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ABSTRACT: Herein, a method for the isomerization of ketones in a manner akin to the chain-walking reaction of alkenes is
described. Widely available and inexpensive pyrrolidine and elemental sulfur are deployed as catalysts to achieve this reversible
transformation. Key to the utility of this approach was the elucidation of a stereochemical model to determine the
thermodynamically favored product of the reaction and the kinetic selectivity observed. With the distinct selectivity profile of
our ketone chain-walking process, the isomerization of various steroids was demonstrated to rapidly access novel steroids with
“unnatural” oxidation patterns.

The relative arrangement of functional groups within a
molecule imparts its physical and biological properties.1

Thus, controlling the position and orientation of functional
groups is a fundamental goal in organic synthesis. Typically,
this is realized through the deployment of transformations that
selectively introduce functional groups with the desired
arrangement.2 Alternatively, isomerization reactions offer the
opportunity to “correct” either the position or the orientation
of functional groups within a molecule. This approach is
particularly attractive to facilitate the editing of complex
molecules that feature a high density of functionality (Scheme
1A).3,4 Aside from the atom economy of this approach,5 it is
also a step-economical strategy,6 enabling access to complex
chemical entities through a single synthetic procedure rather
than a lengthy de novo synthesis. Applying this to inexpensive
and readily available biomass feedstocks, such as sugars and
steroids, also represents a sustainable approach to access
analogues of these privileged scaffolds. In 2020, the Wendlandt
group provided a compelling demonstration of the utility of
this approach (Scheme 1B).7 Using a photocatalytic reaction
manifold, they accessed rare monosaccharides of biological
importance from more readily available monosaccharides
through selective epimerization.
While previous examples clearly show the feasibility and

synthetic utility of late-stage epimerization reactions, amending
the location of functional groups is arguably even more
challenging, as it requires reversible cleavage and transposition
of strong bonds. Alkene chain-walking is a rare example and
proceeds via a series of β-hydride eliminations and hydride
insertions.8 This process has greatly impacted organic synthesis
by enabling the synthesis of unusual building blocks and
unlocking cascade reactions. Achieving a directly analogous
process with ketones, another ubiquitous and versatile
functional group, would be highly desirable. However,
transition-metal-mediated elementary steps to manipulate the
C�O bond of ketones for a chain-walking process are
lacking.9 To circumvent this challenge, the Dong group
designed a Catellani-type process to realize a carbonyl 1,2-

transposition (Scheme 1C).10 This elegant process is kineti-
cally controlled but is irreversible and limited to 1,2-
transpositions. Thus, a reversible carbonyl chain-walking
process akin to alkene chain-walking would open new synthetic
opportunities.11

Given our group’s interest in reversible catalytic reac-
tions12,13 and molecular editing processes,14 we sought to
develop such a process. Cognizant of the challenges of
achieving this through transition-metal catalysis, we looked for
a mechanistically distinct approach to perform the desired
transformation. We took inspiration from the Willgerodt−
Kindler reaction (Scheme 1D),15 wherein aliphatic ketones are
transformed to either an amide or a thioamide, typically by
refluxing the ketone with elemental sulfur16 in a solution of the
amine, with the carbonyl group migrating down the aliphatic
chain to the terminal position. Notably, the carbonyl group is
able to “walk” along a variety of chain lengths, suggesting that a
chain-walking process is operative. We hypothesized that, for
cyclic ketones, wherein the carbonyl group is unable to migrate
to a terminal position and undergo subsequent oxidation, a
carbonyl chain-walking process could be realized using
substoichiometric amounts of an amine and elemental sulfur.
Previously, the isomerization of cyclic ketones has been
demonstrated using stoichiometric quantities of both amine
and sulfur.17 Herein, we report a simple procedure for the
isomerization of cyclic ketones and demonstrate its application
in the late-stage editing of complex steroids to rapidly access
unnatural isomers of this biologically prevalent class of natural
products (Scheme 1E).
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At the outset of this work, we were conscious that, as the
reaction would be reversible, a suitable driving force to favor
product formation would be necessary. Thus, we targeted
synthetically relevant ring systems in which certain isomers
would be favored thermodynamically. We were intrigued by
geminally disubstituted cyclohexanones, as one of the
substituents must occupy an axial position. Consequently,
3,3-geminally disubstituted cyclohexanones are more thermo-
dynamically stable than their 2,2- and 4,4-disubstituted
counterparts due to a reduction in the number of 1,3-diaxial
interactions (Scheme 2A). Furthermore, this structural pattern
is frequently embedded in naturally occurring steroids, offering
the prospect to apply our method in the late-stage isomer-
ization of bioactive compounds. To evaluate this hypothesis,
DFT calculations were performed to determine the relative
ground-state energies of 4,4-, 3,3-, and 2,2-dimethylcyclohex-

