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What counts as a philosophical issue in computational cognitive science? his chapter
brie�y reviews possible answers before focusing on a speciûc subset of philosophical
issues. hese surround challenges that have been raised by philosophers regarding
the scope of computational models of cognition. he arguments suggest that there
are aspects of human cognition that may, for various reasons, resist explanation or
description in terms of computation. he primary targets of these ‘no go’ arguments
have been semantic content, phenomenal consciousness, and central reasoning. his
chapter reviews the arguments and considers possible replies. It concludes by high-
lighting the diòerences between the arguments, their limitations, and how theymight
contribute to the wider project of estimating the value of ongoing research programmes
in computational cognitive science.

1 Introduction

In 1962,Wilfred Sellars wrote: ‘he aim of philosophy, abstractly formulated, is to

understandhow things in the broadestpossible sense of the termhang together in the

broadest possible sense of the term’ (Sellars, 1962, p. 35). On this view, philosophical

issues aremarked out not by having some uniquely philosophical subject matter, but

in terms of the overall scope of the enquiry. When one turns to the philosophical

issues, what one is doing is taking a step back from some of the details of the science

and considering how matters hang together relative to the broad ambitions and

goals that motivated the scientiûc enquiry in the ûrst place. In the case of the

computational cognitive sciences, this may involve asking such questions as: Are
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there aspects of cognition or behaviour that are not amenable to computational

modelling? How do distinct computational models of cognition and behaviour

ût together to tell a coherent story about cognition and behaviour? What exactly

does a speciûc computational model tell (or fail to tell) us about cognition and

behaviour? What distinguishes computational models from alternative approaches

to modelling cognition and behaviour? How does a computational model connect

to, and help to answer, our pre-theoretical questions about what minds are and how

they work?

Progress in answering these questions may come from any or all sides. It would be

amistake to think that philosophical issues are somehow only within the purview

of academic philosophers. Anyone who takes computational modelling seriously

as an attempt to study cognition is likely to want to know the answers to these

questions and is also liable to be able to contribute to the project of answering

them. What philosophers bring to this joint project is a set of conceptual tools

and approaches that have been developed in other domains to address structurally

similar issues. hey also have the luxury of being allowed to think and write about

the big questions.

Sellars had a relatively narrow conception ofwhat itmeant to understand how things

hang together. He interpreted this as an attempt to reconcile two separate images that

wehave ofhow theworldworks: the scientiûc image (whichdescribes theposits of the

natural sciences – cells,molecules, atoms, forces, etc.) and themanifest image (which

describes the posits of human common-sense understanding of theworld – persons,

thoughts, feelings, ideas, etc.) (Sellars, 1962). his chapter adopts a somewhat looser

interpretation of the project. Models in the computational cognitive sciences are

o�en partial, provisional, and selected from many possible alternatives that are also

consistentwith the data. Itwould bemisleading to think that current computational

cognitive science contains a single, coherent account that is ‘the’ scientiûc image

of cognition. Similar concerns could also be raised about our manifest image

of the world in light of observations of cross-cultural diòerences in human folk

understanding and conceptualisations of the world (Barrett, 2020; Henrich,Heine

and Norenzayan, 2010; Nisbett, 2003). he view adopted in this chapter is that the

philosopher’s goal is to understand how themany (and varied) current approaches

to computational modelling of cognition hang together, both with each other, with

work in the other sciences (including neuroscience, cellular biology, evolutionary

biology, and the social sciences), and with our various pre-theoretical folk questions

and insights regarding themind. here is no prior commitment here to a single,well-

deûned scientiûc image or manifest image, but rather the ambition to understand

how the various perspectives we have on cognition and behaviour cohere and allow

us to understand what minds are and how they work (Sprevak, 2016).
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Under this broad heading, there is a huge range ofwork. his includes consideration

of how to interpret the terms of speciûc computational models – about which

parameters one should be a ‘realist’ or an ‘instrumentalist’ (Colombo and Seriès,

2012; Rescorla, 2016); how to make sense of theoretical concepts that appear across

multiplemodels, like the notion of a cognitive ‘module’ (Carruthers, 2006; Samuels,

1998); analysis and formalisation of general features of experimental methodology

in computational neuroscience (Glymour, 2001; Machery, 2013); identiûcation of

diòerences between computational approaches and rival approaches to modelling

cognition (Eliasmith, 2003; van Gelder, 1995); consideration of how techniques

in machine learning and AI might inform work in computational neuroscience

(Buckner, 2021; Sullivan, 2019); interpretation of experimental results that function

as evidence for speciûc computational models (Apperly and Butterûll, 2009; Block,

2007; Shea and Bayne, 2010); and consideration of how computational models

of cognition connect to wider questions about the nature of the human mind,

its subjective experiences, its evolutionary history, and the kinds of social and

technological structures that it builds (Clark, 2016; Dennett, 2017; Godfrey-Smith,

2016; Sterelny, 2003).

he primary focus of this chapterwill, bynecessity, benarrower than the full extent of

issues within this diverse intellectual landscape. his chapter focuses on challenges

raised to computational modelling that arise from philosophical work on the nature

of cognition and consciousness.

1.1 Overview of chapter

When building a computational model in the cognitive sciences, researchers gen-

erally aim to build a model of some prescribed subdomain within cognition or

behaviour (e.g. of face recognition, cheater detection, word segmentation, or depth

perception). Splitting up human cognition into various smaller domains raises

questions about how one should do this. his is the problem of how one should indi-
viduate our cognitive capacities and overt behaviour (M. L. Anderson, 2014; Barrett

and Kurzban, 2006; Machery, forthcoming). It also raises questions about how the

separatemodels of individual cognitive subdomains that one hopes to obtain will

subsequently be woven together to create a coherent, integrated understanding of

cognition. his concerns the issue of how we unify models of distinct aspects of

cognition (Colombo andHartmann, 2017; Danks, 2014; Eliasmith, 2013).

his chapter focuses on a set of issues that are related, but posterior, to the two

just mentioned. hese concern possible gaps le� by this strategy for modelling

cognition. If this strategy were in an ideal world to run to completion, would there

be any aspects of cognition or behaviour that would be missing from the ûnal

picture? Are there any aspects of cognition forwhichwe should not expect to obtain
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a computational model? Are there cognitive domains that are, for some reason,

‘no go’ areas for computational modelling? he chapter examines three possible

candidates: semantic content (Section 2), phenomenal consciousness (Section 3), and

central reasoning (Section 4). In each case, philosophers have argued that there are

good reasons to believe that we cannot obtain an adequate computational model of

the domain in question.

hese ‘no go’ arguments may be subdivided further into in principle and in practice
arguments. In principle arguments aim to show that it is impossible for any computa-

tional model to account for the cognitive capacity in question. In practice arguments

are weaker. hey aim only to show that, given our current state of knowledge, we

should not expect to discover such amodel – an adequatemodel might exist, but
we should not expect to ûnd it, at least in the foreseeable future.

