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megacities: a case study of Guangdong–Hong Kong–Macao Greater Bay Area 
from 2000 to 2018
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aDepartment of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China; bResearch Institute for 
Land and Space, The Hong Kong Polytechnic University, Hong Kong, China; cDepartment of Geography and Resource Management and 
Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China; dInstitute of Geography, School 
of GeoSciences, University of Edinburgh, Edinburgh, UK

ABSTRACT
Rapid morphological and socioeconomic changes have accelerated the urbanization process 
and urban land use transformation in China. Megacities comprise clusters of urban cities and 
exhibit both newly formed and well-developed urban land use development beyond admin
istrative boundaries. It is necessary to distinguish the changing effects of spatial-varying driving 
factors on newly formed urban land uses from well-developed built-up areas in megacities. This 
study proposed a multi-spatial urbanization framework to quantify region-level socioeco
nomics, cluster-level ecological morphologies, and grid-level urban functional morphologies. 
A three-level Bayesian hierarchical model was developed to investigate the impacts of multi- 
spatial driving factors on urban land use transformation in megacities. The study period 
focused on the urbanization process between 2000 and 2018 in Guangdong–Hong Kong– 
Macao Greater Bay Area (GBA). Results revealed that compared with well-developed urban 
built-up land, changing impacts of three-level driving factors in urban land use transformation 
could be captured based on the proposed Bayesian hierarchical model. The region-level total 
population was associated with increasing possibilities in forming new residential land than the 
well-developed ones in 35 districts/counties/cities in GBA. Cluster-level ecological attributes 
with higher proportion, lower edge density of urban built areas, and lower-degree ecological 
complexity showed increasing probability on newly formed industrial and public land. Grid- 
level urban functional factors including public transportation density and shopping/dining 
distribution exhibited significantly decreasing probability (coefficients: −2.12 to −0.51) on 
contributing newly formed land uses compared with the well-developed areas, whereas 
business/industry distribution represented higher (coefficients: 0.99 and 0.15) and lower prob
abilities (coefficient: −0.22) of forming industrial/public land and residential land separately. 
This research shows a new attempt to distinguish multi-spatial morphological and socio
economic effects in urban land use transformation in megacities.
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1. Introduction

Megacities comprise highly connected urban settle
ments and have involved rapid urbanization processes 
accompanied by morphological and socioeconomic 
environment transformation (Kidokoro, Matsuyuki, 
and Shima 2022; Yeh and Chen 2020). Compared to 
individual cities, megacities formed as economic zones 
have linked up with multiple major cities and repre
sent multi-scale patterns of economic transition and 
urbanization with complex state–market relations 
(Chakraborty et al. 2022; Yu et al. 2021). The rapid 
growth of megacities led to urban expansion, reduc
tion of cultivated land, and drastic growth of urban 
population (Chang et al. 2020; Hui et al. 2020). Many 
studies have investigated the urbanization process and 

its driving factors such as urban morphological and 
socioeconomic characteristics in cities’ and megacities’ 
evolution (Naikoo et al. 2022; You and Yang 2017), 
which provide insights into distinguishing different 
urbanization levels and evaluating various urban 
land use transformation processes.

Megacities strengthened region-wide urban func
tions, which serve the basic social resources that are 
closely associated with the urbanization process (Liu 
and Su 2021; Pandey, Brelsford, and Seto 2022), by 
improving the spatial allocation of different places and 
facilities. For instance, the development of local com
mercial firms is associated with the concentration of 
specific commercial functions (Taylor and Derudder  
2015). The transportation morphologies, as the major 
connection to transfer labor, resources, and social 
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interactions among urban settlements, have been 
depicted by connectivity, nodes, and hierarchical 
structures to reflect urbanizing trends with various 
land uses (Chong and Pan 2020; Liu and Duan  
2020). In addition, the distribution of public services 
such as green spaces was considered as a vital mor
phological component contributed by land use poli
cies for megacity sustainable development (Huai and 
Van de Voorde 2022; Song et al. 2021). Such morphol
ogies of urban functions reflect the composition and 
configuration of the built environment and are there
fore required to be investigated based on fine-spatial 
scales, such as neighborhood level. The effects of 
neighborhood-level urban morphologies have been 
discussed in previous studies (Chen et al. 2021; Li 
et al. 2021), which provide evidence on quantifying 
fine-spatial urban functional facilities and distinguish 
their varying effects during urban land use 
transformation.

Meanwhile, the rapid urban growth has drasti
cally altered land cover and ecological patterns as 
a response to the increasing urban population and 
land demand (Wang and Zhang 2022). The impacts 
of land cover changes on urbanization and urban 
land use transformation could be explained by the 
policy urbanization (Miao and Phelps 2021). Such 
changes in megacities have been heightened con
cerning the potential inequality of resource alloca
tion, economic growth, and sustainable 
development (Wei and Ye 2014). Research has 
measured the unbalanced land cover dynamics dur
ing urban land use transformation: built-up land in 
megacities has reshaped other land cover patterns, 
such as the transformation of traditional to indus
trial and technological agriculture (Aznar-Sánchez 
et al. 2019), deforestation (Lin et al. 2019), and the 
decline in freshwater resources (Rashid, Manzoor, 
and Mukhtar 2018). Generally, changing landscape 
patterns were assessed using ecological characteris
tics such as the land fragmentation and expansion 
in previous studies (Atasoy 2018; Deng et al. 2021). 
Compared with urban functional patterns, ecologi
cal morphologies are beyond neighborhood and 
administrative restriction and often share similar 
distribution patterns with short distances 
(Taubenböck et al. 2014).

