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Abstract

In this thesis, we study vectorial functions, i.e. mappings between finite fields. Such functions

correspond to objects of interest in other areas of mathematics and computer science, but one of

the primary motivations for their study is that they play an important role in modern cryptography.

All vectorial functions have properties that measure their resistance to cryptanalytic attacks when

used as building blocks of cryptographic primitives. Therefore, it is important to find and study

functions having optimal values of these properties.

This is especially true when designing block ciphers which are particularly susceptible to differ-

ential cryptanalysis, a powerful attack that was first introduced by Biham and Shamir in 1990. In

the case of functions over finite fields of characteristic 2, the notion of differential uniformity was

introduced by Nyberg in 1993 as a measurement of the resistance to differential attacks. However,

the same notion naturally generalizes to vectorial functions over finite fields of any characteristic.

We note that the notion of differential uniformity is a very natural one, and has appeared in essence

in many different contexts in mathematics even before its introduction by Nyberg in the context

of cryptography.

Therefore, there is a great interest in finding vectorial functions that have the best possible

differential uniformity. In the case of characteristic 2, the best possible value of the differential

uniformity is 2, and the functions attaining this value are called almost perfect nonlinear (APN).

In the case of odd characteristic, the optimal value is 1, and the corresponding functions are called

perfect nonlinear (PN) or planar. The latter class of functions is the primary subject of this thesis.

Planar functions have been shown to be connected to multiple areas of mathematical study.

One of these is the study of semifields, which are objects that have received a lot of attention

since their introduction in the early 20th century. Quadratic planar functions and commutative

semifields in odd characteristic are in a one-to-one correspondence, and so finding new commutative

semifields equates to finding new planar functions, and vice versa.

Due to the large number of vectorial functions, they are typically only considered up to some

appropriate notion of equivalence. In the case of planar functions, this is typically Carlet-Charpin-

Zinoviev-equivalence, or CCZ-equivalence, which is the most general known equivalence relation

that preserves differential uniformity. Finding planar functions that are CCZ-inequivalent to the

known ones is hard in general, and is a challenging and active area of study.

An equivalence relation called isotopism can be defined on the set of all semifields. The pla-

nar functions corresponding to two isotopic semifields are not necessarily CCZ-equivalent. This

suggests that the isotopism relation can potentially be used to find new planar functions that are
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CCZ-inequivalent to the known ones. This was previously exploited by Budaghyan and Helleseth to

extend their newly constructed family of planar functions into an even larger one under isotopism.

However, the question of whether the isotopism relation can produce new, CCZ-inequivalent func-

tions from other known families and instances has not been systematically studied before.

In this thesis, we investigate the possibility of doing this for the known families and sporadic

instances of planar functions. Using the conditions laid out by Coulter and Henderson, we are

able to deduce that a number of the known infinite families can never produce CCZ-inequivalent

functions via isotopism. For the remaining families, we computationally investigate the isotopism

classes of their instances over F3n for n ≤ 8. We find previously unknown isotopisms between

the semifields corresponding to some of the known planar functions for n = 6 and n = 8. This

allows us to refine the known classification of planar functions up to isotopism, and to provide an

updated, partial classification up to isotopism over F3n for n ≤ 8.
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Chapter 1

Introduction

Let Fpn be the finite field with pn elements, where p is a prime number and n is a positive integer.

Vectorial functions are widely useful mathematical objects mapping elements of the vector space Fn
p

to the vector space Fm
p . Vectorial functions are frequently used as building blocks of cryptographic

primitives, particularly in the case of p = 2 when they are called vectorial Boolean functions.

The security of these primitives then directly depends on the properties of the functions. Their

resistance to various kinds of cryptanalytic attacks is measured through various properties that can

be computed for a given function. Each property measures the resistance to some particular attack.

One of the most powerful attacks against block ciphers is differential cryptanalysis, introduced by

Biham and Shamir in 1990 [8]. The property of a vectorial function measuring resistance to

this kind of attack is called differential uniformity, and it should be as low as possible in order

to provide security. While this notion was originally defined for vectorial Boolean functions, it

naturally generalizes to vectorial functions of any characteristic. Furthermore, its definition is

very natural, and it has appeared in many contexts even before its introduction in the context of

cryptography.

In the case of even characteristic, the functions over F2n having the lowest possible differential

uniformity, are called almost perfect nonlinear (APN). In the case of odd characteristic, we can

go as low as a differential uniformity of 1, and the corresponding functions are called perfect

nonlinear (PN) or planar. Both APN and planar functions are of interest not only because of their

optimal cryptographic properties, but also because they correspond to optimal objects in many

other areas of study, such as combinatorics, coding theory and sequence design. Both of these

classes of functions have been the subject of intense study, and the class of planar functions is the

primary topic of this thesis.

Perfect nonlinear functions were first formally introduced in the seminal paper [23] by P. Dem-

bowski and T. G Ostrom in 1968. In that paper, they are referred to as planar functions due to

their close connection to projective planes. However, a 1965 paper by J. E. H. Elliot and A. T.

Butson on relative difference sets [28] led the way to a later proof that relative difference sets and

planar functions are in fact equivalent [41], using the notion that planar mappings may be seen as

projections of relative difference sets. As such, planar functions have played an important part in

1



2 CHAPTER 1. INTRODUCTION

multiple different research areas even before their formal introduction by Dembowski and Ostrom.

One prominent connection is the correspondence between commutative semifields and quadratic

planar functions, which has been used successfully to construct the first new infinite family of

commutative semifields over Fpn for any odd characteristic p since the early 50s [14]. Since the

study of semifields is an old and challenging topic, having been researched since Dickson’s paper in

1905 [24], this breakthrough demonstrates the importance of studying and finding new instances

of planar functions.

Finding new planar functions is known to be a hard problem, both mathematically and compu-

tationally. One reason for this is that the number of vectorial functions is very large. This makes

it necessary to only consider vectorial functions (including planar functions) up to some notion of

equivalence. Planar functions are typically considered up to Carlet-Charpin-Zinoviev-equivalence,

or CCZ-equivalence, which is the most general currently known relation that preserves differential

uniformity [10]. While reducing the number of functions that have to be considered, this also

makes it quite difficult to find “new” planar functions, since in order for a function to be “new” it

needs to be CCZ-inequivalent to all previously known instances.

In the case of quadratic planar functions, we can define an even broader equivalence relation

by means of the commutative semifields corresponding to the functions. An equivalence relation

called isotopism can be defined on semifields, and if two commutative semifields are isotopic, we

say that their corresponding quadratic planar functions are isotopic, or isotopic equivalent. While

any two CCZ-equivalent quadratic planar functions correspond to isotopic commutative semifields,

two isotopic planar functions are not necessarily CCZ-equivalent. This suggests that it may be

possible to obtain new instances of planar functions up to CCZ-equivalence from the known ones by

exploring the isotopism classes of their corresponding semifields. Such an approach has previously

been successfully exploited by Budaghyan and Helleseth to extend their infinite family of planar

functions to a larger one [14]. However, to the best of our knowledge, no systematic study has been

done on the possibility of obtaining new planar functions in this way from the rest of the known

families and sporadic instances. The main goal of this thesis is thus to evaluate the possibility of

doing precisely this.

Inspired by the notion of isotopic planar functions, the isotopic shift of a planar function was

introduced in 2020 [12]. For a given planar function, then an isotopic planar function is CCZ-

equivalent to an isotopic shift of the original planar function. However, the reverse is not true in

general, and the isotopic shift of a planar function is not necessarily itself a planar function.

There is a special case of isotopism called strong isotopism, which precisely corresponds to

CCZ-equivalence between the corresponding planar functions. In other words, two quadratic planar

functions are CCZ-equivalent if and only if their corresponding semifields are strongly isotopic [14].

Thus, in order to find new planar functions up to CCZ-equivalence, we want to find semifields that

are isotopic but not strongly isotopic to the known ones.

Coulter and Henderson give necessary conditions on when a semifield can be isotopic but not

strongly isotopic to another semifield. These conditions are based on the so-called nuclei of the

semifields, whose orders are invariant under isotopism. By utilizing these conditions, we are able
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to show that for a number of the known families of planar functions, no new ones (up to CCZ-

equivalence) can be obtained using isotopism.

For representatives from the remaining families and sporadic instances, we conduct a computa-

tional search for isotopic semifields over F3n for n ≤ 8. We use the algorithm from [32] to compare

the resulting functions for CCZ-equivalence against the original ones. We do not find any new

planar functions up to CCZ-equivalence, but we do find previously unknown isotopisms between

some of the known planar functions for n = 6 and n = 8. We are thus able to refine the classifi-

cation of the known planar functions up to isotopism for the relevant dimensions. There remain

some instances where we could not decide whether functions CCZ-inequivalent to them exist in

the isotopism class, and so this is only a partial classification. However, we have demonstrated

computationally that isotopism leading to CCZ-inequivalent functions of a certain form do not

exist.

