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The Recursive Arrival Problem

Thomas Webster
University of Edinburgh, UK

Thomas.Webster@ed.ac.uk

We study an extension of the Arrival problem, called Recursive Arrival, inspired by Recursive
State Machines, which allows for a family of switching graphs that can call each other in a recursive
way. We study the computational complexity of deciding whether a Recursive Arrival instance ter-
minates at a given target vertex. We show this problem is contained in NP∩coNP, and we show that
a search version of the problem lies in UEOPL, and hence in EOPL = PLS∩PPAD. Furthermore,
we show P-hardness of the Recursive Arrival decision problem. By contrast, the current best-known
hardness result for Arrival is PL-hardness.

1 Introduction

Arrival is a simply described decision problem defined by Dohrau, Gärtner, Kohler, Matous̆ek and
Welzl [5]. Informally, it asks whether a train moving along the vertices of a given directed graph, with n
vertices, will eventually reach a given target vertex, starting at a given start vertex. At each vertex, v, there
are (without loss of generality) two outgoing edges and the train moves deterministically, alternately
taking the first out-edge, then the second, switching between them if and when it revisits that vertex
repeatedly. This process is known as “switching” and can be viewed as a deterministic simulation of a
random walk on the directed graph. It can also be viewed as a natural model of a state transition system
where a local deterministic cyclic scheduler is provided for repeated transitions out of each state.

Dohrau et al. showed that this Arrival decision problem lies in the complexity class NP∩ coNP,
but it is not known to be in P. There has been much recent work showing that a search version of
the Arrival problem lies in subclasses of TFNP including PLS [17], CLS [13], and UEOPL [12], as
well as showing that Arrival is in UP∩ coUP [13]. There has also been progress on lower bounds,
including PL hardness and CC hardness [18]. Further, another recent result by Gärtner et al. [14] gives
an algorithm for Arrival with running time 2O(

√
n log(n)), the first known sub-exponential algorithm. In

addition, they give a polynomial-time algorithm for “almost acyclic” instances. Auger et al. also give a
polynomial-time algorithm for instances on a “tree-like multigraph” [2].

The complexity of Arrival is particularly interesting in the context of other games on graphs. For
instance, Condon’s simple stochastic games, mean-payoff games, and parity games [4, 20, 16], where
the two-player variants are known to be in NP∩coNP and the one-player variants have polynomial time
algorithms. Arrival, however, is a zero-player game that has no known polynomial time algorithm and,
furthermore, Fearnley et al. [11] that a one-player generalisation of Arrival is, in fact, NP-complete, in
stark contrast to these two-player graph games.

We introduce and consider a new generalisation of Arrival that we call Recursive Arrival, in
which we are given a finite collection of Arrival instances (“components”) with the ability to, from
certain nodes, invoke each other in a potentially recursive way. Each component has a set of entries and
a set of exits, and we study the complexity of deciding whether the run starting from a given entry of
a given component reaches a given exit of that component, which may involve recursive calls to other
components.

https://creativecommons.org
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2 The Recursive Arrival Problem

Our model is inspired by work on recursive transition systems started by Alur et al. [1] with Recursive
State Machines (RSMs) modelling sequential imperative programming. These inspired further work
on Recursive Markov Chains (RMCs), Recursive Markov Decision Processes (RMDPs), and Recursive
Simple Stochastic Games (RSSGs) by Etessami and Yannakakis [8, 9, 10]. RSMs (and RMCs) are
essentially “equivalent” (see [9]) to (probabilistic) pushdown systems [3, 6] and have applications in
model-checking of procedural programs with recursion.

There is previous work on Arrival generalisations including a variant we call Succinct Arrival,
where at a vertex v the alternation takes the first outgoing edge of v on the first Av visits and then the
second edge the next Bv visits, repeating this sequence indefinitely. The numbers Av and Bv are given
succinctly in binary as input, and hence may be exponentially larger than the bit encoding size of the
instance. Fearnley et al. showed that Succinct Arrival is P-hard and in NP∩ coNP [11]. However,
we do not know any inter-reducibility between Recursive Arrival and Succinct Arrival variants.
In [19], we also defined and studied a generalisation of Arrival that allows both switching nodes as well
as randomised nodes, and we showed that this results in PP-hardness and containment in PSPACE for
(quantitative) reachability problems.

In this paper, we show that the Recursive Arrival problem lies in NP∩ coNP, like Arrival, by
giving a generalised witness scheme that efficiently categorises both terminating and non-terminating
instances. We also show that the natural search version of Recursive Arrival is in both PLS and
PPAD and in fact in UEOPL, by giving a reduction to a canonical UEOPL problem. We also show
P-hardness for the Recursive Arrival problem by reduction from the Circuit Value Problem. This
contrasts with the current best-known hardness result for Arrival, which is PL-hardness ([18]).

Due to space limitations, many proofs are relegated to the appendix.

2 Preliminaries

Let N= {0,1, . . .} denote the natural numbers, and let N∞ = N∪{∞}. We assume the usual ordering on
elements of N∞. For j ∈ N and k ∈ N∞, we use the notion [ j . . .k] = {i ∈ N | j ≤ i ≤ k}, and we define
[k] = [1 . . .k]. All propositions of this section follow directly from the cited prior works.

Definition 2.1. A switch graph is given by a tuple G := (V,s0,s1) where, for each σ ∈ {0,1}, sσ : V →V
is a function from vertices to vertices.

Given a Switch Graph G, we define its directed edges to be the set E := {(v,s0(v)) | v ∈ V} ∪
{(v,s1(v)) | v ∈ V}, with self-loops allowed. We write Eσ := {(v,sσ (v)) | v ∈ V} for σ ∈ {0,1} to
refer to edges arising specifically from transitions sσ (v), for each vertex v.

Given a switch graph, G := (V,s0,s1), we say q : V → {0,1} is a switch position on V . We let Q
be the set of all switch positions on V and define q0 ∈ Q by q0(v) = 0 for all v ∈ V as the initial switch
position. Given a switch graph, we say a state of the graph is an ordered pair (v,q) ∈ V ×Q and we
let Γ = V ×Q be the state space. We define the “flip action”, flip : V ×Q → Q, of a vertex on a switch
position, as follows: flip(v,q)(u) = q(u) for all u ∈ V \ {v} and flip(v,q)(v) = 1− q(v), i.e., this action
flips the function value of q at v only. We can then define a transition function δ : Γ → Γ on a switch
graph as δ ((v,q)) = (sq(v)(v),flip(v,q)).

We define the run of a switch graph G with initial state γ0 :=(v0,q0) to be the unique infinite sequence
over Γ, RUN∞(G,γ0) := (γi)

∞
i=0 satisfying γi+1 := δ (γi) for i ≥ 0. For a vertex v ∈ V , we say a run

terminates at v if ∃t ∈ N such that ∀i ≥ t ∃qi ∈ Q with γi = (v,qi). We call T ∈ N∞ the termination
time defined by T := inf{t | ∀i ≥ t, vi = vt}, where inf /0 = ∞. We denote by RUN(G,γ0) := (γi)

T
i=0 the
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subsequence of RUN∞(G,γ0) up to the termination time T . We say a run hits a vertex v ∈ V if ∃t ∈ N
and ∃qt ∈ Q such that γt = (v,qt).

We note that in order to terminate at a vertex, v ∈V , we must have that v = s0(v) = s1(v). We define
the set of “Dead Ends” in the instance as DE := {v ∈ V | s0(v) = s1(v) = v}. From this definition, it is
obvious that we either terminate at some unique vertex v ∈ DE, or we never terminate. We may now
define the Arrival Decision problem:

Arrival

Instance: A Switch Graph G := (V,s0,s1) and vertices o,d ∈V .
Problem: Decide whether or not the run of switch graph G with initial state (o,q0) terminates at vertex

d.

Given a switch graph G with directed edges, E, we define the relations →∗,→+⊆ V ×V as follows
u →∗ v (resp. →+) for u,v ∈V if and only if there is a directed path w0, . . . ,wk ∈V with (wi,wi+1) ∈ E
for i ∈ [k− 1], with w0 = u and wk = v for k ≥ 0 (resp. k ≥ 1) from u to v in (V,E). We write u ̸→∗ v
(resp. ̸→+) whenever we do not have u →∗ v (resp. u →+ v).

We note that we can view the sequence of vertices visited on a run as a directed path in (V,E), thus if
the run with initial state (v,q) hits w then we can conclude v →∗ w and, contrapositively, if v ̸→∗ w then
for all (v,q) ∈ Q the run starting at (v,q) does not hit w.

We let I{a = b} be the indicator function of a = b, which is equal to 1 if a = b and is equal to 0
otherwise. We now define a switching flow, rephrasing Definition 2 of Dohrau et al. [5]:

Definition 2.2 ([5, Definition 2]). Let G := (V,s0,s1) be a switch graph, and let o,d ∈V be vertices. We
define a switching flow on G from o to d as a vector xxx := (xe | e ∈ E) where xe ∈N such that the following
family of conditions hold for each v ∈V :

Flow Conservation :

(
∑

e=(u,v)∈E
xe

)
−

(
∑

e=(v,w)∈E
xe

)
= I{v = d}− I{v = o}, ∀v ∈V,

Parity Condition : x(v,s1(v)) ≤ x(v,s0(v)) ≤ x(v,s1(v))+1, ∀v ∈V.

We note that given G, o and a switching flow xxx from o to some, unknown, vertex d ∈ V , we can
compute exactly which d by verifying the equalities. We refer to d as the current-vertex of the switching
flow. If o ∈ V is an initial vertex and t ∈ N a time, we let RUN(G,(o,q0)) := ((vi,qi))

∞
i=0 be the run,

and define the Run Profile to time t to be the vector rrruuunnn(o, t) := (|{i ∈ [t] | (vi−1,vi) = e}| | e ∈ E). It
follows that for any o ∈ V and t ∈ N that rrruuunnn(o, t) is a switching flow from o to some vertex d ∈ V [5,
Observation 1]. We say a switching flow xxx is run-like if there exists some t ∈ N such that xxx = rrruuunnn(o, t).

It follows directly from the results of Dohrau et al.[5] and Gartner et al.[13] that:

Proposition 2.3 ([5, 13]). There exists a polynomial function p : N→ N such that for all Switch Graphs
G := (V,s0,s1) and all vertices o,d ∈V with o ̸= d and d ∈ DE the following are equivalent:

• The run on G from initial state (o,q0) terminates at d.

• There exists a run-like switching flow xxx on G from o to d satisfying ∀e ∈ E, that log2(xe)≤ p(|G|).
Furthermore, for the same polynomial p, the following are equivalent:

• The run on G from initial state (o,q0) does not terminate.

• There exists a vertex d′ ∈ V \DE, a run-like switching flow xxx on G from o to d′, and an edge
e′ = (u,d′) ∈ E which satisfies for all e ∈ E \{e′} that log2(xe)≤ p(|G|) and that xe′ = 2p(|G|)+1.
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It follows from these results that Arrival is in NP∩ coNP, as we may non-deterministically guess
a vector, xxx, whose coordinate entries are bounded by 2p(|G|)+ 1, and then verify whether or not xxx is a
run-like switching flow. Using [13, Lemma 11] we may verify the run-like condition in polynomial time,
on which we will elaborate subsequently. If we find a run-like switching flow to some dead end d′ ∈ DE
we may conclude G terminates at d′ and by the first part of Proposition 2.3 we can find such a flow within
these bounds. This may be either a flow to the given dead-end d in our input, or to some other dead-end,
certifying non-termination at d. The last case of Proposition 2.3 says that when G does not terminate
anywhere, we may also find a flow certifying this within our bounds, namely with some coordinate value
of the guessed vector xxx being exactly2p(|G|)+ 1 . In fact, it was shown by [13] that this argument also
shows containment of Arrival in UP∩coUP, by showing there is a unique witness xxx satisfying just one
of these conditions.

Let G := (V,s0,s1) be a Switch Graph and let xxx be a switching flow on G between some vertices
o,d ∈V . We define the last-used-edge graph G∗

xxx := (V,E∗
xxx ) with the following set of edges:

E∗
xxx :={(v,s0(v)) | v ∈V and x(v,s0(v)) ̸= x(v,s1(v))}∪{(v,s1(v)) | v ∈V and x(v,s0(v)) = x(v,s1(v)) > 0}

This graph contains at most one of the edges (v,s0(v)) or (v,s1(v)). If x(v,s0(v)) + x(v,s1(v)) > 0, then
assuming there exists some run on which we visit vertex v a total of x(v,s0(v))+x(v,s1(v)) times, E∗

xxx contains
the edge out of v that our switching order would use the last time v was visited on such a run. If on the
other hand x(v,s0(v))+ x(v,s1(v)) = 0, then E∗

xxx contains neither edge.