Moreover, demographic and economic processes 
including Gross Domestic Product (GDP) and popu
lation density have addressed the inequality among 
administrative regions (Liu, Wu, and Cao 2022; Liu 
and Li 2017; Long and Qu 2018). Particularly, fast 
population growth has led to the significant shrinkage 
of agricultural land and the heterogeneity of ecological 
patterns (Liu et al. 2011). Meanwhile, the drastic 
increase in GDP has contributed to the new waves of 
industrial development from labor-intensive to tech
nology-driven industry (Yeh and Chen 2020). These 

studies indicated the influences of GDP and popula
tion growing among areas in newly formed urban land 
uses compared with well-developed ones in the devel
opment of megacities.

However, limitations still exist in previous studies. 
First, the varying effects of morphological and socio
economic factors contributing to newly formed urban 
built-up land distinguished from well-developed areas 
have seldom been discussed, which could lead to 
biases in assessing the urbanization process among 
different urban spaces (Chen et al. 2021). For instance, 
research has revealed that neighborhoods in well- 
developed areas with high-density mixed urban func
tions exhibited a greater impact on urban vitality 
compared with newly formed areas (Xia, Yeh, and 
Zhang 2020). Second, ambiguity in selecting spatial 
units for depicting urban environments exists, as the 
varying spatial effects could cause uncertainties 
in measuring the homogeneity of urban morphologies 
and socioeconomics (Schmitt et al. 2023). In other 
words, the depiction of urban environments should 
be explainable on a proper spatial scale. 
Neighborhoods could reflect the basic configuration 
of urban morphologies (Masoumi, Terzi, and Serag  
2019), while ecological patches are clustered by 
urban built-up land with continuously homogeneous 
distribution (Wang et al. 2019). Socioeconomics, on 
the other hand, are usually reported within adminis
trative boundaries (Li, Zhang, and Sun 2020).

Moreover, integrating morphological and socioeco
nomic changes as driving factors in assessing newly 
formed urban built-up land is always challenging. Two 
major approaches including frequentist and Bayesian 
models could be used. Frequentist framework only 
provides fixed parameters, which accept or reject the 
hypothesis of the estimation. Bayesian framework, on 
the other hand, involves conditional probabilities of 
model parameters, showing the merits of more flexible 
multi-layer structures and more interpretable results 
(Post et al. 2022; Sadeghirad et al. 2022; Wang et al.  
2021). By applying Bayesian hierarchical models, the 
varying effects of multi-level driving factors could be 
flexibly modeled and effectively quantified. Previous 
studies have utilized Bayesian hierarchical models in 
assessing driving factors of land cover ecosystem (Han 
et al. 2023; Yang et al. 2022). It provides insights to 
apply such models in assessing newly formed urban 
built-up land in megacities.

As one of the largest megacities in China, the 
Guangdong–Hong Kong–Macao Greater Bay Area 
(GBA) serves as the major platform of China’s globa
lization and leads the significant growth of the global 
economy (Cao et al. 2019). It is therefore essential to 
understand land use restructuring and its driving fac
tors during the urbanization process in GBA. Against 
this background, this study aimed to evaluate the 
impact of urban morphologies and socioeconomics 
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on megacity evolution in GBA. A multi-spatial urba
nization framework was designed to quantify grid- 
level urban functional characteristics, cluster-level 
ecological morphologies, and region-level socioeco
nomics. Then, a Bayesian hierarchical model was 
built to evaluate multi-spatial factors to distinguish 
newly transformed land uses from a well-developed 
urbanized area. Particularly, coefficients of trans
formed land uses, including dominant industrial, pub
lic, and residential land, were quantified. The findings 
of this study can contribute to understanding the 
dynamic process of megacities and existing urban 
planning policies to guide, improve, and promote 
long-term urbanization evaluation and land use 
transformation.

2. Data and methods

A research workflow investigating multi-spatial mor
phological and socioeconomic impacts on newly 

formed urban built-up land in megacity evolution 
was proposed (Figure 1). We first extracted both well- 
developed urban built-up land and changes from other 
land uses to urban built-up land from 2000 to 2018 
and identified dominant land uses from changed 
areas. Then, multi-spatial urbanization factors invol
ving region-level socioeconomic, cluster-level ecologi
cal, and grid-level functional factors were proposed. 
Finally, a three-level Bayesian hierarchical model was 
proposed to investigate the impacts of multi-spatial 
factors on forming different land uses during urban 
evolution.

2.1. Data

Data used in this study are listed in Table 1. This study 
focused on the period of fast economic growth in this 
area, which is from the proposed Pan-Pearl River 
Delta (Pan-PRD) that promotes economic coopera
tion in 2004 to the released GBA 3-year action plan 

Figure 1. The research workflow, including (1) data processing to extract newly formed urban land uses, (2) a multi-spatial 
urbanization framework to depict morphologies and socioeconomics in megacities, and (3) a three-level Bayesian hierarchical 
model to distinguish the impacts of multi-spatial factors on urban land use transformation from the well-developed areas.

