarchies_ML.

Dataset We conducted experiments using three plankton datasets (small
microplankton, large microplankton, and mesozooplankton) and two benchmark
datasets (CIFAR100 [26] and NABirds [27]). Table 1 summarizes the number of classes
and images in each dataset. The three plankton datasets were obtained from the
Institute of Marine Research (IMR), where flow imaging microscopy is used during
routine monitoring. The plankton samples were imaged using three FlowCams, ©2022
Yokogawa Fluid Imaging Technologies, Inc., with different magnification settings. The
three plankton datasets contain nonliving classes of artifacts and debris. Moreover,
these datasets contain class names that are not in the WordNet database [11]. In
addition, the three plankton datasets have severe class imbalances. For example, each
class in the small microplankton (MicroS) dataset contains 1 to 456 images. Further
details on the plankton datasets can be found in S2 Appendix. We randomly divided
each plankton dataset into 70% training data, 10% validation data, and 20% test data.
For the plankton datasets, we use images without any augmentation. As the input
images have diverse image sizes, we resized the input images to 128 × 128. The
CIFAR100 dataset contains 100 classes and 600 images per class. The CIFAR100
contains 50000 training and 10000 test images, and we randomly divided the original
training data into 45000 training and 5000 validation data. Furthermore, we applied
random transformations (15 degree range rotations, 10% range translations, 10% range
scaling, 10 degree range shearing, and horizontal flips) on the CIFAR100 training data.
We did not resize images from their original size of 32 × 32. The NABirds dataset
contains 23929 training and 24633 test images. Similar to the plankton datasets, we
randomly divided this dataset into 70% training data, 10% validation data, and 20%
test data. We resized the images to 128 × 128 pixels. We also applied the same
augmentations applied to the CIFAR100 dataset on the NABirds dataset. The
predefined hierarchical structures are available in S1 Appendix.

Table 1. Summary of the studied datasets.

Dataset Target particle
(plankton datasets)

Images per class Images Classes

Small microplankton
(MicroS)

5 to 50µm 1 to 456 6738 109

Large microplankton
(MicroL)

35 to 500µm 2 to 613 8348 102

Mesozooplankton
(MesoZ)

180 to 2000µm 3 to 486 6738 52

CIFAR100 [26] — 600 60000 100

NABirds [27] — 13 to 120 48562 555

Models We consider four types of models: the softmax classifier, NormFace,
ProxyDR (explained below), and a CORR loss-based model. We focus on metric
learning models with normalized embeddings, as normalization is commonly used in
metric learning models to improve performance [5,13,28]. ProxyDR is a model that uses
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proxies for classification and DR formulations (8) to estimate class probabilities p(c|x).
Similar to the NormFace model, ProxyDR uses the Euclidean distance on a hypersphere.
The difference between the two models is that ProxyDR uses DR formulations, while
NormFace uses SD softmax formulations (as shown in Eq. 7). For the plankton
datasets, we used a pretrained Inception version 3 architecture [29] as the backbone.
For the CIFAR100 and NABirds datasets, we used a pretrained ResNet50 [30] as the
backbone. In addition to the backbones, we applied a learnable linear transformation to
obtain 128-dimensional embeddings f(x). For the plankton datasets, we incorporate the

size information. Specifically, when a data point x has size vsize = [width, height]
T

, we

take the elementwise logarithm v′size = [log(width), log(height)]
T

. By applying a linear
transformation, we obtain an embedding vector fsize(x) according to the size
information, i.e., fsize(x) = WT

sizev
′
size + bsize, where Wsize is a learnable matrix with

shape 2× 128 and bsize ∈ R2 is a learnable vector. Then, we add this vector to the
original embedding vector, namely, f(x) := f(x) + fsize(x).

Training settings We trained the models according to the backbone weights and
other weights (linear transformations, proxies). We used the Adam optimizer [31] with a
learning rate of 10−4. Except in the case of a dynamic approach (explained below), we
use 10.0 as a scaling factor in both NormFace and ProxyDR. We set the training batch
size in all experiments to 32. For the plankton datasets, we trained the models for 50
epochs. For the CIFAR100 and NABirds datasets, we trained the models for 100 epochs.
During each epoch, we assessed the model accuracy. We chose the model with the
highest validation accuracy for testing. For each setting, we trained the models five
times with different seeds for the random split.

Training options The different training options are described as follows. The
dynamic approach affects the scale factors in Eqs. 5 and 8. The EMA and MDS
approaches both affect the proxy calculations.

• Standard: standard training with a fixed scale factor s = 10, with proxies updated
using the cross-entropy loss (3).

• EMA (exponential moving average): training using the normalized exponential
moving average [21], as shown in Eq. 9, to update the proxies. When multiple
data points have the same class c in a mini-batch, we apply a modified expression.
Specifically, instead of applying the EMA using a single data point, as in Eq. 9,
we use the normalized average embedding (local prototype) of the mini-batch.
Mathematically, when updating a proxy for m data points xB;1, · · · , xB;m with
class c in mini-batch B, the normalized average embedding is defined as:

µ̃B;c =

m∑
i=1

f̃(xB;i)

∥∥∥∥
m∑
i=1

f̃(xB;i)

∥∥∥∥
.

Then, proxy W̃c is updated as:

W̃c :=
αµ̃B;c + (1− α)W̃c∥∥∥αµ̃B;c + (1− α)W̃c

∥∥∥
, (12)

where α is the same parameter as in Eq. 9. We set the parameter α to 0.001.
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• Dynamic: training with a dynamic scale factor, similar to AdaCos [22]. In
contrast to the original paper, which chooses a scale factor using an approximate
expression, we use the Adam [31] optimizer to determine a scale factor that
satisfies Eq. 10. More details are included in S1 Appendix.

• MDS (multidimensional scaling): training according to predefined hierarchical
information. We use the hierarchical information to set (fixed) proxies. First, as
in the distance calculation method in the problem setting subsection, we use a
predefined hierarchy to generate a distance matrix. We denote the (hierarchical)
distance between the ith and jth classes as dH(i, j). For each hierarchical distance

dH , we apply a transformation dT =
√
2dH

β+dH
for a scalar β > 0 to address the

limited Euclidean distance (≤
√

2) on unit spherical spaces. We set β = 1.0 in all

of our experiments. (Note that if d is a metric, the transformed distance
√
2d

β+d is

also a metric.) Then, according to the transformed distance matrix DT , we use
multidimensional scaling (MDS) to set the proxies. Mathematically, we minimize
a value known as the normalized stress, which can be expressed as:

Stress(DW̃ ) :=
‖DW̃ −DT ‖F
‖DT ‖F

, (13)

where DW̃ is a pairwise Euclidean distance matrix according to proxies W̃y and
‖·‖F is the Frobenius norm. We use the Adam optimizer with a learning rate of
10−3 for 1000 iterations to obtain the proxies. While we used stochastic gradient
descent for the MDS option, different methods, such as those applied by Barz and
Denzler [5], can also be used for MDS. During training, we fix the obtained
proxies and update only the embedding function f(·).

Performance measures In our experiments, we consider three types of performance
measures: standard classification measures, hierarchical inference performance measures,
and hierarchy-informed performance measures. The hierarchical inference performance
measures are used to estimate how well the learned class representatives match the
predefined hierarchies. The hierarchy-informed performance measures are used to
estimate how well a model performs on classification or similarity measures according to
the predefined hierarchies.

