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Abstract 

One of the challenges testing and health monitoring of large structures represents is 
getting as much information as possible from a specimen with a limited number of 
sensors. In this work, a data-driven approach was pursued to decide the optimal location 
of single-point strain gauges using machine learning algorithms (MLA) and information 
from Digital Image Correlation (DIC) measurements. The optimal strain gauge 
placement was computed for a range of sensor numbers and the presence of sensors in 
the high-gradient regions was identified. Strain maps of almost 40,000 measurements 
were reconstructed successfully with fewer than twenty measured values using the 
method employed. However, certain loss of image contrast was identified which is 
likely to have resulted from the treatment of non-numerical values. 

1. Introduction

Nowadays, technologies such as Digital Image Correlation (DIC) allow for capturing 
vast information that reveals the deformation and stresses of small and large structures 
on almost all their surface. Compared with traditional strain gauges, it offers a huge 
benefit. Nevertheless, DIC requires specific setup and environmental conditions (i.e., 
light) that hinder their implementation outside of controlled environments (i.e., 
laboratories), and then the use of stain gauges is necessary. Still, the optimal number of 
measurement points and their location remains open. To address this, we used the 
information from DIC and machine learning algorithms (MLA) to select the points on a 
structure which are most suited for reconstructing a high-dimensional image with as few 
measurements as possible.  

2. Literature Review

The application described in this publication relates to the full-scale test of the tidal 
turbine blade. The aim of this section is to investigate previous sensor placement 
optimisation applications and describe the contribution of the results presented in this 
work.   
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2.1 Damage Detection and Structural Health Monitoring 
 
A wide range of studies regarding optimal sensor placement (OSP) have been concerned 
with damage detection and health monitoring within structures. In this regard, many of 
these pieces of literature investigate the optimal placement of strain sensors, with one 
case looking at the placement of acoustic sensors for crack detection (1). There are 
applications to structures akin to the tidal turbine blade in terms of material as well as 
geometry, such as compressor blades (1), composite wind turbine blades (2), cylindrical 
composite shells (3), and composite plates (4). Whilst these applications are similar to 
OSP for tidal turbine blades, none of the mentioned studies utilise DIC for 
reconstruction or have experimental validation from a full-scale model. Furthermore, 
studies for optimal sensor placement have seen applications to support structures such 
as trusses, in railway vehicles and bridges (5) (6), looking to improve the safety and the 
knowledge of required maintenance in these constructions, demonstrating the value of 
OSP to the civil engineering sector. Additionally, there has been investigation into the 
use of sensor placement optimisation for underwater structures, with the testing of a 
steel plate under the loads imposed by incoming waves (7), implying current interest in 
sensor placement for marine purposes, and the relevance of the work presented. 
 
2.2  Structure Motion and Performance 
 
Optimal Sensor Placement is also implemented in the monitoring of the motion of 
structures involved in dynamic processes, chiefly the vibrational response of assemblies 
undergoing periodic forces such as axial compressor casings (8), helicopter rotor blades 
(9), or carbon fibre laminates (10). Most of these studies comprised the optimal placement 
of accelerometers (11) . The aim of these studies was to monitor the behaviour of a 
structure undergoing different modal vibrations which is important in cyclic processes, 
such as the operation of a tidal turbine, to avoid catastrophic failure when in action. The 
study concerning compressor casings points out the importance of this information for 
rotordynamic calculations and how these structures perform under realistic test 
conditions. A more novel study looked at the sparse placement of pressure sensors on 
the surface of a car in order to inform the adjustments to improve aerodynamic 
performance, such as the operation of a spoiler (12). 
 
