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A B S T R A C T

We introduce an efficient Markov Chain Monte Carlo sampler in precision-based algorithms for
the estimation of the Random Switching Exponential Smoothing model, a versatile forecasting
mechanism for time series data characterized with changing trends. Through a series of sim-
ulation experiments, RC-MCMC exhibits superior parameter estimation accuracy, particularly
for datasets featuring low persistence trends. Furthermore, an empirical evaluation using the
Bank for International Settlements’ quarterly time series data on the non-financial sector’s total
credit relative to GDP validates the findings. The out-of-sample results indicate that the proposed
approach outperforms its counterparts in estimating and forecasting accuracy for trending time
series data.

1. Introduction
Exponential smoothing is among the most commonly widespread class of methods for time series analysis and

forecasting applied in the fields of economics, finance, and operations management (e.g. Hyndman et al., 2008;
Gardner, 2006; Ord et al., 2017; Kourentzes et al., 2019). Following the improvement of Holt’s original simple
exponential smoothing, the “single source of error” (SSOE) framework was first introduced by Hyndman et al.
(2008) and McKenzie and Gardner (2010), and then Sbrana and Silvestrini (2014) proposed a “multiple source of
error” (MSOE) model that allows for random switching between simple exponential smoothing and trend exponential
smoothing by setting the coefficients randomly, called random switching exponential smoothing. Therefore it is possible
to control, in a flexible manner, the random changing dynamic behaviour of the time series. Sbrana and Silvestrini
(2019) developed a new, fast and efficient method for estimating the model based the algebraic link between the model’s
structural parameters and the steady-state Kalman gain vector rather than the approach within a restricted region in the
previous work.

Bayesian inference methods in state space models have been influenced by some studies (Carter and Kohn, 1994;
De Jong and Shephard, 1995; Durbin and Koopman, 2002), e.g. Kalman Filter for linear state space models. Kim et al.
(1998) focused on stochastic volatility models based on an auxiliary sampling approach and then used Gibbs to estimate
this class of models, and some improved estimate methods for state space models have since been proposed (e.g. Moura
and Turatti, 2014; Monache and Petrella, 2019). A series of papers by Chan further developed an efficient Markov chain
Monte Carlo (MCMC) sampler for estimating this class of models (Chan and Jeliazkov, 2009; Chan, 2013; Chan and
Grant, 2016), which also verified that the precision-based algorithms are stable and reliable. In this paper, we estimate
random switching exponential smoothing in the MSOE framework through precision-based algorithms, denoted as
the Random Coefficient MCMC method (RC-MCMC), which is based on the feature of banded precision matrices to
enhance the efficiency of parameter estimation.

Within the simulation study, we compare the accuracy of parameter estimation and forecasting performance of the
MSOE form model, as estimated through two different methods: the RC-MCMC approach and the direct method
proposed by Sbrana and Silvestrini (2019), referred to as RC-SSPACE. Simulation results highlight the superior
performance of the RC-MCMC in estimating structural parameters compared to the RC-SSPACE. While both methods
display comparable forecasting performances overall, RC-SSPACE performance tends to lag slightly when dealing with
low trend persistence. This observation is further substantiated in empirical application, which utilizes quarterly credit-
to-GDP data published by the Bank for International Settlements (BIS). Through these results, we provide additional
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evidence supporting the superiority of the RC-MCMC approach over its competitor RC-SSPACE, particularly in
an economic context. The RC-MCMC method, when applied to random switching exponential smoothing, attains
commendable estimation precision. In contrast to many estimation methods that require optimal computational steps
and might result in parameter estimates that do not correspond with reality, the parameter estimates obtained through
the RC-MCMC method utilizing a band-precision matrix are found to be more practically significant.