2 Semantic content – Searle’s Chinese room argument

John Searle’s Chinese room argument is one of the oldest andmost notorious ‘no go’

arguments concerning computational modelling of cognition. he precise nature

of its intended target has been liable to shi� between diòerent presentations of the

argument. Searle has claimed in various contexts that the argument shows that

understanding, semantic content, intentionality, and consciousness cannot adequately
be captured by a computational model (according to Searle, all these properties

are linked, see Searle, 1992, pp. 127–197). In his original formulation, Searle’s target

was understanding, and speciûcally, our ability to understand simple stories. He

considered whether a computational model would adequately be able to account for

this cognitive capacity. More precisely, he considered whether such amodel would

be able to explain the diòerence between understanding and not understanding

a simple story (Searle, 1980; cf. models of understanding in Schank and Abelson,

1977; Winograd, 1972).

2.1 he Chinese room argument

Searle’s argument consisted in a thought experiment concerning implementation

of the computation. Imagine amonolingual English speaker inside a room with

a rule-book and sheets of paper. he rule-book contains instructions in English

on what to do if presented with Chinese symbols. he instructions might take the

form: ‘If you see Chinese symbol X on one sheet of paper and Chinese symbol Y

on another, then write down Chinese symbol Z on a third sheet of paper’. Pieces of

paper with Chinese writing are passed into the room and the person inside follows

the rules and passes pieces of paper out. Chinese speakers outside the room label

the sheets that are passed in ‘story’ and ‘questions’ respectively, and the sheets that
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come out ‘answers to questions’. Imagine that the rule-book is as sophisticated as

you like, and certainly sophisticated enough that the responses that the person

gives are indistinguishable from those of a native Chinese speaker. Does the person

inside the room thereby understand Chinese? Searle claims that they do not (for

discussion of the reliability of his intuition here, see Block, 1980; Maudlin, 1989;

Wakeûeld, 2003).

Searle observes that the Chinese room is a computer, and he identiûes the rule-book

with the (symbolic) computation that it performs. He then reminds us that the

thought experiment does not depend on the particular rule-book used: it does not

matter how sophisticated the rule-book, the person inside the room would still

be shuøing Chinese symbols without understanding what they mean. Since any

symbolic computational process can be described by some rule-book, the thought

experiment shows that the person inside the Chinese room will not understand the

meaning of the Chinese expressions they manipulate no matter which symbolic

computation they perform. herefore, we can conclude that the performance of a

symbolic computation is insuõcient, by itself, to account for the diòerence between

the system performing the computation understanding and not understanding

what the Chinese expressions mean. Searle infers from this that any attempt to

model understanding purely in terms of a formal, symbolic computation is doomed

to failure. According to Searle, the reason why is that a formal computational

model cannot induce semantic properties, which are essential to accounting for a

semantically laden cognitive process like understanding (Searle, 1980, p. 422).

2.2 he problem of semantic content

Many objections have been raised to Searle’s Chinese room argument (for a sum-

mary, see Cole, 2020). However, it is notable that despite the argument’s many

defects, the main conclusion that Searle drew has been le� largely unchallenged

by subsequent attacks. his is that manipulation of formal symbols is insuõcient

to generate the semantic properties associated with cognitive processes like under-

standing. In Searle’s terms, the Chinese room thought experiment, whatever its

speciûc shortcomings, is an illustration of a valid general principle that ‘syntax is

not suõcient for semantics’ (Searle, 1984). Note that ‘syntax’ here does not refer

to the static grammatical properties of symbols or well-formedness of linguistic

expressions, but to the algorithmic rules by which symbolic expressions aremanip-

ulated or transformed during a computation. ‘Semantics’ refers speciûcally to the

denotational aspects of themeaning associated with symbolic expressions – their

intentional properties, i.e. what they refer to in the world.

Searle is not alone in making this claim. Putnam (1981) argued that manipulating

symbols (mere ‘syntactic play’) cannot determinewhat a computation’s symbols refer
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to, or whether they carry any referential semantic content at all (pp. 10–11). Burge

(1986), building on earlierwork by Putnam and himself on referring terms in natural

language, noted that a physical duplicate of a computer placed in a diòerent physical

environment might undergo exactly the same formal transitions, but have diòerent

meaning attached to its symbolic expressions based on its relationship to diòerent

environmental properties. Fodor (1978) described two physically identical devices

that undergo the same symbol-shuøing processes, one ofwhich runs a simulation of

the Six-DayWar (with its symbols referring to tank divisions, jet planes, and infantry

units) and the other runs a simulation of a chess game (with its symbols referring to

knights, bishops, and pawns). Harnad (1990) argued that all computational models

based on symbol processing face a ‘symbol grounding’ problem: although some

of their symbols might have their semantic content determined by their formal

relationship to other symbols, that sort of process has to bottom out somewhere

with symbolic expressions that have their meaning determined in some other way

(e.g. by causal, non-formal relationships to external objects in the environment in

perception or motor control).

hese considerations are also not conûned to symbolic computational models of

cognition. Similar observations could bemade about computational models that

are deûned over numerical values or over probabilities. Consider artiûcial neural

networks. hese computational models consist in collections of abstract nodes and

connections that chain together long sequences ofmathematical operations on nu-

merical activation values or connection weights (adding,multiplying, thresholding

values). What do these numerical activation values or connection weights mean?

How do are they relate to distal properties or objects in the environment? As outside

observers, wemight interpret numerical values inside an artiûcial neural network as

referring to certain things (just as, in a similar fashion, wemight interpret certain

symbolic expressions in a classical, symbolic computation as referring to certain

things). Independent of our interpreting attitudes however, themathematical rules

that deûne an artiûcial neural network do not ûx this semantic content. he rules

associated with an artiûcial neural network describe how numerical values are

transformed during a computation (during inference or learning), but they do not

say what those numbers (either individually or taken in combination) represent

in the world. Numerical rules no more imbue an artiûcial neural network with

semantic content than the symbolic rules that operate over expressions do for a clas-

sical, symbolic computation (cf. Searle, 1990). Computational models that operate

over probabilities or probability distributions face a similar kind of problem. hese

models are normally deûned in terms of operations on probability distributions

(understood as ensembles of numerical values that satisfy the requirements for a

measure of probability). hese distributions might be interpreted by us as external

observers as probabilities of certain events occurring, but themathematical rules
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governing the transformation of these distributions do not usually, by themselves,

determine what those distal events are.