Table 1. The list of data sources, including provided datasets, representation years, spatial resolution, estimated accuracy, and 
source agencies.

Dataset Year
Spatial 

resolution Accuracy Source

Land cover maps 2000 
2018

30 m Above 93% 
(Ning et al. 2018)

Data Center for Resources Environmental Sciences, Chinese 
Academy of Sciences

Urban land use map 2018 Vector data 61.2% Gong et al. (2020)
Points of interest (POIs) 2018 Vector data – AutoNavi
Road networks 2018
Landsat 8 collection 1 tier 1 2018 30 m – United States Geological Survey
DSM 2020 30 m 1.387 to 4.894 RMSE 

(Zhao et al. 2021)
ALOS World 3D

NDVI 2018 .05 – NOAA Climate Data Record (CDR) Program
OSM data 2018 Vector data 82.2% in China (Wang, Zhou, and 

Tian 2020)
OSM

GDP 2018 – – Guangdong Statistical Yearbook 
The World Bank

Population 2018 .01 County-level R2 of 0.88 in China (Ma 
et al. 2021)

LandScan

GEO-SPATIAL INFORMATION SCIENCE 3



in 2019 (Tang and Ellison 2019). Due to the data 
availability, the period from 2000 to 2018, which 
approximately covers the fast-economic-development 
stage, was selected.

Particularly, land cover classes including barren 
land, cropland, forest, grassland, urban built-up land, 
rural settlements, and other built-up land (Figure 2) 
were used to (1) extract urbanization changes between 
2000 and 2018 and (2) quantify ecological character
istics. Particularly, land cover changes from other 
classes to urban built-up land from 2000 to 2018 
were delineated as newly formed urban built-up 

land. Since 1-km resolution has been frequently used 
in models of mapping the changes of large-scale land 
cover and land uses (Han, Champeaux, and Roujean  
2004; Liu et al. 2010; Luo et al. 2022), areas were 
resampled from 30 m to 1 km grids as basic spatial 
units.

The urban land use map was used to identify domi
nant land uses, including residential land, industrial 
land (commercial land included), and public land, 
based on the resampled 1 km grids. Dominant land 
uses were identified based on three steps: (1) domi
nant land use was classified based on the area 

(a) Land cover classification in 2000 

(b) Land cover map in 2018 

Figure 2. Land cover maps of the GBA in 2000 and 2018 (urban built-up land is depicted in red). (a) Land cover classification in 
2000 and (b) land cover map in 2018.
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occupation higher than 60%; (2) for the grids not 
fitting the first step, land use was classified with the 
highest proportion of distribution edges among all 
classes; and (3) well-developed urban built-up land 
during 2000–2018 remained unclassified.

OpenStreetMap (OSM), road networks, Landsat 8, 
Digital Surface Model (DSM), and Normalized 
Difference Vegetation Index (NDVI) data were 
adopted to extract buildings, greenery, water, and 
public spaces (roads are included) within urban built- 
up land using a random forest classifier. OSM data and 
road networks were used as classification labels for 
model training. Random forest parameters, including 
the number of trees and the number of variables per 
split, were determined using 10-fold cross-validation, 
and an overall classification accuracy of 97.74% was 
obtained. It should be noted that the DSM data in 2020 
were utilized due to the lack of available data in 2018. 
And the potential inconsistency between DSM data in 
2018 and 2020 may lead to the misclassification of 
objects within urban built-up land. However, as the 
classification process has been proposed based on 
multi-source data (OSM, DSM, and NDVI), the biases 
caused by inconsistent DSM data could be reduced.

2.2. Depicting three-level urbanization factors

Considering the spatial heterogeneity of urban envir
onments, urbanization factors including region-level 
socioeconomic factors, cluster-level ecological factors, 
and grid-level urban functional factors were proposed.

Socioeconomic characteristics including popula
tion and GDP per capita are usually measured based 
on administrative regions. With the selected 1 km 
grids that represent newly formed urban land uses, 
the total population and GDP per capita were included 
in socioeconomic factors. Specifically, the 1 km grids 
were grouped according to districts and counties 
(grids were grouped in cities in Hong Kong and 
Macao), in which grids share the same region-level 
socioeconomic factors.

Ecological patterns exhibit homogenous land cover 
distribution within a specific area. To identify these 
areas, ecological patterns were first measured based on 
grid level and then clustered according to the character
istic similarity. Each cluster, representing the similar 
characteristics, was considered as the basic spatial level 
for ecological assessment. Particularly, the ecological fac
tors were focused on the distribution patterns of built-up 
land during the urban evolution including the occupa
tion and complexity features. Note that although 1 km 
grids mainly contain urban built-up land in 2018, the 
resampling process from 30 m to 1 km grids has involved 
other land cover classes within grids. On the basis of this, 
four ecological factors were proposed, including 
Percentage of Urban Built-up Land (PUBL), Edge 
Density of Urban Built-up Land (EDUBL), Overall 
Landscape Shape Index (OLSI), and Overall 
Aggregation Index (OAI) (Table 2). Ecological clusters 
based on grids were extracted using a Gaussian Mixture 
Models (GMM). Specifically, the Expectation 
Maximization (EM) algorithm is implemented to fit the 
GMM, which estimates the probabilities of the grids with 
varying ecological morphologies. Grids with high prob
abilities were clustered as ecological patches. In particu
lar, the number of clusters was determined based on 
Bayesian Information Criterion (BIC), with lower-value 
BIC representing better model performance.

