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Abstract
In air traffic control, assistant systems support air traffic controllers in their work. To improve the reactivity and accuracy of the assistant,
automatic speech recognition can monitor the commands uttered by the controller. However, to provide sufficient training data for the
speech recognition system, many hours of air traffic communications have to be transcribed and semantically annotated. For this purpose
we develop the annotation tool ATC-ANNO. It provides a number of features to support the annotator in their task, such as auto-complete
suggestions for semantic tags, access to preliminary speech recognition predictions, syntax highlighting and consistency indicators. Its
core assistive feature, however, is its ability to automatically generate semantic annotations. Although it is based on a simple hand-written
finite state grammar, it is also able to annotate sentences that deviate from this grammar. We evaluate the impact of different fea-
tures on annotator efficiency and find that automatic annotation allows annotators to cover four times as many utterances in the same time.

Keywords: Annotation Tool; Controlled Languages; Air Traffic Control; Assisted Annotation

1. Introduction
Air traffic control (ATC) communications is a challenging
domain for automatic speech recognition (ASR) (Hamel et
al., 1989; Cordero et al., 2012; Shore et al., 2012). Very
little training data for the ATC domain is publicly available,
necessitating the recording, transcription and annotation of
more data to allow ASR to be successfully integrated into
ATC systems (Oualil et al., 2015).
We present ATC-ANNO, a tool for the transcription and se-
mantic annotation of recordings of air traffic control com-
munications. Transcribing ATC communications is chal-
lenging, as air traffic controllers speak extremely fast, due
to the time-sensitive nature of their task. In addition they
are usually non-native speakers and their utterances follow
a specific information-dense phraseology.
Due to these challenges, annotators must have prior experi-
ence with ATC communications. Unfortunately, this means
that appropriate candidates usually have no experience in
transcription or annotation of natural language data. They
are domain experts, but novice annotators. We therefore try
to support them particularly in more technical tasks, like
writing XML tags for the semantic layer of the annotation,
while keeping the interface as focussed as possible.
ATC-ANNO provides a number of assistive features. These
range from basic features, such as syntax highlighting and
consistency checks between different annotation layers, to
more immediate support, like XML tag auto-completion
suggestions or access to preliminary speech recognition
predictions. Our most advanced assistive feature is the
automatic generation of semantic annotations, based on a
grammar of common phrases encountered in air traffic con-
trol. While the grammar is written as a finite state automa-
ton, our algorithm is able to react to unforeseen utterances
by skipping individual words in an attempt to find the clos-
est matching defined utterance.
We chose to develop our own annotation tool because ex-
isting tools were either too simplistic (e. g. lack of annota-

tion layers) or too complex (i. e. steep learning curve, many
unrequired features). Implementing our assistive features
would also not have been easily possible, as most tools lack
a sufficient plugin structure. Furthermore, many annota-
tion tools, such as the widely used ELAN (Brugman and
Russel, 2004), use a timeline view to create timestamped
annotations for subsections of a longer recordings, e. g. in-
dividual sentences or words in a longer monologue. In our
task recordings are already segmented because ATCs turn
their microphone on and off for every individual transmis-
sion. Without the need for segmentation, such a timeline
view bears little advantage, but slows down the annotation
process significantly.
Designing our own tool allowed us to keep the user inter-
face lightweight and focussed on the intended workflow.
Development was also guided by the feedback of annota-
tors using it for the work of Shore et al. (2012) and later for
the AcListant project (see Ohneiser et al. (2014)).
In the remainder of this paper we provide a brief overview
of air traffic control communications and the challenges it
poses to speech recognition (Section 2), followed by a de-
scription of the annotation task (Section 3) and the ATC-
ANNO tool itself (Section 4). In Section 5 we provide an
evaluation of how much various features of ATC-ANNO
improve annotator performance.
The core source code of ATC-ANNO is made publicly
available.1 It includes a video demonstration of the tool
to make users familiar with its workflow and functions.

2. Background on Air Traffic Control
In this section we provide information about the Air Traf-
fic Control domain that is required for the understanding of
this tool. Section 2.1 describes why and how speech recog-
nition is used in air traffic control. Section 2.2 gives a brief
introduction on the phraseology of air traffic communica-
tions and how it differs from natural language.