This thesis is divided into chapters in the following way. In Chapter 2 we lay out the preliminary

theory of planar functions and semifields along with the known families of semifields and planar

functions and their corresponding invariants (in particular, the orders of their nuclei that we use

when evaluating the Coulter-Henderson conditions). We also present a table of the known CCZ-

inequivalent planar function representatives over F3n with n ≤ 8, collected from [30]. In Chapter

3 we investigate a method by which new planar functions can be constructed from existing ones,

using the isotopism of their corresponding commutative semifields. We study in which particular

cases such endeavours might lead to finding new planar functions up to CCZ-equivalence. We

conclude that this is only possible in even dimensions, and then only in doubly even dimensions

for the Bierbrauer, Dickson and Cohen-Ganley families. We also report on the results of our

computational search for representatives from these families over F3n for n ≤ 8, and show previously

unknown isotopisms between some of the known planar functions. We also show instances for

which an isotopic planar function is CCZ-equivalent to an isotopic shift of that planar function

by a monomial permutation. We summarize this in a partial classification of planar functions for

n ≤ 8 up to isotopism. Finally, we conclude in Chapter 4 with a summary of the work that we did

and with potential directions for further studies.
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Chapter 2

Preliminaries

2.1 Planar functions

Let Fpn be the finite field with pn elements, for a prime number p and a natural number n. A

function F mapping elements in Fn
p to elements in Fm

p is called a vectorial function, and it is often

called (n,m, p)-function. For p = 2, (n,m, 2)-functions are called (n,m)-functions, and are referred

to as vectorial Boolean functions, and when m = 1 simply Boolean functions.

Block ciphers are widely used in modern cryptography, and vectorial functions play an impor-

tant part in many implementations of them. Block ciphers take a block of plaintext as an input,

and transform it into an encrypted output block (ciphertext), of the same length as the original

block. One of the most powerful attacks against block ciphers are differential attacks, which use

differential cryptanalysis to deduce information about the form of the transformation being used.

In a differential attack, the attacker first collects a number of inputs x and corresponding outputs

y. By observing the relationships between the differences of inputs and differences of outputs, the

attacker can gain valuable insight into the inner workings of the transformation that defines the

encryption in the block cipher, and thereby breaking the cipher. A cryptographically strong func-

tion therefore needs to be resistant against these types of attacks. That is, for any given difference

between inputs dx = x1−x2 we ideally want any value for the difference in outputs dy = y1−y2 to

be equally likely, i.e., uniformly distributed. This is the motivation behind the notion of differential

uniformity.

Definition 2.1.1. Let F be a vectorial function from Fn
p to Fm

p and let 0 ̸= a ∈ Fn
p . Then

DaF (x) = F (x+ a)− F (x)

is called the derivative of F with respect to a.

Then it is easy to see that the problem of determining the distribution of solutions to the

derivative of F with respect to some nonzero direction a for each given output DaF (x) = b, is

exactly the same problem as determining the distribution of differences in inputs for each possible

difference among corresponding outputs in the block cipher. More formally, we use the following

definition.

5



6 CHAPTER 2. PRELIMINARIES

Definition 2.1.2. A vectorial function F from Fn
p to Fm

p is differentially δ-uniform if for all

0 ̸= a ∈ Fn
p and b ∈ Fm

p , the equation DaF (x) = b has at most δ solutions.

The lower the number δ, the closer the distribution of differences in possible inputs is to being

uniform for each given difference in outputs. We say that a vectorial function has differential

uniformity δ if it is differentially δ-uniform. Over vector spaces of odd characteristic, that is for p

an odd prime, the lowest possible differential uniformity of vectorial function is 1. These vectorial

functions are called perfect nonlinear (PN) or planar functions. That is, a perfect nonlinear

vectorial function evenly distributes the possible differences in inputs for each possible difference

in outputs. However, these functions over Fn
p can only exist for odd primes p, since the lowest

differential uniformity of a vectorial Boolean function is δ = 2. This is clearly the case, since any

solution x0 ∈ Fn
p to F (x)− F (x+ a) = F (x) + F (x+ a) = b immediately allows a second solution

x0 + a. Vectorial functions having differential uniformity of 2 are called almost perfect nonlinear

(APN).

In this thesis, we are primarily interested in (n, n, p)-functions F , i.e., mappings from Fn
p to

itself, and we consider the univariate representation of the vectorial function F . In fact, any

vectorial function from the vector space Fn
p to Fn

p can be uniquely represented as a univariate

polynomial over the finite field Fpn of pn elements of degree less than pn [34].

Definition 2.1.3. A function F : Fpn → Fpn is called

• Linear if F (x) =
∑

0≤i<n aix
pi

, ai ∈ Fpn ,

• Affine if F is a sum of a linear function and a constant,

• Dembowski-Ostrom (DO) polynomial if F (x) =
∑

0≤k,j<n ak,jx
pk+pj

, where ak,j ∈ Fpn

• Quadratic if F is a sum of a DO-polynomial and an affine function.

The number of univariate polynomials that exist over a given finite field Fpn of degree less than

pn is very. Therefore, it is useful to have a notion of equivalence between functions allowing us to

only consider a single polynomial from each equivalence class.

Definition 2.1.4. Two functions F and F ′ from Fpn to Fpn are called

• Linear equivalent if F ′ = A1 ◦ F ◦A2, where A1 and A2 are linear permutations of Fpn ,

• Affine equivalent if F ′ = A1 ◦ F ◦A2, where A1 and A2 are affine permutations of Fpn ,

• Extended affine (EA) equivalent if F ′ = A1 ◦ F ◦A2 +A, where the mappings A1, A2, A are

affine and A1, A2 are permutations,

• Carlet-Charpin-Zinoviev (CCZ) equivalent if for some affine permutation L over F2
pn the

image of the graph of F is equal to the graph of F ′, i.e.

L(GF ) = GF ′ , where GF := {(x, F (x)) | x ∈ Fpn}.

It has been proven that differential uniformity is invariant under CCZ-equivalence [16]. How-

ever, checking whether two functions are CCZ-equivalent is hard in general [15], and building
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functions that are CCZ-equivalent but not EA-equivalent is also hard. It is easier to check for EA-

equivalence between two functions, and constructing EA-equivalent functions is easy as well. [14].

Identifying situations in which CCZ-equivalence reduces to EA-equivalence is therefore useful, as

one can save substantial computational effort when checking for equivalence between functions. In

particular, CCZ-equivalence is known to reduce to EA-equivalence for all Boolean functions [14].

EA-equivalence is a special case of CCZ-equivalence, and CCZ-equivalence is proven to be more

general than EA-equivalence [10]. Additionally, for planar functions (n, n, p)-functions, it is proven

that CCZ-equivalence coincides with EA-equivalence (so that two planar (n, n, p)-functions are

CCZ-equivalent if and only if they are EA-equivalent. For planar DO polynomials, EA-equivalence

reduces to linear equivalence [14]. We shall explore the consequences of this more thoroughly in

Chapter 2.3.

The first infinite family of planar functions defined over a finite field Fpn for any odd prime p

were the planar functions corresponding to the commutative semifields of Dickson and Albert in

1905 [24]. This connection between planar functions and commutative semifields will be explored

in detail in the next sections of this chapter. Since then, more infinite families defined for any odd

prime p have been constructed. One of these families was constructed in [13] by way of extension

of a known family of APN functions over F22k . This showed that known classes of APN functions

over fields of even characteristic can serve as sources of further constructions of planar mappings

over fields of odd characteristic.

2.2 Semifields

Planar functions are worth studying because, as was previously indicated, they correspond to

optimal objects in other branches of mathematics in addition to having strong cryptographic

qualities. The algebraic objects known as presemifields and semifields are possibly one of the best

illustration of this. After the study of finite fields was finished, scholars began looking into more

generic structures that were governed by axioms and relaxation conditions. Finite fields are relaxed

into semifields, which satisfy all the axioms except for the requirement that they be associative

and commutative. The study of these algebraic objects was started in the early 20th century by

Dickson [24], despite the term semifield not being used in the literature until much later. Prior

to Knuth’s thesis in 1965 [33], they were known as “distributive quasifields” or “nonassociative

division rings” for about 60 years. A formal definition of semifields can be given as follows.

Let S be a finite set of elements, let + and ⋆ be two operations defined on the set S such that

• (S,+) is an Abelian group with identity 0S ,

• The left and right distributivity law holds, a⋆ (b+c) = a⋆b+a⋆c and (a+b)⋆c = a⋆c+b⋆c

for all a, b, c ∈ S,

• There are no zero divisors, meaning if a ⋆ b = 0S then either a or b is equal to 0S .