Urban functional factors reflect basic urban func
tions that serve the daily activities of citizens, such as 
greenery open space, shopping and business places, 
and public transportation. The spatial distributions of 
such features are usually represented in the neighbor
hood level. Considering the continuous large-scale 
areas in GBA, this study followed 1 km × 1 km grids 
to capture urban functional characteristics. On 
the basis of this, six factors were proposed for depict
ing grid-level urban functional characteristics, includ
ing Greenery/Water Proportion (GWP), Building 
Proportion (BP), Public Transportation Density 
(PTD), Road Distribution (RD), Shopping/Dining 
Distribution (SDD), and Business/Industry 
Distribution (BID) (Table 3).

Table 2. Cluster-level ecological factors (factors are illustrated with equations, output units and value ranges, and brief factor 
descriptions).

Factor Equation Unit Range Description

Percentage of Urban Built-up 
Land (PUBL)

PUBLi ¼
Ab;i

Ag;i
�100 Percent 0� PUBLi � 100 Ab,i and Ag,i refer to the total area of urban 

built-up land in the ith grid and total grid 
area, respectively.

Edge Density of Urban Built- 
up Land (EDUBL)

EDUBLi ¼
Eb;i

Ag;i
�10000 Meters per hectare EDUBLi � 0 Eb,i represents the total length of edge 

involving urban built-up land in the ith 
grid.

Overall Landscape Shape 
Index (OLSI)

OLSIi ¼ 0:25� Eiffiffiffiffiffi
Ag;i

p None OLSIi � 0 Ei refers to the total length of edge involving 
all reclassified land cover types of CNLUCC 
dataset in 2018.

Overall Aggregation Index 
(OAI)

OAIi ¼
Pm

i¼1

gjj;i

max gjj;ið Þ

� �

Pj;i

� �

� 100ð Þ

Percent 0� OAIi � 100 gjj refers to the number of like adjacencies 
involving all reclassified land cover types. 
max (gjj,i) represents the maximum 
number of gjj. Pj,i indicates the proportion 
of the jth land cover class.
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2.3. Evaluating urban land use transformation 
using a Bayesian hierarchical model

The Bayesian hierarchical model was considered to 
distinguish the impacts of multi-spatial factors on 
newly formed urban built-up land than well- 
developed ones. Generally, the Bayesian hierarchical 
model utilizes the Bayesian approach to estimate the 
parameters of the posterior distribution based on sev
eral levels (Baio and Blangiardo 2010). Regarding the 
grid-cluster-region-level characteristics, this study 
designed a three-level Bayesian hierarchical model 
with categorical distribution and varying distribution 
priors.

Before the Bayesian hierarchical model was 
implemented, the proposed characteristics were 
scaled with z-score standardization. At the first 
level, the relationship between dominant land uses 
and three-level urbanization characteristics follows 
a categorical distribution combined with a logit 
link, formulated as: 

yk,CategoricalðpÞ (1) 

logitðpkÞ ¼ αk þ βgridxgrid;k þ βclusterxcluster;k

þ βregionxregion;k (2) 

where αk indicates the random intercepts, while βgrid, 
βcluster, and βregion represent the coefficients of grid- 
level indicators xgrid;k, cluster-level indicators xcluster;k, 

and region-level indicators xregion;k, respectively. αk, 
βgrid, βcluster, and βregion are formulated as follows: 

αk ¼ αþ αcluster;k þ αregion;k (3) 

βgridxgrid;k ¼ βGWPxGWP;k þ βBPxBP;k þ βPTDxPTD;k

þ βRDxRD;k þ βSDDxSDD;k þ βBIDxBID;k

(4) 

βclusterxcluster;k ¼ βPUBLxPUBL;k þ βEDUBLxEDUBL;k
þ βOLSIxOLSI;k þ βOAIxOAI;k (5) 

βregionxregion;k ¼ βPOPxPOP;k þ βGDPxGDP;k (6) 

where α, αcluster;k, and αregion;k refer to the intercepts of 
fix effect, cluster-level random effect, and region-level 
random effect of the kth grid. β and x indicate the 
coefficients and variables of grid-level, cluster-level, 
and region-level indicators. At the second level, fix- 
effect intercept α and the coefficients of grid-level 
indicators include βGWP, βBP, βPTD, βRD, βSDD, and 
βBID, followed by a prior of Gaussian distribution. As 
variables were preprocessed based on z-score standar
dization, parameters’ mean and variation were set as 0 
and 1, shown as follows: 

α,Normalð0; 1Þ (7) 

βGWP; βBP; βPTD; βRD; βSDD; βBID,Normalð0; 1Þ (8) 

Table 3. Grid-level urban functional factors (factors are illustrated with equations, output units and value ranges, and brief factor 
descriptions).

