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Michele Ciampi and Yu Xia

The University of Edinburgh, UK
{michele.ciampi, yu.xia}@ed.ac.uk

Abstract. In STOC 2019 Canetti et al. showed how to soundly instan-
tiate the Fiat-Shamir transform assuming that prover and verifier have
access to the key of a correlation intractable hash function for efficiently
searchable relations. The transform requires the starting protocol to be
a special 3-round public-coin scheme that Canetti et al. call trapdoor
sigma-protocol. One downside of the Canetti et al. approach is that the
key of the hash function can be used only once (or a pre-determined
bounded number of times). That is, each new zero-knowledge proof re-
quires a freshly generated hash key (i.e., a freshly generated setup). This
is in contrast to what happens with the standard Fiat-Shamir transform,
where the prover, having access to the same hash function(modeled as a
random-oracle), can generate an unbounded number of proofs that are
guaranteed to be zero-knowledge and sound.
As our main contribution, we extend the results of Canetti et al., by
proposing a multi-theorem protocol that follows the Fiat-Shamir paradigm
and relies on correlation intractable hash functions. Moreover, our pro-
tocol remains zero-knowledge and sound even against adversaries that
choose the statement to be proven (and the witness for the case of zero-
knowledge) adaptively on the key of the hash function. Our construc-
tion is presented in the form of a compiler, that follows the Fiat-Shamir
paradigm, which takes as input any trapdoor sigma-protocol for the NP-
language L and turns it into a non-interactive zero-knowledge protocol
that satisfies the properties we mentioned. To be best of our knowledge,
ours is the first compiler that follows the Fiat-Shamir paradigm to obtain
a multi-theorem adaptive NIZK relying on correlation intractable hash
functions.
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1 Introduction

Non-interactive zero-knowledge (NIZK) proofs [BFM88, DMP88] allow a prover
to convince a verifier about the validity of an NP-statement with just one round
of interaction (one message that goes from the prover to the verifier). One of
the most famous techniques used to realize non-interactive proofs is the Fiat-
Shamir (FS) transform [FS87]. This transform takes as input a sigma-protocol
and turns it into a NIZK proof. A sigma-protocol is a special three-round public-
coin interactive proof executed between a prover P and a verifier V, where P’s
goal is to convince V that a common statement x belongs to a given NP language
L. The prover knows a witness w (corresponding to x) and starts the interaction
by sending a first message a; the verifier then sends a uniformly random bit-
string c, called the challenge, to which the prover replies with the last message
z. Finally, the verifier decides whether x ∈ L or not based on x and the transcript
(a, c, z).

The FS transform makes a sigma-protocol non-interactive by letting the
prover do the sampling of the challenge. In particular, the prover computes
c ← H(a), where H is a hash function. One way to argue about the security of
this construction is by modeling H as a Random Oracle [BR93, FKMV12]. Re-
cently, [BKM20, CCH+19, CCR16, CCRR18, HL18, KRR17, PS19] showed that
if the hash function is correlation-intractable (CI) for certain relations, then the
resulting NIZK is sound. Informally, the CI property ensures that given a random
hash key k, it is computationally difficult to find any input α, s.t. (α,Hk(α)) ∈ R
for a particular relation R.



In more detail, Canetti et al. [CCH+19] shows that the FS transform remains
secure assuming that the hash function is correlation intractable for efficiently
searchable relations1. The result of [CCH+19] can be applied only to a restricted
class of sigma-protocols called trapdoor sigma-protocol. Trapdoor sigma-protocols
are three-round public-coin protocols defined in the Common Reference String
(CRS) model that enjoy three main properties: honest verifier zero-knowledge
(HVZK), optimal soundness, and admit a bad-challenge extractor. The property
of HVZK is quite standard and guarantees the existence of a simulator that,
upon receiving the challenge (the second round), it produces a transcript that is
indistinguishable from the transcript generated via the interaction of an honest
prover and verifier. Optimal soundness guarantees that for any statement x /∈ L
and the first-round message a there exists at most one challenge c, such that a
verifier would accept the transcript (a, c, z), for the statement x, for some third-
round z. We refer to the unique challenge c as the bad-challenge. Finally, the
bad-challenge extractor is an algorithm that takes as input a false statement x,
a valid first-round a, and some trapdoor information τ , and efficiently computes
the bad-challenge c.

Adaptive multi-theorem NIZK. The most basic notion of soundness for a non-
interactive proof system guarantees soundness in the presence of an adversary
that decides the statement to be proven before the sampling of the CRS. Sim-
ilarly, the notion of zero-knowledge is guaranteed to hold for any choice of
theorem-witness sampled by the adversary non-adaptively on the CRS. We refer
to this class of adversaries as non-adaptive adversaries. It is possible to con-
sider stronger (and more realistic) notions of security that guarantee that both
the soundness and the zero-knowledge hold even if the adversary can make the
choice of the theorem to be proven (and of the witness for the zero-knowledge
experiment) adaptively on the CRS. In [CCH+19] the authors argue that if the
trapdoor sigma-protocol admits a special bad-challenge extractor, and moreover
it is adaptive special-honest verifier zero-knowledge2, then the NIZK they obtain
using CI hash functions is also adaptive secure. Unfortunately, the only trap-
door sigma-protocol known to satisfy all the required properties is the Lapidot-
Shamir [LS91] protocol for Hamiltonian graphs. In [CPV20] the authors show
that all sigma-protocols can be turned into trapdoor sigma-protocols with an
adaptive HVZK simulator. One drawback of all the previous approaches is that
the zero-knowledge property is not preserved if the same hash key is used to
generate more than one proof. However, we would like a prover to be able to
use the same hash key to generate multiple proofs (for potentially different the-
orems). We refer to this notion of zero-knowledge as multi-theorem NIZK 3, and
we investigate the following question:
1 A relation is efficiently searchable if given x it is efficient to find y such that (x, y) ∈ R
2 The notion of adaptive HVZK guarantees the existence of a simulator that can

generate the first-round of the protocol without the knowledge of the theorem.
3 The notion we consider in this paper is with respect to a single prover. This single

entity can use the same CRS to generate multiple proofs for potentially different
statements.



Is it possible to obtain an adaptive multi-theorem NIZK by applying the
Fiat-Shamir paradigm using a hash function that is correlation intractable for

efficiently searchable relations?

Another way to phrase the above is that we ask whether it is possible to con-
struct an adaptive multi-theorem NIZK using the same setup (and complexity)
assumption as in [CCH+19, CPV20].

1.1 Our results

In this work we show how to obtain an adaptive multi-theorem NIZK for any
language L that admits a trapdoor sigma-protocol ΣL (we do not require ΣL

to be adaptive HVZK). The nice feature of our NIZK is that the prover, after
a pre-processing (non-interactive) phase, upon receiving the statement to be
proven and the corresponding witness, generates proofs by just following the FS
paradigm.

Due to its FS-like structure, the soundness of our scheme relies only on
the security of the underlying trapdoor sigma-protocols and on the correlation-
intractability of the hash function (exactly as in all previous works that although
achieved a weaker form of zero-knowledge). The zero-knowledge property in-
stead relies on the HVZK of the trapdoor sigma-protocols, the security of the
CI hash function, and the hardness of the Decisional Diffie-Hellman (DDH) as-
sumption. This is exactly in the same spirit as [CCH+19, CPV20] where the
authors instead rely on the hardness of public-key encryption schemes to argue
about zero-knowledge. An informal theorem that summarizes our result is the
following

Theorem (informal): If ΣL is a trapdoor sigma-protocol for the language L,
then it is possible to realize an adaptive multi-theorem NIZK protocol that
follows the FS paradigm. In particular, the soundness of the NIZK protocol

depends only on the soundness of underlying trapdoor sigma-protocols and on
the security of the hash function.

We note that an easy way to construct a multi-theorem NIZK would be to
use the OR approach proposed in [FLS90]. In this, a statement T /∈ L⋆ for a
membership-hard language4 L⋆ is put in the CRS, and the prover provides an
OR proof proving that either x ∈ L or T ∈ L⋆. This approach has two main
drawbacks: 1) the NIZK is inherently computational zero-knowledge and 2) the
soundness holds only under the condition that the tuple T is sampled such that
T /∈ L⋆. In our work, we show how to modify the FLS approach to remove the
second limitation. Hence, we obtain a NIZK that has exactly the same setup
assumptions as previous works, but in addition, we obtain a protocol that is
multi-theorem.
4 Intuitively, a membership-hard language is one for which it is possible to sample

instances of the problem in a way that it is hard to detect if a given instance is in
the language or not



1.2 Technical overview

Adaptive multi-theorem NIZK from CI hash functions. We first recall
the approach proposed in [FLS90] used to realize an adaptive multi-theorem
NIZK protocol for an NP language L. In this, the prover generates an OR proof
showing that either x ∈ L or that T ∈ L⋆, where T is an instance that is part of
the CRS. The soundness holds due to the soundness of the OR proof and the fact
that by the construction of the CRS T /∈ L⋆. The adaptive zero-knowledge comes
from the fact that a simulator, to generate simulated proofs needs to program
the CRS with T ⋆ ∈ L⋆ (and for this no knowledge about the statement to be
proven is needed). Upon receiving a statement x, the simulator uses the witness
for T ⋆ to generate the OR proof. If the OR proof is witness-indistinguishable
(WI), and L⋆ is a membership-hard language, then the protocol is adaptive zero-
knowledge. The multi-theorem feature comes from the fact that the WI property
is closed under sequential composition.

By relying on the result of [CDS94], it is possible to compile two sigma-
protocols, respectively for the language L1 and L2, into a new sigma-protocol
for the OR language L1∨L2. In this paper, we argue that the compiler of [CDS94]
works similarly for trapdoor sigma-protocols. This means that if we have a trap-
door sigma-protocol for L and one for L⋆, we can obtain an adaptive multi-
theorem NIZK protocol by doing the following. First, we obtain a trapdoor
sigma-protocol for the language L∨L⋆, and then we apply the FS transform to
the resulting protocol thus obtaining a NIZK protocol for the language L ∨ L⋆.