We used the top-k accuracy as a standard classification measure, the mean
correlation as the hierarchical inference performance measure, and the average
hierarchical distance (AHD), hierarchical precision at k (HP@k), hierarchical similarity
at k (HS@k), and average hierarchical similarity at k (AHS@k) as hierarchy-informed
performance measures. The utilized measures are defined as follows.

• Top-k accuracy: The classification accuracy was calculated, with correct
classification defined as whether the labeled class is in the top-k predictions (most
likely classes), i. e., the k classes with the highest confidence values. We report
results for k = 1, 5.

• Mean correlations: We introduce this measure to evaluate how well the learned
class representatives match the predefined hierarchical structure. We obtain the
class representatives (either proxies or prototypes) from the learned model using
training data points. Then, we obtain the pairwise distance matrix DL based on
the class representatives. We compare matrix DL with the distance matrix DH

based on the predefined hierarchical structure. Specifically, for each class (row),
we calculate Spearman’s rank correlation coefficient according to the two matrices.
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Then, we determine the mean correlation using Fisher transformations. More
precisely, we apply a Fisher transformation arctanh(·) on each correlation
coefficient, take the average of the transformed values, and apply tanh(·) on the
average value.
For the plankton datasets, the predefined hierarchical structures of the living
classes are based on biological taxonomies. However, these datasets also contain
some nonliving classes, such as “large bubbles” and “dark debris”. Considering
that the predefined hierarchical structures of the living classes are scientifically
defined, for the plankton datasets, we report mean correlations among whole
classes or only among living classes.

• AHD: The average hierarchical distance of the top-k predictions [4] was calculated
as the average hierarchical distance dH between the labeled classes and each of
the top-k most likely classes. In contrast to Bertinetto et al. [4], who considered
only misclassified cases, we consider all cases. Hence, in our calculations, the final
denominators differ. When k = 1, the AHD measure is the same as the average
hierarchical cost (AHC) measure defined by Garnot and Landrieu [6]. We report
results for k = 1, 5.

• HP@k: The hierarchical precision at k [32] was taken as a performance measure.
Specifically, let us denote a (hierarchical) neighborhood set of a class c with the
distance threshold ε as N(c, ε), i.e., n ∈ N(c, ε)⇐⇒ dH(c, n) ≤ ε. We define
hCorrectSet(c, k) as the neighborhood set N(c, ε) with the smallest ε such that
|hCorrectSet(c, k)| ≥ k. Then, the hierarchical precision at k is calculated as the
fraction of the top-k predictions in hCorrectSet(c, k). We report the results for
k = 5.

• HS@k: The hierarchical similarity at k is a measure that was introduced by Barz
and Denzler [5] with the name “hierarchical precision at k”, although this metric
does not evaluate precision and instead assesses similarity. Here, we use a different
measure with the same name that was defined by Frome et al. [32]. Hence, we
renamed the measure “hierarchical similarity at k”. When c is a label of a query
data point x, let R = ((x1, c1) , · · · , (xm, cm)) be the ordered list of image-label
pairs based on the distance (sorted by ascending distance) to point x in the

normalized embedding space. Considering cos(θ) = 1− ‖u1−u2‖2
2 , where u1 and u2

are unit vectors and θ is the angle between u1 and u2, we defined the similarity
between the ith and jth classes sH(i, j) as:

sH(i, j) = 1− dT (i, j)2

2
, (14)

where i and j are the indices for classes (1 ≤ i, j ≤ |Y|).
The hierarchical similarity at k is then defined as:

HS@k :=

k∑
i=1

sH(I(c), I(ci))

maxπ
k∑
i=1

sH(I(c), I(cπi))

, (15)

where I(·) is an index function that outputs the corresponding index (between 1
and |Y|) for a class and π is an index permutation that ranges from 1 to m. We
report results for k = 50, 250.

• AHS@K: The average hierarchical similarity at K was introduced by Barz and
Denzler [5] as the “average hierarchical precision at K”. Due to similar reasons as
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for HS@k, we renamed the measure. The average hierarchical similarity at K is
defined as the area under the curve of HS@k from k = 1 to k = K. We report
results for K = 250.

Results

Main results

The performance measure evaluation results are shown in bar plots with 95% confidence
intervals. Dashed lines separate models trained with or without predefined hierarchical
knowledge. We show only the results on the CIFAR100 and NABirds datasets in the
main text. All results are included in S3 Appendix. To reduce spurious findings, we
focus on consistent trends across the five datasets.

Figs. 3 and 4 and the figures in S3 Appendix show the top-k accuracy for various
training settings. The NormFace and ProxyDR models achieved comparable top-k
accuracy for both k values on most datasets. The softmax loss model obtained low
top-k accuracy. While the result was not significant, using the dynamic option achieved
higher top-1 accuracy than standard training. When the EMA option was added to the
standard and dynamic options, the top-5 accuracy decreased, except for standard
NormFace on the NABirds dataset. While the CORR loss achieved top-1 accuracy that
was comparable to that achieved by other training options with predefined hierarchical
information, this model obtained low top-5 accuracy on all datasets. The top-5 accuracy
with the CORR loss was even lower than that with the softmax loss, except on the
NABirds dataset. Although the results were better than those of the CORR loss model,
the use of predefined hierarchical information during training for NormFace and
ProxyDR also reduced the top-5 accuracy. These results show the opposite trend to the
changes in the top-1 accuracy, which showed comparable or enhanced performance.
Moreover, the dynamic MDS approach obtained lower top-5 accuracy than the MDS
approach without the dynamic option.

Fig 3. Top-k accuracy results (A: k = 1, B: k = 5) on the CIFAR100 dataset.
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Fig 4. Top-k accuracy results (A: k = 1, B: k = 5) on the NABirds dataset.

Figs. 5 and 6 and the figures in S3 Appendix show the mean correlation values for
various training options. When we consider training options that do not use predefined
hierarchical information, ProxyDR obtains higher mean correlations than NormFace,
except for the EMA approaches. The ProxyDR model with the dynamic option
obtained higher mean correlations than the standard ProxyDR model. As expected, the
use of predefined hierarchical information greatly increased the mean correlations based
on prototypes in both the NormFace and ProxyDR models, except the ProxyDR model
on the NABirds dataset. When we consider training options that utilize predefined
hierarchical information, the CORR loss model achieved the highest mean correlations
based on prototypes in most cases. The ProxyDR model typically achieved the
second-best mean correlations.

Fig 5. Correlation measures on the CIFAR100 dataset. (A) Values using
proxies. (B) Values using prototypes. The mean correlation value based on proxies with
the MDS option was 0.8580.
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Fig 6. Correlation measures on the NABirds dataset. (A) Values using proxies.
(B) Values using prototypes. The mean correlation value based on proxies with the
MDS option was 0.4476 (this value is small because the dataset contains 555 classes and
the embedding dimension is 128.).