It isworth emphasising that there is no suggestion here that computational aspects of

cognition and semantic aspects of cognition are wholly independent. It is likely that

some symbolic expressions get their meaning ûxed via their formal computational

role (plausibly, this is the case for expressions that represent the logical connectives

like AND andOR).What is being claimed is that not all semantic content can be
determined in this way, by formal computational role. An adequate account of

semantic aspects of cognition will need to include, not only formal relationships

among computational states, but also non-formal relationships between those com-

putational states and distal states in the external environment (for discussion of this

point in relation to procedural semantics or conceptual-role semantics, see Block,

1986; Harman, 1987; Johnson-Laird, 1978).

2.3 heories of content

A lesson that philosophers have absorbed from this is that a computational model

will need to be supplemented by another kind of model in order to adequately

account for cognition’s semantic properties. he project of modelling cognition

should correspondingly be seen as a project with at least two distinct branches. One

branch consists in describing the formal computational transitions or functions

associated with a cognitive process. he other branch connects the abstract symbols

or numerical values described in the ûrst branch to distal objects in the environment

via semantic relations (see Chalmers, 2012, pp. 334–335). his two-pronged approach

is most clearly laid out in the writings of Jerry Fodor. Fodor argued that one should

sharply distinguish between one’s computational theory (which describes the dynam-

ics of abstract computational vehicles) and one’s theory of content (which describes

how those vehicles get associated with speciûc distal representational content). It

would be amistake to think that one’s computational theory can determine semantic

properties or vice versa (see Fodor, 1998, pp. 9–12). (Fodor makes this observation

in his response to the Chinese room argument (1980), essentially conceding that

Searle’s conclusion about pure syntax is correct but obvious).

What does a theory of content look like? Fodor argued that a good theory of

content should try to answer two questions about human cognition: (S1) How do

its computational states get their semantic properties? (S2)Which speciûc semantic

contents do they have? Fodor also suggested that a theory of content suitable for

fulûlling the explanatory ambitions of computational cognitive science should be

naturalistic. What this last condition means is that the answers a theory of content

gives to questions S1 or S2 should not employ semantic or intentional concepts. A

theory of content should explain how semantic content in cognition arises, and how

7



speciûc semantic contents get determined, in terms of the kinds of non-semantic

properties and processes that typically feature in the natural sciences (e.g. physical,

causal processes that occur inside the brain or the environment). A theory of content

should not attempt to answer S1 or S2 by, for example, appealing to the semantic

or mental properties of external observers or the intentional mental states of the

subject themself (Fodor, 1990, p. 32; Loewer, 2017).

Fodor developed his own naturalistic theory of content, which he called the ‘asym-

metric dependency theory’. his theory claimed that semantic content in cognition

is determined by a complex series of law-like relationships obtaining between cur-

rent environmental stimuli and formal symbols inside the cognitive agent (Fodor,

1990). In contrast, teleological theories of content attempt to naturalise content by

appeal to conditions that were rewarded during past learning, or that were selected

for in the cognitive agent’s evolutionary history (Dretske, 1995; Millikan, 2004;

Papineau, 1987; Ryder, 2004). Use-based theories of content attempt to naturalise

content by appeal to isomorphisms between multiple computational states in the

cognitive agent and states of the world, claiming that their structural correspond-

ence accounts for how the computational states represent (Ramsey, 2007; Shagrir,

2012; Swoyer, 1991). Information-theoretic theories of content attempt to naturalise

content by appeal to Shannon information (Dretske, 1981); recent variants of this

approach propose that semantic content is determined by whichever distal states

maximise mutual information with an internal computational state (Isaac, 2019;

Skyrms, 2010; Usher, 2001) – this echoes methods used by external observers in

cognitive neuroscience to assign representational content to neural responses in

the sensory or motor systems (Eliasmith, 2005; Rolls and Treves, 2011; Usher, 2001).

Shea (2018) provides a powerful naturalistic theory of content that weaves together

elements of all the approaches above and suggests that naturalistic semantic content

is determined by diòerent types of condition in diòerent contexts.

No naturalistic theory of content has yet proved entirely adequate, and natural-

ising content remains more of an aspiration than an attained solution. Among the

challenges faced by current approaches are allowing for the possibility ofmisrep-

resentation; avoiding introducing unacceptably large amounts of indeterminacy in

cognitive semantic content; and providing a suõciently general theory of cognitive

semantic content that will cover not only the representations involved in percep-

tion andmotor control but also more abstract representations like DEMOCRACY,

TIMETABLE, and QUARK (see Adams and Aizawa, 2021; Neander and Schulte,

2021; Shea, 2013).

Some philosophers have suggested that a diòerent approach to explaining semantic

content in computational cognitive sciences is required. Egan (2014) argues that

we should assume, at least as a working hypothesis, that cognitive semantic con-
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tent cannot be naturalised. his is not because the semantic content in question

is determined by some magical, non-naturalistic means, but because the way in

which we ascribe semantic content to formal computational models is an inherently

messymatter that is in�uenced by endless, unsystematisable pragmatic concerns

(Chomsky, 1995; Egan, 2003). Semantic content determination is just not the sort of

subject matter that lends itself to description by any concise non-intentional theory

– one is unlikely to ûnd a naturalistic theory of semantic content for similar reasons

as one is unlikely to ûnd a concise non-intentional theory of jokes, excuses, or anec-

dotes. Egan suggests that pragmatic ascription of semantic content to computational

models nevertheless plays a residual role in scientiûc explanation by functioning

as an ‘intentional gloss’ that relates formal computational models to our informal,

non-scientiûc descriptions of behavioural success and failure (Egan, 2010).

A diòerent approach to Egan’s suggests that ascriptions of semantic content to

computational models should be treated as a kind of idealisation or ûction within

computational cognitive science (Chirimuuta, forthcoming; Mollo, forthcoming;

Sprevak, 2013). his builds on a broader trend of work in philosophy of science

that emphasises the value of idealisations and ûctions in all domains of scientiûc

modelling, from particle physics to climate science. Idealisations and ûctions should

be understood, not necessarily as defects in a model, but as potentially valuable

compromises that provide beneûts with respect to understanding, prediction, and

control that would be unavailable from a scientiûcmodel that is restricted to literal

truth telling (Elgin, 2017; Morrison, 2014; Potochnik, 2017).