Then S = (S,+, ⋆) is called a presemifield. If, in addition, a presemifield has a multiplicative

identity, then it is called a semifield. We here refer to the operation ⋆ as the presemifield operation or
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presemifield multiplication of S. Furthermore, we say that a semifield is commutative, if x⋆y = y⋆x

for all x, y ∈ S.

We can represent any presemifield as S = (Fpn ,+, ⋆), where Fpn is a finite field with pn elements.

Crucially, there is no condition on whether the semifield operation ⋆ is associative. In fact, if

associativity holds for a semifield, then it is a finite field. This is because in the finite case,

associativity always implies commutativity for semifields[9]. However, a commutative semifield is

not necessarily associative, and therefore not necessarily a field.

If a semifield is not a field, i.e. associativity does not hold, then it is called a proper semifield.

However, in this thesis, we shall simply use the term semifield when referring to a proper semifield.

Commutative semifields are also interesting, as they are in a sense the “closest” structures to

fields [9]. Additionally, for a semifield S with pn elements, we say that the characteristic of S is

the prime number p, and the positive integer n is called the dimension of S. The first proper

semifields, different from finite fields, were the commutative semifields of Dickson and Albert [14]

which have order p2k with p an odd prime and k > 1 an integer.

From any commutative presemifield, one can construct its corresponding commutative semifield

in the following way. Let S = (Fpn ,+, ⋆) be a commutative presemifield and choose any nonzero

a ∈ Fpn and define the operation ◦ as

(x ⋆ a) ◦ (a ⋆ y) = x ⋆ y for all x, y ∈ Fpn .

Then one can easily check that S′ = (Fpn ,+, ◦) is a commutative semifield, with a⋆a as its identity

element. We say the semifield S′ corresponds to the presemifield S with identity a⋆a corresponding

to S.

Definition 2.2.1. Let S1 = (Fpn ,+, ◦1) and S2 = (Fpn ,+, ◦2) be presemifields. Then they are

said to be isotopic if there exist linear permutations L,M,N over Fpn such that

L(x ◦1 y) = M(x) ◦2 N(y), for all x, y ∈ Fpn

The triple (L,M,N) is called the isotopism between S1 and S2.

Definition 2.2.2. Let S1 = (Fpn ,+, ⋆) and S2 = (Fpn ,+, ◦) be isotopic presemifields. Then if

there exists an isotopism (L,N,N) between S′1 and S2 then we say that S′1 and S2 are strongly

isotopic.

The differences in the properties of strongly isotopic semifields as opposed to non-strongly

isotopic semifields have many important implications for planar functions. That is, commutative

semifields and quadratic planar functions are in one-to-one correspondence, and strongly isotopic

semifields imply that their corresponding planar functions are CCZ-equivalent.

Clearly, a presemifield S is strongly isotopic to its corresponding semifield S′, through the strong

isotopism (id, La, La), where La = a ⋆ x.
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Definition 2.2.3. Given a semifield S′ = (Fpn ,+, ∗), we define

Nl(S′) := {a ∈ Fpn | (a ∗ x) ∗ y = a ∗ (x ∗ y) ∀ x, y ∈ Fpn}

Nm(S′) := {a ∈ Fpn | (x ∗ a) ∗ y = x ∗ (a ∗ y) ∀ x, y ∈ Fpn}

Nr(S′) := {a ∈ Fpn | (x ∗ y) ∗ a = x ∗ (y ∗ a) ∀ x, y ∈ Fpn}

the left, middle and right nucleus of S′ respectively, and

N(S′) := Nl(S′) ∩Nm(S′) ∩Nr(S′)

the nucleus of S′.

In the case of a commutative semifield, the left and right nuclei are identical. Additionally, for

a commutative semifield the right nucleus is contained in the middle nucleus [9], clearly it then

follows for a commutative semifield that

N(S′) = Nr(S′) = Nl(S′).

In effect, the orders of the nuclei measure how far the semifield S is from being a field. Although

it is widely stated in other literature, these sets are not always subfields of Fpn , that is, subsets

that are themselves fields. This depends on whether the multiplicative identity of the semifield

a ⋆ a is the same identity 1 as in the finite field Fpn [30].

The following fact about the orders of the nuclei of semifield is quite important for our inves-

tigation. Therefore, we formulate it as a theorem.

Theorem 2.2.1. [19, page 286] The orders of the left, middle and right nuclei and the nucleus of

a semifield are invariant under isotopism.

When investigating whether two semifields might be isotopic, observing that the orders of their

nuclei are different immediately provides a negative answer.

2.3 Connections between CCZ-equivalence and isotopism

Here, we explain the connection between planar functions and commutative semifields over fields

of odd characteristic. In particular, how an instance of a quadratic planar function can be used

to define a commutative semifield, and vice versa. Additionally, we discuss how their respective

properties are connected. This is useful as results in classification of planar functions have impor-

tant consequences on the classification of commutative semifields [14]. In fact, every commutative

presemifield in odd characteristic defines a planar DO polynomial and vice versa.

Let F be a quadratic planar function over Fpn . Then S := (Fpn ,+, ⋆) defined by

x ⋆ y := F (x+ y)− F (x)− F (y) ∀x, y ∈ Fpn (2.1)

is a commutative presemifield. We say that S is the commutative semifield defined by the quadratic

planar function F .
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Conversely, given a commutative presemifield S = (Fpn ,+, ⋆) of odd order, then the function

given by

F (x) =
1

2
(x ⋆ x) (2.2)

is a quadratic planar function [19].

Due to this connection between quadratic planar functions and commutative semifields, it is

possible to identify a presemifield and its corresponding planar function. And for the sake of

brevity, when two planar functions correspond to isotopic presemifields and semifields, we here

refer to them as isotopic planar functions.

The following theorems and corollaries regarding planar functions and commutative semifields

are collected from Coulter and Henderson’s paper on semifields and presemifields from 2008, in

[19], and from the papers by Budaghyan and Helleseth from 2008 [13] and 2011 [14].

Theorem 2.3.1. [14, Theorem 3] Let p be any prime, m and n any positive integers. If a function

F from Fpn to Fpm is such that all its derivatives Da(x) = F (x)−F (x+a), a ∈ F∗
pn , are surjective,

then any function CCZ-equivalent to F is EA-equivalent to it.

Clearly, by the definition of a planar function, Theorem 2.3.1 applies to planar functions, as

the derivative has a unique solution for any given value b = F (x+ a)−F (x) in Fpn no matter the

choice of direction a ∈ F∗
pn .

Corollary. [14, Corollary 1] Let F be a planar function and F ′ be CCZ-equivalent to F . Then F

and F ′ are EA-equivalent.

Therefore, for planar functions, CCZ-equivalence reduces to EA-equivalence, and checking

whether two planar functions are CCZ-equivalent equates to checking whether they are EA-

equivalent, which is far easier.

Corollary. [14, Corollary 2] If a planar function F is CCZ-equivalent to a DO polynomial F ′ then

F is also DO.

“DO-ness” is invariant for planar functions under CCZ-equivalence (and in particular EA-

equivalence).

Corollary. [14, Corollary 3] Perfect nonlinear DO polynomials F and F ′ are CCZ-equivalent if

and only if they are linear equivalent.

Consequently, it is sufficient to check for linear equivalence between two planar DO-polynomials

to see if they are CCZ-equivalent. Therefore, the time spent checking whether two functions are

CCZ-equivalent can be drastically reduced, since linear equivalence is easier to determine.

Theorem 2.3.2. [13] Let F and F ′ be two DO polynomials over Fpn , and SF and SF ′ be their

corresponding commutative semifields. Then F and F ′ are CCZ-equivalent if and only if SF and

SF ′ are strongly isotopic.

As an immediate consequence, it also follows that two isotopic commutative semifields defined

by CCZ-inequivalent quadratic planar functions cannot be strongly isotopic. Additionally, it is
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proven in Corollary 2.8 in [19] that two commutative presemifields of order pn with n odd are

isotopic if and only if they are strongly isotopic. There are also some sufficient conditions for n

even, where isotopism of semifields implies strong isotopism.

Theorem 2.3.3. [19, Theorem 2.6] If S1 and S2 are isotopic commutative presemifields of charac-

teristic p with the order of the middle nucleus pm and order of the nucleus pk of their corresponding

semifields, then one of the following statements must hold:

(i) m
k is odd and S1 and S2 are strongly isotopic,

(ii) m
k is even and either S1 and S2 are strongly isotopic or the only isotopism between the

corresponding semifields S′1 and S′2 are of the form

(L, β ∗N,N),

where β is a non-square element of Nm(S′1).

Consequently, by Theorem 2.3.3, in the case n is even, it is possible that isotopic commutative

presemifields (that are not strongly isotopic) define CCZ-inequivalent quadratic planar functions.

That is, starting with one quadratic planar function F , corresponding to a commutative presemi-

field SF , over Fpn with n even and order of the middle nucleus pm and nucleus pk such that m
k

is even, then it is potentially possible to construct a quadratic planar function F ′ that is CCZ-

inequivalent to F , by way of finding a semifield isotopic to SF of the form (L, β ∗N,N). Theorem

2.3.3 also results in this useful corollary.