Figs. 7 and 8 and the figures in S3 Appendix show the hierarchical performance
measures obtained with various training options. The softmax loss option achieved the
worst hierarchical performance, except for AHS@50 on the NABirds dataset. Although
these measures are used to assess the hierarchy-informed performance, some of the
measures are not substantially affected by the use of predefined hierarchical information
during training. For instance, the use of predefined hierarchical information in the
CIFAR100 dataset (Fig. 7) did not show noticeable improvements in terms of the AHD
(k=1), HS@50, and AHS@250 measures. Moreover, while the use of predefined
hierarchical information significantly improved the HS@250 results on most datasets,
only marginal improvements were observed for the CIFAR100 dataset. On the other
hand, the use of predefined hierarchical information significantly improved the AHD
(k=5) and HP@5 results on all datasets. The CORR loss achieved the best results on
these two measures, except on the NABirds dataset. Adding the dynamic option to the
standard and MDS options improved performance on these two measures, except for the
ProxyDR model on the CIFAR100 dataset. When we consider training options that do
not use predefined hierarchical information, the ProxyDR model shows better
performance than NormFace in terms of these two measures, except for the EMA and
dynamic options on the CIFAR100 dataset. Under the same settings, ProxyDR
performed better than NormFace in terms of the HS@250 measure, except for the EMA
option on the CIFAR100 dataset. Moreover, under the same settings, the ProxyDR
model with the dynamic option achieved the highest HS@250 and AHS@250 values
among the compared models.
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Fig 7. Hierarchical performance measures on the CIFAR100 dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.
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Fig 8. Hierarchical performance measures on the NABirds dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.

Additional mean correlation results

To investigate the changes in the class representatives, we evaluated the mean
correlations at the end of each training epoch. We report only the results on the
CIFAR100 and NABirds datasets. Moreover, we report results for ProxyDR models
with the standard and dynamic options. More results are included in S3 Appendix.
Furthermore, we report mean correlations based on random networks, i.e., networks with
random weights, pretrained networks, and unnormalized and normalized input spaces.

Figs. 9 and 10 visualize the changes in the mean correlation values during ProxyDR
model training (averaged values from five different seeds). Surprisingly, we found that
the prototypes of the approximately untrained networks (pretrained on ImageNet [3]
and trained on the target dataset, e.g., CIFAR100 or NABirds, for only one epoch)
already have relatively high correlations (approximately 0.4), with predefined
hierarchical structures. While the accuracy curves show no noticeable differences, using
the dynamic option modified the transition in the mean correlations. In particular,
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prototype-based mean correlations increased after 20 to 40 training epochs, and the
maximum values were obtained near the end of training (approximately 100 epochs).
The proxy-based mean correlations started at low values, and the difference with the
prototype-based mean correlations was reduced. Moreover, the training epoch during
which the validation accuracy is maximized often differs from the training epoch during
which the correlation measures are maximized.

Fig 9. Changes in accuracy and mean correlations for the CIFAR100
dataset (ProxyDR). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option.
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Fig 10. Changes in accuracy and mean correlations for the NABirds
dataset (ProxyDR). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option.

Table 2 shows prototype-based mean correlation values and their 95 percent
confidence intervals based on five different seeds. The mean correlations with the
random networks show that the prototypes and ground-truth hierarchy are correlated.
While these values are smaller than the other cases shown in the table, the results show
that random networks have some degree of semantic understanding.

Table 2. Mean correlations based on prototypes.

Space Random weights Pretrained Input space Normalized input space

CIFAR100 0.2841± 0.0303 0.3816± 0.0116 0.3414± 0.0353 0.2609± 0.0416

NABirds 0.1088± 0.0839 0.2648± 0.0349 0.1740± 0.0056 0.2369± 0.0039

“Random weights” and “pretrained” mean embedding space based on the ResNet50 [30] backbone.

Discussion

In this work, we investigate classification and hierarchical performance under different
models and training options. Our experiments reveal several important findings. Under
the training options that do not consider predefined hierarchical information, the
ProxyDR model achieved better hierarchical inference performance than NormFace in
most cases. Furthermore, under the same training options, ProxyDR achieved better
hierarchy-informed performance in terms of the AHD (k=5) and HP@5 measures.
Moreover, we observed that the use of a dynamic scaling factor improved the
hierarchical inference performance. The changes in the mean correlation values (Figs. 9
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and 10) verified the effect of the dynamic training option. These results reveal the
importance of dynamic training approach. We also found that some hierarchy-informed
performance measures are not significantly improved by the use of known hierarchical
structures. This finding indicates that multiple hierarchy-informed performance
measures should be considered to compare the hierarchy-informed performance of
different models. We also observed a trade-off between the hierarchy-informed
performance and top-5 accuracy. While the CORR loss model typically achieved the
best hierarchical performance, this model obtained the lowest top-5 accuracy among the
experimental models. Similarly, the use of predefined hierarchical information in
NormFace and ProxyDR significantly improved the AHD (k=5) and HP@5 performance
but reduced the top-5 accuracy. In contrast to previous works that observed a trade-off
between hierarchy-informed performance and top-1 accuracy [4], we did not observe this
trade-off with top-1 accuracy.

Surprisingly, we found that prototypes based on CNNs with random weights showed
correspondence with predefined hierarchies that was higher than random chance.
Because CNNs combine convolutional and pooling layers, most CNN architectures have
translation invariance properties. Because of such priors, random networks may know
weak perceptual similarity [33]. Another possible reason for this result is that
prototypes of input spaces show higher correspondence with predefined hierarchies than
random chance. The Johnson-Lindenstrauss lemma [34] shows that linear projections
using random matrices approximately preserve distances. If this property holds for
nonlinear projections based on random neural networks, network-based prototypes may
also correspond to predefined hierarchies. This phenomenon suggests that when we use
metric learning models with proxies, the proxies can be assigned based on prototypes
instead of starting at random positions. This may improve training during the initial
epochs, as we start from proxies that are more semantically reasonable than random
positions.

Although we observed that the DR formulation improves the hierarchical inference
performance and hierarchy-informed performance when training models without
predefined hierarchies, we did not study the reasons underlying these phenomena. We
suggest one possible hypothesis. While NormFace prevents sudden changes in the
scaling factor by using normalized embeddings, its loss function is based on the squared
difference of the distance (as it uses the SD softmax formulation). As this loss can
increase the squared difference of the distance among different proxies, the absolute
distance between any pairs of proxies may be increased. This tendency can result in
larger distances, even among semantically similar classes, and proxy positions that are
less organized in terms of visual similarity. On the other hand, the DR
formulation-based loss is based on distance ratios. Thus, there is no tendency to
increase absolute distances among proxies, and proxies can be structured according to
visual similarity. However, further investigations are needed to verify this hypothesis
and reveal the underlying cause.

Conclusion

The hierarchy-informed performance must be improved to more broadly adopt
classification models. We explored this concept with classification-based metric learning
models in situations in which hierarchical information is and is not available during
training. Our results show that when the class hierarchical relations are unknown, the
ProxyDR model achieves the best hierarchical inference and hierarchy-informed
performance. In contrast, with hierarchy-informed training, the CORR loss model
achieves the best hierarchy-informed performance but the lowest top-5 accuracy on most
datasets. Since some hierarchy-informed measures may not be improved by the use of
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hierarchical information during training, multiple hierarchy-informed performance
measures should be used to obtain appropriate comparisons. Additionally, our
experiments reveal that during classification-based metric learning, initializing proxies
based on prototypes may be beneficial.
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Supporting information

S1 Appendix

Detailed explanation of the dynamic (adaptive) scaling factors
in the NormFace and ProxyDR models.

Zhang et al. [22] rewrote Eq. 5 as follows:

p(c|x) =
exp(s cos θc)

exp(s cos θc) +Bx
,

where c is the corresponding class of point x and Bx =
∑

y 6=c,y∈Y
exp(s cos θy). They

found that θy was close to π
2 during the training process for y 6= c, i.e., for different

classes. Thus, Bx ≈
∑

y 6=c,y∈Y
exp(s cos π2 ) =

∑
y 6=c,y∈Y

exp(0) = |Y| − 1.