1https://doi.org/10.5281/zenodo.3698318

https://doi.org/10.5281/zenodo.3698318
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Transcription Layer lufthansa four romeo juliett reduce speed two five zero knots

Semantic Layer

<s> <callsign> <airline> lufthansa </airline>
<flightnumber> four romeo juliett </flightnumber>
</callsign> <commands> <command="reduce">
reduce speed <speed> two five zero </speed> knots
</command> </commands> </s>

Concept Layer DLH4RJ REDUCE 250

Table 1: Example of different information layers covered by the annotation process (see Section 3).

2.1. Speech Recognition in Air Traffic Control
Air traffic controllers manage a given airspace by issuing
commands to pilots via radio communications. Their task
is to optimize the flight plan while ensuring the safety of
all aircraft. To support them, digital planning systems are
used. These assistant systems use radar information to sug-
gest a sequence of commands. The final decision, however,
lies with the air traffic controller. In cases where the con-
troller deviates from the suggested sequence, the assistant
system is slow to react to these unforeseen changes, as it
cannot hear the transmission of the controller to the pilot
and must rely on inferences made from radar information.
To eliminate this weakness, the AcListant project intro-
duced an assistant system with automatic speech recogni-
tion capabilities.2 Hearing and interpreting the commands
uttered by the controller allows the system to update its
world state assumptions immediately. This results in bet-
ter suggestions, which improve the efficiency of the human
controller (Helmke et al., 2017).
Air traffic control poses a number of challenges for ASR.
Utterances are very domain-specific and while communi-
cation is conducted in English, most controllers are non-
native speakers. Commands are uttered at high speed to ac-
commodate the heavy workload (Oualil et al., 2015). Com-
mercial off-the-shelf ASR systems perform very poorly un-
der these conditions (Cordero et al., 2012). Instead, the
ASR system has to be trained on ATC domain data. Pub-
licly available ATC recordings are very sparse (the largest
corpus, ATCOSIM (Hofbauer et al., 2008), has 10 hours),
so more data had to be recorded, transcribed and annotated
(Oualil et al., 2015).

2.2. Air Traffic Phraseology
Communication in air traffic control is mainly conducted
in English, following the phraseology format of the Inter-
national Civil Aviation Organization (ICAO) (Eurocontrol,
2011). This phraseology is a strictly defined subset of the
English language. This would be advantageous for ASR, as
language models can be small and well defined. However,
over 25% of command utterances deviate from the phrase-
ology (Oualil et al., 2015). While this means the language
model has to be more extensive after all, the phraseology
guidelines still provide a strong starting point.
According to ICAO phraseology, an ATC utterance consists
of a callsign and one or more commands. The callsign is
the unique identifier of a specific aircraft in the airspace.

2This approach has since been expanded upon by the follow-
up projects AcListant-Strips and MALORCA.

It consists of the name of the airline and an alphanumeric
sequence that is pronounced using the NATO phonetic al-
phabet. For example, the callsign DLH4RJ (DLH being
a shorthand for Deutsche Lufthansa) would be spoken as
“Lufthansa four romeo juliett”. Commands must contain
specific identifying vocabulary. Numbers must be given as
individual digits, except when they are multiples of a hun-
dred or a thousand.

(1) Lufthansa four romeo juliett reduce speed two five zero and
descend to altitude four thousand.

Example (1) shows a transmission with two commands, in-
structing the airplane DLH4RJ to reduce its speed to 250
knots and its altitude to 4000 feet.

3. Annotation
To allow ATC assistant systems to make use of the ut-
terances recognised by ASR they need to be converted
from natural language text to an unambiguous machine-
interpretable format. To support conversion, the ASR text
output is enhanced with semantic information.
To develop and evaluate each step of this system, all data
gets annotated using the following three information layers:

1. Transcription Layer: The natural language text rep-
resentation of the recorded utterance.

2. Semantic Layer: An extended version of the tran-
scription layer, enhanced with XML tags indicating
the semantic structure of the utterance as required for
later processing.

