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Abstract. Sum-product networks guarantee that conditionals and
marginals can be computed efficiently, for a wide range of models,
bypassing the hardness of inference. However, this advantage comes
at the expense of transparency, since it is unclear how variables inter-
act in sum-product networks. Due to this, a series of decompilation
algorithms transform sum-product networks back to Bayesian net-
works. In this work, we first study the transparency and causal utility
of the resulting Bayesian networks. We then propose a novel decom-
pilation algorithm to address the identified limitations.

1 Introduction

In recent years, there has been an increasing interest in study-
ing causality-related properties in machine learning models [2, 3].
Broadly speaking [13], the motivation stems from extending the
query and reasoning capabilities over probabilistic domains. That is,
in standard probabilistic models, one is simply interested in condi-
tioning on observations, for example, what is the likelihood of be-
ing tall given that you play basketball? On the other hand, causal
reasoning allows us to reason about interventions, e.g., what is the
probability of a person being tall given that he/she is made to play
basketball?

A fundamental challenge underlying stochastic models, however,
is the intractability of inference [6]. This has led to the paradigm
of tractable probabilistic models (TPMs), where conditional or
marginal distributions can be computed in time linear in the size of
the model. Although initially limited to low tree-width models [1],
recent TPMs, such as sum product networks (SPNs) [17, 10] are de-
rived from arithmetic circuits (ACs) [8], which exploit efficient func-
tion representations and also capture high tree-width models. These
models can also be learnt from data [14] which leverage the effi-
ciency of inference. The combination of these properties has allowed
SPNs to find applications in critical domains, such as in healthcare
[18].

Furthermore, SPNs are closely related to Bayesian networks
(BNs), as any BN can be compiled into a SPN [7]. However, their
internal representation makes it very challenging to identify rela-
tionships and dependencies among the variables, in contrast to BNs,
where it is immediate to uncover all the connections and condi-
tional independencies within a set of variables. This has led to the
widespread view that while BNs are transparent models, SPNs act
as black-boxes with no representational semantics [5]. Having said

∗ Corresponding Author. Email: i.papantonis@sms.ac.ed.uk.

that, a series of earlier works attempt to mitigate this issue by de-
signing decompilation algorithms that can transform SPNs back to
BNs [23, 15, 4], hoping that in addition to rendering SPNs transpar-
ent, such decompilations would also enable SPNs to be used in causal
inference applications. In fact, on studying the relationship between
SPNs and BNs [23], the authors conclude with:

The structure of the resulting BNs can be used to study prob-
abilistic dependencies and causal relationships between the
variables of the original SPNs.

In this work, we revisit the problem of decompiling a SPN, seek-
ing to assess the extent to which existing decompilation algorithms
enhance transparency in SPNs. In more detail, we begin by studying
the qualitative features and causal utility of the BNs generated by the
methods in [23, 15, 4], showing that existing decompilations result
in BNs with limited causal utility, which only marginally improve
the transparency of the underlying SPNs, thus providing a negative
answer to the open question in [23]. Following this finding, we study
the reasons behind this limitation and based on these insights we pro-
pose a novel algorithm that is guaranteed to achieve an exact SPN to
BN decompilation, for SPNs compiled from BNs using the variable
elimination reverse topological ordering (VErto) algorithm. To our
knowledge, this is the first decompilation that can accurate handle
any such SPN, identifying an equivalent and transparent BN repre-
sentation that faithfully uncovers a SPN’s internal representations.

In what follows, an uppercase letter X denotes a Boolean random
variable, while a lowercase letter x denotes an assignment to X; al-
ternatively, X and ¬X represent the events X = 1 and X = 0, re-
spectively. Sets of variables, X, and joint assignments, x, are in bold.
Finally, all proofs can be found in the supplementary material.1

2 Background
2.1 SPNs

SPNs over binary variables are rooted directed graphical models that
provide for an efficient way of representing the network polynomial
[7] of a BN [17], as a multilinear function

∑
x f(x)

∏N
n=1 1xn . Here

f(·) is the (possibly unormalized) probability distribution of the BN,
the summation is over all possible states, and 1xn is the indicator
function. In its simplest form, the network polynomial contains 2N

terms, but there is a wide array of problems, where it is possible

1 Link: https://github.com/GiannisPapantonis/Transparency-in-Sum-
Product-Network-Decompilation.git
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Figure 1: The final BNs that result from each transformation

to obtain a factorized representation, that is not exponential in the
number of the model’s variables, see [17] for a discussion. This is
exactly the idea behind SPNs, discovering a compact factorization of
the network polynomial, and thereby enabling efficient inference.