Proposition 2.4 ([13]). Let G := (V,s0,s1) be a Switch Graph and let xxx be a switching flow on G from
o ∈V to d ∈V , then there exists a unique t ∈N such that xxx = rrruuunnn(o, t), if and only if one of the following
two (mutually exclusive) conditions hold:

• The graph G∗
xxx is acyclic,

• The graph G∗
xxx contains exactly one cycle and d is on this cycle,

Furthermore, given G and any such xxx whether or not one of these conditions hold can be checked in
polynomial time in the size of G and xxx.

Proposition 2.5 ([13, Lemma 16]). Let G := (V,s0,s1) be a Switch Graph and let t ∈ N with rrruuunnn(o, t)
the run profile up to time t, which is a switching flow on G from o ∈ V to some vertex d ∈ V . Then at
least one of the following two conditions hold:

• There is a unique edge (u,d) ∈ E∗
rrruuunnn(o,t) incoming to d in the graph G∗

rrruuunnn(o,t).

• The graph G∗
rrruuunnn(o,t) contains exactly one cycle, and that cycle contains exactly one edge of the form

(u,d) ∈ E∗
rrruuunnn(o,t) on the cycle.

Moreover, the edge (u,d) was the edge traversed at time t in the run (i.e., if RUN∞(G,(o,q0)) =
((vi,qi))

∞
i=0 then vt−1 = u and vt = d). Furthermore, this uniquely determined edge can be computed

given G and rrruuunnn(o, t) in time polynomial in the size of G and rrruuunnn(o, t).

Using these results, we are able to efficiently (in P-time) compute a function LUE which takes a
switching flow of the form rrruuunnn(o, t) and returns the “last-used-edge”, namely the unique edge (u,d) ∈ E
guaranteed by Proposition 2.5, where (u,d) is the edge which was traversed at time t.
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2.1 The Recursive Arrival Problem

We consider a recursive generalisation of Arrival in the spirit of Recursive State Machines, etc. ([1, 9,
10]). A Recursive Arrival instance is defined as follows:

Definition 2.6. A Recursive Arrival graph is given by a tuple, (G1, . . . ,Gk), where each component
Gi := (Ni ∪Bi,Yi,Eni,Exi,δi) consists of the following pieces:

• A set Ni of nodes and a (disjoint) set Bi of boxes.

• A labelling Yi : Bi →{1, . . . ,k} that assigns every box an index of one of the components G1, . . . ,Gk.

• A set of entry nodes Eni ⊆ Ni and a set of exit nodes Exi ⊆ Ni.

• To each box b ∈ Bi, for all i ∈ [k], we associate a set of call ports, Callb,i = {(b,o) | o ∈ EnYi(b)}
corresponding to the entries of the corresponding component, and a set of return ports, Returnb,i =
{(b,d) | d ∈ ExYi(b)} corresponding to the exits of the corresponding component. We define the
sets Calli = ∪b∈BiCallb,i and Returni = ∪b∈BiReturnb,i. We will use the term ports of Gi to refer
to the set Porti = Calli ∪Returni, of all call ports and return ports associated with all boxes b ∈ Bi

that occur within the component Gi.

• A transition relation, δi, where transitions are of the form (u,σ ,v) where:

1. The source u is either a node in Ni \Exi or a return port (b,x) in Returni. We define Sori =
Ni \Exi ∪Returni to be the set of all source vertices.

2. The label σ is either 0 or 1.
3. The destination v is either a node in Ni \Eni or a call port (b,e) where b is a box in Bi and e

is an entry node in En j for j = Yi(b); we call this the set Desti of destination vertices.

and we require that the relation δi has the following properties:

1. For every vertex u ∈ Sori and each σ ∈ {0,1} there is a unique vertex v ∈ Desti with
(u,σ ,v) ∈ δi. Thus, for each i ∈ [k] and σ ∈ {0,1}, we can define total functions sσ

i : Sori →
Desti by the property that (u,σ ,sσ

i (u)) ∈ δi, for all u ∈ Sori.

We will use the term vertices of Gi, which we denote by Vi to refer to the union Vi = Ni ∪Porti

of its set of nodes and its set of ports. For σ ∈ {0,1}, we let Eσ
i = {(u,v) | (u,σ ,v) ∈ δi} be the set

of underlying edges of δi with label σ , and we define Ei := E0
i ∪E1

i . We will often alternatively view
components as being equivalently specified by the pair of functions (s0

i ,s
1
i ), which define the transition

function δi := {(u,σ ,sσ
i (u)) | u ∈ Sori,σ ∈ {0,1}}.

We can view a box as a “call” to other components, and, as such, it is natural to ask which components
“call” other components. Given an instance of Recursive Arrival, (G1, . . . ,Gk), we define its Call Graph
to be the following directed graph, C = ([k],EC). Our vertices are component indices and for all (i, j) ∈
[k]× [k] let (i, j) ∈ EC if and only if there exists some b ∈ Bi with j = Yi(b) (i.e., a component Gi can
make a call to component G j). We allow self-loop edges in this directed graph, which correspond to a
component making a call to itself.

We are also able to lift some definitions from non-recursive Arrival to analogous definitions about
Recursive Arrival instances. Firstly, we define the sets DEi := {v ∈ Sori | s0

i (v) = s1
i (v) = v}∪Exi, of

dead-ends of each component. This contains both vertices v ∈ Sori where both outgoing transitions are
to itself and all the exits of the component.

In a given component, Gi, we define a switch position on Gi as a function q : Sori → {0,1}. We let
Qi be the set of all switch position functions on Gi. We let q0

i ∈ Qi be the function q0
i (v) = 0 for all
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v ∈ Sori and call this the initial switch position. We define the action flipi : Sori ×Qi → Qi analogously
to non-recursive Arrival, which flips the bit corresponding to a given vertex in a given switch position.

A state of a Recursive Arrival graph (G1, . . . ,Gk) is given by a tuple γ := ((b1,q1) . . .(br,qr),(v,q))
where the call stack β := (b1,q1) . . .(br,qr) is a string of pairs (bi,qi) with each bi ∈ ∪kBk a box, qi is a
switch position on some component Gci (i.e. qi ∈ Qci), and the current position is the pair (v,q) where
v ∈ Vcr+1 is a vertex in some component Gcr+1 and q ∈ Qcr+1 is a switch position on Gcr+1 . We call the
sequence (c1, . . . ,cr,cr+1) the component call-stack of the state. We say that a state is well-formed if:

• For all i ∈ [r] we have bi ∈ Bci .

• The sequence satisfies Yci(bi) = ci+1 for i ∈ [r].

We let Γ be the set of all well-formed states and ΓS := {β : ∃(v,q), (β ,(v,q)) ∈ Γ} be the set of well-
formed stacks β appearing in some state of Γ.

We define the transition function δ : Γ → Γ on a well-formed state γ := ((b1,q1) . . .(br,qr),(v,q)) as:

1. If v ∈ Sor j is a source vertex then we let v′ := sq(v)(v) and then we define
δ (γ) := ((b1,q1), . . . ,(br,qr),(v′,flip j(v,q)));

2. If v = (b,e) ∈ Call j then e ∈ En j′ for j′ =Yj(b). We let q0
j′ be the initial switch position on G j′ and

define δ (γ) := ((b1,q1) . . .(br,qr)(b,q),(e,q0
j′));

3. If v ∈ Ex j and r ≥ 1 then we define δ (γ) := ((b1,q1) . . .(br−1,qr−1),((br,v),qr));

4. If v ∈ Ex j and r = 0 then δ (γ) := γ;

The function δ : Γ → Γ defines a deterministic transition system on well-formed states. We call the
run of a Recursive Arrival graph from an initial component index j ∈ [k], an initial switch position q0 ∈Q j

and a start entrance o ∈ En j the (infinite) sequence RUN∞(G,(o,q0)) := (γi)
∞
i=0 given by γ0 := (ε,(o,q0))

and γi+1 := δ (γi). We say a run terminates at an exit d ∈Ex j if there ∃t ∈N such that ∀i≥ t there ∃qi ∈Q j

such that γi = (ε,(d,qi)). We call T ∈ N∞ the termination time defined by T := inf{t | ∀i ≥ t, vi ∈ Ex j},
where inf( /0) = ∞. We denote by RUN(G,(o,q)) := (γi)

T
i=0 the subsequence up to termination. We say a

run hits a vertex v ∈V if there ∃t ∈ N, ∃qt ∈ Q and ∃β ∈ ΓS with γt = (β ,(v,qt)).
Our decision problem can then be stated as:

Recursive Arrival

Instance: A Recursive Arrival graph (G1, . . . ,Gk), with |En j| = 1 for all j ∈ [k], and a target exit
d ∈ Ex1

Problem: Does the run from initial state (ε,(o1,q0
1)) terminate at exit d? (Where o1 ∈ En1 is the

unique entry of G1 and q0
1 ∈ Q1 is the initial switch position.)

This decision problem covers in full generality any termination decision problem on Recursive Ar-
rival instances, as we may accomplish a change of initial state by renumbering components and rela-
belling transitions. Also, restricting to models with |Eni| = 1 is without loss of generality, because we
can efficiently convert the model into an “equivalent” one where each component has a single entry,
by making copies of components (and boxes) with multiple entries, each copy associated with a single
entry (single, call port, respectively). This is analogous to the same fact for Recursive Markov Chains,
which was noted by Etessami and Yannakakis in [9, p. 16]. Thus, we may assume that in the Recursive
Arrival problem all components of the instance have a unique entry, i.e., for i ∈ [k] that Eni = {oi},
and, unless stated otherwise, the run on G refers to the run starting in the state (ε,(o1,q0

1)), writing
RUN(G) := RUN(G,(o1,q0

1)).
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(a) G1, the constant “true” component. (b) G2, the constant “false” component.

Figure 1: Initial components corresponding to constant gates “true" and “false".

(a) Component for the AND of gates g j and gk. (b) Component for the OR of gates g j and gk.

Figure 2: Component Gi, where j, j′ ∈ [i−1] are the indices of the two inputs to the gate gi. All edges
correspond to both s0 and s1 transitions.

While, in such an instance, we may make an exponential number of calls to other functions, it turns
out we are able to give a polynomial bound on the maximum recursion depth before we can conclude an
instance must loop infinitely.

Lemma 2.7. Let G := (G1, . . . ,Gk) be an instance of Recursive Arrival and assume the run on G hits
some state (β ,(v,q)), with |β | ≥ k. Then the run on G does not terminate.

3 P-Hardness of Recursive Arrival

Manuell [18] has shown the Arrival problem to be PL-hard, which trivially provides the same hardness
result for Recursive Arrival. This is currently the strongest hardness result known for the Arrival
problem. By contrast, we now show that the Recursive Arrival problem is in fact P-hard.

Theorem 3.1. The 2-exit Recursive Arrival problem is P-hard.

Proof (Sketch). We show this by reduction from the P-complete Monotone Circuit Value Problem (see
e.g., [15]). We construct one component corresponding to each gate of an input boolean circuit. Each
component will have two exits, which we refer to as “top”, ⊤, and “bottom”, ⊥, (located accordingly in
our figures) and we will view these exits as encoding the outputs, “true” and “false” respectively.

Firstly, we show in Figure 1 two components for a constant true and constant false gate of the circuit.
Depicted in Figure 2 are two cases corresponding to AND or OR gates. These perform a lazy evaluation
of the AND or OR of components G j and Gk. This process produces a polynomially sized Recursive
Arrival instance for an input boolean circuit where each component G j can be shown inductively to
reach exit ⊤ j if and only if it’s corresponding gate, g j, outputs true.

4 Recursive Arrival is in NP∩ coNP and UEOPL

Recall the notion of Switching Flow for an Arrival instance. For Recursive Arrival, we generalise the
notion of a Switching Flow to a tuple of vectors (xxx1, . . . ,xxxk), one for each component of the Recursive
Arrival instance. We define for each component Gi, i ∈ [k], and each box b ∈ Bi the set of potential
edges Fb,i := Callb,i ×Returnb,i, representing the potential ways of crossing the box b, assuming that the
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box is eventually returned from. We define the sets Fi := ∪b∈BiFb,i. We recall that the set of internal
edges of a component Gi is given by Ei := {(u,v) | u,v ∈ Vi, ∃σ ∈ {0,1},(u,σ ,v) ∈ δi}. We say the
Flow Space for component Gi is the set of vectors Fi := N|Ei∪Fi| := {(xi

e ∈ N | e ∈ Ei ∪Fi)}, where we
identify coordinates of these vectors with edges in Ei ∪Fi. We define the Flow Space of G to be the set
F := Πk

i=1Fi, a tuple of k vectors, with the i’th vector in the flow space of component Gi. We denote
specifically by 000i ∈ Fi the all zero vector, which has 000i

e = 0 for all e ∈ Ei ∪Fi, and 000 ∈ F the all zero
tuple, 000 := (0001, . . . ,000k). We refer to elements of F (resp. Fi) as flows on G (resp. Gi).