3.  Test Specification and Setup 
 
3.1  FastBlade 
 
The experimental results were collected at FastBlade, a research facility at the 
University of Edinburgh. FastBlade is the first facility in the world to carry out full-
scale, regenerative tests on tidal turbine blades. The testing centre allows for testing 
large slender structures (2-14 meters) under either static or fatigue loads, as shown in 
Figure 1. The facility utilises a unique Digital Displacement® Pumps system, which 
incorporates regenerative pumping and digital displacement hydraulics, enabling 
accelerated testing (up to 1Hz) with high loads (up to 1MN) (13). 
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The facility aims to test the mechanical response of tidal turbine structures resulting 
from the loads they would experience during their lifetime of subsea deployment. 
Thanks to cyclic loading of the specimens, it is possible to simulate years of real-world 
deployment in a feasible period. These accelerated tests aim to verify the design 
properties of the blades and, in turn, accelerate the growth of the tidal energy market.  
 
The blade validation procedure requires collection of various kinds of data recorded 
along the specimen under test, including local strain, displacement, temperature and 
acceleration pattern. This leads to an open-ended problem of optimising sensor location 
to maximise the quality of information, while keeping the information bandwidth 
feasible by minimising the redundancy of collected data. 
 
3.2  Digital Image Correlation 
 
FastBlade utilises Digital Image Correlation (DIC) to record high-resolution strain and 
displacement information for the specimen under test. DIC is a non-intrusive optical 
technique which allows interpolation and generates an entire deformation field of the 
outer surface of any structure by tracking the movement of pixels in a camera image. 
The basic principle to accurately measure displacement on a flat specimen is based on 
dividing the image in regions or subsets of pixels. For each subset of pixels in the 
undeformed image a correlation function, such as the zero mean normalised sum of 
squared differences (ZNSSD), is used to find the subset in the deformed images: 
 

                  ……….(1) 
 
Where ,  are the pixel coordinates;  is the subset size;  are the standard 
deviations; and  and  are the images before and after motion. When the correlation 
function  is close to one, the subset has been identified in the deformed image. Under 
real conditions, images contain noise coming from various sources, thus the correlation 
function will never be a perfect match and interpolation techniques must be used.  
 
For a non-flat specimen, out-of-plane deformations cannot be captured by a single 
camera setup, thus a configuration with at least two cameras is required to create a 3D 
point cloud of the specimen. Two cameras in a stereo setup are synchronised by 
obtaining intrinsic and extrinsic parameters to relate the camera coordinates  
to the global frame of reference , using a linear pinhole model. 
 
3.3  Experimental Setup 
 
The DIC images were collected and processed using MatchID® software for several 
fatigue tests at different loading frequencies. The test was performed using three 
actuators and holding loads for six hours in static before doing 28,000 cycles in fatigue, 
simulating natural environmental conditions. The DIC setup (Figure 1) consisted of four 
cameras working in pairs. Two cameras pointed to the region between the root of the 
blade and the first actuator, and the other two pointed to the region between the first and 
the second actuator. The loading the blade experienced under the test conditions was a 
sinusoidal load exerted at 0.7 Hz. The blade was actuated with three separate rams with 
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equally distributed load between them. During a single loading cycle each actuator 
exerted the peak load of 65 kN and the minimum load of 15 kN. The blade was subject 
to one hundred consecutive cycles in a single test.  
 

 
Figure 1. General setup (left-hand). Distortion rate in pixels for a DIC field of view 

(right-hand). 
 
As a stereo DIC setup is used, calibration is critical to correlate both cameras. 150 high-
resolution images were taken targeting a calibration plate with 107 dots evenly spaced 
by 50 mm. Calibration was done individually for every pair of cameras, and the average 
error was 0.035845 pixels. As for the fatigue test, another set of images was taken at 7 
Hz during the 100 loading cycles with a camera exposure of 12 ms.  
 
Initial pre-processing showed high distortion rates in areas close to the edges, as seen in 
Figure 1. The field of view in these areas will not give accurate results for displacement 
and thus, strain. These values were reduced by maximising the area covered by the 
calibrating plate, resulting in distortions rates greater than one pixel to be isolated to the 
corners of the blade. Once the images were curated, they were processed to find the 
displacement field of the region of interest and their corresponding strain values using 
the criteria shown in Table 1. 
 