A central notion in SPNs is that of the scope of a node, which is
defined as follows:

Scope(n) =

{
{X}, if n is an indicator 1X=0 or 1X=1

∪c∈Ch(N) Scope(c), otherwise

where Ch(n) denotes the children of a node, i.e. the set of all
nodes that are connected to n with edges exiting from n. Using this
notation, two properties that guarantee that efficient inference can be
performed are completeness and decomposability:

• A sum node, n, is complete if all of its children have the same
scope, meaning that Scope(j) = Scope(k) for all j, k ∈ Ch(n).
In this case, the outcome of the sub-SPN rooted at node n is
Sn(·) =

∑
j∈Ch(n) wnjSj(·), where

∑
j wnj = 1.

• A product node, n, is decomposable if all of its children have
disjoint scopes, meaning that Scope(j) ∩ Scope(k) = ∅ for all
j, k ∈ Ch(n). In this case, there is a partition of Scope(n) =
{X1, · · · ,X|Ch(n)|} such that we have that Sn(X1 ∪ · · · ∪
X|Ch(n)|) =

∏
j∈Ch(n) Sj(Xj).

Putting everything together, SPNs consist of leaf nodes that corre-
spond to tractable univariate distributions, product nodes that com-
pute the product of their children, as well as sum nodes that compute
a weighted sum of their children. Moreover, selective SPNs are a
recently introduced extension [14], where determinism is imposed,
meaning that for any variable assignment only one of the children of
a sum node is non-zero.

Finally, a BN can be readily transformed (or compiled) into an
equivalent SPN using the VErto algorithm [7]. The procedure starts
by first specifying a topological ordering of the variables in the BN2,

2 An ordering where if X is a parent of Y , then X appears before Y .

and then eliminating each variable from all the factors it appears, fol-
lowing this order. Intermediate factors are aggregated, until a single
polynomial remains. The result is a complete, decomposable, and se-
lective SPN that computes exactly the same distribution as the origi-
nal BN.

2.2 Causal Inference

Traditionally, causal analysis has been based on structural equation
models (SEMs) [12], which provide for an effective way to encode
dependencies between variables, as well as allow for studying causal
queries. In this framework, probabilistic relationships are represented
using a BN, which allows for estimating causal queries such as the
effect of interventions.

Interventional distributions, i.e. the distribution of a set of vari-
ables, after a second set of variables is forced to attain certain values,
are of central importance in causal inference. Assuming an interven-
tion on a variable X , denoted by either do(X = x) or do(x), the
joint distribution of the remaining variables, V−x, under this inter-
vention, is Pr(V−x|do(X = x)) =

Pr(V−x,X=x)

Pr(X=x|PAx)
, where PAx are

the parents of X . However, graphical criteria are extensively used in
order to express interventional distributions in terms of conditionals
and marginals [12], highlighting how standard observational distri-
butions can be used to estimate the effects of interventions. More on
one of the most popular graphical criteria, the rules of do-Calculus,
can be found in the supplementary material.

3 Related work
The question of how to transform SPNs to BNs was initially studied
in [23], where the authors propose an algorithm to achieve this goal,
by interpreting sum nodes as latent random variables. Given an SPN
defined over variables X1, X2, · · · , Xk, the exact procedure is as
follows:

• Introduce a set of latent variables, Z1, Z2, · · · , Zn, as many as the
sum nodes in the SPN.



• Create an empty BN over the observable variables,
X1, X2, · · · , Xk, and the new latent variables.

• Draw an arrow from each Zi to the observable variables belonging
in the scope of the sum node for which Zi was created for.