Factor Equation Unit Range Description

Greenery/Water Proportion 
(GWP)

GWPi ¼
Ag;iþAw;i

Agrid;i
Ratio 0� GWPi � 1 Ag;i , Aw;i and Agrid;i represent the total 

area of greenery, water, and grid- 
level unit in the ith grid. The areas 
of greenery and water were 
obtained from the classification of 
Landsat 8 imagery.

Building Proportion (BP) BPi ¼
Ab;i

Agrid;i
Ratio 0� BPi � 1 Ab;i represents the total building area 

in the ith grid, which was obtained 
from the classification of Landsat 8 
imagery.

Public Transportation Density 
(PTD)

PTDi ¼
Ns;i

Lroad;i
Number of bus and subway stations 

per meter of road length
PTDi � 0 Ns;i and Lroad;i refer to the number of 

bus and subway stations and the 
length of roads, which were 
adopted from POIs and road 
networks of AutoNavi, 
respectively.

Road Distribution (RD) RDi or SDDi or BIDi 

¼ 1
ni hi

Pni

j¼1
K xi � xij

hi

� �
Number of points per square kilometer RDi � 0 K refers to the kernel function with hi 

as the bandwidth. xij indicates 
distributed roads, shopping/ 
dining, and business/industry 
points, while xi refers to any given 
points. Bandwidths were 
calculated based on Silverman’s 
Rule-of-thumb estimator. 
Specifically, RDi was calculated 
within public space class, while 
SSDi , and BIDi were calculated 
within both public space and 
building classes, which were 
obtained from the classification of 
Landsat 8 imagery.

Shopping/Dining Distribution 
(SDD)

SDDi � 0

Business/Industry Distribution 
(BID)

BIDi � 0
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Moreover, cluster-level and region-level intercepts 
αcluster and αregion, as well as coefficients including 
βPUBL, βEDUBL, βOLSI , βOAI , βPOP, and βGDP, were drawn 
from the prior multivariate normal distribution: 

αcluster
βPUBL

βEDUBL
βOLSI
βOAI

2

6
6
6
6
4

3

7
7
7
7
5

,MVNormal

0
0
0
0
0

2

6
6
4

3

7
7
5; Scluster

0

B
B
@

1

C
C
A (9) 

αregion
βPOP
βGDP

2

4

3

5,MVNormal
0
0
0

" #

; Sregion

 !

(10) 

Scluster ¼ diagðτcÞRclusterdiagðτcÞ (11) 

Sregion ¼ diagðτrÞRregiondiagðτrÞ (12) 

where Scluster and Sregion refer to covariance matrices. 
Rcluster and Rregion represent the cluster-level and regio
nal-level correlation matrix, separately, while τc and τr 
are the vectors of coefficient scales. At the third level, 
τc and τr follow a half-Cauchy distribution prior, while 
Rcluster and Sregion were assigned to a Lewandowski– 
Kurowicka–Joe (LKJ) correlation distribution prior, 
which are formulated as follows: 

τc; τr,HalfCauchyð0; 1Þ (13) 

Rcluster; Sregion,LKJcorrð1Þ (14) 

Specifically, the proposed Bayesian hierarchical model 
considers both fixed effects and random effects of the 
urbanization factors. While fixed effects usually adopt 
Gaussian distribution as priors with the most con
cerned variables, multivariate distributions are often 
used in random effects. Grid-level indicators were 
implemented as fixed effects since urban functional 
morphologies such as transportation and different 
functional facilities are served as the basic roles in 
forming urban land use transformation (Li et al.  
2019; Wu et al. 2021), whereas cluster-level and 
region-level factors, which were implemented as ran
dom effects, are aggregated or influenced by the basic 
urban configurations (Schmitt et al. 2023).

Moreover, among dominant land uses, the proposed 
three-level Bayesian hierarchical model takes the well- 
developed land uses as a reference class. As a result, the 
estimated coefficients of factors corresponding to domi
nant residential land, industrial land, and public land 
indicate the probabilities of how urbanization charac
teristics link to the identified classes in newly formed 
land uses when compared to the linkage between urba
nization characteristics and well-developed land uses. 
Positive and negative coefficients represent increasing 
and decreasing probabilities to identify a specific domi
nant land use type, respectively.

3. Results

3.1. Region-level socioeconomic impacts

Compared with well-developed urban built-up land, 
the region-level total population exhibited higher 
probabilities on forming new residential land than 
the well-developed ones in 35 districts/counties/cities 
in GBA (Figure 3). Moreover, the impacts of the total 
population on newly formed industrial and public 
land significantly varied (coefficients: −0.38 to 0.55 
and − 0.24 to 0.3, respectively). And GDP per capita 
showed both increasing and decreasing effects on 
urban land use transformation compared with the 
well-developed regions in GBA (coefficients for domi
nant industrial, public, and residential land: −1.66 to 
0.87, −0.24 to 0.19, −0.88 to 0.77). In summary, the 
total population played a vital role in contributing 
residential land compared with industrial and public 
land during the urban transformation process. The 
increasing population has contributed to higher hous
ing demand, which serves the basic needs of inhabi
tants and thus exhibits close linkage with the 
residential land growth (Overman, Puga, and Turner  
2008). On the other hand, inconsistent association was 
shown between the increasing GDP and the develop
ment of newly formed urban built-up land. The poten
tial reasons include different economic foundation 
and directions, as well as the governments’ interven
tion in the land market (Yu, Zhou, and Yang 2019).