Firstly, we define a switching flow on each component. For a Recursive Arrival instance G :=
(G1, . . . ,Gk) and for l ∈ [k], we call a vector xxxl ∈ Fl to be a component switching flow if the following
conditions hold. Firstly, by definition, the all-zero vector 000l is always considered a component switching
flow. Furthermore, by definition, a non-zero vector xxxl ∈ Fl \{000l} is called a component switching flow
if there exists some current-vertex dl

xxxl ∈Vl \{ol} (which, as we will see, is always uniquely determined
when it exists), such that for ol the unique entry of Gl , xxxl satisfies the following family of conditions:

Flow Conservation


(
∑e=(u,v)∈El∪Fl

xl
e
)

−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 1, for v = dl

xxxl ,

+
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 1, for v = ol,(

∑e=(u,v)∈El∪Fl
xl

e
)

−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 0, ∀v ∈Vl \{ol,dl

xxxl},

Switching Parity Condition x(v,s1(v)) ≤ x(v,s0(v)) ≤ x(v,s1(v))+1, ∀v ∈ Sorl,

Box Condition ∃ fb ∈ Fb,l such that ∀ f ∈ (Fb,l \{ fb}) xl
f = 0, ∀b ∈ Bl

Importantly, note that for any such component switching flow, xxxl , the current-vertex node dl
xl is

uniquely determined. This follows from the fact that the left-hand sides of the Flow Conservation equal-
ities for nodes v ∈ Vl \ {ol} are identical and independent of the specific node v. Hence, if a vector xxxl

satisfies all of those equalities, there can only be one vertex v ∈ Vl \ {ol} for which the corresponding
linear expression on the left-hand side, evaluated over the coordinates of the vector xxxl , equals 1.

In the case where xxxl = 000l , i.e., the all zero-vector, we define the current-vertex of the all-zero com-
ponent switching flow to be dl

000l := ol . We say a component switching flow xxxl ∈ Fl is complete if its
current vertex dl

xxxl is an exit vertex in Exl . These conditions follow the same structure as for non-recursive
switching flows, with the additional “Box Condition” only allowing at most one potential edge across
each box (i.e., an edge in Fb,l) to be used.

Next, we extend our component switching flows by adding conditions that relate the flows on dif-
ferent components. Consider a tuple XXX := (xxx1, . . . ,xxxk) ∈ F of vectors, one for each component, such
that each xxxi ∈ Fi is a component switching flow for component Gi. We sometimes write di

XXX instead of
di

xxxi . Let KXXX = {i ∈ [k] | xxxi is complete} be the subset of indices corresponding to complete component
switching flows. We then say the tuple XXX ∈ F is a recursive switching flow if for every l ∈ [k], b ∈ Bl
and f ∈ Fb,l , the following holds:

• xxxl ∈ Fl is a component switching flow for component Gl , and

• if xl
f > 0 then Yl(b) ∈ KXXX , and

• if xl
f > 0, then letting dYl(b)

XXX ∈ ExYl(b) be the current vertex of xxxYl(b), we must have that f =

((b,oYl(b)),(b,d
Yl(b)
XXX )).

We define R ⊂ F to be the set of all recursive switching flows. These conditions ensure “consistency”
in the following way; if we use an edge f ∈ Fb,l then we have a component switching flow on component
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(a) Initial component G1. (b) Component G2.

Figure 3: A Recursive Arrival instance G on which there exists a recursive switching flow (xxx1,xxx2) on G
whose current vertex is in G1 is d1 however the run on G does not terminate, or even hit the exit d1.

GYl(b) which is complete and reaches the exit matching the edge f , and we are taking that same edge
across all boxes with the same label. We note our definition implies 000 ∈ R, thus there is always at least
one recursive switching flow. These conditions can be verified in polynomial time.

We will view recursive switching flows as hypothetical partial “runs” on each component, where an
edge e ∈ El ∪Fl is used xl

e times along this “run”. It may well be the case no such run actually exists.
However, unlike the case of non-recursive switching flows in Arrival, it is no longer the case that any
recursive switching flow where the current vertex is d1

XXX in component G1, and where d1
XXX ∈ Ex1 is an

exit, necessarily certifies termination at d1
XXX . It need not do so. For example, in the instance depicted

in Figure 3 we may give the following flow on G: xxx1 = (1,1,1) , xxx2 = (1,1,1). The instance depicted
obviously loops infinitely, alternating calls between components G1 and G2, but neither ever reaching
an exit. However, the given (xxx1,xxx2) corresponds to a recursive switching flow for this instance, both of
whose component switching flows have an exit as their current vertex.

We need a way to determine whether the recursive switching flow avoids such pathologies. To do
this, we need some additional definitions. We describe a component switch flow xxxl as call-pending if its
current vertex dl

xxxl ∈ Calll is a call port, we let JXXX ⊆ [k] be the set of all call-pending components and we
let rXXX := |J|. From a recursive switching flow XXX := (xxx1, . . . ,xxxk) we can compute the pending-call graph
CPen

XXX := ([k],EPen
XXX ) where we have edge (i, j)∈ EPen

XXX if and only if i ∈ JXXX , di
XXX = (b,o)∈ Calli is the current

vertex of xxxi and j =Yi(b). We can also compute the completed-call graph, CCom
XXX := ([k],ECom

XXX ), where we
have an edge (i, j) ∈ ECom

XXX if and only if ∃b ∈ Bi, ∃ f ∈ Fi,b with xi
f > 0 and Yi(b) = j. The pending-call

graph represents, from the perspective of an imagined “run” corresponding to the recursive switching
flow XXX , which components Gi are currently “paused” at a call port and waiting for component G j to
reach an exit to determine the return port they should move to next. The completed-call graph represents
the dependencies in the calls already made in such an imagined run, where an edge from component Gi

to component G j means that inside component Gi the imagined run is making a call to a box labelled
by G j and “using” the fact that component G j, once called upon, reaches a specific exit. In turn, in
order to G j to reach its exit the imagined run might be “using” the completion of other components to
which there are outgoing edges from G j in the completed-call graph. Thus, any cycle in the completed-
call graph represents a series of circular (and hence not well-founded) assumptions about the imagined
“run” corresponding to the recursive switching flow XXX . For example, in the case of a 2-cycle between
components Gi and G j, these are: “If Gi reaches exit di

XXX then G j reaches exit d j
XXX ”; and “If G j reaches

exit d j
XXX then Gi reaches exit di

XXX ” (c.f. Figure 3).
Let G be an instance of recursive arrival and let RUN∞(G,o1,q0

1) := (βt ,(vt ,qt))
∞
t=0 be the run starting

at (o1,q0
1). We define the times Sl := inf{t | vt = ol} and Tl := inf{t | vt ∈ Exl} for each component index

l ∈ [k], with these values being ∞ if the set is empty. If Sl <∞ we define the stack β l := βSl . We define the
component run to be the (potentially finite) subsequence t l

1, t
l
2, . . . of times which are precisely all times



10 The Recursive Arrival Problem

t l
j ∈ [Sl, . . . ,Tl] where βt j

l
= β l . We define the Recursive Run Profile of G up to time t as the sequence of

vectors, RRRuuunnn(G, t) := (rrruuunnn(G1, t), . . . ,rrruuunnn(Gk, t)), where for each l ∈ [k], rrruuunnn(Gl, t) := (|{ j ∈N | t l
j+1 ≤

t ∧ (vt l
j
,vt l

j+1
) = e}| | e ∈ El ∪Fl).

In other words, rrruuunnn(Gl, t) is a vector that provides counts of how many times each edge in component
Gl has been crossed, up to time t, during one “visit” to component Gl , with some particular call stack.
(The specific call stack doesn’t matter. This sequence does not depend on the specific calling context βl
in which Gl was initially called.) We note that rrruuunnn(Gl,0) = 000l .

Similarly to the non-recursive case, we can define the last-used-edge graph for each component Gl

as, G∗
l,xxxl := (Vl,E∗

l,xxxl ) who’s edge set is defined as:

E∗
l,xxxl :={(v,s0(v)) | v ∈ Sorl and xl

(v,s0(v)) ̸= xl
(v,s1(v))}∪

{(v,s1(v)) | v ∈ Sorl and xl
(v,s0(v)) = xl

(v,s1(v)) > 0} ∪ { f ∈ Fl | xl
f > 0}

We note that for the all-zero vector we have E∗
l,000l = /0, and if xxxl ̸= 000l is non-zero then the current

vertex dl
xxxl must have at least one incoming edge in E∗

l,xxxl , and thus the set E∗
l,xxxl isn’t empty.

Depending on how our run evolves, there are three possible cases:

• For all l ∈ [k], if Sl < ∞ then Tl < ∞. This case corresponds to reaching some exit of G1, i.e.,
terminating there.

• There exists some l ∈ [k] with Sl < ∞ and yet with Tl = ∞, however, where for all such l ∈ [k]
the subsequence t l

1, t
l
2, . . . is of finite length. This case corresponds to blowing up the call stack to

arbitrarily large sizes, and as we shall describe, we can detect it by looking for a cycle in CPen
XXX .

• There exists l ∈ [k] with Sl < ∞ and Tl = ∞, where the subsequence t l
1, t

l
2, . . . is of infinite length.

This case corresponds to getting stuck inside component Gl , and infinitely often revisiting a vertex
in a loop with the same call stack. As we shall see, we can detect this case by looking for a
sufficiently large entry in some coordinate of xxxl .

Let G be a Recursive Arrival instance and let XXX := (xxx1, . . . ,xxxk) ∈ R be a recursive switching flow on
G, we say XXX is run-like if it satisfies the following conditions:

• For each component index l ∈ [k] one of the following two conditions hold:

– The graph G∗
l,xxxl is acyclic,

– The graph G∗
l,xxxl contains exactly one cycle and dl

xxxl is on this cycle.

• If the set of call-pending component indexes JXXX is non-empty, then 1 ∈ JXXX and there is some total
ordering j1, . . . , jrXXX of the set JXXX , with j1 = 1, and a unique j(rXXX+1) ∈ [k] such that the edges of the
pending-call graph are given by EPen

XXX = {( ji, ji+1) | i ∈ [rXXX ]}. Note that we may have j(rXXX+1) = jm
for some m ∈ {1, . . . ,rXXX}, in which case EPen

XXX forms not a directed line graph but a “lasso” meaning
a directed line ending in one directed cycle. When JXXX = /0 we say that rxxx := 0 and that j1 := 1, thus
the sequence is defined for all XXX .

• For any l ∈ [k] either: l ∈ JXXX ∪KXXX , or xxxl = (0, . . . ,0), or l = j(rXXX+1).

• The completed-call graph CCom
XXX := ([k],ECom

XXX ) is acyclic.

• For any l ∈ [k], if xxxl ̸= 000l , then in the graph ([k],EPen
XXX ∪ECom

XXX ) we must have 1 →∗ l, i.e., there must
be a path in this graph from component 1 to all components l for which xxxl is non-zero.
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We denote by X ⊂ R the set of all run-like recursive switching flows on G. We note for any G that we
always have 000 ∈X . We later show XXX ∈F is run-like if and only if ∃t ∈N, XXX = RRRuuunnn(G, t) (Lemma C.3).

We now introduce “unit vectors” for this space, we write uuul
e ∈ Fl for the vector where ul

e = 1 and
for all other e′ ∈ El ∪Fl with e′ ̸= e that ul

e = 0. We then write UUU i,e ∈ F for the sequence of k vectors
(0001, . . . ,000i−1,uuui

e,000
i+1, . . . ,000k) where the i’th vector is uuui

e and for i ̸= j ∈ [k] that the j’th vector is the
all-zero 000 j. We may naturally define the notion of addition on F and we define the notion of subtraction
XXX −UUU i,e in the natural way whenever xi

e > 0, i.e., the result of the subtraction remains in N for every
coordinate, subtraction is undefined where this isn’t the case. We write U := {UUU i,e | i ∈ [k],e ∈ Ei ∪Fi}
for the set of all unit vectors.

Given a run-like recursive switching flow, XXX := (xxx1, . . . ,xxxk) ∈ X , we say that XXX is complete if it is
the case that 1 ∈ KXXX , i.e., the current vertex d1

xxx1 of xxx1 is an exit of G1. We say XXX is lassoed when EPen
XXX

forms a “lasso”, meaning a directed line ending in one directed cycle, as described earlier. We note that
being complete and lassoed are mutually exclusive, because either 1 ∈ KXXX or 1 ∈ JXXX , but not both.

Lemma 4.1. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. Then if XXX is neither complete nor lassoed, then there exists exactly one UUU i,e ∈ U such that
(XXX +UUU i,e) is a run-like recursive switching flow. Otherwise, if XXX is either complete or lassoed, then there
exists no such UUU i,e.

Proof (Sketch). We shall show that for any XXX which is neither complete nor lassoed, we are able to give
unique i and e as a function of XXX . Viewing XXX as a “hypothetical run” to some time we use JXXX as our “call
stack” at this time and use that to determine the edge to increment.