The scheme we have just described departs from the FS paradigm mostly due
to the presence of the T value embedded in the CRS (that the simulator needs to
program as we have discussed earlier). In the FS paradigms, such a component
is not required, since the simulator only needs to program the hash function to
perform the final simulation. But more importantly, the value T needs to be
correctly generated, (i.e., it must not belong to L⋆ otherwise the soundness does
not hold). This is clearly something undesirable since now the soundness does
not only rely on the security of the hash function (which is the case for the FS
transform) but also requires additional parameters to be generated honestly.

We work around this problem as follows. We define L⋆ as being the language
of all the DH tuples, and instead of requiring the CRS to contain T /∈ L⋆, we
let the prover pick the tuple T . We then require the prover to provide a non-
interactive zero-knowledge proof via a protocol ΠNDH thus proving that the tuple
does not belong to L⋆ (i.e., T is non-DH). Note that we require ΠNDH to be a
NIZK protocol that guarantees security only if one proof is generated (i.e., it
is not multi-theorem zero-knowledge). In particular, ΠNDH can be instantiated
via the Fiat-Shamir transform using a correlation intractable hash function on a
specific trapdoor sigma-protocol (we will elaborate more on this in the technical
part of the paper). The rest of the protocol follows as before. That is, the prover,
upon receiving a statement x and its witness, perform an OR proof, proving
either that x ∈ L or that T is a DH tuple.

The main observation here is that ΠNDH needs to be run only once, and the
obtained proof can be reused any time the prover is required to generate a proof



for a new instance x. So, we can see our protocol as divided into two phases.
In the offline phase the prover samples a non-DH tuple T , and runs ΠNDH to
generate a NIZK proof that we denote with πNDH (without sending it). Upon
receiving a statement and a witness, the prover generates the OR proof πOR,
and sends over (πOR, T, πNDH).

We prove that the protocol we have just described is adaptive multi-theorem
zero-knowledge. Intuitively, this holds since the simulator can fake the proof for
the non-DH tuple by running the simulator of ΠNDH. Then the proof πNDH can
be simulated with respect to a DH tuple, hence any OR proof can be generated
using the fact that T ∈ L⋆. Given that the OR proof we will use is witness
indistinguishable (WI), and that the WI property is maintained under paral-
lel composition, then our final protocol is multi-theorem zero-knowledge. The
adaptive zero-knowledge property comes from the fact that the simulator can
run internally the simulator of ΠNDH to generate the setup (i.e., to program the
hash function) without knowing x.

There is a caveat about this protocol. Note that the tuple T can be chosen
by the adversarial prover adaptively on the description of the hash function.
So, even if we do not need ΠNDH to be multi-theorem, it seems that we need
it to be at least adaptive-sound. To obtain an adaptive-sound NIZK protocol
following the FS paradigm, we could rely on the results of [CPV20]. In this, the
authors show how to convert any sigma-protocol into an adaptive-sound NIZK
protocol using correlation intractable hash functions. However, the Ciampi et al.
compiler incurs an efficiency loss, since it requires, for each bit of the challenge of
the starting sigma-protocol, to generate two ciphertexts. To avoid this, we first
argue that it is sufficient to fix the first two components of the tuple T (g, gα)
in the CRS, and let the adversarial prover choose only X,Y adaptively on the
hash function to form the tuple T = (g, gα, X, Y ). We then show how to obtain
a protocol ΠNDH that remains sound in this semi-adaptive adversarial setting,
while maintaining reasonable performance (i.e., for a security parameter of 1024
bits the prover and verifier of ΠNDH need to perform 40 exponentiations each).

We need to argue that the OR proof also remains sound when part of the
tuple T is chosen by the adversary. In the technical part of the paper, we will
show how to realize such an OR proof and provide our new formal definition of
soundness that we call semi-adaptive soundness, which allows the adversary to
decide part of the component of an NP statement. This notion lies in between the
standard notion of soundness and the notion of adaptive soundness, which allows
the adversary to decide all the parameters of the NP instance to be proven.

On adaptive soundness. So far we have mostly focused on obtaining an
adaptive zero-knowledge scheme that allows the re-use of the hash-key. We have
not mentioned whether it is possible to also prove that our NIZK is adaptive
sound. We argue that if the trapdoor sigma-protocol ΠL admits a special type of
extractor (in [CPV20] the authors show that any sigma-protocol can be modified
to enjoy this special property), then our NIZK is also adaptive-sound. We refer
to the technical part of our paper for more detail.



1.3 Related work

One of the works most related to ours is [CSW20]. In this, the authors construct
an adaptive sound, adaptive zero-knowledge, multi-theorem NIZK from corre-
lation intractable hash functions (plus other assumptions like LWEs, or DDH
and LPN). However, the results of [CSW20] follow a different spirit compared
to ours (and compared also to [CCH+19]). As discussed in the previous section,
a multi-theorem adaptive NIZK can be trivially obtained using a folklore tech-
nique. Namely, it is easy to construct an adaptive multi-theorem NIZK protocol
from the same assumptions we use in our paper by following the FLS approach.
However, this approach produces a CRS that has two components: a hash key,
and a tuple T /∈ L⋆. Hence, the soundness of the protocol depends on T not be-
ing in L⋆. This is in contrast with what happens in the standard FS transform
where the soundness depends only on the soundness of the underlying sigma
protocol and on the CI of the hash function. All the multi-theorem protocols
proposed in [CSW20] have a similar drawback. That is, the soundness is based
on a public key (that is part of the CRS) being sampled correctly. If such a
public key is not sampled correctly then the soundness trivially does not hold.
In our work, we instead get the same advantage of the FS approach (and of the
results proposed in [CCH+19]) by providing a protocol whose soundness is based
on the correlation intractability of the hash function and on the soundness of
the underlying trapdoor sigma-protocol only. To give a concrete example of the
benefit of our compiler compared to existing solutions we note the following. If
we instantiate our NIZK with the trapdoor sigma-protocol for the language of
Diffie-Hellman tuples, we obtain a multi-theorem adaptive NIZK where the CRS
consists of the hash key, and two group elements (g, h). The soundness of this
NIZK then holds as long as the hash-key is honestly generated, while (g, h) can
be maliciously generated.

Our work follows the spirit of [CCH+19], where the authors show how to
compile any trapdoor sigma protocol into a NIZK using the FS approach. We ex-
tend the approach of Canetti et al. proposing a compiler that turns any trapdoor
sigma-protocol into a multi-theorem adaptive NIZK. Hence, any improvement in
the efficiency of trapdoor sigma protocols has an immediate impact on the per-
formance of our NIZK. [CSW20] follows a different path by proposing ad-hoc
schemes that depart from the Fiat-Shamir approach. The advantage of [CSW20]
over our work is that the results of [CSW20] are UC secure and tolerate adaptive
corruption.

2 Preliminaries

Notations. We denote the security parameter by λ and use “||” as the con-
catenation operator. For a finite set Q, x←$ Q denotes a sampling of x from Q
with uniform distribution. We use “ = ” to check the equality of two different
elements, “ ← ” as the assigning operator (e.g. to assign to a the value of b
we write a ← b). We use the abbreviation PPT which stands for probabilistic
polynomial time. We use poly(·) to indicate a generic polynomial function. We



denote with Zp the set of integers, where p is the order of the set, with N the set
of natural numbers . We use G.Gen(1λ) to represent the algorithm to find the
generator in the group G. ν represents the negligible function, and δ represents
the non-negligible function. For an NP language L we denote the corresponding
NP-relation with RL.

We assume familiarity with the notions of negligible and non-negligible func-
tions, and also the notion of interactive proof systems.

2.1 Diffie-Hellman related definitions

Let G be the group of an order p, with a generator g. Let T = (g, h = gx, X, Y )
be a tuple, where x ∈ Zp. Let LDH = {T ∈ G4 | ∃w ∈ Zp : X = gw ∧Y = hw} be
the language of DH tuples. Let LNDH = {T ∈ G4 | ∃w,w′ ∈ Zp : X = gw ∧ Y =

hw′ ∧ w ̸= w′} be the language of non-DH tuples.
We assume the Decisional Diffie-Hellman (DDH) hardness assumption holds

in the group G. The DDH hardness assumption is as follows:

Definition 1 (DDH hardness Assumption). For every PPT algorithm A:∣∣∣Pr[A(T ) = 1 |T ∈ LDH ]− Pr[A(T ) = 1 |T ∈ LNDH ]
∣∣∣ ≤ ν(λ).

2.2 Non-Interactive Argument Systems related definitions

We recall the notion of non-interactive argument systems here.

Definition 2 (Non-Interactive Zero-Knowledge Argument Systems). A
non-interactive zero-knowledge argument system (NIZK) for an NP-language L
with the corresponding relation RL is a non-interactive protocol Π = (Setup,P,V),
where:
– Setup(1n, 1λ) takes as the input a statement length n and a security param-

eter λ. It outputs a common reference string crs.
– P(crs, x, w) takes as the input crs, the statement x and the witness w, s.t.

(x,w) ∈ RL. It outputs the proof π.
– V(crs, x, π) takes as the input crs, x and π. It outputs 1 to accept and 0 to

reject.

Π has the following properties:
– Completeness. For all λ ∈ N, and all (x,w) ∈ RL, it holds that:

Pr
[
V(crs, x,P(crs, x, w)) = 1

∣∣∣ crs←$ Setup(1|x|, 1λ)
]
= 1− ν(λ)

– Soundness. For all PPT provers P⋆, s.t. for all λ ∈ N, and all x /∈ L, it
holds that:

Pr
[
V(crs, x, π) = 1

∣∣∣ crs←$ Setup(1|x|, 1λ);π ←$ P⋆(crs)
]
≤ ν(λ).

– Zero knowledge. There exists a PPT simulator Sim such that for every
(x,w) ∈ RL, the distribution ensembles {(crs, π) : crs ←$ Setup(1|x|, 1λ);
π ←$ P(crs, x, w)}λ∈N and {Sim(1λ, x)}λ∈N are computationally indistin-
guishable.