In Eq. 10, ∂2p(c|x)(θc)
∂θ2c

can be written as:

∂2p(c|x)(θc)

∂θ2c
=
−sBx exp(s cos θc)ψNormFace(s, θc)

(exp(s cos θc) +Bx)
3 ,

where ψNormFace(s, θc) = cos θc (exp(s cos θc) +Bx) + s sin2 θc (exp(s cos θc)−Bx).
Moreover, they used s = logBx

cos θc
to approximate the solution for Eq. 10. For the static

version, they used |Y| − 1 to estimate Bx and π
4 to estimate θc. For the dynamic

version, they used Bx;avg to estimate Bx and θc;med to estimate θc, where Bx;avg is the
average of Bx in a mini-batch and θc;med is the median of the θc values in a mini-batch.
They clipped the θc;med value to be in the range

[
0, π4

]
.

Instead of using s = logBx
cos θc

, in our implementation, we use the Adam optimizer [31]

to update a scale factor s that minimizes ψ2
NormFace(s, θc), i.e., ψNormFace(s, θc) ≈ 0.

For ψNormFace(s, θc), we use |Y| − 1 to estimate Bx and π
4 to estimate θc to initialize

the value of s. During model training, we use Bx;avg to estimate Bx and θc;med to
estimate θc.

We can also apply the dynamic scaling factor to the ProxyDR model. First, we

define dx,y :=
∥∥∥f̃(x)− W̃y

∥∥∥. We rewrite Eq. 8 as:

p(c|x) =
d−sx,c

d−sx,c +Bx
,

where Bx =
∑

y 6=c,y∈Y
d−sx,y. Assuming θy ≈ π

2 for y 6= c, we obtain

Bx ≈
∑

y 6=c,y∈Y

(
π
2

)−s
= (|Y| − 1)

(
π
2

)−s
.

The expression ∂2p(c|x)(θc)
∂θ2c

can be written as:

∂2p(c|x)(θc)

∂θ2c
=
Bxsθ

(s−2)
c ψProxyDR(s, θc)

(Bxθsc + 1)
3

where ψProxyDR(s, θc) = Bx(s+ 1)θsc − s+ 1. We then use the Adam optimizer to
update a scale factor s that minimizes ψ2

ProxyDR(s, θc).
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S2 Appendix

Dataset details.

All plankton images were obtained using FlowCam (Yokogawa Fluid Imaging
Technologies). FlowCam is a flow imaging microscope that captures particles flowing
through glass flowcells with well-defined volumes. The three plankton datasets were
obtained according to different types of samples (live and Lugol fixed whole seawater or
180µm WP2 plankton net samples) using three different FlowCams (FlowCam 8400,
FlowCam VS, and FlowCam Macro) with various magnifications. Thus, the datasets
include particles ranging from 5 to 2000µm in size, thus representing nano-, micro-, and
mesozooplankton. The plankton samples were obtained from three coastal monitoring
stations (Institute of Marine Research) along the Norwegian coast, including Holmfjord
in the north, Austevoll in the west and Torungen in the south. In addition, for the nano-
and microplankton, seawater samples were obtained from a tidal zone at a depth of 1
meter at the research station at Flødevigen in southern Norway, which is approximately
2 nautical miles from the southern monitoring station at Torungen. The sampling period
for the three datasets covered all seasons over a period of approximately 2.5 years.

Small microplankton (MicroS) This dataset contains images of fixed and live
seawater samples acquired at a depth of 5m at the three monitoring stations and a
depth of 1m in the tidal zone (see above). The seawater samples were carefully filtered
through a 80µm mesh to ensure that 100µm flowcell was not clogged and imaged using
a 10× objective. This FlowCam configuration results in a total magnification of 100×
and images particles ranging from 5 to 50µm. Before resizing, one pixel in an image
represented 0.7330µm.

Large microplankton (MicroL) This dataset contains images of fixed and live
seawater samples acquired at a depth of 5m at the three monitoring stations and a
depth of 1m in the tidal zone (see above). The seawater samples were not filtered and
were imaged using a 2× objective, targeting 35 to 500µm particles. Before resizing, one
pixel in an image represented 2.9730µm. Due to instrument repair and adjustments to
improve image quality, the camera settings were modified during the 3 years of imaging
to acquire this dataset. Therefore, the image appearance and quality are slightly
variable.

Mesozooplankton (MesoZ) This dataset contains images of mesozooplankton
samples acquired at the three coastal monitoring stations (see above) and a transect in
the Norwegian Sea (Svinøysnittet). The samples were obtained using an IMR (Institute
of Marine Research) standard plankton net (WP2) or a multinet mammoth (both
180µm mesh) and fixed with 4% formaldehyde. The images were acquired by two
FlowCam instruments (one in Bergen and one in Flødevigen), and the image
appearance differs slightly between the two instruments. The FlowCam macro was
equipped with a 0.5× objective, resulting in a total magnification of 12.5 and imaging
organisms ranging from 180 to 2000µm. Before resizing, one pixel in an image
represented 9.05µm. All images in the mesozooplankton dataset are in grayscale.

NABirds Data provided by the Cornell Lab of Ornithology, with thanks to
photographers and contributors of crowdsourced data at AllAboutBirds.org/Labs.
This material is based upon work supported by the National Science Foundation under
Grant No. 1010818.
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Hierarchical structures of the datasets Figs. S1, S2, and S3 and Table S1 show
the hierarchical structures of the datasets. As the NABirds dataset contains too many
(555) classes to visualize, we do not show the hierarchical structures of the NABirds
dataset [27]. We used the hierarchy provided by the Cornell Lab of Ornithology.
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experiment. Best viewed by zooming in.
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Fig S2. The hierarchical structure of the MicroL dataset used in our
experiment. Best viewed by zooming in.
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Fig S3. The hierarchical structure of the MesoZ dataset used in our
experiment. Best viewed by zooming in.
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Table S1. The hierarchical structure of the CIFAR100 dataset used in our
experiment.

Level 0 Level 1 Level 2
Level 3

(class level)

Animals

Invertebrates
insects

bee, beetle, butterfly, caterpillar,
cockroach

non-insect
invertebrates

crab, lobster, snail, spider, worm

Mammals

aquatic mammals beaver, dolphin, otter, seal, whale

large carnivores bear, leopard, lion, tiger, wolf

large omnivores and
herbivores

camel, cattle, chimpanzee, elephant,
kangaroo

medium-sized
mammals

fox, porcupine, possum, raccoon,
skunk

people baby, boy, girl, man, woman

small mammals
hamster, mouse, rabbit, shrew,

squirrel

Non-mammal

vertebrates
fish

aquarium fish, flatfish, ray, shark,
trout

reptiles
crocodile, dinosaur, lizard, snake,

turtle

Artificial

Artificial
(indoor)

food containers bottles, bowls, cans, cups, plates

household electrical
devices

clock, computer keyboard, lamp,
telephone, television

household furniture bed, chair, couch, table, wardrobe

Artificial
(outdoor)

large man-made
outdoor things

bridge, castle, house, road,
skyscraper

vehicles 1
bicycle, bus, motorcycle, pickup

truck, train

vehicles 2
lawn-mower, rocket, streetcar, tank,

tractor

Nature
(non-animal)

Nature
(non-specific

organism)

large natural
outdoor scenes

cloud, forest, mountain, plain, sea

Plants
flowers

orchids, poppies, roses, sunflowers,
tulips

fruit and vegetables
apples, mushrooms, oranges, pears,

sweet peppers

trees maple, oak, palm, pine, willow
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S3 Appendix

Results for all five datasets.
Figs. S4, S5, S6, S7, and S8 show the top-k accuracies on the different datasets.