While philosophers do not agree about how to answer S1 and S2, there is near con-

sensus that a purely computational theory would not be adequate. A computational

model of cognition must be supplemented by something else – a naturalistic theory

of content, an intentional gloss, or a reinterpretation of scientiûc practice – that

explains how the (symbolic or numerical) states subject to computational rules

gain their semantic content. Moreover, this is widely assumed to be an in principle
limitation on to what a computational model of cognition can provide. It is not a

shortcoming that can be remedied bymoving to a new computational model or one

with more sophisticated formal rules.

2.4 Content and physical computation

he preceding discussion operated under the assumption that a computational

model is deûned exclusively in terms of formal rules (whether those be symbolic

or numerical rules). his ûts with one way in which computational models are

discussed in the sciences. Mathematicians, formal linguists, and theoretical com-

puter scientists o�en deûne a computational model as a purely abstract, notional

entity (e.g. a set-theoretic construction such as a Turing machine, Boolos, Burgess
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and Jeòrey (2002)). However, research in the applied sciences and in engineer-

ing o�en involves talking about their computational models in a diòerent way. In

these contexts, a computational model is o�en also tied to its implementation in

a particular physical system. Part of a researcher’s intention in proposing such a

model is to suggest that the formal transitions in question are implemented in that

speciûc physical system. In the case of the computational cognitive sciences, formal

transitions are normally assumed to be implemented (at some spatiotemporal scale)

in the cognitive agent’s physical behaviour or neural responses.

If a formal computation is physically implemented, the physical states that are

manipulated will necessarily stand in some non-formal relations to distal entities in

the world. Physically implemented computations cannot help but stand in law-like

causal relations to objects in their environment, or have a history (and one thatmight

involve past learning and evolution). Given this, it is by no means obvious that a

physically implemented computation, unlike a purely formal abstract computation, is

silent about, or does not determine, assignment of semantic content. Understanding

whether andhow physical implementation relates to semantic content is a substantial

question and one that is distinct from those considered above (for various proposals

about the relationship between physically implemented computation and semantic

content, see Dewhurst, 2018; Lee, 2018; Mollo, 2018; Piccinini, 2015, pp. 26–50;

Rescorla, 2013; Shagrir, 2018; Sprevak, 2010). At themoment, there is no consensus

among philosophers about whether, and to what extent, physical implementation

constrains the semantics of a computation’s states. Consequently, it is worth bearing

in mind that Searle’s observation that ‘syntax is not suõcient for semantics’, even if

true for the purely formal computations that he had in mind,may not apply to the

physically implemented computations proposed in many areas of the computational

cognitive sciences (see Boden, 1989; Chalmers, 1996, pp. 326–327; Dennett, 1987,

pp. 323–326)

3 Consciousness –he hard problem

‘Consciousness’ may refer to many diòerent kinds ofmental phenomena, including

sleep and wakefulness, self-consciousness, reportability, information integration,

and allocation of attention (see van Gulick, 2018, for a survey). his section focuses

exclusively on a ‘no go’ argument concerning phenomenal consciousness. ‘Phenom-

enal consciousness’ refers to the subjective, qualitative feelings that accompany some

aspects of cognition. When you touch a piece of silk, taste a raspberry, or hear the

song of a blackbird, over and above any processes of classiûcation, judgement, report,

attentional shi�, control of behaviour, and planning, you also undergo subjective

sensations. here is something it feels like to do these things. Some philosophers

reserve the term ‘qualia’ to refer to these feelings (Tye, 2018). he hard problem of
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consciousness is to explain why phenomenal feelings accompany certain aspects of

cognition and to account for their distribution across our cognitive life (Chalmers,

1996, pp. 3–31; Chalmers, 2010b).

3.1 he conceivability argument against physicalism

he conceivability argument against physicalism is a ‘no go’ argument phrased in

terms of the conceivability of a philosophical zombie. A philosophical zombie is a

hypothetical being who is a physical duplicate of a human and who lives in a world

that is a physical duplicate of our universe – a world with the same physical laws

and the same instances of physical properties. he diòerence between our world

and the zombie world is that the agents in the zombie world either lack conscious

experience or have a diòerent distribution of phenomenal experiences across their

mental life from our own. A zombie’s cognitive processes occur ‘in the dark’ or they

are accompanied by diòerent phenomenal experiences from our own (e.g. it might

experience the qualitative feelingwe associatewith tasting raspberrieswhen it tastes

blueberries and vice versa).

It is irrelevant to the conceivability argument whether a philosophical zombie could

come into existence in our world, has ever existed, or is ever likely to exist. What

matters is only whether one can coherently conceive of such a being. Can one

imagine a physical duplicate of our world where a counterpart of a human either

lacks phenomenal consciousness or has a diòerent distribution of phenomenal

experiences from your own? Many philosophers have argued that this is indeed

conceivable (Chalmers, 1996, pp. 96–97; Kripke, 1980, pp. 144–155; Nagel, 1974).

By this, they don’t mean that zombies could exist in our world, or that we should

entertain doubts about whether other humans are zombies. What they mean is that

the idea of a zombie is a coherent one – it does not contain a contradiction; it is

unlike the idea of amarried bachelor or the highest prime number.

he next step in the conceivability argument is to say that our ability to conceive of

a scenario is a reliable guide to whether it is possible. If a world in which zombies

exist is conceivable, then we should believe, pending evidence to the contrary, that

it corresponds to a genuine possibility. However, if a zombie world is possible, then

the distribution of physical properties and physical laws could be exactly as they

are in our world and the beings of that world either lack phenomenal experience or

have diòerent phenomenal experiences from our own. hat means that in our world

theremust be some additional ingredient, over and above the physical facts, that

is responsible for the existence and distribution of our phenomenal experiences.

Something other than the physical laws and physical properties must explain the

diòerence between our world and a zombie world. Our phenomenal consciousness

cannot be determined only by the physical facts because those facts hold too in the
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zombie world. Advocates of the conceivability argument conclude that a theory

of consciousness that appeals exclusively to physical facts is unable to explain the

existence and distribution of our phenomenal experiences (Chalmers, 1996, pp. 93–

171; Chalmers, 2010d).