Corollary. [19, Theorem 2.6] [14] Any commutative presemifield can generate at most two CCZ-

equivalence classes of planar DO polynomials.

Therefore, for any isotopism class of semifields, there exist at most two CCZ-inequivalent cor-

responding quadratic planar functions.

Definition 2.3.1. [12, Definition I.1] Let F,L ∈ Fpn [x]. Then the isotopic shift of F by L,

denoted by FL, is the polynomial given by

FL(x) = F (x+ L(x))− F (x)− F (L(x)).

This definition is inspired by the notion of isotopic equivalence of planar functions, and as we

shall see in Theorem 2.3.4 is a natural relation between quadratic planar functions [12].

Theorem 2.3.4. [12, Theorem I.1] Let F,G ∈ Fpn [x] be quadratic planar functions (null at 0).

If F and G are isotopic equivalent, then G is EA-equivalent to some isotopic shift FL of F by a

linear permutation polynomial L ∈ Fpn [x].

However, the converse is not always true [12]. That is, not every isotopic shift of a planar

function gives an isotopic planar function. In fact, for an arbitrary linear permutation L, FL is

not always planar either.

In 2008, two infinite families of quadratic perfect nonlinear multinomials over Fp2k with p any

odd prime and k a positive integer were constructed [13]. This family was then also extended to
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include isotopic planar functions [14], by the same method as the one being investigated in this

thesis. It was also proven that this family is CCZ-inequivalent to previously known families, and

supplied direct results indicating that these planar functions define new semifields. These were the

firstly found infinite families of commutative semifields of order pn that are defined for any odd

prime p since the commutative semifields by Dickson [24] in 1905 and Albert [1] in 1961.

2.4 Known planar functions and commutative presemifields

Here we present the known families of planar functions and their corresponding presemifields as of

the time of writing. The following list contains families of presemifields, given by their presemifield

operation, and families of planar functions, and supposing they are quadratic, then using the

canonical construction of a presemifield multiplication operator one can also define commutative

presemifields as shown in Equation 2.1.

It should be noted that many of the instances of planar functions generated by these families

are CCZ-equivalent to each other, and in particular over fields of small dimensions. This also

happens for many instance of the same family. However, as the size of the finite field on which the

families are defined increases, they can produce more distinct CCZ-inequivalent planar functions.

In the case that a family has been shown to be contained in another family, we have chosen to not

use bold text on its abbreviated name.

FF Finite fields F (x) = x2 over Fpn , for p odd. [Folklore]

CM The Coulter-Matthews planes [22],[31]

x(3t+1)/2

on F3n is planar if t ≥ 3 is odd and gcd(t, n) = 1. Notably, these functions are not quadratic

and do not correspond to any semifield.

A Commutative twisted fields, a.k.a. Albert semifields [22], [23]

F (x) = xpe+1

is planar on Fpn if and only if gcd(n, e) is odd.

Note. There is a larger class of these semifields, the so-called generalized twisted fields, but

these are the only commutative ones.

D Dickson semifields [26]

Defined by the presemifield multiplication

(a, b) ⋆ (c, d) = (ac+ αbqdq, ad+ bc),

where α ∈ Fqk is a nonsquare. Then S = (F2
qk ,+, ⋆) is a presemifield.

G Ganley semifields [29] Defined by S = (F32k ,+, ⋆) for k odd, where

(a, b) ⋆ (c, d) = (ac− b9d− bd9, ad+ bc+ b3d3)

where a, b, c, d ∈ F3k . Then S is a presemifield.
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CG Cohen-Ganley semifields [17] Defined by S = (F32n ,+, ⋆) for n ≥ 2, where

(a, b) ⋆ (c, d) = (ac+ βbd+ β3(bd)9, ad+ bc+ β(bd)3)

with β ∈ F3n a nonsquare and where a, b, c, d ∈ F3n . Then S is a presemifield.

CM/DY Coulter-Matthews-Ding-Yuan semifields [22], [27]

x10 ± x6 − x2

is planar over F3n if and only if n is odd or n = 2.

ZKW Zha-Kyureghyan-Wang presemifields [5], [42]

xps+1 − αpk+1xpk+22k+s

is planar on Fp3k whenever p is odd, s, k are integers such that gcd(3, k) = 1, 0 < s < 3k,

k ≡ s mod 3, k ̸= s, 3k
gcd(s,3k) is odd and α ∈ Fp3k is primitive. The construction of these

planar functions was motivated by the APN binomials from [11].

B Bierbrauer presemifields [6] Defined by S = (Fp4s ,+, ⋆), p an odd prime, where

x ⋆ y = yp
t

x+ yxpt

− ups−1(yp
s+t

xp3s

+ yp
3s

xps+t

),

where u is a primitive element of F∗
p4s and 0 < t < 4s such that 2s

gcd(2s,t) is odd and ps ≡

pt ≡ 1 mod 4. For s = 1, the Bierbrauer family was shown to be isotopic to a Dickson

presemifield, in [37].

LMPTB Lunardon-Marion-Polverino-Trombetti-Bierbrauer [7]

Tr(x2) +G(xq2+1)

is planar over F2m
q , where q is a power of a prime p, m = 2k+1, Tr is the trace from F2m

q to

Fqm , and G(x) = h(x− xqm), where h ∈ F2m
q [x] is defined as

h(x) =

k∑
i=0

(−1)ixq2i +

k−1∑
j=0

(−1)k+jxq2j+1

.

This family is Bierbrauer’s generalization of the semifields discovered by Lunardo, Marion,

Polverino and Trombetti over q6 in [36]. However, it was proven in [37] that the LMPTB

family is contained in the BHB family.

BHB Budaghyan-Helleseth-Bierbrauer semifields [7]

Tr(xpm+1) + Tr(βxps+1)

is planar over Fp2m , where p is an odd prime, q = pm, the trace function from Fp2m to Fpm ,

ω, β ∈ Fp2m , Tr(ω) = 0 and S is a positive integer such that the following holds:

– βpm−1 is not contained in the subgroup of order (pm+1)/gcd(pm+1, ps+1) in (Fp2m , ∗),
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Table 2.1: Sporadic instances of planar functions in characteristic 3

pn Defining polynomial Name Reference

35 x90 + x2 ACW [3]

35 x162 + x108 + 2x84 + x2 CK[1] [21]

36 α91x30 + x10 + x2 H[1] [30]

36 α91x486 + x10 + x2 H[2] [30]

36 α182x82 + 2x10 + α91x6 + x2 H[3] [30]

36 α182x82 + 2x10 + α273x6 + x2 H[4] [30]

36 α91x486 + α182x90 + 2x10 + x2 H[5] [30]

36 α273x486 + α182x90 + 2x10 + x2 H[6] [30]

36 α273x246 + α182x82 + α91x6 + x2 H[7] [30]

Note that α is an arbitrary primitive element of F∗
pn , and so generates all nonzero elements under

multiplication by itself. All coefficients are given in the form of some power of α, except the nonzero

elements inherited from the prime field, here; 1 and 2.

– there is no 0 ̸= a ∈ Fp2m such that Tr(a) = 0 and ap
s

= −a.

This family is the generalized form of the Budaghyan-Helleseth family [14] by Bierbrauer.

However, it is not known whether this family is more general than the Budaghyan-Helleseth

family.

ZP Zhou-Pott semifields [44] Let m, k be positive integers, such that m
gcd(m,k) is odd.

Define x ◦k y = xpk

y+ yp
k

x. For elements (a, b), (c, d) ∈ F2
pm , define a presemifield operation

⋆ as follows, (a, b) ⋆ (c, d) = (a ◦k c + α(b ◦k d)σ, ad + bc), where α ∈ Fpm a nonsquare and

σ ∈ Aut(Fpm). Then S = (Fp2m ,+, ⋆) is a presemifield. It has been proven that the ZP

family is isotopic to the BHB family for trivial σ in [44].

The known sporadic instances of planar functions in characteristic 3 are listed in Table 2.1,

with the exception of the planar function corresponding to the Pentilla-Williams presemifield and

the two sporadic planar functions CK[2] by Coulter and Kosick in F55 .

The Pentilla-Williams (PW/BLP) commutative semifield is a sporadic instance of a commu-

tative semifield in dimension 10. This semifield is defined by the presemifield operation defined

as

(a, b) ⋆ (c, d) = ((ac+ bd)9, ad+ bc+ (bd)27)

on F35 × F35 , i.e., in F310 . It is the only sporadic instance we know of in this dimension [40].