Table 1. DIC processing parameters 
Subset size 25 [pix] 
Step size 10 [pix] 
Correlation criterion Zero-Normalised Mean Sum of Squared Differences [-] 
Interpolation function Local bicubic splines [-] 
Shape function Quadratic [-] 
Stereo transformation Quadratic [-] 
Prefiltering Gaussian [-] 
Strain window 15 [-] 
Virtual strain gauge 165 [pix] 

 
 
3.4  Blade Data 
 
The blade (see Figure 1) has a length of 5.25 meters and a weight of 1588.59 kg 
(15584.07 N). Its natural frequency is approximately 18Hz, and the NACA 63-4XX 
aerofoil series defines its cross-section. The thickness-to-chord ratio of the blade 
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decreases from 55% at the root to a minimum of 18% at the tip. The innermost portion 
of the blade has a cylindrical cross-section with a thickness-to-chord ratio of 100%. This 
blade is a component of the DeepGen tidal project and was designed by Tidal 
Generation Limited (TGL) and manufactured by Aviation Enterprises Limited. 
 
4.  Data Collection and Pre-Processing 
 
4.1  Original Data 
 
The high-resolution DIC data was collected under the experimental conditions described 
in 3. Test specification and Set-up. The dataset collected consists of 97 images 
representing the maximum strain values for each recorded pixel. The information for 
each strain reading is stored as a 164 x 288 pixel matrix. 
 
Due to the non-rectangular shape of the area under investigation, non-speckled sections 
of the specimen, as well as reading errors, each strain map has entries which do not 
carry any numerical value and are represented as NaN (acronym for Not a Number). A 
sample strain map collected during the test is presented in Figure 2. 
 

 
 
Figure 2. The graphical representation of a randomly chosen image in the dataset 
collected. Each white pixel represents a NaN entry, whereas other pixels represent 
local strain measurements. The colour of the pixel is determined by the absolute 

strain value assigned according to the colour-bar presented. 
 
4.2  Data Mask 
 
Due to the considerations described in 5.1 Tailored Sensing relating to processing 
NaNs, each pixel has to be assigned a numerical value. This means, that the cells which 
carry no numerical values will begin to impact the computational results. The structure 
of the strain map shows a significant number of single pixels, or small clusters, carrying 
no numerical value. Each such location was assigned a numerical value as a result of 
linear interpolation between the adjacent strain readings in a single row.  
 
The manual inspection of the data collected has also revealed an area of the blade where 
the strain values would consistently deviate from the patterns recorded at the rest of the 
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blade. The occurrence of the issue is put down to the faulty operation of the DIC 
software. To mitigate the negative impact of this blade section on the computation of 
optimal sensor positions and strain map reconstruction, it has also been replaced with 
NaN values (see Figure 3). 
 

 
Figure 3. The section of the blade after replacing randomly occurring white pixels 

with interpolated strain values and cropping the faulty section in the top-right 
corner of the blade. 

 
 
4.3  Contrast Increase 
 
One the problems relating to the quality of the data collected which is evident in Figure 
2 and Figure 3 is little variation of the strain values across the plane of the blade, with 
the only significant hot-spots present at the edges of the structure. The physical 
interpretation of these results suggests that it is rather unlikely for such desolated high-
strain areas to appear in these parts of the blade. Therefore, it is concluded that they 
result from the imperfection of the DIC software and the values should be amended to 
enhance the strain contrast in the areas of the blade where high strain is expected.  
 
Anomalies were observed to occur on each edge of the image. Furthermore, the right 
edge (where the area under test is significantly curved) experiences particularly severe 
anomalies, which shifts the contrast of the image. As a result, each side of the image 
was cropped by five pixels, which represents half of the step size used in the DIC data 
processing (see Table 1). To avoid further problems associated with the unexpected 
behaviour recorded at the right edge of the investigated area, the image was cropped to 
the pixel where the transverse curvature of the section begins, by a total of 27 pixels. 
 