According to the conceivability argument, a physicalist theory cannot answer the

following questions: (C1) How does our phenomenal conscious experience arise at

all? (C2) Why are our phenomenal conscious experiences distributed in the way

they are across our mental life? No matter which physical facts one cites, none

adequately answer C1 or C2 because the same physical facts could have obtained

and those conscious experiences absent or diòerent, as they are in a zombie world.

his raises the question of what – if not the totality of physical facts – is responsible

for the existence and distribution of our phenomenal experiences. Advocates of the

conceivability argument have various suggestions at this point, all of which involve

expanding or revising our current scientiûc ontology. he focus of this chapter

will not be on those options, but only on the negative point that phenomenal

consciousness is somehow out of bounds for current approaches to modelling

cognition (see Chalmers, 2010a, pp. 126–137, for a survey of non-physicalist options).

3.2 he conceivability argument against computational functionalism

he conceivability argument against physicalism may bemodiûed to generate a ‘no

go’ argument against computational accounts of phenomenal consciousness.

he primary consideration here is that a hypothetical zombie who is our computa-
tional duplicate seems to be conceivable. his is a being who performs exactly the

same computation as we do but who either lacks conscious experience or who has a

diòerent distribution of conscious experiences from our own. Similar reasoning to

justify both the conceivability and possibility of such a being applies as in the case

of the original conceivability argument against physicalism. It seems possible to

imagine a being implementing any computation one chooses, or computing any

function, and for this to fail to be accompanied by a phenomenal experience, or for it

to be accompanied by a phenomenal experience diòerent from our own. No matter

how complex the rules of a computation, nothing about it seems to necessitate the
existence or distribution of speciûc subjective experiences. Onemight imagine a

silicon or clockwork device functioning as a computational duplicate of a human –

undergoing the same computational transitions – but its cognitive life remaining ‘all

dark’ inside, or being accompanied by diòerent subjective experiences from our own

(for analysis of such thought experiments, see Block, 1978; Dennett, 1978; Maudlin,

1989). As with the original conceivability argument, it does not matter whether

a computational zombie could exist in our world; what matters is only whether a

world with such a being is conceivable.
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A separate consideration is that the original conceivability argument appears to

entail a ‘no go’ conclusion concerning any computational model of consciousness

that has a physical implementation (Chalmers, 1996, p. 95). Plausibly, any world that

is a physical duplicate of our world is a world that is also a duplicate in terms of the

physical computations that are performed. It seems reasonable to assume that the

physical facts about a world ûx which physical computations occur in that world.

According to the original conceivability argument, aworld that is a physical duplicate

of our would could be one in which there is no consciousness or consciousness is

distributed diòerently. Putting these two claims together, a world that is a duplicate

of ours in terms of the physical computations performed could be one in which

phenomenal consciousness is absent or diòerently distributed. Hence, in our world

theremust be some extra factor, over and above any physical computations, that

explains the existence and distribution of our phenomenal experiences. A scientiûc

model that appeals only to physical computations – which are shared with our

zombie counterparts – would be unable to explain existence and distribution of our

phenomenal experiences.

It isworth stressing that the conceivability argument places no barrier against a com-

putational or physical model explaining access consciousness. ‘Access consciousness’

refers to the aspects of consciousness associated with reportability and information

sharing: storage of information in working memory, information sharing across

various processes of planning, reporting, control of action, decision making, and so

on (Block, 1990; Block, 2007). Baars (1988) proposed the Global Workspaceheory

as a way in which information from diòerent cognitive processes comes together.

Dehaene and colleagues developed the Global Workspace heory and provided

a possible neural implementation (Dehaene and Changeux, 2004; Dehaene and

Changeux, 2011; Dehaene, Changeux et al., 2006). A theory of this kind might

be able to account for how and why certain pieces of information get shared and

play a greater role in driving thought, action, and report. However, advocates of

the conceivability argument claim that a model of access consciousness cannot

explain phenomenal consciousness. Following similar reasoning to that described

in the previous section, they argue that one can conceive of a system having access

consciousness, but it still lacking phenomenal consciousness or having a diòerent

distribution of phenomenal experience to our own. Access consciousness does not

necessitate the occurrence of phenomenal feelings (for a contrary view, see Cohen

and Dennett, 2011). For them, explaining access consciousness is classiûed under

the heading of an ‘easy problem’ of consciousness (Chalmers, 2010b).

13



3.3 Naturalistic dualism

It is important to understand the extent of the intended ‘no go’ claim about phe-

nomenal consciousness. What is claimed is that solving the hard problem is beyond

the ability of a physical or computational model of consciousness. his does not

mean, however, that a physical or computational account can tell us nothing about

phenomenal consciousness. Chalmers (2010b; 2010c) argues that a computational

or physical model can, for example, tell us a great deal about correlations between
physical/computational states and our phenomenal experiences. he conceivability

argument does not deny that such correlations exist, and measurement of brain

activity shows ample evidence of correlations between brain states and phenomenal

experience. Describing and systematising these correlations may have consider-

able value to science in terms of allowing us to categorise, predict, and control

our phenomenal states. Such amodel cannot, however, explain why phenomenal

experience occurs, for it cannot rule out the possibility that the same physical or

computational states could occur without any conscious accompaniment.

An analogy might help to clarify this point. Suppose that one were to begin a

correlational study of the phenomena of lightning and thunder. Onemight build

a statistical model that captures the relationship between observations of the two

phenomena. In a similar fashion, onemight engage in a correlational study of brain

states and phenomenally conscious states and attempt to capture their relationship.

In both cases, something would bemissing from themodel that is produced. What

would bemissing is an understanding of how and why the two variables are linked.

Lightning typically co-occurs with thunder, but not always, and no pattern of

lightning necessitates an observation of thunder (atmospheric conditions might

cause sound waves to be refracted or deadened before they reach the observer).

his gap in themodel can be rectiûed by introducing further physical variables –

e.g. distributions of electrical charges in the air,measurements of air density and

temperature. In an enlarged,more detailed, physical model it should be possible to

explain why observations of lightning are correlated with observations of thunder,

and how and why such correlations might fail to obtain. In the case of phenomenal

consciousness, the conceivability argument claims to show that this kind of remedy

not available. Filling in the ‘explanatory gap’ between the two variables cannot

be done by introducing extra physical variables into one’s model. No matter how

many physical variables one adds, themodel will still not entail the occurrence of

phenomenal experiences – for, according to the conceivability argument, all these

physical variables could be the same and the consciousness experience absent or

diòerent. A physical/computational model of consciousness can provide us with a

description of the correlates of consciousness, but it cannot provide an explanation

of why those correlates are accompanied by phenomenal experience.
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3.4 Eliminativism and related replies

Not all philosophers accept the reasoning behind the conceivability argument.

