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SUMMARY

The study of inductive bias is one of the most all encompassing in all of machine
learning. Inductive biases define not only the efficiency and speed of learning, but
also what is ultimately possible to learn by a given machine learning system. The
history of modern machine learning is intertwined with that of psychology, cogni-
tive science and neuroscience, and therefore many of the most impactful inductive
biases have come directly from these fields. Examples include convolutional neural
networks, stemming from the observed organization of natural visual systems, and
artificial neural networks themselves intending to model idealized abstract neural
circuits. Given the dramatic successes of machine learning in recent years however,
more emphasis has been placed on the engineering challenges faced by scaling up
machine learning systems, with less focus on their inductive biases. This thesis will
be an attempted step in the reverse direction. To do so, we will cover both naturally
relevant learning algorithms, as well as natural structure inherent to neural repre-
sentations. We will build artificial systems which are modeled after these natural
properties, and we will demonstrate how they are both beneficial to computation,
and may serve to help us better understand natural intelligence itself.
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SAMENVATTING

De studie van inductieve bias is een van de meest allesomvattende binnen heel
machine learning. Inductieve vooroordelen bepalen niet alleen de efficiëntie en
snelheid van leren, maar ook wat uiteindelĳk mogelĳk is om te leren door een
gegeven machine learning systeem. De geschiedenis van modern machine learning
is verweven met die van psychologie, cognitieve wetenschap en neurowetenschap,
en daarom zĳn veel van de meest impactvolle inductieve vooroordelen rechtstreeks
afkomstig uit deze velden. Voorbeelden zĳn convolutionele neurale netwerken,
voortkomend uit de waargenomen organisatie van natuurlĳke visuele systemen, en
kunstmatige neurale netwerken die bedoeld zĳn om geïdealiseerde abstracte neurale
circuits te modelleren. Gezien de dramatische successen van machine learning in
recente jaren is er echter meer nadruk gelegd op de technische uitdagingen die
gepaard gaan met het opschalen van machine learning systemen, met minder focus
op hun inductieve vooroordelen. Deze thesis zal een poging zĳn om een stap in de
tegenovergestelde richting te zetten. Daartoe zullen we zowel natuurlĳk relevante
leer algoritmes bespreken, als ook de natuurlĳke structuur inherent aan neurale
representaties. We zullen kunstmatige systemen bouwen die gemodelleerd zĳn naar
deze natuurlĳke eigenschappen, en we zullen aantonen hoe ze zowel voordelig zĳn
voor de berekening, als ons kunnen helpen om natuurlĳke intelligentie beter te
begrĳpen.
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QUOTES

We are but whirlpools in a river of ever-flowing water. We are not stuff that
abides, but patterns that perpetuate themselves.

Norbert Wiener, 1950

I suspect that a deeper mathematical study of the nervous system ... may alter the
way in which we look at mathematics and logics proper.

John von Newmann, 1958

If we could make a neural network model which has the same capability for
pattern recognition as a human being, it would give us a powerful clue to the
understanding of the neural mechanism in the brain.

Kunihiko Fukushima, 1980

Neurons have all kinds of components, or properties, to them and in evolutionary
biology, if you have some little quirk in how a molecule works or how a cell works,
evolution will sharpen it up and make it into a useful feature rather than a glitch.

John Hopfield, 2020

Max, I’ve figured out how the brain works.

Geoffrey Hinton, 2001

Andy, I’ve figured out how the brain works.

Max Welling, 2019
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PREFACE

It was one in the morning as I walked in a trance through the dimly lit campus
gardens, back towards my dormitory. In passing, my gaze drifted from the base of
an underlit tree to its branches, and my attention fixated on the bright underside of
a single leaf. As the distance between us shrank, the leaf transformed before my
eyes, slowly revealing it’s concave inner surface to me. In an instant I’ll never forget,
my awareness broadened, and I saw not just one leaf transforming, but all leaves of
the tree shifting in unison, like a flock of starlings performing a coordinated dance
through the night sky. As each leaf traced out its twisted path, their distinct motions
were somehow jointly harmonious and intuitive, as if I knew the exact position of
each leaf an instant before ever seeing it.

I spent an unhealthy amount of time staring at that tree. For first time not simply
stunned by the beauty of the nature before me, but rather by of the beauty of how
I was processing it. I was astounded by the mind’s ability to register and convey
the seemingly infinite dimensional symmetric structure of the outside world to my
seemingly slow unitary consciousness. This moment has stuck with me, and since
then, I have learned to reconsider how we understand objects not just on their own,
but as compositions of parts, geometric relationships, and transformations. This
thesis represents my journey studying the computational mechanisms by which the
brain could represent these structures and relationships, and I am coming to find the
insights along the way are almost as beautiful as the tree itself that night. My hope
is that this work shares a piece of that beauty with you.
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C h a p t e r 1

INTRODUCTION

In the silent darkness behind every pair of eyes, a chorus of electrical signals inter-
twines, harmonizes, and cascades through a web of connectivity, orchestrating the
symphony of beliefs and behaviors we call intelligence. This concert reverberates
across species from humans to apes, vertebrates to cephalopods, insects to a myriad
of other animals. It is the unseen conductor behind gymnast’s gravity-defying bal-
let, the invisible cartographer guiding the monarch butterfly on its great migration,
the composer to the whale pod’s underwater melody, and the endless source of
inspiration for the philosopher and neuroscientist. The complex systems which en-
gender these abilities have been carefully sculpted by environmental pressures over
millions of years to suit their unique environmental needs and are highly optimized
for their respective functions. For centuries, scientists have studied such systems
with profound admiration, hoping to gain a greater understanding of our own natural
intelligence, and potentially the beautiful truth underlying abstract intelligence as a
whole. In the following we will delve into this history, the fundamentals of learning
systems, and why we believe there is still much to be gained from studying the suc-
cesses of nature in this regard. This introduction is intended for a general audience,
aiming to refuel the cross-disciplinary dialogue that has historically nurtured the
evolution of artificial intelligence.

1.1. The Entwined Tale of Natural and Artificial Intelligence

From the earliest days of computation, the development of computers has been
inextricably intertwined with that of artificial intelligence. Early pioneers of digital
computers took significant inspiration from natural intelligence, and the echoes
of this natural inspiration can still be found throughout today’s most advanced
technologies.

In 1943, neurophysiologist Warren McCulloch and logician Walter Pitts published
a new theory proposing that a network of simple neurons may be able to perform
logical operations (McCulloch and Pitts, 1943). Using what they termed ‘a logical
calculus’, they showed that a network of abstract ‘all-or-nothing’ neurons is able to
express any logical expression under certain conditions, and that equivalently every
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network can be described in such logical terms. Just over a year later, John von
Neumann published the First Draft of a Report on the EDVAC (Neumann, 1945) (the
Electronic Discrete Variable Automatic Computer) now widely agreed to be the first
description of a modern digital computer, setting the stage for the digital revolution
of the 20th century. In that report, von Neumann cites only a single other work,
precisely that of McCulloch and Pitts (1943). These pre-eminent scientists were
known to be well acquainted with one another, jointly attending meetings and sharing
in discussions (Gefter, 2015). However, perhaps most telling of their extensive
mutual influence is simply the language of their work – von Neumann’s EDVAC
report was written using the same logical form and terminology as McCulloch and
Pitts’s article, describing the components of the EDVAC as ‘organs’ and ‘neurons’.

However, John von Neumann was not alone in his natural inspiration among the early
computer pioneers. Indeed, Alan Turing, considered by many to be the father of
theoretical computer science and artificial intelligence, based much of his early work
on his knowledge of the organization of the human brain. In his work ‘Intelligent
Machines’ (Turing, 1948), he states ’[t]he analogy with the human brain is used as
a guiding principle’ in referring to his proposed ‘unorganized machines’, a work
which is now acknowledged to be the first description of a trainable artificial neural
network. Perhaps even more famously, in introducing the model which now forms
the foundation upon which all modern artificial neural networks are built, Frank
Rosenblatt’s ‘Perceptron’, Rosenblatt explicitly proposes "[t]he theory serves as a
bridge between biophysics and psychology", and that "[the] perceptron is first and
foremost a brain model, not an invention for pattern recognition" (Rosenblatt, 1958).

As computational power increased over the intervening decades, this natural inspi-
ration similarly shifted from theory into practice. The computational primitives
introduced by these early pioneers were shown to be highly flexible, powerful,
and degraded in performance gracefully, eventually allowing them to overtake the
less neurobiologically motivated ‘symbolic’ models which temporarily had risen in
popularity. As these ideas of parallel distributed processing began to become more
widely accepted, work to make such systems even more brain-like continued as a
means to address the limitations of existing systems. As a primary example of this,
in 1980, in order to address the fragility of existing artificial neural networks with
respect to small image shifts and deformations, Kunihiko Fukushima introduced a
new model under the name the ‘Neocognitron’ (Fukushima, 1980). The model was
built to have localized and repeated feature detectors across space to mimic forms
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of observed organization in the natural visual systems of many species’ brains. It
further integrated iterative alternating layers of computation and pooling, directly
inspired by the simple and complex cells of David Hubel and Torsten Wiesel dis-
covered less than two decades earlier (D. H. Hubel and T. N. Wiesel, 1962). This
architecture was the first of what eventually became known as the class of convolu-
tional neural networks, arguably one of the most successful artificial neural network
architectures to date, and resulted in the explosive growth of deep learning in the
2010’s.

From this historical overview it is clear that many of the people who once re-
shaped the world with revolutionary computing paradigms did so by observing and
abstracting the elegant solutions nature had painstakingly developed over the mil-
lennia before them. In this thesis, we will argue that we have not reached the end of
this path, and that by continuing to follow the example set by these visionaries, we
are likely to discover not only how to build truly intelligent machines, but also the
profound truth underlying all forms of intelligence.

1.2. The Growing Divide of Efficiency and Generalization

In recent years, by building on the shoulders of these naturally inspired pioneers,
artificial intelligence has continued to flourish at an astonishing rate. In 2012,
the work of Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton ushered in the
so called ‘ImageNet Moment’, where artificial neural networks were shown to
be significantly more capable at object recognition than all systems designed by
computer vision experts of the time (Krizhevsky, Sutskever, et al., 2012). Similarly,
in 2016, AlphaGo beat the worlds best players at one of the most computationally
complex board games created by human kind, Go (Silver et al., 2016). By the same
time, generative adversarial networks demonstrated the ability to generate realistic
human faces (Radford, Metz, et al., 2016), and these were subsequently followed by
text-to-image generative models such as DALL-E in 2021 generating novel images
directly from text descriptions, such as ’a teddy-bear on the moon’ (Ramesh, Pavlov,
et al., 2021). Finally, to the surprise of many including machine learning experts
themselves, the development of ‘large language models’ appeared to pass the Turing
test convincingly in 2022 (Thoppilan et al., 2022) with chat-bots becoming a modern
commodity shortly thereafter.

As the successes of artificial intelligence have compounded, driven primarily by
monumental engineering efforts devoid of explicit natural inspiration, one is unsur-
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prisingly driven to wonder: is there still anything to be gained by studying natural
intelligence? In this thesis I will argue that the answer is unequivocally yes, and that
there are two fundamental differences between natural intelligence and its artificial
predecessor which I believe are unlikely to be satisfactorily resolved by following
current machine learning trajectories. These differences are namely: data efficiency,
and generalization performance.

Efficiency

Let’s consider the groundbreaking Go-playing program, AlphaGo. Its human op-
ponent in the highly publicized match, Lee Sedol, is estimated to have played on
the order of 100,000 games throughout his training lifetime, ultimately achieving
the highest possible rank of 9th dan. Comparatively, Alpha Go is believed to have
learned from nearly 100 million or more games altogether (Lake et al., 2017). To
understand the scale of this difference. If 1,000 games were represented by a single
character (❍ or ●), a human player would require the following amount of training:

●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●

❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍

●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●❍●

For AlphaGo, the number of characters would fill more than 50 pages. For the
reader’s convenience we have omitted printing this explicitly, however the reader is
encouraged to turn to page 55 for a visualization of the relative thickness of this much
paper. In a more controlled setting, such discrepancies between the speeds of human
and artificial learning efficiency have been studied experimentally by scientists such
as Lake et al. (2017). In their work, these authors report that humans are able to
learn to effectively play a suite of Atari games in just two hours, reaching a level of
performance that took modern deep reinforcement learning agents an equivalent of
924 hours of game time to learn (Schaul et al., 2016).

However, it is well known that reinforcement learning agents are not the only
algorithms which require orders of magnitude more data than humans to perform
comparably. Large language models (LLMs) are trained on nearly the entirety of
the internet in order to be able to answer natural questions reasonably. LaMBDA,
an early LLM from Google, is stated to have been trained on 1.56 trillion tokens
extracted from public dialog and text (Thoppilan et al., 2022). As a point of
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comparison, it is estimated the average English non-fiction reading speed is roughly
240 words per minute (Brysbaert, 2019), meaning that it would take the average
human 18,550 years of reading non-stop, 16 hours per day, to ingest the same amount
of data. Even more recent models such as GPT-4 are rumored to have been trained
on near 13 trillion tokens, equating to more than 150,000 years of human reading
(Schreiner, 2023). Although these systems arguably also possess significantly more
information internally than any living human being, it is clear that they do not
behave in nearly the same manner as a wise sage who has managed to elude death
long enough to read an equivalent amount of text. In the following subsection we
will argue that this kind of behavioral mismatch is a telltale sign of at the second
greatest distinction between natural and artificial intelligence, a difference in how
these systems learn from their necessarily finite training set (albeit large but still
finite) and ultimately generalize to new situations.

Generalization

It is clear from even cursory uses of modern language models or image generative
models that these models do not generalize in any manner that resembles how hu-
mans generalize. For example, although modern text-to-image generation programs
are able to generate highly photo-realistic images which appear to largely match
their text-based prompts, their ability to generate slightly unorthodox images is still
surprisingly lacking. Consider the examples shown in Figure 1.1 from the state of
the art generative model known as DALL-E 2 (Ramesh, Dhariwal, et al., 2022).
Although the images are highly photo-realistic, contain the mentioned objects, and
are far better than anything most humans could draw or even create digitally, they
appear to have fundamentally misunderstood core elements of the text prompt, such
as relatively simple relations between objects. Consider a small child as a point of
comparison. Although it is clear that a child would never be able to draw the de-
tailed lighting, shading, and texture of these images at a similar level of complexity,
a child would likely be able to at least correctly draw a stick-figure banana holding
a stick figure monkey without getting permanently confused. This counter-intuitive
performance reminds us of Moravec’s paradox (Moravec, 1990) – when it comes to
artificial intelligence (AI) research: “the hard problems are easy and the easy prob-
lems are hard" (Pinker, 2007). We’ve developed machines that appear to surpass
Leonardo Davinci’s level of control over lighting and perspective yet simultaneously
fail at stacking blocks in the same manner as a toddler.
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Figure 1.1: Samples from text-to-image generation program DALLE-2. The
prompts are: (top) "a teddy bear on the moon", (middle) "blue cube on top of
a red cube", & (bottom) "a banana holding a monkey". We see that while the model
can generate incredibly realistic images of relatively novel objects, it often fails to
understand basic relations between objects.

What is it about these systems that makes their generalization so counter-intuitive
to us? What makes some tasks so easy for us, and so challenging to reproduce
in silicon? Although with the current rate of development of artificial intelligence,
future readers of this work may find that engineering efforts have largely resolved the
differences listed above, there is a common underlying theme from learning theory
which unites these differences and similarly relates them to our original question of
why we should still be interested in natural intelligence – that underlying theme is
inductive bias.

1.3. Inductive Bias: The Great Arbiter of Learning

The ability to generalize from a limited set of examples to underlying principles is a
defining characteristic of what we commonly refer to as ‘learning’. For instance, a
child is said to have learned the concept of ’dog’ when they associate every canine
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they encounter with the term ‘dog’ and not just the familiar pet at home. Similarly,
they have learned addition when they can compute the sum of any two numbers, not
just the numbers on their homework. This process of generalization is often called
inductive reasoning, and performing this generalization well is one of the ultimate
challenges of those aiming to design artificial learning systems.

At a theoretical level, in order for any learning system to generalize beyond the
examples it has been trained on, some assumptions must be made which provide a
basis upon which the learner can begin its inductive generalization. In fact, when
no assumptions are made, it is known to be theoretically impossible to generalize
beyond one’s training set (Wolpert, 1996).

To shine a light on these hidden assumptions that we almost always take for granted,
we will borrow an example from the PhD thesis of Joshua Tenenbaum (1999). The
example can be loosely paraphrased as follows: Imagine I have created a computer
program which generates a set of hidden numbers from a simple rule, for example
‘all multiples of 3’ or ‘all odd integers less than 14’. In all cases we restrict the
numbers to be integers and less than 100. The program then presents you with a
random subset of the total set of numbers generated by this rule, and your job is to
guess which other numbers are most likely to also be in the set, i.e. the remaining
members generated by the rule. Consider then, being presented with the number 16.
From this number alone, one may guess that the numbers 17 or 18 are more more
likely companions to 16 than the number 97. However, what is it that is causing
this ‘gut feeling’? What is it that is allowing us to even attempt to infer a general
underlying rule from this single example? Do we have some weak assumption that
16 is somehow more related to 18 than 97? What would happen if we had no such
assumptions?

Consider the even stronger example from the same task paradigm: after being
presented with 16, you are provided the additional full set of numbers: 16, 8, 2,
and 64. In the work of Tenenbaum (1999), it was shown that the vast majority of
respondents then asserted the remaining most likely set elements to be 4 and 32.
Intuitively, this conclusion seems highly reasonable, and I would believe that most
readers of this work will also likely agree with it. However, when examined a bit
more closely, a crack appears in the facade. There are practically an infinite number
of hypotheses which fit this data perfectly, why should we assume powers of two?
For example, "all integer multiples of 2, except for 6", or "all integers except for
1, 3, 5, 6, 7", or even more simply, "all integers less than 100". What then makes
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"all powers of 2" the most compelling conclusion? Tenenbaum argues convincingly
through theory and case studies that this is due to human concept learning operating
within a Bayesian framework; i.e. the powers of two are indeed the most likely,
assuming a prior distribution over programs and a random sampling procedure for
producing the numbers.

The point of this example for our purposes however is not to emphasize the potential
Bayesian nature of natural intelligence, but rather to get the reader to imagine the
setting where we had no compulsions towards any conclusion, if we had no ‘gut
feeling’ towards which numbers felt likely to belong within the set. If we believed
the number 97 was equally as likely as 32 to join the aforementioned set, how then
could we make any predictions about any of the digits outside the given set? It
seems our ability to generalize from this limited data to a general rule would be
entirely lost. This example demonstrates the core significance of inductive bias in
learning: without any inductive bias, there is really nothing that can be said about
new data points that have not been seen before, and thus any reasonable predictions
outside the training set become impossible.

Beyond simply making generalization possible however, inductive biases are known
to actually maintain a grip on how a learning system generalizes throughout the
training process, and how much data is therefore required to do so. For example,
consider that you were predisposed to only consider two possible hypotheses: ‘all
even numbers’, or ‘all odd numbers’. In such a setting, you would only require a
single example in order to form your final conclusion about what you believe the
underlying rule to be – if you see a single even number, you can confidently guess all
numbers are even, and vice versa. However, in this case the double-edged sword of
inductive bias is strikingly apparent; unless the computer program also was restricted
to such a limited set of hypotheses, our guess would likely be grossly incorrect. This
example demonstrates the simultaneous power and perils of inductive biases: they
can dramatically facilitate both generalization performance and data efficiency if
they are properly suited to the target domain, but if they are mis-specified they can
make correct generalizations impossible.

Considering that the two primary distinctions between natural and artificial intel-
ligence we outlined in Section 1.2 are heavily related to generalization and data
efficiency, it makes sense to begin our search for the source of such distinctions
by a search for inductive biases. But how do we choose the appropriate inductive
biases? As demonstrated by the final example above, the answer turns out to be
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relatively simple, and brings us back to our opening question about why we should
study natural intelligence: the optimal inductive biases of a learning system are
those harmoniously tuned to their environment. Mother Nature, renowned for her
fine-tuning abilities, surpasses any mechanic we know. So, in this regard, if we
listen closely to her wisdom, what insights might she reveal?

In the next chapter we will describe with historical and mathematical support why
we believe some of these insights may lie in the observed structure of natural neural
representations. Through contrasting examples of structure in natural and artificial
systems we will attempt to motivate each of the three parts of our thesis, and follow
with an overview of the research questions this thesis ultimately aims to address.
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C h a p t e r 2

MOTIVATION

Flickers of candle light wash over the multicolored brick walls of an old English
town-home. A young physician, Richard Caton, leans forward in his chair holding
one electrode in each hand, staring in anticipation at the exposed brain of an im-
mobilized rabbit which lies on the desk before him. The electrodes are attached to
a galvanometer, developed only a decade earlier by Lord Kelvin to amplify weak
electrical currents and make them visible through the movement of a spot of light
projected on a distant surface. In a moment of silence, Caton touches the electrodes
to the surface of the brain – the spot moves, a current is registered. Caton then
moves the flame from across his desk into the sight of the rabbit – the spot moves
again, this time even more dramatically. In this darkened room in the English coun-
tryside, Caton has just measured the how a brain uses electricity to represent visual
experience, perhaps for the first time ever.

These results were published August 28th, 1875 in the British Medical Journal,
and represent what can now be recognized as the first known recording of neural
representations of a visual stimulus (Caton, 1875). Specifically, in a mere para-
graph encompassing only a quarter-page, the article reports "In every brain hitherto
examined, the galvanometer has indicated the existence of electrical currents... Im-
pressions through the senses were found to influence the currents of certain areas."
With time, our ability to measure and quantify the precise form of these repre-
sentations has increased dramatically. In doing so, our understanding of how the
activity of neurons corresponds to different stimuli and internal states has similarly
progressed.

One of the greatest insights garnered from this increased measurement ability is the
understanding that natural neural systems have surprisingly structured activity both
in space and in time. Even before Canton’s discoveries, it was observed that different
localized areas of the brains of various animals appeared to correspond to specific
functions. For example, Ferrier (1874) published early results demonstrating that
electrical stimulation of specific regions of the brains of cats, rabbits and dogs could
be shown to be more likely to induce involuntary movement than the stimulation
of other areas. Later, scientists such as Hubel and Weisel discovered structure not
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just in large scale patterns, but at the level of individual neurons (D. H. Hubel and
T. N. Wiesel, 1959), and perhaps most importantly, in between layers of neurons
(D. H. Hubel and T. N. Wiesel, 1962). These findings sketched out the idea that
the organization and structure of neural connectivity could be an essential part of
how the brain represents and learns from visual stimuli, and the scientists ultimately
received the Nobel Prize for their work in 1981. Since then, the study of the
organization of the brain has come to encompass entire fields and conferences1, and
only continues to grow more advanced with functional magnetic resonance imaging
(fMRI) and multi-electrode recording. This structure has attracted the intrigue
of generations of scientists, with many wondering what computational role these
systems may perform.

In the history of machine learning, this natural neural structure has been often
imitated, frequently contributing to some of the greatest advances in artificial intel-
ligence to date, such as the multilayer perceptron of Rosenblatt and the primordial
convolutional neural network of Fukushima. In this thesis, we question what induc-
tive biases may be waiting to be discovered in the remaining structural differences
between natural and artificial neural network representations. To begin this jour-
ney, we will first examine well known forms of representational structure in both
natural and artificial systems aiming to inspire the reader to draw the same intuitive
connections which have motivated this research.

2.1. ‘A small machine that looks after all values of a given variable’

As alluded to above, one of the most striking findings from neuroscience is the
apparent spatial organization of neurons according to function or responsiveness, a
property known as topographic organization. This organization has been measured
across a diversity of different brain regions and with respect to an even broader
range of stimuli. A founding example of this type of organization is what is known
as retinotopic organization, whereby the visual field is mapped to the surface of the
cortex in a spatially continuous manner.2 Similarly, D. H. Hubel and T. N. Wiesel
(1962) discovered that the visual cortex of many species has topographic organiza-
tion not just with respect to visual location, but also with respect to visual features
such as orientation. Precisely, they found that neurons which were located closer to

1See the Organization for Human Brain Mapping conference.
2This can equivalently be seen as the co-location of neurons with similar spatial receptive fields,

where the receptive field of a neuron is defined as the area of the visual field in which it is most
responsive to stimuli.
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one other across the surface of the cortex were more likely to respond strongly to
similar orientations of lines. Extrapolating this simple principle across the entirety
of the primary visual cortex, one finds a patterned structure of smoothly varying
orientation selectivity, eventually covering all orientations, and sometimes resulting
in ‘topological defects’ whereby selectivity for all orientations come together at
a single point, called a ‘pinwheel’ (Koulakov and Chklovskii, 2001). Hubel and
Wiesel also noted that it is possible to subdivide the cortical surface into groups
(which they called ‘hypercolumns’) such that each group contains roughly a full set
rotation angles. They suggested that these groups may form a fundamental building
block of the cortex, calling each ‘a small machine that looks after all values of a
given variable’ (David H Hubel and Torsten N Wiesel, 1974a).

In the context of a machine learning system, such a group of neurons with organized
selectivity would likely have beneficial representational properties. For example, if
the input stimuli were to rotate at a specific location, the activity in the network could
similarly be observed to ‘rotate’ within one of these groups. Then, if the output of the
network needed to be invariant to the orientation of the input, meaning it only needed
to know the presence of the input regardless of orientation, the network could simply
take the sum over the entire hypercolumn/group.3 In fact, these types of structured
models have already been studied in the machine learning literature under the names
of Capsule Networks (Geoffrey E. Hinton, Krizhevsky, et al., 2011b) and Equivariant
Neural Networks (T. Cohen and Max Welling, 2016a). In such models, the network
connectivity is specifically structured such that when a desired transformation is
applied to the input, there is a known predictable transformation which occurs in
the corresponding output of the network. Furthermore, in many versions of such
models, this output transformation has exactly the same core property of that of
Hubel and Wiesel’s hypercolumns: neural activity only shifts within a ‘capsule’,
but not between ‘capsules’. In other words, each capsule or equivariant group of
neurons is exactly ‘a small machine that looks after all values of a given variable’.

Such a connection naturally leads us to wonder: Could the orientation hypercolumns
observed by Hubel and Wiesel be instantiations of equivariant capsules? Further-
more, could the abstract mechanism which is used to induce such hypercolumn
structure in natural systems be equally beneficial for inducing equivariant structure
in artificial neural networks?

3This is a well known technique to form an invariant representation from a set since the sum
does not change no matter how the elements are permuted or in this case ‘rotated’.
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2.2. La Nouvelle Vague

In addition to topographic organization, one of the earliest observed properties of
electrical signals in the brain was their oscillatory behavior. In one of Richard
Caton’s first articles he writes “The current is usually in constant fluctuation; the
oscillation of the index generally small, about twenty to fifty degrees of the scale.
At other times, great fluctuations are observed, which in some instances coincide
with some muscular movements or change in the animal’s mental condition” (Caton,
1877). With time, Hans Berger, the inventor of the electroencephalogram (EEG),
measured and characterized these ‘fluctuations’ as alpha and beta oscillations, now
known to be formed from the coordinated activity of a multitude of neurons firing
in synchronous structured patterns (Berger, 1929). As measurement capabilities
have contintued to advancę, scientists have begun to discover that many of these
oscillations are actually best described by traveling waves of activity across the
surface of the cortex (Muller, Chavane, et al., 2018).

Recently, in the machine learning literature, T. Konstantin Rusch and Mishra (2021a)
introduced the Coupled Oscillatory Recurrent Neural Network (coRNN) directly in-
spired by the observed oscillatory structure in natural activity. The authors demon-
strated that by parameterizing a recurrent neural network as a system of coupled
harmonic oscillators, the dynamics of these networks were provably more stable
over time, thereby yielding significant performance improvements on very long se-
quence modeling tasks. Such long tasks are well known to be the Achilles’ heel of
standard recurrent neural networks due to the well known ‘exploding and vanishing
gradient problem’. This model gives an inspiring example for the potential of natural
inspiration in artificial systems; however, there still remains a lack of models which
exhibit the wave-like dynamics now known to be closely linked to this oscillatory
activity. Might there be additional sequence modeling benefits to extending this
oscillatory structure over the spatial dimensions as well?

As described in Section 2.1, there is increasingly large set of ‘equivariant’ deep
neural networks in the machine learning literature which leverage highly structured
connectivity patterns and weight sharing schemes in order to control how the output
of these networks changes with respect to input transformations. In many of these
models, the output can be seen to smoothly ‘flow’ between the neurons within an
‘equivariant capsule’ when the desired transformations are applied to the input.4

4The reason for this ‘smooth flow’ is that these equivariant networks are built to explicitly
preserve the abstract properties of the transformations groups of interest, including the topology of
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Could traveling waves then serve as a more flexible and organic mechanism to
encourage such a smooth flow of activity in the latent space of neural networks?
In other words, if we were to build neural network models with traveling wave
dynamics, would we then observe structured representations similar to equivariant
neural networks?

2.3. Structured Organization and Connectivity

As described above, it is becoming increasingly clear that the cortex is highly
structured over both space and time. This structure manifests itself in the form of
functionally localized selectivity, as well as through more dynamic patterns such as
traveling waves. While so far in the thesis we have alluded to how mature ‘fully
learned’ structure in natural systems may relate to structure in the machine learning
literature, this discussion has bypassed a key point: the process of learning these
representations in the first place. We are therefore naturally inclined to wonder,
is there a more fundamental relationship between this structure and the process of
learning?

In machine learning, there is a learning framework known as self-supervised learning
which is commonly said to learn directly ‘from the structure in the data itself’
(LeCun and Misra, 2021). Explicitly, this is typically accomplished by performing
transformations to the input, and then using the discrepancies between the original
and transformed inputs to determine the essential features which span the high level
concept space. Mathematically, functions which are able to preserve structure from
an input space to an output space are known as homomorphisms, and interestingly,
the equivariant networks we have mentioned in the previous sections are known to fall
into this class of functions. Considering self-supervised learning is accomplished by
leveraging transformation structure in the data, if our neural network was known to
be one of these homomorphisms, could the network instead perform self-supervised
learning by simply leveraging the structure within its own output space? Could
this be an alternative local learning mechanism for artificial neural networks which
could avoid both the need for supervsision and end-to-end backpropagaion of error
signals?

these groups. In doing so, transformations which are neighbors in this topological space will be
mirrored by neural activations which are similarly ‘neighbors’. Of course, this asserts that neurons
are spatially grouped together by these topological neighborhood.
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2.4. Contributions

Consolidating the above connections we have drawn between the structure of natural
and artificial neural network representations, we can begin to formulate the primary
research questions this thesis aims to address. To begin, we first organize this work
into three parts motivated by the three sections above: (I) a study of spatial structure
in neural representations, (II) an extension to spatio-temporal structure, and finally
(III) a study of how learning may be performed through the use of such structured
representations.

In part one of our work, we will mainly aim to answer the research question:

Research Question 1: What role does topographic organization play in the compu-
tational functions of the brain?

To accomplish this, we will introduce a new model which yields topographic (spatial)
structure in neural representations through the framework of probabilistic generative
modeling. We will further show how, through training, such models learn to exhibit
topographic organization reminiscent of the higher visual cortices of mammals.
Combined, this work provides a hypothetical mechanism by which topographic
organization could be achieved in a deep generative modeling framework, as well
as a computational argument for the adaptive benefits of such structure from an
information theoretic perspective.

In part two, we will aim to generalize the structure we study from purely spatial
structure to spatio-temporal structure. Similar to part one, our initial research
question will be quite broad:

Research Question 2: Does spatio-temporal structure play a role in the computa-
tional functions of the brain?

In addition to this question, we will aim to further answer the reciprocal question:

Research Question 3: Can natural spatio-temporal structure be efficiently and ben-
eficially implemented in deep artificial neural network architectures?

To answer these questions, we will again introduce a suite of models aimed at repro-
ducing aspects of spatio-temporal structure observed in natural systems. First, we
will show how this type of structure has strong ties with topographic organization,
thereby effectively entangling the answers to these three questions. We will then
demonstrate empirically how spatio-temporal structure in the brain directly relates
to equivariant structure as introduced in the machine learning community. By do-
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ing so, we show that spatio-temporally structured models are better able to model
datasets with strong symmetries when compared with similar models which lack
such organization. Finally, we will demonstrate for the first time how such struc-
ture can be used to efficiently and robustly encode memories in recurrent neural
network architectures, thereby providing computational evidence for theories from
neuroscience.

In the final part of this work, we will consider the value of this structure from an
alternative perspective. Specifically, we will ask:

Research Question 4: Can spatio-temporal representational structure be leveraged
to perform efficient and local learning without labeled data?

We will address this topic by introducing a new self-supervised learning frame-
work, which we call Homomorphic Self-Supervised Learning, which serves to
unify existing self-supervised learning objectives through the lens of structured
representations.

In the remainder of this thesis we will investigate these questions and return to them
specifically in the conclusion to discuss our findings. Primarily, the contributions of
this work are therefore two-fold and mirror the reciprocal symbiosis of the studies of
natural and artificial intelligence. First, this work strives to improve artificial neural
networks through the development of novel architectures which incorporate natural
structure. Second, in doing so, this work strives to yield an improved understanding
of the computational roles of this structure in natural systems.

Although in this work we assume a basic familiarity with calculus, linear algebra,
probability theory, and some machine learning terminology, we still aim to make
the findings accessible to a wide range of backgrounds given the interdisciplinary
nature of the work. Before we delve into our own contributions and thereby attempt
shed some light on these questions, we will first provide a brief review of artificial
neural networks that we will use in this study, and how their core components can
be seen to relate to common biological abstractions.
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C h a p t e r 3

BACKGROUND

In this work, we will focus on an abstracted picture of the brain that is favored by
some theoretical and computational neuroscientists. This abstraction is primarily
focused on modeling the neocortex of mammals using the deep artificial neural
networks built off of early brain models such as the perceptron. In doing so,
we will abstract away the layers of the cortex which penetrate down towards the
center of the skull and instead consider it instead as a 2-dimensional sheet. We
will furthermore abstract away many specifics of cellular neurobiology, including
the distinction of exictatory and inhibitory cells, as well as their continuous time
‘spiking’ behavior, instead interpreting the responses of our artificial neurons as
a population rate-based code.1 By constructing such an abstract system, we will
then have the computational means necessary to study the task-relevant properties
of natural neural representational structure at scale.

3.1. Artificial Neural Networks

The types of artificial neural networks we will employ throughout this work are
formed from iterative alternation of linear transformations and non-linear ‘activation
functions’. At the simplest level, the standard artificial neural network layer 𝑓𝑙 (x)
may be written as 𝜎(W𝑙x𝑙), with input vector x𝑙 ∈ R𝑛, activation function 𝜎,
and connectivity matrix W𝑙 ∈ R𝑚×𝑛 (assumed to encompass the usual bias term
b𝑙 ∈ R𝑚). Such a layer is said to have 𝑚 neurons (corresponding to the 𝑚 output
values), and 𝑚 × 𝑛 weights (abstract synapses). Through composition of multiple
of such functions, we arrive at one of the primordial neural network architectures,
the multilayer perceptron (Rosenblatt, 1958):

MLP(x) = 𝑓𝐿 ◦ 𝑓𝐿−1 ◦ . . . ◦ 𝑓0(x0) (3.1)

The input-output mapping specified by the function MLP : X → Z is then typically
used to approximate some desired mapping between an input space X, such as the

1With rate-based coding, we loosely interpret the real valued activation of a neuron to refer to the
frequency of spikes per time interval. For artificial neural networks with negative-valued activations,
this interpretation becomes even more loose.
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space of 32 × 32 pixel images, and the desired output space Z, such as the space of
object categories assigned to each image.

In such networks, choices of activation functions and connectivity constraints can
determine valuable inductive biases of the network. A common activation func-
tion in the majority of recent work is the Rectified Linear Unit activation (ReLU:
max(0, 𝑥), (Nair and Geoffrey E. Hinton, 2010)) due to its observed beneficial opti-
mization properties in the context of deep neural networks (i.e. its gradients do not
vanish as quickly with depth when compared with other saturating non-linearities
such as the hyperbolic tangent). When we refer to the parameters of the model,
we refer to the weights W , which are usually randomly initialized from a normal
distribution with small variance and subsequently learned through gradient-based
training. One additional type of common neural network layer is known as a ‘pool-
ing layer’ which can be seen as a form of dimensionality reduction by typically
taking the average or maximum of the activations in a given layer or region and
passing those on to the next layer. To keep our formulation general, we note that
such layers can additionally be included in Equation 3.1 above by simply setting the
matrix W above to a fixed linear operation such as averaging, or the identity, and
then setting the activation function 𝜎 to the appropriate non-linear counterpart, such
as the identity or the max operation to construct average and max pooling layers
respectively.

Recurrent Neural Networks

The framework described above can considered to be independent of time. It is
what is known as a feed-forward neural network, in that all activity propagates
from the input through to the output layer without any loops known as recurrent
connections. If we add such connections, we arrive at one of the second fundamental
neural network architectures that we will work with in this thesis, the recurrent neural
network. Specifically, such networks can best be described by a time-varying hidden
state which we denote h𝑡 ∈ R𝑚, and a sequence of inputs which we denote x𝑡 for
𝑡 = 0 to 𝑇 . The hidden state is typically initialized to the zero vector for the first
time step (h0 = 0) and subsequent timesteps are then recursively computed as:

h𝑡 = 𝜎(Uh𝑡−1 +Wx𝑡) (3.2)

where the hidden state is now connected to itself in time through the recurrent
connectivity matrix U ∈ R𝑚×𝑚. Again, the activation function 𝜎 is a design choice
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which is typically chosen to be a bounded sigmoidal function such as a hyperbolic
tangent function or logistic function, or the ReLU function for the same beneficial
gradient propagation properties (Q. V. Le et al., 2015).

As we will see later in Chapters 6 & 7, one useful way to think of recurrent neural
networks is as time-discretized versions of differential equations. For example,
Equation 7.1 above can be equivalently expressed as the following first order ordinary
differential equation (ODE):

𝜕h(𝑡)
𝜕𝑡

= −𝛾h(𝑡) + 𝜎(Uh(𝑡) +Wx), h(0) = 0. (3.3)

Through the Euler Method we can then numerically integrate this ODE over discrete
timesteps to arrive at:

h𝑡 = (1 − 𝛾)h𝑡−1 + Δ𝑡𝜎(Uh𝑡−1 +Wx𝑡). (3.4)

This formulation allows us to make a more direct connection between how we
describe natural neural networks using known laws of physics and how we may
implement them efficiently in an artificial setting. By making this connection
explicit, we are given additional mathematical control over the integration scheme,
the parameters such as 𝛾 and Δ𝑡 , and further able to easily develop novel recurrent
neural network architectures inspired directly by common ODEs. In Chapters 6 & 7
we will make use of this fact explicitly to implement recurrent neural networks which
act like simple wave equations ( 𝜕h

𝜕𝑡
= 𝑐 𝜕h

𝜕𝑥
) and harmonic oscillators ( 𝜕h

2

𝜕𝑡2
= ¯ 𝑘

𝑚
h).

Convolutional Neural networks

As mentioned in the introduction, another common architectural choice for artificial
neural networks when working with structured input data is to employ what are
known as convolutional neural networks (CNNs). Such networks often have an
analogous structure to that of Equation 3.1, with the core difference being in how
the connections W are formed. Specifically, in the case of the MLP, the matrices
W are dense, meaning that every neuron from layer 𝑙 − 1 is connected to each
neuron in layer 𝑙 with its own independant weight value (parameter). Such layers
are known as ‘fully connected’. In contrast, convolutional neural network layers
are not fully and independently parameterized, but instead are formed from a single
set of weights which are shared between all neurons in a given layer. Explicitly,
these shared weights are called the ‘kernel’ of the convolutional layer, and typically
consist of a number of input and output channels which allow for specification of the
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number of neurons in each layer. For simplicity, let us consider a one-dimensional
kernel of size 3 with only a single input and output channel: w ∈ R3 = [𝑤0, 𝑤1, 𝑤2].
Additionally, to avoid boundary effects, let us define the convolution to be circular,
meaning that the convolution wraps around the edges of the input vector. The
operation of such a convolutional neural network layer can then be written as:

w★x =



𝑤0 𝑤1 𝑤2 0 · · · 0
0 𝑤0 𝑤1 𝑤2 · · · 0
0 0 𝑤0 𝑤1 · · · 0
...

...
...

...
. . .

...

𝑤2 0 0 0 · · · 𝑤1

𝑤1 𝑤2 0 0 · · · 𝑤0





𝑥0

𝑥1

𝑥2
...

𝑥𝑛−2

𝑥𝑛−1


=



𝑤0𝑥0 + 𝑤1𝑥1 + 𝑤2𝑥2

𝑤0𝑥1 + 𝑤1𝑥2 + 𝑤2𝑥3

𝑤0𝑥2 + 𝑤1𝑥3 + 𝑤2𝑥4
...

𝑤0𝑥𝑛−2 + 𝑤1𝑥𝑛−1 + 𝑤2𝑥0

𝑤0𝑥𝑛−1 + 𝑤1𝑥0 + 𝑤2𝑥1


(3.5)

Due to the sharing of the kernel weights w over all dimensions of the input x, this
operation can be interpreted as ‘sliding’ the kernel over the input and computing
repeated inner products for each successive shift. More commonly, as in the signal
processing literature, this operation is known as a cross-correlation and is defined
for a single element 𝑖 of the output as follows:

[w ★x]𝑖 =
𝑛−1∑︁
𝑗=0
𝑥 𝑗𝑤 ( 𝑗−𝑖)%𝑛 (3.6)

where the filter w is assumed to be equal to the size of the input x (or otherwise
zero-padded), and the subscript ( 𝑗 − 𝑖)%𝑛 denotes modulo 𝑛, indicating that the
convolution is circular. In this work we will use common deep learning terminology
and refer to this operation as a convolutional layer.

Such layers have known connections with the retinotopic organization described
above. Specifically, if we consider the dimension(s) over which the convolution
operates to be equivalent to spatial dimensions along the cortex, then the above
operation can be seen as equivalent to the combined ideas that: (I) each neuron
has a localized receptive field in the input (i.e. each neuron only processes a
limited subset of adjacent 𝑥𝑖), (II) neurons with similar receptive fields are located
next to one another in the brain, and (III) the same selectivity patterns (feature
detectors) are repeated throughout the spatial extent of the input. When combined
with the common local-pooling operators described above, this architecture begins
to resemble circuits first studied by Hubel and Wiesel in the early visual cortex,
and this is precisely the structure that Fukushima aimed to emulate with his early
Neocognitron architecture.
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3.2. Equivariant Neural Networks

As noted earlier in this work, the convolutional neural network has demonstrated
itself be one of the most successful inductive biases in the machine learning toolkit
to date. With time, the fundamental theoretical principles behind this success have
been unraveled, and one which has continued to stand out is the concept of translation
equivariance. In a general sense, equivariance can be viewed as an inductive bias
towards representations with geometric group structure (i.e. symmetries). Slightly
more precisely, equivariance of a function can be understood to mean that for a
given set of input transformations of interest, there is a corresponding known and
well-behaved transformation of the function’s output in the output space. In the
language of group theory and representation theory, this is commonly written as
𝑓 (𝜏𝑔 [x]) = Γ𝑔 [ 𝑓 (x)] for a function 𝑓 , a transformation 𝑔, and the associated input
and output representations of that transformation 𝜏𝑔 and Γ𝑔 respectively. In the case
of convolution, the operation of translating (i.e. shifting) the input can be seen as
equivalent to translating the output of the network in feature space.