3. Concept Layer: An abstract representation of the
commands inferred from the semantic layer, to be pro-
cessed by the assistant system.

An example of the three layers can be seen in Table 1. To
annotate an utterance, the annotator starts by listening to
its recording and then transcribes it. They then annotate
the transcription with XML to indicate semantic content.
Lastly, the abstract concepts are added. While these should
in theory be inferrable from the semantic layer, annotators
were instructed to use their own understanding of the do-
main to determine concepts instead. This way, flaws in the
semantic formalism could be detected, as well as any pieces
of information which were implicitly given.3 For more in-
formation on how the annotation layers are used in training

3For example, on some occassions recordings would not con-
tain a callsign when they were closely following a previous trans-
mission. To correctly process such cases, a memory of the most
recently used callsign was added to the system.
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Figure 1: ATC-ANNO interface with example entry. The read-only text fields on the left are ASR predictions, while the
text fields on the right are texts entered by the annotator. The # signs between text fields indicate that they do not contain
equivalent information.

the ASR model and in interfacing with the assistance sys-
tem, see Oualil et al. (2015) and Helmke et al. (2017)
respectively.

4. Annotation Tool
Our annotation tool ATC-ANNO is designed to allow an-
notators to listen to recordings and annotate the three in-
formation layers outlined in Section 3. Figure 1 shows the
graphical user interface, which consists of a file selector,
seven text fields and six buttons. The three fields in the
lower right quarter are fields for the annotator to enter their
transcription, semantic annotation and concept annotation.
To their left are equivalent fields to show ASR predictions,
if available. The field in the upper right corner is used for
miscellaneous comments.
Apart from buttons for basic functionality (directory selec-
tion, playing the recording, saving, and deleting irrelevant
recordings), there are also buttons for the automatic gener-
ation of semantic and concept annotations. Once used, the
auto-generation buttons turn into undo buttons in case the
automatic prediction was not satisfactory.
ATC-ANNO is written in Python 2.7, using the wxPython
package to display the graphical user interface. The finite

state language model used by the automatic semantic anno-
tation feature is generated using OpenFST.4

4.1. Assistive Features
We now introduce the assistive features. They are listed in
increasing order of external resource requirements, such as
domain-specific information or a pre-trained speech recog-
nition model.
Syntax Highlighting: The XML markup is highlighted to
ease readability and help spot broken tags. Color coding is
different for project-specific tags and unknown tags.
Consistency Indicators: Signs between two text fields
indicate whether the fields are consistent with each other
or show differences. Consistency between the transcrip-
tion and semantic annotation field is determined by strip-
ping away the XML results in the transcription text and,
therefore, requires no special information. Consistency be-
tween semantic and context annotation requires a working
concept extraction algorithm. Annotator text and ASR pre-
diction are considered consistent when texts of the same
layer are identical.

4http://www.openfst.org

http://www.openfst.org
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Syntax Consistency XML Concept Semantic ASR
Highlighting Indicators Suggestions Extraction Auto-Annotation Prediction

Basic X X
XML-Suggest X X X
Auto-Annotate X X X X X
ASR-Predict X X X X X X

Table 2: Overview of features available in different version of the annotation tool.