1. If d
j(rXXX+1)

XXX ∈ Sor j(rXXX+1) , then the “current component” is at a switching node and we take the edge

given by our switching order. We note that this includes the case where d
j(rXXX+1)

XXX = o j(rXXX+1) , i.e. there
is a call pending to a new component.

2. If j(rXXX+1) ∈ KXXX , then we can resolve the pending call in component jrXXX and increment the summary

edge in FjrXXX
corresponding to exit d( jXXX+1)

XXX .

We can show that this is the unique choice in these cases through elimination, making use of the defini-
tions of component, recursive, and run-like switching flows.

We define the completed call count as the function CC : F × [k]→ N which counts how many times
a given component has been crossed in a given flow, defined for XXX ∈ F and l ∈ [k] as follows:

CC(XXX , l) := ∑
i∈[k]

∑
{b∈Bi|Yi(b)=l}

∑
f∈Fb,i

xi
f

Lemma 4.2. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. If XXX is non-zero then there exists a unique UUU i,e ∈ U such that (XXX −UUU i,e) ∈ X is a run-like
recursive switching flow. Otherwise, if XXX is all-zero, then no such UUU i,e exists.

Proof (Sketch). We shall show for non-zero XXX the following choice is the unique value for i, and then
e can be determined using the last-used-edge graph in component i, as is the case for non-recursive
switching flows. Viewing XXX as a “hypothetical run” to some time we use JXXX as our “call stack” at this
time and use that to determine the edge to decrement.

• If xxx j(rXXX+1) > 000 j(rXXX+1) and CC(XXX , j(rXXX+1)) = 0 then we decrement inside the “current component” as
the pending-call in component jrXXX is the only call made.
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• Otherwise, we take i= jrXXX . Where, since we have either CC(XXX , j(rXXX+1))≥ 1 or xxx j(rXXX+1) = 000 j(rXXX+1) the
current call from jrXXX to j(rXXX+1) is either made elsewhere and thus we cannot alter the component
flow in j(rXXX+1) without affecting the edge traversed on these other calls or the flow in j(rXXX+1) is
zero, in which case we step back from the final pending-call to it.

This can be shown to be the unique choice in each case through elimination.

We define the function Val : F →N as: Val((xxx1, . . . ,xxxk)) := ∑i∈[k] ∑e∈Ei∪Fi xi
e. This function sums all

values across all vectors of the tuple. We note that for any flow XXX ∈F and any i ∈ [k] and e ∈ Ei∪Fi that
we have Val(XXX +UUU i,e) =Val(XXX)+1 and that when defined (i.e. xi

e > 0) that Val(XXX −UUU i,e) =Val(XXX)−1.
Recall Proposition 2.3 regarding non-recursive Arrival switching graphs, and in particular the fixed

polynomial p which that proposition asserts the existence of. We say a recursive switching flow XXX :=
(xxx1, . . . ,xxxk) ∈ X is finished if it satisfies one of the following conditions:

1. XXX is complete, i.e, 1 ∈ KXXX , or, the current vertex d1
XXX of xxx1 is an exit in Ex1.

2. XXX is lassoed, i.e., 1 ̸∈ KXXX and j(rXXX+1) ∈ JXXX , or, the edges of EPen
XXX form a lasso.

3. XXX is just-overflowing, which we define as follows: 1 ̸∈ KXXX , and there exists some unique l ∈ [k],
and unique e = (u,dl

XXX) ∈ El ∪Fl with xl
e = 2p(|Vl |)+1, i.e., there is some unique component, l, and

edge, e, incoming to its current vertex, dl
XXX , with a “just-excessively large” value in the flow XXX .

We say the flow is post-overflowing if 1 ̸∈ KXXX , and there exists some l ∈ [k], with dl
XXX the current-vertex

of xxxl , and some e = (u,v) ∈ El ∪Fl satisfying at least one of: A) xl
e = 2p(|Vl |)+ 1 and v ̸= dl

XXX ; B) xl
e >

2p(|Vl |) + 1. We note that by repeatedly applying Lemma 4.2 to a post-overflowing run-like recursive
switching flow we must eventually find some finished just-overflowing run-like recursive switching flow.

We introduce the notation F N ⊆ F to be the restriction to tuples in which in every vector each
coordinate is less than or equal to some N ∈ N. Thus F N is finite, and any element XXX ∈ F N can
be represented using at most (∑k

i=1|Ei ∪Fi|) · log2(N) bits. For all our subsequent results taking N :=
2p(maxl |Vl |)+ 1 will be sufficient, noting this means elements of F N are represented using a polynomial
number of bits in our input size.

Theorem 4.3. The Recursive Arrival problem is in NP∩ coNP and UP∩ coUP.

Proof (Sketch). The proof follows from a series of lemmas. Lemma C.4: For any instance of Recursive
Arrival, G, there is a (unique) XXX ∈F N which is a finished run-like recursive switching flow; Lemma C.5:
Given any XXX ∈ F N we can verify whether or not XXX is a finished run-like recursive switching flow in P-
time; Lemma C.6: Given any XXX ∈ F N which is a finished run-like recursive switching flow, we can
determine whether or not G terminates and if it does terminate at which exit in Ex1 it does so.

4.1 Containment in UEOPL

Given the previous results, we may consider a search version of Recursive Arrival as follows:

Search Recursive Arrival

Instance: A Recursive Arrival graph (G1, . . . ,Gk)
Problem: Compute the unique finished run-like recursive switching flow (xxx1, . . . ,xxxk) ∈ F on G

By Lemma C.4 we know that this problem is total and hence lies in TFNP. We show containment in
the total search complexity class UEOPL defined by Fearnley et al. [12], as problems polynomial time
many-one search reducible to UniqueEOPL, which is defined as follows:
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UniqueEOPL [12]

Instance: Given boolean circuits S,P : {0,1}n → {0,1}n such that P(0n) = 0n ̸= S(0n) and a boolean
circuit V : {0,1}n →{0,1, . . . ,2m −1} such that V (0n) = 0

Problem: Compute one of the following:

(U1) A point x ∈ {0,1}n such that P(S(x)) ̸= x.

(UV1) A point x ∈ {0,1}n such that x ̸= S(x), P(S(x)) = x, and V (S(x))≤V (x).

(UV2) A point x ∈ {0,1}n such that S(P(x)) ̸= x ̸= 0n.

(UV3) Two points x,y ∈ {0,1}n, such that x ̸= y, x ̸= S(x), y ̸= S(y), and either V (x) =V (y)
or V (x)<V (y)<V (S(x)).

We may interpret an instance of UniqueEOPL as describing an exponentially large directed graph in which
our vertices are points x ∈ {0,1}n and each vertex has both in-degree and out-degree bounded by at most
one. Edges are described by the circuits S,P, for a fixed vertex x ∈ {0,1}n there is an outgoing edge from
x to S(x) if and only if P(S(x)) = x and an incoming edge to x from P(x) if and only if S(P(x)) = x. We
are given that 0n is a point with an outgoing edge but no incoming edge or the “start of the line”. We also
have an “odometer” function, V , which has a minimal value at 0n. We assume our graph has the set-up
of a single line 0n,S(0n),S(S(0n)), . . . along which the function V strictly increases, with some “isolated
points” where x = S(x) = P(x). There are four types of solutions that can be returned, representing:

(U1) a point which is an “end of the line”, with an incoming edge but no outgoing edge.

(UV1) a violation of the assumption that valuation V strictly increases along a line, since V (x) ̸<V (S(x)).

(UV2) a violation of the assumption there is a single line, since x is the start of a line, but it is not 0n, thus
it starts a distinct line.

(UV3) a violation of one of the assumptions, however, in a more nuanced way. We can assume that
P(S(x)) = x and P(S(y)) = y, else they’d constitute a (UV1) example too, thus neither x nor
y is isolated and both have an outgoing edge. If x and y were on the same line, then either
S(. . .S(S(x))) = y or S(. . .S(y)) = x by doing this iteration we’d eventually find some z ∈ {0,1}n

where V (z) ̸<V (S(z)), violating (UV1). However, if x and y are on different lines, then that would
imply the existence of two distinct lines, violating (UV2). Thus, a (UV3) violation is a short proof
of existence of a (UV1) or (UV2) violation elsewhere in the instance.

For our reduction, our space will be made up of all possible flows (xxx1, . . . ,xxxk) ∈ F N and our line will
be made up of those arising from distinct RRRuuunnn(G, t)’s, each step increasing in t until we reach a finished
flow, with all other vectors being isolated. A type (U1) solution will correspond to a finished run-like
recursive switching flow, and we will show our instance has no (UV1-3) solutions, thus our computed
solution to UniqueEOPL will be a solution to Search Recursive Arrival.

Given any flow XXX ∈ F we can verify whether or not XXX is a run-like recursive switching flow (i.e.
XXX ∈ X ⊂ F ). We will use this fact in our definitions of functions Adv : F → F and Prev : F → F .

Our function Adv on some value XXX := (xxx1, . . . ,xxxk) ∈ F is defined by the following sequence:

1. If XXX ̸∈ X then we take Adv(XXX) = XXX .

2. Else if XXX ∈ X is either finished or post-overflowing then we take Adv(XXX) = XXX .

3. Otherwise, take Adv(XXX) = XXX +UUU i,e, for the unique UUU i,e ∈U such that XXX +UUU i,e ∈X (Lemma 4.1).
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We note by this process that if Adv(XXX) ̸= XXX , then Val(Adv(XXX)) =Val(XXX)+1, since we have incremented
exactly one edge in exactly one vector. Hence, this is consistent with our odometer. We may also define
the operation Prev : F → F analogously on some value XXX := (xxx1, . . . ,xxxk) ∈ F . Taking Prev(XXX) = XXX
whenever: XXX ̸∈ X ; XXX = 000, or; XXX is post-overflowing. Otherwise, taking Prev(XXX) = XXX −UUU i,e, for the
unique UUU i,e ∈ U such that XXX −UUU i,e ∈ X (Lemma 4.2). Observe that, for any non-zero XXX ∈ X , that
Adv(Prev(XXX)) = XXX , and, for any XXX ∈ X , if we have Prev(Adv(XXX)) ̸= XXX , then XXX must be finished.

Theorem 4.4. The Search-Recursive Arrival is in UEOPL.

Proof (Sketch). We will give a polynomial-time search reduction from Search Recursive Arrival to
the UniqueEOPL problem. We compute boolean circuits S,P and V which will be given by the restriction
of the functions Adv, Prev, and Val to the domain F N . This process involves computing membership
of X and then computing the unique values i and e given by Lemmas 4.1 and 4.2 for Adv and Prev
respectively. We can then show using Lemma C.4 that the only UEOPL solution is of type (U1) and is a
run-like recursive switching flow, which is a solution we are looking for.

5 Conclusions

We have shown that Recursive Arrival is contained in many of the same classes as the standard
Arrival problem. While we have shown P-hardness for Recursive Arrival, whether or not Arrival
is P-hard remains open.

Let us note that the way we have chosen to generalise Arrival to the recursive setting uses one of
two possible natural choices for its semantics. Namely, it assumes a “local” semantics, meaning that
the current switch position for each component on the call stack is maintained as part of the current
state. An alternative “global” semantics would instead consider the switch position of each component
as a “global variable”. In such a model all switch positions would start in an initial position, and as the
run progresses the switch positions would persist between, and be updated during, different calls to the
same component. It is possible to show (a result we have not included in this paper) that such a “global"
formulation immediately results in PSPACE-hardness of reachability and termination problems.

As mentioned in the introduction, a stochastic version of Arrival, in which some nodes are switch-
ing nodes whereas other nodes are chance (probabilistic) nodes with probabilities on outgoing transitions,
has already been studied in [19], building on the work of [12] which generalises Arrival by allowing
switching and player-controlled nodes. There is extensive prior work on RMCs and RMDPs, with many
known decidability/complexity results (see, e.g., [9, 10]). It would be natural to ask similar computa-
tional questions for the generalisation of RMCs and RMDPs to a recursive Arrival model combining
switching nodes with chance (probabilistic) nodes and controlled/player nodes.

Finally, we note that Fearnley et al. also defined a P-hard generalisation of Arrival in [12] which
uses “succinct switching orders” to succinctly encode an exponentially larger switch graph. We will refer
to this problem as Succinct Arrival. We don’t know whether there are any P-time reduction, in either
direction, between Recursive Arrival and Succinct Arrival. It has been observed1 that the results
of [14] imply that both Arrival and Succinct Arrival are P-time reducible to the Tarski problem
defined in [7]. Succinct Arrival is also contained in UEOPL by the same arguments as for Arrival.
We do not currently know whether Recursive Arrival is P-time reducible to Tarski.

Acknowledgements. Thanks to my PhD supervisor Kousha Etessami for his support.