2.3 Sigma-protocol related definitions

Most of the following definitions are taken from [CCH+19, CPSV16].

Definition 3 (Sigma-protocol). Assuming there is a three-round public-coin
interactive protocol Σ = (Gen,P,V) for a NP language L (and corresponding
relation RL) in the common reference string model, where:

– Gen takes as input the unary representation of the security parameter, and
it outputs the common reference string crs.

– In the first round of the protocol, P takes as input the common reference
string crs, the instance x, the witness w, the randomness R, and it will
output the first round message a.

– In the second round, V takes as input the crs, x, a, and it will output the
challenge c.

– In the third round, P takes as input the crs, x, w, a, c, R, and it will output
the third round message z.

– When V receives (crs, x, a, c, z) as inputs, it outputs 1 to accept and 0 to
reject.

Σ is a sigma-protocol if satisfies the following properties:

– Completeness: If (x,w) ∈ RL, then all honest generated transcripts are
accepting.

– Optimal soundness: For every common reference string crs, every in-
stance x /∈ L, and every first message a, there is at most one challenge
c = f(crs, x, a) such that (crs, x, a, c, z) is an accepting transcript for any
choice of third message z. We informally call f the “bad-challenge function”
associated with Σ and note that f may not be efficiently computable.

– Special HVZK: There exists a PPT simulator algorithm Sim that takes as
x ∈ L and c ∈ {0, 1}ℓ, and outputs an accepting transcript for x where c is
the challenge (we denote this action with (a, z)← Sim(x, c)). Moreover, for
all ℓ-bit strings c, the distribution of the output of the simulator on input
(x, c) is computationally indistinguishable from the distribution of the honest
generated transcript obtained when V sends c as the challenge and P runs
on common input x and any private input w such that (x,w) ∈ RL.

Remark 1. The definition 3 is a bit different from the standard notion of sigma-
protocol [Dam10] since we only require the protocol to be the optimal sound
(instead of special-sound).

Then we recall the definition of the instance-dependant trapdoor sigma-
protocol from [CCH+19].

Definition 4 (Instance-dependant trapdoor sigma-protocol [CCH+19]).
We say that a sigma-protocol Σ = (Gen,P,V) with bad-challenge function f is an
instance-dependant trapdoor sigma-protocol if there are PPT algorithms TrapGen,
BadChallenge with the following syntax.



– TrapGen(1λ, x, aux) takes as input the unary representation of the security
parameter, an instance x, and an auxiliary input aux. It outputs a common
reference string crs along with a trapdoor τ .

– BadChallenge(τ, crs, x, a) takes as input a trapdoor τ , common reference string
crs, instance x, and first message a. It outputs a challenge c.

We additionally require the following properties:

– CRS Indistinguishability: For any (x, aux), an honestly generated com-
mon reference string crs is computationally indistinguishable from a common
reference string output by TrapGen(1λ, x, aux).

– Correctness: For every instance x /∈ L, there exists an auxiliary input aux
such that for all (crs, τ)←$ TrapGen(1λ, x, aux), we have that
BadChallenge(τ, crs, x, a) = f(crs, x, a).

OR composition of ID trapdoor sigma-protocols. In our paper, we also
argue that the OR composition [CDS94] of any 2 instance-dependant trapdoor
sigma-protocols (for the relation RL0

and RL1
) is an instance-dependant trap-

door sigma-protocol for the relation RL0∨L1
. Moreover, the resulting protocol is

witness indistinguishable (WI).
We recall the OR composition techniques here in Fig. 1. Assuming we have

2 three-round public-coin HVZK proof systems ΣL0
= (GenL0

,PL0
,VL0

) for
NP language L0 (The corresponding relation is RL0

), ΣL1
= (GenL1

,PL1
,VL1

)
for NP language L1 (The corresponding relation is RL1). Then the three-round
public-coin HVZK proof system ΣL0∨L1 = (GenL0∨L1 ,PL0∨L1 ,VL0∨L1) is for the
NP language LL0∨L1

defined below (The corresponding relation is RL0∨L1
):

LL0∨L1 = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}

The GenL0∨L1
algorithm works as follows:

– crsL0
←$ GenL0

(1λ), crsL1
←$ GenL1

(1λ)
– output (crsL0 , crsL1)

Then, we let the challenge space be {0, 1}λ, let b ∈ {0, 1}, let SimL1−b
be

the simulator for ΣL1−b
, and we let w be the witness for instance xb. In other

words, (xb, w) ∈ RLb
. The protocol ΣL0∨L1

is in Fig. 1, in the CRS model, where
crsL0∨L1

←$ GenL0∨L1
(1λ):

Then we first prove the following Lemma 1.

Lemma 1. ΣL0∨L1
has an efficient bad-challenge extractor BadChallengeL0∨L1

,
and the correctness property holds.

Proof. For ΣL0∨L1
, x /∈ LL0∨L1

means, for the statement x = (x0, x1), s.t.
x0 /∈ L0 ∧ x1 /∈ L1. Based on construction of ΣL0∨L1

(shown in Figure 1), we
have the first round message a = (a0, a1), where a0 is for ΣL0 and a1 is for ΣL1 .



Prover(crsL0∨L1 , x0, x1, w) Verifier(crsL0∨L1 , x0, x1)

R←$ {0, 1}λ

ab ← PLb(crsLb ,

xb, w;R)

(a1−b, c1−b, z1−b)

← SimL1−b(x1−b)

a0, a1

c←$ {0, 1}λ

c

cb ← c⊕ c1−b

zb ← PLb(crsLb , xb,

w, ab, cb;R)

(c0, c1), (z0, z1)

Verifier accepts if all the
following conditions hold:
c = c0 ⊕ c1

VL0(crsL0 , x0,

a0, c0, z0) = 1

VL1(crsL1 , x1,

a1, c1, z1) = 1

Fig. 1. The protocol for OR composition

Given auxL0∨L1
= (auxL0

, auxL1
), the TrapGenL0∨L1

algorithm is:

TrapGenL0∨L1
(1λ, x, auxL0∨L1) :

(crsL0
, τL0

)←$ TrapGenL0
(1λ, x0, auxL0

)

(crsL1
, τL1

)←$ TrapGenL1
(1λ, x1, auxL1

)

crsL0∨L1
← (crsL0

, crsL1
)

τL0∨L1
← (τL0

, τL1
)

return (crsL0∨L1
, τL0∨L1

)



With the output of TrapGenL0∨L1
, the bad-challenge extractor

BadChallengeL0∨L1
works as follows:

BadChallengeL0∨L1
(τL0∨L1

, crsL0∨L1
, x, a) :

c0 ← BadChallengeL0
(τL0

, crsL0
, x0, a0)

c1 ← BadChallengeL1
(τL1

, crsL1
, x1, a1)

c = c0 ⊕ c1

return c

The Correctness of ΣL0∨L1
is proven by the following reduction:

– Assuming the Correctness property of ΣL0∨L1 does not hold. It means there
exists a = (a0, a1) for all x = (x0, x1), auxL0∨L1 = (auxL0 , auxL1), s.t.:

BadChallengeL0∨L1
(τL0∨L1 , crsL0∨L1 , x, a) ̸= f(crsL0∨L1 , x, a) |

(crsL0∨L1 , τL0∨L1)←$ TrapGenL0∨L1
(1λ, x, auxL0∨L1)

Based on the construction of BadChallengeL0∨L1
, we know that Correctness

of ΣL0∨L1 does not hold is because

BadChallengeL0
(τL0 , crsL0 , x0, a0) ̸= f(crsL0 , x0, a0)

∨ BadChallengeL1
(τL1 , crsL1 , x1, a1) ̸= f(crsL1 , x1, a1)

Then we can discuss the following situations:
• Assuming BadChallengeL0

(τL0
, crsL0

, x0, a0) = f(crsL0
, x0, a0), then we

can construct an adversary A′ for breaking the Correctness of ΣL1
:

A′(τL1
, crsL1

) :

(crsL0∨L1
, τL0∨L1

)←$ TrapGenL0∨L1
(1λ, x, auxL0∨L1

)

parsing crsL0∨L1
as (crs0, crs1), parsing τL0∨L1

as (τ0, τ1)

crsL0∨L1
← (crs0, crsL1

), τL0∨L1
← (τ0, τL1

)

a← A(τL0∨L1
, crsL0∨L1

)

parsing a as (a0, a1)

return a1

the output of A′ finds a1 makes

BadChallengeL1
(τL1 , crsL1 , x1, a1) ̸= f(crsL1 , x1, a1) |

(crsL1 , τL1)←$ TrapGenL1
(1λ, x1, auxL1)

for all x1 /∈ L1 and auxL1 . It contradicts to the Correctness of ΣL1 .
• We can do a similar reduction to the Correctness of ΣL0

if the Correct-
ness of ΣL1 holds.

• If BadChallengeL0
(τL0

, crsL0
, x0, a0) ̸= f(crsL0

, x0, a0) ∧
BadChallengeL1

(τL1 , crsL1 , x1, a1) ̸= f(crsL1 , x1, a1), then we can still
use A′ to break Correctness of ΣL1 .