3.2. Cluster-level ecological morphological 
impacts

Grids were classified into 146 clusters that share similar 
ecological patterns using GMM. Five clusters with dif
ferent characteristics, which were depicted based on 
relatively high-, mid-, and low-degree ecological factors, 
were selected to further assess the impacts on newly 
formed urban land uses (Table 4). Changing impacts of 
ecological factors on forming urban land uses compared 
with well-developed ones in GBA varied among these 
clusters (Figure 4). Regarding industrial land, PUBL in 
Cluster 12 exhibited the highest probability in urban 
land use transformation (coefficient: over 0.02). EDUBL 
and OLSI in Cluster 15 showed increasing probabilities 
(coefficients: over 0.04 and 0.05), whereas OAI in 
Cluster 15 reported decreasing probability (coefficient: 
−0.05) in forming dominant industrial land. For domi
nant public land, EDUBL and OLSI in Cluster 15 repre
sented the highest probabilities (coefficients: 0.16 and 
0.09), while PUBL and OAI showed the lowest prob
abilities (coefficients: −0.1 and − 0.04) of urban land use 
transformation. For dominant residential land, highest 
probabilities (coefficients: 0.18 and 0.13) were revealed 
in EDUBL and OLSI in Cluster 94, while lowest prob
abilities (coefficients: −0.1 and − 0.05) were found in 
PUBL and OAI in Cluster 94.

GEO-SPATIAL INFORMATION SCIENCE 7



To sum up, results based on the selected clusters 
revealed the contribution of higher proportion, lower 
density of urban built-up land, and lower-degree eco
logical complexity on urban land use transformation 
in GBA. Such ecological patterns highlighted the 
aggregation trend of urban built-up land, which 
could be supported by the period of rapid urban 

expansion in GBA (Zheng et al. 2022). Moreover, the 
low-degree complexity of ecological morphologies 
revealed the dominant distribution of urban built-up 
land compared with other land cover classes such as 
green spaces, and water body, indicating the unba
lanced urban configurations and further suggesting 
the sustainable development of physical environment.

Figure 3. The random effects of region-level socioeconomic factors on industrial, public, and residential land. The x-axis represents 
coefficient values of the total population and GDP per capita, and y-axis represents counties/districts/cities in GBA.
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3.3. Grid-level urban functional morphological 
impacts

Grid-level urban functional factors exhibited various 
impacts on forming urban land uses compared with 

well-developed areas (Figure 5). Particularly, increasing 
and decreasing probabilities of GWP on industrial, 
public, and residential land were found on contributing 
to urban land uses (coefficients: 0.15, −0.13, and − 0.09). 
BP showed no significant changes between impacts on 
newly formed land uses and well-developed areas. RD 
exhibited less impacts on newly formed public and 
residential land and decreasing probabilities on contri
buting to dominant industrial land. Moreover, PTD and 
SDD showed significantly decreasing probabilities on 
forming dominant industrial, public, and residential 
lands. BID showed positive probabilities on newly 
formed industrial land and public land (coefficients: 

Table 4. The selected clusters (clusters were depicted with 
different characteristics, including relatively high-, mid-, and 
low- PUBL, EDUBL, OLSI, and OAI).

Clusters Characteristics

Cluster 12 Mid PUBL, OLSI, and OAI
Cluster 15 High PUBL Low EDUBL and OLSI
Cluster 52 Low PUBL High EDUBL, OLSI
Cluster 64 Mid PUBL, OLSI, OAI
Cluster 94 High PUBL, Low EDUBL

Figure 4. Radar plots of cluster-level ecological effects on industrial, public, and residential land in selected clusters. Axes represent 
coefficients of PUBL, EDUBL, OLSI, and OAI for each cluster.
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0.99 and 0.15) and negative probabilities on dominant 
residential land (coefficient: −0.22).

3.4. Multi-spatial urbanization factors in 
individual cities in GBA

To assess the impacts on multi-spatial urbanization 
factors (especially grid-level urban functional charac
teristics) in megacities, investigations on individual 
cities in GBA were proposed (Figure 6). Compared 
with GBA-level analyses, Dongguan has revealed the 
increasing probabilities based on road density of form
ing dominant industrial and public lands. Findings 
can be explained by the strategies and policies pro
posed by governments to develop new districts that 
are named “experimental zones” (Wang 2013; Wuttke  
2011). Binhai Bay in Dongguan, constructed as 
a designated area for city planning, provided sufficient 

evidence on such significant linkages between urban 
functional construction and urbanization changes 
(Yang 2019). Specifically, it was designed as advanced 
manufacturing places that promote industrial trans
formation during urban sprawl and became the corri
dors Guangzhou-Shenzhen, as well as Shenzhen- 
Zhongshan, respectively. Those strategies support 
our findings that road structures show a higher impact 
on the urbanization process in Dongguan instead of 
the entire GBA region. Regarding the dominant public 
land, Hong Kong showed much less significant 
impacts of urban functional characteristics, especially 
the public transportation density, road density, and 
distribution of both shopping/dining and business/ 
industry, compared with other cities. As one of the 
developed cities in the world, Hong Kong has the well- 
organized strategies of urban utilization and had 
formed systematic economic and public services 

Figure 5. The impacts of grid-level urban functional factors on dominant industrial, public, and residential land in the GBA. The 
x-axis represents coefficient values and y-axis represents cumulative quantities of grids within the ranges of coefficients. The red- 
dotted lines indicate the coefficients being 0. Blue columns and brown lines represent coefficient distribution and coefficients with 
95% intervals.
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since the year 1987. The findings in Hong Kong that 
less impact discrepancies of urbanization characteris
tics on the changes of urban built-up land support 
such stabilization of urban development.