Dennett argues that one can easily be misled by ‘intuition pumps’ like zombie

thought experiments. hese can work on our imagination like viewing a picture by

M.C. Escher: we appear to see something new and remarkable, but only because

certain considerations have been omitted or played up and we have failed to spot

some hidden inconsistency in the imagined scenario. Dennett suggests that amore

reasonable conclusion to draw is not that phenomenal consciousness is a ‘no go’

domain for computational modelling of cognition but that the project of trying,

from the armchair, to set a limit on what a physical/computational model can and

cannot explain is deeply misconceived (Dennett, 2013). For all we know, a truly

thorough, mature conceptualisation of a physical or computational duplicate of

our world, imagined down to the smallest detail, would rule out the possibility that

there could be zombies (Dennett, 1995; Dennett, 2001).

Dennett’s remarks about the reliability of our intuitions about zombies may dampen

one’s conûdence in the ‘no go’ argument. However, this by itself does not block

the argument. In order to do this, Dennett also commits to themore speculative,

positive claim that if we were to successfully wrap our heads around some future

correct computational model of consciousness, then we would see that it must bring
all aspects of consciousness along with it. Advocates of the conceivability argument,

while typically open to the idea that zombie intuitions are not apodictically certain

(wemight be deluding ourselves about the conceivability of a zombie world), tend

to pour scorn on this latter contention. No matter how complex a computational

model is they say, it simply is not clear how it could entail that speciûc conscious

experiences occur (Strawson, 2010). he idea that, somewhere in the space of all

possible computational models, somemodel exists that entails conscious experience

is, according to these critics, puremoonshine or physicalist dogma (Strawson, 2018).

A position onemight be driven towards, andwhichDennett defends in his -Dennett

(1991) book, is that certain aspects of consciousness – namely, the ûrst-person felt

aspects targeted by zombie thought experiments – are not real. his amounts to a

form of eliminativism about phenomenal consciousness (Irvine and Sprevak, 2020).

Such positions face a heavy intuitive burden. he existence and character of our

feelings of phenomenal consciousness seem to be among the things we aremost

certain. Denying this subjective ‘data’, which is accessible to anyone via introspec-

tion, may strike one as unacceptable. Nevertheless, past scientiûc theories have

prompted us to abandon other seemingly secure assumptions about the world. If it

can be shown that when we introspect on our experience we aremistaken, then per-

haps eliminativism can be defended. he potential beneûts of eliminativism about

phenomenal consciousness are considerable: the hard problem of consciousness

15



and the challenge posed by the conceivability argument would dissolve. If there is

no phenomenal consciousness, then there is nothing for a computational model to

explain.

Unfortunately, in addition the diõculty just mentioned, a further problem faces

eliminativist accounts. his is to explain how the (false) data we have about the

existence and character of our phenomenal consciousness arise in the ûrst place.

his is the so-called illusion problem (Frankish, 2016). Some researchers claim that

our impression that we have phenomenal consciousness is caused bymisûring of

mechanisms of our internal information processing and self report (Clark, 2000;

Dennett, 1991; Frankish, 2016; Graziano, 2016). However, such accounts tend to

explain only why we believe or act as if we had phenomenal consciousness. It is

not clear how the hypothesisedmechanisms generate the felt ûrst-person illusion

of consciousness (Chalmers, 1996, pp. 184–191). In other words, it is not clear

how unreliable introspectivemechanisms could generate the false impression of

phenomenal consciousness, anymore than reliable introspectivemechanisms could

generate the true impression of phenomenal consciousness. he challenge that

an eliminativist faces is to show that the illusion problem is easier to solve by

computational or physical means than the hard problemof consciousness (see Prinz,

2016).

4 Central reasoning –he frame problem

A thirdmajor target for philosophical ‘no go’ arguments is central reasoning. his

concerns our ability to engage in reliable, general-purpose reasoning over a large

and open-ended set of representations, including our common-sense understanding

of theworld. Modelling human-level central reasoning is closely tied to the problem

of creating amachine with artiûcial general intelligence (AGI). Current AI systems

tend to function only within relatively constrained problem domains (e.g. detect-

ing credit-card fraud, recognising faces, winning at Go). hey generally perform

poorly, or not at all, if the nature of their problem changes, or if relevant contextual

or background assumptions change (Lake et al., 2017; Marcus and Davis, 2019).

In contrast, humans are relatively robust and �exible general-purpose reasoners.

hey can rapidly switch between diòerent tasks without signiûcant interference or

relearning, deploy relevant information across tasks, and they tend to be aware of

how their reasoning should be adjusted when background assumptions and context

change.

Small fragments of human-level central reasoning have been computationally mod-

elled using various logics, heuristics, and other formalisms (e.g. J. R. Anderson,

2007;Davis andMorgenstern, 2004; Gigerenzer, Todd and the ABCResearchGroup,
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1999; McCarthy, 1990; Newell and Simon, 1972). However,modelling human-level

central reasoning in full – in particular, accounting for its �exibility, reliability, and

deep common-sense knowledge base – remains an unsolved problem. Philosophers

have attempted to argue that this lacuna is no accident, but arises because cent-

ral reasoning is in a certain respect a ‘no go’ area for computational accounts of

cognition.

4.1 he frame problem

Philosophers o�en describe their ‘no go’ arguments about central reasoning as

instances of the frame problem in AI. his can bemisleading as ‘the frame problem’

refers to amore narrowly deûned problem speciûc to logic-based approaches to

reasoning in AI. he frame problem in AI concerns how a logic-based reasoner

should represent the eòects of actions without having to represent all of an action’s

non-eòects (McCarthy and Hayes, 1969). Few actions change every property in the

world – eating a sandwich does not (normally) change the location of Australia.

However, the information that Eat(Sandwich) does not change Position(Australia) is
not a logical truth but something that needs to be encoded somehow, either explicitly

or implicitly, in the system’s knowledge base. Introducing this kind of ‘no change’

information in the form of extra axioms that state every non-eòect of every action

– ‘frame axioms’ – is unworkable. As the number of actions (N) and properties

(M) increases, the system would need to store approximately NM axioms. he

frame problem in AI concerns how to encode this ‘no change’ information more

eõciently. he challenge is normally interpreted as the problem of formalising a

general inference rule that an action does not change a property unless the reasoning

systemhas evidence to the contrary. Formalising this rule poses numerous technical

hurdles, and it has stimulated important developments in non-monotonic logics,

but it is widely regarded as a solved issue within logic-based AI (Lifschitz, 2015;

Shanahan, 1997; Shanahan, 2016).