Fig S4. Top-k accuracy results (A: k = 1, B: k = 5) on the MicroS dataset.

Fig S5. Top-k accuracy results (A: k = 1, B: k = 5) on the MicroL dataset.

Fig S6. Top-k accuracy results (A: k = 1, B: k = 5) on the MesoZ dataset.
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Fig S7. Top-k accuracy results (A: k = 1, B: k = 5) on the CIFAR100
dataset.

Fig S8. Top-k accuracy results (A: k = 1, B: k = 5) on the NABirds dataset.

Figs. S9, S10, S11, S12, and S13 show the mean correlation values on the different
datasets.
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Fig S9. Correlation measures on the MicroS dataset. (Top) Values using
proxies (A: whole classes, B: living classes). (Bottom) Values using prototypes (C:
whole classes, D: living classes). ‘Living’ indicates that only biological classes were used
(no nonliving classes). The mean correlation values based on proxies with the MDS
option were 0.9306 (whole) and 0.9011 (living).
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Fig S10. Correlation measures on the MicroL dataset. (Top) Values using
proxies (A: whole classes, B: living classes). (Bottom) Values using prototypes (C:
whole classes, D: living classes). The mean correlation values based on proxies with the
MDS option were 0.9543 (whole) and 0.9426 (living).
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Fig S11. Correlation measures on the MesoZ dataset. (Top) Values using
proxies (A: whole classes, B: living classes). (Bottom) Values using prototypes (C:
whole classes, D: living classes). The mean correlation values based on proxies with the
MDS option were 0.9783 (whole) and 0.9602 (living).

Fig S12. Correlation measures on the CIFAR100 dataset. (A) Values using
proxies. (B) Values using prototypes. The mean correlation value based on proxies with
the MDS option was 0.8580.
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Fig S13. Correlation measures on the NABirds dataset. (A) Values using
proxies. (B) Values using prototypes. The mean correlation value based on proxies with
the MDS option was 0.4476 (this value is small as the dataset contains 555 classes and
the embedding dimension is 128.).

Figs. S14, S15, S16, S17, and S18 show the hierarchy-informed performance
measures on the different datasets.
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Fig S14. Hierarchical performance measures on the MicroS dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.
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Fig S15. Hierarchical performance measures on the MicroL dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.
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Fig S16. Hierarchical performance measures on the MesoZ dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.
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Fig S17. Hierarchical performance measures on the CIFAR100 dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.
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Fig S18. Hierarchical performance measures on the NABirds dataset. The
symbol ↓ denotes that lower values indicate better performance. The symbol ↑ denotes
that higher values indicate better performance. (A) AHD (k=1): ↓. (B) AHD (k=5): ↓.
(C) HP@5: ↑. (D) HS@50: ↑. (E) HS@250: ↑. (F) AHS@250: ↑.

Additional results on mean correlations
Figs. S19, S20, S21, S22, S23 and S24 visualize the changes in the mean correlation

values with different models and training options, showing the averaged values for five
different seeds. Figs. S19 and S22 show that the accuracy of the NormFace models
decreased after a certain number of epochs when the models were trained with the
dynamic option. Interestingly, the mean correlation values increased even when the
accuracy decreased. When using predefined hierarchical information and dynamic
options (if applicable), the prototype-baesd mean correlation values approached the
fixed proxy-based mean correlation values, except the NormFace model on the NABirds
dataset.
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Fig S19. Changes in accuracy and mean correlations for the CIFAR100
dataset (NormFace). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option. (E) Accuracy curve with the MDS
option. (F) Mean correlation curve with the MDS option. (G) Accuracy curve with the
MDS & dynamic options. (H) Mean correlation curve with the MDS & dynamic options.
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Fig S20. Changes in accuracy and mean correlations for the CIFAR100
dataset (ProxyDR). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option. (E) Accuracy curve with the MDS
option. (F) Mean correlation curve with the MDS option. (G) Accuracy curve with the
MDS & dynamic options. (H) Mean correlation curve with the MDS & dynamic options.
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Fig S21. Changes in accuracy and mean correlations for the CIFAR100
dataset (CORR). (A) Accuracy curve with CORR loss training. (B) Mean
correlation curve with CORR loss training.

January 27, 2023 43/49



Fig S22. Changes in accuracy and mean correlations for the NABirds
dataset (NormFace). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option. (E) Accuracy curve with the MDS
option. (F) Mean correlation curve with the MDS option. (G) Accuracy curve with the
MDS & dynamic options. (H) Mean correlation curve with the MDS & dynamic options.
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Fig S23. Changes in accuracy and mean correlations for the NABirds
dataset (ProxyDR). (A) Accuracy curve with standard training. (B) Mean
correlation curve with standard training. (C) Accuracy curve with the dynamic option.
(D) Mean correlation curve with the dynamic option. (E) Accuracy curve with the MDS
option. (F) Mean correlation curve with the MDS option. (G) Accuracy curve with the
MDS & dynamic options. (H) Mean correlation curve with the MDS & dynamic options.
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Fig S24. Changes in accuracy and mean correlations for the NABirds
dataset (CORR). (A) Accuracy curve with CORR loss training. (B) Mean
correlation curve with CORR loss training.

Rank correlations between performance measures We investigate whether
different performance measures are correlated. While we cannot derive causal
relationships, this investigation is useful for determining if there are trade-offs between
various performance measures. We used rank correlation coefficients between the mean
correlation values and other measures. We ignored the softmax loss results, as this
model is not based on metric learning.

In Table S2, we investigate whether mean correlation values based on proxies (Figs.
S9, S10, S11, S12, and S13) are correlated with other performance measures (Figs. S4,
S5, S6, S7, S8, S14, S15, S16, S17, and S18). The table shows that the AHD (k=5),
HP@5, HS@250, and AHS@250 measures are correlated with the proxy-based mean
correlation values. Moreover, there does not appear to be any trade-off between the
top-1 accuracies and proxy-based mean correlations. However, a trade-off between the
top-5 accuracy and proxy-based mean correlations is observed on some datasets.
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Table S2. Rank (Spearman) correlation coefficients of different measures with mean correlations (based on
proxies)

Measure MicroS MicroL MesoZ CIFAR100 NABirds

Top-1
0.2039 0.2260 0.2171 0.1675 0.3112

(1.0336× 10−1) (7.0284× 10−2) (8.2377× 10−2) (1.8239× 10−1) (1.1627× 10−2)

Top-5
-0.1350 -0.3716 -0.2120 -0.3364 -0.5669

(2.8361× 10−1) (2.3043 × 10−3) (9.0045× 10−2) (6.1476 × 10−3) (8.4964 × 10−7)

AHD (k=1)
-0.3423 -0.3855 -0.2959 -0.1821 -0.4267

(5.2583 × 10−3) (1.5179 × 10−3) (1.6684× 10−2) (1.4658× 10−1) (3.9270 × 10−4)

AHD (k=5)
-0.7407 -0.8258 -0.9026 -0.8856 -0.7023

(1.7522×10−12) (2.5540×10−17) (9.6705×10−25) (1.1648×10−22) (7.0541×10−11)

HP@5
0.7392 0.8350 0.9001 0.8955 0.7070

(2.0489×10−12) (5.4193×10−18) (2.0612×10−24) (7.8000×10−24) (4.6412×10−11)

HS@50
0.7671 0.7962 0.5634 0.1878 0.5276

(9.2047×10−14) (2.2284×10−15) (1.0275 × 10−6) (1.3410× 10−1) (6.3074 × 10−6)

HS@250
0.7911 0.8167 0.8860 0.5514 0.7210

(4.4738×10−15) (1.1029×10−16) (1.0514×10−22) (1.9333 × 10−6) (1.2570×10−11)

AHS@250
0.7950 0.8186 0.8034 0.3335 0.6862

(2.6376×10−15) (8.1611×10−17) (8.1089×10−16) (6.6355 × 10−3) (2.8150×10−10)

p values are written in parentheses. Significant results (p value < 0.01) are written in bold text.