The rest of this paper is organized as follows: Section 2 introduces the model specification. In Section 3, an efficient
posterior simulator is developed. In Section 4, some properties of the two methods are compared via Monte Carlo
simulations. Section 5 presents an empirical application and the last section concludes the findings.
2. Random Coefficient State-Space Models

The random coefficient state space model based on the generalized MSOE framework was proposed by McKenzie
and Gardner (2010), the specific form model (1) is as follows:

𝑦𝑡 = 𝑙𝑡−1 + 𝐴𝑡𝑏𝑡−1 + 𝜖𝑡, 𝜖𝑡 ∼  (0, 𝜎2𝜖 ),
𝑙𝑡 = 𝑙𝑡−1 + 𝐴𝑡𝑏𝑡−1 + 𝜂𝑡, 𝜂𝑡 ∼  (0, 𝜎2𝜂 ),
𝑏𝑡 = 𝐴𝑡𝑏𝑡−1 + 𝜉𝑡, 𝜉𝑡 ∼  (0, 𝜎2𝜉 ),

(1)

where 𝑡 = 1… 𝑇 , and  (⋅, ⋅) denotes independent and identically normal distribution, 𝑦𝑡 is the observation at time
𝑡, 𝑙𝑡 is the stochastic trend, 𝑏𝑡 is the slope of its stochastic trend, the term 𝐴𝑡 is a sequence of independent, identically
distributed binary random variables with probabilities:

𝑃 (𝐴𝑡 = 1) = 𝜙, 𝑃 (𝐴𝑡 = 0) = 1 − 𝜙, 0 ≤ 𝜙 ≤ 1. (2)

The state space representation of this model can be expressed in the following form:

𝑦𝑡 = 𝐳′𝑡𝜶𝑡−1 + 𝜖𝑡,
𝜶𝑡 = 𝐓𝑡𝜶𝑡−1 + 𝐑𝐮𝑡,

(3)

where 𝐳𝑡 =
[

1
𝐴𝑡

]
, 𝐓𝑡 =

[
1 𝐴𝑡
0 𝐴𝑡

]
, 𝜶𝑡 =

[
𝑙𝑡
𝑏𝑡

]
, 𝐑 =

[
𝜎𝜂 0
0 𝜎𝜉

]
, and 𝐮𝑡 =

[
𝑢1𝑡
𝑢2𝑡

]
∼  (

𝟎, 𝐈2
)
, 𝐈2 is an 2 × 2

identity matrix, i.e., 𝐈2 =
[

1 0
0 1

]
, and we denote the parameter vector as 𝜽 = (𝜙, 𝜎2𝜖 , 𝜎

2
𝜂 , 𝜎

2
𝜉 )

′.

3. Bayesian Estimation
3.1. Likelihood evaluation

We first derive the joint distribution of the observations 𝒚 = (𝑦1, 𝑦2,… , 𝑦𝑇 )′. For notational convenience,
we define 𝒍 = (𝑙1, 𝑙2,… , 𝑙𝑇 )′ and 𝒃 = (𝑏1, 𝑏2,… , 𝑏𝑇 )′. Moreover, innovation is also represented in vector form
𝒖𝜖−𝜂 = (𝜖1 − 𝜂1, 𝜖2 − 𝜂2,… , 𝜖𝑇 − 𝜂𝑇 )′, similarly, 𝒖𝜂 = (𝜂1, 𝜂2,… , 𝜂𝑇 )′ and 𝒖𝜉 = (𝜉1, 𝜉2,… , 𝜉𝑇 )′ from model (1).

The observation equation of model (1) can be rewritten in the following matrix form:

𝒚 = 𝒍 + 𝒖𝜖−𝜂 , (4)

where 𝒖𝜖−𝜂 ∼  (𝟎,𝑺𝒚), 𝑺𝒚 = 𝑑𝑖𝑎𝑔(𝜎2𝜖 +𝜎2𝜂 , 𝜎
2
𝜖 +𝜎2𝜂 ,… , 𝜎2𝜖 +𝜎2𝜂 ). By a simple variable transformation, we can obtain

(𝒚|𝒍, 𝜎2𝜖 , 𝜎2𝜂 ) ∼  (𝒍,𝑺𝑦). The conditional log-likelihood function of model (1) can be expressed by the prediction error
decomposition:

log𝑃 (𝒚|𝒍, 𝜎2𝜖 , 𝜎2𝜂 ) = − 𝑇
2
log 2𝜋 − 𝑇

2
log(𝜎2𝜖 + 𝜎2𝜂 ) − (𝒚 − 𝒍)′𝑺𝒚

−1(𝒚 − 𝒍). (5)

Next, regarding the measurement equation 𝒍, the following relationship can be observed in the sequence:

𝑙1 = 𝑙0 + 𝐴1𝑏0 + 𝜂1 = 𝑙0 + 𝑏1 + 𝜂1 − 𝜉1
𝑙2 − 𝑙1 = 𝐴2𝑏1 + 𝜂2 = 𝑏2 + 𝜂2 − 𝜉2
𝑙3 − 𝑙2 = 𝐴3𝑏2 + 𝜂3 = 𝑏3 + 𝜂3 − 𝜉3

⋮

𝑙𝑇 − 𝑙𝑇−1 = 𝐴𝑇 𝑏𝑇−1 + 𝜂𝑇 = 𝑏𝑇 + 𝜂𝑇 − 𝜉𝑇 ;
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similarly, the vector sequence 𝒃 also has a similar structure, 𝐇𝒍 and 𝐇𝒃 are the following lower triangular matrixes:

𝐇𝒍 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 ⋯ 0
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0
⋮ ⋱ ⋮
0 0 0 ⋯ −1 1

⎞⎟⎟⎟⎟⎠
𝑇×𝑇

, 𝐇𝒃 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 ⋯ 0

−𝐴2 1 0 0 ⋯ 0
0 −𝐴3 1 0 ⋯ 0
⋮ ⋱ ⋮
0 0 0 ⋯ −𝐴𝑇 1

⎞⎟⎟⎟⎟⎠
𝑇×𝑇

.

by using matrix notation:

𝐇𝒍𝒍 = 𝝁𝒍 + 𝒖𝜂 , 𝐇𝒃𝒃 = 𝝁𝒃 + 𝒖𝜉 , (6)

by a simple variable transformation, we can obtain:

𝒍|𝒃 ∼  (𝐇−1
𝒍 𝝁𝒍,𝑺𝒍), 𝒃|𝑨 ∼  (𝐇−1

𝒃 𝝁𝒃,𝑺𝒃), (7)

where 𝝁𝒍 = 𝒃 + (𝑙0, 0, 0,… , 0)′, 𝝁𝒃 = (𝐴1𝑏0, 0, 0,… , 0)′, 𝑺𝒍 = (𝐇′
𝒍Σ

−1
𝒍 𝐇𝒍)−1, 𝑺𝒃 = (𝐇′

𝒃Σ
−1
𝒃 𝐇𝒃)−1, and Σ𝒍 =

𝑑𝑖𝑎𝑔(𝜎2𝜂 + 𝜎2𝜉 , 𝜎
2
𝜂 + 𝜎2𝜉 ,… , 𝜎2𝜂 + 𝜎2𝜉 ), Σ𝒃 = 𝑑𝑖𝑎𝑔(𝜎2𝜉 , 𝜎

2
𝜉 ,… , 𝜎2𝜉 ). It is important to note that the banded matrix 𝐇𝒍

and 𝐇𝒃 with bandwidth 𝑞 contain only (𝑇 − 𝑞∕2)(𝑞 + 1) < 𝑇 (𝑞 + 1) non-zero elements and the bandwidth 𝑞 satisfy
𝑞 ≪ 𝑇 < 𝑇 2. This greatly reduces the computational complexity of posterior analysis in estimation work.

3.2. Posterior analysis
Now we discuss an effective posterior sampler in model (1). Such estimation method was first introduced in the

stochastic volatility state-space model by Kim et al. (1998), and have been further improved by algorithmic advances
in Chan and Jeliazkov (2009) and Chan and Grant (2016).

We develop a MCMC algorithm in which posterior draws can be obtained by sequentially sampling from:

1. Step 1: 𝑃 (𝜙|𝑨);
2. Step 2: 𝑃 (𝑨|𝒃, 𝜙, 𝜎2𝜉 );
3. Step 3: 𝑃 (𝒍|𝒚,𝑨, 𝜎2𝜖 , 𝜎

2
𝜂 );

4. Step 4: 𝑃 (𝒃|𝒍,𝑨, 𝜎2𝜂 , 𝜎
2
𝜉 );

5. Step 5: 𝑃 (𝜎2𝜖 |𝒚, 𝒍, 𝒃,𝑨);
6. Step 6: 𝑃 (𝜎2𝜂 |𝒍, 𝒃,𝑨);
7. Step 7: 𝑃 (𝜎2𝜉 |𝒃,𝑨).

In Step 1, according to conjugate prior property and 𝜙 ∼ 𝐵𝑒𝑡𝑎(𝑘𝑎, 𝑘𝑏), the conditional posterior distribution is
given as follows:

(𝜙 ∣ 𝑨) ∼ 𝐵𝑒𝑡𝑎

(
𝑘𝑎 +

𝑇∑
𝑡=1

𝐴𝑡, 𝑘𝑏 + 𝑇 −
𝑇∑
𝑡=1

𝐴𝑡

)
, (8)

In Step 2 of the MCMC sampler, the conditional posterior probabilities of each variable value of 𝐴𝑡 are

𝑃 (𝐴𝑡 = 1 ∣ ⋅) ∝ 𝜙𝑒𝑥𝑝(−(1∕2)(�̂�𝒃𝒃)′Σ
−1∕2
𝒃 (�̂�𝒃𝒃)),

𝑃 (𝐴𝑡 = 0 ∣ ⋅) ∝ (1 − 𝜙)𝑒𝑥𝑝(−(1∕2)𝒃′Σ−1∕2
𝒃 𝒃),

(9)

where

�̂�𝒃 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 ⋯ 0
−1 1 0 0 ⋯ 0
0 −1 1 0 ⋯ 0
⋮ ⋱ ⋮
0 0 0 ⋯ −1 1

⎞⎟⎟⎟⎟⎠
𝑇×𝑇

,

therefore 𝐴𝑡 = 1 with probability 𝑃
(
𝐴𝑡 = 1 ∣ 𝒃, ⋅

)
∕
(
𝑃
(
𝐴𝑡 = 0 ∣ 𝒃, ⋅

)
+ 𝑃

(
𝐴𝑡 = 1 ∣ 𝒃, ⋅

))
, otherwise 𝐴𝑡 = 0.
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Next, for Step 3 𝑃 (𝒍|𝒚,𝑨, 𝜎2𝜖 , 𝜎
2
𝜂 ), based on the log-likelihood function (5), the conditional distribution of the

sample can be calculated as follows:

(𝒍|𝒚,𝑨, 𝜎2𝜖 , 𝜎
2
𝜂 ) ∼  (�̂�𝒍, Σ̂𝒍), (10)

where Σ̂𝒍 = (𝐇′
𝒍Σ

−1
𝒍 𝐇𝒍 + 𝑺𝒚

−1)−1 and �̂�𝒍 = Σ̂𝒍(𝑺𝒚
−1𝒚 + 𝑺−1

𝒍 𝐇−1
𝒍 𝝁𝒍), for Step 4, by similarly calculating, we have

(𝒃|𝒍,𝑨, 𝜎2𝜂 , 𝜎
2
𝜉 ) ∼  (�̂�𝒃, Σ̂𝒃), (11)

where Σ̂𝒃 = (Σ−1
𝑙 + 𝑺𝒃

−1)−1 and �̂�𝒃 = Σ̂𝒃(Σ−1
𝑙 (𝐇𝒍𝒍 − (𝑙0, 0, 0,… , 0)′) + 𝑺𝒃

−1𝐇−1
𝒃 𝝁𝒃).

Lastly, note that 𝑃 (𝜎2𝜖 ), 𝑃 (𝜎
2
𝜂 ) and 𝑃 (𝜎2𝜉 ) are inverse-gamma densities and can therefore be sampled through

standard methods:
(𝜎2𝜖 |𝒚, 𝒍, 𝒃,𝑨) ∼ 𝐼𝐺(𝜈𝜖 + (𝑇 − 1)∕2, 𝑆𝜖),

(𝜎2𝜂 |𝒍, 𝒃,𝑨) ∼ 𝐼𝐺(𝜈𝜂 + (𝑇 − 1)∕2, 𝑆𝜂),

(𝜎2𝜉 |𝒃,𝑨) ∼ 𝐼𝐺(𝜈𝜉 + (𝑇 − 1)∕2, 𝑆𝜉),

where𝑆𝜖 = 𝑆𝜖+
∑𝑇

𝑡=2(𝑦𝑡−𝑙𝑡−1−𝐴𝑡𝑏𝑡−1)2∕2,𝑆𝜂 = 𝑆𝜂+
∑𝑇

𝑡=2(𝑙𝑡−𝑙𝑡−1−𝐴𝑡𝑏𝑡−1)2∕2 and𝑆𝜉 = 𝑆𝜉+
∑𝑇

𝑡=2(𝑏𝑡−𝐴𝑡𝑏𝑡−1)2∕2.