Another intuitive way to think of equivariance, which will come up multiple times
in this thesis, is that it implies the function (or neural network) can be seen to
commute with the transformation operator. In other words, it does not matter if one
first transforms the input and then passes it through the function ( 𝑓 (𝜏𝑔x)), or if one
instead passes the un-transformed input through the function and then applies the
transformation to the output (Γ𝑔 [ 𝑓 (x)]), the result will be the same. We can draw
this in the form of a diagram as follows:

X X′

Z Z′

𝜏𝑔

𝑓 𝑓

Γ𝑔

We see that, starting from X, no matter whether we follow the upper path or the
lower path, we arrive at the same point Z′. As we will see throughout this work,
many of our figures will resemble this type of commutative diagram to show that
our network does indeed commute with the observed transformations.

In the years since the convolutional layer’s widespread adoption, significant work
has gone on to generalize the set of transformations to which networks can be
made equivariant. These supported transformation groups now include rotations
and mirroring (T. Cohen and Max Welling, 2016b), scaling (D. Worrall and Max
Welling, 2019a), and ultimately any continuous compact Lie group (Finzi, Stanton,
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et al., 2020). These networks have been demonstrated both empirically (T. Cohen
and Max Welling, 2016a; D. E. Worrall et al., 2017; Veeling et al., 2018; Pol et al.,
2020) and theoretically (Elesedy and Zaidi, 2021; Farrell et al., 2021; Bordelon and
Pehlevan, 2022) to improve data efficiency and generalization performance when
the transformation groups they incorporate are reflected in the data they are aiming
to model.

Example: Translation Equivariance

To briefly sketch how the generalization of equivariance from translation to larger
groups is accomplished, let us consider the elements of the 2-D translation group
more abstractly as a pair of integers 𝑔𝑖, 𝑗 = (𝑖, 𝑗) ∈ Z2 denoting the 𝑥 and 𝑦 displace-
ment of a given translation operation. To form a group, we need to combine this set
of elements with a group operation (denoted ·) which takes two group elements and
returns another element of the group: 𝑔𝑖1, 𝑗1 · 𝑔𝑖2, 𝑗2 = 𝑔𝑖3, 𝑗3 . This property is known
as closure and can be seen as the first group axiom: (i) when combining any two
group elements, the output is always another element in the group. Furthermore,
the combination of the elements and the operation must satisfy the remaining group
axioms ((ii) associativity and the existence of (iii) identity & (iv) inverse elements).
In the case of translation, if we define the group operation as element-wise addition
(+), we can see that indeed this combination G = (Z2, +) satisfies the conditions for
a group, i.e. (i) 𝑖 + 𝑗 ∈ Z ∀ 𝑖, 𝑗 ∈ Z (ii) (𝑖 + 𝑗) + 𝑘 = 𝑖 + ( 𝑗 + 𝑘), (iii) 𝑖 + 0 = 𝑖, & (iv)
𝑖 + −𝑖 = 0.

How then does this abstract definition assist us in generalizing convolution? First,
consider the definition for the standard convolution of a filterw (again with a single
channel) with a 2-dimensional signal 𝑥(𝑖, 𝑗). In this example we will use the com-
mon procedure of indexing the signal with parentheses to denote that it is actually a
function defined over the space Z2. We will leave the filter indexing with subscript
notation for continuity with the above equations, however a similar functional defi-
nition ofw is equally valid and often commonly seen in the equivariance literature.
With this in consideration, we can write the 2-dimensional convolution as:

[w ★x] (𝑖, 𝑗) =
∑︁

(𝑘,𝑙)∈Z2

𝑥(𝑘, 𝑙)𝑤𝑘−𝑖,𝑙− 𝑗 (3.7)

This equation effectively states that the output of a convolutional layer (at position
𝑖, 𝑗) is given by the inner product of the input 𝑥 with a convolutional kernel shifted
(translated) by (−𝑖,− 𝑗). The inverse (negative) is picked up due to the fact that we
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are writing the shift in terms of the filterw, rather than the signal 𝑥. In the language
of group theory, this shift is written as action of the group element 𝑔𝑖, 𝑗 on the filter:
𝑔−1
𝑖, 𝑗

·w𝑘,𝑙 = w𝑘−𝑖,𝑙− 𝑗 . If we simply substitute our notation for abstract groups above,
we get:

[w ★x] (𝑔) =
∑︁
ℎ∈G

𝑥(ℎ)𝑤𝑔−1·ℎ (3.8)

This is precisely the equation for a group-convolution developed in the seminal
work of T. Cohen and Max Welling (2016a).2 The importance of the work of
Cohen and Welling was that they showed that indeed using this abstraction, the
equivariance relation ( 𝑓 (𝜏𝑔 [x]) = Γ𝑔 [ 𝑓 (x)]) still holds for these 𝐺-convolutional
neural networks when the translation group is replaced with other abstract groups,
such as rotation, roto-translation, and mirroring.

Although we refer readers to the original work for a rigorous understanding of
group equivariant neural networks, in what follows we will give a sketch of how
equivariance can be shown to hold for these networks. Again, we will start with
translation and attempt to generalize to other groups. To begin, consider how
translating an image 𝑥 by an offset (𝑝, 𝑞) changes the output a convolutional layer.
Denoting this translated image as 𝑥′(𝑖, 𝑗) = 𝑥(𝑖 + 𝑝, 𝑗 + 𝑞) we have:

[w ★x′] (𝑖, 𝑗) =
∑︁

(𝑘,𝑙)∈Z2

𝑥(𝑘 + 𝑝, 𝑙 + 𝑞)𝑤𝑘−𝑖,𝑙− 𝑗 (3.9)

Leveraging the closure of the group G = (Z2, +), we see that we can substitute the
sum indices (𝑘, 𝑙) with (𝑘′, 𝑙′) = (𝑘 + 𝑝, 𝑙 + 𝑞) without changing the sum. In doing
so, we see that we get:

[w ★x′] (𝑖, 𝑗) =
∑︁

(𝑘 ′,𝑙′)∈Z2

𝑥(𝑘′, 𝑙′)𝑤𝑘 ′−(𝑖+𝑞),𝑙′−( 𝑗+𝑝) = [w ★x] (𝑖 + 𝑞, 𝑗 + 𝑝) (3.10)

In this simple example, we have shown that convolution of a translated image x′ is
equivalent to convolving the original image x, and then translating the output. This
shows the convolution is ‘equivariant’ to the translation group, and the ‘represen-
tation’ of the translation operator in the output space Γ𝑔 is actually simply another
translation: (𝑖, 𝑗) → (𝑖 + 𝑝, 𝑗 + 𝑞).

Let us then abstract this a bit to fit with Equation 3.8. We see that through equivalent
analysis, in the general group setting, we can substitute ℎ with ℎ′ := 𝑔1 · ℎ, and again

2In the original work, the authors have included a definition which supports multiple input and
output channels, however for the sake of cleanliness we have omitted the extra sum and indices
needed for this in this overview. A full definition including channels can be found in Chapter 9.
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pull the group element out of the sum and into the index:

[w ★x′] (𝑔0) =
∑︁
ℎ′∈G

𝑥(ℎ′)𝑤 (𝑔1·𝑔0)−1·ℎ′ = [w ★x] (𝑔1 · 𝑔0) (3.11)

As a result, we see that transforming the input by 𝑔1 and then convolving is equivalent
to convolving the untransformed input and then applying 𝑔1 to the output.

In going through this example, we also begin to gain some intuition for how we would
build a general group equivariant neural network. Rather than having filters defined
over just space (the translation group), our filters now must be defined over the full
group. In other words, we must have a transformed copy of each of our filters for each
of the group elements 𝑔 (i.e. each rotation angle or scale). Similarly, the output of the
network will now have a separate output value for each element of the group, given by
applying the transformed filter to the input. When a transformation is then observed
to be applied to the input, one sees that the corresponding transformed filter will
be selectively responsive. In this way, the output of the network is structured with
respect to the given group transformation – the designer of the network knows how
the output will transform for a given transformation of the input. It is precisely these
transformed sets of filters and ensuing related outputs that define the ‘equivariant
capsules’ we alluded to in Section 2.1 in reference to the idea of ‘hypercolumns’.

Despite the tremendous success of equivariance as a guiding principle for neural
network architectural design, it is still not known how to construct networks with
equivariance with respect to many natural transformations, such as lighting or per-
spective shift, due to their complex non-group structure. How then might natural
systems handle the dramatic changes in lighting from day to day without getting
confused? This will be one of the motivating questions for our work in this thesis.
Precisely, in this work we hypothesize that the natural structure that we observe in
the brain (i.e. spatial and spatio-temporal organization) may facilitate the learning
of (approximately) equivariant architectures.

3.3. Training Artificial Neural Networks

The most successful and therefore popular method for training today’s neural net-
works is the backpropagation algorithm. For a given weight/parameter matrixW𝑙 of
an MLP or other artificial neural network, and a loss function L, the backpropaga-
tion algorithm leverages the chain rule of calculus to compute the gradient of the loss
for successively deeper layers of the network, starting from the output. Explicitly,
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denoting the output of layer 𝑙 as a𝑙 , the gradient of L with respect toW𝑙 is:

∇W𝑙
L =

(
𝜎′(a𝑙) ⊙W 𝑇

𝑙+1 · · ·𝜎
′(a𝐿−1) ⊙W 𝑇

𝐿 · 𝜎′(a𝐿) ⊙ ∇a𝐿L
)
a𝑇𝑙−1 (3.12)

Since we know that the gradient of a function is a vector which points in the
direction of steepest increase, the vector −∇W𝑙

L will precisely contain the updates
necessary to optimally decrease our loss. Explicitly then, using this gradient descent
procedure, the weights of the model are updated as: W (𝑛𝑒𝑤)

𝑙
= W (𝑜𝑙𝑑)

𝑙
− 𝜆∇W𝑙

L
where 𝜆 is referred to the learning rate of our optimization procedure and must be
tuned to ensure learning proceeds optimally. Typically, the gradient of the loss is not
computed with respect to loss on the full dataset as would be required to compute
the exact gradient, but rather with respect to a small batch of data. This means that
our optimization procedure will no longer follow the exact gradient of the loss, but
rather it will have an element of stochasticity in the random selection of the batch,
thereby earning the name stochastic gradient descent.

In natural systems, it is widely accepted that an analogous learning rule to back-
propagation is implausible for biological neurons for a multitude of reasons. The
first and perhaps most well known is the ‘weight transport problem’ (Lillicrap,
Cownden, et al., 2014). This problem arises from the fact that the terms required
to pass the error between successive layers are in the form of transposed versions of
the forward parameters (i.e. the W 𝑇

𝑖
terms in Equation 3.12). Although feedback

connections are widely observed throughout the brain, there is no known mechanism
by which these connections could be made to be exact transposed copies of their
‘feedforward’ counterparts. Such a mechanism would be equivalent to some form
of ‘transportation’ copying the weights and maintaining this equivalence as weights
are updated during learning. A second implausible property of the backpropagation
algorithm is the fact that it requires the evaluation of the activation function at the
exact point where the forward pass was evaluated. This is given by the term 𝜎′(a𝑖),
of Equation 3.12. It seems very unlikely indeed that the inverse connections are able
to implement the exact gradient of the forward nonlinearity in a manner which is
modulated by the forward propagated signal (D.-H. Lee et al., 2015). These are just
two examples of the many discrepancies that researchers have aimed to overcome
with more biological alternatives in recent years.

Despite these differences in the training procedure, researchers have still found
backpropagation and stochastic gradient descent to be valuable methods for learning
the weights of deep neural network architectures which ultimately end up resembling
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natural neural networks on a variety of fronts (Daniel L. K. Yamins et al., 2014;
Cadieu et al., 2014; Conwell et al., 2023). In this work, we will therefore train all
networks with backpropagation, hoping to understand the fundamentals of neural
representations first and foremost, and leave the question of how local gradient-free
learning may be accomplished to future work.

Supervised Learning

We note that an important part of the proceeding section which is left undefined is
the requirement for some sort of supervision or target signal 𝑦. Depending on the
task, this supervisory signal will vary to match the task requirements. For example,
for classification, 𝑦 is defined as the class label of the example and L is often defined
as a form of cross entropy between the predicted label distribution and the true label
distribution. For something such as semantic image segmentation, the supervision
signal 𝑦 will be a pixel-wise mask which labels each individual pixel in the image
as falling into one of the desired classes, and a pixel-wise cross entropy loss is again
applied. However, these are only a few limited examples of the virtually limitless
space of possible supervision signals for training neural network models. In our
work we will make use of a few such supervised tasks to evaluate our models.
However, for a larger section of the work, we will focus on tasks which have no
explicit label but are instead focused on learning valuable representations from the
data itself.

Self-Supervised Learning

One framework which has recently increased in popularity for learning represen-
tations from data without human labels is that of self-supervised learning. Many
self-supervised learning (SSL) techniques can be colloquially defined as representa-
tion learning algorithms which extract approximate supervision signals directly from
the input data itself (LeCun and Misra, 2021). In practice, this supervision signal is
often obtained by performing symmetry transformations of the input with respect to
task-relevant information, meaning the transformations leave task-relevant informa-
tion unchanged, while altering task-irrelevant information. Numerous theoretical
and empirical works have shown that by combining such symmetry transformations
with specific contrastive learning objectives, powerful lower dimensional represen-
tations can be learned which support linear-separability (Wang, Q. Zhang, et al.,
2022; J. D. Lee et al., 2021; Yuandong Tian, Yu, et al., 2020; Arora et al., 2019;
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Tosh et al., 2020), identifiability of generative factors (Kügelgen et al., 2021; Tsai,
Wu, et al., 2020; Federici et al., 2020; Ji et al., 2021), and reduced sample com-
plexity (Grill et al., 2020; T. Chen et al., 2020). At a high level, these contrastive
objectives can be seen as encouraging the model to produce similar representations
for two symmetrically transformed versions of the same image, while encouraging
dissimilarity of representations for two entirely separate images (which share no
symmetries). In Chapter 9 we show how a more biologically plausible form of
self-supervised learning can be performed without the need for explicit input trans-
formations through the use of the symmetries embedded in structured equivariant
neural networks themselves.

Unsupervised Learning

For all other chapters we will mainly focus on unsupervised learning rules derived
from the frameworks of auto-encoding and probabilistic generative modeling. Our
models will therefore still use stochastic gradient descent for learning model pa-
rameters, but will not rely on explicit human annotations as ‘labels’. While there
do exist a variety of exciting gradient-free learning rules, including local learning
rules such as those based on hebbian learning (Hebb, 1949; Journé et al., 2022),
and approximations to the gradient such as target propagation (Bengio, 2014) and
synthetic gradients (Jaderberg et al., 2017), we will not address them directly in this
thesis.

In an auto-encoder, the goal of training is to learn an ‘encoder’ mapping from the
input to a hidden state (often of reduced dimensionality), and then similarly learn
a ‘decoder’ to reconstruct the input. In reference to Equation 3.1 above, an auto-
encoder could be defined as having an encoder composed of the first 𝐸 = ⌊ 𝐿2 ⌋ layers,
taking the activation of 𝑓𝐸 as the internal hidden representation, and subsequently
defining the final 𝐷 = 𝐿 − 𝐸 layers as the decoder. In such a model, the target
is then defined to be equal to the input 𝑦 = 𝑥, and the loss function is defined to
measure the distance (often L2 norm) between the output of the model (often called
the ‘reconstruction’ x̂) and the original input 𝑥.

As an alternative, the framework of probabilistic generative modeling can be seen
as an attempt to specify a model of the data generating process itself, and in doing
so, a procedure is usually defined to be able to invert this process and thereby
access the unobserved ‘latent variables’ which correspond to each input. As an
example, consider a dataset consisting simply of the weights of all cars in a given
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country. If our goal is to model such a dataset, it may make sense to imagine that
there are unobserved ‘latent variables’ such as the type of vehicle (sedan vs. truck)
which are largely responsible for the variety in the observed weight distribution,
and the remaining differences are best modeled by noise. The data generating
process for a single data-point in our dataset could then be seen as first randomly
sampling the type of vehicle t from a prior distribution t ∼ 𝑝T(t) which defines
the common types of cars in the given country, then simply taking the average
value of the weight w for this car type and adding a small amount of noise, i.e.
w ∼ 𝑝W|T(w|t) = N(w; 𝜇𝜃 (t), 𝜎𝜃 (t)). The goal of training is then to learn the
parameters 𝜃 such that the marginal distribution of the model 𝑝𝜃 (w) matches that
of the observed data. Unfortunately, computing this marginal likelihood exactly
is generally intractable as it requires computing an integral over all possible states
of the latent variable t (e.g. 𝑝𝜃 (w) =

∫
𝑡
𝑝W|T(w|t)𝑑𝑡). One popular ways around

this intractability is through the framework of variational inference and the ensuing
variational autoencoders (Kingma and Max Welling, 2014). In this framework, the
true unknown posterior 𝑝T|W(t|w) is approximated by a function 𝑞𝜙 (t|w), and the
parameters 𝜙 of this distribution are optimized to make this approximate posterior as
close to the true posterior as possible. Of course, since the true posterior is unknown,
this is again not possible to do directly. Instead, the approximate posterior is used
to derive a lower bound of the likelihood of the data known as the Evidence Lower
Bound (ELBO):

log 𝑝𝜃 (w) ≥ Et∼𝑞𝜙 (t|w)
[
log 𝑝W|T(w|t)

]
− 𝐷𝐾𝐿 (𝑞𝜙 (t|w) | |𝑝T(t)) (3.13)

Such models can be seen as defining an auto-encoder, with encoder 𝑞𝜙 and decoder
𝑝𝜃 , which additionally have a penalty on the divergence of the code in latent space
from some pre-defined prior distribution. In practice, this formalization allows for
a principled method of model comparison through the likelihood of the data, as
well as the introduction of additional inductive biases through the choice of prior
and posterior distributions. In our work we will demonstrate how this additional
flexibility allows for the creation of inductive biases which match those observed in
natural intelligence.
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Spatial Structure
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C h a p t e r 4

TOPOGRAPHIC ORGANIZATION

4.1. Introduction

Topographic organization in the brain describes the observation that nearby neu-
rons on the cortical surface tend to have more strongly correlated activations than
spatially distant neurons. From the simple orientation of lines (David H. Hubel
and Torsten N. Wiesel, 1974b) to the complex semantics of natural language (Huth
et al., 2016), organization of cortical activity is observed for a diversity of stimuli
and across a range of species. Perhaps most well known are the local regions of
category selectivity found through the higher areas of the visual stream. These
regions have been measured to respond preferentially to specific stimuli from their
respective categories when compared with a set of alternative control images. Their
existence has been measured across a diversity of species (Kanwisher, McDermott,
et al., 1997; Tsao et al., 2006; Nasr et al., 2011), directly through fMRI and neural
recordings (Pinsk et al., 2005a), and more indirectly through observational stud-
ies of patients with localized cortical damage (Moro et al., 2008). Examples of
category-selective areas in the visual stream include the Fuisform Face Area (FFA)
(Kanwisher, McDermott, et al., 1997), the Parahippocampal Place Area (PPA) (Ep-
stein and Kanwisher, 1998; Nasr et al., 2011), and the Extrastriate Body Area (EBA)
(Peelen and Downing, 2005) which respond selectively to faces, places, and bodies
respectively. However, the extent of category-selectivity does not stop at such ba-
sic categories. Instead, selective maps have been observed for both more abstract
‘superordinate’ categories, such as animacy versus inanimacy (Haxby, Guntupalli,
et al., 2011; Konkle and Oliva, 2012), as well as for more fine-grained ‘subordinate’
categories such as human-faces versus animal-faces (Haxby, Gobbini, et al., 2001).
These maps are seen to be superimposed on one-another such that the same cortical
region expresses selectivity simultaneously to animate objects and human-faces,
while other spatially disjoint regions are simultaneously selective to inanimacy and
‘places’ (images of scenes). Such overlapping maps have been interpreted by some
researchers as nested hierarchies of increasingly abstract categories, potentially serv-
ing to increase the speed and efficiency of classification (Grill-Spector and K. S.
Weiner, 2014). In interpreting these observations, one may naturally wonder as to
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the origins of such localized specialization. From the current literature, the driv-
ing factors can roughly be divided into two potentially complimentary categories:
anatomical, and information theoretic.

Anatomically, the arrangement and properties of different cell bodies can be ob-
served to vary slightly in different regions of the cortex in loose alignment with
category selectivity (K. S. Weiner et al., 2014; Caspers et al., 2013; Saygin et al.,
2012), possibly serving as an innate blueprint for specialization. In the same cate-
gory, the principle of ‘wiring length minimization’ (Koulakov and Chklovskii, 2001;
Essen, 1997) posits that evolutionary pressure has encouraged the brain to reduce
the cumulative length of neural connections in order to reduce the costs associated
with the volume, building, maintenance, and use of such connections. Computa-
tional models which attempt to integrate such wiring length constraints (H. Lee
et al., 2020; Y. Zhang et al., 2021; Blauch et al., 2021) have recently been observed
to yield localized category selectivity such as ‘face patches’ similar to those of
macaque monkeys.

From the information theoretic perspective, one potential explanation for the emer-
gence of topographic organization is provided by the principle of redundancy re-
duction (Barlow et al., 1961). Simply, the principle states that an optimal coding
scheme is one which minimizes the transmission of redundant information. Applied
to neural systems, this describes the ideal network as one which has statistically max-
imally independant activations – yielding a form of specialization. This idea served
as the impetus for computational frameworks such as Sparse Coding (Olshausen
and Field, 1997) and Independant Component Analysis (ICA) (Bell and Terrence J.
Sejnowski, 1995; Comon, 1994; Aapo Hyvärinen, 1998; Aapo Hyvärinen and Oja,
2000). Interestingly, however, further work showed that features learned by lin-
ear ICA models were not entirely independant, but indeed contained correlation of
higher order statistics (such as correlation between absolute values). For example,
along edges of an image, linear-ICA components (e.g. gabor filters) still activate in
clusters even though the sign of their activity is unpredictable (Portilla et al., 2003;
Wainwright and E. P. Simoncelli, 2000). In response, researchers proposed a more
efficient code could be achieved by modeling these residual dependencies with a
hierarchical topographic extension to ICA (Aapo Hyvärinen, Patrik O Hoyer, et al.,
2001; Aapo Hyvärinen and Patrik O. Hoyer, 2001), separating out the higher order
’variance generating’ variables, and combining them locally to form topographi-
cally organized latent variables. Such a framework shares a striking resemblance to
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models of divisive normalization (Lyu and E. P. Simoncelli, 2009a) (another known
neurobiological motif), but inversely formulated as a generative model. Ultimately,
the features learned by such models were reminiscent of pinwheel structures ob-
served in V1, encouraging multiple comparisons with topographic organization in
the biological visual system (Aapo Hyvärinen, Hurri, et al., 2009; Aapo Hyvärinen
and Patrik O. Hoyer, 2001; Ma and L. Zhang, 2008).

Due to the nature of the learning algorithms used in these early frameworks however,
they were restricted to learning linear generative models and therefore were unable
to extend to the complex and varied forms of topography we see in the brain. It has
therefore remained unclear if these types of redundancy reduction arguments are
sufficient to explain topographic organization at all levels of the cortical hierarchy,
such as the category selective face, body, and place areas described above. In
this chapter, we aim to close this gap by introducing a deep nonlinear generative
model capable of modeling such topographic organization of more abstract concepts.
To accomplish this, we leverage the framework of Variational Autoencoders, and
introduce a new generative component which facilitates the same ‘group-sparse’
priors that were developed decades earlier for Topographic ICA.

4.2. Related Work

The history of statistical models upon which this work builds is vast, including
sparse coding (Olshausen and Field, 1997), Independant Component Analysis (ICA)
(Bell and Terrence J. Sejnowski, 1995; Comon, 1994; Aapo Hyvärinen and Oja,
2000), the Helmholtz Machine (Dayan et al., 1995), and of course Variational
Autoencoders (Kingma and Max Welling, 2014). Most related to this work are
topographic generative models including Generative Topographic Maps (Bishop et
al., 1997), Bubbles (A. Hyvärinen et al., 2004), Topographic ICA (Aapo Hyvärinen,
Patrik O Hoyer, et al., 2001), and the Topographic Product of Student’s-t models
(S. K. Osindero, 2004; Max Welling et al., 2003). Although our work is not the
first to combine Student’s-t distributions and variational inference (Boenninghoff
et al., 2020), it is the first to provide an efficient method to do so for Topographic
Student’s-t distributions.

Recently, a number of models of topographic organization in the visual system have
been developed leveraging modern deep neural networks. Y. Zhang et al. (2021)
demonstrated category-selective regions, as well as a nested spatial hierarchy of
selectivity, through the use of self-organizing maps (SOMs). Due to the challenges
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with scaling SOMs, the inputs were dimensionality-reduced with PCA, limiting
the applicability of the algorithm to arbitrary neural network architectures. More
recently, Doshi and Konkle (2022) further showed that self organizing maps could be
used on full-dimensionality network activations to reproduce forms of topographic
organization from large-scale to mid-level feature tuning. Concurrently with our
work, Blauch et al. (2021) developed the Interactive Topographic Network (ITN),
inducing local correlation through locally-biased excitatory feedforward connections
in a biologically-constrained model. Most related to our work, the TDANN of
H. Lee et al. (2020) incorporated a biologically derived proxy for wiring length
cost into the fully connected layers of a supervised Alexnet model (Krizhevsky,
Sutskever, et al., 2012), and similarly demonstrated emergent localized category-
selectivity. Our model differs from these in that it explicitly formulates a properly
normalized density over the input data with topographic organization originating as
a prior over latent the variables – thereby unifying feature extraction and topographic
organization into a single training objective: maximization of the data likelihood.
Interestingly, the model presented in this chapter organizes activity based on the same
statistical property (local correlation) as the wiring length proxies developed by H.
Lee et al. (2020), but from a generative modeling perspective, thereby encouraging
unsupervised representation learning and topographic organization in through a
single unified framework.

Finally, there are a number of recent empirical studies which motivated our in-
vestigation of category selectivity from a purely information theoretic perspective.
Specifically, the work of Dobs et al. (2021) demonstrated that sufficiently deep
convolutional neural networks naturally learn distinct and largely separate sets of
features for certain domains such as faces and objects. In this work, the authors
showed that feature maps in the later layers of deep convolutional neural networks
can be effectively segregated into object and face features such that lesioning one set
of feature maps does not significantly impact performance of the network on clas-
sification of the other data domain. Such experiments, and others (Bakhtiari et al.,
2021; Konkle and Alvarez, 2021), suggest that the specialization of neurons may
simply be an optimal code for representing the natural statistics of the underlying
data when given a sufficiently powerful feature extractor, and therefore prompted
us to investigate if this specialization combined with topographic generative models
may yield localized clusters of category selectivity.
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4.3. Background

The model presented in this chapter extends the existing set of topographic generative
models to allow integration with deep neural network function approximators. In
this section we provide a brief background of this class of models.

Topographic Generative models

Inspired by Topographic ICA, the class of topographic generative models can be un-
derstood as generative models where the joint distribution over latent variables does
not factorize into entirely independent factors, as is commonly done in ICA or vari-
ational autoencoders, but instead has a more complex ‘local’ correlation structure.
The locality is defined by arranging the latent variables into an n-dimensional lattice
or grid, and organizing variables such that those which are closer together on this
grid have greater correlation of activities than those which are further apart. In the
related literature, activations which are nearby in this grid are defined to have higher-
order correlation, e.g. correlations of squared activations (aka ‘energy’), asserting
that all first order correlations are removed by the initial ICA de-mixing matrix.

Such generative models can be seen as hierarchical generative models where there
exist higher level independent ‘variance generating’ variables V which are combined
locally to generate the variancesσ = 𝜙(WV) of the lower level topographic variables
T ∼ N(0,σ2I), for an appropriate non-linearity 𝜙. The variables T are thus
independent conditioned on σ. Other related models which can be described under
this umbrella include Independent Subspace Analysis (ISA) (Aapo Hyvärinen and
P. Hoyer, 2000) where all variables within a predefined subspace (or ‘capsule’) share
a common variance, and ‘temporally coherent’ models (Hurri and Aapo Hyvärinen,
2003) where the energy of a given variable between time steps is correlated by
extending the topographic neighborhoods over the time dimension (A. Hyvärinen
et al., 2004). The topographic latent variable T can additionally be described as an
instance of a Gaussian scale mixture (GSM). GSMs have previously been used to
model the observed non-Gaussian dependencies between coefficients of steerable
wavelet pyramids (and are interestingly also equivariant to translation & rotation)
(Portilla et al., 2003; Wainwright and E. P. Simoncelli, 2000; Wainwright, E. P.
Simoncelli, and Willsky, 2001).
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4.4. The Generative Model

The generative model proposed in this chapter is based on the Topographic Product
of Student’s-t (TPoT) model as developed in (S. K. Osindero, 2004; Max Welling
et al., 2003). In the following, we will show how a TPoT random variable can be
constructed from a set of independent univariate standard normal random variables,
enabling efficient inference through the framework of variational autoencoders.

The Product of Student’s-t Model

We assume that that our observed data is generated by a latent variable model where
the joint distribution over observed and latent variables x and t factorizes into the
product of the conditional and the prior. The prior distribution 𝑝T(t) is assumed to
be a Topographic Product of Student’s-t (TPoT) distribution, and we parameterize
the conditional distribution with a flexible function approximator:

𝑝X,T(x, t) = 𝑝X|T(x|t)𝑝T(t) 𝑝X|T(x|t) = 𝑝𝜃 (x|𝑔𝜃 (t)) 𝑝T(t) = TPoT(t; 𝜈)
(4.1)

The goal of training is thus to learn the parameters 𝜃 such that the marginal dis-
tribution of the model 𝑝𝜃 (x) matches that of the observed data. Unfortunately, the
marginal likelihood is generally intractable except for all but the simplest choices
of 𝑔𝜃 and 𝑝T (S. Osindero et al., 2006). Prior work has therefore resorted to tech-
niques such as contrastive divergence with Gibbs sampling (Max Welling et al.,
2003) to train TPoT models as energy based models. In the following, we instead
demonstrate how TPoT variables can be constructed as a deterministic function of
Gaussian random variables, enabling the use of variational inference and efficient
maximization of the likelihood through the evidence lower bound (ELBO).

Constructing the Product of Student’s-t Distribution

First, note a univariate Student’s-t random variable 𝑇 with 𝜈 degrees of freedom can
be defined as:

𝑇 =
𝑍√︃

1
𝜈

∑𝜈
𝑖 𝑈

2
𝑖

with 𝑍,𝑈𝑖 ∼ N(0, 1) ∀𝑖 (4.2)

Where 𝑍 and {𝑈𝑖}𝜈𝑖=1 are independent standard normal random variables. If T is a
multidimensional Student’s-t random variable, composed of independent 𝑍𝑖 and𝑈𝑖,
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then T ∼ PoT(𝜈), i.e.:

T =


𝑍1√︃

1
𝜈

∑𝜈
𝑖=1𝑈

2
𝑖

,
𝑍2√︃

1
𝜈

∑2·𝜈
𝑖=𝜈+1𝑈

2
𝑖

, . . .
𝑍𝑛√︃

1
𝜈

∑𝑛·𝜈
𝑖=(𝑛−1)·𝜈+1𝑈

2
𝑖

 ∼ PoT(𝜈) (4.3)

Note that the Student’s-t variable 𝑇 is large when most of the {𝑈𝑖}𝑖 in its set are
small. We can therefore think of the {𝑈𝑖}𝑖 as constraint violations rather than pattern
matches: if the input matches all constraints 𝑈𝑖 ≈ 0, the corresponding 𝑇 variables
will activate (see (Geoffrey E. Hinton and Teh, 2001) for further discussion on
the relative benefits of a constraint violation framework compared with standard
‘feature-detector’ frameworks.).

Introducing Topography

To make the PoT distribution topographic, we strive to correlate the scales of 𝑇𝑗
which are ‘nearby’ in our topographic layout. One way to accomplish this is by shar-
ing some 𝑈𝑖-variables between neighboring 𝑇𝑗 ’s. Formally, we define overlapping
neighborhoods N( 𝑗) for each variable 𝑇𝑗 and write:

T =


𝑍1√︃

1
𝜈

∑
𝑖∈N(1)𝑈

2
𝑖

,
𝑍2√︃

1
𝜈

∑
𝑖∈N(2)𝑈

2
𝑖

, . . .
𝑍𝑛√︃

1
𝜈

∑
𝑖∈N(𝑛)𝑈

2
𝑖

 ∼ TPoT(𝜈) (4.4)

With some abuse of notation, if we define W to be the adjacency matrix which
defines our neighborhood structure, U and Z to be the vectors of random variables
𝑈𝑖 and 𝑍 𝑗 , we can write the above succinctly as:

T =


𝑍1√︃

1
𝜈
𝑊1U2

,
𝑍2√︃

1
𝜈
𝑊2U2

, . . .
𝑍𝑛√︃

1
𝜈
𝑊𝑛U2

 =
Z√︃

1
𝜈
WU2

∼ TPoT(𝜈) (4.5)

Due to non-linearities such as ReLUs which may alter input distributions, it is ben-
eficial to allow the 𝑍 variables to model the mean and scale. We found this can
be achieved with the following parameterization: T =

Z−𝜇
𝜎
√

1/𝜈WU2
. In practice, we found

that 𝜎 =
√
𝜈 often works well, finally yielding:

T =
Z − 𝜇
√

WU2
(4.6)

Given this construction, we observe that the TPoT generative model can instead
be viewed as a latent variable model where all random variables are Gaussian and
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the construction of T in Equation 4.6 is the first layer of the generative ‘decoder’:
𝑔𝜃 (t) = 𝑔𝜃 (u, z). In the next section we then leverage this interpretation to show
how an approximate posterior for the latent variables Z and U can be trained through
variational inference.

4.5. The Topographic VAE

To train the parameters of the generative model 𝜃, we use the above formulation
to parameterize an approximate posterior for t in terms of a deterministic transfor-
mation of approximate posteriors over simpler Gaussian latent variables u and z.
Explicitly:

𝑞𝜙 (z|x) = N
(
z; 𝜇𝜙 (x), 𝜎𝜙 (x)I

)
𝑞𝛾 (u|x) = N

(
u; 𝜇𝛾 (x), 𝜎𝛾 (x)I

)
(4.7)

t =
z − 𝜇
√

Wu
𝑝𝜃 (x|𝑔𝜃 (t)) = 𝑝𝜃 (x|𝑔𝜃 (z, u)) (4.8)

The parameters 𝜃, 𝜙, 𝛾 and 𝜇 are then optimized to maximize the likelihood of the
data through the Evidence Lower Bound (ELBO):

E𝑞𝜙 (z|x)𝑞𝛾 (u|x)
(
log 𝑝𝜃 (x|𝑔𝜃 (t)) − 𝐷𝐾𝐿 [𝑞𝜙 (z|x) | |𝑝Z(z)] − 𝐷𝐾𝐿 [𝑞𝛾 (u|x) | |𝑝U(u)]

)
(4.9)

MNIST Validation

Figure 4.1: Maximum activating
images for a Topographic VAE
trained with a 2D torus topogra-
phy on MNIST.

To validate the TVAE is capable of learning
topographically organized representations with
deep neural networks, we first perform experi-
ments training a Topographic VAE as in Equa-
tions 4.7 and 4.8 to maximize Equation 4.9 on the
simple MNIST dataset composed of grayscale
images of handwritten digits (LeCun and Cortes,
2010). We use minimal 3-layer MLPs for the en-
coders and decoders, and fix W such that glob-
ally the latent variables are arranged in a grid on
a 2-dimensional torus (a single capsule) and lo-
cally W sums over 5x5 2D groups of variables.
In this setting, W can be easily implemented as
2D convolution with a 5x5 kernel of 1’s, stride 1, and cyclic padding.
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As an intuitive computationally simple metric of spatial selectivity, we use a visu-
alization of the maximum activating images from our dataset for each neuron. In
detail, for each of our neurons organized in a 2-D regular grid, we plot the image
from the dataset which produces the maximum absolute activation value of that
neuron. In doing so, we can see qualitative similarities between images, and thus
the selectivities of neurons, which would be difficult to capture with pure statistical
or category based selectivity measures alone. In Figure 4.1 we see that training
the model indeed yields a 2D topographic organization of higher level features.
We show the maximum activating image for each final layer neuron of the capsule,
plotted as a flattened torus and see that the neurons become arranged according to
class, orientation, width, and other learned features.

4.6. Methods

In this section we explain the datasets, evaluation metrics, and model architec-
tures used to validate the Topographic VAE’s emergent higher level topographic
organization of category selectivity when trained on more complex natural images.
Additionally, we provide details on the baseline we have re-implemented for these
experiments: the TDANN of H. Lee et al. (2020).

Evaluation

Following prior computational work (H. Lee et al., 2020; Y. Zhang et al., 2021)
and fMRI studies (Aparicio et al., 2016), we will make use of Cohen’s d metric
(J. Cohen, 1988; Sawilowsky, 2009), a measure of standardized difference of two
means, as our selectivity metric. Given the means 𝑚̄1 & 𝑚̄2 and standard deviations
𝜎1 & 𝜎2 of two sets of data, the d metric is given as:

d =
𝑚̄1 − 𝑚̄2√︂
1
2

(
𝜎2

1 + 𝜎2
2

) (4.10)

This value is unitless and can be seen as expressing the difference between two means
in terms of units of ‘pooled variability’. In this work, the mean 𝑚̄1 corresponds to
the mean activation of a single neuron computed across an entire dataset of class-
specific target images (e.g. faces), while 𝑚̄2 is the mean activation of the same
neuron across a dataset of control images which do not contain this class.
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Datasets

Following our simple validation on MNIST, we perform a suite of experiments to
study if our model is able to learn higher order category selectivity. To accomplish
this, the training diet of the model is crucially important (Conwell et al., 2023).
Therefore, for this set of experiments involving both the TDANN and TVAE, we
use a dataset composed of a combination of the ImageNet 2012 (Russakovsky et al.,
2015) and Labeled Faces in the Wild (LFW) datasets (Huang et al., 2007), following
H. Lee et al. (2020). The TDANN was trained to classify the 1000 distinct image
classes from ImageNet, plus one generic face class encompassing all of LFW. The
TVAE used no such class labels. To measure the category selectivity of the models,
the primary test face dataset used in Figures 4.2, 4.3, & 4.5 was a ∼25,000 image
subset of VGGface2 (Cao et al., 2018). The control ‘object’ dataset for Figures 4.2
& 4.5 was composed of 25,000 images from the validation set of ImageNet. To
measure selectivity to body parts and places in Figure 4.3, we created a ‘body’ dataset
composed of headless body images (Clemons, 2018) and hands (Afifi, 2019), and
used the Place365 dataset (Zhou et al., 2017) for places. In Figure 4.3, the ‘control’
set used for each class was defined to be the compliment of the test set, i.e. all other
datasets besides the target category of interest.

Models

On the ImageNet dataset, all models are trained on top of features extracted by the
final convolutional layer of a pre-trained Alexnet model (Krizhevsky, Sutskever,
et al., 2012; Paszke et al., 2019). The Alexnet architecture was chosen to match
the setup from H. Lee et al. (2020) and Y. Zhang et al. (2021), and has further
been shown to have remarkable similarities to hierarchical processing in the human
visual stream (Daniel L K Yamins and DiCarlo, 2016; Cichy et al., 2016; Güçlü
and Gerven, 2015). For the TVAE, we randomly initialize and train a single linear
layer encoder and decoder with 4096 output neurons, arranged in a 64x64 grid with
circular boundary conditions to avoid edge effects. For the TDANN, we randomly
initialize and train all three fully connected layers of Alexnet, imposing the spatial
correlation loss over both ‘FC6’ and ‘FC7’. The exact form of the spatial correlation
loss used for training the TDANN in this chapter is given as:

SpatialCorrelationLoss(z) =
𝑛∑︁
𝑖

𝑛∑︁
𝑗≠𝑖

����𝐶𝑖 𝑗 (z) − 1
𝐷𝑖 𝑗 + 1

���� (4.11)
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where z an 𝑛-dimensional vector of activations, 𝐶 is the normalized cross correla-
tion matrix (e.g. a matrix of Pearson correlation coefficients), and D is a matrix
containing the ‘cortical distances’ in millimeters between all pairs of neurons 𝑖 and
𝑗 . For the TDANN, we defined all neurons to be equally spaced in a 2-D grid of
10mm × 10mm. This resulted in a horizontal and vertical spacing between neurons
of 0.15625mm and a diagonal spacing of 0.22097087mm. Unlike the TVAE, the
TDANN grid was not defined to have circular boundary conditions in order to match
the original model. In the following, all selectivity maps are displayed for ‘FC6’,
following H. Lee et al. (2020). All hyperparameter and training details can be found
in the Appendix Section A.2.

4.7. Experiments

Given that our model appears to show category selectivity for simple stimuli such
as MNIST digits, we found it natural to wonder if this model may also produce
category selective regions for more complex stimuli such as natural images. In
the following, we explore the category-selectivity of top-level neurons trained with
the Topographic VAE framework on realistic images. We observe that neurons do
indeed become category-selective, and that selective neurons tend to group together
to form localized category-selective regions for a variety of domains including faces,
bodies, and places. We compare these results with a non-topographic baseline (pre-
trained Alexnet), and a re-implementation of the TDANN, observing qualitatively
similar results. Additionally, following Y. Zhang et al. (2021), we plot selectivity
maps to more abstract concepts (such as animacy and real-world size), and observe
that such maps overlap in an intuitive manner, suggesting the existence of a nested
spatial hierarchy of categories similar to that observed in the brain (Grill-Spector
and K. S. Weiner, 2014).

Localized Category-Selectivity

In Figure 4.2, we plot the continuous value of Cohen’s d metric for all neurons as
arranged in a 2-d grid. The baseline (left) shows the first fully connected layer (FC6)
of a pre-trained Alexnet architecture. As expected, the neurons of this model have
no defined spatial organization and thus result in a random selectivity map. We
note the existence of class-selective neurons is not guaranteed, but their appearance
here is in-line with observations from prior work (H. Lee et al., 2020; Raman and
Hosoya, 2020). Secondly, we compare our TVAE model (middle) with our re-
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implementation of the TDANN (right). We observe that both models demonstrate
the emergence of face-selective clusters of comparable size and density. We see
that the TVAE framework appears to yield smoother topographic maps, perhaps due
to the unified objective function and unsupervised learning rule when compared
with the competing supervised classification loss and wiring cost regularization of
the TDANN. To validate the robustness and significance of these category selective
regions, in Section A.3 of the appendix we plot selectivity maps across four different
test face datasets and four random initalizations, observing qualitatively similar
clusters all settings.