All the currently known sporadic instances of planar functions in dimension 6 were found in

the thesis by Haukenes in 2022, and they are listed in Table 2.1 with the name H[1] to H[7]. The

orders of their middle nucleus and nucleus have been calculated computationally and are shown in

Table 2.4.
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The sporadic planar functions CK[2] in characteristic 5 are the only known sporadic planar

functions in characteristic 5 as of the time of this writing. It is defined as

F (x) := L(t2(x)) +D(t(x)) +
1

2
x2,

where L(x) = x53 +x52 +2x5+3x and D(x) = 0 or L(x) = 2x52 +x5 and D(x) = 2x53+5+2x52+1,

and where t(x) = x5 − x [21].

As regards the nuclei, meaning the right, left, middle nucleus and nucleus, of the semifields

defined by the known families and sporadic instances of planar functions and presemifields, some

have been found analytically and are displayed in Table 2.2.

It is important to note that many of the infinite families, although they might be different

in general, do produce some CCZ-equivalent instances. This is particularly the case for small

dimensions. Additionally, many of the instances of a single family in the same dimension generated

by choosing different parameters are also often CCZ-equivalent. Therefore, it is necessary to

identify the CCZ-inequivalent representatives from all families and from all sporadic cases.

In the thesis by Haukenes in [30] she performs this classification in characteristic 3, and the

representatives of the CCZ-inequivalent planar functions show in Table 2.3 and the orders of their

nuclei as shown for dimensions 6 to 8 in Table 2.4 are collected from her thesis, with some minor

adjustments with respect to the orders of the middle nucleus for representatives 6.4, 6.5 and 8.6.

Whilst performing this classification, she also found new sporadic instances of planar functions in

dimension 6, which were CCZ-inequivalent to the previously known ones. They are named in Table

2.3 as H[1] up to H[7]. In that same thesis, it was also shown that another sporadic instance in

dimension 8, namely the Coulter-Henderson-Kosick semifield (CHK), listed as representative 8.8

in Table 2.3, is in fact EA-equivalent to an instance of Zhou-Pott, a problem which had remained

open for a long time. These CCZ-inequivalent representatives of planar functions over fields of

order 3n, for n from 2 to 8, are listed here in Table 2.3



16 CHAPTER 2. PRELIMINARIES

Table 2.2: Order of middle nucleus and nucleus of known families of commutative semifields

TYPE |S| |N(S)| |Nm(S)| Existence Results Reference

D
q2k,

k > 1 odd
q qk ∃ ∀ q odd [25]

A
qt,

t > 1 odd
q q ∃ ∀ q odd [1], [2]

ZKW
q3k,

h > 1 odd
q q

∃ ∀ q odd,

k + s ≡ 0 (mod 3),

∃∀q odd : q ≡ 1 (mod 3)

[37]

B
q4s,

s > 1 odd
q q2 ∃ ∀ q ≡ 1 (mod 4) [37]

BH
q2m,

m > 2
q q2 ∃ ∀ q odd [37]

ZP
q2l,

l > 2
q

q2 (if σ = 1),

q (if σ ̸= 1)
∃ ∀ q odd [44]

CG
32s,

s ≥ 3
3 3s [17]

G
32r,

r ≥ 3 odd
3 3 [29]

CM/DY
3e,

e ≥ 5
odd 3 3 [27], [19]

PW/BLP 310 3 35 [39], [4]

The orders of the nuclei for the known proper commutative semifields in odd characteristic. Note

that the size of the semifield |S| is the same as the order of the finite field on which the family is

defined. Note that q is a power of the prime characteristic p. This table was collected from [37].
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Table 2.3: CCZ-inequivalent planar functions in characteristic 3 and dimension 2 to 8

Dim N0 Representative Family

2 2.1 x2 FF

3 3.1 x2 FF

3.1 x4 A

4 4.1 x2 FF

4.2 x14 CM

4.3 x36 + 2x10 + 2x4 BHB

5 5.1 x2 FF

5.2 x4 A

5.3 x10 A

5.4 x10 + x6 + 2x2 CM/DY

5.5 x10 + 2x6 + 2x2 CM/DY

5.6 x14 CM

5.7 x90 + x2 ACW

5.8 x162 + x108 + 2x84 + x2 CK[1]

6 6.1 x2 FF

6.2 x10 A

6.3 x162 + x82 + α58x54 + α58x28 + x6 + α531x2 D

6.4 α75x2214 + x756 + α205x82 + x28 BHB

6.5 2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 LMPTB/BHB

6.6 x270 + 2x244 + α449x162 + α449x84 + α534x54 + 2x36 G

+α534x28 + x10 + α449x6 + α279x2

6.7 x486+x252+α561x162+α561x84+α183x54+α183x28 CG

+x18 + α561x6 + α209x2

6.8 x122 CM

6.9 α438x486+α180x324+α458x270+α672x252+α622x246 ZP

+α94x244+α650x162+α441x108+α50x90+x84+α77x82

+α328x36 + α583x30 + α407x28 + α178x18 + α492x12

+α692x10 + α78x6 + α219x4 + α69x2

6.10 α91x30 + x10 + x2 H[1]

6.11 α91x486 + x10 + x2 H[2]

6.12 α182x82 + 2x10 + α91x6 + x2 H[3]

6.13 α182x82 + 2x10 + α273x6 + x2 H[4]

6.14 α91x486 + α182x90 + 2x10 + x2 H[5]

6.15 α273x486 + α182x90 + 2x10 + x2 H[6]

6.16 α273x246 + α182x82 + α91x6 + x2 H[7]
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Dim N0 Representative Family

7 7.1 x2 FF

7.2 x4 A

7.3 x10 A

7.4 x28 A

7.5 x10 + x6 + 2x2 CM/DY

7.6 x10 + 2x6 + 2x2 CM/DY

7.7 x14 CM

7.8 x122 CM

8 8.1 x2 FF

8.2 x14 CM

8.3 x122 CM

8.4 x1094 CM

8.5 α3994x244 + α5354x84 + 2x82 BHB

8.6 α264x1458 + x82 B

8.7 α3698x2188 + α1058x108 + 2x82 BHB

8.8 x4374+x2430+x2214+2x2190+2x1458+2x810+x486+

2x270 + x246 + x82 + x54 + x30 + x18 + x10 + x6 + x2

CHK/ZP

8.9 α3608x1458 + α3608x738 + α3810x486 + α3810x246 CG

+α3413x162+α3413x82+α3608x18+α3810x6+α2565x2

8.10 α164x1458 + α164x738 + α950x486 + α950x246 CG

+α616x162 + α616x82 + α164x18 + α950x6 + α6297x2

The representatives of the CCZ-inequivalent classes were classified in [30], and each representative

is expressed with coefficients that are powers of an arbitrary primitive element α ∈ F3n except for

the inherited prime field elements 1 and 2.
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Table 2.4: Order of the nuclei for the representatives over F3n for n from 6 to 8

Dim N0 |Nm(S′)| |K(S′)| Family

6 6.1 36 36 FF

6.2 32 32 A

6.2 32 32 A

6.3 33 3 D

6.4 32 3 BHB

6.5 32 3 LMPTB/BHB

6.6 3 3 G

6.7 3 3 CG

6.8 − − CM

6.9 3 3 ZP

6.10 32 3 H[1]

6.11 32 3 H[2]

6.12 32 3 H[3]

6.13 32 3 H[4]

6.14 32 3 H[5]

6.15 32 3 H[6]

6.16 32 3 H[7]

7 7.1 37 37 FF

7.2 3 3 A

7.3 3 3 A

7.4 3 3 A

7.5 3 3 CM/DY

7.6 3 3 CM/DY

7.7 − − CM

7.8 − − CM

8 8.1 38 38 FF

8.2 − − CM

8.3 − − CM

8.4 − − CM

8.5 32 3 BHB

8.6 34 32 B

8.7 32 3 BHB

8.8 34 3 CHK/ZP

8.9 34 3 CG

8.10 34 3 CG

The orders of the nuclei of the corresponding semifields for the planar function representatives in

Table 2.3 in dimensions 6 to 8. Note that for the representatives that are not quadratic, there is

no corresponding semifield.
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Chapter 3

Search for isotopic semifields in

characteristic 3

3.1 Constructing isotopic planar functions

It is possible to extend infinite families of planar functions to include isotopic planar functions

that are not CCZ-equivalent to those already in the family. This was done successfully in [14],

where a known family, which was constructed from a family of APN quadrinomials redefined for

odd prime characteristic, was extended up to isotopy. Not long after, Zhou showed in [43] that an

instance of the LMPTB family was contained up to isotopy in the BHB family, which was perhaps

a premonition for the results in [37] showing that the LMPTB family is contained in the BHB

family up to isotopy. Therefore, the study of isotopic planar functions, that is, planar functions

that correspond to isotopic semifields, can have an effect on the infinite family of planar functions

that generate it.