In Table S3, we investigate whether the top-1 accuracy (Figs. S4, S5, S6, S7, and S8)
is correlated with other performance measures (Figs. S4, S5, S6, S7, S8, S14, S15, S16,
S17, and S18). The table shows that the AHD (k=1), HS@50, and AHS@250 measures
are correlated with the top-1 accuracy. Note that these are the measures that did not
show noticeable changes on some datasets when predefined hierarchical information was
used during training.
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Table S3. Rank (Spearman) correlation coefficients of different measures with the top-1 accuracy

Measure MicroS MicroL MesoZ CIFAR100 NABirds

Top-5
0.2199 0.0365 0.1033 0.4398 -0.1043

(7.8357× 10−2) (7.7302× 10−1) (4.1302× 10−1) (2.4659 × 10−4) (4.0815× 10−1)

AHD (k=1)
-0.8005 -0.8302 -0.9309 -0.9507 -0.9509

(1.2168×10−15) (1.2369×10−17) (2.9921×10−29) (9.4257×10−34) (8.6632×10−34)

AHD (k=5)
-0.1906 -0.3259 -0.2908 -0.2877 -0.6136

(1.2829× 10−1) (8.0758 × 10−3) (1.8752× 10−2) (2.0115× 10−2) (5.4992 × 10−8)

HP@5
0.2263 0.2956 0.2886 0.2439 0.6029

(6.9923× 10−2) (1.6811× 10−2) (1.9712× 10−2) (5.0222× 10−2) (1.0692 × 10−7)

HS@50
0.4325 0.5085 0.6979 0.8967 0.6832

(3.2041 × 10−4) (1.5301 × 10−5) (1.0420×10−10) (5.5302×10−24) (3.6174×10−10)

HS@250
0.1369 0.3057 0.2945 0.5535 0.4915

(2.7674× 10−1) (1.3279× 10−2) (1.7269× 10−2) (1.7312 × 10−6) (3.2203 × 10−5)

AHS@250
0.3394 0.4233 0.5067 0.8517 0.5733

(5.6730 × 10−3) (4.4195 × 10−4) (1.6583 × 10−5) (2.4413×10−19) (6.0057 × 10−7)

Mean
correlation
(proxy)

0.2039 0.2260 0.2171 0.1675 0.3112

(1.0336× 10−1) (7.0284× 10−2) (8.2377× 10−2) (1.8239× 10−1) (1.1627× 10−2)

Mean
correlation
(prototype)

0.2150 0.2055 0.1738 0.1978 0.2664

(8.5503× 10−2) (1.0051× 10−1) (1.6616× 10−1) (1.1423× 10−1) (3.1936× 10−2)

p values are written in parentheses. Significant results (p value < 0.01) are written in bold text.

In Table S4, we investigate whether the top-5 accuracy (Figs. S4, S5, S6, S7, and S8)
is correlated with other performance measures (Figs. S4, S5, S6, S7, S8, S14, S15, S16,
S17, and S18). The table shows that no measures are correlated with the top-5 accuracy
on all datasets.
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Table S4. Rank (Spearman) correlation coefficients of different measures with the top-5 accuracy

Measure MicroS MicroL MesoZ CIFAR100 NABirds

Top-1
0.2199 0.0365 0.1033 0.4398 -0.1043

(7.8357× 10−2) (7.7302× 10−1) (4.1302× 10−1) (2.4659 × 10−4) (4.0815× 10−1)

AHD (k=1)
-0.0716 0.0033 -0.0406 -0.4245 0.1196

(5.7106× 10−1) (9.7911× 10−1) (7.4809× 10−1) (4.2428 × 10−4) (3.4268× 10−1)

AHD (k=5)
0.2417 0.4842 0.2732 0.4561 0.4949

(5.2436× 10−2) (4.3828 × 10−5) (2.7654× 10−2) (1.3422 × 10−4) (2.7791 × 10−5)

HP@5
-0.2765 -0.5318 -0.3113 -0.4902 -0.5733

(2.5757× 10−2) (5.1600 × 10−6) (1.1590× 10−2) (3.3964 × 10−5) (5.9953 × 10−7)

HS@50
0.0115 -0.3164 -0.2331 0.2515 -0.0071

(9.2784× 10−1) (1.0231× 10−2) (6.1677× 10−2) (4.3295× 10−2) (9.5522× 10−1)

HS@250
-0.0677 -0.4343 -0.1965 0.0955 -0.3192

(5.9231× 10−1) (3.0034 × 10−4) (1.1677× 10−1) (4.4900× 10−1) (9.5513 × 10−3)

AHS@250
0.0249 -0.3603 -0.1446 0.3157 -0.2203

(8.4393× 10−1) (3.1949 × 10−3) (2.5059× 10−1) (1.0404× 10−2) (7.7867× 10−2)

Mean
correlation
(proxy)

-0.1350 -0.3716 -0.2120 -0.3364 -0.5669

(2.8361× 10−1) (2.3043 × 10−3) (9.0045× 10−2) (6.1476 × 10−3) (8.4964 × 10−7)

Mean
correlation
(prototype)

-0.1040 -0.4784 -0.2910 -0.3675 -0.5457

(4.0985× 10−1) (5.5679 × 10−5) (1.8677× 10−2) (2.5967 × 10−3) (2.5927 × 10−6)

p values are written in parentheses. Significant results (p value < 0.01) are written in bold text.
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Appendix

A The convex hull of the union of l1 and l∞ balls and

its relation to a combined distance dcombined based

ball

Following Croce and Hein [2020a], let us consider l1 and l∞ balls centered at the origin.

We denote them as B1 and B∞, respectively. The balls have radii ϵ1 > 0 and ϵ∞ > 0,

respectively. These radii satisfy ϵ1 ∈ (ϵ∞, dIϵ∞) where dI ≥ 2 is the dimension of

(input) space. Namely, the balls satisfy B1 ⊄ B∞ and B∞ ⊄ B1. Mathematically,

B1 =
{
x ∈ RdI : ∥x∥1 ≤ ϵ1

}
and B∞ =

{
x ∈ RdI : ∥x∥∞ ≤ ϵ∞

}
. Let H be the convex

hull of the union of B1 and B∞. Specifically, H is the smallest convex set that contains

the union B1 ∪ B∞. The authors used the convex hull H for provable robustness.

Here, I show that the convex hull H is related to a ball based on a combined distance

dcombined. I define this distance as:

dcombined(x1, x2) = β ∥x2 − x1∥1 + (1− β) ∥x2 − x1∥∞ ,

where β is set to β := ϵ1−ϵ∞
ϵ∞(dI−1)

. I then consider a ball Bcombined with radius ϵcombined := ϵ1

based on the distance dcombined. Mathematically, this ball is defined as:

Bcombined =
{
x ∈ RdI : dcombined(0, x) = β ∥x∥1 + (1− β) ∥x∥∞ ≤ ϵ1

}
.