A number of philosophers, inspired by the original frame problem, have suggested

that there are broader andmore fundamental diõculties with explaining human-

level central reasoning with computation. hey do not, however, agree about the

precise nature of these diõculties, their scope, or their severity. A number of

proposals – confusingly also called the ‘frame problem’ – can be found in Pylyshyn

(1987) and Ford and Pylyshyn (1996). Useful critical re�ections on this work are

found in Chow (2013), Samuels (2010), Shanahan (2016), andWheeler (2008). he

remainder of this section summaries two attempts by philosophers to pinpoint the

problem with modelling human-level central reasoning.
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4.2 Dreyfus’s argument

he ûrst argument was developed by Hubert Dreyfus (1972; 1992). Dreyfus initially

targeted classical, symbolic computational approaches to central reasoning. he

sort of computational model he had in mind was exempliûed by Douglas Lenat’s

Cyc project. his project aimed to encode all of human common-sense knowledge

in a giant symbolic database of representations over which a logic-based system

could run queries to produce general-purpose reasoning (Lenat and Feigenbaum,

1991). Dreyfus argued that no model of this kind could capture human-level general-

purpose reasoning. his was for two main reasons.

First, it would be impossible to encode all of human common-sense knowledge

with a single symbolic database. Drawing on ideas of Heidegger,Merleau-Ponty,

and the later Wittgenstein, Dreyfus suggested that any attempt to formalise human

common-sense knowledge will fail to capture a background of implicit assump-

tions, signiûcances, and skills that are required in order for that formalisation to

be used eòectively. hese philosophers defended the idea that our common-sense

knowledge presupposes a rich background of implicit know-how. Fragments of

this know-how can be explicitly articulated in a set of symbolic rules, but not all of

it at once. Attempts to formalise all of human common-sense knowledge in one

symbolic system will, for various reasons, leave gaps, and attempts to ûll those gaps

will introduce further gaps elsewhere. he goal of formalising the entirety of human

common-sense knowledge in symbolic terms will run into the same kinds of prob-

lems that causedHusserl’s twentieth-century phenomenological attempt to describe

explicitly all the principles and beliefs that underlie human intelligent behaviour

to fail (H. L. Dreyfus, 1991; H. L. Dreyfus and S. E. Dreyfus, 1988). (Searlemakes a

similar point regarding what he calls the ‘Background’ in Searle, 1992, pp. 175–196.)

Second, even if human common-sense knowledge could be encoded in a single

symbolic database, the computational system would ûnd itself unable to use that

information eõciently. Potentially, any piece of information from the database

could be relevant to any task. Without knowledge about the speciûc problems the

system is facing, there is no way to screen oò any piece of knowledge as irrelevant.

Because the database is so large, the system would not be able to consider every

piece of information it has in turn and explore all its potential implications. How

then does it select which symbolic representations are relevant to a speciûc problem

at hand? In order to answer this, it would need to know which speciûc problem it

is facing – about its context and which background assumptions it is safe to make.

But how does it know this? Unless the programmer has told it the answer, the only

way seems to be to deploy its database of common-sense knowledge to infer the

type of situation it is in and the nature of the problem it now faces. But that leads

one back to the original question of how it is to use information in that database
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eõciently. In order to deploy its vast database eõciently, the system has to know

which pieces of knowledge are relevant to the problem at hand. In order to know

that, it has to know what that problem is. But in order to know this, it needs to

be able to use its database of knowledge eõciently, which it cannot do because it

does not know which pieces of knowledge are relevant. Dreyfus concludes that any

computational model that attempts to perform central reasoning will be trapped in

an endless loop of attempting to determine context and relevance (H. L. Dreyfus,

1992, pp. 206–224).

Dreyfus claimed that these twoproblems aòect any classical, symbolic computational

attempt to model human-level general-purpose reasoning. In later work, Dreyfus

attempted to extend his ‘no go’ argument to other kinds of computational model

– connectionist networks trained under supervised learning and reinforcement

learning. He cautiously concluded that although these models might avoid the

ûrst problem (connectionist networks are not committed to formalising knowledge

with symbolic representations), they are still aòected by something similar to the

second problem. Our current methods for training connectionist networks and

reinforcement-learning systems tend to tune these models to relatively narrow

problem domains. Such systems have not shown the �exibility to reproduce human-

level general-purpose central reasoning; they tend to be relatively brittle (H. L.

Dreyfus, 1992, pp. xxxiii–xliii; H. L. Dreyfus, 2007). It is worth noting that the

character of Dreyfus’s argument changes here from that of an in principle ‘no go’

– it is impossible for any classical, symbolic computational model to account for

central reasoning – tomore of a hedged prediction based onwhat has been achieved

by machine-learning methods to date – we do not (yet) know of a method to

train a connectionist network to exhibit human-level �exibility in general-purpose

reasoning.

Dreyfus proposed that central reasoning should bemodelled using a dynamical,

embodied approach to cognition that has come to be known as ‘Heideggerian AI’.

he details of such a view are unclear, but broadly speaking the idea is that the

relevant inferential skills and embodied knowledge for general-purpose reasoning

are coordinated and arranged such that they are solicited by the external situation

and current context to bring certain subsets of knowledge to the fore. he resources

needed to determine relevance therefore do not lie in a computation inside our heads,

but are somehow encoded in the dynamical relationship between ourselves and

the external world (Haugeland, 1998). Wheeler (2005; 2008) develops a version of

HeideggerianAI that takes inspiration from the situated roboticsmovement (Brooks,

1991). H. L. Dreyfus (2007) argues for an alternative approach based around the

neurodynamics work of Freeman (2000). Neither has yet produced a working

model that performs appreciably better at modelling human-like context-sensitivity

than more conventional computational alternatives.
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4.3 Fodor’s argument

Jerry Fodor argued that two related problems prevent a computational model from

being able to account for human-level central reasoning. He called these the ‘global-

ity’ problem and the ‘relevance’ problem (Fodor, 1983; Fodor, 2000; Fodor, 2008).