1Personal communication from Kousha Etessami and Mihalis Yannakakis.
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A Missing proofs for Section 2

The following results follow completely from prior work. The proofs are included for completeness to
account for the slight modifications made to definitions and statements in this work.

Proposition 2.3 ([5, 13]). There exists a polynomial function p : N→ N such that for all Switch Graphs
G := (V,s0,s1) and all vertices o,d ∈V with o ̸= d and d ∈ DE the following are equivalent:

• The run on G from initial state (o,q0) terminates at d.

• There exists a run-like switching flow xxx on G from o to d satisfying ∀e ∈ E, that log2(xe)≤ p(|G|).

Furthermore, for the same polynomial p, the following are equivalent:

• The run on G from initial state (o,q0) does not terminate.

• There exists a vertex d′ ∈ V \DE, a run-like switching flow xxx on G from o to d′, and an edge
e′ = (u,d′) ∈ E which satisfies for all e ∈ E \{e′} that log2(xe)≤ p(|G|) and that xe′ = 2p(|G|)+1.

Proof. We may take p as any polynomial satisfying p(|G|)≥ log2(|V |) · |V |, for instance, p(|G|) = |V |2.
For the first pair of equivalences:

• If the run on G from initial state (o,q0) terminates at d then the termination time T < ∞. We take
the run profile rrruuunnn(o,T ) up to the termination time T . By [5, Observation 1] the run profile is a
switching flow on G from o to d, and, by [5, Theorem 2], this has for all e ∈ E that run(o,T )e ≤
|V | ·2|V |. Such a flow is also obviously run-like. Hence, rrruuunnn(o,T ) is a switching flow as required.

• Assume that there exists some (run-like) switching flow xxx on G from o to d. By [5, Lemma 1], any
switching flow provides an upper bound on the run profile to termination rrruuunnn(o,T ), thus we must
have T < ∞. We note by the definition of DE that for all edges (v,d′) ∈ E with v ∈ V , d′ ∈ DE,
and d′ ̸= d, we must have run(o,T )(v,d′) = 0 in any switching flow on G from o to d, by flow
conservation. Thus, in any run profile, we can not traverse any such edge. Hence, the run can not
terminate at d′ (as we would need to traverse such an edge) and, since G terminates at some vertex
in DE, it must be d.

For the second pair:

• Assume that the run on G from initial state (o,q0) does not terminate. Consider the run profiles
to times t ∈ [T ] given by rrruuunnn(o, t). By [5, Observation 1] we observe the partial-run profile is a
switching flow to some current vertex vt at every time t. We also note that the functions monoton-
ically increase as follows; for any t we have ∀e ∈ E \ {(vt ,vt+1)} that run(o, t)e = run(o, t + 1)e

and that run(o, t +1)(vt ,vt+1) = run(o, t)(vt ,vt+1)+1. Since G does not terminate T = ∞. Thus, since
the sequence rrruuunnn(o, t) increases monotonically by 1 in exactly one coordinate, there exists some
t ∈ [T ] and e ∈ E at which run(o, t)e = 2P(|G|)+1 and we may consider the minimum value t ′ over
all such t. We note that rrruuunnn(o, t ′) is then such a run-like switching flow taking e′ = (vt ′−1,vt ′) and
we must have vt ′ ̸∈ DE, else this would contradict our non-termination assumption.

https://doi.org/https://doi.org/10.1007/978-3-031-19135-0_7
https://doi.org/https://doi.org/10.1007/978-3-031-19135-0_7
https://doi.org/10.1016/0304-3975(95)00188-3
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• Assuming there exists some run-like switching flow xxx on G to some vertex d′ ∈V \DE, then there
is some t ∈ N such that xxx = rrruuunnn(o, t). We consider the sequence of states γ0, . . . ,γt visited along
RUN∞(G,(o,q0)), where γi := (vi,qi). We consider the subsequence q j1 , . . . ,q jk consisting of all
values ji ∈ [0 . . . t] such that v ji = u. We know that k ≥ xe′ = 2p(|G|)+1, since we make one visit to
u for every traversal of edge e′. We know each q ji ∈ Q and that |Q|= 2|V | ≤ 2p(|G|) by our choice
of p. Thus, by the pigeonhole principle, we can find two indices j, j′ ∈ [0 . . . t] with j < j′ from the
subsequence of ji’s such that v j = v j′ = u and that q j = q j′ . Since we are working in a deterministic
state transition system, and, we have found a transition from a state to itself, the system obviously
cycles infinitely. We can see evidently since u,d′ ̸∈ DE that we can not visit any vertex d ∈ DE
since we must visit u infinitely often, and we can never visit u after visiting any such d.

Proposition 2.4 ([13]). Let G := (V,s0,s1) be a Switch Graph and let xxx be a switching flow on G from
o ∈V to d ∈V , then there exists a unique t ∈N such that xxx = rrruuunnn(o, t), if and only if one of the following
two (mutually exclusive) conditions hold:

• The graph G∗
xxx is acyclic,

• The graph G∗
xxx contains exactly one cycle and d is on this cycle,

Furthermore, given G and any such xxx whether or not one of these conditions hold can be checked in
polynomial time in the size of G and xxx.

Proof. This follows exactly from the results of Gartner et al. [13] cf. Observation 8, Lemma 9, Obser-
vation 10 and Lemma 11.

As observed by [5] any switching flow that is not run-like looks like the sum of a run-like switching
flow and a series of (possibly multiple) “circulations”. We can determine the last such circulation in
the series by looking at the cycles in the last-used-edge graph, which will contain the edges along this
circulation. However, we must distinguish the case where the circulation could be a part of the run,
which occurs only if the current vertex is on the cycle ([13, Observation 10]). Together, these lead to the
conditions as shown in [13, Lemma 9]. With these conditions, we can see we may evidently compute the
graph G∗

xxx in polynomial time by determining, for each vertex, which (if any) of its outgoing edges satisfy
the condition ([13, Observation 8]). We can then see, by [13, Lemma 11], this is verifiable in polynomial
time.

Proposition 2.5 ([13, Lemma 16]). Let G := (V,s0,s1) be a Switch Graph and let t ∈ N with rrruuunnn(o, t)
the run profile up to time t, which is a switching flow on G from o ∈ V to some vertex d ∈ V . Then at
least one of the following two conditions hold:

• There is a unique edge (u,d) ∈ E∗
rrruuunnn(o,t) incoming to d in the graph G∗

rrruuunnn(o,t).

• The graph G∗
rrruuunnn(o,t) contains exactly one cycle, and that cycle contains exactly one edge of the form

(u,d) ∈ E∗
rrruuunnn(o,t) on the cycle.

Moreover, the edge (u,d) was the edge traversed at time t in the run (i.e., if RUN∞(G,(o,q0)) =
((vi,qi))

∞
i=0 then vt−1 = u and vt = d). Furthermore, this uniquely determined edge can be computed

given G and rrruuunnn(o, t) in time polynomial in the size of G and rrruuunnn(o, t).

Proof. We may obviously compute the edge following the verification of the conditions, as in the proof
of Proposition 2.4. It follows by [13, Lemma 16] that this edge is the one used.
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A.1 Recursive Arrival

Lemma A.1. Let G := (G1, . . . ,Gk) be an instance of Recursive Arrival, and assume the run on G hits
some state (β ,(v,q)). If there exists indices 1 ≤ i < i′ ≤ |β |+ 1 of the component call stack of β with
ci = ci′ , then the run on G does not terminate (at any exit of G1).

Proof. Suppose β = ((b1,q1) . . .(br,qr)). We are working with a deterministic transition system. We let
j = ci = ci′ . We then claim that, for any β ′ ∈ ΓS, and for any well-formed state (β ′,(o j,q0

j)) ∈ Γ, there is
a run starting from (β ′,(o j,q0

j)) which hits the state (β ′(bi+1,qi+1) . . .(bi′ ,qi′),(o j,q0
j)), and furthermore

along this run β ′ is always a prefix of the stack, or equivalently, the size of the stack is bounded below
by |β ′|. We also claim that since state (β ,(v,q)) is reached by assumption in the run on G starting at
(ε,(o1,q0

1)), the state ((b1,q1)(b2,q2) . . .(bi,qi),(o j,q0
j)) is also reached in the same run. Thus taking

β ′ = (b1,q1) . . .(bi,qi) we can prove inductively that for all l ∈N the run on G starting from (ε,(o1,q0
1))

reaches (β ′[(bi+1,qi+1) . . .(bi′ ,qi′)]
l,(o j,q0

j)), and thereafter β ′[(bi+1,qi+1) . . .(bi′ ,qi′)]
l remains a prefix

of the call stack. Hence the stack size not only remains bounded away from zero, but actually becomes
unbounded along the run. Thus the run cannot terminate.

Lemma 2.7. Let G := (G1, . . . ,Gk) be an instance of Recursive Arrival and assume the run on G hits
some state (β ,(v,q)), with |β | ≥ k. Then the run on G does not terminate.

Proof. We know by the assumption that the size of the component call stack of β satisfies |β |+1≥ k+1.
Thus, by the pigeonhole principle, since the component call stack c1 . . .c|β |+1 is a sequence over [k], there
must be two distinct indices i < i′ where ci = ci′ . Thus, the result follows by Lemma A.1.

B Missing proofs for Section 3

Theorem 3.1. The 2-exit Recursive Arrival problem is P-hard.

Proof. We proceed to show this by reduction from the Monotone Circuit Value Problem which is P-
complete (e.g., [15]). We assume that we are given as input an encoding of a boolean circuit α , as a
straight-line program, consisting of AND and OR gates and two constant gates corresponding to values
“true” and “false”, plus a designated output gate y. The problem is to decide whether or not the output y
of α is true. We may assume that the gates of α are g1, . . . ,gn in this ordering, i.e., for i, j ∈ [n] if j ≥ i
then the output of gate g j is not an input to gate gi, further we may assume y = gn, that g1 = “true′′ and
g2 = “ f alse′′ are our constant gates, and that all other gates are either the AND or the OR of exactly two
inputs.

Our reduction works as follows: given such a boolean circuit, α we will construct a recursive arrival
instance, G, such that G has n components, with, for i ∈ [n], a component Gi corresponding to the gate gi

of the circuit α .
Each component Gi will have a single entry, oi, and two exits, ⊤i and ⊥i. We will refer to the two

exits as “top”, ⊤, and “bottom”, ⊥, and they are located accordingly in our figures. Thus for any box
b ∈ Bi with Yi(b) = j its entry port will always be (b,o j) and it’s return ports always (b,⊤ j) and (b,⊥ j).
We will view these exits as encoding the outputs, “true” and “false” respectively, from the component
Gi.
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We will establish that for each component Gi, the exit ⊤i is reached exactly when the output of the
corresponding gate gi is “true” and that the exit ⊥i is reached exactly when the output of the correspond-
ing gate is “false”. We do so by induction on the index i ∈ [n], using our topological ordering of our
boolean circuit α .

Firstly, we construct components G1 and G2 for the constant gates g1 and g2, which form the base
case of our induction. These components are depicted in Figure 1. It is obvious that these satisfy the
inductive hypothesis, as all transitions go directly to the correct exit.

We now take our strong inductive hypothesis at the i’th step, i ∈ [n− 1]. We assume there exist
components G1, . . . ,Gi−1 such that for all j ∈ [i−1] component G j reaches the exit ⊤ j if gate g j’s output
is “true” and otherwise reach the exit ⊥ j. We now construct a component Gi corresponding to gate gi.
We know gi has exactly two inputs from gates j, j′ ∈ [i−1]. By induction, we can construct components
G j and G j′ which will be used inside Gi. We depict in Figure 2 two cases corresponding to whether gi is
an AND or an OR gate:

• AND Gate - The component Gi, depicted in Figure 2a, can be used to compute the AND. We can
observe that to hit, ⊤i we must hit both (b2,⊤ j′) and (b1,⊤ j). By induction, this happens when the
output of both g j and g j′ is “true”, thus the output of gi should also be “true”. Also by induction,
we must hit the return ports of both b1 and b2, and we observe hitting either (b2,⊥ j′) or (b1,⊥ j)
results in hitting exit ⊥∧, this happens when the output of one of g j or g j′ is “false” and thus the
output of gi+1 should also be “false”.

• OR Gate - The component OR j, j′ , depicted in Figure 2b, can be used to compute the OR. The
proof of which follows analogously to that for AND.

One can see that these components perform a lazy evaluation over the respective gate inputs. We
note that the size of each Gi is constant (independent of i or n). Following this process, we eventually
construct components G1, . . . ,Gn. By our induction, Gn reaches exit ⊤n if and only if the output from
y = gn is “true”.

Thus, we have constructed a Recursive Arrival instance G, of polynomial size in n, the number
of gates of α , and shown a many-one reduction hence the Recursive Arrival problem is P-hard.