This ball Bcombined has the following subset relationship with the convex hull H:

H = Bcombined, (When dI = 2)

H ⊊ Bcombined. (When dI > 2)

This relationship reveals that their defense [Croce and Hein, 2020a], which utilizes the
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convex hull H, uses a subset of a ball Bcombined that uses a single distance dcombined.

Therefore, robustness against multiple lp norm attacks (p ≥ 1) could be achieved by being

robust against one type of attack based on a combined distance dcombined. Furthermore,

when we use ball Bcombined for adversarial defense instead of the convex hull H, it might

be possible to achieve stronger robustness (larger perturbation budget).

Proof. Relationship: H ⊂ Bcombined

Let x ∈ H.

Based on the fact that both B1 and B∞ are convex, we obtain:

H = {tx1 + (1− t)x2 : 0 ≤ t ≤ 1, x1 ∈ B1, x2 ∈ B∞} (because of the lemma 1 explained

below.)

∃t, x1, x2 such that x = tx1 + (1− t)x2, 0 ≤ t ≤ 1, x1 ∈ B1, x2 ∈ B∞.

From the definitions of balls B1 and B∞, ∥x1∥1 ≤ ϵ1 and ∥x2∥∞ ≤ ϵ∞.

Let us consider the inequality for ∥x∥1.

∥x∥1 = ∥tx1 + (1− t)x2∥1 ≤ ∥tx1∥1 + ∥(1− t)x2∥1 (∵ The triangle inequality)

≤ tϵ1 + (1− t) ∥x2∥1 (∵ ∥x1∥1 ≤ ϵ1)

≤ tϵ1 + (1− t)dIϵ∞ (∵ ∥x2∥1 ≤ dI ∥x2∥∞ ≤ dIϵ∞)

Similarly, let us consider the inequality for ∥x∥∞.

∥x∥∞ = ∥tx1 + (1− t)x2∥∞ ≤ ∥tx1∥∞ + ∥(1− t)x2∥∞ (∵ The triangle inequality)

≤ t ∥x1∥∞ + (1− t)ϵ∞ (∵ ∥x2∥∞ ≤ ϵ∞)

≤ tϵ1 + (1− t)ϵ∞ (∵ ∥x1∥∞ ≤ ∥x1∥1 ≤ ϵ1)

By combining the above two inequalities, we obtain the following inequality.

β ∥x∥1 + (1− β) ∥x∥∞ ≤ β (tϵ1 + (1− t)dIϵ∞) + (1− β) (tϵ1 + (1− t)ϵ∞)

= tϵ1 + (1− t)(dIβ + 1− β)ϵ∞

= tϵ1 + (1− t)ϵ1 = ϵ1 (∵ The definition of β)

Hence, x ∈ Bcombined. Because we derived x ∈ Bcombined from x ∈ H, we proved H ⊂
Bcombined.

Relationship: H = Bcombined when dI = 2

Having already proved H ⊂ Bcombined, we only need to prove Bcombined ⊂ H when dI = 2.

Hence, let x ∈ Bcombined and dI = 2, which denotes that x is a two-dimensional vector.

Let x = (v1, v2) and i∗ be the index of x that maximizes its absolute value, hence we

can express this as |vi∗ | = max
i=1,2

|vi|. We then denote the other index of x as i∗∗, hence
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i∗∗ = 3− i∗.

(i) First, let us consider when |vi∗∗ | ̸= ϵ∞.

We can set x∗
2 = ϵ∞sign(x), t∗ = 1− |vi∗∗ |

ϵ∞
, and x∗

1 =
1
t∗ (x− (1− t∗) x∗

2) where sign(·) is
the element-wise sign function.

Then, x = t∗x∗
1 + (1 − t∗)x∗

2 and ∥x∗
2∥∞ = ϵ∞ ∥sign(x)∥∞ ≤ ϵ∞. Hence, to show that

x ∈ H, we only need to show that ∥x∗
1∥1 ≤ ϵ1. Let us consider x

∗
1 value of index i∗, which

can be simplified as:

1

t∗
(vi∗ − (1− t∗)ϵ∞sign(vi∗)) =

1

t∗
(vi∗ + (t∗ − 1)ϵ∞sign(vi∗))

=
1

t∗

(
vi∗ −

|vi∗∗ |
ϵ∞

ϵ∞sign(vi∗)

)
(∵ The definition of t∗)

=
1

t∗
(vi∗ − |vi∗∗ |sign(vi∗)) .

Similarly, when we consider x∗
1 value of index i∗∗, it can be simplified as:

1

t∗
(vi∗∗ − (1− t∗)ϵ∞sign(vi∗∗)) =

1

t∗

(
vi∗∗ −

|vi∗∗ |
ϵ∞

ϵ∞sign(vi∗∗)

)
(∵ The definition of t∗)

=
1

t∗
(vi∗∗ − |vi∗∗ |sign(vi∗∗)) =

1

t∗
0 = 0.

Thus, ∥x∗
1∥1 =

∣∣ 1
t∗ (vi∗ − |vi∗∗ |sign(vi∗))

∣∣+|0| = 1
t∗ |vi∗ − |vi∗∗ |sign(vi∗)| = 1

t∗ (|vi∗ | − |vi∗∗ |).
The condition x ∈ Bcombined can be rewritten as:

ϵ1 ≥ β ∥x∥1 + (1− β) ∥x∥∞ = β (|vi∗ |+ |vi∗∗ |) + (1− β)|vi∗ |
= |vi∗ |+ β|vi∗∗ |.

Thus, we obtain the inequality |vi∗ | ≤ ϵ1 − β|vi∗∗ |.
Using this, we obtain the inequality that ∥x∗

1∥1 ≤ ϵ1.

∥x∗
1∥1 =

1

t∗
(|vi∗ | − |vi∗∗ |) ≤

1

t∗
(ϵ1 − β|vi∗∗ | − |vi∗∗ |)

=
1

t∗

(
ϵ1 −

ϵ1 − ϵ∞ + ϵ∞ (2− 1)

ϵ∞ (2− 1)
|vi∗∗ |

)

=
1

t∗
ϵ1(1−

|vi∗∗ |
ϵ∞

) =
1

t∗
ϵ1t

∗ = ϵ1

Hence, we derived x ∈ H when |vi∗∗ | ̸= ϵ∞.

(ii) Now, let us consider when |vi∗∗ | = ϵ∞.

From the condition x ∈ Bcombined, we obtain the inequality |vi∗ | ≤ ϵ1 − β|vi∗∗ | (just as

explained above.). From this inequality and the condition |vi∗∗ | = ϵ∞, we obtain the
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inequality |vi∗ | ≤ ϵ∞ as follows.

|vi∗ | ≤ ϵ1 − β|vi∗∗ | = ϵ1 − βϵ∞ = ϵ1 −
ϵ1 − ϵ∞

ϵ∞ (2− 1)
ϵ∞ = ϵ∞

From the inequality ϵ∞ = |vi∗∗ | ≤ |vi∗ | ≤ ϵ∞, we obtain |vi∗∗ | = |vi∗ | = ϵ∞.

Let us set x∗
1 = 0, x∗

2 = x, and t∗ = 0. Then, x = 0 + 1x = t∗x∗
1 + (1 − t∗)x∗

2,

∥x∗
1∥1 = 0 ≤ ϵ1, and ∥x∗

2∥∞ = ϵ∞ ≤ ϵ∞. Hence, x ∈ H when |vi∗∗ | = ϵ∞.

From cases (i) and (ii), we derived Bcombined ⊂ H from x ∈ Bcombined when dI = 2, thus

Bcombined = H for dI = 2.