4. Simulation study
Our simulation settings are as follows: To generate the data, we set the number of observations 𝑇 to either 100

or 250 and set the persistence parameter, 𝜙, to 0.95, 0.85, or 0.75, in addition, to compare exponential models with
more random coefficient changes, we also set the values to 0.65, 0.55, and 0.45. For each combination of 𝑇 and 𝜙, we
simulate time series data of length 1000. Specifically, we draw 𝑇 observations from the simulate time series data to
conduct the simulation experiment. For each series, we first choose 𝜎2𝜖 from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0.5, 2.5). As for the innovation
variances 𝜎2𝜂 and 𝜎2𝜉 are determined as 𝜎2𝜖∕𝑐 and 𝜎2𝜖∕𝑑, where 𝑐 and 𝑑 are independently chosen from 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(1, 10).

Table 1
Monte Carlo simulations results-APE for 𝜙,𝜎2

𝜖 ,𝜎2
𝜂 ,𝜎2

𝜉 . This table reports the mean APE obtained for the estimates of
𝜙 = 0.75, 0.85, 0.95.

𝜙 𝑛 = 150 𝑛 = 250
Mean

MCMC
Mean

SSPACE
Mean

MCMC
Mean

SSPACE

𝜙 = 0.75

𝜙 0.272 0.382 0.208 0.319
𝜎2
𝜖 0.523 0.080 0.418 0.067

𝜎2
𝜂 0.470 0.698 0.419 0.663

𝜎2
𝜉 0.280 11.658 0.267 8.751

𝜙 = 0.85

𝜙 0.258 0.208 0.180 0.149
𝜎2
𝜖 0.520 0.080 0.418 0.066

𝜎2
𝜂 0.459 0.717 0.408 0.661

𝜎2
𝜉 0.283 6.014 0.261 3.633

𝜙 = 0.95

𝜙 0.186 0.062 0.127 0.039
𝜎2
𝜖 0.521 0.086 0.419 0.067

𝜎2
𝜂 0.458 0.659 0.409 0.543

𝜎2
𝜉 0.259 1.456 0.227 0.349

We compare the precision of the parameter estimates via Absolute Percentage Errors (APE). The simulation results
are in Table 1, Figure 1 and Figure 3, different from Sbrana and Silvestrini (2019), we apply a MCMC algorithm,
and all the posterior momments are based on 5,000 draws from the MCMC algorithm introduced in after a burn-in of
1,000. Overall, the estimation of each parameter becomes more accurate as the sample size increases, with RC-MCMC
performing slightly better than RC-SSPACE, where RC-SSPACE has consistently lower estimation error for 𝜎2𝜖 , but
the RC-MCMC estimate as a whole has been in a more stable state.
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(a) Estimation for 𝜙.

n=150 n=250 n=150 n=250 n=150 n=250

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(b) Estimation for 𝜎2𝜖 .
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(c) Estimation for 𝜎2𝜂 .
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(d) Estimation for 𝜎2𝜉 .

Figure 1: Monte Carlo simulations results-APE for 𝜙,𝜎2
𝜖 ,𝜎2

𝜂 ,𝜎2
𝜉 . This figure reports the boxplots of the APE obtained for

the estimates of 𝜙,𝜎2
𝜖 ,𝜎2

𝜂 ,𝜎2
𝜉 using RC-MCMC.

Table 2
The estimation accuracy ratio of RC-MCMC based on the 95% confidence interval.

𝜙 = 0.45 𝜙 = 0.55 𝜙 = 0.65 𝜙 = 0.75 𝜙 = 0.85 𝜙 = 0.95 Mean
𝑙𝑡 0.806 0.800 0.801 0.800 0.758 0.675 0.773
𝑏𝑡 0.803 0.804 0.816 0.843 0.847 0.886 0.833

In the group with higher trend persistence, i.e., 𝜙 set at 0.75, 0.85, and 0.95, RC-MCMC and RC-SSPACE
performed relatively similarly, with the former performing better in the parameter 𝜎2𝜖 , while the latter performed better
in estimating 𝜎2𝜂 and 𝜎2𝜉 . In the comparison of the more randomly switching coefficients, when 𝜙 is set to 0.45, 0.55
and 0.65, a comparison of Figure 1 and Figure 3 shows that RC-SSPACE in the set with low trend persistence performs
not well, especially for 𝜎2𝜉 , while the estimation of our proposed method is still more reasonable.