C Missing proofs for Section 4

Lemma C.1. Let G be an instance of Recursive Arrival. For any t ∈ N the Recursive Run Profile
RRRuuunnn(G, t) is a run-like recursive switching flow, i.e., {RRRuuunnn(G, t) | t ∈ N} ⊆ X .

Proof. This fact follows trivially by induction. For t = 0, the recursive run profile consists of only all-
zero vectors, so trivially satisfies the conditions. Assuming for some time t, we note if there is a change
in the recursive run profile at time t +1, then it must be in some unique component Gl , for l ∈ [k], some
unique edge e’s coordinate has been incremented by 1. In this case, we must have 1 ∈ J and that l = jr
or l = jr+1. It also follows as the subsequences just look like regular Arrival runs where we wait at call
ports until things are completed.

Lemma 4.1. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. Then if XXX is neither complete nor lassoed, then there exists exactly one UUU i,e ∈ U such that
(XXX +UUU i,e) is a run-like recursive switching flow. Otherwise, if XXX is either complete or lassoed, then there
exists no such UUU i,e.



20 The Recursive Arrival Problem

Proof. We shall show that for any XXX the following cases are total and mutually exclusive and from each
case we have that XXX is either complete, lassoed or we are able to give unique i and e as a function of XXX .

1. XXX is complete, i.e., 1 ∈ KXXX .

2. XXX is lassoed, i.e., j(rXXX+1) ∈ JXXX .

3. d
j(rXXX+1)

XXX ∈ Sor j(rXXX+1) . In which case we shall show that i = j(rXXX+1) and e can be determined by

checking the switch parity condition at d
j(rXXX+1)

XXX .

4. If j(rXXX+1) ∈ KXXX . In which case we shall show that i = jrXXX and e can be determined by vertex

d
j(rXXX+1)

XXX ∈ Ex j(rXXX+1) .

We note these cases are mutually exclusive, as exactly one of 1 ∈ KXXX or 1 ∈ JXXX holds. Also, exactly
one of j(rXXX+1) ∈ JXXX , j(rXXX+1) ∈ JXXX or d

j(rXXX+1)

XXX ∈ Sor j(rXXX+1) holds as d
j(rXXX+1)

XXX must be exactly one of an exit,
call-port or source vertex (including possibly an entry, return-port or switching node).

Consider any run-like recursive switching flow XXX on G. For any i ∈ [k] and e ∈ Ei ∪ Fi, define
XXX i,e := (XXX +UUU i,e) = (xxx1

i,e, . . . ,xxx
k
i,e).

In any component i ∈ [k], the only edges e ∈ Ei ∪Fi, such that xxxi +uuui
e is a component switching flow,

are those edges e outgoing from di
XXX or where e is a self-loop edge e = (v,v) ∈ Ei. Thus, for any other e,

XXX i,e is not a recursive switching flow, because its i’th component is not a component switching flow on
Gi.

If it were the case that e = (v,v) is a self-loop, then XXX i,e the last-used-edge graph, G∗
i,xxxi

i,e
, must contain

a cycle consisting of the edge (v,v). If v ̸= di
XXX , then XXX i,e cannot be run-like because, by definition of being

run-like, di
XXX must be on any cycle in G∗

i,xxxi
i,e

. Thus, we only need to consider XXX i,e where e is an outgoing

edge of di
XXX . There are three cases to consider, based on whether di

XXX is an exit, call-port, or source vertex:

• If di
XXX ∈ Exi, i.e. i ∈ KXXX , then there are no outgoing edges e from di

XXX . Thus, for this i, there does not
exist any edge e ∈ Ei ∪Fi such that XXX i,e is a run-like recursive switching flow.

• If di
XXX ∈ Sori. Then there are two outgoing edges of di

XXX ∈ Sori which we call e0 := (di
XXX ,s

0(di
XXX)) and

e1 := (di
XXX ,s

1(di
XXX)). By the Switching Parity Condition xxxi

i,e0
is a component switching flow if and

only if xi
e0
= xi

e1
. Similarly, xxxi

i,e1
is a component switching flow if and only if xi

e0
̸= xi

e1
. Since these

are mutually exclusive, exactly one of xxxi
i,e0

and xxxi
i,e1

is a component switching flow. Thus, for such
an i, there is some unique e such that XXX i,e is a recursive (not necs. run-like) switching flow.
Now, considering this XXX i,e, we determine for which choices of i, with di

XXX ∈ Sori, that XXX i,e can be
run-like. Note that, KXXX = KXXX i,e and JXXX = JXXX i,e . Thus, since xxxi

i,e ̸= 000i, we must have i = jrXXXi,e+1 =
j(rXXX+1) for XXX i,e to be run-like.

• If di
XXX ∈ Calli, i.e., i ∈ JXXX and di

XXX = (b,oYi(b)). Then all outgoing edges of di
XXX are e ∈ Fi,b. In xxxi

i,e
we must have that the e’th coordinate is strictly positive, thus where XXX i,e run-like, we must have
that Yi(b) ∈ KXXX i,e . It must further be the case that KXXX i,e = KXXX and that dYi(b)

XXX = dYi(b)
XXX i,e

∈ ExYi(b),
since the only component switching flow that has changed is that for component i and its new
current vertex, di

XXX i,e
, is a return-port of box b. Thus, for such an i, there is some unique e, namely

((b,oYi(b)),(b,d
Yi(b)
XXX )), for which XXX i,e is a recursive (not necs. run-like) switching flow.

Now, considering this XXX i,e, we determine for which i, with i ∈ JXXX , it can be run-like. We note
KXXX and JXXX are disjoint and for the ordering j1, . . . , jrXXX of JXXX and where d jk

XXX = (bk,o) that for all
k ∈ [rXXX ] Yjk(bk) = jk+1. Since i = jk for some k ∈ [rXXX ] it must be that b = bk and Yi(b) = jk+1 ∈ KXXX
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and jk+1 ̸∈ JXXX . Hence, k = rXXX as this is the only k ∈ [rXXX ] where this can be true. Further, by our
conditions on component flows j(rXXX+1) ∈ KXXX i,e = KXXX .

From these necessary conditions on i and e for XXX i,e to be run-like we can examine the cases when XXX is
complete or lassoed.

• If XXX is complete, then for each component, i ∈ [k], either i ∈ KXXX or di
XXX = oi ∈ Sori. We also note

that rXXX = 0 and j(rXXX+1) = 1 ∈ KXXX . It follows from the above, no XXX i,e can be run-like. It cannot be
the case that i ∈ KXXX as no such e exists where XXX i,e is run-like. It also cannot be the case that both
i ̸∈ KXXX and di

XXX = oi ∈ Sori, as we have shown for XXX i,e run-like it is necessary for i = j(rXXX+1) = 1,
however, this implies i ∈ KXXX , a contradiction. Thus, no i ∈ [k] leads to a run-like flow.

• XXX is lassoed, then for each component, i ∈ [k], either i ∈ KXXX , i ∈ JXXX or di
XXX = oi ∈ Sori. Since XXX

is lassoed, we know that jrXXX ∈ JXXX and thus jrXXX ̸∈ KXXX . It follows from the above, no XXX i,e can be
run-like. It cannot be the case that i ∈ KXXX as no such e exists where XXX i,e is run-like. It also cannot
be the case that both i ∈ JXXX , as we have shown for XXX i,e run-like it is necessary for j(rXXX+1) ∈ KXXX , but
since XXX is lassoed j(rXXX+1) ∈ JXXX and JXXX and KXXX are disjoint, a contradiction. It also cannot be the
case that both i ̸∈ KXXX ∪ JXXX and di

XXX = oi ∈ Sori, as we have shown for XXX i,e run-like it is necessary
for i = j(rXXX+1), however, this implies i ∈ JXXX , a contradiction.

Thus the only remaining case is that in which XXX is neither complete nor lassoed in which we wish to
show i and e are uniquely determined. We shall use the above necessary conditions for XXX i,e to be run-like
to show at most one pair exists, then verify this pair is in fact run-like. For XXX i,e to be run-like it must be
that i ̸∈ KXXX and one of:

• di
XXX ∈ Sori and i = j(rXXX+1) (our initial third case), or,

• i ∈ JXXX , i = jrXXX and j(rXXX+1) ∈ KXXX (our initial fourth case)

As argued initially these are mutually exclusive and any XXX which is neither complete nor lassoed (cases
1 & 2) satisfies exactly one of these cases. Thus, there is at most one i and e for such XXX . We check that
for whichever case XXX satisfies, the resulting XXX i,e is actually run-like. The edge e was chosen so that xxxi

i,e
was a component switching flow and XXX i,e was a recursive switching flow. Thus we check each item of
our run-like definition.

• For each component index l ∈ [k]\{i} the graph G∗
l,xxxl

i,e
= G∗

l,xxxl . Thus, we only need to confirm that

the condition holds for G∗
l,xxxi

i,e
. If e ∈ El this follows by our non-recursive result Proposition 2.5.

Otherwise, if e = ((b,o),(b,x))∈ Fl it follows as if G∗
l,xxxi

i,e
contained a cycle with (b,o) on the cycle

this cycle must also contain the edge e and if adding e forms a cycle then there must already be
some outgoing edge from (b,x) in G∗

l,xxxi , however then e must also be in G∗
l,xxxi , thus this cannot be a

new cycle.

• Here we distinguish between cases 3 and 4. In case 3: there is no change to JXXX and the ordering
remains the same. In case 4: the value rXXX i,e = rXXX −1 as jrXXX ̸∈ JXXX i,e , the ordering remains the same
however, as it is just the maximal element removed.

• Here we distinguish between cases 3 and 4. In case 3: we only increase the value in component
j(rXXX+1) = jrXXXi,e+1, thus never violating the condition. In case 4: it must be the case j(rXXX+1) ∈ KXXX =

KXXX i,e , thus while jrXXX ̸∈ JXXX i,e we have jrXXX = jrXXXi,e+1.

• We can not introduce a cycle into CCom
XXX ′ as if adding edge (i, j) to CCom

XXX forms a cycle then this set
of edges from j to i in CCom

XXX implies i ∈ KXXX but then we know i ̸∈ KXXX for XXX i,e to be run-like.
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• We know that CPen
XXX did not contain a cycle, since by assumption XXX was not lassoed. If CPen

XXX ′ contains
a cycle, we must be in the case where we have CPen

XXX ⊂CPen
XXX ′ , thus the newly added edge forms the

cycle as required. Note in other cases the graph either does not change or the final edge is removed,
not introducing any cycles.

• In the graph ([k],EPen
XXX ′ ∪ECom

XXX ′ ) we only need to consider the case when xxxl = 000l but xxx′l ̸= 000l , we
note, this only occurs in the case l = j(rXXX+1) in which case (EPen

XXX ′ ∪ECom
XXX ′ ) = (EPen

XXX ∪ECom
XXX ) and that

both ( jrXXX , j(rXXX+1)) ∈ EPen
XXX and 1 →∗ jrXXX , since xxx( jrXXX ) ̸= 000( jrXXX ). Thus also 1 →∗ j(rXXX+1)

Lemma 4.2. Let G be an instance of Recursive Arrival, and let XXX ∈X be a run-like recursive switching
flow on G. If XXX is non-zero then there exists a unique UUU i,e ∈ U such that (XXX −UUU i,e) ∈ X is a run-like
recursive switching flow. Otherwise, if XXX is all-zero, then no such UUU i,e exists.

Proof. We shall show for non-zero XXX the following choice is the unique value for i, and e can be deter-
mined using E∗

i,xxxi . We take:

• If xxx j(rXXX+1) > 000 j(rXXX+1) and CC(XXX , j(rXXX+1)) = 0 then take i = j(rXXX+1).

• Otherwise, take i = jrXXX . Where, necessarily, that either CC(XXX , j(rXXX+1))≥ 1 or xxx j(rXXX+1) = 000 j(rXXX+1) .

For pairs i ∈ [k] and e ∈ Ei ∪Fi we define XXX i,e := (XXX −Ui,e) = (xxx1
i,e, . . . ,xxx

k
i,e) where this subtraction is

defined and shall just say XXX i,e is undefined otherwise.
The case for XXX = 000 is trivial, as for any choice of i and e XXX i,e is undefined. Thus, we show for XXX > 000

that there is a unique XXX i,e which is defined and a run-like recursive switching flow. Since XXX is run-like,
we know that xxx1 > 0001. It is also evident that for any i ∈ [k] with xxxi = 000i that XXX i,e is undefined for all
e ∈ Ei ∪Fi.

We know by our results on non-recursive switching flows, proposition 2.5, that for any fixed i ∈ [k]
with xxxi ̸= 000i that there is a unique edge ei ∈ Ei ∪Fi such that XXX i,ei is defined and that xxxi

i,ei
is a component

switching flow. It follows this ei is the unique edge in E∗
i,xxxi such that either:

• ei is the unique edge into di
XXX ,

• ei is on the unique cycle of E∗
i,xxxi containing di

XXX and is the incoming edge to di
XXX on this cycle.