To prevent further anomalies from distorting the contrast between different maximum 
strain patters of the specimen, the range of strain values was limited. The mean, , and 
the standard deviation, σ, for each strain map collected was calculated and the lower and 
upper boundaries for all possible strain measurements were set to  and  
respectively. This way, considering the width of the interval, 4.2% of data was truncated 
on either side of the distribution. The image which has been subject to the cropping of 
undesired areas and has had the limited range of strain values applied is presented in 
Figure 4. 
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Figure 4. The representation of the cropped strain map with limited range of 
values. The regions with non-numerical values are represented in white. The 

resulting increase in the contrast of the strain map can be observed relative to the 
blade presented in Figure 2 and Figure 3. 

 
Another issue, resulting from the fact that the method for optimising the location of 
sensors investigated in this work cannot be used on non-numerical values, is the fact 
that larger areas covered in white (see Figure 4) need to be substituted with auxiliary 
values. Since all pixels in these sections represent the same type of information (NaN) it 
was decided that all of them would be assigned the same value. Since a value within the 
range:  would represent a valid strain measurement, the NaN cells are 
assigned to . Consequently, the non-numerical values never interfere with the 
strain data but the representation of non-numerical values will differ between each data 
sample.  
 

 
Figure 5. The representation of a single measurement used in the sensor placement 

optimisation procedure. The treatment of NaNs has decreased the contrast 
between distinct strain values due to the extension of the strain value range. 

 
5.  Sensor Location Optimisation and Data Reconstruction  
 
In this section, the steps taken to compute the optimal sensor placement for 
reconstructing the high-resolution image of the strain map are presented. The dataset, , 
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consists of strain maps,  of dimensions . The strain matrices are flattened into 
one-dimensional vectors and concatenated so that the dataset has the shape of 

, where  is the total number of strain maps. 
 
5.1 Tailored Sensing 
 
The aim of tailored sensing is to reconstruct a high-dimensional signal using low-
dimensional measurements of a system. While compressed sensing can be applied to a 
generic system, tailored sensing targets a system with historic data available. This way, 
the location of sensors can be tailored to enhance reconstruction results, using as few 
measuring points as possible. The problem can be presented as  (13):  
 
                                                                           ……………………………………(2) 
 
Where  are system measurements at locations given by ,  is a bases specific to the 
system considered and , which is a vector used for image reconstruction, is not sparse 
as in the case of compressed sensing, but has the same dimensions as . In tailored 
sensing the values of  are optimised based on . Measuring the values  at the 
locations defined by ,  can be calculated and subsequently used to reconstruct the 
high-dimensional image, . 
 
5.2.1 Dataset-Specific Bases 
 
The bases  can be constructed from the dataset  using a dimensionality reduction 
technique. In this work singular value decomposition (SVD) is used to obtain a matrix 
containing features representative of the entire dataset collected. SVD cannot be applied 
on matrices with non-numerical values. SVD decomposes a real dataset  into a product 
of three matrices, ,  and . One of the properties of  is that the linear combination 
of its columns, called singular vectors, can be used to reconstruct any sample  
belonging the dataset. Singular vectors represent features which are common for 
different samples in the dataset, with the first few entries of  storing the highest-level 
features. Therefore, it is possible to approximate the dataset using just a number of its 
high-level features . Thus (13):  
 
                                                                            …………………………………(3) 
 
gives an approximated value of  using first  entries of ,  and . , which 
contains the features common for all samples, has become equivalent to the lower-
dimensional approximation of the bases of all strain maps, .  
 