Figure 4.2: Face vs. Object selectivity for a non-topographic baseline, Topographic
VAE, and TDANN. We see the TVAE has an emergent face cluster qualitatively
similar to that of the TDANN.

Face, Body & Place Clusters

Figure 4.3: TVAE selectivity d ≥
0.85

Next, in Figure 4.3, we plot the simultaneous
selectivity of neurons in our TVAE model
to multiple classes including faces, bodies,
and places. To create a map of multi-class
selectivity, we follow prior work and thresh-
old the d metric at 0.85, considered a ‘strong
effect’ (Sawilowsky, 2009) and computed to
be to be equivalent to a threshold of 0.65
for noisy neural recordings in monkeys (H.
Lee et al., 2020). In the plot we observe an
overlap of neurons with selectivity to faces
and bodies, as seen in prior computational work (H. Lee et al., 2020) and fMRI
studies (Pinsk et al., 2005b; K. Weiner and Grill-Spector, 2011). In Figure A.1 of
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Section A.3, we see that the size and relative placement of these clusters is again
consistent across multiple random initalizations.

Impact of Topography on Model Performance

To measure the impact of the imposed topographic organization on the above mod-
els, and ensure the learned representations are not degenerate, we compare the model
performance of the TDANN and TVAE with their respective non-topographic coun-
terparts. Although the models in this study were not tuned to maximize such
performance, we observe that both topographic models perform similarly to their
non-topographic counterparts. Specifically the TDANN achieves 40.5% top-1 accu-
racy on the Imagenet validation set (+ 1 face class) versus the 45.5% top-1 accuracy
of an identically trained model without spatial correlation loss. Similarly, a baseline
VAE of the same architecture as the TVAE achieves roughly 3.4 bits per dimension
(BPD) while the Topographic VAE achieves roughly 3.6 BPD in the same number of
iterations. These results appear consistent with the intuition that topographic orga-
nization does not prevent learning, but rather acts as an inductive bias on the model,
regularizing its performance. In Chapter 5 we will study a situation where this reg-
ularization effect is more accurately aligned with the data distribution, specifically
in the case of data with known symmetries, and show how it can be beneficial for
improved model performance.

Locally Distributed Activations

To understand better how exactly individual images are represented by the TVAE,
we present the activation maps corresponding to a single image from an array of
classes in Figure 4.4. We see the representation of each image is still distributed,
but most strongly activates in the associated category-selective region.

Figure 4.4: Activations for single images. Left to Right: Animate, Inanimate, Faces,
Places, & Hands
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Nested Spatial Hierarchy of Categories

Following Y. Zhang et al. (2021) we additionally measure the selectivity maps of
our TVAE model with respect to more abstract categories such as animacy and real-
world object size, obtaining such datasets from the Konkle lab database (Konkle and
Oliva, 2012; Konkle and Caramazza, 2013). Specifically, Figure 4.5 shows Cohen’s
d maps (from−1 to +1) for animate versus inanimate objects (top), and for big versus
small objects (middle), overlayed on the face versus object map (bottom). At the
largest scale, we observe an intuitive overlap of spatial maps, specifically inanimate
objects, large objects, and the place cluster from Figure 4.3 all overlap in the top left
and right corners of the map. We additionally highlight the maximum activating
neurons for three separate input images. We see the image of a red dresser activates
a region which is simultaneously selective to places, large, and inanimate objects,
echoing the nested spatial hierarchies thought by Grill-Spector and K. S. Weiner
(2014) to exist in the brain. In Section A.3, we again see that such a hierarchy
appears consistently across four random initalizations.

4.8. Discussion

In this chapter we have introduced a new model to the class of topographic generative
models capable of integration with deep artificial neural networks. In doing so, we
have demonstrated the ability topographic generative models, namely Topographic
Variational Autoencoders, to model the emergence of category-selective cortical
areas as well as more abstract spatial category hierarchies. We see the model
agrees qualitatively with prior work and observations from neuroscience while
being founded on a single information theoretic principle.

We note that this study is inherently preliminary and is limited by both the small size
of the models used, as well as the feature extraction by a pre-trained convolutional
model. It is possible that class-level features and even hierarchical organization are
already partially present in some form in the 9216-dimensional feature vectors used
as input, and thus it is unclear how much feature extraction the TVAE model is itself
learning. Nevertheless, we highlight that there is nothing fundamentally limiting
the TVAE framework from extending to train full deep convolutional networks
end-to-end. This is in contrast to the existing related methods which require a
supplementary learning signal to guide feature extraction (H. Lee et al., 2020).

In future work, we intend to explore hierarchical extensions of the TVAE, model-
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Figure 4.5: Selectivity maps for abstract categories: Animate vs. Inanimate (top),
Small vs. Big (middle), and Faces vs. Objects (bottom). We highlight the maxi-
mum activating neurons for the individual images from Figure 4.4 across all maps,
demonstrating their place in the proposed nested spatial hierarchy.

ing topographic organization of features at multiple levels of the visual processing
pipeline while simultaneously training directly on raw pixel inputs. Such a model
would validate the idea of end-to-end unsupervised category-selectivity while si-
multaneously providing a learned decoder from latent space to image space, opening
new avenues for experimentation.



Part II

Spatio-Temporal Structure
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C h a p t e r 5

SPATIO-TEMPORAL COHERENCE INDUCES EQUIVARIANT
CAPSULES

5.1. Introduction

In the previous chapter we have seen how the principle of redundancy reduction may
be operationalized in order to build models which exhibit topographic organization
reminiscent of that seen in natural systems. In this chapter we seek to explore an
alternative link between such natural representational structure and computational
theories in the machine learning community. Specifically, in this chapter we seek to
investigate a second almost independant body of literature which has studied the idea
of “equivariance” of neural network feature maps under symmetry transformations.

In the context of deep neural networks, the idea of equivariance is that symmetry
transformations define equivalence classes as the orbits of their transformations,
and we wish to maintain this structure in the deeper layers of a neural network.
For instance, for images, asserting a rotated image contains the same object for all
rotations, the transformation of rotation then defines an orbit where the elements of
that orbit can be interpreted as pose or angular orientation. When an image is pro-
cessed by a neural network, we want features at different orientations to be able to be
combined to form new features, but we want to ensure the relative pose information
between the features is preserved for all orientations. This has the advantage that
the equivalence class of rotations for the complex composite features is guaranteed
to be maintained, allowing for the extraction of invariant features, a unified pose,
and increased data efficiency. Such ideas are reminiscent of the capsule networks
of Hinton et al. (Geoffrey E. Hinton, Krizhevsky, et al., 2011b; Geoffrey E Hin-
ton, Sabour, et al., 2018; Sabour et al., 2017), and indeed formal connections to
equivariance have been made (Lenssen et al., 2018). Interestingly, by explicitly
building neural networks to be equivariant, we additionally see geometric organiza-
tion of activations into these equivalence classes, and further, the elements within
an equivalence class are seen to exhibit higher-order non-Gaussian dependencies
similar to those which motivated the development of topographic generative models
in the previous chapter (Lyu and E. P. Simoncelli, 2008; Lyu and E. P. Simoncelli,
2009b; Wainwright and E. P. Simoncelli, 2000; Wainwright, E. P. Simoncelli, and
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Willsky, 2001). The insight of this connection between topographic organization
and equivariance hints at a possibility to encourage approximate equivariance from
an induced topology in feature space.

To build a model which may be able to unify these ideas in a more explicit way, we
need to ask what mechanisms could induce topographic organization of observed
symmetry transformations specifically? We have shown that removing dependen-
cies between latent variables is a possible mechanism for creating spatial structure;
however, to obtain the more structured organisation of equivariant capsule repre-
sentations which naturally operate over time, we can see that we will need our
mechanism to be spatio-temporal rather than simply spatial. The usual approach is
to hard-code this structure into the network, or to encourage it through regularization
terms (Benton et al., 2020; Diaconu and D. Worrall, 2019a). To achieve this same
structure unsupervised, we propose to incorporate another key inductive bias: “tem-
poral coherence” (Földiák, 1991; Hurri and Aapo Hyvärinen, 2003; Stone, 1996;
Wiskott and Terrence J Sejnowski, 2002). The principle of temporal coherence, or
“slowness”, asserts than when processing correlated sequences, we wish for our rep-
resentations to change smoothly and slowly over space and time. Thinking of time
sequences as symmetry transformations on the input, we desire features undergoing
such transformations to be grouped into equivariant capsules. We therefore suggest
that encouraging slow feature transformations to take place within a capsule could
induce such grouping from sequences alone.

In the following sections we will explain the details of our Spatio-Temporally Co-
herent Variational Autoencoder which lies at the intersection of topographic or-
ganization, equivariance, and temporal coherence, thereby learning approximately
equivariant capsules from sequence data completely unsupervised.

5.2. Related Work

Prior work on learning equivariant and invariant representations has a deep relation-
ship with the generative model presented in this chapter. Specifically, Independant
Subspace Analysis (Aapo Hyvärinen and P. Hoyer, 2000; Stühmer et al., 2019),
models involving temporal coherence (Földiák, 1991; Hurri and Aapo Hyvärinen,
2003; Stone, 1996; Wiskott and Terrence J Sejnowski, 2002), and Adaptive Sub-
space Self Organizing Maps (Kohonen, 1996) have all demonstrated the ability to
learn invariant feature subspaces and even ‘disentangle’ space and time (Grathwohl
and Wilson, 2016; Stühmer et al., 2019). Our work assumes a similar generative
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model to these works while leveraging the Topographic Variational Autoencoder
from the previous chapter to further allow for more efficient estimation of the model
through variational inference (Kingma and Max Welling, 2014; D. J. Rezende et al.,
2014).

Another line of work has focused on constructing neural networks with equivariant
representations separate from the framework of generative modeling. Early work
in this space includes the Gaussian scale mixtures of Wainwright and E. P. Simon-
celli (2000), and ensuing variants (Lyu and E. P. Simoncelli, 2009b; Portilla et al.,
2003; Wainwright, E. P. Simoncelli, and Willsky, 2001). Such models were con-
structed specifically with the statistical correlation of transformation group elements
in mind, and leveraged this correlation to define some of the first highly successful
equivariant representations for image processing (E. Simoncelli and Freeman, n.d.).
More recently, analytically equivariant networks such as Group Equivariant Neural
Networks (T. Cohen and Max Welling, 2016a), and other extensions (T. Cohen and
M. Welling, 2017; Finzi, Stanton, et al., 2020; Finzi, Max Welling, et al., 2021;
Pol et al., 2020; Ravanbakhsh et al., 2017; Weiler, Geiger, et al., 2018; D. Worrall
and Max Welling, 2019a; D. E. Worrall et al., 2017) propose to explicitly enforce
symmetry to group transformations in neural networks through structured weight
sharing. Alternatively, others propose supervised and self-supervised methods for
learning equivariance or invariance directly from the data itself (Benton et al., 2020;
Connor et al., 2021; Diaconu and D. Worrall, 2019a). One related example in this
category uses a group sparsity regularization term to similarly learn topographic
features for the purpose of modeling invariance (Kavukcuoglu et al., 2009). We
believe the Spatio-temporal Variational Autoencoder presented in this chapter is
another promising step in the direction of learning approximate equivariance, and
may even hint at how such structure could be learned in biological neural networks.

Furthermore, the idea of disentangled representations (Bengio, Courville, et al.,
2013) has also been been connected to equivariance and representation theory in
multiple recent papers (Bouchacourt et al., 2021; Taco S. Cohen and Max Welling,
2015; T. Cohen and Max Welling, 2014; Higgins, Amos, et al., 2018). Our work
shares a fundamental connection to this distributed operator definition of disentan-
glement, where the slow roll of capsule activations can be seen as the latent operator.
Recently, the authors of (D. A. Klindt et al., 2021) demonstrated that incorporating
the principle of ‘slowness’ in a variational autoencoder (VAE) yields the ability to
learn disentangled representations from natural sequences. While similar in mo-
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tivation, the generative model proposed in (D. A. Klindt et al., 2021) is unrelated
to topographic organization and equivariance, and is more aligned with traditional
notions of disentanglement.

5.3. The Generative Model

In this chapter, following the ideas of temporal coherence introduced by (Földiák,
1991), we will extend the Topographic VAE from the previous chapter by extend-
ing topographic neighborhoods over timesteps of an observed transformation and
thereby encouraging the unsupervised learning of approximately equivariant sub-
spaces we call ‘capsules’.

Capsules as Disjoint Topologies

First let us recall the Topographic VAE formulation from Section 4.5 and specifically
the construction of the topographic product of student’s-t random variable from
Equation 4.6: (T =

Z−𝜇√
WU2 ). In this construction, the setting of the neighborhood

structure W defines the correlations between 𝑇𝑖 variables, effectively defining the
topology of the latent variable landscape.

One setting of neighborhood structure W which is of particular interest to this
work is when there exist multiple sets of disjoint neighborhoods. Statistically, the
variables of two disjoint topologies are completely independent. An example of
a capsule neighborhood structure is shown in Figure 5.1. The idea of indepen-
dant subspaces has previously been shown to learn invariant feature subspaces in
the linear setting and is present in early work on Independent Subspace Analysis
(Aapo Hyvärinen and P. Hoyer, 2000) and Adaptive Subspace Self Organizing Maps
(ASSOM) (Kohonen, 1996). It is also very reminiscent of the transformed sets of
features present in a group equivariant convolutional neural network. In the next
section, we will show how temporal coherence can be leveraged to induce the en-
coding of observed transformations into the internal dimensions of such capsules
thereby yielding unsupervised approximately equivariant capsules.

Temporal Coherence and Learned Equivariance

We now describe how the induced topographic organization can be leveraged to
learn a basis of approximately equivariant capsules for observed transformation
sequences. The resulting representation is composed of a large set of ‘capsules’
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Figure 5.1: An example of a neighborhood structure which induces disjoint topolo-
gies (aka capsules). Lines between variables 𝑇𝑖 indicate that sharing of𝑈𝑖, and thus
correlation.

where the dimensions inside the capsule are topographically structured, but between
the capsules there is independence. To benefit from sequences of input, we encourage
topographic structure over time between sequentially permuted activations within a
capsule, a property we refer to as shifting temporal coherence.

Temporal Coherence

Temporal Coherence can be measured as the correlation of squared activation be-
tween time steps. One way we can achieve this in our model is by having 𝑇𝑗
share 𝑈𝑖 between time steps. Formally, the generative model is identical to Equa-
tion 4.1, factorizing over timesteps denoted by subscript 𝑙, i.e. 𝑝X𝑙 ,T𝑙 (x𝑙 , t𝑙) =

𝑝X𝑙 |T𝑙 (x𝑙 |t𝑙)𝑝T𝑙 (t𝑙). However, T𝑙 is now a function of a sequence {U𝑙+𝛿}𝐿𝛿=−𝐿:

T𝑙 =
Z𝑙 − 𝜇√︃

W
[
U2
𝑙+𝐿; · · · ; U2

𝑙−𝐿
] (5.1)

Where
[
U2
𝑙+𝐿; · · · ; U2

𝑙−𝐿
]

denotes vertical concatenation of the column vectors U𝑙 ,
and 2𝐿 can be seen as the window size. We see that the choice of W now defines
correlation structure over time. In prior work on temporal coherence (denoted
‘Bubbles’ (A. Hyvärinen et al., 2004)), the grouping over time is such that a given
variable 𝑇𝑙,𝑖 has correlated energy with the same spatial location (𝑖) at a previous
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time step (𝑙 − 1)
(
i.e. cov(𝑇2

𝑙,𝑖
, 𝑇2
𝑙−1,𝑖) > 0

)
. This can be implemented as:

W
[
U2
𝑙+𝐿; · · · ; U2

𝑙−𝐿
]
=

𝐿∑︁
𝛿=−𝐿

W𝛿U2
𝑙+𝛿 (5.2)

Where W𝛿 defines the topography for a single timestep, and is typically the same
for all timesteps.

Learned Equivariance with Shifting Temporal Coherence

In our model, instead of requiring a single location to have correlated energies
over a sequence, we would like variables at sequentially permuted locations within
a capsule to have correlated energy between timesteps

(
cov(𝑇2

𝑙,𝑖
, 𝑇2
𝑙−1,𝑖−1) > 0

)
.

Similarly, this can be implemented as:

W
[
U2
𝑙+𝐿; · · · ; U2

𝑙−𝐿
]
=

𝐿∑︁
𝛿=−𝐿

W𝛿Roll𝛿 (U2
𝑙+𝛿) (5.3)

Where Roll𝛿 (U2
𝑙+𝛿) denotes a cyclic permutation of 𝛿 steps along the capsule dimen-

sion. The exact implementation of Roll can be found in Appendix Section B.1. As
we will show in Section 5.5, TVAE models with such a topographic structure learn
to encode observed sequence transformations as Rolls within the capsule dimension,
analogous to a group equivariant neural network where 𝜏𝑔 and Roll1 can be seen as
the action of the transformation 𝑔 on the input and output spaces respectively.

5.4. The Spatio-Temporally Coherent VAE

To train the parameters of the generative model, identical to Section 4.5, we build
a variational autoencoder architecture capable of inferring t using two separate
approximate posteriors for u and z. Explicitly:

𝑞𝜙 (z𝑙 |x𝑙) = N
(
z𝑙 ; 𝜇𝜙 (x𝑙), 𝜎𝜙 (x𝑙)I

)
𝑝𝜃 (x𝑙 |𝑔𝜃 (t𝑙)) = 𝑝𝜃 (x𝑙 |𝑔𝜃 (z𝑙 , {u𝑙})) (5.4)

𝑞𝛾 (u𝑙 |x𝑙) = N
(
u𝑙 ; 𝜇𝛾 (x𝑙), 𝜎𝛾 (x𝑙)I

)
t𝑙 =

z𝑙 − 𝜇√︃
W

[
u2
𝑙+𝐿; · · · ; u2

𝑙−𝐿
] (5.5)

To distinguish this model from the Topographic VAE in the previous chapter, we
denote it the Spato-Temporally Coherent Topographic VAE (STC-TVAE) due to
its reliance on a new form of (shifting) temporal coherence which moves over
topographic space with respect to time. In this chapter, we will often refer to the
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model simply as the TVAE given it can be seen as a generalization of the original
model with an additional hyper-parameter 𝐿. We then optimize the parameters
𝜃, 𝜙, 𝛾 (and 𝜇) through the ELBO, summed over the sequence length 𝑆:

𝑆∑︁
𝑙=1
E𝑄𝜙,𝛾 (z𝑙 ,u𝑙 | {x𝑙 })

(
[log 𝑝𝜃 (x𝑙 |𝑔𝜃 (t𝑙))] − 𝐷𝐾𝐿 [𝑞𝜙 (z𝑙 |x𝑙) | |𝑝Z(z𝑙)] − 𝐷𝐾𝐿 [𝑞𝛾 (u𝑙 |x𝑙) | |𝑝U(u𝑙)]

)
(5.6)

where 𝑄𝜙,𝛾 (z𝑙 , u𝑙 |{x𝑙}) = 𝑞𝜙 (z𝑙 |x𝑙)
∏𝐿
𝛿=−𝐿 𝑞𝛾 (u𝑙+𝛿 |x𝑙+𝛿), and {·} denotes a set over

time. In Figure 5.2 below, we include an overview of this model and how the Roll
operation in the capsule space then corresponds to a transformation in the input
space.

Figure 5.2: Overview of the Spatio-Temporally Coheret Topographic VAE. The
combined color/rotation transformation in input space 𝜏𝑔 becomes encoded as a
Roll within the capsule dimension. The model is thus able decode unseen sequence
elements by encoding a partial sequence and Rolling activations within the capsules.
We see this resembles a commutative diagram.

5.5. Experiments

In the following experiments, we demonstrate the viability of the Spatio-Temporally
Coherent Topographic VAE as a novel method for learning approximately equivari-
ant capsules by computing an ‘equivariance loss’ and a correlation metric inspired
by the disentanglement literature. We show that equivariant capsule models yield
higher likelihood than baselines on test sequences, and qualitatively support these
results with visualizations of sequences reconstructed purely from Rolled capsule
activations.
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Evaluation Methods

As depicted in Figure 5.2, we make use of capsule traversals to qualitatively visualize
the transformations learned by our network. Simply, these are constructed by
encoding a partial sequence into a t0 variable, and decoding sequentially Rolled
copies of this variable. Explicitly, in the top row we show the data sequence {x𝑙}𝑙 ,
and in the bottom row we show the decoded sequence: {𝑔𝜃 (Roll𝑙 (t0))}𝑙 .

To measure equivariance quantitatively, we measure an equivariance error similar
to (Diaconu and D. Worrall, 2019a). The equivariance error can be seen as the
difference between traversing the two distinct paths of the commutative diagram, and
provides some measure of how precisely the function and the transform commute.
Formally, for a sequence of length 𝑆, and t̂ = t/| |t| |2, the error is defined as:

E𝑒𝑞 ({t𝑙}𝑆𝑙=1) =
𝑆−1∑︁
𝑙=1

𝑆−𝑙∑︁
𝛿=1

����Roll𝛿 (t̂𝑙) − t̂𝑙+𝛿
����

1 (5.7)

Additionally, inspired by existing disentanglement metrics, we measure the degree
to which observed transformations in capsule space are correlated with input trans-
formations by introducing a new metric we call CapCorr𝑦. Simply, this metric
computes the correlation between the amount of observed Roll of a capsule’s activa-
tion at two timesteps 𝑙 and 𝑙 + 𝛿, and the shift of the ground truth generative factors
𝑦𝑙 in that same time. Formally, for a correlation coefficient Corr:

CapCorr(t𝑙 , t𝑙+𝛿, 𝑦𝑙 , 𝑦𝑙+𝛿) = Corr (argmax [t𝑙 ★ t𝑙+𝛿] , |𝑦𝑙 − 𝑦𝑙+𝛿 |) (5.8)

Where ★ is discrete periodic cross-correlation across the capsule dimension, and
the correlation coefficient is computed across the entire dataset. We see the argmax
of the cross-correlation is an estimate of the degree to which a capsule activation
has shifted from time 𝑙 to 𝑙 + 𝛿. To extend this to multiple capsules, we can replace
the argmax function with the mode of the argmax computed for all capsules. We
provide additional details and extensions of this metric in Appendix Section B.1. For
measuring capsule-metrics on baseline models which do not naturally have capsules,
we simply arbitrarily divide the latent space into a fixed set of corresponding capsules
and capsule dimensions, and provide such results as equivalent to ‘random baselines’
for these metrics.

Learning Equivariant Capsules

In the following experiments, we provide evidence that the Topographic VAE can be
leveraged to learn equivariant capsules by incorporating shifting temporal coherence
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into a 1D baseline topographic model. We compare against two baselines: standard
normal VAEs and models that have non-shifting ‘stationary’ temporal coherence as
defined in Equation 5.2 (denoted ‘BubbleVAE’ (A. Hyvärinen et al., 2004)).

In all experiments we use a 3-layer MLP with ReLU activations for both encoders
and the decoder. We arrange the latent space into 15 circular capsules each of
15-dimensions for dSprites (Matthey et al., 2017), and 18 circular capsules each
of 18-dimensions for MNIST. Example sequences {x𝑙}𝑆𝑙=1 are formed by taking
a random initial example, and sequentially transforming it according to one of
the available transformations: (X-Pos, Y-Pos, Orientation, Scale) for dSprites, and
(Color, Scale, Orientation) for MNIST. All transformation sequences are cyclic such
that when the maximum transformation parameter is reached, the subsequent value
returns to the minimum. We denote the length of a full transformation sequence
by 𝑆, and the time-extent of the induced temporal coherence (i.e. the length of the
input sequence) by 2𝐿. For simplicity, both datasets are constructed such that the
sequence length 𝑆 equals the capsule dimension (for dSprites this involves taking a
subset of the full dataset and looping the scale 3-times for a scale-sequence). Exact
details are in Appendix Sections B.1 & B.1.

In Figure 5.3, we show the capsule traversals for TVAE models with 𝐿 ≈ 1
3𝑆. We

see that despite the t0 variable encoding only 2
3 of the sequence, the remainder

of the transformation sequence can be decoded nearly perfectly by permuting the
activation through the full capsule – implying the model has learned to be approx-
imately equivariant to full sequences while only observing partial sequences per
training point. Furthermore, we see that the model is able to successfully learn all
transformations simultaneously for the respective datasets.

Figure 5.3: Capsule Traversals for TVAE models on dSprites and MNIST. The
top rows show the encoded sequences (with greyed-out images held-out), and the
bottom rows show the images generated by decoding sequentially Rolled copies of
the initial activation t0 (indicated by a grey border).

Capsule traversals for the non-equivariant baselines, as well as TVAEs with smaller
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values of 𝐿 (which only learn approximate equivariance to partial sequences) are
shown in Appendix Section B.4. We note that the capsule traversal plotted in Figure
5.2 demonstrates a transformation where color and rotation change simultaneously,
differing from how the models in this section are trained. However, as we describe
in more detail in Section B.2, we observe that TVAEs trained with individual
transformations in isolation (as in this section) are able to generalize, generating
sequences of combined transformations when presented with such partial input
sequences at test time. We believe this generalization capability to be promising
for data efficiency, but leave further exploration to future work. Additional capsule
traversals with such unseen combined transformations are shown in Section B.2 and
further complex learned transformations (such as perspective transforms) are shown
at the end of Section B.4.

For a more quantitative evaluation, in Table 5.1 we measure the equivariance error
and log-likelihood (reported in nats) of the test data under our trained MNIST models
as estimated by importance sampling with 10 samples. We observe that models
which incorporate temporal coherence (BubbleVAE and TVAE with 𝐿 > 0) achieve
low equivariance error, while the TVAE models with shifting temporal coherence
achieve the highest likelihood and the lowest equivariance error simultaneously.

Table 5.1: Log Likelihood and Equivariance Error on MNIST for different settings
of temporal coherence length 𝐿 relative to sequence length 𝑆. Mean ± std. over 3
random initalizations.

Model TVAE TVAE TVAE BubbleVAE VAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 5
36𝑆 𝐿 = 0 𝐿 = 5

36𝑆 𝐿 = 0

log 𝑝(x) ↑ −186.8 ± 0.1 −186.0 ± 0.7 -218.5± 0.9 -191.4 ± 0.5 -189.0 ± 0.8
E𝑒𝑞 ↓ 574 ± 2 3247 ± 3 3217 ± 105 3370 ± 12 13274 ± 1

To further understand how capsules transform for observed input transformations,
in Table 5.2 we measure E𝑒𝑞 and the CapCorr metric on the dSprites dataset for the
four proposed transformations. We see that the TVAE with 𝐿 ≥ 1

3𝑆 achieves perfect
correlation – implying the learned representation indeed permutes cyclically within
capsules for observed transformation sequences. Further, this correlation gradually
decreases as 𝐿 decreases, eventually reaching the same level as the baselines. We
also see that, on both datasets, the equivariance losses for the TVAE with 𝐿 = 0
and the BubbleVAE are significantly lower than the baseline VAE, while conversely,
the CapCorr metric is not significantly better. We believe this to be due to the
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fundamental difference between the metrics: E𝑒𝑞 measures continuous L1 similarity
which is still low when a representation is locally smooth (even if the change of the
representation does not follow the observed transformation), whereas CapCorr more
strictly measures the correspondence between the transformation of the input and the
transformation of the representation. In other words, E𝑒𝑞 may be misleadingly low
for invariant capsule representations (as with the BubbleVAE), whereas CapCorr
strictly measures equivariance.

Table 5.2: Equivariance error (E𝑒𝑞 ↓) and correlation of observed capsule roll with
ground truth factor shift (CapCorr ↑) for the dSprites dataset. Mean ± standard
deviation over 3 random initalizations.

Model TVAE TVAE TVAE TVAE BubbleVAE VAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 1
3𝑆 𝐿 = 1

6𝑆 𝐿 = 0 𝐿 = 1
3𝑆 𝐿 = 0

CapCorr𝑋 ↑ 1.0 ± 0 1.0 ± 0 0.67 ± 0.02 0.17 ± 0.03 0.13 ± 0.01 0.18 ± 0.01
CapCorr𝑌 ↑ 1.0 ± 0 1.0 ± 0 0.66 ± 0.02 0.21 ± 0.02 0.12 ± 0.01 0.16 ± 0.01
CapCorr𝑂 ↑ 1.0 ± 0 1.0 ± 0 0.52 ± 0.01 0.09 ± 0.01 0.10 ± 0.01 0.11 ± 0.00
CapCorr𝑆 ↑ 1.0 ± 0 1.0 ± 0 0.42 ± 0.01 0.51 ± 0.01 0.50 ± 0.00 0.52 ± 0.00

E𝑒𝑞 ↓ 344 ± 5 1034 ± 6 2549 ± 38 2971 ± 9 1951 ± 34 6934 ± 0

5.6. Building a Forward Predictive Model

From this analysis, there are two clear extensions that can be made to make the
model more amenable to traditional sequence modeling while additionally including
additional priors from the neuroscience community.

First, considering the inputs {x𝑙}𝑆𝑙=0 to our model as a time-sequence, it would be
beneficial if the model did not ‘look into the future’ when reconstructing the current
time step. A visualization of this can be seen in Figure 5.2, where the model is
aiming to reconstruct the green ‘7’ digit in the center, but it uses the blue digits ‘in
the future’ in order to encode the denominator of the T variable. We would therefore
like to impose a constraint on the model to only consider ‘past’ observations when
reconstructing the present. In the computer vision and natural language processing
literature, this constraint on a convolution operator is called making the convolution
‘causal’, and it is mainly used when a convolutional model is being used in sequence
modeling. In our model, since we use convolutions in practice in order to define
the neighborhood structure W , it is therefore relatively easy to implement such a
constraint.
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Secondly, one well known generative modeling framework in the theoretical neuro-
science literature is that of predictive coding (Elias, 1955; Rao and Ballard, 1999; K.
Friston, 2005; Clark, 2013). At a high level, predictive coding denotes a framework
by which the cortex is a generative model of sensory inputs, and has been linked
to probabilistic latent variable models such as VAEs (Marino, 2020). Substantial
evidence has been gathered supporting the existence of some form of predictive
coding in the brain (Alink et al., 2010; Ouden et al., 2010; Egner et al., 2010),
and numerous computational models have been proposed which replicate empirical
observations (Rao and Ballard, 1999; Lotter et al., 2018; G. B. Keller and Mrsic-
Flogel, 2018). Given these computational successes, and the mounting support for
such a mechanism underlying biological intelligence, we seek to understand if there
may be a relationship between predictive coding and Topographic VAEs.

In the context of the Topographic VAE, since our ‘sensory input’ is entirely visual,
we can define our prediction goal as a simple forward predictive model of future
observations. Given that in the previous sections we have already introduced a
model with spato-temporally organized capsules, we see that our model will there-
fore permit efficient forward prediction through simple forward rolling of capsule
activations. Leveraging such forward prediction to create a generative model of the
immediate future permits online learning and inference in the TVAE, increasing
flexibility of the original model. Furthermore, as we demonstrate empirically in
this section, such a model is able to more accurately predict the immediate future,
while simultaneously retaining the learned equivariance properties afforded by the
original Spatio-Temporally Coherent TVAE. At a high level, our goal is thus to
modify the model in Figure 5.2 to look more like the model in Figure 5.4, which we
denote the Predictive Coding Topographic VAE.

In detail, we accomplish this through two changes to the STC-TVAE from earlier
in this section – we make the conditional generative distribution forward predictive,
and limit the temporal coherence window to only include past variables.

Past Temporal Coherence

As mentioned in the Section 5.3, the Spatio-Temporally Coherent Topographic VAE
takes advantage of the generalized framework of topographic generative models to
induce structured correlations of activations over time – thereby achieving equiv-
ariance. To limit these correlations to only include past variables, we define T𝑙 as a
function of a sequence {U𝑙−𝛿}𝐿𝛿=0, defining W to connect sequentially rolled copies
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Figure 5.4: Overview of the Predictive Coding Topographic VAE. The transforma-
tion in input space 𝜏𝑔 becomes encoded as a Roll within the equivariant capsule
dimension. The model is thus able to forward predict the continuation of the se-
quence by encoding a partial sequence and rolling activations within the capsules.

of past U𝑙 :

T𝑙 =
Z𝑙 − 𝜇√︃

W
[
U2
𝑙
; · · · ; U2

𝑙−𝐿
] (5.9)

where
[
U2
𝑙
; · · · ; U2

𝑙−𝐿
]

denotes vertical concatenation of the column vectors U𝑙 , and
𝐿 can be seen as the past window size. Then, by careful definition of W, we can
achieve the same ‘shifting temporal coherence’, defined above, yielding equivariant
capsules. Explicitly, W is thus given by:

W
[
U2
𝑙 ; · · · ; U2

𝑙−𝐿
]
=

𝐿∑︁
𝛿=0

W𝛿Roll𝛿 (U2
𝑙−𝛿) (5.10)

where W𝛿 defines a set of disjoint ‘capsule’ topologies for each time-step, and
Roll𝛿 (U2

𝑙−𝛿) denotes a cyclic permutation of 𝛿 steps along the capsule dimension.

The Predictive Coding TVAE

Finally, as before, we use 5.9 to parameterize an approximate posterior for t𝑙 in terms
of a deterministic transformation of approximate posteriors over simpler Gaussian
latent variables z𝑙 and u𝑙 :

𝑞𝜙 (z𝑙 |x𝑙) = N
(
z𝑙 ; 𝜇𝜙 (x𝑙), 𝜎𝜙 (x𝑙)I

)
(5.11)

𝑞𝛾 (u𝑙 |x𝑙) = N
(
u𝑙 ; 𝜇𝛾 (x𝑙), 𝜎𝛾 (x𝑙)I

)
(5.12)

t𝑙 =
z𝑙 − 𝜇√︃

W
[
u2
𝑙
; · · · ; u2

𝑙−𝐿
] (5.13)
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Additionally, to further encourage the capsule Roll as the forward prediction oper-
ator, we integrate a capsule Roll of t𝑙 by one unit as the first step of the generative
model, before decoding x𝑙+1:

𝑝𝜃 (x𝑙+1 |𝑔𝜃 (t𝑙)) = 𝑝𝜃 (x𝑙+1 |𝑔̂𝜃 (Roll1 [t𝑙])) (5.14)

We denote this model the Predictive Coding Topographic VAE (PCTVAE) and
present an overview of forward prediction in Figure 5.2. We optimize the parameters
𝜃, 𝜙, 𝛾 (and 𝜇) through the ELBO, summed over the sequence length 𝑆:

𝑆∑︁
𝑙=1
E𝑄𝜙,𝛾 (z𝑙 ,u𝑙 |{x})

(
log 𝑝𝜃 (x𝑙+1 |𝑔̂𝜃 (Roll1 [t𝑙]))

− 𝐷𝐾𝐿 [𝑞𝜙 (z𝑙 |x𝑙) | |𝑝Z(z𝑙)]

− 𝐷𝐾𝐿 [𝑞𝛾 (u𝑙 |x𝑙) | |𝑝U(u𝑙)]
)

(5.15)

where 𝑄𝜙,𝛾 (z𝑙 , u𝑙 |{x}) = 𝑞𝜙 (z𝑙 |x𝑙)
∏𝐿
𝛿=0 𝑞𝛾 (u𝑙−𝛿 |x𝑙−𝛿). The fundamental differ-

ences of this model with the TVAE are that this model is trained to maximize the
likelihood of future inputs through the Roll operation present in the ELBO, and that
the construction of t𝑙 is now only a function of past inputs. As we will demonstrate
in the next subsection, these extensions yield significant improvements to sequence
modeling, while simultaneously increasing flexibility by allowing for online training
and inference.

In the following subsections we measure the performance of our model, compared
with the original TVAE and a standard VAE baselines, on the transforming color
MNIST dataset from the previous section. We additionally use the same model
architectures as before for valid comparison.

Forward Prediction Likelihood

To quantitatively measure the ability of the PCTVAE to predictively model se-
quences, we train the model to maximize Equation 5.15 with stochastic gradient
descent, and measure the likelihood of held-out test sequences, with only partial
sequences as input. Explicitly, for both the (STC)-TVAE and PCTVAE, a win-
dow size of 9 observations are provided as input and used to generate a capsule
representation t0. The likelihood of the remaining 9 sequence elements is then
measured by sequentially rolling the capsule activations forward, and measuring
𝑝𝜃 (x𝛿t |𝑔𝜃 (Roll𝛿𝑡 (t0))) for 𝛿𝑡 ∈ {0, ..., 9}. The final reported likelihood values are
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NLL NLL E𝑒𝑞
@ 𝛿𝑡 = 0 Avg. Seq. Avg. Seq.

VAE 190 ± 1 N/A 13274 ± 0
TVAE 187 ± 1 452 ± 16 2122 ± 21
PCTVAE 207 ± 1 232 ± 1 2201 ± 9

Table 5.3: Neg. log-likelihood (NLL in nats) without forward prediction (𝛿𝑡 =

0), NLL averaged over the forward predicted sequence, and equivariance error
E𝑒𝑞 for a non-topographic VAE, TVAE, and PCTVAE. The PCTVAE achieves the
lowest average NLL over the forward predicted sequence while also maintaining
low equivariance error. Mean ± std. over 3 random initalizations.

computed by importance sampling with 10 samples. In Table 5.3 we report the
average log-likelihood over this forward predicted sequence for both the TVAE of
Section 5.4 and the PCTVAE, in addition to the log-likelihood at 𝛿𝑡 = 0 (no for-
ward prediction) with a standard VAE. We see the PCTVAE achieves a significantly
lower average negative likelihood in the forward prediction task, while maintaining
a similar level of approximate equivariance as measured by the equivariance error
E𝑒𝑞. We omit the baseline VAE for the sequence likelihood measurements since it
has no defined forward prediction operation.

In Figure 5.5, we plot the likelihood of future sequence elemets as a function of the
forward time offset 𝛿𝑡 . As can be seen, the TVAE model has a marginally higher
likelihood for 𝛿𝑡 = 0, but its forward predictive performance rapidly deteriorates
as the capsule is rolled forward. Conversely, the PCTVAE is observed to obtain
consistently high likelihoods on forward prediction up to 8 steps into the future of the
sequence, implying it has learned to capture the transformation sequence structure
more accurately. Interestingly, despite the TVAE actually being provided with an
input window extending to 𝛿𝑡 ≤ 4 (as seen in Figure 5.6 right), the PCTVAE yields
significantly higher likelihoods even for these immediate-future observations.

Sequence Generation

As a qualitative evaluation of the PCTVAE’s sequence modeling capacity, we show
forward predicted sequences generated by both models in Figure 5.6. The top row
shows the input sequence with grey images held out, and the lower row shows the
forward predicted sequence, generated by sequentially rolling the representation t0

forward, and decoding at each step. As can be seen, the PCTVAE (left) appears
to generate sequences which are more coherent with the provided input sequence,
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Figure 5.5: Forward prediction log-likelihood vs. future time offset 𝛿𝑡 . We see that
the PCTVAE has consistently high likelihood for sequence elements into the future
whereas the likelihood of the TVAE model drops off rapidly. Shading denotes ± 1
std.

while the TVAE (right) is observed to quickly diverge from the true transformation,
in agreement with likelihood values of Figure 5.5.

Figure 5.6: Forward predicted trajectories from the Predictive Coding TVAE (left)
and the original TVAE (right). The images in the top row show the true input
transformation, with greyed out images being held out. The lower row then shows the
reconstruction, constructed by starting at t0, and progressively rolling the capsules
forward to decode the remainder of the sequence. We see the PCTVAE is able to
predict sequence transformations accurately, while the TVAE forward predictions
slowly lose coherence with the input sequence.

5.7. Future Work & Limitations

In future work, it would be valuable to explore the ability of the models introduced
in this section to learn more realistic transformations from natural data, such as from
the Natural Sprites dataset (D. A. Klindt et al., 2021). Furthermore, it would be inter-
esting to further investigate the downstream computational benefits gained from the
learned equivariant capsule representation. Specifically, further study of the TVAE
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both with and without temporal coherence in terms of the sample complexity, semi-
supervised classification accuracy, and invariance through structured topographic
pooling would be enlightening as to the additional computational benefits of this
approach.

Despite the successes of the proposed models, they do admit a number of limitations
in their existing form which we believe to be interesting directions for future research.
First, some model developers may find the a priori definition of topographic structure
burdensome. While true, we know that the construction of appropriate priors
is always a challenging task in latent variable models, and we observe that our
proposed TVAE achieves strong performance even with improper specification.
Furthermore, in future work, we believe adding learned flexibility to the parameters
W may alleviate some of this burden.

As more significant limitations, the model is challenging to compare directly with
existing disentanglement and equivariance literature since it requires an input se-
quence which determines the transformations reachable through the capsule roll.
By transitioning the model to a true recurrent neural network, this comparison and
integration into existing deep neural networks would be much easier.

Finally, we note that the latent operator which induces the approximate equivariance
of our model (Roll) must be fixed a priori by the model developers. While the
shape of the capsules and the details of the roll operation can be tuned, the format
of the operation is relatively rigid. For a model to learn approximate equivariance
with respect to a much broader range of transformations, we would like this latent
operator to also be learned simultaneously with the operation of the model.

In the following chapters, we will present models which exactly address these final
two limitations, yielding a recurrent neural network which has a more flexibly
learned form of approximate equivariance.

5.8. Conclusion

In the above work we introduce the Spatio-Temporally Coherent Topographic Vari-
ational Autoencoder and show how topography can be leveraged to learn approxi-
mately equivariant sets of features, a.k.a. capsules, directly from sequences of data
with no other supervision. Ultimately, we believe these results may shine some light
on how biological systems could hard-wire themselves to more effectively learn
representations with equivariant capsule structure.
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C h a p t e r 6

TRAVELING WAVES AS GENERALIZED SPATIO-TEMPORAL
COHERENCE

6.1. Introduction

In the previous chapter, we have seen how the mechanism underlying topographic
organization in our model may be extended to the time dimension, thereby yielding
spatio-temporal organization and ultimately approximately equivariant capsules. In
doing so, we were required to specify the precise space-time neighborhood struc-
ture for our topographic latent variable model which then determined the resulting
flow of activity in latent space for a given input transformation. We likened this
latent flow of activity to the latent operator in equivariant neural networks, thereby
demonstrating that our model had achieved a form of approximate equivariance to
observed transformations. Although this alleviated the need for the model designer
to a priori specify the desired transformation groups to which the model should be
equivariant with respect to, and the model was instead able to learn those directly
from sequences of data, the burden of design then instead shifted to this new latent
operator and capsule structure. In this chapter, we consider if there might be alter-
native natural forms of representational structure which could serve to act as this
latent operator, while maintaining the ability to be flexibly learned while modeling
the data.

As noted in the background Section 2.2, one such form of structure which has
recently gained increasing interest in the neuroscience community is that of traveling
waves of neural activity. Such waves have been measured at both local (Davis,
Muller, et al., 2020) and global (Muller, Piantoni, et al., 2016) scales, and have been
shown to be strongly related to alpha, theta, and gamma oscillations in a variety of
brain regions (Honghui Zhang et al., 2018; Besserve et al., 2015). Prompted by
these observations, a large number of theoretical hypotheses have been developed
which attempt to explain the computational purposes of traveling waves (Muller,
Chavane, et al., 2018), and the inductive biases which they may mediate.