anone (Scheme 2B). This showed that, as expected, the 3,3-
dimethylcyclohexanone isomer should be favored.
Subsequently, we assessed reaction conditions to facilitate

the isomerization of dimethylcyclohexanones. Critically, the
isomerization can be performed with substoichiometric
amounts of pyrrolidine and sulfur, in contrast to the
Willgerodt−Kindler reaction and previous work.17 We also
observed pyrrolidine to be markedly superior in relation to
other amines (see the Supporting Information for further
information). Under the optimized conditions, reactions with
4,4- and 3,3-dimethylcyclohexanone (1a and 1b, respectively)
yielded a nearly identical mixture of isomers, indicative that an
equilibrium is achieved, with 1b being the major product,
thereby verifying its greater thermodynamic stability (Scheme
2C). Notably, formation of 2,2-dimethylcyclohexanone 1c was
not observed, and no isomerization of 2,2-dimethylcyclohex-

Scheme 1. Context of This Work Scheme 2. Model for Predicting the Thermodynamic
Selectivity of the Reversible Isomerization of Geminally
Substituted Dimethylcyclohexanones and Theoretical and
Experimental Verification

aGround-state energy calculations were performed at the B3LYP/
def2-QZVPP level of theory. bAll yields were determined by GC-FID
with an internal standard.
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anone occurred when it was submitted to the optimized
reaction conditions (Scheme 2D). Together, these results
imply that the ketone chain-walking process is reversible,
thermodynamically selective for the 3,3-disubstituted isomer,
and not applicable to the formation or reaction of sterically
encumbered ketones such as 2,2-dimethylcyclohexanone.
The selectivity of the reaction was further probed through

the isomerization of a range of mono-substituted cyclo-
hexanones (Scheme 3). With 2-substituted cyclohexanones

3c and 4c, limited reactivity was observed, and with 2-tert-
butylcyclohexanone 2c, no isomerization was observed at all.
Conversely, isomerization of 4-substituted cyclohexanones 2a,
3a, and 4a or 3-substituted cyclohexanones 2b, 3b, and 4b
gave limited or no formation of the 2-substituted isomers. With
4-tert-butylcyclohexanone 2a and 3-tert-butylcyclohexanone
2b, no formation of 2-tert-butylcyclohexanone 2c was
observed, and the reaction exhibited selectivity for the 3-
substituted isomer. The origin of this selectivity remains
unclear. It should also be noted that the isomerization of 4-
methylcyclohexanone 3a yielded a mixture of all three isomers,
showcasing the potential for longer range walking of the
carbonyl group.
Collectively, these results provide further insights into the

kinetic selectivity of our isomerization process (Scheme 4).
Ketones bearing bulky α-substituents (e.g., tert-butyl) or α,α-
disubstituted ketones neither form nor react under these
conditions. However, with less bulky substituents (e.g.,
methyl), the α-substituted isomer will participate in the
reaction. However, this reversible process is considerably

depressed in comparison to the interconversion of ketone
isomers bearing no substituents at the α-position. This
selectivity profile is reminiscent of that observed in enamine
catalysis, which is typically ineffective with bulkier cyclo-
ketones.18

With a greater understanding of the isomerization process,
we sought to apply this methodology to more complex targets,
as we anticipated our mild reaction conditions to be
compatible with a range of substrates. Various derivatives of
the Wieland−Miescher ketone, which has been extensively
used as a key intermediate in natural product synthesis,19,20

were investigated (Scheme 5A). Isomerization with keto-
alcohol 5a proceeded smoothly, affording the 2-oxo-isomer 5b
as the major product, with no other isomers detected. Notably,
reaction with diketone 6a led to the formation of only one new
isomer, 6b. This result underlines the critical role of the
selectivity of this transformation; otherwise, a mixture of 16
different regioisomers could be formed. Due to the selectivity
profile, the desired product could be obtained in 44% yield.
Similarly, reaction with the cis-fused diketone 7a also afforded
a single isomeric product, 7b, albeit with reduced selectivity.
Further derivatives were subjected to the reaction conditions
to evaluate the functional group tolerance of the procedure,
and substrates incorporating esters (8a), silyl ethers (9a),
alkenes (10a), carbamates (11a), and imides (12a) were all
tolerated. While the separation of isomers can potentially
present a challenge, we found this could be readily
accomplished using preparative HPLC. Combined yields of
the reactant and product isomers in these reactions were
typically around 80%. However, attempts to identify any
byproducts formed were thwarted by the complex mixtures
obtained. Derivatives of the Hajos−Parrish ketones, 13a and
14a, were also subjected to the reaction conditions (Scheme
5B). With the 6,5-fused ring system, two new isomeric
products were formed, with the 4-oxo-isomers 13c and 14c
being formed as minor products, in addition to the 2-oxo-
isomers 13b and 14b. Previous syntheses of these ketone
isomers have relied on multistep de novo synthesis.21 For
instance, the groups of Wijnberg and de Groot undertook a 7-
step synthesis to realize formal isomerization of the Wieland−
Miescher ketone derivative 5a.22 This synthetic sequence uses
several stoichiometric reagents and utilizes protecting group
logic to circumvent selectivity issues. With our method, the
same isomerization takes just one single step and avoids the
use of protecting groups and stoichiometric reagents, thus
constituting a powerful atom- and step-economic upgrade.
We next performed the isomerization of naturally occurring

steroids (Scheme 6A).23 As expected, 3-oxo-steroids smoothly
underwent isomerization to afford 2-keto-steroids as the major

Scheme 3. Isomerization of Mono-substituted
Cyclohexanonesa

aIsomer distributions were determined by GC-FID with an internal
standard.