Hence, for any other edge e ∈ Ei ∪Fi \ {ei} we have that XXX i,e is either undefined or, when defined, that
xxxi

i,e is not a component switching flow, thus XXX i,e cannot be a recursive switching flow. We now show
there is exactly one such i ∈ [k] such that XXX i,ei is defined and a recursive switching flow by considering
the conditions on the pending-call graph. Consider some fixed i ∈ [k] with xxxi > 000i, so that we know XXX i,ei

is defined. We observe that for j ∈ [k]\{i} that the current vertex in component j is unchanged between
XXX and XXX i,ei , i.e., d j

XXX = d j
XXX i,ei

. Thus, for such j we have j ∈ JXXX if and only if j ∈ JXXX i,ei
and similarly for KXXX

and KXXX i,ei
. We also note that if j1, . . . , jrXXX , j(rXXX+1) is the component call stack of XXX and for l ∈ [rXXX ] that if

jl ̸= i then ( jl, jl+1) ∈ EPen
XXX i,ei

. We note for i that if i ∈ JXXX then i ̸∈ JXXX i,ei
and if i ∈ KXXX then i ̸∈ KXXX i,ei

.
We may consider the three cases of the state of component i to determine the necessary conditions

for XXX i,ei to be run-like:

• If i ̸∈ KXXX ∪ JXXX , since XXX is also run-like we must have that either xxxi = 000i or that i = j(rXXX+1). By our
assumption, it must be the later case, i.e., i = j(rXXX+1). It must also be the case that CC(XXX , i) = 0 as
CC(XXX , i)> 0 implies i ∈ KXXX .
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• If i ∈ JXXX then it must be the case that i = jrXXX , since we know other edges in the pending-call
graph are unchanged we must remove the last index in the sequence. Then it must be the case
that JXXX i,ei

= JXXX \ {i} and that rXXX i,ei
= rXXX − 1. Considering j(rXXX+1) we note we must have one of

j(rXXX+1) ∈ JXXX , j(rXXX+1) ∈KXXX or xxx j(rXXX+1) = 000 j(rXXX+1) , since by XXX i,ei run-like we must have one of j(rXXX+1) ∈
JXXX i,ei

∪KXXX i,ei
or xxx j(rXXX+1) = 000 j(rXXX+1) since j(rXXX+1) ̸= jrXXX . We also note that edge ( jrXXX , j(rXXX+1)) is removed

from the graph ([k],EPen
XXX ∪ECom

XXX ) to ([k],EPen
XXX i,ei

∪ECom
XXX i,ei

), thus, since both are run-like, there must

be some other incoming edge to i in ([k],EPen
XXX ∪ECom

XXX ). We can see this happens if and only if
CC(XXX , jr+1) ≥ 1. Any such edge must be in ECom

XXX i,ei
= ECom

XXX and CC(XXX , jr+1) counts, with positive
multiplicity, the number of such edges.

• If i ∈ KXXX then we know that i ̸∈ KXXX i,ei
. Since the only successors of call-ports are return-ports (and

thus not exits) we also have that i ̸∈ JXXX i,ei
and thus that JXXX i,ei

= JXXX . Thus, by our run-like conditions,
it must be that either xxxi

i,ei
= 000i or i = jrXXX+1 . In either case, since i ̸∈ KXXX i,ei

we must have that for
every l ∈ [k], b ∈ Bl and f ∈ Fb,l that if Yl(b) = i then xl

i,ei
( f ) = 0 by our recursive switching flow

definition. Evidently, this holds if and only if CC(XXX i,ei , i) = 0, and since XXX agrees on all edges bar
e, that CC(XXX), i) = 0. Finally, considering the case when xxxi

i,ei
= 000i, we know that CC(XXX , i) = 0,

thus since there is a path from 1 to i in ([k],EPen
XXX ∪ECom

XXX ) this must use an edge in EPen
XXX , since

there are no incoming edges to i in ECom
XXX . Thus, since i ̸∈ JXXX this edge must be ( jrXXX , j(rXXX+1)) and

i = j(rXXX+1).

We note by these implications only one of the cases may occur, thus we may uniquely determine i as
according to Appendix C. We note XXX i,ei is evidently run-like as all the conditions follow from it being
recursive and bounded by XXX .

Lemma C.2. Let G be an instance of Recursive Arrival and XXX ,YYY ∈ X be run-like recursive switching
flows on G. If Val(XXX) =Val(YYY ) then XXX = YYY .

Proof. We show for each ℓ ∈ N there exists at most 1 choice of XXX ∈ X with Val(XXX) = ℓ. For ℓ= 0 it is
trivial that 000∈X is the unique vector with Val(000)= 0. Assume the hypothesis holds for some fixed ℓ∈N
with ℓ > 0. Assume there exists XXX ,YYY ∈X with Val(XXX) = ℓ+1 =Val(YYY ), we will then show that XXX =YYY .
By Lemma 4.2 there exists unique UUU i,e,UUU i′,e′ ∈ U such that both (XXX −UUU i,e),(YYY −UUU i′,e′) ∈ X , since we
must have Val(XXX −UUU i,e) =Val(YYY −UUU i′,e′) = ℓ by our inductive hypothesis (XXX −UUU i,e) = (YYY −UUU i′,e′) = ZZZ.
Using Lemma 4.1 on ZZZ we know there is at most one vector UUU ′ ∈ U such that (ZZZ +UUU ′) ∈ X , however
ZZZ +UUU i,e = XXX ∈ Z and ZZZ +UUU i′,e′ = YYY ∈ Z , hence we must have that UUU i,e =UUU i′,e′ and thus XXX = YYY .

Lemma C.3. Let G be an instance of Recursive Arrival. For any run-like recursive switching flow,
XXX ∈ X , there exists some t ∈ N such that RRRuuunnn(G, t) = XXX.

Proof. We observe firstly that RRRuuunnn(G,0)= 000 and this is obviously the unique run-like recursive switching
flow with Val(XXX) = 0. We then consider some value t ∈ N with RRRuuunnn(G, t) ̸= RRRuuunnn(G, t + 1), then it is
evident from the definition that Val(RRRuuunnn(G, t))+1 =Val(RRRuuunnn(G, t +1)). We assume, for contradiction,
that XXX is the Val-minimal run-like recursive switching flow such that, for all t ∈ N, RRRuuunnn(G, t) ̸= XXX . By
Lemma C.2 we know that if such a minimal XXX exists it is unique. By Lemma 4.2 there is some unique
UUU i,e ∈ U such that (XXX −UUU i,e) is a run-like recursive switching flow. We must therefore have some t ∈N
such that (XXX −UUU i,e) = RRRuuunnn(G, t), because Val(XXX −UUU i,e) = Val(XXX)−1 and we have assumed XXX is Val-
minimal. We want to show that there exists a time t ′ > t such that XXX = RRRuuunnn(G, t ′). There are two cases
to consider:
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• If there ∃t ′ > t such that RRRuuunnn(G, t ′) ̸= RRRuuunnn(G, t), then there is some minimal t ′ which satisfies
Val(RRRuuunnn(G, t ′)) = 1+Val(RRRuuunnn(G, t)) =Val(XXX). Using Lemma C.2 we see this would imply that
XXX = RRRuuunnn(G, t ′).

• Otherwise, ∀t ′ > t we have that RRRuuunnn(G, t ′) = RRRuuunnn(G, t). We then show that no run-like recursive
switching flow can have value greater than Val(RRRuuunnn(G, t)) = Val(XXX)− 1, thus contradicting that
XXX is a run-like recursive switching flow. We consider the sequences S1, . . . ,Sk (first entry times),
T1, . . . ,Tk (first exit times), for each l ∈ [k] with Sl < ∞ the first-encounter stack β l (the call-stack at
the first entry time) and, finally, the component runs, the (potentially-finite) subsequence t l

1, t
l
2, . . .

of all times t l
j ∈ [Sl . . .Tl] where our component call stack is equal to β l . Our assertion, that ∀t ′ > t

we have that RRRuuunnn(G, t ′) = RRRuuunnn(G, t), implies that for each l ∈ [k] that sup{t l
1, t

2
l , . . .} ≤ t, where we

take the supremum of the empty sequence to be 0. Thus, for each l ∈ [k], the sequence t l
1, t

2
l , . . . must

be of finite length. We let dl
RRRuuunnn(G,t) ∈Vl be the current-vertex of the flow RRRuuunnn(G, t) in component

l. Then we must, for each l ∈ [k], have that dl
RRRuuunnn(G,t) ∈ {ol}∪Calll ∪Exl . Those at ol have empty

sequences t l
1, . . . and thus rrruuunnn(Gl, t) = 000l . Those in Exl have Tl ≤ t, thus Tl finite.

We do so by showing that RRRuuunnn(G, t) must be finished. Considering our run profile at time t it must
be that after time t, for any component l ∈ [k], we cross no more edges in the calling context (i.e.,
with the call stack) βl , which is our first ever calling context when encountering component l. The
two ways in which it can occur that ∀t ′ > t we have RRRuuunnn(G, t ′) = RRRuuunnn(G, t) are as follows:

1. The run has completed at time t, and thus 1 ∈ KRRRuuunnn(G,t) = KRRRuuunnn(G,t ′). Hence this run profile is
finished.

2. We never return to any of the βl calling contexts, thus the stack is bounded away from 0
for the remainder of the run. In this case, we know by Lemma 2.7 that we must make a
call to some previously visited component at time t. Thus RRRuuunnn(G, t) is call-pending with
j(rRRRuuunnn(G,t)+1) ∈ JRRRuuunnn(G,t), thus it is also finished.

We note in both these cases there are no possible post-overflowing flows, as any flow which is
strictly greater can not be run-like as it must contradict the last-used edge graph’s acyclicity con-
dition.

We note that if we have a finished switching flow of the final type, i.e., where xi
e > 2p(N), then there are

run-like recursive switching flows for every t ∈ N. Any run-like switching flows greater than a finished
run-like switching flow one must be post-overflowing by definition.

Lemma C.4. Let G be an instance of Recursive Arrival. There exists a unique finished run-like recursive
switching flow, XXX ∈ F , on G. Furthermore, XXX ∈ F N where N = 2maxi|Vi|+1.

Proof. Consider the sequence RRRuuunnn(G, t)’s, for all t ∈N, which are all run-like recursive switching flows.
Note moreover that RRRuuunnn(G, t)≤ RRRuuunnn(G, t +1) for all t ∈N. Consider the set {RRRuuunnn(G, t) | t ∈N}, which
by Lemma C.3 is precisely equal to X . Either the set X = {RRRuuunnn(G, t) | t ∈N} is finite, in which case it
contains some coordinate-wise maximum vector corresponding to the unique finished recursive run-like
switching flow which is either completed or lassoed, or else, the set X is infinite in which case it must
contain vectors with arbitrarily large coordinate values. Thus we can pick the minimum vector in X
with an “excessively large” coordinate value equal to 2p(N)+1, and this uniquely determined minimum
vector will correspond to RRRuuunnn(G, t ′) for some specific first-time t ′ when we one of the edge counters
overflows.

We know such a flow is bounded by 2p(N)+1, since any component flow which terminates is bounded
by this value (Proposition 2.3).
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Lemma C.5. There is a polynomial-time algorithm that, given G, an instance of Recursive Arrival, and
given XXX ∈ F , decides whether XXX is a finished run-like recursive switching flow on G.

Proof. We need only to check each of the conditions which define each of being a: “component switch-
ing flow”; “recursive switching flow”; “run-like recursive switching flow”; and “finished”, including
checking which of the (mutually exclusive) conditions “complete”, “lassoed” and “just-overflowing” is
satisfied. Each condition resolves to a check on some graph of either an inequality relating coordinates
of XXX or, a reachability question on graphs like CPen

XXX or CCom
XXX , both of which are computable in polynomial

time from a given XXX and reachability is similarly computable.

Lemma C.6. There is a polynomial time algorithm that, given G, an instance of Recursive Arrival, given
XXX ∈ X , a finished run-like recursive switching flow on G, and given an exit, d ∈ Ex1, decides whether
or not the run on G terminates at d.

Proof. We simply need to check under which condition XXX is finished. If it is “complete”, we decide “yes”
whenever the current vertex d1

xxx1 of xxx1 satisfies d1
xxx1 = d. In all other cases, we decide “no”. Correctness

follows from the fact that there is a unique finished run-like recursive switching flow which corresponds
to corresponds to some RRRuuunnn(G, t), and which either indicates that the run is complete and terminates at
d (the only “yes” case), or else it terminates elsewhere, or it doesn’t terminate.

Theorem 4.3. The Recursive Arrival problem is in NP∩ coNP and UP∩ coUP.