Of particular relevance to the machine learning community, one hypothesis is that
traveling waves serve to beneficially structure neural representations in both space
and time (Lubenov and Siapas, 2009; Jancke et al., 2004), acting as an inductive
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bias towards similarly structured natural data. As we have described throughout
this thesis, structured representations have been previously demonstrated in the
machine learning community to be extremely valuable, making learning models
both more efficient and robust (T. Cohen and Max Welling, 2016a; D. E. Worrall
et al., 2017). It is thus suggested that traveling waves may facilitate a similar kind
of spatiotemporal structure in neural representations, thereby granting the observed
robustness and efficiency of natural intelligence which is still lacking in modern
deep neural networks (Lake et al., 2017). To date, however, testing ideas related to
the computational purposes of traveling waves has been challenging due to a lack
of neural network architectures which have a notion of spatial locality necessary for
modeling such spatio-temporal dynamics. Further, existing networks which do have
such spatial structure often do not have temporal structure (H. Lee et al., 2020), or
are not sufficiently flexibly parameterized to allow them to be trained on standard
machine learning benchmarks (Davis, G. B. Benigno, et al., 2021).

In this chapter, we propose to investigate the computational hypotheses surrounding
traveling waves through a bottom-up approach; we build a flexibly parameterized
computational model known to be capable of producing traveling waves, and show
that it indeed learns to exhibit complex spatiotemporal dynamics when modeling
real data. We then show, relevant to the computational neuroscience community,
how such a network indeed learns spatial and temporal structure reminiscent of that
found in the brain. Specifically, we observe that our network learns topographically
organized selectivity, similar to the observed orientation columns and hypercolumns
of the primary visual cortex (Torsten N. Wiesel and David H. Hubel, 1974). Further,
we show that our network learns to use complex spatiotemporal organization such
as traveling waves to encode transformations by artificially inducing waves in the
hidden state and observing that this allows us to further progress or reverse the
transformations of generated images.

As it relates to inductive biases, we asses the computational implications of the
observed representational structure by training the model on the physical dynam-
ics forecasting suite introduced in the paper ‘Which Priors Matter?’ (Botev et al.,
2021). We see that our model is more accurate at predicting future trajectories
of simple physical dynamics when compared with existing state of the art models,
providing evidence that the structure mediated by traveling waves is indeed a bene-
ficial inductive bias for modeling such smooth natural transformations. Further, due
to our model’s local connectivity, we see that it is more efficient both in terms of
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parameters, and in terms of biological concerns such as wiring length, suggesting a
connection between locality of connections, waves, and an inductive transformation
bias in biological systems.

Overall in this chapter we introduce new powerful model at the interface of com-
putational neuroscience and modern machine learning. We show that this model
allows for the investigation of the computational hypotheses surrounding complex
synchrony in the brain in a new way, and further provides preliminary evidence for
the existing hypothesis that traveling waves serve to induce spatiotemporal structure
in neural representations.

6.2. Background

Traveling Waves in Neuroscience

Neural oscillations and traveling waves have long been a subject of study in neu-
roscience and neurophysiology (Hughes, 1995; Muller, Chavane, et al., 2018).
Although such waves were originally measured primarily in anesthetized subjects,
improved multi-channel recording and analysis techniques have recently demon-
strated propagating wave activity in awake functioning subjects as well, originating
from both external stimuli and internal ‘spontaneous’ recurrent connections (T. K.
Sato et al., 2012; Muller, Reynaud, et al., 2014; Muller, Chavane, et al., 2018).
While many hypotheses have been put forth for their precise computational role,
a consensus has yet to be reached. Example hypotheses include that traveling
waves may: influence visual perception (Zanos et al., 2015); modulate information
transfer (Besserve et al., 2015); correlate with conscious awareness (Bhattacharya,
Donoghue, et al., 2022); facilitate predictive coding (K. J. Friston, 2019; Alamia and
VanRullen, 2019); lower the threshold for detection of weak stimuli (Davis, Muller,
et al., 2020); serve as a short term memory (King and Wyart, 2021; Bhattacharya,
Brincat, et al., 2022); or as a mechanism for the formation of long-term memories
during sleep (Muller, Piantoni, et al., 2016). Relevant to this work, traveling waves
have directly been implicated in the encoding of motion (Heitmann and G. Bard
Ermentrout, 2020), and have been measured to correlate strongly with perceived
perceptual illusions of motion (Jancke et al., 2004). Further, it has been suggested
that they form the basis of alpha and theta oscillations (Honghui Zhang et al., 2018;
Lubenov and Siapas, 2009) and may serve to both structure and integrate informa-
tion across space and time (T. K. Sato et al., 2012; N. Sato, 2022). Due to the
fundamental relationship between neural synchrony and the coordination of spike
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timing (Bragin et al., 1995), it is natural to wonder if more complex forms of spa-
tiotemporal synchrony such as traveling waves may play a similarly more complex
structural role.

Computational Models of Traveling Waves

In the fields of computational and theoretical neuroscience, multiple models have
been developed to help explain the observed complex synchronous dynamics of
neural systems. One classical model is that of a network of locally coupled oscillators
(Diamant and Bortoff, 1969; George Bard Ermentrout and Kopell, 1984). However,
to date, such models have been limited to those which either are built for the
primary purpose of analysis (Kuramoto, 1981; G Bard Ermentrout and Kleinfeld,
2001; Davis, G. B. Benigno, et al., 2021), or those which perform very simple binary
operations (Gong and Leeuwen, 2009; Izhikevich and Hoppensteadt, 2008), with
neither set leveraging the flexible computational capabilities of modern deep neural
networks. One line of work has aimed to integrate classical Kuramoto models into
deep neural networks by directly parameterizing activations in terms of phase values
(Ricci et al., 2021), however such models lack a notion of spatial locality, making
the existence of spatio-temporal dynamics less concrete. Most recently, Davis, G. B.
Benigno, et al. (2021) studied a large scale locally connected spiking neural network
model, quantifying the conditions necessary for the emergence of traveling waves,
and showed such waves appeared to uniquely agree with human cortical traveling
waves in a variety of dimensions. However, similar to most existing models in this
category, the model is formulated as a spiking neural network thus requiring more
sophisticated training mechanisms which are yet to scale to the same performance
as deep neural networks (Neftci et al., 2019).

6.3. Neural Wave Machines

In the following section we introduce the Neural Wave Machine (NWM), a deep
neural network architecture which exhibits traveling waves and other complex spa-
tiotemporal dynamics in the service of flexible differentiable computation. To
achieve this, we take inspiration from the seminal models of traveling waves built as
networks of locally coupled oscillators (G Bard Ermentrout and Kleinfeld, 2001),
and propose to integrate them into a modern deep learning framework by taking
advantage of the recently developed coupled oscillatory Recurrent Neural Network
(coRNN) of T. Konstantin Rusch and Mishra (2021a).



68

Coupled Oscillatory Recurrent Neural Networks

In (T. Konstantin Rusch and Mishra, 2021a) the authors propose to solve the Ex-
ploding and Vanishing Gradient Problem (EVGP) in recurrent neural networks by
defining a new recurrent neural network with hidden state dynamics given by the
parameterized equations of a system of coupled, damped, and driven oscillators.
Explicitly, the hidden state of the recurrent neural network x is updated by solving
the following second order partial differential equation:

¥x = 𝜎 (W𝑥x + W ¤𝑥 ¤x + Vu + b) − 𝛾x − 𝛼 ¤x (6.1)

Where 𝜕x
𝜕𝑡

= ¤x, 𝜕
2x
𝜕𝑡2

= ¥x are the first and second derivatives of the hidden state with
respect to time, and u denotes the input at each time step. The terms W𝑥x, W ¤𝑥 ¤x, and
Vu can then be interpreted as the coupling, damping, and driving terms respectively.
Finally, 𝜎 is a nonlinear activation function such as the hyperbolic tangent, and 𝛾 &
𝛼 are scalar variables which can be fixed or learned in combination with the above
matrices. In practice, the above differential equation can be discretized and inte-
grated numerically using an IMEX (implicit-explicit) discretization scheme shown
to preserve the desirable bounds of the continuous system. Such a discretization
can be achieved by first introducing a ‘velocity’ variable v = ¤x, turning the second
order system into a set of two coupled first order equations:

¤x = v, ¤v = 𝜎 (W𝑥x + W ¤𝑥v + Vu + b) − 𝛾x − 𝛼v (6.2)

Then, for a fixed time step 0 < Δ𝑡 < 1, the hidden state x and velocity v of the RNN
at time 𝑡 + 1 can be updated as:

x𝑡+1 = x𝑡 + Δ𝑡 (v𝑡+1) v𝑡+1 = v𝑡 + Δ𝑡 (v′𝑡) (6.3)

v′𝑡 = 𝜎
(
W𝑥x𝑡 + W ¤𝑥v𝑡 + Vu𝑡+1 + b

)
− 𝛾x𝑡 − 𝛼v𝑡 (6.4)

This model was theoretically demonstrated to have a bounded gradient and hidden
state magnitude under assumptions on the time-step Δ𝑡 and the infinity norm of
the coupling parameters. Empirically, such stable gradient dynamics were shown
to yield better performance than existing RNNs on tasks with very long time-
dependencies.

In relation to our goals, the oscillatory dynamics of the coRNN make it amenable
to synchronous activity, unlike most existing deep neural network models, and the
stable gradient dynamics make it a powerful and flexibly parameterizable sequence
model, unlike existing models of traveling waves based on spiking neural networks.
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However, given that the hidden state x is not endowed with any notion of spatial lay-
out, it is still not meaningful to study spatiotemporal dynamics in such a model. In
the following subsection we describe how such a spatial layout may be implemented
efficiently by replacing the fully connected recurrent coupling matrices W𝑥 and W ¤𝑥

with convolution operations.

Local Connectivity

In (Davis, G. B. Benigno, et al., 2021), the authors study a large scale spiking neural
network model, quantifying the emergence of traveling waves, and comparing them
with waves observed in the human cortex. At a high level, as it is relevant to this
work, the study concludes that locally restricted connectivity and distance depen-
dant conduction delays are both necessary and sufficient to produce traveling waves.
Further they observe that such waves are fairly robust to the synaptic strengths of
their model when given a sufficiently large number of neurons. Given these find-
ings, we hypothesize that the Coupled Oscillitory Recurrent Neural Network may
yield traveling waves if similarly constrained.

To impose such constraints we begin by defining an arbitrary topographic layout for
the 𝑁-dimensional hidden state x in the model. For computational simplicity, we
propose to use a regular 1 or 2 dimensional grid, x1𝐷 ∈ R𝐶ℎ×𝑁 or x2𝐷 ∈ R𝐶ℎ×

√
𝑁×

√
𝑁

respectively, where𝐶ℎ is the number of simultaneous ‘channels’ in our hidden state.
We then see that specifically, if the recurrent connections W𝑥 and W ¤𝑥 are made lo-
cal over our spatial dimensions rather than global, and a distance-dependant time-
delay introduced, the aforementioned constraints will be satisfied and the remainder
of the properties such as synaptic strength and the precise local distribution of con-
nections will be left up to the model to learn. In practice, we simplify the model
by restricting the topographic connectivity of each neuron to its immediately adja-
cent neighbors in the grid, and define all distances (and thus time-delays) to these
neurons to be equal to 1. Such a simplification allows us to efficiently implement
the local time-delayed connections with a simple size 3 or 3 × 3 convolutional ker-
nel for 1 and 2 dimensional grids respectively. In summary, our model is then given
identically as in Equations 6.3 & 6.4 but with convolutional layers in place of the
dense recurrent matrices. Explicitly, in the 2-dimensional setting, for convolutional
kernels w𝑥 ,w ¤𝑥 ∈ R𝐶ℎ×𝐶ℎ×3×3, we get:

v′𝑡 = 𝜎 (w𝑥 ★ x𝑡 + w ¤𝑥 ★ v𝑡 + 𝑓𝜃 (u𝑡+1) + b) − 𝛾x𝑡 − 𝛼v𝑡 (6.5)
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We see we have additionally replaced the linear encoder V with a function 𝑓𝜃 which
can be a convolutional or ‘de-convolutional’ neural network, or any other mapping
from the input to a spatially organized driving force. Importantly, we see that our
imposed local connectivity does not immediately invalidate any of the assumptions
required for the theorems of T. Konstantin Rusch and Mishra (2021a) about miti-
gating the EVGP since the infinity norm of the weights is unlikely to significantly
increase when simply switching from fully to locally-connected matrices. We in-
clude the updated bounds and corresponding proofs in Appendix C.2. In the end,
we denote this model the Neural Wave Machine due to its emergent wave-like dy-
namics, facilitated by both the oscillatory update equations of the coRNN, and the
local connectivity constraints of biological models. In the next section we measure
these desired spatiotemporal dynamics of the NWM and further study their impact
as an inductive bias on computation.

Figure 6.1: Overview of the Neural Wave Machine. The input sequence u is encoded
with 𝑓𝜃 to act as a driving term in the hidden state x which is modeled temporally
(x) as a network of locally coupled oscillators. The network is then trained to
reconstruct the input sequence: û = 𝑔𝜃 (x). The yellow arrows track a traveling
wavefront over time.

6.4. Experiments

In the following two subsections we provide experiments which demonstrate: first,
that our model learns spatiotemporal structure reminiscent of natural observations
from neuroscience; and second, that such structure is beneficial to both efficiency
and accuracy. We outline our methods briefly below, and more thoroughly in
Appendix C.1.
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Figure 6.2: Plot of different datasets used in this work (top) and the associated
learned hidden state dynamics (bottom). We see the NWM learns different spa-
tiotemporal structure for each dataset, and no structure when trained on random
noise (a). Additional videos of dynamics, and code for experiments, can be found
at: github.com/akandykeller/NeuralWaveMachines.

Methods — All datasets used in this paper will be considered as unsupervised
unless otherwise noted, and thus we will train the model from Section 6.3 as an
autoregressive model. To do this, we add a learned decoder from the hidden state x𝑡
back to the input at the next timestep u𝑡+1, and train the model with a mean-squared
error loss. Explicitly, û𝑡+2 = 𝑔𝜃 (x𝑡+1), and L = | |û𝑡+2 − u𝑡+2 | |22, where 𝑔𝜃 is the
decoder which can again be a convolutional neural network, or any network which
maps from the spatial hidden state back to the input space. For the simple tasks
in Section 6.4, and the sequence classification tasks of Section 6.4 we use minimal
encoders and decoders corresponding to single linear layers or small MLPs. For the
more complex physical forecasting tasks of Section 6.4 we use the baseline deep
convolutional encoders and decoders defined in the benchmark. As a second minor
addition which we observe improves performance on long-term trajectory modeling
tasks, we introduce an additional encoder network which learns to predict the initial
conditions x0 and v0 of the network given a partial ‘inference’ sequence. Explicitly,
we can write this as: x0, v0 = 𝑓 𝐼𝐶

𝜃
({ut}

𝑇𝑖𝑛 𝑓

𝑡=0 ). Such an initial-condition network
is common in the Neural-ODE literature (R. T. Q. Chen et al., 2018), and in this
setting it is beneficial to initialize the latent dynamics which would otherwise take
a significant number of iterations to reach their final magnitude.

Datasets — To investigate how the NWM’s representations change when modeling
different datasets, we focus on three training sets in this study. Most simply, we
first use a dataset of oriented sine functions (depicted in Figure 6.2 b) with a
slowly progressing phase over time steps. This dataset is meant to be a very
rough approximation to the spontaneously generated retinal waves observed during
development (Ackman et al., 2012). For this dataset, the wavelength and magnitude
of the sine waves are fixed, and sequences are generated by randomly sampling an
orientation between 0 to 𝜋 and then sequentially progressing the phase by 1

9𝜋 for each

https://github.com/akandykeller/NeuralWaveMachines
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timestep until two periods are complete. As a second dataset, we borrow the rotating
MNIST dataset as used in Chapter 5, consisting of sequences of MNIST digits with
each timestep rotated by an additional 1

9𝜋 radians. This dataset serves to allow us
to investigate the existence of generalizable spatio-temporal structure in a limited
setting. Finally, for more realistic dynamics, we make use of the recent hamiltonian
dynamics suite (Botev et al., 2021). At a high level, the benchmark consists of a
diversity of tasks governed by known equations of motion, including toy physics
examples such as idealized springs, pendulums, orbits, and double-pendulums (Fig
6.2 c, d, e & h), as well as cyclic games (f & g). Models are evaluated based on
their ability to accurately forecast dynamics into the future from a limited number
of inference frames.

Measuring Spatiotemporal Structure

To measure the spatiotemporal representational structure that the NWM learns, and
its alignment with natural structure, we start with the two simplest tasks: model-
ing simple sine waves, and modeling rotating MNIST digits. We use three separate
methods for analyzing the representations learned on these tasks: Cohen’s d selec-
tivity metric (J. Cohen, 1988) to depict spatial organization, the Hilbert transform
to measure the instantaneous phase and velocity of putative waves (Davis, Muller,
et al., 2020), and artificially induced traveling waves combined with visualized re-
constructions to measure the approximate equivalence of latent traveling waves with
observed transformations.

Topographic Orientation Selectivity — One of the most common methods to demon-
strate spatial organization of neural representations is by measuring their selectivity
with respect to different features and plotting this with respect to each neuron’s po-
sition (David H. Hubel and Torsten N. Wiesel, 1974b). As an initial test of a basic
form of selectivity, namely orientation selectivity, we consider a hypothesis from the
literature about how such structure might arise initially in animals (Ackman et al.,
2012). Specifically, we investigate whether simple periodic inputs, such as the spon-
taneous retinal waves observed during early development, are sufficient to encour-
age smooth topographic organization of orientation selectivity when modeled by a
minimal NWM. To test this, we train our model on the simple sine waves dataset,
and measure the orientation selectivity of each hidden neuron’s time-averaged re-
sponse to a static 36-element sequences of oriented gratings using Cohen’s 𝑑 met-
ric (J. Cohen, 1988). In Figure 6.3 we plot the resulting color/angle of maximal 𝑑
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Figure 6.3: (Left) Plot of orientation selectivity of each NWM hidden neuron x after
training on simple sine waves. (Right) Plot of the maximum activating image for a
subset of NWM hidden neurons after training on the rotating MNIST dataset (See
Sec. C.3 for full). We see the NWM learns smooth spatial topographic structure
tailored to the input dataset.

value for each of the 72 × 72 neurons (or a black x if all 𝑑 < 0.65). We see that
the simulated retinal waves do appear to induce topographic organization of orien-
tation selectivity with superficial similarity to the orientation columns of primary
visual cortex (David H Hubel, Torsten N Wiesel, and Stryker, 1978). Outlined in
white, we show a manually identified ‘pinwheel’ where selectivity for all orienta-
tions meet, a hallmark of early visual system organization in many species. In re-
lation to prior models of orientation columns (Swindale, 1982), our work does not
presuppose the existence of orientation selectivity, but rather it is absent at initial-
ization and it is instead learned in conjunction with topographic organization. We
note that the exact statistics of our learned orientation maps have not been measured,
and therefore may differ in their current form from those measured in animal stud-
ies (Kaschube et al., 2010). In Appendix C.3 we include additional results studying
formation mechanism of this orientation selectivity as well as the model parame-
ters which affect the typical length scale of the columns. We leave further precise
investigation of the biological similarity to future work.

General Topographic Organization — On the right of Figure 6.3, we show the
spatial structure of feature selectivity for a network trained on rotating MNIST digits
instead. Specifically, we plot the image from the MNIST dataset which maximally
activates each neuron in our 2-dimensional hidden state (at the final timestep).
We see that neurons are organized with respect to digit class and style, but also
orientation, implying that activity is likely to travel over these paths as a traveling
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wave for observed rotation transformations. Such structure is reminiscent of the
higher level category selectivity of the higher visual cortices studied in Chapter 4
(Kanwisher, McDermott, et al., 1997; Khosla et al., 2022), and also the temporal
structure observed to be related to theta oscillations and waves in the hippocampus
(Lubenov and Siapas, 2009).

Instantaneous Phase and Velocity — Next, we demonstrate that the proposed model
indeed exhibits full spatiotemporal structure beyond static spatial structure. Com-
pared with biological neural networks, it is easy for us to directly visualize the
spatio-temporal activity of our network and qualitatively validate the existence of
structure. Figures 6.1, 6.2, and 6.4 provide such examples, while additional sam-
ples can be found in Appendix C.3 and the github repository. For additional rigor,
however, we borrow state of the art methods from neuroscience to directly compute
the instantaneous phase and velocity of putative waves from noisy real-valued sig-
nals. Specifically, we follow the work of (Davis, Muller, et al., 2020) and compute
the ‘generalized phase’ of a real valued signal x(𝑡) by first transforming the signal
to a complex-valued analytic signal x𝑎 (𝑡) through the Hilbert transform H and then
taking the complex argument of this signal as the phase ϕ(𝑡) at each point in space
and time. Formally: x𝑎 (𝑡) = x(𝑡) + 𝑖H[x(𝑡)], and ϕ(𝑡) = 𝐴𝑟𝑔[x𝑎 (𝑡)]. Finally,
wave velocities can then straightforwardly be computed using the spatial gradient
of this phase: ν = −∇ϕ. In Figure 6.4 we depict such phases and velocities for the
NWM trained on the rotating MNIST task. We see that, in alignment with expec-
tation, the estimated phases have a spatially periodic pattern which oscillates with
sequence length, while the estimated velocities similarly align to point in the down-
ward direction after training (but not before training, as outlined by the disjoint ve-
locity vectors in Figure 6.4 top right).

Controlled Generation with Induced Traveling Waves — One of the benefits of struc-
tured representations in generative models is that they allow for controlled generation
of new observations by taking advantage of the known latent operator for a desired
input transformation. In this section we demonstrate that such controlled genera-
tion is indeed similarly possible by artificially inducing traveling waves in the NWM
hidden state, thereby evidencing the spatiotemporal structure of its representations.
Given the high degree of flexibility of the potentially emergent wave dynamics of the
2-D system presented in Figure 6.4, we concede that two restrictions must be placed
on the model in order for us to be able to accurately induce waves which match
those the model has learned. Explicitly, we first define the latent space to be a set
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Figure 6.4: (Left) Plot of hidden state x (top), generalized phase ϕ (mid), and
estimated wave velocity −∇ϕ (bot) over the course of a transformation sequence
𝑇 = 0 to 3. A small gold star moves along with a wave front, relative to a stationary
grey triangle, both added to help track the approximate peak of a traveling wave in
the hidden state. (Right) Estimated wave velocity before and after training.

Figure 6.5: Visualization of controlled generation with induced traveling waves. An
input sequence from u0 to u𝑇 (left) gets encoded to a hidden state x𝑇 . We then induce
a traveling wave in the opposite direction of the estimated instantaneous velocity
and observe we can decode back to the original input û0 (highlighted yellow, right).
Furthermore, we see by continuing the wave, we can continue the transformation
past the bounds of the input sequence (highlighted pink, right).

of disjoint 1-dimensional tori such that learned wave propagation will be restricted
to a single axis. Secondly, we restrict our topographic coupling to be 1-directional
by masking out all weights except for one (non-central weight) in our convolutional
kernel which is shared over all tori. In combination, these restrictions ensure that if
traveling waves are learned by the model, they will likely be able to be approximately
modeled by solutions to the 1-dimensional 1-way wave equation: 𝑦(𝑥, 𝑡) = 𝑓 (𝑥−𝑣𝑡).

In Figure 6.5 we depict the results of this experiment. In detail, we train the 1D NWM
described above on a dataset of length 𝑇 = 18 sequences of rotating MNIST digits.
At test time, we encode a full sequence (left) and take the final hidden state x𝑇 as the
initial state for our system. We then induce a traveling wave in the hidden state in
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the reverse direction of the instantaneous velocity. In practice, since we have limited
our system to 1-dimensional tori, this corresponds to sequentially cyclically shifting
(or linearly interpolating) activations across the spatial dimension of each circular
subspace according to the inverse of our assumed velocity. The result in Figure 6.5
(right) shows that indeed by inducing such reverse traveling waves we can then de-
code the original input sequence, and even predict elements before the start of the
sequence (highlighted in pink). Such sensible decodings highlight the generaliza-
tion power of the representational structure learned by the NWM. In this example we
propagate waves with assumed velocity 𝑣 = 1 and observe that this is slightly faster
than the ground truth transformation, resulting in a return to the start state in 14 steps
rather than 18. Additional transformations can be found in Appendix Figure C.6.

Computational Implications of Structure

Given the structure measured in Section 6.4 is known to be related to beneficial
inductive biases (Fukushima, 1980; T. Cohen and Max Welling, 2016b), in this
section we perform preliminary experiments to measure such potential benefits in
the context of sequence modeling.

An Inductive Bias for Simple Physical Dynamics — First, inspired by the literature
relating traveling waves to visual motion perception (Jancke et al., 2004) and spa-
tiotemporal structure in the hippocampus (Lubenov and Siapas, 2009), we hypothe-
size that the spatiotemporal structure of the NWM demonstrated in Section 6.4 may
serve as an inductive bias towards simple physical dynamics. To measure this, we
train NWM models on a representative subset of the Hamiltonian dynamics suite,
and measure their error when attempting to forecast long test trajectories into the
future. Specifically, we consider six distinct dynamic modeling tasks: three sim-
ple physical dynamics including the pendulum, spring, and two body gravitational
tasks; one less physical but still temporally smooth task, namely the matching pen-
nies task; and the last, the double pendulum, a complex chaotic physical dynamics
task. We compare performance of the NWM with the state of the art baselines us-
ing optimal hyperparameters directly given in prior work (Botev et al., 2021; Hig-
gins, Wirnsberger, et al., 2021). These include the HGN++ (Higgins, Wirnsberger,
et al., 2021), a standard autoregressive model (AR) (Hochreiter and Schmidhuber,
1997), and a Neural ODE (R. T. Q. Chen et al., 2018) trained both forwards and
backwards in time (ODE [TR]). We additionally include a final globally coupled
coRNN baseline with equivalent parameters to our NWM to study the direct impact
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of the imposed structure on model performance. In Table 6.1 we see that, in align-
ment with our intuition, the NWM models achieve the lowest forecasting error on
the simple physical dynamics tasks, providing evidence in support of the hypothe-
sis that the observed spatiotemporal structure of Section 6.4 is beneficial for mod-
eling such systems. Further, we see that the coRNN baseline performs the best on
the less physical but predictable matching pennies task, while the maximally flex-
ible Neural ODE performs the best on the chaotic double pendulum task. Despite
these promising results, we note that accurately measuring forecasting performance
in image space is notoriously hard (Botev et al., 2021; Higgins, Wirnsberger, et al.,
2021), and therefore recommend future work pursue the development of alternative
benchmarks and metrics for evaluating the beneficial inductive biases present in the
NWM and other forecasting models. In Appendix C.3 and the limitations section
below we include additional discussion of these considerations.

Table 6.1: Forward extrapolation mean squared reconstruction error on the Hamilto-
nian Dynamics Benchmark held-out test set (displayed in units of 1×10−8). We see,
in alignment with intuition, the 1 and 2-dimensional Neural Wave Machines (NWM
1D & 2D) perform best on simple physically realistic dynamics such as the spring,
pendulum, and two body problem. The globally coupled coRNN performs best on
the smooth, but non-physical, matching pennies task, while the maximally flexible
Neural ODE performs best on the highly complex and chaotic double pendulum task.

AR HGN++ ODE coRNN NWM 2D NWM 1D

Spring 20.97 1.58 1.58 2.52 5.46 1.45
Pendulum 4,208.0 166.5 166.0 548.0 110.9 237.2
Two Body 91.4 5.0 4.2 2.0 1.9 0.9
Pennies 126.3 190.0 119.3 28.2 47.2 43.1
Double Pendulum 3,905.0 1,531.0 1,296.0 1,666.0 2,512.0 2,821.0

Efficiency — As a second potential benefit related to the NWM’s demonstrated
spatiotemporal structure, our neural wave machines are highly parameter efficient
by design when compared to the globally coupled coRNN. As explained in 6.3, the
recurrent connections of our model are restricted to be entirely local as implemented
by the convolution operation, thereby allowing for arbitrarily large hidden state
sizes with a constant number of recurrent parameters, significantly improving over
the quadratically increasing number of parameters in the coRNN. In Table 6.2 we
see that on the canonical long sequence classification tasks of sequential MNIST
(sMNIST) and permuted sequential MNIST (psMNIST) (T. Konstantin Rusch and
Mishra, 2021a), our model achieves comparable performance with the coRNN (and
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thus existing state of the art) while requiring a fraction of the parameters. In
Appendix C.3 we include additional results on other sequence modeling tasks such
as IMDB sentiment classification and long sequence addition showing the same
benefits. Interestingly, efficiency in terms of wiring length is also implicated in
the formation of orientation columns in natural systems (Koulakov and Chklovskii,
2001). We believe that our work reinforces this relationship from another perspective
by showing that when a recurrent oscillatory computational system is constrained
to be wiring length efficient by design, it naturally learns topographic organization
(e.g. Figure 6.3) in order to optimally function.

Table 6.2: Test accuracy on supervised sequence benchmarks. All results are mean
± std. over 3 random initalizations.

sMNIST psMNIST
Acc. #𝜃 Acc. #𝜃

coRNN 99.1 ± 0.1 134k 95.0 ± 2.4 134k
NWM 98.6 ± 0.3 50k 94.8 ± 1.1 50k

6.5. Discussion

In this chapter we introduce the Neural Wave Machine, a recurrent neural network
model shown to learn spatiotemporally structured representations through local con-
nectivity and oscillatory dynamics. We propose this model as a rich testing ground
for the diversity of computational hypotheses surrounding traveling waves in the
neuroscience literature, and demonstrate its potential value in this regard by pro-
viding evidence for a variety of hypotheses, including one relating to the origin of
orientation columns, and one relating to a simple physical inductive bias. Further,
we show that this model is competitive with state of the art on sequence modeling
tasks, hoping to encourage future use of such models to study the computational
purpose of spatiotemporal dynamics in natural systems.

Related Work — In recent years, multiple works have studied the temporal aspects
of neural activations and attempted to integrate such structure into deep neural net-
works. For example, researchers have studied the integration of recurrence into feed
forward classification networks (Kietzmann et al., 2019), or the integration spike-
time coding through complex activations (Löwe, Lippe, et al., 2022). Separately,
others have aimed to directly integrate natural architectural biases by fixing early
layers of a convolutional neural network to mimic the early stages of the natural vi-
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sual stream, ultimately resulting in improved robustness (Dapello et al., 2020). Our
work is highly related to these efforts in motivation, but largely unique in terms of
methodology and its focus on complex spatiotemporal dynamics such as traveling
waves. One class of models which shares some relation intuitively is reservoir com-
puting (Lukoševičius and Jaeger, 2009). A primary difference between the NWM
and reservoir computing frameworks is that our network has a significant number
of learned parameters within its recurrence that mediate complex hidden dynamics,
while prior work typically relies on a reservoir of fixed dynamics.

Limitations — In this chapter we have put significant effort into quantifying the ex-
istence of complex spatiotemporal structure and its impact on the NWMs compu-
tational performance. However, due to the inherent flexibility of the possible dy-
namics which may emerge, there remain limitations in our ability to do so. In fu-
ture work, we would hope to be able to get a more concrete metric corresponding
to spatiotemporal structure to better correlate the structure of our models with their
performance. Furthermore, on tasks such as forecasting dynamics, it is still an open
question how to best compare the performance of such models in the most com-
prehensive and fair manner (Higgins, Wirnsberger, et al., 2021). In Appendix C.3
we include additional metrics evaluating model performances on the Hamiltonian
Dynamics Suite, highlighting this challenge. Finally, our explorations of parame-
ter efficiency are inherently preliminary and use fully connected encoders and de-
coders in the NWM, ultimately contributing 45k of the 50k parameters noted for the
NWM in Table 6.2. If we were able to replace these components with similarly lo-
cally connected functions, such as convolutional networks, the parameter efficiency
would further dramatically increase.

Conclusion — As a flexible computational model of traveling waves, we believe
the NWM framework offers significant potential to the computational neuroscience
community as a method for testing other computational hypotheses relating to
traveling waves and synchronous neural dynamics broadly. Similar to convolutional
neural networks for modeling the visual system (Daniel L. K. Yamins et al., 2014;
Cadieu et al., 2014; Kanwisher, Khosla, et al., 2023), neural wave machines do not
match all biologically relevant details of neural dynamics, but we believe they may
capture sufficient abstract properties to be useful for performing investigations that
otherwise wouldn’t be possible. Examples of initial hypotheses which we believe
would be primarily suited for future study would be the use of traveling waves
as a short term memory mechanism (Bhattacharya, Brincat, et al., 2022), or as a
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mechanism for sequencing actions (N. Sato, 2022). In the following chapter we
will precisely study the first of these hypotheses, showing that a minimal version of
the NWM is capable of storing memories over significantly longer timespans than
wave-free counterparts. Ultimately, we believe this work suggests that complex
spatiotemporal dynamics and structure should be investigated further in the future
to develop the next set of inductive biases necessary to bring deep neural networks
to the same levels of efficiency and robustness that we see in natural intelligence.
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C h a p t e r 7

TRAVELING WAVES AS AN ENCODING OF THE RECENT PAST

Figure 7.1: Illustration of three input signals (top) and a corresponding wave-field
with induced traveling waves (bottom). From an instantaneous snapshot of the wave-
field at each timestep we are able decode both the time of onset and input channel
of each input spike. Furthermore, subsequent spikes in the same channel do not
overwrite one-another.

7.1. Introduction

In the previous chapter we introduced a deep neural network model which exhibits
traveling waves of activity in its latent state. We showed that this form of spatiotem-
poral representational structure served to organize the latent space of such networks,
and further served to act as a flexible learned latent operator which was then bene-
ficial for generalization and controlled generation.

In this chapter, we ask what other benefits such representational structure might af-
ford. Specifically, we consider other hypotheses for traveling waves in the literature,
and seek to determine if there may be additional benefits to such robust spatiotem-
poral dynamics. In the context of recurrent neural networks, one hypothesis which
is particularly appealing, derived from the study of physical wave fields (Perrard et
al., 2016), suggests that traveling waves may serve to efficiently encode recent se-
quential inputs (Muller, Chavane, et al., 2018). To date however, as with the travel-
ing wave theories of the previous chapter, it has been challenging to test these hy-
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potheses due to a lack of standard artificial neural network architectures shown to
exhibit such wave-like dynamics.

In the following, we introduce an increasingly minimal recurrent neural network
model that exhibits traveling waves of activity within its latent space and test sev-
eral computational hypotheses. Specifically, we use a suite of synthetic memory
tasks to show that models exhibiting traveling waves can solve these tasks orders of
magnitude more quickly, do so more accurately, and are able to handle significantly
longer sequences than their matched wave-free counterparts. To measure the ex-
tent to which this wave-based memory results in generalized performance benefits
beyond pathological synthetic tasks, we test our model on modern long-sequence
modeling tasks and show that it indeed outperforms wave-free counterparts and is
comparable or better than more complex gated recurrent networks such as LSTMs
and GRUs. At its core, our work offers two main contributions: first, a simple re-
current neural network architecture that exhibits traveling waves admissible to com-
putational and neuroscientific investigation in a task-oriented manner; and second,
a demonstration that traveling waves efficiently encode the recent past thereby ben-
efiting performance on long-sequence tasks.

7.2. Traveling Waves in Recurrent Neural Networks

In this section, we outline how to integrate traveling wave dynamics into a simple
recurrent neural network architecture and provide preliminary analysis of the emer-
gent waves.

Simple Recurrent Neural Networks. — As mentioned, the primary goal of this
work is to analyze the computational implications of traveling wave dynamics on
artificial neural network architectures. In order to reduce potential confounders in
this analysis, we strive to study the simplest possible architecture which exhibits
traveling waves in its hidden state. To accomplish this, we start with a simple
recurrent neural network also known as an Elman Network (Elman, 1990) and
consider how we may define its recurrence in order to bias its hidden dynamics
towards a simple wave equation. For an input sequence {x𝑡}𝑇𝑡=0 with x𝑡 ∈ R𝑑 , and
hidden state h0 = 0 & h𝑡 ∈ R𝑛, a simple RNN (sRNN) is defined with the following
recurrence:

h𝑡+1 = 𝜎(Uh𝑡 + Vx𝑡 + b) (7.1)

In such a model, the input encoder and recurrent connections are both linear, i.e.
V ∈ R𝑛×𝑑 and U ∈ R𝑛×𝑛, where 𝑛 is the hidden state dimensionality and 𝜎 is a
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nonlinearity. The output of the network is then given by another linear map of the
final hidden state: y = Wh𝑇 , with W ∈ R𝑜×𝑛.

Discrete Traveling Waves. — To understand our goal for the time-dynamics of h,
we start with the simplest equation which defines our desired dynamics, the one-
dimensional one-way wave equation:

𝜕ℎ(𝑥, 𝑡)
𝜕𝑡

= 𝜈
𝜕ℎ(𝑥, 𝑡)
𝜕𝑥

(7.2)

Where 𝑡 is our time coordinate, and 𝑥 defines the continuous spatial coordinate
of our hidden state. Since we wish these waves to propagate through an artificial
neural network with discrete neurons and discrete timesteps, we first must discretize
Equation 7.2 in both space and time. If we define our hidden neurons to be laid out
on a one-dimensional line at regular intervals, we see that the neuron at location 𝑥,
i.e. ℎ(𝑥, 𝑡) is equivalent to the 𝑥’th neuron: ℎ𝑥𝑡 . In practice, we define our neurons to
be arranged in a one-dimensional circle (𝑆1) to avoid boundary effects. Then, if we
assume a velocity 𝜈 = 1, we see that we can write a discretization of this equation
for small Δ𝑡 as: ℎ𝑥

𝑡+Δ𝑡 = ℎ
𝑥+Δ𝑥
𝑡 . In matrix form, this is equivalent to multiplication

of the hidden state vector with a circular shift matrix:

h𝑡+1 = Σh𝑡 where Σ =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...
...
...
...
. . .

...

0 0 0 0 · · · 1
1 0 0 0 · · · 0


(7.3)

We thus see that starting from the sRNN in Equation 7.1, there are three components
we need to consider to reach solutions approaching Equation 7.3: the activation
function 𝜎, the recurrent connectivity U and proper initialization. In the following
we will outline the choices for each which ultimately define what we call the Wave-
RNN (wRNN).

Activation Functions. — Common choices for recurrent neural network activation
functions include logistic functions (sigmoid), hyperbolic tangent functions (tanh),
and rectified linear functions (ReLU). Prior work studying simple recurrent neural
networks has found that linear and rectified linear activations have theoretical and
empirical benefits for long-sequence modeling (Q. V. Le et al., 2015; Orvieto et al.,
2023). In this work, we define 𝜎 = ReLU in order to align with Equation 7.3 and
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this prior work. Empirically we also find this to be significantly more performant
than 𝜎 = tanh.

Recurrent Connectivity. — In pursuit of the goal of equating equations 7.1 and 7.3,
we see that defining the matrix U to be a randomly initialized dense matrix is likely
to be detrimental to the emergence of waves given the desired diagonal structure of
Σ. However, a common linear operator which has a very similar diagonal structure
to Σ is the convolution operation. Specifically, assuming a single input channel, and
a length 3 convolutional kernel u = [0, 0, 1], we see the following equivalence:

u★ h𝑡−1 = Σh𝑡−1 (7.4)

where★ defines circular convolution over the hidden state dimensions 𝑛. In practice
we find that increasing the number of channels helps the model to learn significantly
faster and reach lower error. To do this, we define u ∈ R𝑐×𝑐× 𝑓 where 𝑐 is the
number of channels, and 𝑓 is the kernel size, and we reshape the hidden state from
a single 𝑛 dimensional circle to 𝑐 separate 𝑛′ = ⌊ 𝑛

𝑐
⌋ dimensional circular channels

(e.g. h ∈ R𝑐×𝑛′). We can then write the full recurrence as:

h𝑡+1 = 𝜎(u★ h𝑡 + Vx𝑡 + b) (7.5)

where Vx𝑡 is similarly reshaped to match the channel structure of h.

Initialization. — Finally, similar to the prior work with recurrent neural networks
(Q. V. Le et al., 2015; Gu, Goel, et al., 2022), we find careful choice of initialization
can be crucial for the model to converge more quickly and reach lower final error.
Specifically, we initialize the convolution kernel such that the matrix form of the
convolution (known as a Toeplitz matrix) is exactly that of the shift matrix Σ for
each channel separately. Succinctly, in the PyTorch framework (Paszke et al., 2019),
this initialization can be implemented as:

# S h i f t i n i t a l i z a t i o n f o r U
U = t o r c h . z e r o s ( s i z e =( c , c , k e r n e l _ s i z e ) )
t o r c h . nn . i n i t . d i r a c _ (U)
U = t o r c h . r o l l ( input=U, s h i f t s =1 , dims=−1)

Furthermore, we find that initializing the matrix V to be zero with a single identity
mapping from the input to a single hidden unit to further drastically improve training
speed. Again, explicitly:

# Sparse i d e n t i t y i n i t i a l i z a t i o n f o r V
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V = t o r c h . z e r o s ( s i z e =( n_hidden , n _ i n p u t ) )
v = V. view ( c , n_h idden / / c , n_ inp )
v [ : , 0 ] = 1 . 0

Intuitively, these initalizations combined can be seen to support a separate traveling
wave of activity in each channel, driven by the input at a single source location.

Wave Recurrent Neural Networks. — Combining the above ReLU activation func-
tion, convolutional recurrent connections, and specific initalizations, we reach our
definition of the Wave-RNN. We note that these are not the only choices which lead
to wave-dynamics in the hidden state, however empirically we find them to be the
most performant and also the most conducive to wave activity. At the end of Sec-
tion 7.3, we empirically demonstrate this through a range of ablation experiments.

Baselines. — In order to isolate the effect of traveling waves on model performance,
we desire to pick baseline models which are as similar to the Wave-RNN as possible
while not exhibiting traveling waves in their hidden state. To accomplish this, we
rely on the Identity Recurrent Neural Network (iRNN) of Q. V. Le et al. (2015).
This model is nearly identical to the Wave-RNN, constructed as a simple RNN
with 𝜎 = ReLU, but uses an identity initialization for U. Despite its simplicity the
iRNN is found to be comparable to LSTM networks on standard benchmarks, and
thus represents the ideal highly capable simple recurrent neural network which is
comparable to the Wave-RNN.