By studying Theorem 2.3.3 one observes that any two isotopic commutative semifields S′F =

(Fpn ,+, ◦F ) and S′G = (Fpn ,+, ◦G) which correspond to two EA-inequivalent quadratic planar

functions, F and G, cannot be strongly isotopic. In fact, there has to exist an isotopism between

them of a particular form. Namely, there must exist some nonsquare element β ∈ Nm(S′F ), the

middle nucleus of S′F , and linear permutations N and L such that

L(x ◦G y) = (β ◦F N(x)) ◦F N(y), β ∈ Nm(S′F ). (3.1)

For a known presemifield SF = (Fpn ,+, ⋆F ) defined by the presemifield operation as in Equation

2.1 using a known quadratic planar function F , one can attempt to construct an isotopic planar

function G by first defining an isotopic presemifield, along the lines of Equation 3.1 as

L(x ⋆G y) = (β ⋆F N(x)) ⋆F N(y). (3.2)

Then their corresponding semifields can be constructed in the following way. Let S′G =

(Fpn ,+, ◦G) be the semifield corresponding to SG, with semifield operation ◦G defined as

(x ⋆G a) ◦G (a ⋆G y) = x ⋆G y,

21
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for some fixed element a ∈ F∗
pn and let the semifield S′F = (Fpn ,+, ◦F ) corresponding to SF be

defined by

(x ⋆F b) ◦F (b ⋆F y) = x ⋆F y,

for some fixed element b ∈ F∗
pn . Using these definitions for the semifield operations, Equation 3.2

becomes,

L(x ⋆G y) = L((x ⋆G a) ◦G (a ⋆G y)) = (β ⋆F N(x)) ⋆F N(y)

= ((β ⋆F N(x)) ⋆F b) ◦F (b ⋆F N(y))

= (((β ⋆F b) ◦F (b ⋆F N(x))) ⋆F b) ◦F (b ⋆F N(y)),

which is an isotopism of the desired form between the corresponding semifields.

Therefore, we can proceed using the presemifield SF and look for isotopic presemifields SG of

the form (L, β⋆FN,N). Then, one can retrieve the isotopic planar function G from the presemifield

operation ⋆G using the canonical construction in Equation 2.2. That is,

G(x) =
1

2
(x ⋆G x)

=
1

2
L−1((β ⋆F N(x)) ⋆F N(x)).

And for a known quadratic planar function F , the presemifield operation of its corresponding

commutative presemifield can be defined as in Equation 2.1.

x ⋆F y = F (x+ y)− F (x)− F (y).

By iterating over the possible linear permutations L andN , and nonsquare elements β in the middle

nucleus of the semifield S′F corresponding to the presemifield SF , it is possible one can retrieve an

EA-inequivalent planar function G. With this method, we have chosen to limit our search to linear

permutations L and N , with L being the identity map (id : x → x) and permutations N : x → xpi

for 0 ≤ i < n, where n is the dimension of the finite field.

However, if such a search does not yield a CCZ-inequivalent planar function, one can also

attempt the same search with a planar function F2 that is linear equivalent to F . That is, given

a quadratic planar function F , one may take linear permutations B1 and B2 and define a linear

equivalent function F2(x) = B1(F (B2(x))) which, if it is planar, one can then perform a search for

isotopic planar functions G to F2 in the same way. For our purposes, we used linear permutations

B1 and B2 that were constructed in the following way.

Take an arbitrary element a ∈ F∗
pn , and define a linear permutation B as

B(x) = x ⋆F a (3.3)

By the definition of a planar function, B(x) = x ⋆F a = F (x+ a)− F (x)− F (a) is a bijection on

Fpn for all a ∈ F∗
pn , and if B is linear, then it is a linear permutation over Fpn . Then one can

compose B with itself repeatedly, that is, define B2(x) := B(B(x)), B3(x) := B(B2(x)) and so

on, until many of these compositions have been collected. By the finiteness of the finite field Fpn ,
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this process must terminate. Meaning, Bk(x) = B(x) mod xpn − x for some natural number k.

Then, since any composition of two linear permutation polynomials is itself a linear permutation

polynomial, at every instance 1 ≤ i ≤ k, Bk is a linear permutation [34]. Now take any two of

these permutations, B1(x) = Bi, and B2(x) = Bj , and attempt to find a CCZ-inequivalent isotopic

planar function G using F2(x) = B1(F (B2(x))). It is necessary for the permutation polynomials

Bk to be linear, as the structure of the “right orbits” of the planar function F is invariant under

linear equivalence [32]. This requirement is needed so that we can check G for CCZ-equivalence

with F2 using the fast algorithm explained in Chapter 3.2. For the choices of a in Equation 3.3, we

chose to limit them to elements of the middle nucleus of the semifield corresponding to the planar

function F .

3.2 Narrowing down the search

We have chosen in this thesis to perform a search for isotopic planar functions using the method

explained in Chapter 3.1 over finite fields in characteristic 3 and dimension n ≤ 8.

By combining Theorem 2.3.3 and Theorem 2.3.2 in Chapter 2, we deduce the following. Given

a quadratic planar function F , then an isotopic planar function G which is CCZ-inequivalent to

F can only exist if m
k is even, where pm, and pk are the orders of the middle nucleus and nucleus,

respectively, of the semifield corresponding to F . Additionally, Coulter and Henderson in [19]

showed that in fact, the prime power order of the finite field on which the semifield is defined must

also be even. Hence, we can restrict ourselves to only searching for isotopic planar functions in

even dimensions n and that correspond to semifields which fulfil the Coulter-Henderson conditions

in Theorem 2.3.3 on the nucleus and middle nucleus.

Looking at the analytic results for the orders of the nuclei of the known families of planar

functions and semifields in Table 2.2, the following families can be worth investigating in our

search in characteristic 3. From the table we can see that the available families are BHB, LMPTB

and ZP with trivial automorphism σ, as well as D, B and CG in doubly even dimensions. We know

that LMPTB and ZP with trivial σ are contained in BHB, as proven in [37] and [44]. Additionally,

many instances from these remaining families are CCZ-equivalent, and therefore we make use of

the representatives of CCZ-inequivalent planar functions in Table 2.3. When referring to these

representatives in this thesis, we shall call them by their indexes, d.m, as listed in the table.

Looking at the CCZ-inequivalent representatives in dimension 4, the only quadratic represen-

tative which does not correspond to a finite field in dimension 4 is function 4.3. And since it is

from the BHB family, it has already been extended up to isotopy. Therefore, there are no functions

for us to investigate in dimension 4. However, in dimension 6 and 8 there are more functions that

fulfil the Coulter-Henderson criteria.

By inspection of Table 2.3, the remaining representatives for which a search using the method

laid out in Chapter 3.1 might result in CCZ-inequivalent planar functions are the following CCZ-

inequivalent representatives in dimension 6 and 8.

36 6.10 : F (x) = α91x30 + x10 + x2
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6.11 : F (x) = α91x486 + x10 + x2

6.12 : F (x) = α182x82 + 2x10 + α91x6 + x2

6.13 : F (x) = α182x82 + 2x10 + α273x6 + x2

6.14 : F (x) = α91x486 + α182x90 + 2x10 + x2

6.15 : F (x) = α273x486 + α182x90 + 2x10 + x2

6.16 : F (x) = α273x246 + α182x82 + α91x6 + x2

38 8.5 : F (x) = α3994x244 + α5354x84 + 2x82

8.6 : F (x) = α264x1458 + x82

8.7 : F (x) = α3698x2188 + α1058x108 + 2x82

8.8 : F (x) = x4374 + x2430 + x2214 + 2x2190 + 2x1458 + 2x810 + x486 + 2x270 + x246 + x82 +

x54 + x30 + x18 + x10 + x6 + x2

8.9 : F (x) = α3608x1458 + α3608x738 + α3810x486 + α3810x246 + α3413x162 + α3413x82 +

α3608x18 + α3810x6 + α2565x2

8.10 : F (x) = α164x1458 + α164x738 + α950x486 + α950x246 + α616x162 + α616x82 + α164x18 +

α950x6 + α6297x2

In the thesis by Haukenes, she also listed the invariants corresponding to the known CCZ-

inequivalent planar functions in dimensions 2 to 8, including the orders of the nuclei of their corre-

sponding semifields. In that thesis, she also made use of the algorithm checking CCZ-equivalence

between planar functions first presented in [32]. It makes use of the pre-calculated “right orbit”

representatives, here referred to simply as “orbits” representatives, in order to check for linear

equivalence between planar functions. That is, taking a planar function F for which the orbits

are known, and constructing another planar function G with the method in 3.2, then the time

spent checking whether F and G are linear equivalent can be significantly reduced, especially in

the negative case [32]. This owes to the fact that the structure of the orbits of a planar function

is invariant under linear equivalence [32].