To investigate the estimation accuracy of RC-MCMC, we further examine the proportion of true values in the 95%
confidence interval through simulations. Table 2 and Figure 2 present the corresponding simulation results for the case
where 𝑇 = 100 and 𝑛 = 1000. It can be observed that RC-MCMC exhibits favorable estimation accuracy.
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(a) 𝑙𝑡: Smooth States and Simulation Statistics.
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(b) 𝑏𝑡: Smooth States and Simulation Statistics.

Figure 2: Smooth States and Simulation Statistics (Results of a single simulation with 𝜙 = 0.75).

5. Application to credit forcast
The analysis of credit risk, as well as economic performance across various countries or regions, is critical. These

factors play a significant role in the formulation of appropriate macroeconomic policies, and they are indispensable
to maintaining financial stability and effective risk management. Research on credit risk enables financial institutins
to comprehend the origins and degrees of risk more effectively, allowing for the development of scientifically sound
and logical risk management strategies. In the realm of macroeconomic policy formulation, credit risk research plays a
pivotal role. The credit-to-GDP ratio is a critical barometer of economic and financial risks. It quantifies the proportion
of the size of credit in relation to the Gross Domestic Product (GDP).

We now apply the proposed method to analyze an alternate dataset of quarterly data. The results will be contrasted
with those generated using the method developed by Sbrana and Silvestrini (2019). This dataset comprises time-series
data related to the total credit, encompassing loans and debt securities, provided to the non-financial sector. These
credit figures are expressed as a proportion of the Gross Domestic Product (GDP), forming the credit-to-GDP ratio1.
The data hails from the Bank for International Settlements2, covering approximately 50 economies with data spanning
an average of over 45 years. The range extends back to the 1940s and 1950s for some countries3. Similar to Sbrana
and Silvestrini (2020) which utilized this data to compare the MSOE and SSOE frameworks in the context of damped
trend models, our study seeks to compare the out-of-sample forecast performance of these two distinct methods.

Figure 4 shows a time series chart of the credit-to-GDP ratio for two different groups of market economies.
Figure 4(a) shows that the US experienced a huge credit boom in the 1990s, while for the Eurozone and the UK,
it stagnated with the global financial crisis, and Japan also experienced a deceleration in credit over time. Figure 4(b)
shows the major emerging market economies, which include Brazil, China, India and Russia. Similar to the advanced
economies, credit operations in the emerging market economies are expanding rapidly, with momentum evident in
China in particular.

The design of the forecasting evaluation work is as follows: each time series (48 in total) is split into training
and testing samples, corresponding to the last six observations. The predictive performance of the two models is

1In this data, a four-quarter moving sum is used to compute the nominal value of GDP, implying minimal or no residual seasonality. This factor
is crucial as the MSOE model utilized in this study does not cater to seasonal time-series.

2For more information, refer to https://www.bis.org/statistics/about_credit_stats.htm.
3The "Non-Financial Sector Credit Long Series" database, accessed on September 3, 2022, is the source of this data. The series used refers to

the credit to the non-financial sector (adjusted for breaks), provided by all sectors, valued at market prices, and expressed as a percentage of GDP.
It includes data from countries and aggregates: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Czech Republic,
Denmark, Euro area, Finland, France, G20, Germany, Greece, Hong Kong SAR, Hungary, India, Indonesia, Ireland, Israel, Italy, Japan, Korea,
Luxembourg, Malaysia, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Russia, Saudi Arabia, Singapore, South Africa, Spain,
Sweden, Switzerland, Thailand, Turkey, United Kingdom, United States, as well as aggregate data from all reporting countries, emerging markets,
and advanced economies.
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(d) Estimation for 𝜎2𝜉 .