Analysis of Traveling Waves. — Before we study the memory and sequence modeling
capabilities of the proposed architecture, we first demonstrate that the model does
indeed produce traveling waves within its hidden state. To do this, in Figure 7.2, for
the best performing (wRNN & iRNN) models on the Sequential MNIST task of the
proceeding section, we plot in the top row the activations of our neurons (vertical
axis) over time (horizontal axis) as the RNNs process a sequence of inputs (MNIST
pixels). As can be seen, there are distinct diagonal bands of activation for the Wave-
RNN (left), corresponding to waves of activity propagating between hidden neurons
over time. For the baseline simple RNN (iRNN) right, no such bands exist, but
instead stationary bumps of activity exist for durations of time and then fade. In
the bottom row, following the analysis techniques of Davis et al. (2021) (Davis,
G. B. Benigno, et al., 2021), we plot the corresponding 2D Fourier transform of the
above activation time series. In this plot, the vertical axis corresponds to spatial
frequencies while the horizontal axis corresponds to the usual temporal frequencies.
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In such a 2D frequency space, a constant speed traveling wave (or general moving
object (Cagigal et al., 1995)) will appear as a linear correlation between spatial and
time frequencies. Specifically, the slope of that correlation will then correspond
to the speed. Indeed, for the wave RNN, we see a strong band of energy along
the diagonal corresponding to our traveling waves with velocity ≈ 0.3 units

timestep ; as
expected, for the iRNN we see no such diagonal band in frequency space.

Figure 7.2: Visualization of hidden state (top) and associated 2D Fourier transform
(bottom) for a wRNN (left) and iRNN (right) operating on the sMNIST task. We
see the Wave-RNN exhibits a clear flow of activity across the hidden state (diagonal
bands) while the iRNN does not.

7.3. Experiments

In this section we aim to leverage the model introduced in Section 7.2 to test the
computational hypothesis that traveling waves may serve as a mechanism to encode
the recent past in a wave-field short-term memory. To do this, we first leverage a
suite of frequently used synthetic memory tasks designed to precisely measure the
ability of sequence models to store information and learn dependencies over variable
length timescales. Following this, we use a suite of standard sequence modeling
benchmarks to measure if the demonstrated short-term memory benefits of wRNNs
persist in a more complex regime. For each task we perform a grid search over
learning rates, learning rate schedules, and gradient clip magnitudes, presenting
the best performing models from each category on a held-out validation set in the
figures and tables. In the appendix we include the full ranges of each grid search as
well as exact hyperparameters for the best performing models in each category.
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Copy Task

As a first analysis of the impact of traveling waves on memory encoding, we measure
the performance of the wRNN on the standard ‘copy task’, as frequently employed
in prior work (Graves, Wayne, and Danihelka, 2014; Arjovsky, Shah, et al., 2016;
Gu, Gulcehre, et al., 2020; Henaff et al., 2016). The task is constructed of sequences
of categorical inputs of length 𝑇 + 20 where the first 10 elements are randomly
chosen one-hot vectors representing a category in {1, . . . 8}. The following𝑇 tokens
are set to category 0, and form the time duration where the network must hold
the information in memory. The next token is set to 9, representing a delimiter,
signaling the RNN to begin reproducing the stored memory as output, and the final
9 tokens are again set to category 0. The target for this task is another categorical
sequence of length 𝑇 + 20 with all elements set to category 0 except for the last 10
elements containing the initial random sequence of the input to be reproduced. At a
high level, this task tests the ability for a network to encode categorical information
and maintain it in memory for 𝑇 timesteps before eventually reproducing it. Given
the hypothesis that traveling waves may serve to encode information in an effective
‘register’, we hypothesize that wave-RNNs should perform significantly better on
this task than the standard RNN. For each sequence length we compare wRNNs
with 100 hidden units and 6 channels (𝑛 = 100, 𝑐 = 6) with two baselines: iRNNs
of comparable parameter counts (𝑛 = 100 ⇒ 12k params.), and iRNNs with
comparable numbers of activations (𝑛 = 625) but a significantly greater parameter
count (⇒ 403k params.).

In Figure 7.3, we show the performance of the best performing baseline RNNs and
wRNNs, obtained from our grid search, for𝑇 = {0, 30, 80}. We see that the wRNNs
achieve more than 5 orders of magnitude lower loss and learn significantly faster for
all sequence lengths. From the visualization of the model outputs in Figure 7.4, we
see that the iRNN has trouble holding items in memory for longer than 10 timesteps,
while the comparable wRNN has no problem copying data for up to 500 timesteps.

Adding Task

To bolster our findings from the copy task, we employ the long-sequence addition
task originally introduced by Hochreiter and Schmidhuber (1997). The task consists
of a two dimensional input sequence of length 𝑇 , where the first dimension is a
random sample from U([0, 1]), and the second dimension contains only two non-
zero elements (set to 1) in the first and second halves of the sequence respectively.
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Figure 7.3: Copy task with lengths T={0, 30, 80}. wRNNs achieve > 5 orders of
magnitude lower loss.

Figure 7.4: Examples from the copy task for wRNN (n=100, c=6) and iRNN
(n=100). We see the iRNN loses significant accuracy after T=10 while the wRNN
remains perfect at T=480 (MSE ≈ 10−9).

The target is the sum of the two elements in the first dimension which correspond to
the non-zero indicators in the second dimension. Similar to the copy task, this task
allows us to vary the sequence length and measure the limits of each model’s ability.

The original iRNN paper (Q. V. Le et al., 2015) demonstrated that standard RNNs
without identity initialization struggle to solve sequences with 𝑇 > 150, while the
iRNN is able to perform equally as well as an LSTM, but begins to struggle with
sequences of length greater than 400 (a result which we reconfirm here). In our
experiments depicted in Figure 7.5 and Table 7.1, we find that the wRNN not only
solves the task much more quickly than the iRNN, but it is also able solve significantly
longer sequences than the iRNN (up to 1000 steps). In these experiments we use
an iRNN with 𝑛 = 100 hidden units (10.3k parameters) and a wRNN with 𝑛 = 100
hidden units and 𝑐 = 27 channels (10.29k parameters).
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Figure 7.5: wRNN and iRNN Training curves on the addition task for three different
sequence lengths (100, 400, 1000). We see that the wRNN converges significantly
faster than the iRNN on all lengths, achieves lower error, and can solve tasks which
are significantly longer.

Seq. Length (T) 100 200 400 700 1000

iRNN Test MSE 1 × 10−5 4 × 10−5 1 × 10−4 0.16 0.16
Solved Iter 14k 22k 30k × ×

wRNN Test MSE 4 × 10−6 2 × 10−5 4 × 10−5 8 × 10−5 6 × 10−5

Solved Iter. 300 1k 1k 3k 2k

Table 7.1: Long sequence addition task for different sequence lengths. The wRNN
finds the task solution (defined as MSE ≤ 5 × 10−2) multiple orders of magnitude
quicker and is able to solve much longer tasks than the iRNN. The × indicates the
model never solved the task after 60k iterations.

Figure 7.6: sMNIST (left) and psMNIST (right) training curves for the iRNN &
wRNN. The wRNN trains much faster and is virtually unaffected by the sequence
permutation, while the iRNN suffers.

Sequential Image Classification

Given the dramatic benefits that traveling waves appear to afford in the synthetic
memory-specific tasks, in this section we additionally strive to measure if waves will
have any similar benefits for more complex sequence tasks relevant to the machine
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learning community. One common task for evaluating sequence models is sequential
pixel-by-pixel image classification. In this work we specifically experiment with
three sequential image tasks: sequential MNIST (sMNIST), permuted sequential
MNIST (psMNIST), and noisy sequential CIFAR10 (nsCIFAR10). The MNSIT
tasks are constructed by feeding the 784 pixels of each image of the MNIST dataset
one at a time to the RNN, and attempting to classify the digit from the hidden state
after the final timestep. The permuted variant applies a random fixed permutation
to the order of the pixels before training, thereby increasing the task difficulty by
preventing the model from leveraging statistical correlations between nearby pixels.
The nsCIFAR10 task is constructed by feeding each row of the image (32×3 pixels)
flattened as vector input to the network at each timestep. This presents a significantly
higher input-dimensionality than the MNIST tasks, and additionally contains more
complicated sequence dependencies due to the more complex images. To further
increase the difficulty of the task, the sequence length is padded from the original
length (32), to a length of 1000 with random noise. Therefore, the task of the model
is not only to integrate the information from the original 32 sequence elements,
but additionally ignore the remaining noise elements. As in the synthetic tasks,
we again perform a grid search over learning rates, learning rate schedules, and
gradient clip magnitudes. Because of our significant tuning efforts, we find that our
baseline iRNN results are significantly higher than those presented in the original
work (98.5% vs. 97% on sMNIST, 91% vs. 81% on psMNIST), and additionally
sometimes higher than many ‘state of the art’ methods published after the original
iRNN. In the tables below we indicate results from the original work by a citation
next to the model name, and lightly shade the rows of our results.

In Table 7.2, we show our results in comparison with existing work on the sMNIST
and psMNIST. Despite the simplicity of our proposed approach, we see that it per-
forms favorably with many carefully crafted RNN and convolutional architectures.
We additionally include wRNN + MLP, which is the same as the existing wRNN,
but replaces the output map W with a 2-layer MLP. We see this increases perfor-
mance significantly, suggesting the linear decoder of the basic wRNN may be a per-
formance bottleneck. In Figure 7.6 (left), we plot the training accuracy of the best
performing wRNN compared with the best performing iRNN over training iterations
on the sMNIST dataset. We see that while the iRNN reaches a slightly higher final
accuracy (+0.9%), the wRNN trains remarkably faster at the beginning of training,
taking the iRNN roughly 50 epochs to catch up. On the right of the figure, we plot
the models’ performance on the permuted variant of the task (psMNIST) and see
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Model sMNIST psMNIST 𝑛 / #𝜃

uRNN (Arjovsky, Shah, et al., 2016) 95.1 91.4 512 / 9k
iRNN 98.5 92.5 256 / 68k

LSTM (T Konstantin Rusch et al., 2022) 98.8 92.9 256 / 267k
GRU (T Konstantin Rusch et al., 2022) 99.1 94.1 256 / 201k

IndRNN (6L) (S. Li et al., 2018) 99.0 96.0 128 / 83k
Lip. RNN (Erichson et al., 2021) 99.4 96.3 128 / 34k

coRNN (T. Konstantin Rusch and Mishra, 2021a) 99.3 96.6 128 / 34k
LEM (T Konstantin Rusch et al., 2022) 99.5 96.6 128 / 68k

wRNN 16c 97.6 96.7 256 / 47k
URLSTM (Gu, Gulcehre, et al., 2020) 99.2 97.6 1024 / 4.5M

wRNN + MLP 97.5 97.6 256 / 420k
pLMU (Chilkuri and Eliasmith, 2021) - 98.5 468 / 165k

FlexTCN (Romero et al., 2022) 99.6 98.63 - / 375k

Table 7.2: sMNIST & psMNIST (sorted) test accuracy.

the performance of the Wave-RNN is virtually unaffected, while the simple RNN
baseline suffers dramatically.

Figure 7.7: Number of parameters vs. accuracy for wRNNs & iRNNs on psMNIST,
attained by varying hidden state size (𝑛) and number of channels (𝑐). We see that
the wRNN achieves significantly higher accuracy at all levels of parameter counts.

We note that in addition to faster training and higher accuracy, the wRNN model
additionally exhibits substantially greater parameter efficiency than the iRNN due
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to its convolutional recurrent connections in place of fully connected layers. To
exemplify this, in Figure 7.7 we show the accuracy (y-axis) of a suite of wRNN
models plotted as a function of the number of parameters (x-axis). We see that
compared with the iRNN, the wRNN reaches near maximal performance with
significantly fewer parameters, and retains a performance gap over the iRNN with
increased parameter counts.

Finally, to see if the benefits of the wRNN extend to more complicated images,
we explore the noisy sequential CIFAR10 task. In Figure 7.8 we plot the training
curves of the best performing models on this dataset, and see that the Wave-RNN
still maintains a significant advantage over the iRNN in this setting. In Table 7.3,
we see the performance of the wRNN is ahead of standard gated architectures such
as GRUs and LSTMs, but also ahead of more recent complex gated architectures
such as the Gated anti-symmetric RNN (Chang et al., 2019). We note that the
parameter count for the wRNN on this task is significantly higher than the other
models listed in the table. This is primarily due to the linear encoder mapping from
the high dimensionality of the input (96) to the large hidden state. In fact, for this
model, the encoder V alone accounts for > 90% of the parameters of the full model
(393k/435k). If one were to replace this encoder with a more parameter efficient
encoder, such as a convolutional neural network or a sparse matrix (inspired by
the initialization for V), the model would thus have significantly fewer parameters,
making it again comparable to state of the art. We leave this addition to future
work, but believe it to be one of the most promising approaches to improving the
wRNN’s general competitiveness. Ultimately, we see that the wRNN performance
is significantly improved over the matched wave-free model. Furthermore, we see
that it is surprisingly competitive with state of the art long-sequence models despite
having no imposed long-term memory inductive biases besides wave-propagation.
We believe that these results therefore serve as strong evidence in support of the
hypothesis that traveling waves may be a valuable inductive bias for encoding the
recent past and thereby facilitate long-sequence learning.

Ablation Experiments

In this section we include a final set of ablation experiments to validate the architec-
ture choices for the Wave-RNN and provide further evidence for the hypothesis that
traveling waves are a beneficial inductive bias for sequence learning. For each of the
results reported below, a grid search over learning rates, activation functions, inital-



93

Figure 7.8: Training curves for the noisy sequential CIFAR10 dataset.

Model Acc. # units / params

LSTM (T Konstantin Rusch et al., 2022) 11.6 128 / 116k
GRU (T Konstantin Rusch et al., 2022) 43.8 128 / 88k

anti-sym. RNN (Chang et al., 2019) 48.3 256 / 36k
iRNN 51.3 529 / 336k

Incremental RNN (Kag et al., 2020) 54.5 128 / 12k
Gated anti-sym. RNN (Chang et al., 2019) 54.7 256 / 37k

wRNN (16c) 55.0 256 / 435k
Lipschits RNN (Erichson et al., 2021) 57.4 128 / 46k

coRNN (T. Konstantin Rusch and Mishra, 2021a) 59.0 128 / 46k
LEM (T Konstantin Rusch et al., 2022) 60.5 128 / 116k

Table 7.3: Test set accuracy on the noisy sequential CIFAR dataset sorted by
performance.
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izations, and gradient clipping values was again performed to ensure fair comparison.

In Table 7.4, we show the performance of the wRNN on the copy task as we
ablate various proposed components such as convolution, u-shift initialization, and
V initialization (as described in Section 7.2). At a high level, we see that the the
u-shift initialization has the biggest impact on performance, allowing the model to
successfully solve tasks greater than length 𝑇 = 10. We find the V initialization to
be slightly less impactful, improving final performance only marginally, but mainly
significantly increasing the speed of convergence of models (not pictured). In
addition to ablating the wRNN, we additionally explore initializing the iRNN with
a shift initialization (U = Σ) and sparse identity initialization for V to disassociate
these effects from the effect of the convolution operation. We see that the addition
of Σ initialization to the iRNN improves its performance dramatically, but it never
reaches the same level of performance of the wRNN – indicating that the sparsity
and tied weights of the convolution operation are critical to memory storage and
retrieval on this task.

Model Sequence Length (T)
0 10 30 80

wRNN 9 × 10−12 1 × 10−10 8 × 10−11 1 × 8−11

- V-init 1 × 10−11 2 × 10−11 4 × 10−10 4 × 10−11

- u-shift-init 5 × 10−11 3 × 10−10 7 × 10−4 6 × 10−4

- V-init - u-shift-init 8 × 10−10 1 × 10−4 3 × 10−4 7 × 10−4

iRNN (n=100) 1 × 10−4 3 × 10−3 2 × 10−3 1 × 10−3

+ Σ-init 1 × 10−8 1 × 10−7 2 × 10−7 2 × 10−5

+ Σ-init + V-init 1 × 10−7 1 × 10−7 1 × 10−6 8 × 10−6

Table 7.4: Ablation test results (MSE) on the copy task. Best results are bold,
second best underlined.

One particularly interesting finding from our ablation studies is that although models
without shift initialization do not initially exhibit traveling waves, most randomly
initialized models that do learn to perform well on the task eventually learn to
exhibit waves in their hidden state. In Figure 7.9 we show the activation sequence
for a wRNN model after initializing kernels with the random Kaming Uniform
initialization (He et al., 2015), and then training on the sMNIST task. We see that
early in training (left) the model does not exhibit traveling waves; however, by the
end of training (right), the randomly initialized model has learned to exhibit waves,
and ultimately achieves higher test accuracy than a comparable identity initialized
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model which never learns to exhibit waves (96.5% vs. 94.8%, training curves in
appendix). In the appendix, we include additional ablation studies removing weight
sharing in the convolutional layer, and freezing U & V at initialization, demonstrating
the robustness of traveling waves in these models and providing further support for
our empirical conclusions.

Figure 7.9: Visualization of the hidden state for a wRNN with randomly initialized
kernels (Kaming Uniform). We see the model learns to exhibit traveling waves in
its hidden state through training.

7.4. Discussion

In this section we include a preliminary discussion of related work with a more
complete overview in the appendix. Compared with the Neural Wave Machine
introduced in the previous chapter, this present chapter introduces a more minimal
model capable of producing traveling waves, and thereby permits the study of the
direct implications of traveling wave dynamics compared with non-wave models
on standard sequence modeling benchmarks. Because our model is a standard
simple RNN, the experimental conclusions resulting from the wave dynamics may
generalize to more complex state of the art architectures and similarly enhance their
performance.

Y. Chen et al. (2022) demonstrated that in a predictive RNN autoencoder learn-
ing sequences, a Toeplitz connectivity emerges spontaneously, replicating multiple
canonical neuroscientific measurements such as one-shot learning and place cell
phase precession. Our results in Figure 7.9 further support these findings that with
proper training and connectivity constraints, recurrent neural networks can learn to
exhibit traveling wave activity in service of solving a task.

In another related paper, G. Benigno et al. (2022) studied a complex-valued recur-
rent neural network with distance-dependant connectivity and signal-propagation
time-delay, in order to understand the potential computational role for traveling
waves that have been observed in visual cortex. They showed that when recurrent
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strengths are set optimally, the network is able to perform long-term closed-loop
video forecasting significantly better than networks lacking this spatially-organized
recurrence. Our model is complimentary to this approach, focusing instead on the
sequence integration capabilities of waves, rather than on forecasting, and leverag-
ing a more traditional deep learning architecture.

Limitations & Future Work.

The experiments in this chapter are inherently limited due to the relatively small
scale of the datasets and models studied. For example, nearly all models in this
work rely on linear encoders and decoders, and consist of a single RNN layer.
Compared with sate of the art models consisting of more complex deep RNNs
with skip connections and regularization, our work is therefore potentially leaving
significant performance on the table. However, as described above, beginning
with small scale experiments on standard architectures yields alternative benefits
including more accurate hyperparameter tuning (due to a smaller search space) and
potentially greater generality of conclusions. In future work, we plan to test the
full implications of our results for the machine learning community and integrate
the core concepts from the wRNN into more modern sequence learning algorithms,
such as those used for language modeling.

A limitation of our model specifically is the increased number of activations when
using a large number of channels. Succinctly, the wRNN requires more memory than
the iRNN model in order to store the larger hidden state over time. This limitation
can be partially ameliorated by using an adjoint method in the backwards pass so
that hidden states can be recomputed when needed and not stored for intermediate
steps (R. T. Q. Chen et al., 2018). In preliminary experiments we find that such an
approach indeed works and produces waves, offering a suggestion for scaling such
models to larger sizes.

Finally, we believe this work opens the door for significant future work in the domains
of theoretical and computational neuroscience. For example, direct comparison of
the wave properties of our model with neurological recordings may provide novel
insights into the mechanisms and role of traveling waves in the brain, analogous
to how comparison of visual stream recordings with convolutional neural network
activations has yielded insights into the biological visual system (Cadieu et al., 2014).
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C h a p t e r 8

LEARNING FACTORIZED REPRESENTATIONS WITH
SPATIO-TEMPORAL FLOWS

8.1. Introduction

In the previous chapters, we have introduced multiple methods to induce spatio-
temporal structure into artificial neural network representations. At a high level,
these methods worked by initially specifying some spatial organization of artificial
neurons through a neighborhood structure (such as a 2-D grid or torus), and then
encouraging a flow of activity between neighboring neurons over time steps. This
flow was either achieved through a specific spatio-temporal prior distribution (in
the TVAE), or more flexibly through a set of local recurrent connections (in the
NWM). These methods, inspired by group equivariant neural network architectures,
were demonstrated to indeed have many beneficial properties for both the machine
learning and computational neuroscience communities, and further had a clear
correspondence with their group-equivariant counterparts.

However, what if we desired to encourage our neural activity to follow a more precise
spatio-temporal structure? For instance, could we leverage the aforementioned
approaches to encourage our neural activity to follow an arbitrary partial differential
equation (PDE) such as the traditional wave equation: 𝜕2𝑢

𝜕𝑡2
= 𝑐2∇2𝑢? As we saw in

the previous chapter, we were able to accomplish this successfully for simple ODEs
such as the one-way wave equation, however if we were to require higher order spatial
derivatives it is likely we may run into issues. Unfortunately, due to the discrete
nature of our grids of neurons in the previous chapters, the prior approach has clear
limitations when simulated on digital computers. Foremost, the resolution of the
grid that we would like to construct is limited by total number of neurons in the final
layer. Since adding neurons can be quite computationally expensive, this inherently
limits the resulting resolution and sizes of the topologies we can build. As a result,
when attempting to approximate a PDE over a low-resolution discretization of
space, the approximation errors become significantly large, ultimately dramatically
affecting the evolution of the system and pulling it away from the desired dynamics.
How then might we be able to induce PDE-like spatio-temporal structure in neural
representations without having such computational difficulties?
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In the machine learning literature, a new class of models has recently emerged as
a popular approach to represent signals over a continuous space efficiently without
incurring discretization or scaling challenges. Such models are known as implicit
neural representations, and work by learning the parameters 𝜃 of a function 𝑓𝜃 which
maps from the desired coordinate space directly to the value of the signal (Mildenhall
et al., 2021; Z. Chen and H. Zhang, 2019; Sitzmann et al., 2020). For example, if
the goal were to represent the height above sea level for each latitude and longitude
coordinate on Earth, a function 𝑓𝜃 : (lat, long) → R could be trained to directly
output the altitude for each pair of coordinates (lat, long) sampled from the surface
of the sphere. In this way, the function 𝑓 is then effectively infinite resolution since
any real valued coordinate pair can be sampled to produce an output. For the settings
which interest this thesis, one could imagine similarly parameterizing the surface of
the cortex via an implicit neural representation, and learning a function which maps
from each coordinate on the cortical surface to a specific signal value. By doing
so, we effectively achieve infinite resolution allowing for the precise computation
of gradients and divergences of this signal along the cortical surface. The question
then becomes what signal should we be representing implicitly?

In this chapter, we propose an approach to induce spatio-temporal structure which
diverges quite significantly from that of the previous chapters. Rather than trying
to learn a map from the input to neural activations which itself obeys some spatio-
temporal structure, we instead propose to learn a set of ‘forces’ in activation space
which move activations in a structured manner in order to accurately model observed
transformations. To do this, we infer the initial set of activations z0 with a latent
variable model (such as a variational autoencoder), and then simultaneously learn
a set of 𝑘 implicit scalar-valued potential functions defined over that space (which
we denote 𝑢𝑘 (z, 𝑡)) which impose forces on the activations through their gradients
∇𝑧𝑢𝑘 . We are then able to formulate a generative model of sequences which begins
with a latent variable z0 and a latent potential index 𝑘 , and then computes latent
variables at future time steps through the gradient: z𝑡+1 = z𝑡 + ∇𝑧𝑢𝑘 (z, 𝑡).

In order to encourage the function 𝑢 to obey our desired spatio-temporal structure,
we propose to leverage the well known Physics Informed Neural Network (PINN)
framework of Raissi et al. (2019). In short, this framework imposes an additional loss
on our function 𝑢(z, 𝑡) which encourages it to satisfy a PDE of our choice. For ex-
ample, to learn a function 𝑢which obeys the wave equation, one could simply add the
loss term | | 𝜕2𝑢

𝜕𝑡2
− 𝑐2∇2

𝑧𝑢(z, 𝑡) | |22 to the overall loss during training. Since 𝑢 is defined
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over a continuous space z and parameterized via a neural network, computing the
required derivatives is efficient and accurate through automatic differentiation tools.

In the following, we will describe precisely how we define a generative model of
sequences using this idea. We will then show how, by learning a set of 𝑘 distinct
potential functions, the model can be seen to be effectively factorizing its latent
space according to 𝑘 separate learned transformations. Due to these transformations
being modeled as flows of probability on a potential landscape, we will refer to this
model as ‘Flow Factorized Representation Learning’. We will show theoretically
how these flows can be seen to actually follow the ‘optimal transport’ path as
derived using dynamic optimal transport theory. Finally, we will show empirically
how these models then become approximately equivariant with respect to observed
transformations, achieving lower equivariance error compared with prior work.

Image Space

Latent Space

Figure 8.1: Illustration of our proposed flow factorized representation learning
framework: at each point in the latent space we have a distinct set of tangent
directions ∇𝑢𝑘 which define different transformations we would like to model in the
image space. For each path, the latent sample evolves to the target on the potential
landscape following dynamic optimal transport.
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8.2. The Generative Model

Figure 8.2: Depiction of our model in plate notation. (Left) Supervised, (Right)
Weakly-supervised. White nodes denote latent variables, shaded nodes denote ob-
served variables, solid lines denote the generative model, and dashed lines denote
the approximate posterior. We see, as in a standard VAE framework, our model
approximates the initial one-step posterior 𝑝(z0 |x0), but additionally approximates
the conditional transition distribution 𝑝(z𝑡 |z𝑡−1, 𝑘) through dynamic optimal trans-
port over a potential landscape.

In this section, we first introduce our generative model of sequences and then describe
how we perform inference over the latent variables of this model in the next section.

Flow factorized sequence distributions

The model in this work defines a distribution over sequences of observed variables.
We further factorize this distribution into 𝑘 distinct components by assuming that
each observed sequence is generated by one of the 𝑘 separate flows of probability
mass in latent space. Since in this work we model discrete sequences of observations
x̄ = {x0,x1 . . . ,x𝑇 }, we aim to define a joint distribution with a similarly discrete
sequence of latent variables z̄ = {z0, z1 . . . , z𝑇 }, and a categorical random variable
𝑘 describing the sequence type (observed or unobserved). Explicitly, we assert the
following factorization of the joint distribution over 𝑇 timesteps:

𝑝(x̄, z̄, 𝑘) = 𝑝(𝑘)𝑝(z0)𝑝(x0 |z0)
𝑇∏
𝑡=1

𝑝(z𝑡 |z𝑡−1, 𝑘)𝑝(x𝑡 |z𝑡). (8.1)

Here 𝑝(𝑘) is a categorical distribution defining the transformation type, 𝑝(x𝑡 |z𝑡)
asserts a mapping from latents to observations with Gaussian noise, and 𝑝(z0) =

N(0, 1). A plate diagram of this model is depicted through the solid lines in Fig. 8.2.
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Prior time evolution

To enforce that the time dynamics of the sequence define a proper flow of probability
density, we compute the conditional update 𝑝(z𝑡 |z𝑡−1, 𝑘) from the continuous form
of the continuity equation: 𝜕𝑡 𝑝(z) = −∇ · (𝑝(z)∇𝜓𝑘 (z)), where 𝜓𝑘 (z) is the
𝑘’th prior potential function which advects the density 𝑝(z) through the induced
velocity field ∇𝜓𝑘 (z). Considering the discrete particle evolution corresponding
to this density evolution, z𝑡 = 𝑓 (z𝑡−1, 𝑘) = z𝑡−1 + ∇𝑧𝜓𝑘 (z𝑡−1), we see that we can
derive the conditional update from the continuous change of variables formula (D.
Rezende and Mohamed, 2015; R. T. Q. Chen et al., 2018):

𝑝(z𝑡 |z𝑡−1, 𝑘) = 𝑝(z𝑡−1)
���𝑑𝑓 (z𝑡−1, 𝑘)

𝑑z𝑡−1

���−1
(8.2)

In this setting, we see that the choice of 𝜓 ultimately determines the prior on the tran-
sition probability in our model. As a minimally informative prior for random trajec-
tories, we use a diffusion equation achieved by simply taking 𝜓𝑘 = −𝐷𝑘 log 𝑝(z𝑡).
Then according to the continuity equation, the prior evolves as:

𝜕𝑡 𝑝(z𝑡) = −∇ ·
(
𝑝(z𝑡)∇𝜓

)
= 𝐷𝑘∇2𝑝(z𝑡) (8.3)

where 𝐷𝑘 is a constant coefficient that does not change over time. The density
evolution of the prior distribution thus follows a constant diffusion process. We set
𝐷𝑘 as a learnable parameter which is distinct for each 𝑘 .

8.3. Flow factorized variational autoencoders

To perform inference over the unobserved variables in our model, we propose to
use a variational approximation to the true posterior, and train the parameters of the
model as a VAE. To do this, we parameterize an approximate posterior for 𝑝(z0 |x0),
and additionally parameterize a set of 𝐾 functions 𝑢𝑘 (z) to approximate the true
latent potentials 𝜓∗. First, we will describe how we do this in the setting where the
categorical random variable 𝑘 is observed (which we call the supervised setting),
then we will describe the model when 𝑘 is also latent and thus additionally inferred
(which we call the weakly supervised setting).

Inference with observed 𝑘 (supervised)

When 𝑘 is observed, we define our approximate posterior to factorize as follows:

𝑞(z̄ |x̄, 𝑘) = 𝑞(z0 |x0)
𝑇∏
𝑡=1

𝑞(z𝑡 |z𝑡−1, 𝑘) (8.4)
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We see that, in effect, our approximate posterior only considers information from
element x0; however, combined with supervision in the form of 𝑘 , we find this is
sufficient for the posterior to be able to accurately model full latent sequences. In
the limitations section we discuss how the posterior could be changed to include all
elements {x𝑡}𝑇0 in future work.

Combing Eq. (8.4) with Eq. (8.1), we can derive the following lower bound to the
model evidence (ELBO):

log 𝑝(x̄|𝑘) = E𝑞𝜃 (z̄ |x̄,𝑘)
[
log

𝑝(x̄, z̄ |𝑘)
𝑞(z̄ |x̄, 𝑘)

𝑞(z̄ |x̄, 𝑘)
𝑝(z̄ |x̄, 𝑘)

]
≥ E𝑞𝜃 (z̄ |x̄,𝑘)

[
log

𝑝(x̄|z̄, 𝑘)𝑝(z̄ |𝑘)
𝑞(z̄ |x̄, 𝑘)

]
= E𝑞𝜃 (z̄ |x̄,𝑘) [log 𝑝(x̄|z̄, 𝑘)] + E𝑞𝜃 (z̄ |x̄,𝑘)

[
log

𝑝(z̄ |𝑘)
𝑞(z̄ |x̄, 𝑘)

] (8.5)

Substituting and simplifying, Eq. (8.5) can be re-written as

log 𝑝(x̄|𝑘) ≥
𝑇∑︁
𝑡=0
E𝑞𝜃 (z̄ |𝑘)

[
log 𝑝(x𝑡 |z𝑡 , 𝑘) − DKL [𝑞𝜃 (z𝑡 |z𝑡−1, 𝑘) | |𝑝(z𝑡 |z𝑡−1, 𝑘)]

]
(8.6)

We thus see that we have an objective very similar to that of a traditional VAE,
except that our posterior and our prior now both have a time evolution defined by
the conditional distributions.

Inference with latent 𝑘 (weakly supervised)

When 𝑘 is not observed, we can treat it as another latent variable, and simultaneously
perform inference over it in addition to the sequence latents z̄. To achieve this, we
define our approximate posterior and instead factorize it as

𝑞(z̄, 𝑘 |x̄) = 𝑞(𝑘 |x̄)𝑞(z0 |x0)
𝑇∏
𝑡=1

𝑞(z𝑡 |z𝑡−1, 𝑘) (8.7)

Following a similar procedure as in the supervised setting, we derive the new ELBO
as

log 𝑝(x̄) = E𝑞𝜃 (z̄,𝑘 |x̄)
[
log

𝑝(x̄, z̄, 𝑘)
𝑞(z̄, 𝑘 |x̄)

𝑞(z̄, 𝑘 |x̄)
𝑝(z̄, 𝑘 |x̄)

]
≥ E𝑞𝜃 (z̄,𝑘 |x̄)

[
log

𝑝(x̄|z̄, 𝑘)𝑝(z̄ |𝑘)
𝑞(z̄ |x̄, 𝑘)

𝑝(𝑘)
𝑞(𝑘 |x̄)

]
= E𝑞𝜃 (z̄,𝑘 |x̄) [log 𝑝(x̄|z̄, 𝑘)]

+ E𝑞𝜃 (z̄,𝑘 |x̄)
[
log

𝑝(z̄ |𝑘)
𝑞(z̄ |x̄, 𝑘)

]
+ E𝑞𝛾 (𝑘 |x̄)

[
log

𝑝(𝑘)
𝑞(𝑘 |x̄)

]
(8.8)
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We see that, compared with Eq. (8.5), only one additional KL divergence term
DKL

[
𝑞𝛾 (𝑘 |x̄) | |𝑝(𝑘)

] ]
is added. The prior 𝑝(𝑘) is set to follow a categorical

distribution, and we apply the Gumbel-SoftMax trick (Jang et al., 2017) to allow
for categorical re-parameterization and sampling of 𝑞𝛾 (𝑘 |x̄).

Posterior time evolution

As noted, to approximate the true generative model which has some unknown
latent potentials 𝜓𝑘 , we propose to parameterize a set of potentials as 𝑢𝑘 (z, 𝑡) =

MLP( [z; 𝑡]) and train them through the ELBOs above. Again, we use the continuity
equation to define the time evolution of the posterior, and thus we can derive
the conditional time update 𝑞(z𝑡 |z𝑡−1, 𝑘) through the change of variables formula.
Given the function of the sample evolution z𝑡 = 𝑔(z𝑡−1, 𝑘) = z𝑡−1 + ∇z𝑢

𝑘 , we have:

𝑞(z𝑡 |z𝑡−1, 𝑘) = 𝑞(z𝑡−1)
���𝑑𝑔(z𝑡−1, 𝑘)

𝑑z𝑡−1

���−1
(8.9)

Converting the above continuous equation to the discrete setting and taking the
logarithm of both sides gives the normalizing-flow-like density evolution of our
posterior:

log 𝑞(z𝑡 |z𝑡−1, 𝑘) = log 𝑞(z𝑡−1) − log |1 + ∇2
z𝑢

𝑘 | (8.10)

The above relation can be equivalently derived from the continuity equation (i.e.,
𝜕𝑡𝑞(z) = −∇·

(
𝑞(z)∇𝑢𝑘

)
). Notice that we only assume the initial posterior 𝑞(z0 |x0)

follows a Gaussian distribution. For the future timesteps, we do not pose any further
assumptions and just let the density evolve according to the sample motion.

Ensuring optimal transport of the posterior flow

As an inductive bias, we would like each latent posterior flow to follow the optimal
transport path. To accomplish this, it is known that when the gradient ∇𝑢𝑘 satisfies
certain PDEs, the evolution of the probability density can be seen to minimize the
𝐿2 Wasserstein distance between the source distribution and the distribution of the
target transformation. Specifically, we have:

Theorem 1 (Benamou-Brenier Formula (Benamou and Brenier, 2000)). For prob-
ability measures 𝜇0 and 𝜇1, the 𝐿2 Wasserstein distance can be defined as

𝑊2(𝜇0, 𝜇1)2 = min
𝜌,𝑣

{∫ ∫
1
2
𝜌(𝑥, 𝑡) |𝑣(𝑥, 𝑡) |2 𝑑𝑥 𝑑𝑡

}
(8.11)
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Figure 8.3: Exemplary latent evolution results of Scaling, Rotation, and Coloring on
MNIST (LeCun, 1998). The top two rows are based on the supervised experiment,
while the images of the bottom row are taken from the weakly-supervised setting of
our experiment.

where the density 𝜌 and the velocity 𝑣 satisfy:

𝑑 𝜌(𝑥, 𝑡)
𝑑𝑡

= −∇ · (𝑣(𝑥, 𝑡)𝜌(𝑥, 𝑡)), 𝑣(𝑥, 𝑡) = ∇𝑢(𝑥, 𝑡) (8.12)

The optimality condition of the velocity is given by the generalized Hamilton-Jacobi
(HJ) equation (i.e., 𝜕𝑡𝑢 + 1/2| |∇𝑢 | |2 ≤ 0). The detailed derivation is deferred to the
supplementary. We thus encourage our potential to satisfy the HJ equation with an
external driving force as

𝜕

𝜕𝑡
𝑢𝑘 (z, 𝑡) + 1

2
| |∇z𝑢

𝑘 (z, 𝑡) | |2 = 𝑓 (z, 𝑡) subject to 𝑓 (z, 𝑡) ≤ 0 (8.13)

Here we use another MLP to parameterize the external force 𝑓 (z, 𝑡) and realize
the negativity constraint by setting 𝑓 (z, 𝑡) = −MLP( [z; 𝑡])2. To achieve the PDE
constraint, we impose a Physics-Informed Neural Network (PINN) (Raissi et al.,
2019) loss as

L𝐻𝐽 =
1
𝑇

𝑇∑︁
𝑡=1

( 𝜕
𝜕𝑡
𝑢𝑘 (z, 𝑡) + 1

2
| |∇z𝑢

𝑘 (z, 𝑡) | |2 − 𝑓 (z, 𝑡)
)2

+ ||∇𝑢𝑘 (z0, 0) | |2 (8.14)

where the first term restricts the potential to obey the HJ equation, and the second
term limits 𝑢(z𝑡 , 𝑡) to return no update at 𝑡=0, therefore matching the initial condi-
tion.

We note that an alternative formulation of this PINN constraint could be the tradi-
tional wave equation, as described in the introduction. In doing so, one would likely
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see waves of activity traveling across the implicit cortical surface if measured. In-
deed in prior work not included in this thesis (Y. Song, T. A. Keller, et al., 2023),
we have experimented with such wave potentials for the purpose of latent traver-
sals and found them to be highly effective. In this chapter, however, we leverage the
connection between the HJ equation and dynamic optimal transport allowing us to
introduce the valuable inductive bias of optimal transport into our framework. In
ongoing future work, we are exploring ways to incorporate traveling wave dynamics
more explicitly into this framework, allowing for a synergistic combination of op-
timal transport and traveling waves in deep latent variable models, and potentially
giving another viewpoint from which to interpret traveling wave observations from
neuroscience.

8.4. Experiments

This section starts with the experimental setup, followed by qualitative and quanti-
tative results, and ends with discussions about the generalization ability to different
composability and unseen data.

Datasets — We evaluate our method on two widely-used datasets in generative mod-
eling, namely MNIST (LeCun, 1998) and Shapes3D (Burgess and H. Kim, 2018).
For MNIST (LeCun, 1998), we manually construct three simple transformations
including Scaling, Rotation, and Coloring. For Shapes3D (Burgess and H. Kim,
2018), we use the self-contained four transformations that consist of Floor Hue,
Wall Hue, Object Hue, and Scale.

Baselines — We mainly compare our method with SlowVAE (D. Klindt et al.,
2021) and Topographic VAE (TVAE) (T. A. Keller and Max Welling, 2021a) since
these two baselines both achieve a form of approximate equivariance in a generative
modeling framework. Specifically, as shown in Chapter 5, the TVAE can be seen to
induce approximate equivariance through the latent ‘Roll’ operator, while SlowVAE
enforces the Laplacian prior 𝑝(z𝑡 |z𝑡−1) =

∏
𝛼𝜆/2Γ(1/𝛼) exp (−𝜆 |𝑧𝑡,𝑖 − 𝑧𝑡−1,𝑖 |𝛼) to

sequential pairs. Within the disentanglement literature, our method is compared
with the supervised PoFlow (Y. Song, T. A. Keller, et al., 2023) which adopts a
wave-like potential flow for sample evolution, and the unsupervised 𝛽-VAE (Higgins,
Matthey, et al., 2016) and FactorVAE (H. Kim and Mnih, 2018) which encourage
independence between single latent dimensions. Finally, the vanilla VAE is used as
a controlled baseline.

Metrics — We use the approximate equivariance error E𝑘 and the log-likelihood of
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Figure 8.4: Exemplary latent flow results on Shapes3D (Burgess and H. Kim, 2018).
The transformations from top to bottom are Floor Hue, Wall Hue, Object Hue, and
Scale, respectively. The images of the top row are from the supervised experiment,
while the bottom row is based on the weakly-supervised experiment.

transformed data log 𝑝(x𝑡) as the evaluation protocols. The equivariance error is
defined as E𝑘 =

∑𝑇
𝑡=1 |x𝑡 −Decode(z𝑡) | where z𝑡 = z0 +

∑𝑇
𝑡=1 ∇z𝑢

𝑘 . For TVAE, the
latent operator is changed to Roll(z0, 𝑡). For unsupervised disentanglement base-
lines (Higgins, Matthey, et al., 2016; H. Kim and Mnih, 2018) and SlowVAE (D.
Klindt et al., 2021), we carefully select the latent dimension and tune the interpola-
tion range to attain the traversal direction and range that correspond to the smallest
equivariance error. Since the vanilla VAE does not have the corresponding learned
transformation in the latent space, we simply set ∇z𝑢

𝑘 = 0 and take it as a lower-
bound baseline. For all the methods, the results are reported based on 5 runs.

Notice that the above equivariance error is defined in the output space. Another
reasonable evaluation metric is instead measuring error in the latent space as E𝑘 =∑𝑇
𝑡=1 |Encode(x𝑡) − z𝑡 |. We see the first evaluation method is more comprehensive

as it further involves the decoder in the evaluation.

Methods Supervision? Equivariance Error (↓) Log-likelihood (↑)Scaling Rotation Coloring

VAE (Kingma and Max Welling, 2014) No (✗) 1275.31±1.89 1310.72±2.19 1368.92±2.33 -2206.17±1.83
𝛽-VAE (Higgins, Matthey, et al., 2016) No (✗) 741.58±4.57 751.32±5.22 808.16±5.03 -2224.67±2.35
FactorVAE (H. Kim and Mnih, 2018) No (✗) 659.71±4.89 632.44±5.76 662.18±5.26 -2209.33±2.47

SlowVAE (D. Klindt et al., 2021) Weak (✓) 461.59±5.37 447.46±5.46 398.12±4.83 -2197.68±2.39
TVAE (T. A. Keller and Max Welling, 2021a) Yes (✓) 505.19±2.77 493.28±3.37 451.25±2.76 -2181.13±1.87
PoFlow (Y. Song, T. A. Keller, et al., 2023) Yes (✓) 234.78±2.91 231.42±2.98 240.57±2.58 -2145.03±2.01

Ours Yes (✓) 185.42±2.35 153.54±3.10 158.57±2.95 -2112.45±1.57
Ours Weak (✓) 193.84±2.47 157.16±3.24 165.19±2.78 -2119.94±1.76

Table 8.1: Equivariance error E𝑘 and log-likelihood log 𝑝(x𝑡) on MNIST.
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Qualitative results — Fig. 8.3 and 8.4 display decoded images of the latent evolution
on MNIST (LeCun, 1998) and Shapes3D (Burgess and H. Kim, 2018), respectively.
On both datasets, our latent flow can perform the target transformation precisely
during evolution while leaving other traits of the image unaffected. In particular,
for the weakly-supervised setting, the decoded images (i.e., the bottom rows of
Fig. 8.3 and 8.4) can still reproduce the given transformations well and it is even
hard to visually tell them apart from the generated images under the supervised
setting. This demonstrates the effectiveness of the weakly-supervised setting of our
method, and implies that qualitatively our latent flow is able to learn the sequence
transformations well under both supervised and weakly-supervised settings.