Relationship: H ⊊ Bcombined when dI > 2

We need to show that Bcombined ⊄ H when dI > 2.

First, we consider the point x∗ = (ω, ω, 0, 0, · · · , 0) where ω := (dI−1)ϵ1ϵ∞
ϵ1+(dI−2)ϵ∞

.

Then, ∥x∗∥1 = 2ω and ∥x∗∥∞ = ω. From these, we obtain the following equation:

β ∥x∗∥1 + (1− β) ∥x∗∥∞ = 2βω + (1− β)ω = (1 + β)ω

=

(
1 +

ϵ1 − ϵ∞
ϵ∞ (dI − 1)

)
(dI − 1)ϵ1ϵ∞

ϵ1 + (dI − 2)ϵ∞

(∵ The definitions of β and ω)

=
ϵ∞ (dI − 1) + ϵ1 − ϵ∞

ϵ∞ (dI − 1)

(dI − 1)ϵ1ϵ∞
ϵ1 + (dI − 2)ϵ∞

= (ϵ∞ (dI − 1) + ϵ1 − ϵ∞)
ϵ1

ϵ1 + (dI − 2)ϵ∞

= (ϵ∞ (dI − 2) + ϵ1)
ϵ1

ϵ1 + (dI − 2)ϵ∞
= ϵ1

Thus, x∗ ∈ Bcombined.

Before verifying whether x∗ also belongs to H, let us consider inequalities for ω.

From the condition ϵ∞ < ϵ1, we can derive the inequality ϵ∞ < ω as follows.

ϵ∞ < ϵ1

(dI − 2)ϵ∞ < (dI − 2)ϵ1 (Multiplying (dI − 2) on both sides)

ϵ1 + (dI − 2)ϵ∞ < (dI − 1)ϵ1 (Adding ϵ1 on both sides)

ϵ∞ < ω (Multiplying
ϵ∞

ϵ1 + (dI − 2)ϵ∞
on both sides)

Similarly, from the condition ϵ1 < dIϵ∞, we can derive the inequality ϵ1 < 2ω as follows.

ϵ1 < dIϵ∞

ϵ1 + (dI − 2)ϵ∞ < 2(dI − 1)ϵ∞ (Adding (dI − 2)ϵ∞ on both sides)

ϵ1 < 2ω (Multiplying
ϵ1

ϵ1 + (dI − 2)ϵ∞
on both sides)
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To verify whether x∗ ∈ H or x∗ ̸∈ H, we must try to find x∗
1, x

∗
2, and 0 ≤ t∗ ≤ 1 such

that x∗ = t∗x∗
1 + (1− t∗)x∗

2, x
∗
1 ∈ B1, and x∗

2 ∈ B∞.

First, let us denote x∗
1 = (α1, α2, · · · , αd) and x∗

2 = (β1, β2, · · · , βd).

Because x∗
2 needs to satisfy ∥x∗

2∥∞ = max
1≤i≤d

|βi| ≤ ϵ∞, we obtain inequalities |β1| ≤ ϵ∞

and |β2| ≤ ϵ∞. Given these inequalities, as well as ω > ϵ∞, and the condition that x∗

should be a convex combination of x∗
1 and x∗

2, the first two elements of x∗
1 need to satisfy

the conditions |α1| ≥ w and |α2| ≥ w. From these conditions, we can derive the following

inequality.

∥x∗
1∥1 =

∑

1≤i≤d

|αi| ≥ |α1|+ |α2| ≥ w + w = 2w > ϵ1

Because we obtain inequality ∥x∗
1∥1 > ϵ1, x

∗
1 cannot be belong to B1. Thus, there are no

points x∗
1, x

∗
2, and value t∗ that satisfy conditions for x∗ to belong to the convex hull H,

thus x∗ ̸∈ H.

Because there exists a point x∗ such that x∗ ∈ Bcombined and x∗ ̸∈ H, we know H ⊊
Bcombined when dI > 2 (we already proved H ⊂ Bcombined).

Lemma 1. There are convex sets A and B. Let us denote the convex hull of their union

as HA∪B. The following equation then holds:

HA∪B = {ta+ (1− t)b : 0 ≤ t ≤ 1, a ∈ A, b ∈ B} (7.1)

(Note that this lemma is not my contribution.)

Proof. For convenience, let us denote the set on the right hand side of the equation (7.1)

as RHS.

Relationship: HA∪B ⊂ RHS

The definition of the convex hull of a set S is the smallest convex set that contains the

set S. Therefore, it is sufficient to prove that the set RHS is a convex set containing

A ∪ B.

First, let us show the set RHS is convex. To do this, we need to show that any convex

combination of two points in the set belongs to the set RHS. Let us consider two points

of the set RHS: t1a1 + (1 − t1)b1 and t2a2 + (1 − t2)b2 where 0 ≤ t1, t2 ≤ 1, a1, a2 ∈ A,

and b1, b2 ∈ B. Then, let us consider their convex combination for a value 0 ≤ λ ≤ 1:

λ {t1a1 + (1− t1)b1}+ (1− λ) {t2a2 + (1− t2)b2} .

Let us define a3 := λt1a1+(1−λ)t2a2
λt1+(1−λ)t2

, b3 := λ(1−t1)b1+(1−λ)(1−t2)b2
λ(1−t1)+(1−λ)(1−t2)

, and γ := λt1 + (1 − λ)t2.
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Because point a3 is a convex combination of two points a1 and a2 in the convex set A,

we know that a3 ∈ A. Similarly, we know that b3 ∈ B and 0 ≤ γ ≤ 1. Additionally, we

obtain the following equation which shows that the convex combination of two points of

RHS can be rewritten as γa3 + (1− γ)b3.

γa3 + (1− γ)b3 = {λt1 + (1− λ)t2}
λt1a1 + (1− λ)t2a2
λt1 + (1− λ)t2

+ (1− γ)b3

= λt1a1 + (1− λ)t2a2 + {1− λt1 − (1− λ)t2}
λ(1− t1)b1 + (1− λ)(1− t2)b2
λ(1− t1) + (1− λ)(1− t2)

= λt1a1 + (1− λ)t2a2 + λ(1− t1)b1 + (1− λ)(1− t2)b2

(∵ λ(1− t1) + (1− λ)(1− t2) = λ− λt1 + 1− λ− t2 + λt2 = 1− λt1 − (1− λ)t2)

= λ {t1a1 + (1− t1)b1}+ (1− λ) {t2a2 + (1− t2)b2}

From the definition of the set, we know that the convex combination also belongs to the

set RHS. Thus, the set RHS is a convex set.

Now, let us try to prove A ∪ B ⊂ RHS. When we fix t∗ = 1, we obtain point:

t∗a + (1 − t∗)b = 1a + 0b = a. Similarly, when we fix t∗ = 0, we obtain point:

t∗a + (1 − t∗)b = b. Thus, any point in set A belongs to the set RHS, and any point in

set B belongs to the set RHS. Hence, we know A ∪B ⊂ RHS.

Because we have shown that the set RHS is convex and contains A∪B, we have proved

that HA∪B ⊂ RHS.

Relationship: HA∪B ⊃ RHS

We know that A,B ⊂ A∪B ⊂ HA∪B. Given that the convex hull HA∪B is convex, convex

combination ta + (1 − t)b also belongs to the convex hull HA∪B where a ∈ A ⊂ HA∪B,

b ∈ B ⊂ HA∪B, and 0 ≤ t ≤ 1. Hence, HA∪B ⊃ RHS.
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