The orbits for the planar functions in dimension 3 to 6 (except for the sporadic Haukenes func-

tions) are listed in [32]. The remaining orbits for the planar function representatives in dimensions

7 and 8, and the sporadic Haukenes functions in dimension 6 are found in [30]. However, one of

the orbit representatives in dimension 8 is missing in [30, Table 3.5]. In particular, for the function

listed as 8.10, the orbits were not listed due to time constraints in the project and the time required

to compute them. The representatives of the orbits have been found here to be the 410 elements,

given as powers of an arbitrary primitive element α in the finite field F38 .

{αi : i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 53, 54, 56,

57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85,

86, 87, 88, 89, 90, 92, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 111, 112,
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113, 114, 115, 116, 117, 118, 120, 121, 122, 124, 125, 126, 128, 129, 132, 133, 134, 136, 138, 139,

140, 141, 143, 144, 145, 146, 147, 149, 150, 151, 152, 153, 154, 155, 156, 157, 159, 161, 162, 163,

164, 166, 167, 168, 169, 170, 171, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,

186, 188, 189, 190, 195, 196, 197, 198, 199, 200, 204, 206, 207, 211, 212, 213, 214, 215, 216, 217,

218, 220, 221, 222, 223, 225, 226, 227, 228, 229, 232, 233, 235, 236, 237, 238, 240, 241, 242, 243,

244, 246, 249, 251, 252, 253, 254, 256, 258, 259, 260, 267, 269, 272, 275, 276, 277, 278, 281, 282,

284, 286, 288, 289, 292, 293, 294, 295, 296, 298, 300, 302, 305, 307, 311, 313, 314, 316, 318, 323,

326, 327, 328, 330, 331, 337, 338, 340, 342, 343, 346, 347, 348, 351, 353, 360, 361, 366, 368, 371,

372, 374, 376, 377, 378, 379, 380, 382, 384, 386, 395, 397, 401, 402, 404, 405, 407, 414, 415, 416,

419, 420, 422, 426, 430, 431, 436, 440, 441, 444, 446, 456, 458, 468, 469, 475, 478, 480, 491, 494,

508, 510, 511, 512, 517, 522, 524, 530, 532, 535, 536, 542, 546, 548, 550, 561, 565, 566, 567, 569,

571, 572, 573, 578, 579, 581, 582, 583, 586, 589, 590, 595, 596, 599, 600, 606, 607, 608, 610, 633,

639, 642, 643, 646, 647, 661, 669, 682, 686, 687, 688, 696, 699, 706, 710, 712, 717, 728, 736, 737,

738, 740, 741, 747, 750, 752, 753, 756, 757, 763, 770, 787, 811, 812, 825, 830, 841, 846, 850, 851,

856, 866, 890, 901, 904, 920, 921, 927, 934, 942, 975, 976, 981, 989, 996, 1005, 1020, 1043, 1049,

1052, 1106, 1109, 1116, 1160, 1260, 1337, 1385] }.

In the CCZ-classification of the known planar functions in [30], the method used for finding

the order of the middle nucleus and nucleus hinged upon the assumption that the middle nucleus

and nucleus were subfields (i.e a subset and a field) of the finite field on which the semifield is

defined. However, as mentioned in Chapter 2.2, this is not always the case, and therefore the

method used in [30] does not always find the correct orders for the nuclei. Therefore, we have

in this thesis performed a direct search for the elements of the middle nucleus and nucleus of the

quadratic planar function representatives in dimensions 6 to 8, presented in Table 2.4, and found

that these corrections are in correspondence with the analytic results in Table 2.2. In particular,

we have found the order of the middle nuclei of representatives 6.4 and 6.5 to both be 32, and for

the representative 8.6, the order of the nucleus is 32, corresponding to q = 32 in Table 2.2.

We do not perform any search beyond dimension 8. Our calculations are performed in MAGMA

V2.24-3 on a server designed for large memory intensive computations, with 56 cores at 2.6 GHz

and around 500 GBs of RAM. However, already in dimension 8, the computational time required

to check for equivalence can take a long time. Additionally, in order to use the fast algorithm,

that is, checking for equivalence using the corresponding orbits of the representatives, it requires

the calculation of said orbits. Calculating the orbits of a planar function in dimension 8 can take

multiple days, and in the case of the representative 8.10, which had 410 orbits, it took almost

four months to complete. Furthermore, there is to our knowledge no classification up to CCZ-

equivalence of the planar functions in characteristic 3 and dimension 10 at the time of this writing.

In our computational search we are able to find isotopic planar functions which are not CCZ-

equivalent for the representatives 6.4, 6.10, 6.12, 6.14 and 8.9. In essence, six of the sporadic

Haukenes functions in dimension 6 form three isotopic equivalence classes, and the two CCZ-

inequivalent Cohen-Ganley representatives 8.9 and 8.10 are also isotopic equivalent. Additionally,
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we were able to reaffirm that representatives 6.4 and 6.5 are isotopic, as was first shown by Zhou

in 2010 [43].

3.3 Refined classification of isotopic semifields

Here we present the results from our search for isotopic commutative semifields using the method

described in Section 3.1. The isotopisms found in dimension 6 and 8 are given explicitly, in the form

of linear permutations (L, β ⋆ N,N). Note that each chosen representative of a CCZ-equivalence

class in Figures 3.1 and 3.2 is listed with a given family which generates it, but as previously

mentioned, it is possible for another family to generate them as well.

In Figure 3.1 and 3.2, we show how some of the CCZ-inequivalent planar function classes in

dimensions 6 and 8 are isotopic to one another. It should also be remarked that Figure 3.1 and

3.2 are not necessarily complete. That is, it is still possible, if not probable, that there exist more

EA-inequivalent planar functions, representing classes of strongly isotopic semifields, that have not

yet been found. For instance, we expected some BHB and LMPTB instances to be isotopic, since

the BHB family has already been extended up to isotopism and contains LMPTB. However, we

were unable to find such an isotopism for the given representatives of the CCZ-equivalence classes

with the method used here. Additionally, for representatives 8.6 and 8.8 we were unable to find

isotopic functions.

For the planar functions in dimension 4, we do not discover any new isotopic planar functions.

However, in dimension 6, we discover three new isotopisms between the known CCZ-inequivalent

classes, shown in Figure 3.1 along with a previously known isotopism between representatives 6.4

and 6.5 found in [43]. In dimension 8 we are also able to show that the planar functions 8.9 and

8.10 are isotopic as shown in Figure 3.2.

3.3.1 Dimension 6

For the two DO planar functions by Haukenes 6.10 and 6.11, the isotopism can be found in the

following way. Let function 6.10 be represented as

F (x) = α91x30 + x10 + x2,

and take the linear permutations B1(x) = 2x9 + 2x and B2(x) = α637x27 + α182x9 + α637x3 and

define a linear equivalent planar function F2 as

F2(x) = B1(F (B2(x)))

= α546x486 + x324 + α273x270 + α546x252 + 2x246 + α273x244 + α91x162

+ x108 + α546x90 + α182x84 + α546x82 + α182x30 + α273x28 + x18

+ α91x12 + α273x10 + α182x6 + x4 + α637x2.
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Then let β = α91 ∈ Nm(S′F2
) a nonsquare, and define a planar function G isotopic to F2 through

the isotopism (id, β ⋆F2
id, id) accordingly

G(x) =
1

2
((β ⋆F2

x) ⋆F2
x)

= α91x486 + α637x324 + α273x270 + α91x252 + α91x246 + 2x244

+ α182x162 + 2x108 + α273x90 + 2x84 + α546x82 + α182x54 + α273x36

+ α455x30 + α91x28 + α637x12 + α182x10 + α637x6 + α91x4 + α182x2.

Then F is linear equivalent to 6.11 given as

F ′(x) = α91x486 + x10 + x2,

through the linear permutations

A1(x) = α273x243 + α322x81 + α273x27 + α714x9 + α273x3 + α602x

and

A2(x) = α602x243 + α399x81 + α322x27 + α679x9 + α714x3 + α287x.

That is,

F ′(x) = A1(G(A2(x))).

The planar functions 6.12 and 6.13 are also isotopic. More precisely, looking at the planar

function 6.12,

F (x) = α182x82 + 2x10 + α91x6 + x2

and taking the linear permutations

B1(x) = α637x243 + α455x81 + α455x9 + α273x3 + α273x

and

B2(x) = α637x243 + α182x81 + α273x27 + α546x9 + α637x3 + x,

then let a linear equivalent planar function F2 be defined as

F2(x) = B1(F (B2(x)))

= α637x486 + x324 + α273x270 + α273x252 + α182x246 + α455x244

+ α182x162 + α182x108 + α455x90 + x82 + α182x54 + α637x36 + x30

+ α637x28 + α637x18 + α637x12 + 2x10 + α273x6 + α182x4 + α546x2.