Methods Supervision? Equivariance Error (↓) Log-likelihood (↑)Floor Hue Wall Hue Object Hue Scale

VAE (Kingma and Max Welling, 2014) No (✗) 6924.63±8.92 7746.37±8.77 4383.54±9.26 2609.59±7.41 -11784.69±4.87
𝛽-VAE (Higgins, Matthey, et al., 2016) No (✗) 2243.95±12.48 2279.23±13.97 2188.73±12.61 2037.94±11.72 -11924.83±5.64
FactorVAE (H. Kim and Mnih, 2018) No (✗) 1985.75±13.26 1876.41±11.93 1902.83±12.27 1657.32±11.05 -11802.17±5.69

SlowVAE (D. Klindt et al., 2021) Weak (✓) 1247.36±12.49 1314.86±11.41 1102.28±12.17 1058.74±10.96 -11674.89±5.74
TVAE (T. A. Keller and Max Welling, 2021a) Yes (✓) 1225.47±9.82 1246.32±9.54 1261.79±9.86 1142.01±9.37 -11475.48±5.18
PoFlow (Y. Song, T. A. Keller, et al., 2023) Yes (✓) 885.46±10.37 916.71±10.49 912.48±9.86 924.39±10.05 -11335.84±4.95

Ours Yes (✓) 613.29±8.93 653.45±9.48 605.79±8.63 599.71±9.34 -11215.42±5.71
Ours Weak (✓) 690.84±9.57 717.74±10.65 681.59±9.02 653.58±9.57 -11279.61±5.89

Table 8.2: Equivariance error E𝑘 and log-likelihood log 𝑝(x𝑡) on Shapes3D.

Quantitative results — Tables 8.1 and 8.2 compare the equivariance error and the log-
likelihood on MNIST (LeCun, 1998) and Shapes3D (Burgess and H. Kim, 2018),
respectively. Our method learns the latent flows which model the transformations
precisely, achieving the best performance across datasets under different supervision
settings. Specifically, our method outperforms the previous best baseline by 69.74
on average in the equivariance error and by 32.58 in the log-likelihood on MNIST.
The performance gain is also consistent on Shapes3D: our method surpasses the
second-best baseline by 291.70 in the average equivariance error and by 120.42 in
the log-likelihood. In the weakly-supervised setting, our method also achieves very
competitive performance, falling behind that of the supervised setting in the average
equivariance error slightly by 6.22 on MNIST and by 67.88 on Shapes3D.

8.5. Discussion

Extrapolation: switching transformations — In Fig. 8.5 we demonstrate that, em-
powered by our method, it is possible to switch latent transformation categories
mid-way through the latent evolution and maintain coherence. That is, we perform
z𝑡 = z𝑡−1 + ∇z𝑢

𝑘 for 𝑡 ≤ 𝑇/2 and then change to z𝑡 = z𝑡−1 + ∇z𝑢
𝑗 where 𝑗 ≠ 𝑘 for

𝑡 > 𝑇/2. As can be seen, the factor of variation immediately changes after the trans-
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Wall Hue Object Hue

Floor Hue Wall Hue

Rotation Coloring

Rotation Scaling

Coloring Scaling Object Size Object Hue

Figure 8.5: Exemplary visualization of switching transformations during the latent
sample evolution.

All Transformations Wall Hue + Scale Floor Hue + Object Hue

Scale + Object Hue Wall Hue + Floor Hue Wall Hue + Object Hue

Figure 8.6: Examples of combining different transformations simultaneously during
the latent evolution.

formation type is switched. Moreover, the transition phase is smooth and no other
attributes of the image are influenced.

Extrapolation: superimposing transformations — Besides switching transforma-
tions, our method also supports applying different transformations simultaneously,
i.e., consistently performing z𝑡 = z𝑡−1 + ∑𝐾

𝑘 ∇z𝑢
𝑘 during the latent flow process.

Fig. 8.6 presents such exemplary visualizations of superimposing two, and all, trans-
formations simultaneously. In each case, the latent evolution corresponds to si-
multaneous smooth variations of multiple image attributes. This indicates that our
method also generalizes well to superposing different transformations.

Notice that we only apply single and separate transformations in the training stage.
Switching or superposing transformations in the test phase can be thus understood as
an extrapolation test to measure the generalization ability of the learned equivariance
to novel compositions.
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Figure 8.7: Equivariance generalization to unseen OoD input data. Here the model
is trained on MNIST but the latent flow is tested on dSprites.

Equivariance generalization to new data — We also test whether the learned equiv-
ariance holds for Out-of-Distribution (OoD) data. To verify this, we validate our
method on a test dataset that is different from the training set and therefore unseen to
the model. Fig. 8.7 displays the exemplary visualization results of the VAE trained
on MNIST but evaluated on dSprites (Matthey et al., 2017). Although the recon-
struction quality is poor, the learned equivariance is still clearly effective as each
transformation still operates as expected: scaling, rotation, and coloring transfor-
mations from top to bottom respectively.

8.6. Related work

Disentangled representation learningx — The idea of learning disentangled rep-
resentation dates back to factorizing non-redundant input patterns (Schmidhuber,
1992) but is recently first studied by InfoGAN (Xi Chen et al., 2016) and 𝛽-VAE (Hig-
gins, Matthey, et al., 2016). InfoGAN (Xi Chen et al., 2016) achieves disentangle-
ment by maximizing the mutual information between a subset of latent dimensions
and observations, while 𝛽-VAE (Higgins, Matthey, et al., 2016) induces the factor-
ized posterior 𝑞(z) by penalizing the Total Correlation (TC) through an extra hyper-
parameter 𝛽>1 controlling the strength of the KL divergence. Following infoGAN,
many attempts have been made to facilitate the discovery of semantically meaning-
ful traversal directions through regularization (Goetschalckx et al., 2019; Jahanian
et al., 2020; Voynov and Babenko, 2020; Härkönen et al., 2020; X. Zhu et al., 2020;
Peebles et al., 2020; Shen and Zhou, 2021; Wei et al., 2021; J. Zhu, Feng, et al.,
2021; Tzelepis et al., 2021; J. Zhu, Shen, et al., 2022; Y. Song, Sebe, et al., 2022;
Oldfield et al., 2023). The follow-up research of 𝛽-VAE mainly explored different
methods to factorize the aggregated posterior (Dilokthanakul et al., 2016; Dupont,
2018; Kumar et al., 2018; H. Kim and Mnih, 2018; R. T. Chen et al., 2018; Y. Jeong
and H. O. Song, 2019; Ding et al., 2020; Locatello et al., 2020; Tai et al., 2022).



110

More recently, some works proposed to disentangle diffusion models by discovering
meaningful directions in the bottleneck of denoising networks (Kwon et al., 2023;
Park et al., 2023; T. Yang et al., 2023). The previous literature mainly considers
disentanglement as learning different transformations per dimension or per linear
direction. Our method generalizes this concept to learning a distinct tangent bundle
∇𝑢𝑘 that moves every latent sample via dynamic OT.

We see the most similar method to ours is the work of (Y. Song, T. A. Keller, et al.,
2023). In (Y. Song, T. A. Keller, et al., 2023), the authors also apply the gradient of a
potential function to move the latent code. However, their potentials are restricted to
obey the wave equations, which do not really correspond to the OT theory. Also, they
do not consider the posterior evolution but instead use the loss | |z𝑡 − Encode(x𝑡) | |2

to match the latent codes. By contrast, we propose a unified probabilistic generative
model that encompasses the posterior flow that follows dynamic OT, the flow-like
time evolution, and different supervision settings.

Equivariant neural networks — Equivariance has been considered a desired inductive
bias for deep neural networks as this property can preserve geometric symmetries
of the input space (Geoffrey E Hinton, Krizhevsky, et al., 2011a; Schmidt and
Roth, 2012; C.-Y. Lee et al., 2015; Lenc and Vedaldi, 2015; Agrawal et al., 2015).
Analytically equivariant networks typically enforce explicit symmetry to group
transformations in neural networks (T. Cohen and Max Welling, 2016a; Taco S
Cohen and Max Welling, 2017; Ravanbakhsh et al., 2017; D. E. Worrall et al., 2017;
D. Worrall and Max Welling, 2019b; Van der Pol et al., 2020; Finzi, Stanton, et
al., 2020; Hoogeboom et al., 2022). Another line of research proposed to directly
learn approximate equivariance from data (Diaconu and D. Worrall, 2019b; Connor
et al., 2021; D. Klindt et al., 2021; Dey et al., 2021; T. A. Keller and Max Welling,
2021a). Our framework re-defines approximate equivariance by matching the latent
probabilistic flow to the actual path of the given transformation in the image space.

Optimal transport in deep learning — There is a vast literature on OT theory
and applications in various fields (Villani, 2009; Villani, 2021). Here we mainly
highlight the relevant applications in deep learning. The pioneering work of (Cuturi,
2013) proposed a light-speed implementation of the Sinkhorn algorithm for fast
computation of entropy-regularized Wasserstein distance, which opened the way for
many differentiable Sinkhorn algorithm-based applications (Frogner et al., 2015;
Feydy et al., 2019; Chizat et al., 2020; Eisenberger et al., 2022; Kolouri et al.,
2021). In generative modeling, the Wasserstein distance is often used to minimize
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the discrepancy between the data distribution and the model distribution (Arjovsky,
Chintala, et al., 2017; Tolstikhin et al., 2018; Salimans et al., 2018; Patrini et
al., 2020). Inspired by the fluid mechanical interpretation of OT (Benamou and
Brenier, 2000), some normalizing flow methods (D. Rezende and Mohamed, 2015;
Dinh et al., 2017; Kingma and Dhariwal, 2018) considered regularizing the velocity
fields to satisfy the HJ equation, thus matching the dynamic OT plan (L. Yang
and Karniadakis, 2020; Finlay et al., 2020; Tong et al., 2020; Onken et al., 2021;
Neklyudov et al., 2023). Our method applies PINNs (Raissi et al., 2019) to directly
model generalized HJ equations in the latent space and uses the gradient fields of
learned potentials to generate latent flows, which also aligns to the theory of dynamic
fluid mechanical OT.

8.7. Conclusion

In this chapter, we introduce Flow Factorized Representation Learning which de-
fines a set of latent flow paths that correspond to sequences of different input trans-
formations. The latent evolution is generated by the gradient flow of learned po-
tentials following dynamic optimal transport. Our setup re-interprets the concepts
of both disentanglement and equivariance. Extensive experiments demonstrate that
our model achieves higher likelihoods on standard representation learning bench-
marks while simultaneously achieving smaller equivariance error. Furthermore, we
show that the learned latent transformations generalize well, allowing for flexible
composition and extrapolation to new data.

8.8. Limitations

For flexibility and efficiency, we use PINN (Raissi et al., 2019) constraints to
model the HJ equation. However, such PDE constraints are approximate and not
strictly enforced. Other PDE modeling approaches include accurate neural PDE
solvers (Hsieh et al., 2019; Brandstetter et al., 2022; Richter-Powell et al., 2022)
or other improved PINN variants such as competitive PINNs (Zeng et al., 2023)
and robust PINNs (Bajaj et al., 2023). Also, when infering with observed 𝑘 , we
change the posterior from 𝑞(z̄ |x̄, 𝑘) to 𝑞(z̄ |x0, 𝑘) because we assume 𝑘 contains
sufficient information of the whole sequence. To keep the posterior definition of
𝑞(z̄ |x̄, 𝑘), we need to make 𝑞(z𝑡) also a function of x𝑡 . This can be achieved either
by changing the potential to 𝑢(z𝑡−1,x𝑡 , 𝑡−1) or modifying the external driving force
to 𝑓 (z𝑡−1,x𝑡 , 𝑡−1). Nonetheless, we see these modifications would make the model
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less flexible than our current formulations as the element x𝑡 might be needed during
inference.
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C h a p t e r 9

SPATIO-TEMPORAL STRUCTURE AS SELF-SUPERVISION

9.1. Introduction

As described in the introduction to this thesis, an inflection point in the history
of modern deep learning is known as the ‘ImageNet Moment’ where deep neural
networks were shown to dramatically surpass the image-classification performance
of existing computer vision techniques for the first time. Why did this eye-opening
event happen at precisely this time? What precisely were the obstacles that were
overcome and the preconditions that were met to enable such a perfect storm? Most
importantly, what can studying these past obstacles tell us about obstacles that may
be hindering modern deep learning?

One element that undoubtedly contributed to the success of this moment was the
growing understanding of the best practices of training deep neural networks, and
specifically those pertaining to convolutional neural networks. A major component
of these best practices was the training of such architectures efficiently on modern
graphics processing units (GPUs). This yielded a training speed increase which sud-
denly made training of large scale (state-of-the-art competitive) networks feasible.

However, going hand-in-hand with this scaling-up of network size was the scaling-
up of the associated training set size. In hindsight, it can now be seen that perhaps
this may have been an equally important precondition for this eye-opening event to
happen when it did. Specifically, the dataset from which this moment inherits its
name, the ImageNet dataset, contains over 1,000 unique classes each with 1,000
images of the respective objects in each class. At the time of its introduction this
was the largest labeled dataset of its kind in the computer vision community, and
with over 1 million human-annotated images it required a significant organizational
effort to gather and process (Deng et al., 2009). As we described in the introduction,
deep neural networks are known to be analogous to bottomless pits in the context
of data requirements. By suddenly having such a massive amount of organized
information at their fingertips, Alex, Ilya, and Geoff were able to finally satisfy the
data-hunger of these models and demonstrate their potential.

From the perspective of cognitive scientists, psychologists, and neuroscientists how-
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ever, this success was bittersweet. It was clear that humans did not require this much
labeled data, and therefore these systems must not be representative of the learn-
ing processes of naturally intelligent systems. Furthermore, from the perspective
of the rapidly developing start-up industry around image classification, this neces-
sity for massive amounts of labeled data for every unique image classification task
made practical deployment of these models significantly more challenging than one
would initially hope for.

As a counteraction to the clear limitation of massive data requirements, scientists
began to work on algorithms which required little to no supervised labels, but instead
tried to solve what were called ‘auxiliary tasks’ to learn useful representations of the
data. This training paradigm came to be known as self-supervised learning (SSL),
since the networks could be seen to be extracting their own form of supervision
directly from the data itself (LeCun and Misra, 2021). Although many of these self-
supervised learning algorithms have since been shown to be highly related in theory
and concept to the unsupervised learning algorithms of the previous chapters, in
practice they have shown to work better for learning representations of data which
are useful for downstream tasks such as classification (at least in the context of
today’s paradigms).

In light of these successes, many of the prominent proponents of self-supervised
learning, such as Yann LeCun, have argued that they believe that natural intelligence
is likely performing some type of self-supervised learning in order to avoid the
unrealistic data requirements we see with standard supervised learning (LeCun and
Misra, 2021). However, there are still many known discrepancies with how these
algorithms actually perform learning and how we believe the brain learns. Foremost,
the vast majority of these algorithms still rely the backpropagation algorithm to
communicate the extracted supervision signal back from the output of the network
to each of the intermediate neurons. As we described in Section 3.3 it is precisely the
computational machinery required for this exact credit assignment which makes the
backpropagation algorithm biologically implausible given our current understanding
of neurobiology and its mapping to the abstractions of artificial neural networks
(Lillicrap, Santoro, et al., 2020). Beyond biological considerations, backpropagation
also has heavy compute and memory requirements which make it less than ideal for
practical reasons as well. For example the amount of memory required to run the
algorithm scales with the number of layers (or time steps in recurrent networks) as
all steps must be stored in memory in order to compute the gradient.
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As a result of these differences in learning and the ensuing practical limitations,
the study of novel biologically plausible learning algorithms has become an active
area of research for scientists sharing the goal of this thesis: to close the observed
gaps between natural and artificial intelligence. One promising step in that direction
came in 2019 with Löwe, O‘Connor, et al. (2019) demonstrating that deep neural
networks could be trained in a block-wise fashion with existing self-supervised
learning algorithms, thereby eliminating the need for ‘end-to-end’ training of such
systems. However, in the ensuring years, the popular self-supervised learning
algorithms have diverged from compatibility with this approach, turning instead
to what is known as ‘augmentation-based’ self-supervised learning which makes
such a layer-wise extension significantly more challenging. In this chapter, we will
present our own contribution on this front. Specifically, we will make a direct
comparison between the augmentations used in modern self-supervised learning and
the structure in natural and artificial neural networks that we have discussed up to
this point. In doing so, we will provide a blueprint for how we believe such structure
may be beneficial for self-supervised learning itself, and thereby breathe new life
into the local self-supervised learning ideas of Löwe, O‘Connor, et al. (2019).

In detail, to accomplish this, in the following sections we will study self-supervised
learning algorithms when equivariant neural networks are used as the main ‘back-
bone’ feature extractors. Interestingly, in this setting we will find a theoretical con-
vergence of existing loss functions from the literature, and ultimately generalize
these with the framework of Homomorphic Self-Supervised Learning. Experimen-
tally, we will show that, when the assumption of an augmentation-homomorphic
backbone is satisfied, this framework subsumes input augmentation, as evidenced
by identical performance over a range of settings. We further validate this theory by
showing that when our assumption is not satisfied, the framework fails to learn use-
ful representations. Finally, we explore the new generalized parameters introduced
by this framework, demonstrating an immediate path forward for improvements to
existing SSL methods which operate without input augmentations.

9.2. Background

In this section, we will provide quick review of the relevant aspects of group-
equivariant neural networks that will be used in this chapter. We will then review
general self-supervised frameworks and how prior literature differs with respect to
its use of input augmentations.
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Figure 9.1: Visualization of a ‘fiber’ (left), a ‘fiber bundle’ (center) and a group
representation Γ𝑔 acting on a fiber bundle (right). We see that a fiber is defined as
all features at an individual group element (in this case all feature channels at an
individual spatial dimension), while a fiber bundle is all features at a set of ordered
group elements. In this figure, we depict feature channels stacked along the z-
dimension, different from the ‘lifted’ dimension in Figure 9.2 (left).

Equivariance

Formally, a map which preserves the structure of the input space in the output space
is termed a homomorphism. The most prominent example of a homomorphism in
modern deep learning is the class of group equivariant neural networks, which are
analytically constrained to be group homomorphisms for specified transformation
groups (such as translation, rotation, mirroring, and scaling). The map 𝑓 : X → Z
is said to be equivariant with respect to the group G = (𝐺, ·) if

∃Γ𝑔 such that 𝑓 (𝜏𝑔 [x]) = Γ𝑔 [ 𝑓 (x)] ∀𝑔 ∈ 𝐺 , (9.1)

where 𝐺 is the set of all group elements, · is the group operation, 𝜏𝑔 is the repre-
sentation of the transformation 𝑔 ∈ 𝐺 in input space X, and Γ𝑔 is the representation
of the same transformation in output space Z. If 𝜏𝑔 and Γ𝑔 are formal group repre-
sentations (Serre, 1977) such maps 𝑓 are termed group-homomorphisms since they
preserve the structure of the group representation 𝜏𝑔 in input space with the output
representation Γ𝑔. There are many different methods for constructing group equiv-
ariant neural networks, resulting in different representations of the transformation
in feature space Γ𝑔. In this work, we consider only discrete groups G and networks
which admit regular representations for Γ.

Group-Convolutional Neural Networks — One common way in which group-equivariant
networks are constructed is via the group-convolution (G-conv) (T. Cohen and Max
Welling, 2016b) as described in Section 3.2. In this chapter, we will consider dis-
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crete groups G, and we will denote the pre-activation output of a G-equivariant con-
volutional layer 𝑙 as z𝑙 , with a corresponding input y𝑙 . In practice these values are
stored in finite arrays with a feature multiplicity equal to the order of the group in
each space. Explicitly, z𝑙 ∈ R𝐶𝑜𝑢𝑡×|𝐺𝑜𝑢𝑡 |, and y𝑙 ∈ R𝐶𝑖𝑛×|𝐺𝑖𝑛 | where𝐺𝑜𝑢𝑡 and𝐺𝑖𝑛 are
the set of group elements in the output and input spaces respectively. We use the fol-
lowing shorthand for indexing z𝑙 (𝑔) ≡ z𝑙,:,𝑔 ∈ R𝐶𝑜𝑢𝑡 and y𝑙 (𝑔) ≡ y𝑙,:,𝑔 ∈ R𝐶𝑖𝑛 , de-
noting the vector of feature channels at a specific group element (sometimes called
a ‘fiber’ (T. Cohen and M. Welling, 2017)). Explicitly then, the value 𝑧𝑙,𝑐 (𝑔) ∈ R
of a single output at layer 𝑙, channel 𝑐 and element 𝑔 is

𝑧𝑙,𝑐 (𝑔) ≡ [y𝑙 ★ψ𝑙,𝑐] (𝑔) =
∑︁
ℎ∈𝐺𝑖𝑛

𝐶𝑖𝑛∑︁
𝑖

𝑦𝑙,𝑖 (ℎ)𝜓𝑙,𝑐
𝑖
(𝑔−1 · ℎ) , (9.2)

where ψ𝑙,𝑐
𝑖

is the filter between the 𝑖𝑡ℎ input channel (subscript) and the 𝑐𝑡ℎ output
channel (superscript), and is similarly defined (and indexed) over the set of input
group elements 𝐺𝑖𝑛. We note that this equation differs from Equation 3.8 only in
the fact that this definition now includes a sum over input channels 𝐶𝑖𝑛 and an extra
index 𝑐 to denote output channels 𝐶𝑜𝑢𝑡 .

The representation Γ𝑔 can then be defined as Γ𝑔 [z𝑙 (ℎ)] = z𝑙 (𝑔−1 · ℎ) for all 𝑙 > 0
when G𝑙

𝑖𝑛
= G𝑙

𝑜𝑢𝑡 = G0
𝑜𝑢𝑡 . We see that Γ𝑔 is a ‘regular representation’ of the

group, meaning that it acts by permuting features along the group dimension while
leaving feature channels intact. Group equivariant layers can then be composed with
pointwise non-linearities and biases to yield a fully equivariant deep neural network
(e.g. y𝑙+1

𝑖
= ReLU(z𝑙 + b) where b ∈ R𝐶𝑜𝑢𝑡 is a learned bias shared over the output

group dimensions). For 𝑙 = 0, y0 is set to the raw input x, and typically the input
group is set to the group of all 2D integer translations up to height 𝐻 and width
𝑊 : G0

𝑖𝑛
= (Z2

𝐻𝑊
, +). The output group G0

𝑜𝑢𝑡 is then chosen by the practitioner and
is typically a larger group which includes translation as a subgroup, e.g. the roto-
translation group, or the group of scaling & translations. In this way, the first layer
of a group-equivariant neural network is frequently called the ‘lifting layer’ since it
lifts the input from the translation group, containing only spatial dimensions, to a
larger group by adding an additional ‘lifted’ dimension.

Example — As a simple example, a standard convolutional layer would have all
height (𝐻) and width (𝑊) spatial coordinates as the set 𝐺𝑜𝑢𝑡 , giving z ∈ R𝐶×𝐻𝑊 .
A group-equivariant neural network (T. Cohen and Max Welling, 2016b) which is
equivariant with respect to the the group of all integer translations and 90-degree
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rotations (𝑝4) would thus have a feature multiplicity four times larger (z ∈ R𝐶×4𝐻𝑊 ),
since each spatial element is associated with the four distinct rotation elements
(0𝑜, 90𝑜, 180𝑜, 270𝑜). Such a rotation equivariant network is depicted in Figure 9.2
with the ‘lifted’ rotation dimension extended along the vertical axis (𝜃). In both the
translation and rotation cases, the regular representation Γ𝑔 acts by permuting the
representation along the group dimension, leaving the feature channels unchanged.

Notation — In the remainder of this paper we will see that it is helpful to have a
notation which allows for easy reference to the sets of features corresponding to
multiple group elements simultaneously. These sets are sometimes called ‘fiber
bundles’ and are visually compared with individual fibers in Figure 9.1. In words, a
fiber (left) can be described as all features values at a specific group element (such as
all channels at a given spatial location), and a fiber bundle (center) is then all features
at an ordered set of group elements (such as all channels for a given spatial patch).
We denote the set of fibers corresponding to an ordered set of group elements g as:
z(g) = [z(𝑔) | 𝑔 ∈ g] ∈ R|g |𝐶𝑜𝑢𝑡 . Using this notation, we can define the action of
Γ𝑔 as: Γ𝑔 [z(g0)] = z(𝑔−1 · g0). Thus Γ𝑔 can be seen to move the fibers from ‘base’
locationsg0 to a new ordered set of locations 𝑔−1·g0, as depicted in on the right side of
Figure 9.1. We highlight that order is critical for our definition since a transformation
such as rotation may simply permute g0 while leaving the unordered set intact.

Self-Supervised Learning

As mentioned in the introduction, self-supervised learning can be seen as extracting
a supervision signal from the data itself, often by means of transformations applied
to the input. Many terms in self-supervised learning objectives can thus often be
abstractly written as a function I(V (1) ,V (2)) of two batches of vectors V (1) =

{v(1)
𝑖

}𝑁
𝑖=1 and V (2) = {v(2)

𝑖
}𝑁
𝑖=1 where there is some relevant relation between the

elements of the two batches. In this description, we see that there are two main
degrees of freedom which we will explore in the following paragraphs: the choice
of function I, and the precise relationship between V (1) and V (2) .

SSL Loss Functions: IC and INC — The most prominent SSL loss terms in the
literature are often segregated into contrastive IC (T. Chen et al., 2020; Oord et
al., 2018) and non-contrastive INC (Grill et al., 2020; Xinlei Chen and He, 2020)
losses. At a high level, contrastive losses frequently rely on a vector similarity
function sim(·, ·) (such as cosine similarity), and ‘contrast’ its output for ‘positive’
and ‘negative’ pairs. A general form of a contrastive loss, inspired by the ‘InfoNCE’
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loss (Oord et al., 2018), can be written as:

IC
𝑖 (V (1) ,V (2)) = − 1

𝑁
log

exp
(
sim

(
ℎ(v(1)

𝑖
), ℎ(v(2)

𝑖
)
)
/𝑇

)
∑𝑁
𝑗≠𝑖

∑2
𝑘,𝑙 exp

(
sim

(
ℎ(v(𝑘)

𝑖
), ℎ(v(𝑙)

𝑗
)
)
/𝑇

) (9.3)

where ℎ is a non-linear ‘projection head’ ℎ : Z → Y and 𝑇 is the ‘temperature’
of the softmax. We see that such losses can intuitively be thought of as trying to
classify the correct ‘positive’ pair (given by v(1)

𝑖
& v(2)

𝑖
) out of a set of negative pairs

(given by all other pairs in the batch). Comparatively, non-contrastive losses are
often applied to the same sets of representations V (1) and V (2) , but crucially forego
the need for ‘negative pairs’ through other means of regularization (such as a stop-
gradient on one branch (Xinlei Chen and He, 2020; Yuandong Tian, Xinlei Chen,
et al., 2021) observed to regularize the eigenvalues of the representation covariance
matrix). Fundamentally this often results in a loss of the form:

INC
𝑖 (V (1) ,V (2)) = − 1

𝑁
sim

(
ℎ(v(1

𝑖
), SG(v(2)

𝑖
)
)
, (9.4)

where SG denotes the stop-gradient operation. In this work we focus the majority
of our experiments on the INCE loss specifically. However, given this general
formulation which decouples the specific loss from the choice of pairs V (1) & V (2) ,
and the fact that our framework only operates on the formulation of the pairs, we will
see that our analyses and conclusions extend to all methods which can be written
this way. In the following, we will introduce the second degree of freedom which
captures many SSL algorithms: the precise relationship between V (1) and V (2) .

Relationship Between SSL Pairs: V (1) & V (2) — Similar to our treatment of SSL
loss functionsI, in this section we separate the existing literature into two categories
with respect to the leveraged relationship between positives pairs. Specifically, we
compare methods which rely on input augmentations, which we call Augmentation-
based SSL (A-SSL), to methods which operate entirely within the representation of
a single input, which we call Feature-space SSL (F-SSL). An influential framework
which relies on augmentation is the SimCLR framework (T. Chen et al., 2020).
Using the above notation, this is given as:

LA-SSL
𝑖 (X) = E

𝑔1,𝑔2∼𝐺
IC
𝑖

({
𝑓
(
𝜏𝑔1 [x𝑛]

)}𝑁
𝑛
,

{
𝑓
(
𝜏𝑔2 [x𝑛]

)}𝑁
𝑛

)
, (9.5)

where 𝜏𝑔 [x] denotes the action of the sampled augmentation 𝑔 on the input,𝐺 is the
set of all augmentations, and 𝑓 (x) = v is the backbone feature extractor to be trained.
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This loss is then summed over all elements 𝑖 in the batch before backpropagation. In
this work, we consider this SimCLR loss given in Equation 9.5 as the canonical A-
SSL method given its broad adoption and similarity with other augmentation-based
methods. The second class of SSL methods we consider in this work are those
which operate without the use of explicit input augmentations, but instead compare
subsets of a representation for a single image directly. Models such as Deep InfoMax
(DIM(L)) (Hjelm et al., 2019), Greedy InfoMax (GIM) (Löwe, O’Connor, et al.,
2019), and Contrastive Predictive Coding (CPC) (Oord et al., 2018)1 can all be
seen to be instantiations of such Feature-space SSL methods. At a low level, these
methods vary in the specific subsets of the representations which are used in the loss
(from single spatial elements to larger ‘patches’), and vary in the similarity function
(with some using a log-bilinear model sim(a, b) = exp

(
a𝑇𝑊b

)
, instead of cosine

similarity). In this work we define a general Feature-space SSL (F-SSL) loss in the
spirit of these models which similarly operates in the feature space of a single image,
uses an arbitrary spatial ‘patch’ size |g |, and a cosine similarity function. Formally:

LF-SSL
𝑖 (X) = E

g1,g2∼Z2
𝐻𝑊

IC
𝑖

({
z𝑛

(
g1
)}𝑁
𝑛
,

{
z𝑛

(
g2
)}𝑁
𝑛

)
, (9.6)

where g ∼ Z2
𝐻𝑊

refers to sampling a contiguous patch from the spatial coordinates
of a convolutional feature map, and z𝑛 is the output of our backbone 𝑓 (x𝑛). In the
following section, we show how equivariant backbones unify these two losses into a
single loss, helping to explain both their successes and limitations while additionally
demonstrating clear directions for their generalization.

9.3. Homomorphic Self-Supervised Learning

In this section we introduce Homomorphic Self-Supervised Learning (H-SSL) as a
general framework for SSL with homomorphic encoders, and further show it both
generalizes and unifies many existing SSL algorithms.

To begin, consider an A-SSL objective such as Equation 9.5 when 𝑓 is equivariant
with respect to the input augmentation. By the definition of equivariant maps in
Equation 9.1, the augmentation commutes with the feature extractor: 𝑓 (𝜏𝑔 [x]) =
Γ𝑔 [ 𝑓 (x)]. Thus, replacing 𝑓 (x𝑛) with its output z𝑛 = z𝑛 (g0), and applying the

1In CPC, the authors use an autoregressive encoder to encode one element of the positive pairs. In
GIM, they find that in the visual domain, this autoregressive encoder is not necessary, and thus the loss
reduces to simple contrasting the representations from raw patches with one another, as defined here.
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definition of the operator, we get:

LH-SSL
𝑖 (X) = E

𝑔1,𝑔2∼𝐺
IC
𝑖

({
z𝑛

(
𝑔−1

1 · g0
)}𝑁
𝑛
,

{
z𝑛

(
𝑔−1

2 · g0
)}𝑁
𝑛

)
. (9.7)

Ultimately, we see that LH-SSL subsumes the use of input augmentations by defining
the ‘positive pairs’ as two fiber bundles from the same representation z𝑛, simply in-
dexed using two differently transformed base spaces 𝑔−1

1 · g0 and 𝑔−1
2 · g0 (depicted

in Figure 9.2, and Figure 9.1, center & right). Interestingly, this loss highlights the
base space g0 as a parameter choice previously unexplored in the A-SSL frame-
works. In Section 9.4 we empirically explore different choices of g0 and comment
on their consequences.

A second interesting consequence of this derivation is the striking similarity of the
LH-SSL objective and other existing SSL objectives which operate without explicit
input augmentations to generate multiple views. This can be seen most simply by
comparing LH-SSL from Equation 9.7 with the LF-SSL objective from Equation 9.6.
Specifically, since g1 & g2 from the F-SSL loss can be decomposed as a single base
patch g0 offset by two single translation elements 𝑔1 & 𝑔2 (e.g. g1 = 𝑔−1

1 g0 and
g2 = 𝑔−1

2 g0), we see that Equation 9.6 can be derived directly from Equation 9.7 by
setting 𝐺 = Z2

𝐻𝑊
and the size of the base patch |g0 | equal to the size of the patches

used for each F-SSL case. Consequently, these F-SSL losses are contained in our
framework where the set of ‘augmentations’ (G) is the 2D translation group, and the
base space (g0) is a small subset of the spatial coordinates. Since LH-SSL is also de-
rived directly from LA-SSL (when 𝑓 is equivariant), we see that it provides a means to
unify these previously distinct sets of SSL objectives. In Section 9.4 we validate this
theoretical equivalence empirically. Furthermore, since LH-SSL is defined for trans-
formation groups beyond translation, it can be seen to generalize F-SSL objectives in
a way that we have not previously seen exploited in the literature. In Section 9.4 we
include a preliminary exploration of this generalization to scale and rotation groups.

9.4. Experiments

In this section, we empirically validate the derived equivalence of A-SSL and H-
SSL in practice, and further reinforce our stated assumptions by demonstrating
how H-SSL objectives (and by extension F-SSL objectives) are ineffective when
representational structure is removed. We study how the parameters of H-SSL
(topographic distance) relate to those traditionally used in A-SSL (augmentation
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Figure 9.2: Overview of Homomorphic-SSL (left) and its relation to traditional
Augmentation-based SSL (right). Positive pairs extracted from the lifted dimension
(𝜃) of a rotation equivariant network (G-conv) are equivalent to pairs extracted from
the separate representations of two rotated images.

strength), and finally explore how the new parameter generalizations afforded by
our framework (such as choices of g0 and G) impact performance.

Empirical Validation

For perfectly equivariant networks 𝑓 , and sets of transformations which exactly
satisfy the group axioms, the equivalence between Equations 9.5 and 9.7 is exact.
However, in practice, due to aliasing, boundary effects, and sampling artifacts,
even for simple transformations such as translation, equivariance has been shown
to not be strictly satisfied (R. Zhang, 2019). In Table 9.1 we empirically validate
our proposed theoretical equivalence between LA-SSL and LH-SSL, showing a tight
correspondence between the downstream accuracy of linear classifiers trained on
representations learned via the two frameworks.

Precisely, for each transformation (Rotation, Translation, Scale), we use a backbone
network which is equivariant specifically with respect to that transformation (e.g. ro-
tation equivariant CNNs, regular CNNs, and Scale Equivariant Steerable Networks
(SESN) (Sosnovik et al., 2020)). For A-SSL we augment the input at the pixel level
by: randomly translating the image by up to ± 20% of its height/width (for transla-
tion), randomly rotating the image by one of [0𝑜, 90𝑜, 180𝑜, 270𝑜] (for rotation), or
randomly downscaling the image to a value between 0.57 & 1.0 of its original scale.
These two augmented versions of the image are then fed through the backbone sep-
arately, and a single fiber (meaning |g0 | = 1) is randomly selected. We investigate
the impact of the base space size separately in Section 9.4. For H-SSL we use no in-
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put augmentations and instead rely on differently indexed base patches (formed by
shifting the randomly selected fiber g0 by two separate randomly selected group el-
ements 𝑔1 & 𝑔2). For example, for A-SSL with translation, we compare the feature
vectors for two translated images at the same pixel location g0. For H-SSL with
translation, we compare the feature vectors of a single image at two translated loca-
tions 𝑔−1

1 ·g0 & 𝑔−1
2 ·g0. Ultimately, we see an equivalence between the performance

of the A-SSL models and H-SSL models which significantly differs from the frozen
and supervised baselines, validating our theoretical conclusions from Section 9.3.

Table 9.1: MNIST (LeCun and Cortes, 2010), CIFAR10 (Krizhevsky, Nair, et al.,
n.d.) and Tiny ImageNet (TIN) (Y. Le and X. S. Yang, 2015) top-1 test accuracy
(mean ± std. over 3 runs) of a detached classifier trained on the representations
from SSL methods with different backbones. We compare A-SSL and H-SSL with
random frozen and fully supervised backbones. We see equivalence between A-
SSL and H-SSL from the first two columns, as desired, and often see a significant
improvement in performance for H-SSL methods when moving from Translation
to generalized groups such as Scale.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST
Rotation Rot-Eq. 68.2 ± 2.5 70.3 ± 5.4 87.2 ± 0.8 99.4 ± 0.1

Translation CNN 95.9 ± 0.3 96.0 ± 1.3 94.1 ± 0.3 99.2 ± 0.1
Scale SESN 98.6 ± 0.1 98.3 ± 0.2 94.7 ± 0.6 99.3 ± 0.1

CIFAR10
Rotation Rot-Eq. 46.1 ± 0.6 48.3 ± 0.5 38.4 ± 0.1 73.0 ± 1.1

Translation CNN 39.2 ± 0.5 36.3 ± 1.1 40.4 ± 0.2 76.2 ± 1.4
Scale SESN 59.4 ± 0.2 56.7 ± 0.4 41.1 ± 0.6 78.0 ± 0.2

TIN Rotation Rot-Eq. 14.9 ± 0.3 13.5 ± 0.5 6.1 ± 0.2 22.5 ± 0.1
Scale SESN 16.2 ± 0.4 14.0 ± 1.3 6.4 ± 0.2 23.7 ± 0.2

H-SSL Without Structure

To further validate our assertion that LH-SSL requires a homomorphism, in Table 9.2
we show the same models from Table 9.1 without equivariant backbones. Explic-
itly, we use the same overall model architectures but replace the individual layers
with non-equivariant counterparts. Specifically, for the MLP, we replace the convo-
lutional layers with fully connected layers (slightly reducing the total number of ac-
tivations from 6272 to 2048 to reduce memory consumption), and replace the SESN
kernels of the scale-equivariant models with fully-parameterized, non-equivariant
counterparts, otherwise keeping the output dimensionality the same (resulting in the
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6 × larger output dimension). Furthermore, for these un-structured representations,
in the H-SSL setting, we ‘emulate’ a group dimension to sample ‘fibers’ from. For
the MLP we do this by reshaping the 2048 dimensional output to (16,128), and se-
lect one of the 16 rows at each iteration. For the CNN, we similarly use the 6 times
larger feature space to sample 1

6
𝑡ℎ of the elements as if they were scale-equivariant.

We thus observe that when equivariance is removed, but all else remains equal,
LH-SSL models perform significantly below their input-augmentation counterparts,
and similarly to a ‘frozen’ randomly initialized backbone baselines, indicating the
learning algorithm is no longer effective. Importantly, this indicates why existing
F-SSL losses (such as DIM(L) (Hjelm et al., 2019)) always act within equivariant
dimensions (e.g. between the spatial dimensions of feature map pixels) – these
losses are simply ineffective otherwise. An intuitive understanding of this result
can be given by viewing arbitrary features as being related by some unknown
input transformation which may not preserve the target information about the input.
In contrast, however, since equivariant dimensions rely on symmetry transforms,
contrast over such dimensions is known to be equivalent to contrasting transformed
inputs.

Table 9.2: An extension of Table 9.1 with non-equivariant backbones. In each
setting, the backbone is set to have a number of outputs equivalent to the equivariant
counterpart, allowing for us to compute the H-SSL objective identically to before.
We see that the H-SSL methods perform similar to, or worse than, the frozen baseline
when equivariance is removed, as expected.

Dataset Transformation Backbone A-SSL H-SSL Frozen Supervised

MNIST Translation MLP 87.6 ± 0.2 58.2 ± 0.5 83.0 ± 0.8 98.6 ± 0.1
Scale CNN 95.2 ± 0.1 87.2 ± 2.4 87.2 ± 0.6 99.3 ± 0.1

CIFAR10 Scale CNN 53.6 ± 0.2 37.5 ± 0.1 43.6 ± 0.3 67.9 ± 2.1

Parameters of H-SSL

Base size |g0 | — As discussed in Section 9.3, The H-SSL framework identifies new
parameter choices such as the base space g0. This parameter specifically carries
special importance since it is the main distinction between the A-SSL and F-SSL
losses in the literature. Specifically, the size of g0 is set to the full representation
size in the SimCLR framework, while it is typically a small patch or an individual
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pixel in F-SSL losses such as DIM(L) or GIM. To investigate the impact of this dif-
ference, we explore the performance of the H-SSL framework as we gradually in-
crease the size of g0 from 1 (akin to DIM(L) losses) to |𝐺 | − 1 (akin to SimCLR),
with no padding. In each setting, we similarly increase the dimensionality of the
input layer for the non-linear projection head ℎ to match the multiplicative increase
in the dimension of the input representation z(g). In Figure 9.3 (left) we plot the
%-change in top-1 accuracy on CIFAR-10 for each size. We see a minor increase
in performance as we increase the size, but note relative stability, again suggesting
greater unity between A-SSL and H-SSL.

Topographic Distance — Each augmentation in a standard SimCLR augmentation
stack is typically associated with a scalar or vector valued ‘strength’. For example,
this can correspond to the maximum number of pixels translated, the range of
rescaling, or the maximum number of degrees to be rotated. We note that the same
concept is present in the H-SSL framework and is defined by the associated latent
representation of the transformation. For networks which use regular representations
(as in this work), the degree of a transformation corresponds exactly to the degree
of shift within the representation. We thus propose that an analogous concept to
augmentation strength is topographic distance in equivariant networks, meaning
the distance between the two sampled fiber bundles as computed along the group
dimensions (i.e. the ‘degree of shift’). For example, for convolution, this would
correspond to the number of feature map pixels between two patches. For scale, this
would correspond to the number of scales between two patches. In Figure 9.3 (right),
we explore how the traditional notion of augmentation ‘strength’ can be equated with
the ‘topographic distance’ between 𝑔1 and 𝑔2 and their associated fibers (with a fixed
base size of |g0 | = 1). Here we approximate topographic distance as the maximum
euclidean distance between sampled group elements for simplicity (| |𝑔1 − 𝑔2 | |22),
where a more correct measure would be computed using the topology of the group.
We see, in alignment with prior work (Yonglong Tian, Sun, et al., 2020; Yonglong
Tian, Krishnan, et al., 2019), that the strength of augmentation (and specifically
translation distance) is an important parameter for effective self supervised learning,
likely relating to the mutual information between fibers as a function of distance.