It is also important to note that, BadChallengeL0∨L1
is efficient, because

BadChallengeL0
, BadChallengeL1

, and the ⊕ operation are efficient. ⊓⊔
Then we have the following Lemma 2:

Lemma 2. ΣL0∨L1
is an instance-dependant trapdoor sigma-protocol and it is

witness indistinguishable for the language L = {(x0, x1) : x0 ∈ L0 ∨ x1 ∈ L1}
Proof. By Lemma 1, we know that ΣL0∨L1

has TrapGen and BadChallenge algo-
rithms as required in the definition. Then we need to prove CRS Indistinguisha-
bility and Correctness:

– CRS Indistinguishability: It is important to note that the honested generated
CRS for ΣL0∨L1

is crsRealL0∨L1
= (crsRealL0

, crsRealL1
), where crsRealL0

←$ GenL0
(1λ),

and
crsReal

L1
←$ GenL1(1

λ).
We prove the CRS Indistinguishability of ΣL0∨L1 through the following hy-
brids game, and we denote the output of the adversary in Hi with outHi , to
show: ∣∣∣∣Pr[outH0

]
− Pr

[
outH1

]∣∣∣∣ ≤ ν(λ)∣∣∣∣Pr[outH1
]
− Pr

[
outH2

]∣∣∣∣ ≤ ν(λ)

We note that the outH0 corresponds to the output of A where crsRealL0∨L1
is

used, and the outH2 corresponds to the output of A where crsL0∨L1
gener-

ated from TrapGenL0∨L1
is used.

H0:

crsL0
←$ GenL0

(1λ)

crsL1
←$ GenL1

(1λ)

crs0 ← (crsL0
, crsL1

)

return the output of A(crs0)

H1:

crsL0
←$ TrapGenL0

(1λ, x0, auxL0
)

crsL1
←$ GenL1

(1λ)

crs1 ← (crsL0
, crsL1

)

return the output of A(crs1)

H2:

crsL0
←$ TrapGenL0

(1λ, x0, auxL0
)

crsL1 ←$ TrapGenL1
(1λ, x1, auxL1)

crs2 ← (crsL0 , crsL1)

return the output of A(crs2)



• H0 ≈ H1: If there exists a PPT adversary A that can distinguish be-
tween H0 and H1, we can construct an adversary A′ that can break
CRS Indistinguishability of ΣL0 through the following reduction:

∗ A′ queries the challenger of the CRS Indistinguishability of ΣL0 that
sends back crsL0

∗ A′ samples crsL1
by using GenL1

∗ A′ sends (crsL0
, crsL1

) to A
∗ A′ outputs the output of A

We now observe that if the challenger uses GenL0
to sample crsL0

, we
are in H0, otherwise, we are in H1. This implies H0 ≈ H1.

• We can use similar reduction to show that H1 ≈ H2.
Now we can conclude that H0 ≈ H1 ≈ H2, so the CRS generated by
GenL0∨L1 is indistinguishable from the CRS generated by TrapGenL0∨L1

.
– Correctness: Finished in Lemma 1.

The WI property instead comes immediately from the results of [CDS94]
(since the WI proof only relies on the protocol being HVZK). ⊓⊔

2.4 Multi-theorem, adaptive non-interactive proofs

We recall that our notion of multi-theorem zero-knowledge is with respect to a
single stateful prover. We now state the formal definition we consider.

Definition 5 (Adaptive Multi-Theorem Zero Knowledge). Assuming we
have a non-interactive protocol Π = (Setup,P,V) for an NP language L with
corresponding relation RL. Π is adaptive multi-theorem zero knowledge if for
any PPT algorithm A, there exists a PPT simulator Sim = (Sim0,Sim1), running
in (expected) polynomial time, such that for polynomial bounded q:

∣∣∣∣Pr[ExptΠ,Sim,A(1
|x|, 1λ) = 1

]
− 1

2

∣∣∣∣ ≤ ν(λ)

The experiment ExptΠ,Sim,A(1
|x|, 1λ) is defined as follows:

ExptΠ,Sim,A(1|x|, 1λ) :

b←$ {0, 1}, q ← 0, StateA ← ∅, crs0 ←$ Setup(1|x|, 1λ), (crs1, τSim1)←$ Sim0(1
|x|, 1λ)

st← Prover(1λ, crs)

repeat

q ← q + 1, (StateA, x, w)←$A(1λ, crsb, StateA)

if (x,w) ∈ RL then π0 ←$ P(crs0, st, x, w), π1 ←$ Sim1(crs1, τSim1 , x)

else π0 ← π1 ← ∅

(StateA, cont, d)←$A(1λ, StateA, πb)

until cont = false

return b = d



Definition 6 (Witness Indistinguishability). Assuming we have an inter-
active protocol ΣL = (GenL,PL,VL) for NP language L. ΣL is Witness Indis-
tinguishable for relation RL if, every malicious verifier V⋆

L, s.t. for all x,w,w′

with (x,w) ∈ RL and (x,w′) ∈ RL, it holds that:∣∣∣∣Pr [V⋆
L(x, π0) = 1 | π0 ←$ PL(x,w)

]
− Pr

[
V⋆
L(x, π1) = 1 | π1 ←$ PL(x,w

′)

]∣∣∣∣ ≤ ν(λ)

2.5 Semi-adaptive soundness

We now introduce a new notion of soundness that we call semi-adaptive sound-
ness. Informally, we see every theorem x as divided into two parts (α, β), and
we require the adversary to specify α before the sampling of the CRS, whereas
β can be adaptively chosen from the adversary. More formally:

Definition 7 (Semi-Adaptive Soundness). Given 2 sets S1 ⊆ {0, 1}⋆, S2 ⊆
{0, 1}⋆, and the NP language L = {(α, β) | α ∈ S1 ∧ β ∈ S2 ∧ ϕ(α, β) =
1} defined over some predicate ϕ. Assuming we have a non-interactive protocol
Π = (Setup,P,V) for an NP language L with corresponding relation RL. Π is
semi-adaptive sound if for any α ∈ S1 and for any PPT prover P⋆, it holds that:

Prα

[
(α, β) /∈ L ∧ V(crs, (α, β), π) = 1 | α ∈ S1 ∧ β ∈ S2;

crs←$ Setup(1|x|, 1λ); (π, β)← P⋆(crs, α)

]
≤ ν(λ).

2.6 Semi-instance-dependant (SID) trapdoor sigma-protocol

We introduce an extension of the notion of trapdoor sigma-protocols we denote
as semi-instance-dependant trapdoor sigma-protocol. Informally, similar to semi-
adaptive soundness defined above, we divided every theorem x into 2 parts (α, β),
and the TrapGen and BadChallenge algorithms of the semi-instance-dependant
trapdoor sigma-protocol will take α other than the whole theorem x.

Definition 8 (Semi-instance-depandant trapdoor sigma-protocol). Given
S1 ⊆ {0, 1}⋆, S2 ⊆ {0, 1}⋆, and the NP language L = {(α, β) | α ∈ S1 ∧ β ∈
S2 ∧ ϕ(α, β) = 1} defined over some predicate ϕ. We say that a sigma-protocol
Σ = (Gen,P,V) with bad-challenge function f is a semi-instance-dependant trap-
door sigma-protocol if there are PPT algorithms TrapGen, BadChallenge with the
following syntax.

– TrapGen(1λ, α, aux) takes as input the unary representation of the security
parameter, the first part of the instance α, and an auxiliary input aux. It
outputs a common reference string crs along with a trapdoor τ .

– BadChallenge(τ, crs, α, a) takes as input a trapdoor τ , common reference
string crs, the first part of the instance α, and first message a. It outputs a
challenge c.



We additionally require the following properties:

– CRS Indistinguishability: For any (α, aux), an honestly generated com-
mon reference string crs is computationally indistinguishable from a common
reference string output by TrapGen(1λ, α, aux).

– Correctness: For every instance x /∈ L, there exists an auxiliary input aux
such that for all (crs, τ)←$ TrapGen(1λ, α, aux), we have that
BadChallenge(τ, crs, α, a) = f(crs, x, a).

We argue that the OR composition of [CDS94] applied on a SID trapdoor
sigma-protocol and an ID trapdoor sigma-protocol yields a new SID for the
OR relation. More formally, assuming the existence of an ID trapdoor sigma-
protocol ΣL0 = (GenL0 ,PL0 ,VL0) for NP language L0 and a SID trapdoor sigma-
protocol ΣL1 = (GenL1 ,PL1 ,VL1) for NP language L1 = {(α, β) | α ∈ S1 ∧ β ∈
S2 ∧ ϕ(α, β) = 1}, then the application of the compiler of [CDS94] on ΣL0

and
ΣL1

will yield a SID trapdoor sigma-protocol ΣL0∨L1
, such that the following

lemma holds.

Lemma 3. ΣL0∨L1 is a semi-instance-dependant trapdoor sigma-protocol, and it
is witness indistinguishable, for NP language L = {((α, x), β) | (α, x) ∈ S′

1 ∧ β ∈
S′
2 ∧ (ϕ(α, β) = 1 ∨ x ∈ L0)}, where S′

1 = S1 × {0, 1}⋆ and S′
2 = S2.

Proof. The proof is nearly identical to the proof for Lemma 2.

2.7 Correlation-intractable hash functions and FS transform

Here we recall the related definitions of Correlation-Intractable Hash Family
(CIHF) from [CCH+19].

Definition 9 (Hash family). For a pair of efficiently computable functions
(n(·),m(·)), a hash family with input length n and output length m is a collection
H = {hk : {0, 1}n(λ) → {0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) of keyed hash functions, along
with a pair of PPT algorithms specified as follows: (i) H.Gen(1λ) outputs a hash
key k ∈ {0, 1}s(λ); (ii) H.H(k, x) computes the function hk(x).

Definition 10 (Correlation intractability). For a given relation ensemble
R := {Rλ ⊆ {0, 1}n(λ) × {0, 1}m(λ)}, a hash family H = {hk : {0, 1}n(λ) →
{0, 1}m(λ)}λ∈N,k∈{0,1}s(λ) is said to be R-correlation intractable with security
(σ, δ) if for every σ-size attacker A := {Aλ}:

Pr
[
(x, hk(x)) ∈ Rλ : k←$H.Gen(1λ);x←$A(k)

]
= O(δ(λ)).

We say that H is R-correlation intractable if it is R-correlation intractable
with security (λc, λ−c) for all constants c > 1.

Definition 11 (Sparsity). For any relation ensemble R := {Rλ ⊆ {0, 1}n(λ)×
{0, 1}m(λ)}λ, we say that R is ρ(·)-sparse if for all λ ∈ N and for any x ∈
{0, 1}n(λ) it holds that (x, y) ∈ Rλ with probability at most ρ(λ) over the choice
of y←$ {0, 1}m(λ). When ρ is a negligible function, we say that R is sparse.