Scheme 4. Kinetic Selectivity of Ketone Isomerization
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product. Due to the kinetic selectivity of the reaction, neither
the 1- nor 4-keto-steroid isomers were detected in any of the
crude reaction mixtures. Thus, the isomerization of androsta-
nolone 15a and mestanolone 16a afforded exclusively their
respective 2-oxo-isomers, 15b and 16b. In the isomerization of
the diketosteroids, androstanedione 17a and allopregnane-
dione 18a, only isomerization of the A-ring ketone was
observed, with the other ketone remaining untouched. This
selectivity is particularly imperative in the case of 18a, because
if the other ketone were able to undergo reaction, this would
likely lead to the undesired occurrence of a Willgerodt−
Kindler rearrangement, forming an amide species at the
terminal position and ultimately inhibiting the desired
isomerization process. Furthermore, the synthesis of 18b has
previously been reported in an 8-step sequence starting from
pregnenolone (Scheme 6B).24,25 The isomerization is achieved
through several synthetic steps, and further steps are

Scheme 5. Isomerization of Bicyclic Ketones by Carbonyl
Chain-Walkinga,b,c,d

aReactions were performed on 1.0 mmol scale. bUnless otherwise
stated, products were initially isolated as a mixture of isomers by flash
column chromatography. Combined yields of these isomeric mixtures
are reported. cIsomer ratios were determined by 1H NMR
spectroscopy. dUnless otherwise stated, isolated yields following
purification by preparative HPLC are reported. eIsomer 7b was
directly isolated by flash column chromatography. fOnly a small
sample was purified by HPLC.

Scheme 6. Isomerization of 3-Oxo-Steroids by Carbonyl
Chain-Walkinga,b,c

aReactions were performed on 1.0 mmol scale. bIsolated yields
following purification by preparative HPLC are reported. cIsomer
ratios were determined by quantitative 13C NMR spectroscopy.
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necessitated by the protecting group strategy and redox
manipulations employed to navigate the challenge of achieving
selective isomerization. Thus, this truly highlights the synthetic
virtues of our new ketone isomerization, especially given its
distinct selectivity profile. It should also be noted that the
isomerization of diketones 17a and 18a would be challenging
with the protocol from Dong’s group, as this would require
selective triflate formation.10

Having established a protocol to achieve the chain-walking
isomerization of ketones, preliminary mechanistic experiments
were performed. Based on studies on the Willgerodt−Kindler
reaction17b,26 and related transformations,16,27 we surmised
that the reaction likely proceeds through the formation of an
enamine intermediate. To test this hypothesis, 4,4-dimethylcy-
clohexanone 1a was submitted to the standard reaction
conditions but using D2O as additive and CD3OD as solvent
(Scheme 7). This led to deuterium incorporation detected at

all methylene carbons in both d-1a and d-1b. Since this
includes both of the methylene carbons adjacent to the
quaternary carbon, this further affirms the reversibility of the
system. Subsequently, this reaction was repeated but without
the addition of S8. No isomerization was observed, and
deuterium incorporation was only detected alpha to the
ketone, but not at the beta methylene carbons. This result
reflects the fact that S8 is necessary to isomerize the putative
enamine intermediate.
In conclusion, we report a novel and simple process for the

isomerization of cyclic ketones. Based on well-established
concepts in the stereochemistry of cyclohexanes, a model to
control this reversible process was devised. Moreover, we
found that the process was not amenable to the formation of
sterically hindered ketones. Thus, the selective isomerization of
3-oxo-steroids to their 2-oxo-steroid analogues was executed.
This process is a rare example of a polar group chain-walking
reaction that parallels the venerable alkene chain-walking
reaction, which has been a key platform in homogeneous
catalysis. We thus expect that our new carbonyl chain-walking
will open a wealth of new opportunities for organic synthesis.
In a wider context, this work provides compelling motivation
for the discovery of new isomerization processes and
underlines their value for the late-stage editing of natural
products and other complex molecular architectures.
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Switzerland; School of Chemistry, University of Edinburgh,
Edinburgh EH9 3FJ, U.K.; orcid.org/0000-0002-8552-
1547; Email: ben.bhawal@ed.ac.uk
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