Figure 1b, depicts the result of applying this algorithm to the SPN
in Figure 1a. A similar approach was proposed subsequently in [15],
where the difference is that the authors take into account the hierar-
chical structure of a SPN, so instead of only connecting each latent
variable with the observable variables in its scope, they allow for
connections between latent variables, Zi → Zj , as long as the sum
node corresponding to Zj is in the scope of the one corresponding to
Zi. The result of applying this procedure to the SPN in 1a is shown
in Figure 1c. A closer look shows that the only difference between
the BNs in 1c and 1b, is that the former has some additional edges
representing the hierarchy between the sum nodes in the SPN.

More recently, a new transformation was proposed in [4], which
given a SPN compiled from a BN (using the VErto algorithm), is
guaranteed to output a BN with the same structure as the moral clo-
sure3 of the original BN, however it requires interpreting sum nodes
as latent variables, which may result in losing reference of some of
the observable variables. Figure 1d demonstrates this issue, since al-
though the decompilation algorithm accurately recovered the struc-
ture of original BN in Figure 1a4, both X1 and X2 have been replaced
by latent variables, making the relationship between X1, X2, X3 am-
biguous, limiting the overall improvement of the transparency of the
corresponding SPN.

Moreover, an important observation about all three approaches,
is that while they differ in the specifics of the connections and the
number of latent variables they induce, they all generate BNs with
bipartite structure, with arrows stemming only from latent to observ-
able variables. This will play a crucial role in proving that these BNs
are not suitable for studying causal relationships between variables.

Apart from improving transparency, an additional advantage of
accurately decompiling SPNs is that it opens the door for studying
causal queries using the SPN distribution. So far, the link between
SPNs and causality has been explored in alternative ways, such as
in [21], where the authors propose a way for utilizing SPNs in order
to estimate interventional distributions, using the SPN as a mapping
between BN structures and distributions. Furthermore, in [22], the
authors show that SPNs are capable of representing interventional
distributions. Finally, in [9], a different approach is presented, where
a BN is compiled into a SPN, and then the resulting SPN is used in
order to compute both causal and non-causal queries.

4 Graphical Representations of SPNs

4.1 Causal Utility of Existing Decompilations

All the algorithms presented in the previous section result in BNs
that represent conditional independencies that hold in the augmented
joint probability defined over both the latent and the observable vari-
ables. However, in terms of transparency, looking at the figures in 1
it is clear that the introduction of latent variables leads to transfor-
mations that result in BNs that obscure the SPN’s internal represen-
tation. This situation seems rather problematic, since even when a
SPN is compiled from an informative BN, existing transformations
might fail to recover the original BN or the exact way variables are

3 The moral closure of a BN introduces an edge between any two nodes that
share common children.

4 This BN is already morally closed, which is why the decompilation is exact.

connected to each other. Furthermore, looking at Figure 1, an intu-
itive observation is that this should have profound implications in
causal inference applications, since if we assume there are causal
relationships between X1, X2, X3, the decompiled BNs attribute ev-
ery correlation to latent factors. This means that if we start with a
BN that represents a set of causal assumptions, compiling the BN to
a SPN, and then decompiling it using any of the existing transfor-
mations, results in a great loss of information. The following result
formalizes this intuitive observation, by showing that the fact that
there is no edge coming out of the observable variables implies that
all interventional distributions are trivial.

Proposition 4.1 Let B be a BN, V the set of its nodes, and X ⊆
V such that no node in X has an edge coming out of it, then
Pr(V−X|do(x)) = Pr(V−X).

This immediately leads to the following:

Theorem 1 The BN, B, that results after transforming an SPN using
the procedure described in [23], [15], or [4], satisfies the property
Pr(V−X|do(x)) = Pr(V−X), for any X ⊆ V, where V is the set of
the observable variables.

The above result shows that existing decompilations do not re-
sult in BNs that can accommodate for interesting causal queries,
providing an answer to the open question in [23]. This limitation
stems from the fact that sum nodes are interpreted as latent variables,
which leads to every probabilistic dependency being attributed to un-
observed confounders, not to direct interaction between the variables.
In turn, it is not surprising that all interventions are trivial, since the
resulting BNs hold no meaningful information about the relation-
ships between the variables. Furthermore, it is concerning that even
when SPNs are compiled from BNs that are both transparent and
suitable for causal applications, such as in 1a, the decompiled BNs
do not retain these properties.