Like Dreyfus, Fodor focused primarily on how these problems aòect classical, sym-

bolic models of central reasoning. Fodor believed that a non-symbolic model

(e.g. a connectionist system) would be unsuited to modelling human-level central

reasoning because it cannot account for the systematicity and compositionality

that he considered necessary features of human thought (for that argument, see

Fodor, 2008; Fodor and Lepore, 1992; Fodor and Pylyshyn, 1988). (For discussion

of connectionist approaches to central reasoning, see Samuels, 2010, pp. 289–290.)

he globality problem concerns how a reasoning system computes certain epistemic

properties that are relevant to general-purpose reasoning: simplicity, centrality,

and conservativeness of representations. Fodor suggested that these properties are

‘global’, by which he meant that they may depend on any number of the system’s

other representations. hey are not features that supervene exclusively on intrinsic

properties of the individual representation of which they are predicated. A repres-

entation might count as simple in one context – for example, relative to one set of

surrounding beliefs – but complex in another. he simplicity of a representation is

not an intrinsic property of a representation. Hence, its simplicity cannot depend

solely on a representation’s intrinsic, local syntactic properties. Fodor claimed that

a classical computational process is sensitive only to the intrinsic, local syntactic

properties of the representations it manipulates. herefore, any central reasoning

that requires sensitivity to global properties cannot be a classical computational

process.

Fodor’s globality argument has been roundly criticised (e.g. by Ludwig and

Schneider, 2008; Samuels, 2010; Schneider, 2011). Critics point out that com-

putations may be sensitive, not only to the intrinsic properties of individual

representations, but also to syntactic relationships between representations:

e.g. how a representation’s local syntactic properties relate to the local syntactic

properties of other representations and how they relate to the system’s rules

of syntactic processing. he failure of an epistemic property like simplicity to

supervene on a representation’s intrinsic, local syntactic properties does not

mean that simplicity cannot be tracked or evaluated by a computational process.

Simplicity may supervene on, and be reliably tracked by following, the syntactic

relationships between representations. Fodor anticipates this response, however –

in Fodor (2000) he labels it M(CTM). He argues that solving the globality problem

in this way runs into his second problem.
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he second problem arises when a reasoning system needs to make an inference

based on a large number of representations, any number ofwhichmay be relevant to

the problem at hand. Typically, only a tiny fraction of these representations will be

relevant to the inference. he relevance problem is to determine themembership of

this fraction. Humans tend to be good at focusing in on only those representations

from their entire belief set that are relevant to their current context or task. But we

do not know how they do this. Echoing the worries raised by Dreyfus, Fodor says

we do not know of a computational method that is able to pare down the set of all

the system’s representations to only those relevant to the current task.

4.4 Responses to the problem

Some philosophers have responded to these problems by emphasising the role of

heuristics in relevance determination. hey point to the computational methods

used by Internet search engines, which although far from perfect, o�en do a decent

job of returning relevant results from very large datasets. hey also stress that

humans sometimes fail to deploy relevant information or use irrelevant information

when reasoning (Carruthers, 2006; Clark, 2002; Lormand, 1990; Samuels, 2005;

Samuels, 2010). hese two considerationsmight increase our conûdence that human-

level central reasoning – and in particular, the relevance problem –might be tackled

by computational means. However, it does not cut much ice unless one can say

which heuristics are used and how the observed success rate of humans is produced.

Heuristics might, at some level, inform human central reasoning, but unless one

can say precisely how they do this – and ideally produce a working computational

model that exhibits levels of �exibility and reliability similar to those seen in human

reasoning – it is hard to say that one has solved the problem (see Chow, 2013, pp.

315–321).

Shanahan and Baars (2005) and Schneider (2011) suggest that the issues thatDreyfus

and Fodor raise can be resolvedwithin theGlobalWorkspaceheory (GWT). GWT

is a proposed large-scale computational architecture in which multiple ‘specialist’

cognitive processes compete for access to a globalworkspacewhere central reasoning

takes place. Access to the globalworkspace is controlled by ‘attention-like’ processes

(Baars, 1988). Mashour et al. (2020) and Dehaene and Changeux (2004) describe a

possible neural basis for GWT. Goyal et al. (2021) suggest GWT as a way to enable

several special-purpose AI systems to share information and coordinate decision

making. GWT is a promising architecture, but it is unclear whether it can function

as a response to the arguments of Dreyfus and Fodor. hemodel does not explain the

mechanism by which information from specialist processes is regulated so as to be

relevant to the current context and the contents of the central workspace. Baars and

Franklin (2003) suggest there is an interplay between ‘executive functions’, ‘specialist
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networks’, and ‘attention codelets’ that control access to the global workspace, but

exactly how these components work to track relevance is le� unclear. As with the

suggestion about heuristics, GWT is not (or not yet) a worked-out solution to the

relevance-determination problem (see Sprevak, 2019, pp. 557–558).

A notable feature of the ‘no go’ arguments that target human-level central reasoning

is that, unlike the ‘no go’ arguments of Sections 2 and 3, they do not straightfor-

wardly generalise across the space of all computational models. Both Dreyfus’s and

Fodor’s arguments consist in pointing out problems with speciûc computational

approaches to central reasoning – primarily, with classical, symbolicmodels and

current connectionist and reinforcement-learning approaches. he persuasive force

of what they say against untried or as-yet unexplored computational approaches

is unclear. Sceptics might see in their arguments evidence that central reasoning

is unlikely to ever yield to a computational approach – Dreyfus and Fodor both

suggest that the track record of failure of computational models should lead one

to infer that no future computational model will succeed. Fans of computational

modelling might respond that explaining central reasoning is an extremely hard

research problem and it should not be surprising if it has not yet been solved by

computational methods. he landscape of as-yet untried computational methods is

very large and, pending evidence to the contrary,we should not presume that central

reasoning cannot yield to a computational model (Samuels, 2010, pp. 288–292).

5 Conclusion

his chapter describes a small sample of philosophical issues in the computational

cognitive sciences. Its focus has been ‘no go’ arguments regarding three distinct

aspects of human cognition: semantic content, phenomenal consciousness, and

central reasoning. Onemight worry that the project of placing limits on what the

computational cognitive sciences can achieve is rash given the relatively early state

of development of the cognitive sciences. But this would be to misinterpret how

the ‘no go’ arguments function. hese arguments attempt to formalise objections

– of diòerent types and diòerent strengths – to the assumption that every aspect

of cognition can be adequately explained with computation. his need not shut

down debate on the topic, but can serve as an opening move and a potentially

helpful spur. he project bears directly on questions about the estimated plausibility

of future research programmes within the cognitive sciences, themotivations for

pursuing them, and the rationale for devoting resources to computational versus

non-computational approaches. Such judgements cannot be avoided; they aremade

regularlywithin the cognitive sciences. hey are also bestmade on a considered basis,

with reasons marshalled and assessed. Philosophical work in this area can help to

systematise evidence and provide decisionmakerswith reason-based considerations
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about what challenges the computational cognitive sciences are likely to face.
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