4. Discussion

4.1. The mechanism behind the multi-spatial 
urbanization factors

This study revealed that dominant industrial land 
represented the largest area (percentage: 59.96%) 
among the newly formed urban built-up land in 
GBA. It could be explained by the rapid incremental 
urban expansion reshaping and strengthening for eco
nomic development in the Pearl River Delta 
Metropolitan Region and the incorporation of 
Hong Kong and Macao. For example, urban develop
ment strategies have been proposed by governments 
on Nansha District in Guangzhou, Nanshan District in 
Shenzhen, Cuiheng New District in Zhongshan, and 
Binhai Bay in Dongguan, implemented with public 
infrastructures to support industrial development.

The region-level socioeconomic factors showed sig
nificant unbalances of urban expansion, growing 
population, and the increasing GDP among 51 dis
tricts/counties/cities in GBA. This study supports the 

findings in previous research that increasing popula
tion can contribute to the urban land expansion (Liu 
et al. 2016; Yang et al. 2019). On the other hand, 
regions such as Liwan District in Guangzhou and 
Longhua District in Shenzhen represented the largest 
proportions of urban built-up land expansion, show
ing relatively low-level total population and GDP per 
capita in 2018 compared with other regions. Another 
unbalanced socioeconomic pattern was revealed in 
Bao’an District in Shenzhen. It has reached a total 
population of over 3 million accompanied by the 
newly formed urban built-up land occupied almost 
30% of the total area, which were more intensive 
than the development of GDP per capita (Figure 7). 
The increasing urban built-up land and the population 
in these districts were closely correlated with the rural 
migrants moving into the cities for job opportunities 
and social resources. However, findings indicated that 
the GDP per capita was much lower in these districts 
compared with the rapid urban expansion or popula
tion growth. Since these districts are far away from the 
financial center of Guangzhou and Shenzhen, they 
received less economic supports and had less well- 
developed economies than the central districts (Cao 
et al. 2014).

The analysis of ecological clusters distinguished 
various impacts on different land uses of newly 

Figure 6. The fixed effects (with 95% intervals) of grid-level urban functional characteristics on dominant land uses in individual 
cities in the GBA.
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formed urbanized areas from well-developed ones in 
GBA. Results indicated that lower edge densities of 
urban built-up land and less land cover complexities 
exhibit higher impacts on dominant industrial and 
public land. It explained the dramatic increase in 
continuous urban built-up land driven by the eco
nomic development, indicating that such urban 
expansion pattern was specifically focused on the 
industrial land. And the public land was heavily 
invested including the public facilities and infrastruc
tures to support the industrial evolution (Wei and Ye  
2014). Moreover, the lower complexity of urban built- 
up land indicated the fast development of real estate 
for residential needs accompanied by the dramatic 
growth of population in urban areas (Lin et al. 2015; 
Wen et al. 2020).

While previous studies have revealed the important 
role of urban functional morphologies across the over
all urbanization area (Xing and Meng 2020a, 2020b), 
this study found no significant impacts of building and 

road density on the newly formed urban built-up land 
compared with the well-developed area between 2000 
and 2018. It suggests that strategic planning by the 
government on real estate, road network, and natural 
resources, despite the various land uses, was consistent 
during megacity evolution to provide social support 
and serve basic functions for the residents.

Moreover, the distribution patterns of business and 
industrial places showed increasing probabilities to 
identify both dominant industrial land and public 
land than those classifying well-developed land use, 
while decreasing probabilities were resulted in identi
fying dominant residential land. Such land use hetero
geneity was consistent with the policies implemented 
in GBA to promote industrialization (Yang 2012), 
especially the transformation from agriculture to man
ufacturing land uses that led to the tendency of edge- 
center patterns of the megalopolis. However, the 
decreasing probability based on densities of public 
transportation and shopping/dining distribution 

Figure 7. Proportion of newly formed urban built-up land, well-developed urban built-up land, total population, and GDP per 
capita in 2018 in districts/counties/cities in the GBA.
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indicated that although urban sprawl has brought 
tremendous opportunities to develop industrial infra
structures, there were shortages of public amenities 
and commercial facilities in the newly formed urban 
built-up land that intensified the unbalanced develop
ment between central and sprawling urban areas.

4.2. Limitations

Despite there are significant findings of this study, some 
limitations still exist. The first challenge is the availability 
and the quality of the spatial data. High-resolution land 
cover and land use data cannot be obtained in many 
places, which could lead to biases in assessing urbaniza
tion changes in the continuous regions. Moreover, the 
data quality may vary among regions. For instance, since 
OSM is a geographical database based on crowdsourcing 
volunteered data, the completeness and accuracies of the 
OSM data in some countries and regions are below 
standard. As a result, inaccurate results could be obtained 
in assessing the urbanization process in megacities. To 
reduce the biases caused by data quality, the required 
data should be carefully validated in terms of the spatial 
locations and the land use attribution using sampling 
strategies in future studies.