Efficiently Searchable Relations. In this work, we will need hash families to
achieve correlation intractability for relations R with a unique output y = f(x)
associated to each input x, and such that y = f(x) is an efficiently computable
function of x.

Definition 12 (Unique output relation). We say that a relation R is a
unique output relation if for every input x, there exists at most one output y
such that (x, y) ∈ R.

Definition 13 (Efficiently searchable relation). We say that a (necessarily
unique-output) relation ensemble R is searchable in (non-uniform) time t if there
exists a function f = fR : {0, 1}∗ → {0, 1}∗ computable in (non-uniform) time t
such that for any input x, if (x, y) ∈ R then y = f(x); that is, f(x) is the unique
y such that (x, y) ∈ R, provided that such a y exists. We say that R is efficiently
searchable if it is searchable in time poly(n).

Programmability. The following property turns out to be very useful to prove
the zero-knowledge property of non-interactive proofs derived using correlation
intractable hash families.

Definition 14 (1-universality). We say that a hash family H is 1-universal
if for any λ ∈ N, input x ∈ {0, 1}n(λ), and output y ∈ {0, 1}m(λ), we have
Pr

[
hk(x) = y : k←$H.Gen(1λ)

]
= 2−m(λ).

We say that a hash family H is programmable if it is 1-universal, and if
there exists an efficient sampling algorithm Samp(1λ, x, y) that samples from the
conditional distribution k←$H.Gen(1λ)|hk(x) = y.

We recall the theorem from [CCH+19] that we use in our work:

Theorem 1 ([CCH+19]). Suppose that H is a hash family that is correlation-
intractable for all subexponentially sparse relations that are searchable in time T .
Moreover, suppose that Σ = (Gen,P,V,TrapGen,BadChallenge) is an instance-
dependent trapdoor sigma-protocol with 2−λϵ

soundness for some ϵ > 0, such that
BadChallenge(τ, crs, x, a) is computable in time T . Then, H soundly instantiates
the Fiat-Shamir heuristic for Σ.

A note on NIZK from ID trapdoor sigma-protocol. Assuming the exis-
tence of an ID trapdoor sigma-protocol ΣL for NP language L, then the appli-
cation of Theorem 1 on ΣL will yield a sound NIZK protocol ΠL.

In our work, we also make use of the following lemmas. The application of
Theorem 1 on ΣL0∨L1

(from Lemma 2) will yield a NIZK protocol ΠL0∨L1
, such

that the following lemma holds.

Lemma 4. ΠL0∨L1
is sound and WI.

Proof. By Lemma 2, we know ΣL0∨L1
is an ID trapdoor sigma-protocol, and by

applying Theorem 1, we know ΠL0∨L1
is sound.



Also, by Lemma 2, we know ΣL0∨L1
is WI. By Claim 1 in [YZ06], we know

that a non-interactive ΣOR protocol from the OR-composition protocol is WI if
the Random Oracle model is replaced by any real hash functions.

Because H is a hash family, which is also a real hash function, ΠL0∨L1 is
witness indistinguishable (WI). The proof is nearly identical to the proof in
Theorem 5 of [CPSV16]. ⊓⊔

For Lemma 5, it states that FS transform with CIHF applied on any SID
trapdoor sigma-protocols will yield a semi-adaptive sound NIZK.

Lemma 5. Let ΣL be a semi-instance-dependant trapdoor sigma-protocol, for
language L = {(α, β) | α ∈ Sα∧β ∈ Sβ∧ϕ(α, β) = 1}. Then, NIZK ΠL obtained
by applying FS transform with a CIHF H on ΣL, is semi-adaptive sound, for
language L.

Proof. This proof is similar to Canetti et al. ’s proofs for Theorem 1. Assuming
ΠL is not semi-adaptive sound. It means there exists a PPT algorithm A, s.t.:

Prα

[
(α, β) /∈ L ∧ VL(crs, (α, β), π) = 1 | α ∈ S1 ∧ β ∈ S2;

crs←$ Setup(1|(α,β)|, 1λ); (π, β)←$ P⋆(crs, α)

]
≥ δ(λ).

Then we can construct an adversary ACI to break CI of H for relation
Rτ,crs,α, where α ∈ Sα, The relation Rτ,crs,α is as follows:

Rτ,crs,α = {(a, c) : c = BadChallengeL(τ, crs, α, a)}

Where (crs, τ)←$ TrapGenL(1
λ, α, aux).

The adversary ACI is as follows:

ACI(k, crs, α) :

(π, β)← A((crs, k), α)
parsing π as (a, z)

return a

Now we have the following observation:

– A works correctly. We observe that the input crs to ACI is from TrapGen,
but A requires the input crs from Gen. If A’s behavior is different, we can
use it to break the CRS Indistinguishability of ΣL, and we will demonstrate
it through the following hybrid game. We denote the output of A in Hi with
outHi , and we want to prove:∣∣∣∣Pr[outH0

]
− Pr

[
outH1

]∣∣∣∣ ≤ ν



We note that the outH0 corresponds to the output of A where crs generated
by Gen is used, and the outH1 corresponds to the output of A where crs
generated by TrapGen is used. Then the hybrids are:
• H0:

crs←$ Gen(1λ)

k ←$H.Gen(1λ)
return the output of A((crs, k), α)

• H1:

(crs, τ)←$ TrapGen(1λ, α, aux)

k ←$H.Gen(1λ)
return the output of A((crs, k), α)

If A’s behaviors are different, then we can construct an adversary Acrs to
break the CRS Indistinguishability of ΣL through the following reduction:
• Acrs queries the challenger of the CRS Indistinguishability of ΣL, that

sends back crsL
• Acrs samples the hash key k, and α

• Acrs sends ((crs, k), α) to A, and outputs the output of A
We now observe that if the challenger uses Gen, we are in H0, otherwise, we
are in H1. It implies H0 ≈ H1. Therefore, A works correctly.

– Output of A make VL accept with non-negligible probability, and it means
that we find a valid a when (α, β) /∈ L. Because ΣL has 2−λϵ

soundness,
Rτ,crs,α is subexponential sparse. Besides, BadChallengeL is an efficient al-
gorithm, by Definition 4. Therefore, it contradicts the assumption of H

⊓⊔

The existence of the SID trapdoor sigma-protocols. In [CPV20] the
authors observe that it is possible to extract the unique bad-challenge for well-
known Chaum-Pedersen sigma-protocols [CP93] for DH tuples that we denote
with ΣDH (we recall it in Figure 2, where crs = ∅).

In particular, the authors show how to extract the bad-challenge of the 1-
bit challenge version of the sigma-protocol ΣDH for DH tuples. We show that
the parallel repetition version Σt

DH is a SID trapdoor sigma-protocol for LDH =
{(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ ϕ(g, h,X, Y ) = 1}, where S1 =
{(g, gx) ∈ G×G | x ∈ Zp}, S2 = {(h, hy) ∈ G×G | y ∈ Zp}, and ϕ(g, h,X, Y ) =
1 if and only if ∃w ∈ Zp : X = gw ∧ Y = hw. Formally:

Theorem 2. Let Σt
DH be the parallel repetition version of ΣDH, with the number

of repetition t. Then, Σt
DH is a semi-instance-dependant trapdoor sigma-protocol,

for LDH.



Prover(crs, T, w) Verifier(crs, T )

r ←$ Zp, a1 ← gr, a2 ← hr

a1, a2

c←$ {0, 1}

c

z = r + cw

z

Verifier accepts if all the
following conditions hold:
gz = a1 ·Xc

hz = a2 · Y c

Fig. 2. Sigma-protocol ΣDH for LDH

Proof. Because we know ΣDH is a sigma-protocol for LDH = {(g, h,X, Y ) |
(g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ ϕ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G × G |
x ∈ Zp}, S2 = {(h, hy) ∈ G × G | y ∈ Zp}, and ϕ(g, h,X, Y ) = 1 if and only if
∃w ∈ Zp : X = gw ∧ Y = hw, by applying Lemma 1 in [Dam10], we have the
following claim:

Claim. Σt
DH is a sigma-protocol.

By the claim above, we know Σt
DH is a sigma-protocol, so we can only prove

the properties for the SID trapdoor sigma-protocol.
The TrapGenDH algorithm takes the following inputs:

– 1λ: The unary representation of the security parameter.
– α: (g, h) from the tuple T = (g, h,X, Y )

– aux: x from gx = h

and TrapGenDH outputs crs = ∅ and τ = aux.
Before we describe the construction of BadChallengeDH, here we describe how

to extract the unique 1-bit bad-challenge from ΣDH, by using PPT Euni(τ, a1, a2)
algorithm, where τ is the trapdoor and a1, a2 are the first round message of ΣDH.



It works as follows:

Euni(τ, a1, a2) :

If aτ1 = a2 return 0

If aτ1 ̸= a2 return 1

Then we denote the transcript for i-th repetition with (ai1, a
i
2, ci, zi). By hav-

ing the output of TrapGenDH, and the Euni algorithm, we have the following
BadChallengeDH algorithm:

BadChallenge(τ, crs, α, a) :

c1 = Euni(τ, a
1
1, a

1
2)

...

ct = Euni(τ, a
t
1, a

t
2)

c = (c1||c2||...||ct)
return c

where a = ((a11, a
1
2), ..., (a

t
1, a

t
2)) is the first round message of Σt

DH, and x is the
tuple T .

By the construction of Euni and BadChallengeDH, we know BadChallengeDH is
a PPT algorithm. Then we prove the CRS Indistinguishability and Correctness:

– CRS Indistinguishability:

Because CRS for Σt
DH is an empty string, the honestly generated CRS is

computationally indistinguishable from CRS computed by TrapGenDH

– Correctness: Completeness of Euni is already proven in paper [CPV20]. We
show details with mathematical calculations here.