XML Suggestions: When the user starts entering markup,
a list of suggestions for XML tags appears. As more
characters are typed, the item selector automatically jumps
to a possible completion tag. Suggestions contain not
only the opening and closing tag of the given item, but
also expected sub-items, e. g. <command="reduce">
<speed> </speed> </command> (see Table 1). This
requires information about the tag set of the semantic layer.
Automatic concept extraction: Information is extracted
from the semantic layer and reformatted as concepts (see
Section 3). This requires the semantic tag set and relevant
keywords within the tags (e. g. how a speed value can be
expressed).
Automatic semantic annotation: The XML markup of
the semantic layer is generated using a finite state language
model, which contains the ICAO phraseology and common
deviations, enhanced by semantic markup. For utterances
found in the language model, the annotation feature func-
tions as a normal finite state transducer whose input tape
is a language model without markup (i. e. the transcription
layer) and whose output layer is the same language model
with markup (i. e. the semantic layer).
For utterances that deviate from the language model this
feature attempts to find the most similar phrase in the model
by skipping individual words. As such a search can have
exponential complexity, we adapt Viterbi search (Viterbi,
1967) to efficiently find the path requiring the fewest skips.
During computation the annotator is shown a progress bar
as well as the currently best (partial) parse. In rare cases
where the search takes too long due to phrases unrelated to
the language model, the user can abort the process, at which
point the system backtracks to a consistent partial annota-
tion (i. e. only containing labels that have both an opening
and closing tag).
ASR Prediction: If an ASR prediction is available, it is
displayed in the left three read-only fields. Annotators can
choose to accept the entire ASR prediction, copy it over
to make corrections or reject it and perform the annotation
by hand. This requires an ASR system trained on ATC data
enhanced with semantic XML tags, as well as the automatic
concept extraction algorithm.
The ASR system is not part of ATC-ANNO, but should
rather be understood as a preprocessing step. For full func-
tionality one should use an ASR model that also generates
semantic tags. This rules out the use of preexisting models,
such as those of closed commercial ASR systems. Such
models can still be used to generate regular text predictions
(sufficient recognition quality notwithstanding), but must
then fall back on the automatic semantic annotation mech-
anism of ATC-ANNO to generate XML tags.

5. Evaluation
To evaluate the efficiency of the main assistive features out-
lined in Section 4.1, we added extensive usage logs and
created four different versions of the annotation tool. Each
consecutive version offers a growing number of features,
but also higher requirements for external resources:

1. Basic: Has syntax highlighting and consistency indi-
cators, but no active support for the annotation layers.
Requires no domain- or project-specific information.

2. XML-Suggest: Adds XML tag suggestions to the fea-
tures of the basic version. Requires the XML tag set
to be predefined.

3. Auto-Annotate: Provides automatic semantic annota-
tion and automatic concept extraction features on top
of those of the XML-Suggest version. Requires a finite
state grammar of common utterances and a concept
extraction algorithm.

4. ASR-Predict: Adds the ASR prediction fields, result-
ing in the complete set of all available features. This
requires the output from an ASR system that was al-
ready trained on other semantically annotated data.
ASR output is generated separately before running
ATC-ANNO.

On overview of the features available in each version of
the tool can also be seen in Table 2. For ASR-Predict we
use ASR outputs generated by KALDI (Povey et al., 2011).
The ASR model was trained on a combination of data from
the freely available ATCOSIM (Hofbauer et al., 2008) cor-
pus and previously annotated recordings of the AcListant
project. For more information on the model and its config-
uration, please see Oualil et al. (2015).
Throughout the development of ATC-ANNO, a number of
annotators worked with it. However, most used it before
usage logs were implemented. To get a sense of the learn-
ing curve required to use the tool, we chose to perform this
evaluation with a new annotator who did not yet have expe-
rience with the tool or task. The annotator in question is a
native speaker of English. In preparation of the evaluation
they trained for several hours on a separate dataset. Their
task was to annotate eight hours worth of data for each of
the four tool versions, resulting in a total of 32 hours of
work. The annotator was instructed to always work with
a specific tool version for one hour and then switch to the
next version, i. e. work with the Basic for one hour, then use
XML-Suggest for an hour, etc.
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Figure 2: Number of items annotated per hour of work,
separated by annotation tool version.

Version Annotated Items
Basic 165
XML-Suggest 173
Auto-Annotate 650
ASR-Predict 1 582

Table 3: Number of items annotated within 8 hours of use,
separated by which version of ATC-ANNO was used.