Figure 3: Monte Carlo simulations results-APE for 𝜙,𝜎2
𝜖 ,𝜎2

𝜂 ,𝜎2
𝜉 . This figure reports the boxplots of the APE obtained for

the estimates of 𝜙,𝜎2
𝜖 ,𝜎2

𝜂 ,𝜎2
𝜉 using RC-SSPACE.

based on 1, 2, 3, 4, 5, and 6-step ahead forecasts, evaluated by the MASE. Table 3 shows the out-of-sample forecast
results for the full sample as well as the short-term sample, where Columns “Mean ratio” and “Median ratio” report
Mean MCMC/Mean SSPACE and Median MCMC/Median SSPACE, respectively. The column “Ranking” reports the
percentage of series for which the MCMC outperforms the SSPACE in terms of MASE.

The full sample contains data for all periods of each series, while the short-term sample period spans from
2010:Q2 to 2022:Q3, totaling 50 periods, this ensures that all time series have 45 observations, facilitating a deeper
understanding of how sample size influences the predictive performance of each estimation method.

Above all, estimation on the full sample, for each forecast horizon, the mean and median ratios suggest a small
advantage of RC-MCMC over RC-SSPACE. This result is supported by the “Ranking” statistics, at least for forecasting
horizons 2, 3, 4, and 5 (while the results for forecasting horizons 1 is balanced between the two methods). In the short-
term sample, RC-MCMC definitively outperforms RC-SSPACE in terms of forecasting accuracy. This is consistently
true no matter which measure (“Mean ratio”, “Median ratio”, “Ranking”) is considered. It also suggests that this
forecasting method is not only useful in the medium term but also for short-term horizons.

However, an interesting phenomenon can be observed when examining the parameter estimation results of these
two methods. Except for 𝜎2𝜖 , the other three parameters align with the model parameter settings. Figure 5 illustrates
the distribution of the 48 estimated values for 𝜎2𝜖 . It can be observed that the values estimated using RC-MCMC
align with the variance value settings, both in the full sample and short-term sample. But the RC-SSPACE method
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Figure 4: Credit to GDP ratios (total credit to the private non-financial sector, in per cent of GDP).
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Figure 5: Density for 𝜎2
𝜖 under the four models.
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Table 3
Out-of-sample forecast comparison of RC-MCMC vs. RCSPACE based on quarterly BIS credit data.

No.ahead step Mean Ratio Median Ratio Ranking

Full
Sample

ℎ = 1 0.983 1.092 0.5
ℎ = 2 0.899 0.916 0.625
ℎ = 3 0.890 0.837 0.708
ℎ = 4 0.868 0.714 0.708
ℎ = 5 0.936 0.999 0.604
ℎ = 6 1.002 1.066 0.479
Mean 0.930 0.937 0.604

Short-term
Sample

ℎ = 1 0.935 1.011 0.617
ℎ = 2 0.891 0.887 0.681
ℎ = 3 0.900 0.820 0.787
ℎ = 4 0.870 0.695 0.723
ℎ = 5 1.002 1.070 0.574
ℎ = 6 0.944 0.973 0.574
Mean 0.924 0.909 0.660

Notes. In the short-term sample, the data set for Ireland has been removed as the trend in the data is not clear, 47 in
total for short-term sample.

estimates for 𝜎2𝜖 are all close to zero, with 20 estimates of 𝜎2𝜖 < 0.01 in the full sample and 24 for the short-term
sample–essentially 50% of the number of sequences. This indicates that most of the 𝜎2𝜖 values estimated by the RC-
SSPACE optimization method do not match the actual situation, whereas the RC-MCMC method does not encounter
this problem. Overall, from the out-of-sample forecast results and the parameter estimation results in real data, RC-
MCMC has certain advantages over RC-SSPACE for some extent.

6. Conclusions
We introduce a novel precision-based algorithm approach for directly estimating the parameters of the MSOE

model-random coefficient state space model. The simulation study involves a comparative analysis of both forecasting
performance and parameter estimation accuracy between these two methods. The findings reveal that the RC-MCMC
technique outperforms the RC-SSPACE method in terms of estimation accuracy, exhibiting greater stability in the
estimated results. And the empirical investigation using total credit-to-GDP data from the BIS further corroborates that
the RC-MCMC method generates more reasonable parameter estimates. Furthermore, the Bayesian approach yields
superior forecasting outcomes and provides a natural means for quantifying the uncertainties inherent in both the model
and parameters during the forecasting process. This evidence suggests that the method is better suited for forecasting
and estimating such trend data, particularly in cases involving random switching exponential smoothing with more
frequent coefficient changes.
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