Methods

Model Architectures — All models presented in this paper are built using the con-
volutional layers from the SESN (Sosnovik et al., 2020) library for consistency
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and comparability. For scale equivariant models, we used the set of 6 scales
[1.0, 1.25, 1.33, 1.5, 1.66, 1.75]. To construct the rotation equivariant backbones,
we use only a single scale of [1.0] and augment the basis set with four 90-degree
rotated copies of the basis functions at [0𝑜, 90𝑜, 180𝑜, 270𝑜]. These rotated copies
thus defined the group dimension. This technique of basis or filter-augmentation
for implementing equivariance is known from prior work and has been shown to be
equivalent to other methods of constructing group-equivariant neural networks (B.
Li et al., 2021). For translation models, we perform no basis-augmentation, and
again define the set of scales used in the basis to be a single scale [1.0], thereby leav-
ing only the spatial coordinates of the final feature maps to define the output group.
On MNIST (LeCun and Cortes, 2010), we used a backbone network 𝑓 composed of
three SESN convolutional layers with 128 final output channels, ReLU activations
and BatchNorms between layers. The output of the final ReLU is then considered our
z for contrastive learning (for LA-SSL and LH-SSL) and is of shape (128, 𝑆 × 𝑅, 8, 8)
where 𝑆 is the number of scales for the experiment (either 1 or 6), and 𝑅 is the num-
ber of rotation angles (either 1 or 4). On CIFAR10 and Tiny ImageNet we used
SESN-modified ResNet18 and ResNet20 models respectively where the output of
the last ResNet blocks were taken as z for contrastive learning. For all models where
translation is not the studied transformation, we average pool over the spatial dimen-
sions to preserve consistent input-dimensionality to the nonlinear projection head.

Training Details — For training, we use the LARS optimizer (You et al., 2017) with
an initial learning rate of 0.1, and a batch size of 4096 for all models. We use an NCE
temperature (𝑇) of 0.1, half-precision training, a learning rate warm-up of 10 epochs,
a cosine lr-update schedule, and weight decay of 1 × 10−4. On MNIST we train for
500 epochs and on CIFAR10 and Tiny ImagNet (TIN) we train for 1300 epochs.

Figure 9.3: Study of the impact of new H-SSL parameters on top-1 test accuracy.
(Left) Test accuracy marginally increases as we increase total base space size g0.
(Right) Test accuracy is constant or decreases as we increase the maximum distance
between fiber bundles considered positive pairs.
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9.5. Related Work

Our work is built upon the literature from the fields equivariant deep learning and
self-supervised learning as outlined in Sections 9.1 and 9.2. Beyond this background,
our work is highly related in motivation to a number of studies specifically related
to equivariance in self-supervised learning.

Undesired Invariance in SSL — One subset of recent prior work has focused on
the undesired invariances learned by A-SSL methods (Xiao et al., 2021; Tsai, T.
Li, et al., 2022) and on developing methods by which to avoid this through learned
approximate equivariance (Dangovski et al., 2022; Wang, Geng, et al., 2021). Our
work is, to the best of our knowledge, the first to suggest and validate that the primary
reason for the success of feature-space SSL objectives such as DIM(L) (Hjelm et
al., 2019) and GIM (Löwe, O’Connor, et al., 2019) is due to their exploitation of
(translation) equivariant backbones (i.e. CNNs). Furthermore, while prior work
shows benefits to existing augmentation-based SSL objectives when equivariance
is induced, our work investigates how equivariant representations can directly be
leveraged to formulate new theoretically-grounded SSL objectives. In this way,
these two approaches may be complimentary.

Data Augmentation in Feature Space — There exist multiple works which can
similarly be interpreted as performing data augmentation in feature space both
for supervised and self-supervised learning. These include Dropout (Srivastava
et al., 2014), Manifold Mixup (Verma et al., 2018), and others which perform
augmentation directly in feature space (DeVries and Taylor, 2017; Hendrycks et al.,
2020), or through generative models (Sandfort et al., 2019). We see that our work
is fundamentally different from these in that it is not limited to simply performing
an augmentation which would have been performed in the input in latent space.
Instead, it maximally leverages structured representations to generalize all of these
approaches and show how others can be included under this umbrella. Specifically,
a framework such as DIM(L) is not explicitly performing an augmentation in latent
space, but rather comparing two subsets of a representation which are offset by
an augmentation. As we discuss in Section 9.6, this distinction is valuable for
developing novel SSL algorithms which can substitute learned homomorphisms for
learned augmentations – potentially sidestepping challenges associated with working
in input-space directly.

Hybrid A-SSL + F-SSL — Some recent work can be seen to leverage both augmentation-
based and feature-space losses simultaneously. Specifically, Augmented Multiview
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Deep InfoMax (Bachman et al., 2019) achieves exactly this goal and is demonstrated
to yield improved performance over its non-hybrid counterparts. Although similar
in motivation, and perhaps performance, to our proposed framework, the Homo-
morphic SSL framework differs by unifying the two losses into a single objective,
rather than a sum of two separate objectives.

9.6. Discussion

In this chapter we have studied the impact of combining augmentation-homomorphic
feature extractors with augmentation-based SSL objectives. In doing so, we have in-
troduced a new framework we call Homomorphic-SSL which illustrates an equiva-
lence between previously distinct SSL methods when the homomorphism constraint
is satisfied. Using this framework, we demonstrated that when the constraint is not
satisfied, feature-space based SSL methods fail to learn valuable representations,
shedding some light on why existing F-SSL methods do succeed. Furthermore, we
investigated the new parameters highlighted by our model, such as the base size |g0 |
and the transformation group G for F-SSL, showing unexploited potential for im-
provement of existing methods by tuning of these parameters.

We present this work as an attempt to renew interest in SSL objectives which operate
without multiple inferences of a transformed image, such as Deep InfoMax (Hjelm
et al., 2019) and Greedy InfoMax (Löwe, O’Connor, et al., 2019), by allowing them
to exploit the theoretical foundations developed for multi-view SSL (Tosh et al.,
2020; Yuandong Tian, Yu, et al., 2020; Tsai, Wu, et al., 2020; Kügelgen et al., 2021;
Federici et al., 2020). Although F-SSL methods have to-date not yielded the same
performance as their A-SSL counterparts, we believe the coupling between objective
and network architecture is likely to yield more parallelizable algorithms which
are therefore more scalable and biologically plausible, as has been demonstrated in
prior work (Löwe, O’Connor, et al., 2019). In this way, such algorithmic advances
could additionally yield potential insights into how biological neural networks could
perform a type of self-supervised learning.

Limitations — Despite the unification of existing methods, and benefits from gen-
eralization, we note that this approach is still limited. Specifically, the equivalence
between LA-SSL and LH-SSL, and the benefits afforded by this equivalence, can only
be realized if it is possible to analytically construct a neural network which is equiv-
ariant with respect to the transformations of interest. Since it is not currently known
how to construct neural networks which are analytically equivariant with respect to
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all input augmentations used in modern SSL, this constraint is precisely the greatest
current limitation of this framework. Although the field of equivariant deep learning
has made significant progress in recent years, state of the art techniques are still re-
stricted to E(𝑛) and continuous compact and connected Lie Groups (Finzi, Stanton, et
al., 2020; Finzi, Max Welling, et al., 2021; Cesa et al., 2022; Weiler and Cesa, 2019).
We believe in this regard, our analysis sheds some light on the success of methods
which perform data augmentation over those which operate directly in feature space
in recent literature – it is simply too challenging with current methods to construct
models with structured representations for the diversity of transformations needed to
induce a sufficient set of invariances for linear separability of classes. We therefore
propose this work not as an immediate improvement to the state of the art, but rather
as a new perspective on SSL which provides a bridge to previously distant literature.

Future Work — In light of this, we believe that our framework specifically suggests
a novel path forward via learned homomorphisms, (T. A. Keller and Max Welling,
2021a; Keurti et al., 2022; Connor et al., 2021; Dehmamy et al., 2021; Pal and
Savvides, 2018). In the H-SSL framework, a learned homomorphism can be seen
as equivalent to a learned augmentation, providing a potential new avenue for
approaching the extremely challenging (Blaas et al., 2021) but fruitful (Y. Shi et al.,
2022) goal of learned image augmentations.
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C h a p t e r 10

CONCLUSION

The unfolding story of artificial intelligence has long been a dance with the insights
gained from theoretical and experimental neuroscience. As told throughout this
thesis, this narrative has been mapped out by our ever increasing understanding of
natural neural structure, and spans from Alan Turing’s unorganized machines to
Kunihiko Fukushima’s Neocognitron.

In the last decades, our ability to measure neural activity has increased at a rate likely
unimaginable to the early pioneers who initiated this dance nearly a century ago.
With the development of functional magnetic resonance imaging (fMRI) we gained
the ability to map localized neural selectivity across the entirety of the human cortex
simultaneously and efficiently. With the development of multi-electrode arrays such
as the Neuropixel we increased our single neuron recording abilities by orders of
magnitude, allowing for simultaneous recording of hundreds of individual neurons
over time spans of more than two months (Steinmetz et al., 2021). As anecdotally
reported by some experimental neuroscientists, the amount of data we are able to
record with such devices in a single day would have taken nearly a year of work just
less than a decade ago, if it would have been possible at all.

With this newfound wealth of information, what insights might we be able to distill if
we look closely? Might we be able to discover the novel inductive biases which will
define the next generation of artificial neural networks, just as the inductive biases of
McCulloch and Pitts’ artificial neurons have defined modern artificial intelligence?

In this thesis, we have focused on a number of these new insights from the neuro-
science community that were previously unknown to the early architects of artificial
intelligence. Specifically, we have discussed structure in natural neural networks,
built models to emulate this structure, and studied the ensuing relationships be-
tween such models and more canonical forms of structure in machine learning. We
have further leveraged these models to test hypotheses from theoretical and compu-
tational neuroscience, providing empirical support for some while simultaneously
introducing novel methods to the machine learning community in the contexts of
both long-term memory and self-supervised learning. In conclusion, we return to
the research questions we outlined in our motivation, and see how far we have come
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towards answering them.

10.1. Research Question 1: Spatial Structure

In the first part of this thesis, we aimed to explore if we may be able to devise a com-
putational explanation for the role of topographic organization in the brain. Specifi-
cally, we asked: What role does topographic organization play in the computational
functions of the brain?

In Chapter 4, we provide an argument for how the principle of redundancy reduction
may be a factor behind the widespread observation of topographic organization
throughout the cortex. To reiterate and summarize that argument here, according
to the framework of topographic generative modeling, topographic organization
arises as an attempt to accurately model higher order correlations between latent
variables. If one were to ignore such higher order correlations, and instead use the
common assumption of independant latent variables (as in ICA), the prior can be
interpreted as mis-specified for many natural datasets. For example, natural image
datasets are known to contain such correlations when decomposed in terms of Gabor
or wavelet filters (Lyu and E. P. Simoncelli, 2009a). Topographic organization then
comes from the fact that, in order to construct a prior distribution which has such
higher order correlations (what we call a topographic prior), a simple method is
to use a hierarchical generative model which pools over sets of latent variables to
induce higher order correlation (i.e. the construction of our T variable in Section
4.4: T = Z√

WU2 ).

At first glance, it may appear that our model is primarily motivated by information
theoretic concerns, and therefore our results imply the answer to our first research
question is that topographic organization is an outcome of the brain being an opti-
mized information processing system. While we do believe that this is part of the
story, there is one more part which relies on a key assumption not stated in this above
argument: the assumption that the latent variables which are pooled together are
pooled locally. In our work, we accomplish this through the W matrix which imple-
ments local average pooling. The question we must ask ourselves then is, why must
this be the case? For example, the lower level neurons (latent variables U) could be
shuffled all over the cortex, and as long as the appropriate sets are pooled together, a
prior with the correct higher order correlation statistics will be formed – the variable
T would be none-the-wiser, simply shuffled itself and therefore not containing any
local topographic organization. The answer appears to come down to one of the well
known theories of topographic organization: wiring-length minimization (Koulakov
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and Chklovskii, 2001; Essen, 1997). If lower level neurons were shuffled all over
the cortex, the appropriate pooling operation would necessarily have to extend over
greater distances than if those neurons were located more closely to one-another.

Ultimately then, the model in our work appears to suggest a two-fold answer to the
question of topographic organization’s computational role. To put it simply, the
idea of wiring length minimization argues that neurons which must frequently com-
municate should be located nearby one-another to reduce distance dependant costs,
and the principle of redundancy reduction gives an argument for why neurons with
similar selectivity necessarily must communicate with one another – to accurately
model higher order correlations. Combined, these ideas yield a generative model-
ing explanation of topographic organization which our work shows can be used to
produce localized category selectivity similar to that of higher level visual cortices.

We highlight that while this answer is appealing from a Bayesian perspective of
brain modeling, this is simply the conclusion that we believe should be drawn from
the results presented in this thesis, and not a conclusion which should override
other theories. There are many competing theories for the emergence and role of
topographic organization and our results are far from ruling these theories out. If
anything, we believe that, as we have seen in the above analysis, by combining
insights from multiple theories we are likely to arrive at a stronger conclusion than
any in isolation. As further evidence of this, in the following subsection we will
overview how equivariance may be a second computational role for topographic
organization, as described in Chapter 5.

10.2. Research Questions 2 & 3: Spatio-Temporal Structure

In the second part of this thesis, we aimed to explore if we may be able to perform
a similar type of analysis to understand the more dynamic forms of spatial structure
in neural representations, namely spatio-temporal strucutre. Specifically, we asked
two complimentary questions: Does spatio-temporal structure play a role in the
computational functions of the brain? & Can natural spatio-temporal structure be
efficiently and beneficially implemented in deep neural network architectures?

In Chapters 5, 6, 7 & 8 we provided four separate (but related) methods by which
spatio-temporal structure could be efficiently implemented in deep neural network
architectures. In doing so, we showed that models with spatio-temporal structure
were (i) better able to model data sets with extensive symmetries, (ii) able to structure
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their latent space in a usable manner to allow for controlled generation, and (iii)
better able to maintain memories over longer time spans.

These results clearly demonstrate that the answer to question 3 is unarguably af-
firmative – spatio-temporal structure is typically simple to implement (sometimes
only requiring a single convolution operation) and can serve multiple independant
functions.

With respect to question 2, our results appear to imply that the answer may be again
affirmative; however, as with question 1, we urge caution in over interpreting our re-
sults. In the above chapters we have successfully demonstrated that in some abstract
settings, spatio-temporal structure reminiscent of that observed in natural neural net-
works is beneficial for achieving task-relevant goals. However, it is still unknown if
these computational purposes are precisely the same as those which the brain lever-
ages these structures for. Our results provide empirical evidence for hypotheses
from neuroscience, however we believe it is only neuroscience itself which can truly
answer these questions, at least with the current state of our computational models.

10.3. Research Question 4: Supervision from Structure

In the final part of our thesis, we explored whether the neural representational
structure studied throughout this work may be beneficial for developing a learning
algorithm itself. Specifically, we asked: Can spatio-temporal representational
structure be leveraged to perform efficient and local learning without labeled data?

In Chapter 9 we showed how structured representations may serve as an alterna-
tive for data augmentation in the framework of self-supervised learning, allowing
for the alleviation of many of the biologically implausible aspects of modern SSL
algorithms. Specifically, we argued that through a combination of our proposed
homomorphic self-supervised learning and the ideas of Greedy Infomax (Löwe,
O‘Connor, et al., 2019), one could construct modern self-supervised learning algo-
rithms which avoid the need for end-to-end backpropagation and data augmentation
while maintaining high performance. Such an algorithm could be seen as a form of
structured predictive coding, where neurons attempt to locally predict their neighbors
in a specific pattern corresponding to their neighbors known structured selectivies.

We note that while the results presented in Chapter 9 are promising and show that
indeed Homomorphic SSL is equivalent to standard augmentation-based SSL for the
settings we tested, we did not yet test the ability for such a learning algorithm to be
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combined with localized learning similar to Greedy Infomax. Therefore, while our
results provide a blueprint for how a modern local self-supervised learning algorithm
may be constructed, and additionally provide evidence that is may be successful, a
definitive answer will still require further experimentation and empirical support.

10.4. Future Work: The Unanswered Questions

As with any scientific endeavor, a true measure of success should not only be based
on which questions are answered, but also on which new questions are brought up
in the process. In completing this work, the following questions have come up, and
remained on our minds unanswered. We therefore propose them as what we believe
to be valuable directions for future work.

Research Question 5: Can topographic generative models with multiple levels
of latent variables simultaneously explain the topographic organization of multiple
levels of the hierarchical visual processing stream?

In Chapter 4, we demonstrated how topographic organization could be induced
in a single level of latent variables at the end of a deep neural network feature
extractor. In future work, it would be interesting to explore if hierarchical latent
variable models such as the NVAE (Vahdat and Kautz, 2020) of VDVAE (Child,
2021) could be adapted to incorporate our topographic prior and thus represent
topographic organization at multiple levels of abstraction. If such models were to be
able to successfully model a greater range of topographic organization, this would be
promising evidence for the ‘Bayesian brain’ hypothesis (Helmholtz, 1948) and the
interpretation of natural neural networks as instantiations of probabilistic generative
models.

Research Question 6: To what extent can traveling wave dynamics explain topo-
graphic organization in the brain?

As we saw in Chapter 6, it is clear that in our model, traveling waves did appear
to induce a form of topographic organization reminiscent of that found in the early
visual system of many mammals. However, it is not clear how much further this
mechanism will extend. In future work it would be interesting to explore if there is a
more fundamental connection between topographic organization and traveling wave
activity that may help to describe the ubiquity of both observations in the brain.

Research Question 7: What are the new mathematical descriptions of structured
representations, beyond equivariance, that we may be able to derive from observa-
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tions of natural structure?

In this work we have demonstrated multiple natural mechanisms which induce a
form of approximate equivariance. However, given the non-group structure of the
transformations which we intend for these models to capture, it is no longer consistent
to call such models ‘equivariant’. In future work, we therefore aim to identify more
precisely which alternative mathematical structures may be better descriptions of
the types of structured representations we see in natural neural activity. In Chapter
8 we have put forth one potential form of such a mathematical structure through the
framework of optimal transport and gradient flows, however we believe there is still
significant work to be done on this front and are excited to continue down this path
in future work. Ultimately, these ideas are reminiscent of the quote from John von
Neumann at the forefront of this thesis: "I suspect that a deeper mathematical study
of the nervous system ... may alter the way in which we look at mathematics and
logics proper."

Research Question 8: What is the ideal decomposition of the world which naturally
facilitates generalization and robustness?

As we said before, we believe the brain has found such a decomposition through
millions of years of evolution, and we believe that it is likely this decomposition that
is what allows for natural human generalization with limited data. In future work,
we believe one of the ultimate goals of our research agenda should be to discover
this decomposition and any necessary biological mechanisms which allow for its
perpetuation.

In conclusion, we thank the audience for reading, and hope that this work has, at
least in a small way, encouraged future work to understand the true beauty behind
the nature of intelligence.
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A p p e n d i x A

CHAPTER IV APPENDIX

A.1. Experiment Details – MNIST

Code for reproducing the 2D topographical organization of MNIST digits in Figure
4.1, as well as the general implementation of the topographic VAE can be found at:
https://github.com/AKAndyKeller/TopographicVAE.

Optimizer Parameters

The 2D Topographic VAE without Temporal Coherence presented in Figure 4.1 was
trained with stochastic gradient descent on batches of size 128, using a learning rate
of 1 × 10−4, and standard momentum of 0.9 for 250 epochs.

Initalization

All weights of the models were initialized with uniformly random samples from
𝑈 (− 1√

𝑚
, 1√

𝑚
), where 𝑚 is the number of input units. For the 2D topographic model

in Figure 4.1, 𝜇 was initialized to 10.

Model Architectures

All models presented in this paper make use of the same 3-Layer MLP for parame-
terizing the encoders and decoders. Specifically, the model is constructed as 3 fully
connected layers with ReLU activations in-between the layers. For MNIST, the lay-
ers of both the u and z encoders have (972, 648, 648) output units each for the first,
second, and third layers respectively. The 648 units in the third layer are divided
into two sets to compute the mean and log standard deviation of the respective 𝑢’s
and 𝑧’s, yielding 324 𝑡 variables. These variables were then arranges in a 18 × 18
square grid as shown in the figure.

Choice of W

The Topographic VAE organizes its variables as a single 2-D torus. Practically,
multiplication by W was performed by convolution over the appropriate dimensions

https://github.com/AKAndyKeller/TopographicVAE
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(time & capsule dimension) with a kernel of all 1’s, taking advantage of circular
padding to achieve toroidal structure.

A.2. Experiment Details – ImageNet

Code for reproducing the category selectivity experiments can be found at: https:
//github.com/akandykeller/CategorySelectiveTVAE.

Training details

Dataset Preprocessing — In order to eliminate variability between different datasets,
all images were first reshaped to 256 × 256. A random percentage of the image
area (between 8% to 100%) and a random aspect ratio (between 3

4 and 4
3 ) were

then chosen, and each image was then cropped according to these values. Finally,
the crops were resized to the final shape of 224 × 224. All images were then nor-
malized by the mean [0.48300076, 0.45126104, 0.3998704] and standard deviation
[0.26990137, 0.26078254, 0.27288908].

TDANN Hyperparameters — The TDANN model was trained with stochastic gradi-
ent descent, a learning rate of 1× 10−3, standard momentum of 0.9, and a batch size
of 128 for 10 epochs. Explicitly, the loss function was given by a sum of the classifi-
cation cross entropy loss, the spatial correlation losses for both layers FC6 and FC7,
and weight decay of 5×10−4. A fixed weight of 10× 1

40962 was multiplied by the spatial
correlation loss before backpropagating as this was found necessary to qualitatively
match the results from H. Lee et al. (2020). Contrary to the original TDANN work,
we did not randomly initialize the locations of the neurons, and instead spaced them
evenly on a grid of the same size. We found the spatial correlation loss to still func-
tion equally well in this setting, and detail our implementation in Section ?? below.

TVAE Hyperparameters — The TVAE was trained with stochastic gradient descent,
a learning rate of 1 × 10−5, standard momentum of 0.9, and a batch size of 128 for
30 epochs. The global topology was set to a single 2D torus (i.e. a 2D grid with
circular boundary conditions), and the local topology was set to sum of local regions
of size 25 × 25, i.e. the kernel used to convolve over u was of size 25 × 25 and
contained all 1’s. The 𝜇 parameter was initialized to 40, and trained simultanously
with the remainder of the model parameters.

https://github.com/akandykeller/CategorySelectiveTVAE
https://github.com/akandykeller/CategorySelectiveTVAE
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A.3. Additional Results

Robustness to Initialization

To verify the robustness of our results to randomness between trials, in Figure
A.1 below we compare the selectivity maps shown in the main text across four
independant random initalizations of the weights. We first note that the emergent
feature hierarchy depicted in Figure 4.5 appears roughly consistent across each
trial. Specifically, selectivity to places, ‘big’, and ‘inanimate’ objects appears highly
overlapping in each setting. We further note that the relative placement and size of
the category-selective clusters (shown in the bottom row) is again roughly consistent
across runs, with face and body clusters always adjacent and frequently overlapping.
We see that in some runs, a small cluster selective to a generic ‘object’ category
can be observed. The relative weakness of this cluster is likely due to the lack of
uniquely identifying features shared across all images in the object dataset.

Robustness to Face Test-Dataset Choice

To investigate the robustness of face selectivity across different face test-datasets,
and ensure the observed clusters are not a dataset dependant phenomenon, selec-
tivity maps computed using four different face test-datasets are shown for both the
TVAE and TDANN in Figure A.2 below. Explicitly, the four datasets included:
a 25,000 subset of VGGface2 cao2018vggface2, 10,137 images from UTKface
zhifei2017cvpr, 24,684 images from CelebA liu2015faceattributes, and the Labled
Faces in the Wild Huang et al., 2007 dataset upon which the models were trained.
The resulting selectivity maps can be seen to be highly consistent despite the vari-
ability between low-level dataset statistics, indicating the observed selectivity is
more likely related to the high level category information as desired.

Distance-dependant Pairwise Correlation

To further quantify the topographic organization of the TVAE and how it compares
with that of the TDANN, we measure the pairwise correlation (Pearson’s R) of all
topographic neurons as a function of distance in Figure A.3. We see that the TDANN
(right) curve matches the original results H. Lee et al., 2020, roughly achieving the
minimal spatial correlation loss, and mimicking the observed correlation curve from
recordings in monkeys, as designed (see H. Lee et al., 2020 for further discussion).
Interestingly, the TVAE (middle) yields a qualitatively similar curve, despite having
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Figure A.1: Selectivity maps for the TVAE across four random initalizations. We
observe that the emergent feature hierarchy and the relative placement of category-
clusters is consistent in each case.

no such goal in its initial design. Finally, the correlation of the baseline model (left)
is independant of distance as expected. We note that due to the circular boundary
conditions of the TVAE, the maximal distance between neurons is significantly less,
and thus scale of the X-axis is different between these two plots. In future work a
more detailed comparison would benefit from matching boundary conditions in both
models. Finally, in Figure A.4 we plot the correlation curves for TVAEs trained with
different spatial window sizes. We see that this has a significant effect on the shape
of the curve, potentially allowing for more precise tuning to match biological data.
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Figure A.2: Face vs. Object selectivity maps for four different face datasets. We
see that for both the TVAE and TDANN the relative locations and sizes of the face
and object selective clusters are stable despite the differences in the underlying test-
datasets used.

Figure A.3: Pairwise correlation between neurons as a function of distance in the
cortical sheet.

Impact of TVAE Spatial Window Size (W)

In Figure A.4 below, we demonstrate the effect of different choices of topographic
organization (defined by W) on the resulting learned selectivity maps. Specifically,
we keep the global topography the same (a 2-d grid with circular boundary condi-
tions), but we change the spatial extent over which variance is shared between vari-
ables t. From left to right, we defined the matrix W to be a convolution matrix with
kernels of size 5×5, 15×15, 25×25, and 35×35, where the total grid size is 64×64.

TDANN Nested Spatial Hierarchy

In Figure A.5 below, we show the abstract selectivity maps for the TDANN, analo-
gous to those in Figure 4.5 for the TVAE in the main paper. We see that the TDANN
does appear to have a similar nested spatial hierarchy, however it is difficult to mea-
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Figure A.4: Selectivity maps and pairwise correlation curves for different choices
of spatial window size in the Topographic VAE.

sure the differences visually. In future work, we hope to explore methods for quanti-
fying the coherence of selectivity hierarchies, allowing greater comparison of mod-
els on this front.

Figure A.5: Abstract category selectivity for the TDANN, analogous to the results
presented in Figure 4.5 for the TVAE. From left to right: Animate vs. Inanimate,
Small vs. Big, Faces vs. Objects, and Multi-class selectivity with 𝑑 ≥ 0.85
(analagous to Figure 4.3).

VAE Baseline

As an additional non-topographic baseline, we train a standard VAE in-place of the
TVAE and measure the selectivity and single-image activation maps as in Figures 4.2
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and 4.4. Interestingly, we see that the standard VAE exhibits significantly fewer class-
selective neurons, with the majority of neurons activating for each image. We find
this correlates with the measured likelihood of the data under each model, suggesting
that topographic organization (and similarly class-selectivity) acts as regularization
on model performance, slightly reducing the overall likelihood. As measured in prior
work leavitt2020selectivity, high class-selectivity is similarly seen to be slightly
detrimental to classification performance, agreeing with these results.

Figure A.6: Face vs. Object selecitivity (left) and single-image activation maps
(right) for a non-topographic VAE baseline
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A p p e n d i x B

CHAPTER V APPENDIX

B.1. Experiment Details

Code for reproducing the original Topographic VAE experiments can be found at:
https://github.com/AKAndyKeller/TopographicVAE.

Code for reproducing the Predictive Coding Topographic VAE experiments can be
found at: https://github.com/akandykeller/PCTVAE.

Optimizer Parameters

All models were trained with stochastic gradient descent on batches of size 8 (due
to each batch-example being a length 15 or 18 sequence), using a learning rate of
1 × 10−4, and standard momentum of 0.9 for 100 epochs.

Initalization

All weights of the models were initialized with uniformly random samples from
𝑈 (− 1√

𝑚
, 1√

𝑚
), where 𝑚 is the number of input units. For all topographic models

including BubbleVAE, 𝜇 was initialized to a large value (30.0) as this was observed
to increase the speed of convergence and was sometimes necessary for observed
topographic organization in deeper models.

Model Architectures

All models presented in this paper make use of the same 3-Layer MLP for parame-
terizing the encoders and decoders. Specifically, the model is constructed as 3 fully
connected layers with ReLU activations in-between the layers. For MNIST, the lay-
ers of both the u and z encoders have (972, 648, 648) output units each for the first,
second, and third layers respectively. The 648 units in the third layer are divided into
two sets to compute the mean and log standard deviation of the respective 𝑢’s and
𝑧’s, yielding 324 𝑡 variables. This is then divided into 18 capsules, each of 18 di-
mensions. The layers of the decoder have (648, 972, 2352) output units respectively.
For dSprites, both encoder layers have output sizes (674, 450, 450), where the re-

https://github.com/AKAndyKeller/TopographicVAE
https://github.com/akandykeller/PCTVAE
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sulting 225 𝑡 variables are divided into 15 capsules, each of 15 dimensions. The de-
coder layers then have output sizes (450, 675, 4096). We note the non-topographic
VAE baselines make use of only a single encoder for the Gaussian variable z (as u
is not needed), and do not incorporate a 𝜇 parameter.

Choice of W

For the TVAE and BubbleVAE, the global topographic organization afforded by
W was fixed to a set of 1-D tori (‘circular capsules’) as depicted in Figure 5.2.
Practically, multiplication by W was performed by convolution over the appropriate
dimensions (time & capsule dimension) with a kernel of all 1’s, taking advantage
of circular padding to achieve toroidal structure.

Choice of W𝛿

The choice of W𝛿 determines the local topographic structure within a single timestep.
For all TVAE models with 𝐿 > 0, we experimented with local neighborhood sizes
(denoted 𝐾) of 3 units (effective kernel size 3 in the capsule dimension), and
1 unit (no neighborhood). For MNIST it was observed that 𝐾 = 3 performed
best, while 𝐾 = 1 worked best for dSprites. This is likely due to the slower,
smoother, and more overlapping transformations constructed on MNIST, whereas
our subset of dSprites contained non-smooth transformations where the overlap
between successive images was smaller (e.g. due to sub-setting, see Section B.1),
which made larger neighborhood sizes 𝐾 > 1 less fitting. For TVAE models with
𝐿 = 0, W𝛿 = W was fixed to sum over neighborhoods of size 𝐾 = 9 for MNIST
and 𝐾 = 3 for dSprites. These values were chosen to be sufficiently large to achieve
notably lower equivariance error than the VAE baseline, and thus demonstrate the
impact of topographic organization without temporal coherence. For BubbleVAE
models, the extent of topographic organization in the capsule dimension was set to
𝐾 = 3 on MNIST to match the TVAE, and was set to be equal to the organization
in time dimension 𝐾 = 2𝐿 for dSprites. A further quantitative comparison on the
impact of the choice of the 𝐾 parameter can be found in Section B.2.

Choice of 𝐿

The choice of 𝐿 determines the extent of temporal coherence where 2𝐿 equals
the input sequence length, and 𝐿 = 0 corresponds to single inputs. For Table 1,
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we experimented with values of 𝐿 in the set {0, 5
36𝑆,

1
4𝑆,

1
2𝑆} for both the TVAE

and BubbleVAE. Both the BubbleVAE and TVAE achieved highest likelihoods at
𝐿 = 5

36𝑆, and TVAE achieved lowest equivariance error at 𝐿 = 1
2𝑆. We additionally

included TVAE experiments with 𝐿 = 13
36𝑆 for purposes of visualization in Figures 1

and 4 as this yielded the best qualitative generalization. For Table 2, we experimented
with values of 𝐿 in the set {0, 1

6𝑆,
4
15𝑆,

1
3𝑆,

2
5𝑆,

1
2𝑆} for both TVAE and BubbleVAE,

and presented a broad selection in the table. The results of all models are shown in
Section B.2 below.

Hyperparameter Selection

Hyperparameters such as learning rate, batch size, number of capsules, capsule size,
and ultimately model architecture were chosen to allow for quick training on limited
resources and were not tuned significantly. Since it was conceptually simpler to
have an equal number of capsule dimensions and sequence elements, this limited the
number of capsules we could then train efficiently. In Section B.3 we explain how a
model with fewer capsule dimensions than sequence elements could be constructed
with an alternative Roll operator. Additionally, from preliminary experiments, we
observe that models with a number of internal capsule dimensions different from the
number of sequence elements achieve similar likelihood values while also learning
coherent transformations as decoded through the capsule roll. We believe these
findings in combination with the extra studies provided in Section B.2 suggest a
satisfying degree of robustness to hyperparameter selection.

MNIST Transformations

The first set of experiments presented in this paper are based on the MNIST dataset
(LeCun, Cortes, and Burges, 2010) (MIT Licence). For Section 6.2 (Figure 3) an
MNIST training set of 48,000 images was used, while the standard test set of 10,000
images was used to compute the maximum activating image. For Section 6.3 (Fig-
ure 4 and Table 1), sequences of MNIST images were created by picking a random
training image (with a random transformation ‘pose’) and successively transform-
ing it according to one of the 3 available transformations (e.g. only one attribute is
changed per sequence). The available transformations consisted of rotation, color
(hue rotation), and scale with increments of 20-degrees for rotation and color, and
3.66% increments for scale. Since scale is inherently non-cyclic, the bounds of the
transformation were set at 60% and 126%, and the transformations were constructed
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to be periodic such then once scale reached 126%, the next element was at 60% scale.
The final sequences were thus constructed to be 18 images long, where each element
in the batch had an independently randomly chosen transformation. Again, the like-
lihood log 𝑝(x) and equivariance error E𝑒𝑞 were computed on the held-out 10,000
example test set, where the same random transformation sequences were applied.

dSprites Transformations

The second set of experiments presented in this paper are based on the dSprites
dataset (Matthey et al., 2017) (Apache-2.0 License). To reduce computational com-
plexity of this dataset, we took a subset of the dataset which consisted of all 3
shapes, the largest 5 scales, and every other example from the first 30 orientations,
x-positions, and y-positions. The resulting dataset thus had 50,625 total images (3
shapes, 5 scales, 15 orientations, 15 x-positions, 15 y-positions), compared to the
original 737,280 images. To construct sequences, we followed the same procedure
as for MNIST, whereby first a random example and transformation were chosen,
and a sequence of 15 images was constructed where only the chosen transformation
was applied successively. We define the transformations available for sequences as
scale, orientation, x-position, and y-position, omitting shape since smooth shape
transforms are not present in the dSprites dataset. Again, we define all transforma-
tions to be cyclic such that once the 15th element is reached, the 1st element follows.
For scale transformations, we simply loop over all 5 scales 3 times per sequence.
We observe that although these sequences do not match the latent priors exactly, the
models still train relatively well, implying some degree of robustness.

Capsule Correlation Metric (CapCorr)

Here we define CapCorr more precisely as it is implemented in our work. First, we
denote the ground truth transformation parameter of the sequence at timestep 𝑙 as 𝑦𝑙
(e.g. the rotation angle at timestep 𝑙 for a rotation sequence), and the corresponding
activation at time 𝑙 as t𝑙 . Next, to get an arbitrary starting point, we let 𝑙 = Ω denote
the timestep when 𝑦𝑙 is at its canonical position (e.g. rotation angle 0, x-position 0,
or scale 1). We see Ω is not necessarily 0 since the first timestep of each sequence
(𝑙 = 0) is a randomly transformed example. Then, we observe that we can measure
the approximate observed roll in the capsule dimension between time 0 and Ω as a
‘phase shift’ by computing the index of the maximum value of a discrete (periodic)
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cross-correlation of tΩ and t0:

ObservedRoll(tΩ, t0) = argmax [tΩ ★ t0] (B.1)

Where ★ is discrete (periodic) cross-correlation across the (cyclic) capsule dimen-
sion and argmax is also subsequently performed over the capsule dimension. Then,
the CapCorr metric for a single capsule is given as:

CapCorr(tΩ, t0, 𝑦Ω, 𝑦0) = Corr (ObservedRoll(tΩ, t0), |𝑦Ω − 𝑦0 |) (B.2)

Where the correlation coefficient Corr is then computed across all examples for the
entire dataset. In our experiments we use the Pearson correlation coefficient for
Corr. We thus see this metric is the correlation of the estimated observed capsule
roll with the shift in ground truth generative factors, which is equal to 1 when the
model is perfectly equivariant. To extend this definition to multiple capsules, we
estimate ObservedRoll for each capsule separately, and then correlate the mode of
all ObservedRoll values with the true shift in ground truth generative factors. We see
empirically that the ObservedRolls for all capsules are almost always identical (i.e.
all capsules roll simultaneously for each transformation), therefore computing the
mode does not destroy significant information. Finally, for transformation sequences
which have multiple timesteps where 𝑦𝑙 is at the canonical position (e.g. scale
transformations on dSprites where scale is looped 3 times), we select 𝑙 = Ω to be
the one from this possible set which yields the minimal absolute distance between
|𝑦Ω − 𝑦0 | and ObservedRoll(tΩ, t0).

Definition of Roll for Capsules

As stated in Section 4.5.2, Roll𝛿 (u), is defined as a cyclic permutation of 𝛿 steps
along the capsule dimension of u. Explicitly, if u is divided into 𝐶 capsules each
with 𝐷 dimensions, the Roll𝛿 operation can be written as:

Roll𝛿 (u) = Roll𝛿 ( [𝑢1, 𝑢2, . . . , 𝑢𝐶·𝐷])
= [𝑢𝐷 , 𝑢1, . . . , 𝑢𝐷−1, 𝑢2·𝐷 , 𝑢𝐷+1, . . . , 𝑢2·𝐷−1, 𝑢3·𝐷 , . . . , . . . 𝑢𝐶·𝐷−1]

(B.3)

B.2. Extended Results

In this section we provide extended results for all tested hyperparamters (Tables B.1
& B.2), a further analysis of the impact of the coherence window within a capsule
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Table B.1: Log Likelihood and Equivariance Error on MNIST for all models tested.
Mean ± std. over 3 random initalizations.

Model TVAE TVAE TVAE TVAE TVAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 13
36𝑆 𝐿 = 1

4𝑆 𝐿 = 5
36𝑆 𝐿 = 0

𝐾 𝐾 = 3 𝐾 = 3 𝐾 = 3 𝐾 = 3 𝐾 = 9

log 𝑝(x) ↑ −186.8 ± 0.1 -188.0 ± 0.5 -187.0 ± 0.2 −186.0 ± 0.7 -218.5 ± 0.9
E𝑒𝑞 ↓ 573.9 ± 1.5 1089.8 ± 2.4 2136.9 ± 7.8 3246.6 ± 3.3 3216.6 ± 104.9

Model BubbleVAE BubbleVAE BubbleVAE BubbleVAE VAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 1
4𝑆 𝐿 = 5

36𝑆 𝐿 = 5
36𝑆 𝐿 = 0

𝐾 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 3 𝐾 = 1

log 𝑝(x) ↑ -200.9 ± 0.7 -202.3 ± 1.4 -190.8 ± 0.7 -191.4 ± 0.5 -189.0 ± 0.8
E𝑒𝑞 ↓ 4206.7 ± 903.3 1141.7 ± 9.6 2605.7 ± 16.1 3369.5 ± 11.9 13273.9 ± 0.5

W𝛿 (Table B.3), samples from the model in Section 4.5, and additional capsule
traversal experiments highlighting the generalization capabilities of the TVAE to
combinations of transformations unseen during training (Figure B.2).

Extended Tables 1 & 2

In Tables B.1 & B.2 below, we present extended versions of Tables 1 & 2 respectively,
showing all tested settings of the TVAE & BubbleVAE. We observe the TVAE
achieves perfect correlation (CapCorr = 1) for 𝐿 ≥ 1

3 , and steadily decreasing
correlation for lower values of 𝐿.

Impact of W𝛿

In Table B.3, we show a small set of experiments with different settings of W𝛿, and
specifically changing values of 𝐾 (the coherence window within a capsule). As can
be seen, increasing 𝐾 generally reduces equivariance error, but decreases the log-
likelihood. This can be further understood by examining the capsule traversals of
such models in Figures B.5, B.6, B.7, B.8, & B.9. We see that larger values of 𝐾
appear to induce smoother transformations within the capsule dimensions, eventually
resulting in invariant representations when 𝐾 is equal to the capsule dimensionality.
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Table B.2: Equivariance error and CapCorr for all models tested on the dSprites
dataset. Mean ± standard deviation over 3 random initalizations.

Model TVAE TVAE TVAE TVAE TVAE TVAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 2
5𝑆 𝐿 = 1

3𝑆 𝐿 = 4
15𝑆 𝐿 = 1

6𝑆 𝐿 = 0
𝐾 𝐾 = 1 𝐾 = 1 𝐾 = 1 𝐾 = 1 𝐾 = 1 𝐾 = 3

CapCorr𝑋 ↑ 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.95 ± 0.00 0.67 ± 0.02 0.17 ± 0.03
CapCorr𝑌 ↑ 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.96 ± 0.01 0.66 ± 0.02 0.21 ± 0.02
CapCorr𝑂 ↑ 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.88 ± 0.01 0.52 ± 0.01 0.09 ± 0.01
CapCorr𝑆 ↑ 1.0 ± 0 1.0 ± 0 1.0 ± 0 0.96 ± 0.01 0.42 ± 0.01 0.51 ± 0.01

E𝑒𝑞 ↓ 344 ± 5 759 ± 9 1034 ± 6 1395 ± 7 2549 ± 38 2971 ± 9

Model BubbleVAE BubbleVAE BubbleVAE BubbleVAE BubbleVAE VAE
𝐿 𝐿 = 1

2𝑆 𝐿 = 2
5𝑆 𝐿 = 1

3𝑆 𝐿 = 4
15𝑆 𝐿 = 1

6𝑆 𝐿 = 0
𝐾 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 2𝐿 𝐾 = 1

CapCorr𝑋 ↑ 0.16 ± 0.01 0.15 ± 0.01 0.13 ± 0.01 0.12 ± 0.02 0.09 ± 0.01 0.18 ± 0.01
CapCorr𝑌 ↑ 0.15 ± 0.01 0.14 ± 0.01 0.12 ± 0.01 0.12 ± 0.01 0.11 ± 0.02 0.16 ± 0.01
CapCorr𝑂 ↑ 0.12 ± 0.00 0.13 ± 0.02 0.10 ± 0.01 0.09 ± 0.00 0.06 ± 0.01 0.11 ± 0.00
CapCorr𝑆 ↑ 0.52 ± 0.02 0.55 ± 0.00 0.52 ± 0.00 0.48 ± 0.02 0.27 ± 0.01 0.52 ± 0.00

E𝑒𝑞 ↓ 6825 ± 126 6917 ± 13 1951 ± 34 2181 ± 627 1721 ± 27 6934 ± 0

Table B.3: Impact of W𝛿 (i.e. 𝐾) on MNIST performance.