Second, the identification of dominant urban land 
uses should be improved. In this study, specific dominant 
land use types were not included in several cities. For 
example, newly formed dominant industrial land and 
residential land were not extracted in Macao, and domi
nant public land was not included in Zhuhai and 
Zhaoqing. This could be explained by (1) the selection 
of 1 km grids that could not capture finer patterns of 
newly formed urban built-up land and (2) the identifica
tion of dominant classes (based on the highest proportion 
and edge density of land use class) that ignores scattered 
small areas of land uses and mixed land uses. To fill this 
gap, grids with smaller sizes (such as 500 m × 500 m 
grids) or blocks delineated by streets, as well as mixed 
land uses should be considered to capture finer- 
resolution multi-function urban built-up patterns in 
future studies.

Third, the proposed multi-spatial urbanization fac
tors in this study, which have been depicted from 
urban functional, ecological, and socioeconomic per
spectives, might not comprehensively represent the 
environmental and social changes in other megacity 
evolution. There are other geographical factors that 
could mediate the urbanization process, such as the air 
quality and the proximity to other cities (Taubenböck 
et al. 2014; Zhang et al. 2022). In addition, such urba
nization framework should be assessed in other mega
cities, such as the Beijing–Tianjin–Hebei (BTH) and 
Yangtze River Delta (YRD) in China. The investiga
tion on different megacities provides evidence to 
assess the changing urbanization characteristics 

regarding the varieties of environmental and socio
economic development.

4.3. Policy recommendation

The varying effects of urbanization factors on newly 
formed and well-developed urban areas provide evi
dence for urban planning policies to better under
stand urbanization trends, which in turn could 
effectively guide the sustainable development of 
urban morphologies and socioeconomics. Thus, it 
is important to find up-to-date suggestions about 
urban function optimization, ecological allocation, 
and socioeconomic sustainability in megacities, not 
limited to the GBA, for the urban policymakers. 
Particularly, the increasing region-level population 
exhibited higher possibilities of forming dominant 
industrial, public, and residential land in this study. 
Such population burdens have generated severe 
challenges to social resources and environmental 
sustainability (Song et al. 2021). Meanwhile, the 
phenomenon of city shrinkage has been found in 
many places nowadays that exhibited population 
decline and economic downturn (Liu and Liu  
2022). It revealed the necessity of balancing the 
urban population growth and the urban carrying 
capacity in different urbanization stages.

In terms of the ecological environment, findings 
have revealed the close linkage between high-level 
occupation, low-level complexity urban built-up 
land, and the newly formed dominant land uses. It 
suggested the importance of proposing scientific allo
cation strategies for developing land cover diversities. 
For instance, water body is one of the major natural 
sources to support residents’ basic needs and cities’ 
sustainable development (Rashid, Manzoor, and 
Mukhtar 2018). Moreover, the rapid shift from rural 
to urban land and the increasing human demands 
have been subject to large-scale forest loss (Liu et al.  
2016); thus, the governments need to pay attention to 
maintaining the coordination of megacity evolution 
and forest protection.

Moreover, the megacities showed the significant 
development of the urban functions. The improve
ments of transportation and commercial, industrial 
facilities have contributed to the industrialization 
process. Besides, the enhancement of transporta
tion system is necessary, especially with increasing 
urban expansion and population, which has also 
been shown by the findings that high-density pub
lic transportation contributes to the development 
of industrial and public land in this study. In 
addition, for the sustainability in megacity evolu
tion, the urban function allocation could be man
aged and planned beyond city administrative 
boundaries.
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5. Conclusion

This study has presented a multi-spatial framework 
to compare the changing impacts of urban morphol
ogies and socioeconomics on newly formed urban 
land uses with well-developed areas in megacities. 
A three-level Bayesian hierarchical model was 
designed to distinguish the changing impacts of 
region-level socioeconomics, cluster-level ecological 
morphologies, and grid-level urban functional 
morphologies in GBA. Findings indicated that the 
constructed Bayesian hierarchical model could ffec
tively assess the changing influences of urban 
morphologies and socioeconomics on newly formed 
urban land uses. With the well-developed urbanized 
area in 2000 as the reference point, region-level 
socioeconomics exhibited an increasing impact of 
total population on forming dominant residential 
land in most regions. Cluster-level ecological 
morphologies with higher proportion, lower edge 
density of urban built-up land, and lower-degree 
land cover complexity contributed to forming domi
nant industrial land and public lands. Regarding 
grid-level urban functional morphologies, high-level 
public transportation, and shopping/dining densities 
indicated decreasing probabilities of forming urban 
land uses, while high-level densities of business and 
industry facilities exhibited increasing probabilities 
of forming dominant industrial/public land and 
decreasing probabilities of forming dominant resi
dential land. In addition, urban function morpholo
gies varied among cities, elucidating substantial 
discrepancies between GBA-scale and city-scale ana
lyses. The proposed framework has provided new 
insights into understanding the impact of multi- 
level urbanization structures on land use transforma
tion in megacities.
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