4.2 A New Decompilation Approach

The results in the previous section identify some of the implications
of not being able to accurately decompile a SPN, in causality-related
applications. However, even if a SPN represents purely associational,
non-causal, relationships, the resulting BNs may fail to represent
the dependencies between the variables, hindering the SPN’s trans-
parency, and limiting its overall utility. It is now reasonable to wonder
whether this is due to an inherent limitation of SPNs, or an artifact of
the existing transformations. One might argue that a SPN is merely a
computational representation of a distribution, meaning that its pur-
pose is to capture the functional characteristics of the joint distribu-
tion and provide an efficient way of computing it. Looking at SPNs
from this angle, existing decompilation algorithms just reflect the
various functions that SPNs define internally in order to perform the
necessary computations. For example, Figure 1b represents the fact
that the SPN in 1a consists of 5 sub-SPNs; one over all X1, X2, X3,
two over X2, X3, and two over just X3.

However, in the remaining of this section, we show that under cer-
tain conditions it is possible to decompile SPNs to far more infor-
mative BNs, that contain no augmented variables, rather they only
include the original SPN variables. This involves utilizing alternative
interpretations of the SPN sum nodes, as well as considering the SPN
parameters. This is a novel aspect of our approach, since none of the
existing decompilation algorithms take into account the SPN param-
eters, although they contain information that cannot be retrieved by
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looking at the SPN structure alone [14]. More precisely, we assume
that a BN B is an I-map for the distribution it represents (i.e. the
independence relationships that can be inferred from the BN, are in-
deed satisfied by the distribution), and we consider the problem of
decompiling the SPN that results from compiling B using the VErto
algorithm. This is a similar setting to the one in [4], where the pro-
posed algorithm can perform an exact decompilation for SPNs com-
piled from morally closed BNs, which is a relatively small subset of
BNs, however in this work we go one step further and introduce an
algorithm that is always accurate, regardless of the underlying BN.

As shown in section 4.1, the assumption that every sum node cor-
responds to a latent variable is very restricting, having detrimental
effects on the transparency and causal utility of the decompiled BN.
Although all existing decompilation algorithms share this assump-
tion, this is not the only way of interpreting sum nodes. As a matter
of fact, a meaningful probabilistic interpretation can be given to any
sum node of a SPN that represents a variable [11]. A sum node, S,
represents a variable, V , (denoted by Represent(S) = V ) if it has as
many children as the number of states V has, and an indicator cor-
responding to one of V ’s states can be reached either immediately
(i.e., it is a child of S) or after one intermediate layer (i.e., it is a
grandchild of S). For example, in both figures 2a, 2b the root repre-
sents X1, since it has as many children as X1’s states, and each of
them reaches a unique indicator either immediately (2a) or through a
product node (2b). It is not hard to see that if a sum node represents
a variable, then it is selective, however the converse is not necessar-
ily true. The decompilations in [15, 4] operate on selective SPNs,
leading to the BNs discussed in the previous section, while our ap-
proach takes a different stance and makes use of the properties that
follow from having a node representing a variable, instead. As shown
in [11], if a sum node represents V , then it encodes the conditional
distribution of V given the context set by its ancestors. For exam-
ple, in Figure 3b, the sum node in the red double circle (corresp. the
blue double circle) models the distribution of X2|X1 = 0 (corresp.
X2|X1 = 1). Analogously, in Figure 3c, the sum node in red mod-
els the distribution of X3|X1 = 0, X2 = 0, since it represents X3,
while starting from the root, the path leading to it contains indicators
corresponding to the context X1 = 0, X2 = 0.

An important consequence of having a sum node representing a
variable is that it is no longer necessary to introduce augmented vari-
ables to define conditional distributions. Furthermore, we can now
make two crucial observations about the qualitative properties of
SPNs that result from the VErto algorithm. To this end, let B be a
BN, and SPNC be the corresponding compiled SPN, then the fol-
lowing properties hold:

• Property 1 Every sum node in SPNC represents a variable [7,
11].

• Property 2 Let V be a variable in B, and S be the
set of sum nodes representing V in the SPN, S =
{S|S is a sum node, Represent(S) = V }. Then, since SPNC is
compiled using a topological ordering, each of the paths that start
from the root and end in one of the nodes in S meets sum nodes
representing the same variables. For example, looking at Figure
3b, X2 is represented by the nodes in the red and blue double
circles. Starting from the root, all paths leading two these nodes
include just the root, which represents X1. In addition, the double
circles in figures 3c,3d correspond to all the nodes representing
X3. It is not difficult to see that all paths ending in one of these
nodes, include the root (representing X1) as well as one of the
nodes that represent X2. This is a direct consequence of having a
topological ordering.