Then construct an isotopic planar function G from F2 with isotopism (id, β ⋆F2
id, id), and let

β = α91 ∈ Nm(SF2
) such that

G(x) =
1

2
(β ⋆F2

x) ⋆F2
x

= α91x486 + α182x270 + α91x252 + α273x246 + x244 + 2x162

+ α273x108 + α637x90 + α91x84 + α546x82 + α637x54 + α637x36

+ α546x30 + α637x28 + α637x12 + α455x10 + α182x6 + α637x4.
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Then G is linear equivalent to 6.13

F ′(x) = α182x82 + 2x10 + α273x6 + x2

through the linear permutations

A1(x) = α182x243 + x81 + α546x27 + α182x9 + α182x

and

A2(x) = α273x243 + α546x81 + α637x27 + x9 + α637x3 + α182x.

For the planar function 6.14 defined as

F (x) = α91x486 + α182x90 + 2x10 + x2,

one can take the linear permutations

B1(x) = α455x81 + α273x27 + α273x9 + α637x3 + α455x

and

B2(x) = α637x243 + α546x81 + α273x27 + α637x3 + α637x,

and define a linear equivalent planar function F2 as

F2(x) = B1(F (B2(x)))

= x486 + α91x324 + α182x270 + α455x252 + α637x246

+ x244 + α546x162 + α182x108 + α182x90 + α273x84

+ α273x82 + α455x54 + α182x36 + α546x30

+ 2x28 + α273x18 + α182x12 + α455x10 + α182x6 + α91x4.

Then there is an isotopic planar function G to F2 through isotopism (id, β ⋆F2 id, id), where β =

α91 ∈ Nm(SF2) a nonsquare, given as

F (x) =
1

2
(β ⋆F2

x) ⋆F2
x

= α273x324 + α637x270 + α637x252 + α273x244

+ 2x162 + α91x108 + α546x90 + α637x82 + 2x54 + α182x36

+ x30 + x28 + α455x18 + α182x12 + α637x6,

which is linear equivalent to 6.15

F ′(x) = α273x486 + α182x90 + 2x10 + x2

by the linear permutations

A1(x) = α182x81 + α182x27 + x9 + α546x3 + α182x
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and

A2(x) = α637x243 + α546x81 + α273x27 + α637x3 + α637x.

As mentioned in Chapter 2.1, it is not always true that an isotopic shift FL of a planar function

F is isotopic to F . However, if two planar functions F and G are isotopic, then by Theorem 2.3.4

there must exist some isotopic shift FL that is EA-equivalent to G. In the case of the planar

function representatives, 6.12, 6.13 and 6.14 and 6.15, their isotopic shifts take on a particularly

satisfying form. Taking the linear permutation T (x) = α91x, then the isotopic shift 1
2FT for both

6.12 and 6.14, result in planar functions that are linear equivalent to 6.13 and 6.15, respectively,

through the linear permutations A1(x) = α91x and A2(x) = x.

We are also able to reaffirm that the planar function representatives 6.5 and 6.4 in [30] are

isotopic equivalent, as was first shown in [43]. Let the planar function 6.5 be represented as

F (x) = 2x270 + x246 + 2x90 + x82 + x54 + 2x30 + x10 + x2 (3.4)

and taking the isotopism (L,M,N) = (id, α91 ⋆F id, id), then we get

G(x) =
1

2
(α91 ⋆F x) ⋆F x

= α637x270 + α273x246 + α455x90 + α91x82 + α273x54

+ α637x30 + α91x10 + α91x2,

which is EA-equivalent to 6.4 represented as

F ′(x) = α75x2214 + x756 + α205x82 + x28,

through the linear permutations A1(x) = α140x243 + α672x27 + α56x9 + α308x and

A2(x) = α381x81 + α368x3.

Looking at the orders of the nuclei of the functions for which an isotopism has not been found

in Table 2.4, one sees that the classification into isotopic equivalence classes for the known planar

functions in F36 is nearly complete, with the possible exception of representative 6.16.

3.3.2 Dimension 8

We found that the two CCZ-inequivalent representatives in dimension 8 of Cohen-Ganley, namely

functions 8.9 and 8.10, are also isotopic through isotopism (L,M,N) = (id, α3526 ⋆F id, id), where

β = α3526 ∈ Nm(S′F ) a nonsquare. However, we did not need to perform any linear permutations

to these planar functions in order to find the isotopism. That is, function 8.9

F (x) = α3608x1458 + α3608x738 + α3810x486 + α3810x246

+ α3413x162 + α3413x82 + α3608x18 + α3810x6 + α2565x2
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is isotopic to the planar function,

G(x) =
1

2
(β ⋆F x) ⋆F x

= α5822x1458 + α5822x738 + α4548x486 + α4548x246

+ α3659x162 + α3659x82 + α5822x18 + α4548x6 + α2811x2

which is again linear equivalent to 8.10

F ′(x) = α164x1458 + α164x738 + α950x486 + α950x246

+ α616x162 + α616x82 + α164x18 + α950x6 + α6297x2

through the linear permutations A1(x) = α2563x729 + α3937x9 and A2(x) = α4027x729 + α3501x9.

The remaining functions in dimension 8 did not yield linear inequivalent planar functions using

this method. That is, they were isotopic, but also strongly isotopic. However, it is still possible to

find more isotopic planar functions in dimension 8 as there are more representatives fulfilling the

Coulter-Henderson conditions from Theorem 2.3.3.

All our searches were performed using MAGMA and the algorithm from [32] as well as the

pre-calculated orbits found in [30] and [32] for checking for EA and linear equivalence. The time

spent checking for equivalence was thereby reduced significantly, and in total the time spent on

the search took about one month. Most of the time spent on this project was dedicated to writing

the necessary MAGMA code to find the elements belonging to the middle nucleus of the semifield

and for constructing the isotopic planar functions.
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6.1
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Figure 3.1: The isotopic semifield classes of characteristic 3 and dimension 6, given by representatives of

the CCZ-inequivalent classes of planar functions from the paper in [30], where edges connect isotopic planar

function representatives. Red colour is used for the representatives that do not fulfil the Coulter-Henderson

conditions from Theorem 2.3.3. The isotopism between 6.4 and 6.5 was first discovered by Zhou in [43].

The classification of the known planar functions in F36 into isotopic equivalence classes is almost complete,

with the possible exception of representative 6.16.

8.1

FF

8.2

CM

8.3

CM
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CM

8.5

BHB

8.6

B

8.7

BHB

8.8

CHK

8.9

CG

8.10

CG

New

Figure 3.2: The isotopic semifield classes of characteristic 3 and dimension 8, given by representatives of the

CCZ-inequivalent classes of planar functions, where edges connect isotopic planar function representatives.

Red colour is used for the representatives that do not fulfil the Coulter-Henderson conditions from Theorem

2.3.3. The representative listed as 8.8 was recently discovered to be CCZ-equivalent to an instance of the

ZP family in [30].
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Chapter 4

Conclusion

The construction of new planar functions up to CCZ-equivalence is an important and difficult

problem. One potential way of obtaining new quadratic planar functions is by exploring the

isotopism classes of their corresponding commutative semifields. This has been used in [14] but to

the best of our knowledge, there has been no systematic study of the possibility of obtaining new

planar functions from the rest of the known planar instances.

In this thesis, we have applied the Coulter-Henderson conditions from [19] to eliminate a number

of the known families of planar functions by showing that their isotopism classes only contain a

single CCZ-equivalence class. In particular, we have concluded that no new planar functions up

to CCZ-equivalence can be obtained in this way for odd values of n, and that the only families

whose instances can lead to CCZ-inequivalent functions via isotopism are Budaghyan-Helleseth,

Bierbrauer, Dickson and Cohen-Ganley families. Furthermore, amongst these families, the only

ones that can lead to new CCZ-inequivalent planar functions to the known ones are the Bierbrauer,

Dickson and Cohen-Ganley families, all in doubly even dimensions.

For instances from the remaining families and sporadic instances, we have run computational

experiments over F3n in order to search for functions isotopic to them. We have found isotopisms

between some of the known CCZ-inequivalent representatives for n = 6 and n = 8. For others,

we have not been able to determine whether their isotopism class can contain another CCZ-class,

however we have computationally shown that this isotopism can not be of a particular form. Based

on these results, we have given a partial classification of the known planar functions over F3n for

n ≤ 8 up to isotopism.

There are of course several directions for further studies. One would be to run more computa-

tional experiments in order to resolve the structure of the isotopism classes of those instances that

we were not able to fully determine. Another avenue would be to attempt a similar classification

for dimensions n greater than 8. We note that the lowest such dimension would be n = 10 (since

for odd dimensions, we have discussed that we can never obtain CCZ-inequivalent instances), and

such a study is conditioned on the existence of a classification of planar functions over F310 up

to CCZ-equivalence, which is not available at the moment and which would require a significant

amount of computation.

33
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Another natural generalization would be to extend the study to odd characteristics other than

3. Going to higher characteristics (as well as higher dimensions) is a challenging task because the

available algorithms require significant time and computational resources that were outside the

capacity of this project.
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