5.2.2 Dataset-Specific Bases 
 
The observation made by Manohar et al. (13) is that optimal sensor location can be found 
when performing pivoted QR factorisation. QR factorisation decomposes a matrix into 
an orthonormal matrix,  and an upper triangular matrix , whereas the process of 
column pivoting makes some of the QR factorisation instances more efficient. The 
optimal sensor placement is determined by the location of the pivot points when  
undergoes pivoted QR factorisation.  
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6.  Experimental Results 
 
6.1 Sensor Placement Results 
 
The optimisation procedure was carried out on the mean-centred dataset  and the 
results were validated on a strain map which was not a part of the training dataset. The 
sensor placement results have been computed for different values of  presented in 
Figure 6.  
 

 
Figure 6. Computed location of sensors (red) presented on a sample strain map. 
The  values are a) 5, b) 10, c) 15, d) 20, e) 25 and f) 30. Although the location of 

sensors is given by a unique pixel, they have been visualised with nine pixels. 
 
The experimental results demonstrate clear patterns of how sensors are optimally placed 
on the blade. It can be noted that sensors tend to be placed at the edges of the blade. 
Moreover, they also appear in the areas with a high strain gradient, i.e. where the strain 
values change significantly across a blade small area. This also explains their presence 
in positions adjacent to the areas which represent the non-numerical values, i.e. along 
the edges of the blade and the cropped areas within the blade. This implies that these are 
likely to be the blade areas where the greatest discrepancies between samples occur. It 
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can also be observed, that sparse sensor placement ( ) is characterised by an even 
distribution of sensors, while sensor clusters start to appear for denser sensor patterns.  
 
6.2 Reconstruction Results 
 

 
Figure 7. a) is the original image and the reconstructed images are plotted for a 

sample not belonging to the dataset for the  value of b) 5, c) 10, d) 13, e) 15, f) 20. 
 

Table 2. Reconstruction error values computed for a range of sensor numbers  
 

 2 5 10 13 15 20 
MAE 0.2380 0.1933 0.1691 0.1373 0.1248 0.1083 

Relative Error 40.42% 32.83% 28.73% 23.32% 21.20% 18.39% 
 
The mean absolute error (MAE) and relative error for the reconstruction results are 
presented in Table 2. The visual inspection of images presented in Figure 7 confirms 
that the maximum strain distribution patterns are preserved across the blade, whereas 
the contrast of the reconstructed images appears to be different from the original one. 
The values in Table 2 confirm that the increasing number of sensing points contributes 
to an increase of the accuracy of the reconstruction. However, the reconstruction error 
value has shown certain instability when computing values for increasing , which 
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might result from the fact that MAE would potentially fail to capture successful pattern 
reconstruction at a decreased contrast.  
 
7.  Conclusions and Further Work 
 
The sensor location has been computed for a range of sensor values. To facilitate 
recognising patterns of optimal sensor placement, sensor location has also been 
computed for numbers of strain gauges which would be impractical to install in reality. 
Several patterns have been identified which will be considered for locating strain gauges 
on the specimen under test. Their location can be specified by recording a few 
operational cycles using DIC and identifying areas characterised by a high strain 
gradient. Moreover, since the areas of sensor congestion were located on the main blade 
structure (and not in the NaN-dominated regions), the treatment of non-numerical 
values used in this work seems not to have had a negative impact on optimising sensor 
locations.  
 
The reconstruction of strain maps consisting of 34,848 strain measurements was 
successfully demonstrated with fewer than 20 measurements. The patterns of the 
maximum strain distribution were recreated visually, but the contrast of the 
reconstructed images was affected. The significant contrast decrease in the pre-
processing stage is thought to have affected the reconstruction quality, which suggests 
that a different NaN value treatment could be considered in the future work.  
 
It is also proposed for the investigation to be repeated on cropped strain maps with 
solely numerical values. A suggestion for further research is to perform more 
measurements and investigate the impact of the number of samples in the dataset on the 
performance of image reconstruction. Performing tests at different cycle frequencies 
and loading conditions should make the algorithm more robust for future deployment.  
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