At this point we should remind ourselves that the goal of any
decompilation algorithm is to recover the parent-child relationships
represented by the underlying BN, B. Having this in mind, prop-
erties 1 and 2 imply that for every variable, V , SPNC defines its
conditional distribution by conditioning on all of its SPN ancestors,
X1, · · · , Xk, i.e. the variables that appear earlier than V in SPNC ,
denoted by CS . This resembles the conditional distributions of V
in B, however this is defined by conditioning only on its parents,
P1, · · · , Pm, denoted by CB , not all of its ancestors. Regardless, the
crucial observation here is that since SPNC was compiled following
a topological ordering respecting B, then CB ⊆ CS and furthermore
all variables in CS \CB are non-descendants of V in B.

In general, distributions that factorize according to a BN respect
the local Markov property [16], which states that a variable is in-
dependent of its non-descendants given its parents. In our case, since
CB contains exactly the parents of V in B, the aforementioned prop-
erty makes sure that for any set, ND, comprised of non-descendants
of V in B, we have that Pr(V |CB) = Pr(V |CB ,ND). Connect-
ing this with the observations in the previous paragraph, we imme-
diately see that Pr(V |CS) = Pr(V |CB), since CB ⊆ CS and
CS \CB ⊆ ND.

Following this reasoning reveals that the task of decompiling
SPNC is equivalent to inferring the set CS \ CB . This is because
CS can be easily found by inspecting SPNC , so if CS \CB is also
known, then their difference CS \ (CS \ CB) = CB , uncovering
the parents of V in B.

As an example, in Figure 3b the nodes representing X2 model the
distributions X2|X1 = 0, X2|X1 = 1, so CS = {X1}. Moreover,



Algorithm 1 SPN to BN decompilation

Require: A SPN over variables X1, · · ·Xn, compiled using the VErto algorithm, SPNC
B ← the empty BN over X1, · · ·Xn

Not-visited← {X1, · · ·Xn}
while Not-visited ̸= ∅ do

Pick a variable Xk ∈ Not-visited
RepXk

← {S|S is a sum node, Represent(S) = Xk}
AncestorsXk ← {Xm|∃ S such that Represent(S) = Xm, S is above nodes in RepXk

}
if AncestorsXk = ∅ then ▷ The conditioning set is empty, so no parents exist

Not-visited← Not-visited\{Xk}
continue

end if
for every variable Xm ∈ AncestorsXk do

RepXm
← {S|S is a sum node, Represent(S) = Xm}

for every Sm ∈ RepXm
do

TreesSm ← {T |T ∈ SubtreesS(SPNC) for some S ∈ RepXk
, Sm ∈ T}

PairedTreesSm ← {(t0, t1)|t0, t1 ∈ TreesSm ,1Xm=0 ∈ t0,1Xm=1 ∈ t1,
otherwise they contain the same indicators}

for every (t0, t1) ∈ PairedTrees do
S0 ← the end node in t0
S1 ← the end node in t1
if S0 ̸= S1 then

Add Xm → Xk to B
break

end if
end for

end for
end for
Not-visited← Not-visited\{Xk}

end while
return B

since CB ⊆ CS , it follows that CS \ CB is equal to either {X1}
or ∅. However, looking at the underlying BN shown in Figure 3a, we
immediately see that Pr(X2|X1) = Pr(X2), so the local Markov
property guarantees that X1 is a non-descendant of X2 in B, leading
to CS \ CB = {X1} ⇒ CB = ∅, concluding that X2 has no
parents in the underlying BN. It only appears as if X1 influences the
distribution of X2 because all layers of a SPN are connected, but this
is not really the case.