Assuming we have a non-DH tuple T = (g, h,X = gw1 , Y = hw2), where
gx = h and w1 ̸= w2. Then we need to prove for any choice of first round
message a of Σt

DH, there is at most 1 challenge c, to make transcript (a, c, z)
be accepted.

Considering ci (the i-th bit of challenge), and we have τ = x:



• If (ai1)τ = ai2, proving that no valid third round message z for ci = 1:{
gz = ai1X

hz = ai2Y

→

{
g(z−w1) = ai1
h(z−w2) = ai2

→

{
g(z−w1) = ai1
gx(z−w2) = (ai1)

x

→

{
g(z−w1) = ai1
gx(z−w2) = gx(z−w1)

→

{
g(z−w1) = ai1
x(w1 − w2) = 0

∗ We know x ̸= 0 and w1 ̸= w2

∗ It is impossible to have a valid z when ci = 1. Therefore, no accepting
transcripts.

• When (ai1)
τ = ai2, and ci = 0:{

gz = ai1
hz = ai2

→

{
gz = ai1
gxz = (ai1)

x

→gz = ai1

∗ Because a is fixed, so ai1 is fixed, and there is at most 1 z to make
the equation hold.

• Then when (ai1)
τ ̸= ai2, if challenge c = 1, we have:{

gz = ai1X

hz = ai2Y

→

{
gz = ai1X

gxz = ai2Y

→

{
gz = ai1X

gxz = ai2Y

→

{
gz = ai1X

(ai1X)x = ai2Y

→

{
gz = ai1X

(ai1)
x = ai2h

w2−w1



∗ For given (ai1, a
i
2), this equation is possible to hold, which means an

accepting transcript may exist.
• Then when (ai1)

τ ̸= ai2, if challenge c = 0, we have:{
gz = ai1
hz = ai2

→

{
gz = ai1
(ai1)

x = ai2

∗ Because we know (ai1)
x ̸= ai2

∗ There is no accepting transcript.
By above illustrations, we know the algorithm Euni(τ, a

i
1, a

i
2) can output ci,

which is the unique bad-challenge for (ai1, ai2). The Euni algorithm is complete.
Then, assuming the Correctness does not hold, which means the BadChallengeDH

does not output the unique bad-challenge. By the construction of Σt
DH, we

know that, if the output is not the unique bad-challenge, then at least the
transcript for one of the repetitions is not accepted. Formally, we denote
the transcripts that are not accepted as πi = ((ai1, a

i
2), ci, zi). However, if

πi is not accepted, it means Euni does not find the unique bad-challenge for
(ai1, a

i
2), which contradicts the completeness of Euni.

⊓⊔

One of the main tools we rely on is a SID trapdoor sigma-protocol for the
language of the non-DH tuple. In particular, we need to construct a protocol
ΣNDH for the language LNDH = {(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧
ϕ(g, h,X, Y ) = 1}, where S1 = {(g, gx) ∈ G × G | x ∈ Zp}, S2 = {(h, hy) ∈
G×G | y ∈ Zp}, and ϕ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X = gw∧Y =

hw′∧w ̸= w′. At a high level, our protocol works as follows. The prover computes
a commitment of a random value b ∈ {0, 1}τ . The commitment is equivocal when
T ∈ LNDH and it is binding (and extractable) otherwise. The prover sends the
commitment of b to the verifier, who replies with a uniformly random c ∈ {0, 1}.
In the third round, the prover will equivocate the commitment to an opening of
c, and send the opening information to the verifier. We recall that the honest
prover can always equivocate the commitment since T ∈ LNDH.

This protocol is sound since when T /∈ LNDH, the probability of the prover
providing a valid opening for c is 2−τ . To extract the bad-challenge, we will rely
on the fact that the commitment is extractable when T /∈ LNDH. In particular, we
prove that it is possible to extract the bad-challenge for a proof computed with
respect to a tuple T = (g, h,X, Y ), having access only to the discrete logarithm
of h. This is the reason why our protocol is only semi-adaptive and not fully
adaptive (i.e., if the entire tuple was chosen by the adversary then the extractor
would have no access to the discrete logarithm of h).

One nice feature of the protocol we have described is that for a challenge
of size τ = log λ, where λ is the security parameter, prover and verifier need to



perform only 4 exponentiations each, and we give the efficiency analysis later. We
see ΣNDH as a result of independent interest. Previous to our work, it was already
known how to construct a trapdoor sigma protocol with similar performance, but
ours is the first protocol to have such performance while being a SID trapdoor
sigma-protocol. In particular, we note that in [LNPY22], the authors give a
construction of trapdoor sigma-protocol for the language of DH (hence, also for
the language of non-DH) tuples with similar performance as ours. Unfortunately,
it is not clear how to prove that the protocol proposed in [LNPY22] is also a
SID trapdoor sigma-protocols.

We propose the formal description of our protocol ΣNDH = (GenNDH,PNDH,VNDH)
in Figure 3, where the crs = ∅.

Prover(crs, T, w,w′) Verifier(crs, T )

r1, r2, b←$ Zp

a1 ← Y r1hr2−b, a2 ← Xr1gr2

a1, a2

c←$ Zp

c

r̃1 ← r1 −
c− b

w − w′ ,

r̃2 ← r2 +
w(c− b)

w − w′

r̃1, r̃2

Verifier accepts if all the
following conditions hold:

a1 = Y r̃1hr̃2−c

a2 = X r̃1gr̃2

Fig. 3. The protocol for LNDH

Lemma 6. ΣNDH is a sigma-protocol for language LNDH.

Proof. Completeness:



– For new r̃1, r̃2: {
Y r̃1hr̃2−c = Y r1hr2−b

X r̃1gr̃2 = Xr1gr2

→

{
hw′r̃1+r̃2−c = hw′r1+r2−b

gwr̃1+r̃2 = gwr1+r2

→

{
w′r̃1 + r̃2 − c = w′r1 + r2 − b

wr̃1 + r̃2 = wr1 + r2

→

{
r̃1 = r1 +

r2−r̃2
w

w′(r1 +
r2−r̃2

w ) + r̃2 = w′r1 + r2 + c− b

Then we have:

w′(r1 +
r2 − r̃2

w
) + r̃2 = w′r1 + r2 + c− b

w′r1 +
w′

w
r2 −

w′

w
r̃2 + r̃2 = w′r1 + r2 + c− b

(1− w′

w
)r̃2 = (1− w′

w
)r2 + c− b

r̃2 = r2 +
w(c− b)

w − w′

Therefore:

{
r̃1 = r1 +

r2−r̃2
w

r̃2 = r2 +
w(c−b)
w−w′

→

{
r̃1 = r1 +

r2−(r2+
w(c−b)

w−w′ )

w

r̃2 = r2 +
w(c−b)
w−w′

→

{
r̃1 = r1 − c−b

w−w′

r̃2 = r2 +
w(c−b)
w−w′

Optimal soundness: Assume by contradiction that we have 2 accepting
transcripts τα = ((a1, a2), cα, (r̃

α
1 , r̃

α
2 )), and τβ = ((a1, a2), cβ , (r̃

β
1 , r̃

β
2 )), where

cα ̸= cβ , and the tuple T /∈ LNDH. We do not know the relationship between



(r̃α1 , r̃
α
2 ) and (r̃β1 , r̃

β
2 ) Then we have the following equations:{

Y r̃α1 hr̃α2 −cα = a1 = Y r̃β1 hr̃β2 −cβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

→

 (X r̃α1 gr̃α2 )x

hcα = a1 = (X r̃
β
1 gr̃

β
2 )x

hcβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

→

{
ax
2

hcα = a1 =
ax
2

hcβ

X r̃α1 gr̃
α
2 = a2 = X r̃β1 gr̃

β
2

By the above equations, we know ax2 = ax2 , so cα = cβ = f(crs, T, (a1.a2))
Special HVZK:

– The simulator works as follows:

Sim(T, c) :

r̃1, r̃2 ←$ Zp

a1 ← Y r̃1hr̃2−c, a2 ← X r̃1gr̃2

aSim ← (a1, a2), zSim ← (r̃1, r̃2)

return (aSim, zSim)

– Let τReal = (aReal, cReal, zReal) be the real execution transcript. We note that
(aReal, zReal) is indistinguishable from (aSim, zSim), because:
• In aReal, (b, r1, r2) are uniform randomly sampled, and in aSim, (c, r̃1, r̃2)

are uniform randomly sampled, so Y r1 is indistinguishable from Y r̃1 , and
hr2−b is indistinguishable from hr̃2−c. Then a1 in aReal is indistinguishable
from a1 in aSim.

• Similar proofs can be done for a2, so aReal is indistinguishable from aSim
• for r̃1 in zReal, because r1, c, b are uniform randomly sampled, c − b is

uniformly random. (w − w′) is constant for every execution, so c−b
w−w′ is

uniformly random. Therefore r̃1 is uniformly random, and it is indistin-
guishable from r̃1 from aSim.

• Similar proofs can be done for r̃2, so zReal is indistinguishable from zSim
⊓⊔

Lemma 7. ΣNDH has a PPT extractor Extuni(α, τ, a), where α is (g, h) from
the tuple T = (g, h,X, Y ), τ is the trapdoor, a is the first round message, s.t.
∀T /∈ LNDH, if the unique bad-challenge is c, Extuni can extract hc (which is also
unique).

Proof. Extuni, on input α = (g, h), τ = x, such that gx = h, a = (a1, a2) (the
first round of the sigma-protocol ΣNDH), returns hc ← aτ

2

a1
, where c is the bad-

challenge.



Extuni outputs the correct results due to the following observation. If we
have the first round message a = (a1, a2), and T /∈ LNDH, due to the optimal
soundness property, we know that there is at most one challenge c that makes the
transcript (a, c, z) accepting. Then because the transcript is accepting it must be
that a1 = Y r̃1hr̃2−c and a2 = X r̃1gr̃2 . When T /∈ LNDH, aτ

2

a1
= Xxr̃1gxr̃2

Y r̃1hr̃2
hc = hc.