Proof. Our algorithm proceeds to guess some flow (xxx1, . . . ,xxxk) ∈ F N , where N = 2max{|Vi|} + 1, with
for l ∈ [k] each vector xxxl = (xl

e ∈ [0 . . .N] | e ∈ El ∪Fl). We verify, in polynomial time, whether or not
(xxx1, . . . ,xxxk) is a finished run-like recursive switching flow using Lemma C.5. We know for any G there is
a unique choice of (xxx1, . . . ,xxxk) satisfying this property by Lemma C.4. Using Lemma C.6 we are able to
determine from (xxx1, . . . ,xxxk), in polynomial time, whether or not the run on G terminates and if so which
exit in Ex1 it terminates at. Since these options are mutually exclusive and include all possibilities, the
value (xxx1, . . . ,xxxk) effectively certifies the entire dynamics of the run on G.

C.1 Containment in UEOPL

Theorem 4.4. The Search-Recursive Arrival is in UEOPL.

Proof. We will give a polynomial-time search reduction from Search Recursive Arrival to the
UniqueEOPL problem.

We will consider the space F N , where N = 2max{|Vi|}+1, the elements of which are vector sequences,
(xxx1, . . . ,xxxk), where for l ∈ [k] we have xxxl = (xl

e ∈ [0 . . .N] | e ∈ El ∪Fl). We denote by X N := X ∩F N ,
i.e., the set of run-like Recursive Switching flows which are also bounded in each coordinate by N.
Elements of this space may be described using (∑l∈[k]|El ∪Fl|) · (log2(N)) bits, which is polynomial in
the size of the given Search Recursive Arrival instance. Our boolean circuits S,P, and V are then
given by the restriction of the functions Adv, Prev, and Val to the domain F N , where we view elements
of this space as bit sequences.

We show that there is a polynomial time algorithm that, given an instance, G, of Search Recursive
Arrival computes an instance of UniqueEOPL by outputting boolean circuits representing S,P, and V .
Therefore, we need to show that we can efficiently compute a boolean circuit for each of Adv, Prev, and
Val. To do so, we show how to efficiently compute boolean circuits (i.e., straight line programmes with
boolean operations) for each of the following tasks, given XXX ∈ F N :
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1. Decide whether or not XXX is all zero (i.e., the boolean circuit outputs 1 or 0, depending on whether
or not XXX is all zero, respectively).

2. Decide whether or not XXX ∈ X N .

3. Decide whether or not XXX is finished.

4. Decide whether or not XXX is post-overflowing.

5. Compute the vector UUU i,e ∈ U given by Lemma 4.1.

6. Compute the vector UUU i,e ∈ U given by Lemma 4.2.

From these and standard straight line programmes for addition and subtraction, it is straightforward to
compute a boolean circuit for each of Adv, Prev, and Val. We will define the multi-input boolean gate
ONE, which evaluates to true if one and only if exactly one of its arguments is true, and evaluates to
false if either none or two or more of the arguments are true. We now proceed to show how to compute
the above boolean circuits. Determining whether the input is all-zero is trivial. Next, we show how to
decide whether or not XXX ∈X N . We define the following boolean-valued outputs for each l ∈ [k] indexed
by vertices v ∈Vl and boxes b ∈ Bl:

• α l
F1[v] which is true if and only if

(
∑e=(u,v)∈El∪Fl

xl
e
)
−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 1

• α l
F0[v] which for v ∈Vl \{ol} is true if and only if

(
∑e=(u,v)∈El∪Fl

xl
e
)
−
(
∑e=(v,w)∈El∪Fl

xl
e
)
= 0.

• α l
F0[ol] which is true if and only if

(
∑e=(ol ,w)∈El∪Fl

xl
e
)
= 1

• α l
S0[v] which for v ∈ Sorl is true if and only if x(v,s1(v)) = x(v,s0(v)) (we don’t require the boolean

value α l
S0[v] to be defined when v ̸∈ Sorl).

• α l
S1[v] which for v ∈ Sorl is true if and only if x(v,s0(v)) = x(v,s1(v))+1 (we don’t require the boolean

value α l
S1[v] to be defined when v ̸∈ Sorl).

• α l
B[b] which is true if and only if for at most one f ∈ Fb,l we have x f

l > 0.

Clearly, each of the boolean values in the above list can be obtained as the output of an efficiently
computable boolean circuit, given XXX ∈ F N . Thus, given XXX = (xxx1, . . . ,xxxk) ∈ F N , xxxl is a component
switching flow if and only if all of the following conditions hold:

• For every v ∈Vl , (α l
F1[v]∧α l

F0[v]) is true. In other words,
∧

v∈Vl
(α l

F1[v]∧α l
F0[v]) is true.

• There is exactly one vertex, dl ∈Vl , with α l
F1[dl] true, i.e., ONEdl∈Vl (α

l
F1[dl]).

•
∧

v∈Sorl
(α l

S1[v]∨α l
S0[v]) is true.

•
∧

b∈Bl
α l

B[b] is true.

Assuming xxxl is a component switching flow we know that dl is the current vertex dl
xxxl . We may then

determine whether xxxl is complete, which holds if and only if OR(α l
F1[v] | v ∈ Exl) is true. Thus, our

recursive switching conditions ask that if for any edge f = ((b,oYi(b)),(b,dYi(b))) in Fl we have xl
f > 0,

then α l
F1[dYi(b)] must be true. This condition can be written as

∧
f∈Fl

((xl
f > 0) =⇒ (α l

F1[dYi(b)])). Thus,
we may determine whether XXX is a recursive switching flow using an AND of each of these conditions,
confirming that for all l ∈ [k] each xl is a component switching flow and xl satisfies the recursive switching
conditions. Note that each of these conditions is well-defined if all the previous conditions are true and,
otherwise, any previous false condition determines the output already.

We may evidently use these to then determine whether or not a given edge is in the pending-call
graph, CPen

XXX , completed-call graph, CCom
XXX , and last-used edge graphs, G∗

l,xxxl , as follows:
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• (i, j) ∈ EPen
XXX if and only if ∃b ∈ Bi with Yi(b) = j such that α i

F1[(b,o j)] is true. I.e.,
∨

b∈BI
((Yi(b) =

j)∧ (α i
F1[(b,oYi(b))])).

• (i, j) ∈ ECom
XXX if and only if ∃b ∈ Bi,∃ f ∈ Fb,i, such that ((Yi(b) = j)∧ (xi

f > 0)).

• For each i ∈ [k], for the last-used-edge graph, G∗
i,xxxi , we need to decide whether the last-used edge

from each v ∈ Sori exists and if it does whether it is (v,s0(v)) or (v,s1(v)). We can do so as follows:

– There is no last-used edge when xi
(v,s0(v)) = 0.

– (v,s1(v)) is the last-used edge when (xi
(v,s0(v)) > 0)∧ (α i

S0[v]).

– (v,s0(v)) is the last-used edge when α i
S1[v] is true. Note that for xxxi a component switching

flow, α i
S1[v] being true implies (xi

(v,s0(v)) > 0)∧¬α i
S0[v] is also true, and hence these three

cases are complete and mutually exclusive.

This process also allows us to determine the membership of sets JXXX and KXXX . To then determine whether
on not our sequence is run-like we need to verify all the following defining conditions for being “run-
like”:

• For each l ∈ [k], G∗
l,xxxl is either acyclic or has exactly one cycle containing dl .

• The edges of the pending-call graph, EPen
XXX , on the set JXXX form either a directed line, or a “lasso”

consisting of a directed line ending at a directed cycle.

• Every i ∈ [k], xxxi is either complete, call-pending, in-progress, or all-zero.

• The completed-call graph, CCom
XXX , is acyclic.

• For any l ∈ [k], if xxxl ̸= 000l , then in the graph ([k],EPen
XXX ∪ECom

XXX ) we must have 1 →∗ l, i.e., there must
be a path in this graph from component 1 to all components l for which xxxl is non-zero.

Using these defining conditions for being run-like, we can also determine whether or not a run-like
recursive switching flow is finished, post-overflowing or neither.

For the circuit for S, we wish to compute the values i ∈ [k] and e ∈ Ei ∪Fi such that UUU i,e ∈ U is the
unique vector given by Lemma 4.1. By the proof of Lemma 4.1 we have that either i = jrXXX or i = j(rXXX+1).
We know jrXXX is the unique sink of the pending-call graph, and thus can be determined by examining
EPen

XXX . We have i = jrXXX if and only if j(rXXX+1) ∈ KXXX , and otherwise, we have i = j(rXXX+1). Since we can
determine membership of KXXX , we can determine the component i associated with the unique vector UUU i,e.
We can then also determine e. Namely, e is (di,s0(di)) in case α i

S0[di], and otherwise it is (di,s1(di)) in
case α i

S1[di], and these conditions are complete and mutually exclusive. Here di is the current vertex of
xxxi, di

xxxi , which, as we have seen before, we can compute efficiently using a boolean circuit as the unique
vertex v ∈ Sorl at which α l

F1[v] outputs true.
Similarly, for the circuit P, we wish to compute i ∈ [k] and e ∈ Ei ∪Fi such that UUU i,e ∈ U is the

unique vector given by Lemma 4.2. By the proof of Lemma 4.2 we have that either i = jrXXX or i =
j(rXXX+1). We again know jrXXX is the unique sink of the pending-call graph and thus can be determined. The
function CC(XXX , l) for l ∈ [k] is obviously computable efficiently, thus we can determine whether or not
CC(XXX , j(rXXX+1))> 0. We similarly see by the proof of Lemma 4.2 that we can determine whether i = jrXXX

or i = j(rXXX+1), and then using the last-used edge graph, G∗
i,xxxi , we can determine the edge, e, as either the

unique incoming edge to di or the unique incoming edge on the unique cycle containing di.
These circuits allow us to compute S (resp. P). To see this, note that we are able to use the output

of gates we have computed which determine, for a given input XXX , (a) whether XXX ∈ X N , and (b) whether
XXX is all-zero, (c) whether XXX is finished, or (d) whether XXX is post-overflowing. In each case, for the
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successor (and predecessor) circuits S (and P), we can appropriately output the result of incrementing
(resp. decrementing) XXX by UUU i,e for the computed pair (i,e) and otherwise, we output XXX itself (meaning
there is a self-loop at XXX). As these combine polynomial-sized circuits, this construction gives circuits for
both S and P which have a polynomial number of gates in the size of our instance G.

Thus, we have constructed an instance of UniqueEOPL. Through our construction of the circuits, we
have the following properties:

(A) If XXX ∈ F N \X N then P(XXX) = XXX = S(XXX), i.e., such points XXX are isolated self-loops.

(B) If XXX ∈ X N and XXX ̸= S(XXX), then V (XXX)+ 1 = V (S(XXX)), i.e., if XXX has a successor, then the value
increases by 1 from XXX to S(XXX).

(C) If instead XXX ∈ X N and S(P(XXX)) ̸= XXX , then XXX = 000, i.e., 000 is the only start of a line.

(D) For XXX ,YYY ∈ X N , if V (XXX) =V (YYY ) then XXX = YYY by Lemma C.2, i.e. V gives each run-like recursive
switching flow a unique value.

(E) If XXX ∈ X N and P(S(XXX)) ̸= XXX , then XXX is finished, i.e., any end of a line is a finished run-like
switching flow (which is what we want to compute).

We now consider the points XXX ∈ F N (or the pair XXX ,YYY in the (UV3) solution case) which can be returned
as a valid UniqueEOPL solution. By (A) we know any point in a returned solution, any of (U1) or (UV1-
3), must be in X N , since no isolated point can be in a solution. Thus, we can only consider points
XXX ,YYY ∈ X N which are in this set.

By (B) we know for XXX ∈ X N that when XXX ̸= S(XXX) that V (S(XXX)) = 1+V (XXX) ̸≤ V (XXX), thus, X N

contains no (UV1) solutions. By (C) we know if XXX ∈ X N has S(P(XXX)) ̸= XXX then XXX = 000, thus there are
no (UV2) solutions in X N . We now consider the existence of a (UV3) solution pair XXX ,YYY ∈ X N . We
consider all such pairs satisfying XXX ̸=YYY , XXX ̸= S(XXX) and YYY ̸= S(YYY ) and show neither one of V (XXX) =V (YYY )
or V (XXX) < V (YYY ) < V (S(XXX)) can be satisfied. Were it the case that V (XXX) = V (YYY ) we know by (D) that
XXX = YYY , which is a contradiction. Instead, if it were the case V (XXX)<V (YYY )<V (S(XXX)) then we know by
(B) that V (S(XXX)) =V (XXX)+1, however, there are no integers strictly between V (XXX) and V (XXX)+1, thus
V (YYY ) can not satisfy this inequality. Thus, there can be no (UV3) solution pairs.

Since UniqueEOPL is a total search problem returning one of either a (U1) solution or a (UV1-3)
solution, and we have demonstrated no (UV1-3) solutions exist, we know the result of our search must
be a solution of type (U1). By (E) this solution must be a finished run-like recursive switching flow.
Thus, it is also a valid solution of our original Search Recursive Arrival instance.
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