We are now ready to give an intuitive description of the decompila-
tion process: looking at the ancestors of any variable, V , in SPNC ,
we can immediately identify CS , which is a superset of CB . Fur-
thermore, since V ’s conditional distribution must respect B, the lo-
cal Markov property guarantees that all variables in CS \CB can be
removed from CS without affecting the distribution. This means that
once we establish a way to remove redundant variables from CS ,
then the ones that are going to remain by the end of the elimination
process are going to be exactly the parents of V in B. It should be
noted that this interplay between the local Markov property in B and
the conditioning sets in SPNC is novel to the presented approach,
and is not found in any existing decompilation algorithm. All pre-
vious algorithms rely on structural SPN properties alone, where the
presented approach utilizes information about B, yet in a way that
does not require B to be known beforehand, rather only involving
properties that follow from its existence.

The only thing remaining is to come up with a way for identifying
the variables in CS \CB . However, this can be easily done by using
the following proposition:

Proposition 4.2 Let Y,X1, X2, · · · , Xn be binary random vari-

ables. If there is a Xk, such Pr(Y |X1, X2, · · · , Xk =
0, · · · , Xn) = Pr(Y |X1, X2, · · · , Xk = 1, · · · , Xn), then
Y⊥Xk|X1, X2, · · · , Xk−1, Xk+1, · · · , Xn.

Finally, Proposition 4.2 can be invoked implicitly by considering
appropriate induced trees up to a sum node S′, which generalize stan-
dard induced trees [24].

Definition 4.1 Let S be a complete and decomposable SPN over
variables X1, · · · , Xn, and T = (TV , TE) be a subgraph of S . T is
called an induced subtree up to node S′ of S if:

• Root(S) ∈ TV .
• If v ∈ TV is a sum node, then exactly one child of v in S is in TV ,

and the corresponding edge is in TE .
• If v ∈ TV is a product node, then all children of v in S are in TV ,

and the corresponding edges are in TE

• S′ ∈ TV , and once S′ is reached, the tree expansion stops.

An induced tree up to a sum node S′ results from traversing a SPN
top-down, such that for every sum node only one of its children is in-
cluded in the tree, for every product node all of its children are in the
tree, and as soon as S′ is reached the procedure terminates. For a SPN
S , we denote the collection of all induced subtrees up to node S′ as
SubtreesS

′
(S). The terminal node models the conditional distribu-

tion of the variable represented by S′, given the context implied by
the indicators in the tree. For example, the sum node in the double red
circle in Figure 3d is the terminal node of the induced tree in red, and
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Figure 3: Illustration of applying Algorithm 1. Indicators in red are reached traversing the red paths, while indicators in blue are reached via
blue paths. Indicators and edges in purple are belong to both red and blue paths. Edges marked with the same symbol have equal parameters.



it models Pr(X3|X1 = 0, X2 = 1), since this tree contains indica-
tors for X1 = 0, X2 = 1. In turn, if S0, S1 represent the same vari-
able V , comparing T0 ∈ SubtreesS0(S), T1 ∈ SubtreesS1(S),
where T0, T1 differ only in the state of an indicator made for a sin-
gle variable X , implicitly invokes Proposition 4.2. If S0 ̸= S1, then
the equality in 4.2 does not hold, so by the local Markov property
X ∈ CB , meaning that X must be a parent of V in B. Alternatively,
if all such nodes are identical, then X ∈ CS \CB . This way, Algo-
rithm 1 utilizes a unique blend of information about both the structure
and parameters of SPNC to enable an exact decompilation.

The following theorem is the culmination of our analysis, proving
the validity of Algorithm 15.

Theorem 2 Let B be a BN that is an I-map for the distribution it
represents, and let SPNC be the SPN that results from compiling
B using the VErto algorithm. Then applying Algorithm 1 to SPNC
outputs exactly B.

Example: Figure 3 demonstrates the general process with an ex-
ample. The original BN is shown in Figure 3a, while the remaining
figures show the compiled SPN, along with the trees that have to be
examined following Algorithm 1. It is well known that compiling the
BN in 3a results in a SPN where the sum nodes in double circles
in Figure 3b must have identical parameters, which is why the cor-
responding edges are marked. Apart from that, the parameters of the
remaining sum nodes are in general distinct, since they are not bound
to satisfy any constraint.