5.1. Quantitative Results
Table 3 shows an overview of how many items were anno-
tated in the allotted time for each version of the tool. At
a total of 173 annotated items, XML-Suggest provides no
clear improvement over Basic (165 items). Using Auto-
Annotate, however, the annotator managed to cover 650
items, almost four times as many. For ASR-Predict this
number is further doubled to 1582 items. Figure 2 provides
a more detailed view of this, showing the hourly through-
put of items. Hourly performance is quite stable for all ver-
sions, with the largest variance found in ASR-Predict. This
is due to the large difference in speed between correct ASR
output (requiring the annotator only to read it) and erro-
neous output (requiring manual corrections). Clusters of
bad ASR output, such as were encountered in the first hour
of ASR-Predict, can, therefore, have a negative impact on
annotation speed.
Figure 3 shows the average time to annotate an item in each
version, as well as time spent on each of the information
layers. All time differences are statistically significant at
p < 0.05 (two-tailed t-test), except total time and concept
annotation for Basic vs XML-Suggest.
We can see that Auto-Annotate removes the need for man-
ual annotation of the semantic layer almost entirely. The
concept layer still costs slightly more time, as certain com-
mands could not always be fully inferred from the seman-
tic layer. Using ASR-Predict, manual transcription was al-
most never required, thanks to the high performance qual-
ity that the project-internal ASR model had reached by the
time of our evaluation. Interestingly, semantic annotation
required a bit more time than in Auto-Annotate, as the an-
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Figure 3: Average time spent annotating an item, separated
by tool version. Each bar shows the total time as well as
time spent on each of the subtasks (see Section 3).

notator tended to manually correct mistakes in the semantic
layer, rather than using the automatic functions.
Another curious observation is that for XML-Suggest, an-
notation of the semantic layer is actually slower than in Ba-
sic. When working with Basic, the annotator would use the
list of XML tags that had been provided during training. It
turns out that copy-pasting tag structures from that list is
slightly faster than using the dropdown menu in the ATC-
ANNO interface.
Overall we found that, while XML suggestions were not a
useful feature, both semantic auto-annotation and ASR pre-
dictions are immensely helpful, as long as their underlying
resources are of high enough quality. This was the case for
our evaluation, as the FST grammar had undergone multi-
ple design iterations and the ASR had been trained on suffi-
cient data and improved through use of context information
(Oualil et al., 2015), reaching command error rates as low
as 1.7% (Helmke et al., 2017).
In general, the features of ATC-ANNO grow together with
the project for which they are used. Basic features like
syntax highlighting and consistency indicators are useable
from the start. Semantic auto-annotation becomes available
once initial annotation rounds have provided experience
with the data, allowing the creation of an FST grammar that
models typical sentences. As annotation progresses, it can
be speeded up by new iterations of the FST grammar de-
sign. Eventually, enough data is annotated to train prelim-
inary ASR models and use their output as a starting point
for annotation, creating a feedback loop that slowly shifts
the task of the human annotator from full transcription to
ASR output verification.

5.2. Qualitative Results
Due to the small number of annotators involved in the
project, a user satisfaction study (e. g. QUIS (Harper and
Norman, 1993)) was not feasible. However, multiple an-
notators remarked that writing XML markup was the most
tedious part of the task. The semantic auto-annotation fea-
ture not only increased efficiency, but also improved user
satisfaction. In the words of one annotator: “It is now ac-
tually fun to do the annotations.”
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6. Conclusion
We presented ATC-ANNO, a tool for semantic annotations
of air traffic control communications. ATC-ANNO pro-
vides a number of assistive features for annotators, covering
visual markers, markup suggestions, automatic annotation
processes and preliminary annotation suggestions based on
a speech recognition system.
We evaluated the most prominent of these features for how
much they improve the efficiency of our annotation tool.
Unsurprisingly, having high quality speech recognition can
make annotation almost superfluous. More interestingly,
when this is not available, the ability of our tool to seman-
tically enhance sentences that are close (but not necessarily
identical) to a given phraseology can significantly improve
performance, increasing annotation speed by almost a fac-
tor of four.
The core source code of ATC-ANNO is publicly available
under an open source licence. For new projects that seek
to use ATC-ANNO, we recommend they start out with the
Basic version during initial exploration of the data. Once
an intuition for a common phraseology is given, some time
should be spent on writing a grammar, which can then be
used both for the Auto-Annotate version and as language
model for early versions of the ASR. Once sufficient data
is annotated, language models for ASR can be switched to
n-gram models and ASR-Predict can be used for further an-
notation efforts.
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