Because g is the generator in the cyclic group G, gc and c are 1 to 1 mapping,
hc = gxc and x is fixed for every execution. It means hc is also unique.

Claim. If the number of all the possible challenges c is bounded to poly(λ), then
by using brute force, computing c from hc is efficient (polynomial time in λ).

Lemma 8. If the challenge c of the protocol ΣNDH satisfies that c ∈ {0, 1}K log2(λ
ϵ)

for ϵ > 0 and for integer K ≥ 1, then for t = Ω( λϵ

K log2(λ
ϵ) ), the parallel repe-

tition version Σt
NDH is a semi-instance-dependant trapdoor sigma-protocol, for

LNDH = {(g, h,X, Y ) | (g, h) ∈ S1 ∧ (X,Y ) ∈ S2 ∧ ϕ(g, h,X, Y ) = 1}, where
S1 = {(g, gx) ∈ G × G | x ∈ Zp}, S2 = {(h, hy) ∈ G × G | y ∈ Zp}, and
ϕ(g, h,X, Y ) = 1 if and only if ∃w,w′ ∈ Zp : X = gw ∧ Y = hw′ ∧ w ̸= w′.

Proof. By applying Lemma 1 in [Dam10], we know Σt
NDH is a sigma-protocol,

and we only focus on proving the property for the SID trapdoor sigma-protocol.
The corresponding TrapGenNDH algorithm has the following inputs:

– 1λ: The unary representation of the security parameter
– α: (g, h) from the tuple (g, h,X, Y )
– aux: x from gx = h

Then the outputs of TrapGenNDH is crs = ∅ and τ = aux.
We denote the transcript of i-th repetition as (ai1, ai2, ci, zi). The construction

of the bad-challenge extractor BadChallengeNDH(τ, crs, α, a) is:

BadChallengeNDH(τ, crs, α, a) :

hc1 ← Extuni(α, τ, (a
1
1, a

1
2))

Brute force search on hc1 to get c1

...

hct ← Extuni(α, τ, (a
t
1, a

t
2))

Brute force search on hct to get ct

c← (c1||c2||...||ct)
return c

where a = ((a11, a
1
2), ..., (a

t
1, a

t
2)) is the first round message of Σt

NDH. By Lemma
7 and the claim that brute force is efficient for small search space, we know
BadChallengeNDH is a PPT algorithm.

Then we prove the CRS Indistinguishability and Correctness:

– CRS Indistinguishability:
Because the Σt

NDH’s CRS is an empty set, the honestly generated CRS is com-
putationally indistinguishable from CRS computed by TrapGen(1λ, x, aux)



– Correctness: Assuming the Correctness does not hold, it means the transcript
of one of the repetitions is not accepted. It contradicts Lemma 7.

⊓⊔

Efficiency analysis of ΣNDH Here we compare the efficiency of our ΠNDH

with the NIZK protocol obtained by applying the FS transform using a CIHF
to the well-known protocol ΣDH = (GenDH,PDH,VDH) used to prove that a tuple
is non-DH tuple. We recall how such a protocol works in Figure 4.

Prover(crs, T, w,w′) Verifier(crs, T )

Y ′ ← hw

R←$ Zp

a← PDH(crs, (g, h,

X, Y ′);R)

a

c←$ Zp

c

z ← PDH(crs, (g, h,

X, Y ′), w, a, c;R)

z, Y ′

Accepts if:
V(crs, (g, h,X, Y ′), a, c, z) = 1

Y ̸= Y ′

Fig. 4. The protocol for non-DH from DH

Because no expensive operations are introduced in this conversion, the ef-
ficiency is the same as ΣDH. Also, the FS transform does not introduce any
expensive operations.

Hense, we compare the efficiency of Σt
NDH with Σt

DH from Theorem 2:

– Considering the security parameter λ = 2048, and ϵ = 10
11 . Then p is 1024

bits.
– ΠDH: It requires 1024 repetitions, and in each repetition, the prover needs

to compute 2 exponentiations, and the verifier needs to compute 4 exponen-
tiations. In total, it requires 2048 exponentiations for the prover and 4096
exponentiations for the verifier.



– ΠNDH: It requires 1024
K log2(1024)

= 103
K repetitions.

• If we make K = 10, then the required repetition is 11. In each repetition,
the prover needs to compute 4 exponentiations and the verifier needs
to compute 4 exponentiations. In total, the prover needs to compute 44
exponentiations and the verifier needs to compute 44 exponentiations.

• We also want to emphasize that, reducing the number of repetition only
influence the reduction of soundness. In the honest execution, neither
prover nor verifier does the brute force search computation to get c from
hc.

Also, we can use following formula to get lower bound of λ, s.t. ΠNDH more
efficient than ΠDH, and we consider the total number of exponentiations:

6λϵ ≥ 8
λϵ

Kϵ log2(λ)

log2(λ) ≥
4

3Kϵ
λ ≥ 2

4
3Kϵ

3 NIZK with adaptive multi-theorem ZK

In this section, we show how to obtain our adaptive multi-theorem ZK and sound
NIZK protocol for an NP language L, assuming that we have an ID trapdoor
sigma-protocol ΣL = (GenL,PL,VL) for L. For our construction we make use of
the following tools:

– A hash family H that is correlation-intractable for all subexponentially
sparse relations that are searchable in time T , which is also programmable.

– The SID trapdoor sigma-protocol ΣOR = (GenOR,POR,VOR) of Section 2.6 for
NP language LOR = L∨LDH = {((g, h, x), (X,Y )) | (g, h, x) ∈ S1 ∧ (X,Y ) ∈
S2 ∧ (ϕ(g, h,X, Y ) = 1∨ x ∈ L)}, where S1 = {(g, gα, x) ∈ G×G× {0, 1}⋆ |
α ∈ Zp}, S2 = {(h, hβ) ∈ G×G | β ∈ Zp}, and ϕ(g, h,X, Y ) = 1 if and only
if ∃w ∈ Zp : X = gw ∧ Y = hw. The protocol ΣOR has 2−λϵ

soundness for
ϵ > 0. We note that this protocol can be obtained starting from ΣL and any
SID trapdoor sigma protocol ΣDH for LDH. We provide an example (Σt

DH

from Theorem 2) to be used as ΣDH.
– A SID trapdoor sigma-protocol ΣNDH = (GenNDH,PNDH,VNDH) for LNDH.

ΣNDH need to have 2−λϵ

soundness for ϵ > 0.

We denote the obtained NIZK protocol with Π = (Setup,P,V). The Setup
algorithm works as follows:

– crsL ←$ GenL(1
λ), crsDH ← crsNDH ← ∅, g ←$ G.Gen(1λ), x←$ Zp, h← gx,

k ←$H.Gen(1λ).
– output (crsL, crsDH, crsNDH, (g, h), k)



Prover(crs, x, w) Verifier(crs, x)

Local Pre-processing:
α, β ←$ Zp

T ← (g, h, gα, hβ)

RNDH ←$ Zp

aNDH ← PNDH(crsNDH, T ;

RNDH)

cNDH ← H.H(k, aNDH)

zNDH ← PNDH(crsNDH, T,

(α, β), aNDH, cNDH;RNDH)

Online: Upon receiving
(x,w), s.t. (x,w) ∈ RL,

then do the following:

ROR ←$ {0, 1}λ

a← POR((crsL, crsDH),

(x, T ), w;ROR)

c← H.H(k, a)
z ← POR((crsL, crsDH),

(x, T ), w, a, c;ROR)

aNDH, zNDH, T, a, z

cNDH ← H.H(k, aNDH)

c← H.H(k, a)
Verifier accepts if all the
following conditions hold:
VNDH(crsNDH, T, aNDH,

cNDH, zNDH) = 1

VOR((crsL, crsDH),

(x, T ), a, c, z) = 1

Fig. 5. Our NIZK protocol Π

We formally describe the interaction between the prover and the verifier of Π in
Fig. 5.

Before proving the security of Π, we need to prove that the FS transform
applied on ΣOR yields a WI semi-adaptive sound non-interactive protocol. This
comes immediately from Lemma 3, Lemma 4, and Lemma 5. Hence, if we denote



with ΠOR the non-interactive protocol resulting from the application of the FS
transform on ΣOR we can claim the following.

Theorem 3. ΠOR is WI semi-adaptive sound for LOR.

We are now ready to prove our main lemmas.

Lemma 9. Let Π be the protocol of Fig. 5, then Π is sound.

Proof. Assuming Π is not sound, then there exists a PPT algorithm A, s.t.:

Prx

[
x /∈ L ∧ V(crs, x, π) = 1 | crs←$ Setup(1|x|, 1λ);π ←$A(crs, x)

]
≥ δ(λ).

To make V accept when x /∈ L, there are 2 possibilities:

– When T is a DH tuple, VNDH(crsNDH, T, aNDH, cNDH, zNDH) = 1, and
VOR((crsL, crsDH), (x, T ), a, c, z) = 1. If VNDH accepts when T /∈ LNDH then it
means thatA can find (aNDH, cNDH, zNDH) to make (crsNDH, T, aNDH, cNDH, zNDH)
accepting with non-negligible probability, and it directly contradicts to the
semi-adaptive soundness of ΠNDH. Formally, we can construct the following
adversary A′:

A′(crsNDH, k, α) :

crsL ←$ GenL(1
λ), crsDH ← ∅, parsing α as (g, h), w ←$ Zp, β ← (gw, hw),

x← (g, h, β), crs← (crsL, crsDH, crsNDH, (g, h), k)

waiting for receiving all π from A(crs, x)
return all (π, β)

Now we have the following observation: 1) A works correctly. We know
crsL ←$ GenL(1

λ), crsDH = ∅. Also, the hash key k, crsNDH and (g, h)
are provided by the challenger, so we can conclude that crs is the same
as crs ←$ Setup(1|x|, 1λ). 2) The output of A makes V accept with non-
negligible probability, and it means that we find an accepting proof π when
(α, β) /∈ LNDH. This contradicts Lemma 5.