Starting with X1, we see that CS = ∅ ⇒ CB = ∅, so X1

has no parents in the underlying BN. Next, moving on to X2, we
have that CS = {X1}. Looking at Figure 3b, we need to compare
the sum node in red (which models the distribution Pr(X2|X1 =
0)) to the node in blue (which models Pr(X2|X1 = 1)). Since
these nodes have identical parameters, we have that Pr(X2|X1 =
0) = Pr(X2|X1 = 1), so by Proposition 4.2 we conclude that
Pr(X2|X1) = Pr(X2), which combined with the local Markov
property makes sure that X1 ̸∈ CB ⇒ CB = ∅, so neither X2

has a parent in the underlying BN. Moving on to X3, we see that
CS = {X1, X2}. Figures 3c, 3d highlight the trees that need to
be considered to decide whether X1 belongs to CB . Comparing the
corresponding sum nodes, we see that they model distinct distribu-
tions (since they do not not have equal parameters), meaning that
X1 ∈ CB , so the edge X1 → X3 is added to the BN. Finally,
we have to repeat this process for X2, which is shown in figures
3e, 3f. Again, since the final sum nodes are not identical, the edge
X2 → X3 is added, exactly recovering the BN in Figure 3a.

Finally, we would like to note that although in the worst case Al-
gorithm 1 needs to compare all induced trees in SPNC , so it has
an exponential complexity, various optimizations can help reduce the
number of computations. For example, by using the break command,
Algorithm 1 connects two variables in the underlying BN as soon
as it detects a pair of non-identical sum nodes, without needing to
explore all the remaining induced trees. Additional enhancements,
such as caching intermediate results, should greatly help speed up
the computations, however here we focus on proving the feasibility
and providing the theoretical means of achieving an exact SPN de-
compilation.

5 Although the algorithm is stated for binary variables, it is straightforward to
extend it to the non-binary case by adjusting the induced subtrees that need
to be considered.

4.3 Discussion and Conclusions

The above example shows how Algorithm 1 combines information
about the structure and parameters of the compiled SPN in order to
perform an exact decompilation. In contrast, even for relatively sim-
ple cases, like those in figures 1a, 3a, all existing algorithms might
fail to perform this task. This limitation has had a direct impact on
a number of related works, such as the one presented in [9], where
the author has to maintain both a BN and the corresponding com-
piled SPN in order to study interventional queries, despite the fact
that all computations are performed using just the SPN. This is be-
cause maintaining only the SPN would result in losing all the infor-
mation about the way variables are connected, hindering any subse-
quent causal analysis. Nevertheless, using Algorithm 1 it is no longer
necessary to maintain the original BN, since all this information can
be recovered at any point. This means that the compiled SPN can
be used to compute both standard observational queries, as well as
interventional ones (by first decompiling it to a BN and then follow-
ing [9]). This observation is also related to the results in [22], where
the authors show that SPNs can be used to represent interventional
distributions. However, SPNs compiled from BNs demonstrate that
it is possible for a single SPN to represent both observational and in-
terventional distributions, mitigating the need to maintain a separate
SPN for each.

Looking at the broader picture, our work challenges the view that
BNs are transparent models with representational semantics, while
SPNs are black-boxes with only operational ones [5], by showing
that SPNs have equivalent transparent representations, however they
are embedded into their structure and parameters. Finally, looking
back at the algorithm’s derivation, we see that properties 1 and 2 are
the only essential requirements to guarantee that an exact decompi-
lation is possible. This implies that Algorithm 1 should be applicable
to any SPN satisfying them, not only those compiled using the VErto
algorithm. An immediate consequence is that even when learning a
SPN from data, instead of compiling it from a BN, as long as these
two properties are enforced during training, it should be possible to
generate a BN without additional hidden variables that agrees with
the SPN distribution. Moreover, our results point towards a very in-
teresting future research direction, since they imply that as long as
sum nodes can be assigned with a meaningful interpretation, Algo-
rithm 1 can be used to recover and explicate all the relationships
learned by the SPN. For example, sum nodes of SPNs learned from
data using the algorithm in [19], could be interpreted as representing
tree distributions, so applying Algorithm 1 should yield a transparent
mixture of distributions. Exploring this approach has the potential to
result in a new generation highly flexible, fully transparent models,
that combine the efficient inference of SPNs with the representational
transparency of BNs, opening the door for utilizing SPNs in applica-
tions where model transparency is essential [20].
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