– When T is a non-DH tuple, VNDH(crs, T, aNDH, cNDH, zNDH) = 1, and
VOR(crs, (x, T ), a, c, z) = 1. Then VNDH accepts because T ∈ LNDH. However,
if VOR accepts when x /∈ L ∧ T /∈ LDH it means that the adversary A is
able to find (a, c, z) to make (crs, (x, T ), a, c, z) accepting with non-negligible
probability, and it directly contradicts the semi-adaptive soundness of ΠOR.
The reduction is identical to the reduction for ΠNDH above, and it contradicts
Theorem 3.

We note that in this proof, the security only relies on the soundness of ΠNDH

and ΠOR, where their soundness relies on the CI property of CIHF. We do not
use the DDH assumption here. ⊓⊔

Lemma 10. Let Π be the protocol of Fig. 5, then Π is adaptive multi-theorem
zero-knowledge.



Proof. We have the following simulator Sim = (Sim0,Sim1), by having SHVZK
simulator SimNDH from ΣNDH:

Sim(1|x|, 1λ) :

crsL ←$ Gen(1λ), crsDH ← crsNDH ← ∅, g ←$ G.Gen(1λ), x, wDH ←$ Zp, cNDH ←$ {0, 1}λ

h← gx, TDH ← (g, h, gwDH , hwDH), (aNDH, zNDH)← SimNDH(TDH, cNDH)

k ←$ Samp(1λ, aNDH, cNDH), crs← (crsL, crsDH, crsNDH, (g, h), k)

τSim ← (TDH, wDH, aNDH, zNDH)

return crs, τSim

Sim(crs, τSim, x) :

ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, TDH), wDH;ROR), c← H.H(k, a)
z ← POR((crsL, crsDH), (x, TDH), wDH, a, c;ROR)

return (aNDH, zNDH, TDH, a, z)

We prove this lemma through hybrid experiments. We denote the output
of adversary in the hybrid Hi with outHi , where the index i ∈ {0, 1, 2, 3}. We
want to show for k = {0, 1, 2}, for any PPT algorithm A: |Pr

[
A(outHk) = 1

]
−

Pr
[
A(outHk+1) = 1

]
| ≤ ν(λ). We note that outH0 corresponds to the output of

the adversary in the real game, and outH4 corresponds to the output of the ad-
versary in the simulated experiments. We highlight the part that has differences
for better understanding:



H0 :

StateA ← ∅

crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β,RNDH ←$ Zp

h← gx, k ←$H.Gen(1λ)
crs← (crsL, crsDH, crsNDH, (g, h), k)

T ← (g, h, gα, hβ)

aNDH ← PNDH(crsNDH, T ;RNDH)

cNDH ← H.H(k, aNDH)

zNDH ← PNDH(crsNDH, T, (α, β), aNDH, cNDH;RNDH); repeat

(StateA, x, w)←$A(1λ, crs, StateA)

if (x,w) ∈ RL then ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, T ), w;ROR)

c← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(StateA, cont, d)←$A(1λ, StateA, π)

until cont = false

return d = 0



H1 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β,RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h← gx, T ← (g, h, gα, hβ)

aNDH ← PNDH(crsNDH, T ;RNDH), k ← Samp(1λ, aNDH, cNDH)

crs← (crsL, crsDH, crsNDH, (g, h), k), zNDH ← PNDH(crsNDH, T, (α, β), aNDH, cNDH;RNDH)

repeat

(StateA, x, w)←$A(1λ, crs, StateA)

if (x,w) ∈ RL then ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, T ), w;ROR)

c← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(StateA, cont, d)←$A(1λ, StateA, π)

until cont = false

return d = 0

H2 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x, α, β,RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h← gx, T ← (g, h, gα, hβ)

(aNDH, zNDH)← SimNDH(T, cNDH) , k ← Samp(1λ, aNDH, cNDH)

crs← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w)←$A(1λ, crs, StateA)

if (x,w) ∈ RL then ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, T ), w;ROR)

c← H.H(k, a), z ← POR((crsL, crsDH), (x, T ), w, a, c;ROR)

π ← (aNDH, zNDH, T, a, z)

else π ← ∅

(StateA, cont, d)←$A(1λ, StateA, π)

until cont = false

return d = 0

H3 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x,wDH, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH)← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

crs← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w)←$A(1λ, crs, StateA)

if (x,w) ∈ RL then ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, TDH), w;ROR)

c← H.H(k, a), z ← POR((crsL, crsDH), (x, TDH), w, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅

(StateA, cont, d)←$A(1λ, StateA, π)

until cont = false

return d = 0



H4 : StateA ← ∅, crsL ←$ GenL(1
λ), crsNDH ← crsDH ← ∅, g ←$ G.Gen(1λ)

x,wDH, RNDH ←$ Zp, cNDH ←$ {0, 1}λ, h← gx, TDH ← (g, h, gwDH , hwDH)

(aNDH, zNDH)← SimNDH(TDH, cNDH), k ← Samp(1λ, aNDH, cNDH)

crs← (crsL, crsDH, crsNDH, (g, h), k); repeat

(StateA, x, w)←$A(1λ, crs, StateA)

if (x,w) ∈ RL then ROR ←$ {0, 1}λ, a← POR((crsL, crsDH), (x, TDH), wDH;ROR)

c← H.H(k, a), z ← POR((crsL, crsDH), (x, TDH), wDH, a, c;ROR)

π ← (aNDH, zNDH, TDH, a, z)

else π ← ∅

(StateA, cont, d)←$A(1λ, StateA, π)

until cont = false

return d = 0

Then we have the following reductions:

– Reduction 1: Assuming there exists a PPT algorithmA that
∣∣∣∣Pr[A(outH0) = 1

]
−

Pr
[
A(outH1) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can

break the programmability of CIHF H (Definition 14) through the following
reduction:
• A′ queries the challenger of the programmability of H that sends back

the hash key k
• A′ samples crsL by using GenL, samples crsDH, crsNDH, (g, h) corre-

spondingly, and does crs← (crsL, crsDH, crsNDH, (g, h), k)
• A′ sends crs to A to get (x,w)
• A′ preparing π by using (x,w) and sends it to A
• A′ outputs the output of A

We now observe that if the challenger uses H.Gen to sample k, we are in H0,
otherwise, we are in H1. This implies H0 ≈ H1.

– Reduction 2: Assuming there exists a PPT algorithmA that
∣∣∣∣Pr[A(outH1) = 1

]
−

Pr
[
A(outH2) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can

break the SHVZK of ΣNDH through the following reduction:
• A′ queries the challenger of the SHVZK of ΣNDH that sends back the

proof aNDH, zNDH

• A′ samples crsL by using GenL, samples k by using Samp, samples crsDH,
crsNDH, (g, h) correspondingly, and does crs← (crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)
• A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)
• A′ sends π to A, and outputs the output of A



We now observe that if the challenger provides a real transcript, we are in
H1, otherwise, we are in H2. This implies H1 ≈ H2.

– Reduction 3: Assuming there exists a PPT algorithmA that
∣∣∣∣Pr[A(outH2) = 1

]
−

Pr
[
A(outH3) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can

break the DDH hardness assumption (Definition 1) through the following
reduction:
• A′ queries the challenger of the DDH hardness assumption that sends

back the tuple T = (g, h,X, Y )

• A′ gets (g, h) from T , and uses T to generate (aNDH, zNDH) from using
SimNDH

• A′ samples crsL by using GenL, samples k by using Samp, samples crsDH,
crsNDH correspondingly, and does crs← (crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)

• A′ preparing πOR by using (x,w) and does π ← (πOR, T, aNDH, zNDH)

• A′ sends π to A, and outputs the output of A
We now observe that if the challenger provides a non-DH tuple, we are in
H2, otherwise, we are in H3. This implies H2 ≈ H3.

– Reduction 4: Assuming there exists a PPT algorithmA that
∣∣∣∣Pr[A(outH3) = 1

]
−

Pr
[
A(outH4) = 1

]∣∣∣∣ ≥ δ(λ), then we can construct an adversary A′ that can

break the WI of ΠOR through the following reduction:
• A′ queries the challenger of the WI of ΠOR that sends back x, πOR =

(aOR, zOR)

• A′ samples crsL by using GenL, samples k by using Samp, samples crsDH,
crsNDH, (g, h) correspondingly, and does crs← (crsL, crsDH, crsNDH, (g, h), k)

• A′ sends crs to A to get (x,w)

• A′ use πOR from the challenger, and does π ← (πOR, TDH, aNDH, zNDH)

• A′ sends π to A, and outputs the output of A
We now observe that if the challenger provide ΠOR by using w, where (x,w) ∈
RL, we are in H3, otherwise we are in H4. This implies H3 ≈ H4.
We can concludes H0 ≈ H1 ≈ H2 ≈ H3 ≈ H4. Therefore, the simulated
transcript from Sim is computationally indistinguishable from a transcript
in the real game.

⊓⊔

On the adaptive soundness of our protocol. In the previous section, we
showed that Π is (non-adaptive) sound and adaptive multi-theorem ZK. In this
section, we argue that it is possible to slightly modify Π and get a protocol that
enjoys the same properties as Π, but in addition, it is also adaptive-sound.

In [CPV20] the authors show that if the input of the hash function used
in the FS transform contains also the theorem (and not just the first round of



the underlying protocol), and moreover the trapdoor sigma-protocol is instance-
independent then the resulting NIZK is adaptive sound. As an additional con-
tribution, the authors of [CPV20] show that any sigma-protocol can be turned
into an instance-independent trapdoor sigma-protocol (this construction has an
overhead, that requires computing two ciphertexts for each bit of the challenge
of the starting trapdoor sigma-protocol).

Hence, using the results of [CPV20], we can construct an instance-independent
trapdoor sigma-protocol for the language L∨LDH. If we apply the FS transform
using as the input of the hash-function also x then the final NIZK protocol we
obtain is both adaptive sound and adaptive multi-theorem ZK.
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