Model TVAE TVAE TVAE TVAE TVAE
𝐿 𝐿 = 5

36𝑆 𝐿 = 5
36𝑆 𝐿 = 0 𝐿 = 0 𝐿 = 0

𝐾 𝐾 = 3 𝐾 = 9 𝐾 = 3 𝐾 = 9 𝐾 = 18

log 𝑝(x) ↑ −186.0 ± 0.7 -190.6 ± 0.2 -213.4 ± 1.2 -218.5 ± 0.9 -224.8 ± 1.0
E𝑒𝑞 ↓ 3246.6 ± 3.3 2606.3 ± 17.0 12085.7 ± 68.5 3216.6 ± 104.9 1090.3 ± 19.3

Samples

In Figure B.1, we provide samples from our model in the 𝐿 = 0 setting to validate
that the learned latent distribution closely matches the 𝑇𝑃𝑜𝑇 distribution described
in Equation 4.6. Explicitly, the samples are generated by sampling standard normal
random variables Z and U, constructing T as in Equation 4.6, and then passing these
sampled T through the decoder. We see that the samples resemble true MNIST digits
(accounting for the limited capacity of the model), implying that the distribution
after training indeed follows the desired distribution, and the model has learned to
become a good generative model of the data.
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Figure B.1: Samples from the TVAE in Section 4.5.

Generalization to Combined Transformations at Test Time

In this section, we test the ability of the model to generate sequences composed of
multiple transformations through a capsule roll, despite only being trained on indi-
vidual transformations in isolation. In other words, we intend to measure the extent
to which the transformations learned by a set of capsules can be combined simply by
passing input sequences with corresponding combined transformations. Such gen-
eralization suggests powerful benefits to data efficiency, effectively factorizing a set
of complex transformations.

Explicitly, we train the model identically to that presented in Figure 5.3, (TVAE
𝐿 = 13

36𝑆), and examine the sequences generated by a capsule roll when the partial
input sequences contain combinations of transformations previously unseen during
training. The results of this experiment, tested on combinations of rotation and color
transforms on the MNIST test set, are presented in Figure B.2 below. Although this
generalization capability is not known to be guaranteed a priori, we see that the
capsule traversals are frequently remarkably coherent with the input transformation,
implying that the model may indeed be able to generalize to combinations of trans-
formations. Furthermore, we observe with 𝐿 = 1

2𝑆 (results not shown), this gener-
alization capability is nearly perfect.
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Figure B.2: Capsule Traversals for MNIST TVAE 𝐿 = 13
36𝑆, trained on individual

transformations in isolation, and tested on combined color and rotation transforma-
tions. Top row shows the input sequence, middle row shows the direct reconstruc-
tion {𝑔𝜃 (t𝑙)}𝑙 , and bottom row shows the capsule traversal {𝑔𝜃 (Roll𝑙 [t0])}𝑙 .

B.3. Proposed Model Extensions

Extensions to Roll & CapCorr

The Roll operation can be seen as defining the speed at which t transforms corre-
sponding to an observed transformation. For example, with Roll defined as in Sec-
tion B.1 above, we implicitly assume that for each observed timestep, we would
like the representation t to cyclically permute 1-unit within the capsule. For this to
match the observed data, it requires the model to have an equal number of capsule
dimensions and sequence elements. If we wish to reduce the size of our representa-
tion, we could instead encourage a ‘partial permutation’ for each observed transfor-
mation. For a single capsule with 𝐷 elements, an example of a simple linear version
of such a partial permutation (for 0 < 𝛼 ≤ 1) can be implemented as:

Roll𝛼 (u) =
[
𝛼𝑢𝐷 + (1−𝛼)𝑢1, 𝛼𝑢1 + (1−𝛼)𝑢2, . . . , 𝛼𝑢𝐷−1 + (1−𝛼)𝑢𝐷

]
(B.4)



190

A slightly more principled partial roll for periodic signals could also be achieved by
performing a phase shift of the signal in Fourier space, and performing the inverse
Fourier transform to obtain the resulting rolled signal. To extend the CapCorr
metric to similarly allow for partial Rolls, we see that we can simply redefine the
ObservedRoll (originally given by discrete cross-correlation) to be given by the
argmax of the inner product of a sequentially partially rolled activation with the
initial activation tΩ. Formally:

ObservedRoll(tΩ, t0) = argmax [tΩ · Roll0(t0), tΩ · Roll𝛼 (t0), . . . , tΩ · Roll𝐷−𝛼 (t0)]
(B.5)

Non-Cyclic Capsules

We can also see that there is nothing beyond convenience which inherently requires
the capsules to be circular (i.e. have periodic boundary conditions). To implement
linear capsules, we propose one solution is to add 𝐿 additional 𝑈𝑖 variables to both
the left and right boundaries of each capsule. In this way, the vector U is larger than
the vector Z and can be seen as a ‘padded’ version, where the padding is composed
of independant random variables. Additionally, the transformation sequences can
then be padded on both sides by replicating the first and final elements 𝐿 times. The
construction of T variables is then performed identically as in Equations 5.9 and
5.10. The Roll operation can then be similarly defined as filling the boundaries with
0 since these values will not be used as part of the computation.

Multi-dimensional Temporally Coherent Capsules

In consideration of transformations which may naturally live in multiple dimen-
sions, we wish to extend the original model to support multi-dimensional capsules.
Such multi-dimensional capsules could additionally support more well-defined ‘dis-
entanglement’ of transformations by encouraging each transformation to be axis-
aligned with one dimension of each capsule. We see that in the non-temporally co-
herent case (𝐿 = 0), the model can easily be extended to capsules of multiple di-
mensions through multi-dimensional neighborhoods. An example of a model with
2-dimensional neighborhoods is presented in Figure 3. However, when considering
shifting temporal coherence as we defined in Section 6.3, it is not clear how the shift
operator or the neighborhoods should be defined for higher dimensional capsules.
In this section we propose to modify the definitions of T in Equations 5.9 and 5.10
with an extension resembling ‘group sparsity’ in the denominator.
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First, we again assume that each input sequence is an observation of a single trans-
formation at a time. Formally, the multi-dimensional capsules are then constructed
by arranging U into a 𝐷 dimensional lattice. In such a model, we desire to roll and
sum only along a single axis of the lattice for a given sequence. Incorporating this
into the construction of T yields the following:

T𝑙 =
Z𝑙 − 𝜇∑𝐷

𝑑=1

√︃
W𝑑

[
U2
𝑙+𝐿; · · · ; U2

𝑙−𝐿
] =

Z𝑙 − 𝜇∑𝐷
𝑑=1

√︃∑𝐿
𝛿=−𝐿 W𝑑

𝛿
Roll𝑑𝛿 (U2

𝑙+𝛿)
(B.6)

Where W𝑑
𝛿

refers to a matrix which sums locally along the 𝑑𝑡ℎ dimension of each
capsule, and not at all along the others, and similarly Roll𝑑𝛿 rolls only along the
𝑑𝑡ℎ dimension. In practice we observe such models can indeed disentangle up
to 2 distinct transformations, but become more challenging to optimize for higher
dimensions. We believe this is potentially due to the exponential growth in capsule
size with increasing dimension, but leave further exploration to future work.

B.4. Capsule Traversals

In this section we provide a set of 12 capsule traversals for each of the models pre-
sented in main text. The traversals are randomly selected such that all transforma-
tions (and dSprites shapes) are shown evenly. Unlike the main section, we addition-
ally include a middle row which shows the direct reconstruction of the input with-
out any rolling (i.e. {𝑔𝜃 (t𝑙)}𝑙). We find the direct reconstructions valuable to de-
termine if poor traversals are due to bad reconstructions (low log 𝑝𝜃 (x|t)) or a lack
of equivariance (high E𝑒𝑞). For example, with the baseline VAE models, we see
that the reconstructions in the middle row are accurate for the full sequence, while
the capsule traversals obtained by sequentially rolling the initial activation (shown
in the bottom row) are nothing like the input transformation (top row). In all traver-
sals, the left-most image corresponds to t0, and thus input sequences of length 2𝐿
cover both the left and right edges when 𝐿 > 0.

Finally, in Figures B.18 & B.19 at the end of the section, we include capsule traversals
for models trained on MNIST with more complex transformations such as combined
color & rotation, and combined color & perspective transforms. These models
were trained in an identical manner to the other MNIST models, with the same
architecture, only changing the transformation sequences of the training dataset.
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Figure B.3: MNIST TVAE 𝐿 = 1
2𝑆, 𝐾 = 3
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Figure B.4: MNIST TVAE 𝐿 = 13
36𝑆, 𝐾 = 3
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Figure B.5: MNIST TVAE 𝐿 = 5
36𝑆, 𝐾 = 3. We see with values of 𝐿 < 1

3𝑆 the
transformations decoded through the capsule roll are only partially coherent with
the input sequence.
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Figure B.6: MNIST TVAE 𝐿 = 5
36𝑆, 𝐾 = 9



196

Figure B.7: MNIST TVAE 𝐿 = 0, 𝐾 = 3. We see for sufficiently small values of 𝐾 ,
the TVAE can reach a degenerate solution where topographic organization is almost
entirely lost.
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Figure B.8: MNIST TVAE 𝐿 = 0, 𝐾 = 9
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Figure B.9: MNIST TVAE 𝐿 = 0, 𝐾 = 18. We see when 𝐾 is equal to the capsule
size (making the model analogous to ISA), the model learns an invariant capsule
representation – meaning Rolling a capsule activation produces no significant trans-
formation in the observation space.
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Figure B.10: MNIST BubbleVAE 𝐿 = 5
36𝑆, 𝐾 = 2𝐿
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Figure B.11: MNIST VAE 𝐿 = 0, 𝐾 = 1. We see images generated through capsule
traversal with the baseline VAE appear entirely random, as expected due to the non-
topographic nature of the VAE’s latent space.



201

Figure B.12: dSprites TVAE 𝐿 = 1
2𝑆, 𝐾 = 1
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Figure B.13: dSprites TVAE 𝐿 = 1
3𝑆, 𝐾 = 1
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Figure B.14: dSprites TVAE 𝐿 = 1
6𝑆, 𝐾 = 1
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Figure B.15: dSprites TVAE 𝐿 = 0, 𝐾 = 3
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Figure B.16: dSprites BubbleVAE 𝐿 = 1
3𝑆, 𝐾 = 2𝐿. We see the capsule traversals

for the BubbleVAE produce only relatively minor transformations in the observation
space (e.g. shape or rotation change, but position appears constant). This reinforces
the intuition that models with stationary temporal coherence are likely to learn
invariant capsule representations.
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Figure B.17: dSprites VAE 𝐿 = 0, 𝐾 = 1
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Figure B.18: Combined Color & Rotation MNIST TVAE 𝐿 = 13
36𝑆, 𝐾 = 3. We see

these generated sequences are slightly more accurate than those in Figure B.2. This
is to be expected since the model in this figure is trained explicitly on combinations
of transformations, whereas the model in Figure B.2 was trained on transformations
in isolation, and tested on combinations to explore its generalization.
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Figure B.19: Combined Color & Perspective MNIST TVAE 𝐿 = 13
36𝑆, 𝐾 = 3. We

see the TVAE is able to additionally learn combinations of complex transformations
(like out-of-plane rotation) without any changes to the training procedure other than
a change of dataset.
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A p p e n d i x C

CHAPTER VI APPENDIX

C.1. Experiment Details

Videos of traveling waves and code to reproduce all experiments in the paper can be
found at the following github repository: https://github.com/akandykeller/
NeuralWaveMachines.

The code is built as extensions of three existing public repositories, allowing us
to reproduce all baseline results from the original authors’ code. Specifically,
we make use: (I) The coRNN repository (https://github.com/tk-rusch/
coRNN) for the supervised sequence experiments, (II) The Topographic VAE repos-
itory (https://github.com/akandykeller/TopographicVAE/) for the rotat-
ing MNIST experiments, and (III) The DeepMind Physics Inspired Models repos-
itory (https://github.com/deepmind/deepmind-research/tree/master/
physics_inspired_models) for the Hamiltonian Dynamics Suite Experiments.

Sequence Classification

The efficiency experiments from Section 6.4 were performed by modifying the
published code for the original coRNN (T. Konstantin Rusch and Mishra, 2021a)
to incorporate the local connectivity constraints outlined in the main text. All
hyperparameters were thus set to the defaults in the published code which matched
the optimal hyperparameters stated by the authors to be found from a grid search on
each dataset independently. The baseline coRNN values in Table C.2 are thus simply
from re-running the original authors code, and we observe similar values to those
published in (T. Konstantin Rusch and Mishra, 2021a). We acknowledge that running
a separate grid search for the NWM models may be beneficial to their performance
but we were unable to do so due to time and computational constraints and thus leave
this to future work. In practice, we found the original coRNN parameters worked
well enough to give an initial intuition for the relative performance of the NWM.

For the NWM, the topology of the hidden state was defined to be a regular square
2D grid with side lengths equal to square root of the default hidden state size (or
the integer floor of the square root for non-perfect-square values). Each neuron was

https://github.com/akandykeller/NeuralWaveMachines
https://github.com/akandykeller/NeuralWaveMachines
https://github.com/tk-rusch/coRNN
https://github.com/tk-rusch/coRNN
https://github.com/akandykeller/TopographicVAE/
https://github.com/deepmind/deepmind-research/tree/master/physics_inspired_models
https://github.com/deepmind/deepmind-research/tree/master/physics_inspired_models
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defined to be connected to its immediate surrounding 8 cells in the grid, in addition
to a self-connection. The boundary conditions of the topology were defined to
be periodic (implemented through circular padding) such that the global topology
was that of a 2-dimensional torus. The recurrent local coupling parameters were
shared over all spatial locations of the grid, allowing the above local connectivity
to be implemented as a periodic convolution with a kernel of size 3 × 3. We noted
that increasing the number of channels in the convolutional layers dramatically
improved performance, and thus for the NWM models in Table C.2 we use 16
channels in the hidden state. This yeilded a parameter count computation of:
#𝜃 = 1 × 256 × 16 + 16 × 16 × 3 × 3 × 2 + 256 × 16 × 10 = 49, 664.

Rotating MNIST and Sine Waves

The experiments on measuring spatiotemporal structure using the MNIST and sim-
ple sine waves datasets were performed by modifying the published code for the To-
pographic VAE (T. A. Keller and Max Welling, 2021b) to introduce our proposed
NWM in place of the ‘shifting temporal coherence’ construction of the topographic
Student’s-T variable in the original paper. To achieve this, the encoder and de-
coder ( 𝑓𝜃 & 𝑔𝜃) were implemented as a variational autoencoder (Kingma and Max
Welling, 2014) with a standard Gaussian prior and Bernoulli distribution for the
likelihood of the data. Practically, this was achieved by setting the output dimen-
sionality of the encoder 𝑓𝜃 to twice the hidden state dimensionality, defining half of
the outputs as the posterior mean 𝜇𝜃 , and the second half as the log of the posterior
variance 𝜎𝜃 . We additionally found that applying Layer Normalization (J. L. Ba et
al., 2016) (denoted LN) to the output of the encoder helped increase convergence
speed. Explicitly, the model can thus be described as:

z𝑡+1 ∼ 𝑞𝜃 (z𝑡+1 |u𝑡+1) = N
(
z𝑡+1; 𝜇𝜃 (u𝑡+1), 𝜎𝜃 (u𝑡+1)I

)
, z̄𝑡+1 = LN(z𝑡+1) (C.1)

v𝑡+1 = v𝑡 + Δ𝑡
(
𝜎 (w𝑥 ★ x𝑡 + w ¤𝑥 ★ v𝑡 + Vz̄𝑡+1 + b) − 𝛾x𝑡 − 𝛼v𝑡

)
(C.2)

x𝑡+1 = x𝑡 + Δ𝑡 (v𝑡+1) (C.3)

𝑝𝜃 (u𝑡+2 |𝑔𝜃 (x𝑡+1)) = Bernoilli(u𝑡+2; 𝑔𝜃 (x𝑡+1)) (C.4)

Where the objective is then computed by averaging the evidence lower bound
(ELBO) over the length of the sequence:

L(u1:𝑇 ;θ) = 1
𝑇

𝑇∑︁
𝑡=1
Ez𝑡∼𝑞𝜃 (z𝑡 |u𝑡 )

(
log 𝑝𝜃 (u𝑡+1 |𝑔𝜃 (x𝑡)) − 𝐷𝐾𝐿 [𝑞𝜃 (z𝑡 |u𝑡) | |𝑝Z(z𝑡)]

)
(C.5)
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The initial conditions for the NWM were then given by simply setting the initial
position equal to the first encoder output, and the initial velocity to zero, i.e. x0 = z̄0

& v0 = 0. Although we did not test the MNIST experiments with a deterministic
autoencoder, we note that traveling waves can also clearly be seen in the hidden states
of the deterministic models presented in Sections 6.3 and 6.4 (as visualized in Figure
6.2 and the supplementary material), implying that the variational formulation is
not necessary for the emergence of traveling waves.

For the experiment depicted in Figure 7.2 of Section 6.4, we used a simple linear
encoder and decoder, and a hidden state dimensionality of 1296 reshaped into a 2D
grid of shape 36 × 36. As in the rest of the paper, our topographic connectivity
was implemented using a convolutional kernel of shape 3 × 3 shared over all ele-
ments of the grid, with circular padding to enforce periodic boundary conditions on
the grid. For training, we presented the model with length 18 sequences of MNIST
digits rotating at 20 degrees per step (thus completing a full period per training se-
quence). At test time, to create the visualization in Figure 7.2, we increased the se-
quence length to 72 elements (or four periods) and visualize a portion of the final
period, allowing the system to reach a steady state of wave activity for better visual-
ization. We see that despite not being trained on such long sequences, the NWM is
able to generalize and maintain wave activity. For computing the generalized phase,
we set use a 4-th order butterworth bandpass filter with bounds set at 0.2 and 0.4
of the Nyquist frequency. As hyperparamters for training, we used standard SGD
with momentum of 0.9, a learning rate of 2.5 × 10−4, and a batch size of 128 for
50 epochs. Following the suggestion outlined in (T. Konstantin Rusch and Mishra,
2021a), we allowed the parameters 𝛾, 𝛼, & Δ𝑡 to be learned during training by ini-
tializing them to Δ𝑡 = 𝜎−1(0.125) = −1.95, 𝛾 = 1.0, & 𝛼 = 0.5 and then applying
appropriate activation functions to keep them within the desired bounds (e.g. sig-
moid, ReLU, & ReLU respectively). These hyperparameters and initalization val-
ues were determined by implementing a simple toy version of the model with ran-
dom data and random weights and manually altering parameters to determine the
ranges for which coherent wave dynamics were likely to emerge. We note that the
properties of the emergent waves appear qualitatively different for different random
initalizations of the model. Specifically the wavelength and velocity of the waves
appears to vary greatly from run-to-run. We show a few of these different learned
dynamics in the additional results section below.

For the experiment depicted in Figure 6.5 of Section 6.4, we used a 3-layer Multi-
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Layer Perceptron (MLP) for the both encoder and decoder, and a hidden state of
dimensionality 1296 reshaped into a set of 24 disjoint 1-D tori (circles) each com-
posed of 54 neurons. We implemented topographic coupling between the immedi-
ate neighbors on each circle via a 1-dimensional convolutional kernel of size 3 with
circular padding. We then implemented the uni-directionality constraint outlined in
the main text be masking the first two elements of the kernel to 0, yielding a kernel
with a single trainable parameter explicitly connecting each neuron with its neigh-
bor directly to one side. For training, the dataset and hyperparameters all remained
the same as in Figure 7.2 described above, however the batch size was reduced to
8 for quicker evaluation. We found that additionally adding another layer normal-
ization layer between recurrent steps improved the consistency of the learned waves
and thus allowed us to simulate them more accurately at test time. Explicitly this
amounted to modifying Equation C.3 to: x𝑡+1 = LN

(
x𝑡 + Δ𝑡 (v𝑡+1)

)
. Furthermore,

to ensure consistency of waves across each circular subspace separately, we shared
the bias vector b across each subspace. To induce a traveling wave in the hidden
state of the network and thereby generate the transformation sequence shown in the
bottom row of the figure, we first encode the input sequence (shown in the top row),
using the equations outlined in this section. We take the final hidden state of the
network (x𝑇 ) as the initial state from which we begin the wave propagation. Then,
across each 1-D circular subspace of the hidden state, we update the values of the
hidden state based on the 1-D 1-way wave equation 𝑦(𝑥, 𝑡) = 𝑓 (𝑥 − 𝑣𝑡) for a ve-
locity 𝑣 = 1 for time 𝑡 = 1 to 18. Written in terms of the hidden state x𝑡 , we can
effectively propagate waves backwards through the hidden state by moving activa-
tion from one spatial location 𝑙 to a location shifted by 𝑣Δ𝑡: x𝑇 (𝑙) → x𝑇 (𝑙 − 𝑣Δ𝑡).
Practically, this amounts to sequentially circularly shifting the hidden state activa-
tion across each circular subspace as depicted in Figure 6.5.

Hamiltonian Dynamics Suite

The experiments in Section 6.4 were performed using the DeepMind Physics In-
spired Models and Hamiltonian Dynamics Suite, implemented in JAX, as a starting
point. All values reported for the baselines (HGN++, AR, and ODE [TR]) were thus
obtained by re-running the original code with the hyperparameters stated in (Botev
et al., 2021). Specifically, for the HGN++, we trained the model both forwards and
backwards in time, including over the inference steps, with a final beta value of 0.1
in the ELBO. For the AR model, we used an LSTM with all other paramters default.
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For the ODE, we used the default parameters with forwards and backwards training,
again including inference steps. The only change to the default hyperparamters for
all three models was to reduce the batch size to 8 per GPU (thus 32 total per itera-
tion) to fit on our GPUs.

The coRNN and NWM architectures were added as extensions to the auto-regressive
model already implemented in library. They thus made use of all the same default
hyperparameters, with the only changed values being the aforementioned reduced
batch size, an increased number of inference steps (31), an increased number of
target steps (60), and an increased hidden state size (23×23). The increased number
of inference and target steps was found useful to improve performance on more
chaotic tasks such as the pendulum where the accuracy of the initial state is hugely
important to the model forecasting performance. Additionally, we note that these
values are within the values searched by the grid search of the authors in (Botev
et al., 2021) making their use here for comparison relatively fair. The size of the
hidden state was picked as the largest which fit in our GPU memory across all
devices. The values of 𝛼, 𝛾, andΔ𝑡 were initialized to the same values as the MNIST
experiments described above, and were again allowed to be updated during training
simultaneously with the other model parameters. For the 2D NWM, the hidden state
topology was again defined to be a 2D torus of size (23×23) implemented through
periodic convolution with a 3 × 3 kernel. The 1D NWM topology was similarly
composed of 23 disjoint 1D circles each with 23 neurons, again implemented with
periodic convolution with a 1×3 kernel. The coRNN and NWM models additionally
used a separate initial condition network to initialize x0 and v0. This network was
implemented as a GRU with a hidden state of size 2× 23× 23 which ran backwards
over the inference sequence (length 31) first embedded with the model encoder 𝑓𝜃 .
The final hidden state of the model was then split in half and taken to initialize the
inital positions and velocities of the coRNN & NWMs.

All models make use of the same deep convolutional encoder with ReLU activations
and a similarly deep convolutional spatial broadcast decoder as in the original work.
They were similarly all trained for 500,000 iterations to match the original work.

Hardware Details

All models were run on a cluster across roughly 8 NVIDIA GeForce 1080Ti GPUs, 8
NVIDIA GeForce 980Ti GPUs, and 8 NVIDIA Titan X Gpus. Each model in Table
6.1 thus required roughly 6-8 GPU days to train to the final number of iterations.
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C.2. Analytical Treatment of Neural Wave Machines

In this section we extend the analytical treatment of Neural Wave Machines, verifying
that the model does indeed inherit many of the same beneficial bounds on hidden
state and gradient magnitudes as the original coRNN, as stated in the main text.
Specifically, by carefully reviewing the proofs for Proposition 3.1 (bounded hidden
state energy) and Proposition 3.2 (bounded hidden state gradients) of T. Konstantin
Rusch and Mishra (2021a), it can be shown that the Neural Wave Machine satisfies
the conditions necessary for these bounds to similarly hold with minor modifications.
At a high level, the intuition for why these bounds hold is that our convolutional
parameterization of the coupling matrices does not change the theoretical bounds on
the infinity norm of the weights, the crucial element necessary for bounding these
quantities (e.g. see equation (13) of T. Konstantin Rusch and Mishra (2021a)). In
the following, we detail each of these bounds more precisely.

Bounds on Hidden State Energy

Identically following the proof of Proposition 3.1, from Section E.1 of T. Konstantin
Rusch and Mishra (2021a), defining the total energy of our model’s hidden state as
x𝑇𝑛x𝑛 + v𝑇𝑛v𝑛, it can be seen this value is bounded at time-step 𝑛, and with hidden
state size 𝑚, as:

x𝑇𝑛x𝑛 + v𝑇𝑛v𝑛 ≤ x𝑇0 x0 + v𝑇0 v0 + 𝑛𝑚Δ𝑡

We see that this bound does not change from the original work as the derivation is not
dependent on the parameterization of the coupling matrices W,W. Furthermore,
this bound applies equally in the case when we have non-zero initial conditions (as
through our initial condition network).

Sensitivity to Inputs

From Section E.2, Proposition E.1, of (T. Konstantin Rusch and Mishra, 2021a), it
can be seen that the NWM also inherits a bound on how much differences in inputs
are able to change the hidden state. Specifically, since the activation function we use
is tanh, our bound is identical. This is the theoretical justification for our comment
regarding the NWM’s apparent inability to model chaotic dynamics (which we
expand on in Appendix C.3).
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Bounds on Hidden State Gradient

From Section E.3, following the proof of Proposition 3.2, of T. Konstantin Rusch
and Mishra (2021a), we see that, assuming 𝛼 = 𝛾 = 1, we can again derive bounds
on the gradient of the loss with respect to the model parameters. Specifically, the
outline of the proof is nearly identical, with only equation (28) being modified to
reflect the fact that our parameters are now shared over all spatial locations (due to
the convolution). In detail, the matrix Z𝑖, 𝑗

𝑚,𝑚̄
no longer only has a single non-zero

value, but instead𝑚 non-zero values equal to𝜎′(A𝑘−1)𝑖 (for an𝑚 sized hidden state).
We see that when this matrix is then multiplied with each vector (x𝑘−1, v𝑘−1, u𝑘 ),
using the bound | |Z𝑖, 𝑗

𝑚,𝑚̄
(A𝑘−1) | |∞ ≤ 1, the upper bounds in equation (29) change

from | |x𝑘−1 | |∞, | |v𝑘−1 | |∞, | |u𝑘 | |∞ to 𝑚 | |x𝑘−1 | |∞, 𝑚 | |v𝑘−1 | |∞, 𝑚 | |u𝑘 | |∞. Carrying
these extra factors of 𝑚 through the rest of the proof, we arrive at the following final
bound on the gradient of the loss function 𝜉 with respect to any parameter 𝜃:����𝜕𝜉𝜕𝜃 ���� ≤ 3

2
(𝑚 + 𝑋̄𝑚3/2)

where 𝑋̄ = max𝑛 | |𝑥𝑛 | |∞.

Assumptions

As with the proofs for the coRNN, the same assumptions are necessary for the
bounds to hold. Specifically, it is assumed that Δ𝑡 is chosen such that:

max
(Δ𝑡 (1 + ||W| |∞)

1 + Δ𝑡
,
Δ𝑡 | |W||∞

1 + Δ𝑡

)
≤ Δ𝑡𝑟 ,

1
2
≤ 𝑟 ≤ 1 (C.6)

Since this assumption is indeed satisfied throughout training for the original coRNN,
we assume that it is likely satisfied with the NWM as well. Intuitively, we find no
reason to believe that changing the fully connected matrices W &W to convolutional
matrices will have the necessary order-of-magnitude impact on the infinity norm
of the weight matrices necessary to invalidate this assumption. In preliminary
experiments on sMNIST we also find this intuition to hold. Specifically, for the
optimal value of Δ𝑡 = 0.042, and 𝑟 = 1

2 , we see that the maximum over training
of the quantity of interest (Equation C.6) is actually lower for the NWM than the
coRNN (0.157 vs. 0.188) with both being lower than the limit (0.205).



216

C.3. Extended Results

Impact of Δ𝑡 parameter

In this section we include an additional preliminary analysis to measure the impact
of changing the Δ𝑡 parameter. In practice, we see that the parameter has an impact
not only on the numerical integration, but also on the speed at which the network’s
hidden state is able to update. Therefore, similar to prior work with the coRNN, we
find it best to treat this parameter as a hyperparameter and tune it in addition to the
other hypterparameters. In the table below, we show the results of our model on
sMNIST for a range of Δ𝑡 values:

Table C.1: Test accuracy on the sMNIST dataset for a range of Δ𝑡 values.

Δ𝑡 0.001 0.1 0.042 0.15 0.30 0.45

Test Accuracy 87.7 90.6 98.4 97.5 89.8 NaN

We see that a moderate value of Δ𝑡 is optimal, while too large causes divergence
(perhaps due to excessive discretization errors) and too small disrupts information
processing in the RNN.

Additional Efficient Sequence Modeling Results

In this section we include additional results comparing the coRNN and NWM on
different sequence modeling tasks. Specifically, we show model performance on
the long-sequence addition task initially introduced by Hochreiter and Schmidhuber
(1997), and the IMDB sentiment classification task (T. Konstantin Rusch and Mishra,
2021a). On both datasets we see that the NWM achieves comparable performance
to the coRNN while requiring significantly fewer parameters, in line with results on
the sMNIIST and psMNIST datasets.

Additional Hamiltonian Dynamics Results

In this section we include an alternative metric for measuring model forecasting per-
formance on the Hamiltonian Dynamics Suite. Specifically in Table C.3, we report
the ‘Valid Prediction Time’ as reported in prior work (Botev et al., 2021), defined
as the number of time steps into the future the models are able to accurately predict
the dynamics of the system with reconstruction error under a predefined threshold
(MSE < 0.025). Given the high variance of the VPT value from batch-to-batch, the
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Table C.2: Test accuracy on additional sequence modeling benchmarks including
the long-sequence Addition task from Hochreiter and Schmidhuber (1997), and the
IMDB sentiment classification task. All results are mean ± std. over 3 random
initalizations. We see similar results to those shown in Table C.2, the NWM achieves
comparable performance while requiring significantly fewer parameters.

Adding Task IMDB
Accuracy #𝜃 Accuracy #𝜃

coRNN 0.0035 ± 0.01 131k 86.4 ± 0.2 46k
NWM 0.0046 ± 0.0016 <1k 86.1 ± 0.3 13k

values reported in Table C.3 are computed as the mean and standard deviation of
the VPT over the final 5 evaluation iterations. We see that the values roughly agree
with those reported in (Botev et al., 2021), however certain discrepancies may still
appear due to the fact that the authors of (Botev et al., 2021) only report the range
of the grid search they performed but not the actual hyperparameter values of their
best performing models. Further, we see that the ranking of model performance un-
der this metric is quite noisy due to the high variance of the metric. We therefore
urge future work to consider alternative benchmarks and metrics for evaluating the
forecasting performance of such models.

Table C.3: Valid Prediction Time ‘VPT’ (± std.) on the Hamiltonian Dynamics
Benchmark. We highlight in bold results which fall within one standard deviation of
the best performing model. We see that the VPT metric has large standard deviation
owing to the reliance on an arbitrary threshold of image-space similarity, however
the NWM models still perform favorably compared with existing state of the art.

AR HGN++ ODE [TR] coRNN NWM 2D NWM 1D

Spring 302 (63) 447 (0) 430 (26) 375 (14) 311.8 (27) 431 (24)
Pendulum 3 (4) 105 (21) 212 (65) 179 (91) 155.1 (24) 174 (65)
Two Body 263 (92) 444 (3) 439 (11) 431 (40) 413 (53) 420 (27)
Pennies 118 (25) 79 (6) 164 (14) 165 (23) 141 (37) 163 (9)
Double Pendulum 0 (0) 11 (5) 22 (7) 3 (1) 9 (9) 10 (8)

On Modeling Chaotic Dynamics

In this section, we include an extended evaluation to investigate the apparent inabil-
ity of the NWM to model more chaotic dynamics such as the double pendulum task.
To do this, we perform an analogous experiment to that reported in Appendix A of
the original coRNN work (T. Konstantin Rusch and Mishra, 2021a). Specifically,
we measure the ability of our model to predict the state of a system at a fixed 25-time
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steps ahead for a Lorentz ’96 attractor (𝑥′
𝑗
= (𝑥𝑖+1−𝑥𝑖−2)𝑥𝑖−1−𝑥𝑖+𝐹). Here, 𝐹 is an ex-

ternal force which controls how chaotic the trajectories are, where 𝐹 = 8 corresponds
to a highly caotic trajectory and 𝐹 < 1 is significantly less chaotic. Ultimately, we
see that, similar to the original coRNN work, the LSTM performs significantly better
than the NWM in the chaotic regime, providing empirical evidence for the theoreti-
cal claim that the coupled oscillator networks are unable to model chaotic dynamics.

Table C.4: Test Mean Squared Error of an LSTM and NWM when forecasting the
Lorentz ’96 attractor. We see that the NWM performs better in the non-chaotic
regime (𝐹 = 0.9), while in chaotic regime (𝐹 = 8) the LSTM performs significantly
better.

Model 𝐹 = 0.9 𝐹 = 8.0

LSTM 5.2 × 10−3 1.9 × 10−2

NWM 2.4 × 10−3 4.8 × 10−2

On the Formation of Orientation Maps

Although there is significant prior work which can give intuition as to why the smooth
orientation selectivity maps of Figure 6.3 may arise from our model, we believe we
are the first to demonstrate a system which actually learns these types of maps from
data in the service of sequence modeling. At the highest level, the intuition for the
mechanism behind these maps can be seen to come from the combination of phase-
synchrony of coupled oscillator systems, and the necessity to model temporally
correlated transformations. Extensive prior work on so-called ‘phase-reduced’
Kuramoto models demonstrates the emergence of complex spatiotemporal patterns
such as plane waves, spirals, and pinwheel lattices. Examples include early work
from B. Ermentrout et al. (1970) (Figure 6), showing various steady state phase
relationships in the solutions of the locally coupled oscillator dynamics. Similarly,
more recent works, (S.-O. Jeong et al., 2002) (Figs. 3 & 4) and (Breakspear
et al., 2010) (Figs. 5 & 6) have studied how this phase-locking can vary for
different types of chosen couplings. Given that these phase-reduced systems are
theoretical approximations to the more flexible (non-reduced) oscillator dynamics
implemented in the NWM, it makes sense that we also see these types of phase
relationships (e.g. Fig. 7.2 of the main text). When such complex phase-synchrony
is combined with the task of sequence modeling, the synchrony can be seen to
essentially be inducing local correlations between neurons for each time-step. Thus,
when the training set contains input at a variety of different angles, and the model is
required to represent these over time, the intuition follows that there will be spatially-
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smooth orientation selectivity corresponding to these induced correlations. In Figure
C.1 we provide some quantitative measurements which align with this intuition.
Specifically, the figure shows the instantaneous phase measurement of each neuron
(right) next to the orientation selectivity of the same neurons (left). As can be seen,
there is a rough correlation between phase values and orientation selectivity, with
unexplained variance likely arising due to computing the depicted instantaneous
phase values from a single training example, while selectivity measurements are
computed over an entire dataset. Furthermore, in Figure C.2 we show how different
hyperparameters affect the size of the resulting learned orientation columns. We
see that both the wavelength of the training dataset (𝜆𝑡𝑟𝑎𝑖𝑛 of sine waves) and the
kernel size (size(w𝑧)) have a direct increasing relationship with the size of the
learned orientation columns, suggesting these parameters could be tuned to better
fit observations from neuroscience.

Figure C.1: Orientation selectivity (left) and instantaneous phase at a random
sequence element (right) for a model trained on the sine waves dataset. We see that
the phase synchrony across the neurons is roughly in alignment with the orientation
selectivity, supporting the hypothesis that this is one of the primary mechanisms for
topographic organization in the NWM.

Figure C.2: Orientation selectivity maps as a function of training dataset wavelength
(𝜆𝑡𝑟𝑎𝑖𝑛), and kernel size (size(w𝑧)).
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Full Rotating MNIST Topographic Organization

Figure C.3: Depiction of the maximum activating image for the full set of neurons
in the NWM when training on Rotated MNIST. The subset depicted in Figure 6.3
is highlighted in yellow. We see that topographic organization is widespread and
roughly continuous throughout the hidden state.
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Visualizing Traveling Waves on MNIST

Figure C.4: Additional hidden state visualizations for the model in Figure 7.2.
Reconstructions (Top), Hidden state (middle) and generalized phase (bottom), for
the final 18 timesteps of the test sequence.

Figure C.5: Visualization of the hidden state and phase for three models identical to
those in Figure 7.2, but with different random initalizations. We see that the models
learn different wavelengths and velocities depending on their initialization.
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Figure C.6: Additional visualizations of reconstructions from induced wave activ-
ity in the hidden state of the 1D NWM as depicted in Figure 6.5. We show a set
of random input sequences (top), the original model reconstruction (middle), and
images generated by sequentially propagating the initial state backwards by an in-
duced wave and decoding at each step (bottom). We see that, as in the main text,
the assumed wave velocity of 𝑣 = 1 is slightly faster than the actual velocity, and
thus the reconstructed transformations are slightly faster than the input transforma-
tions. Because of this, we also observe that for certain examples, the induced wave
reconstructions lose consistency with the input after the first period. This appears
to imply that both the initial location of the wave activity matters in addition to its
wave properties, and thus our model has learned to only propagate waves over parts
of the feature space to optimize the capacity of the hidden state for this dataset. Fi-
nally, we observe that the induced transformations occur in reverse order due to the
fact that our induced waves propagate in the reverse direction to those naturally ex-
hibited for training examples, effectively propagating backwards in time.
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A p p e n d i x D

CHAPTER VII APPENDIX

D.1. Related Work

Deep neural network architectures that exhibit some brain-like properties are related
to ours: CORnet (Kubilius et al., 2019), a shallow convolutional network with added
layer-wise recurrence shown to be a better match to primate neural responses; models
with topographic organization, such as the TVAE (T. A. Keller and Max Welling,
2021b) and TDANN (H. Lee et al., 2020); and models of hippocampal-cortex
interactions such as the PredRAE (Y. Chen et al., 2022), and the TEM (Whittington
et al., 2020). Our work is unique in this space in that it is specifically focused on
generating spatio-temporally synchronous activity, unlike prior work. Furthermore,
we believe that our findings and approach may be complimentary to existing models,
increasing their ability to model neural dynamics by inclusion of the Wave-RNN
fundamentals such as locally recurrent connections and shift initalizations.

In the machine learning literature, there are a number of works which have experi-
mented with local connectivity in recurrent neural networks. Some of the earliest ex-
amples include Neural GPUs (Kaiser and Sutskever, 2016) and Convolutional LSTM
Networks (X. Shi et al., 2015). These works found that using convolutional recur-
rent connections could be beneficial for learning algorithms and spatial sequence
modeling respectively. Unlike these works however, Chapter 7 explicitly focuses on
the emergence of wave-like dynamics in the hidden state, and further studies how
these dynamics impact computation. To accomplish this, we also focus on simple
recurrent neural networks as opposed to the gated architectures of prior work – pro-
viding a less obfuscated signal as to the computational role of wave-like dynamics.

One line of work that is highly related in terms of application is the suite of models de-
veloped to increase the ability of recurrent neural networks to learn long time depen-
dencies. This includes models such as Unitary RNNs (Arjovsky, Shah, et al., 2016),
Orthogonal RNNs (Henaff et al., 2016), expRNNs (Lezcano-Casado and Martínez-
Rubio, 2019), the chronoLSTM (Tallec and Ollivier, 2018), anti.symmetric RNNs
(Chang et al., 2019), Lipschitz RNNs (Erichson et al., 2021), coRNNs (T. Kon-
stantin Rusch and Mishra, 2021a), unicoRNNs (T. Konstantin Rusch and Mishra,
2021b), LEMs (T Konstantin Rusch et al., 2022), Recurrent Linear Units (Orvieto
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et al., 2023), and Structured State Space Models (S4) (Gu, Goel, et al., 2022). Addi-
tional models with external memory may also be considered in this category such as
Neural Turing Machines (Graves, Wayne, and Danihelka, 2014), the DNC (Graves,
Wayne, Reynolds, et al., 2016), memory augmented neural networks (Santoro et al.,
2016) and Fast-weight RNNs (J. Ba et al., 2016). Although we leverage many of
the benchmarks and synthetic tasks from these works in order to test our model, we
note that our work is not intended to compete with state of the art on the tasks and
thus we do not compare directly with all of the above models. Instead, Chapter 7
intends to perform a rigorous empirical study of the computational implications of
traveling waves in RNNs. To best perform this analysis, we find it most beneficial to
compare directly with as similar of a model as possible which does not exhibit trav-
eling waves, namely the iRNN. We do highlight, however, that despite being distinct
from aforementioned models algorithmically, and arguably significantly simpler in
terms of concept and implementation, the wRNN achieves highly competitive re-
sults. Finally, distinct from much of this prior work (except for the coRNN (T. Kon-
stantin Rusch and Mishra, 2021a)), our work uniquely leverages neuroscientific in-
spiration to solve the long-sequence memory problem, thereby potentially offering
insights into neuroscience observations in return.

D.2. Experiment Details

In this section, we include all experiment details including the grid search ranges and
the best performing parameters. All code for reproducing the results can be found at
the following repository: https://github.com/Anon-NeurIPS-2023/Wave-RNN. The
code was based on the original code base from the coRNN paper (T. Konstantin
Rusch and Mishra, 2021a) found at https://github.com/tk-rusch/coRNN.

Pseudocode. — Below we include an example implementation of the wRNN cell in
Pytorch (Paszke et al., 2019):

import t o r c h . nn as nn

c l a s s wRNN_Cell ( nn . Module ) :
def _ _ i n i t _ _ ( s e l f , n_in , n , c , k = 3 ) :

super ( RNN_Cell , s e l f ) . _ _ i n i t _ _ ( )
s e l f . n = n
s e l f . c = c
s e l f .V = nn . L i n e a r ( n_in , n ∗ c )

https://github.com/Anon-NeurIPS-2023/Wave-RNN
https://github.com/tk-rusch/coRNN


225

s e l f .U = nn . Conv1d ( c , c , k , 1 , k / / 2 ,
padding_mode= ’ c i r c u l a r ’ )

s e l f . a c t = nn . ReLU ( )

# Sparse i d e n t i t y i n i t i a l i z a t i o n f o r V
nn . i n i t . z e r o s _ ( s e l f .V . we igh t )
nn . i n i t . z e r o s _ ( s e l f .V . b i a s )
w i th t o r c h . no_grad ( ) :

w = s e l f .V. we igh t . view ( c , n , n_ in )
w[ : , 0 ] = 1 . 0

# S h i f t i n i t i a l i z a t i o n f o r U
wts = t o r c h . z e r o s ( c , c , k )
nn . i n i t . d i r a c _ ( wts )
wts = t o r c h . r o l l ( wts , 1 , −1)
wi th t o r c h . no_grad ( ) :

s e l f .U . we igh t . copy_ ( wts )

def f o rwa rd ( s e l f , x , hy ) :
hy = s e l f . a c t ( s e l f .Wx( x ) . view ( −1 , s e l f . c ,

s e l f . n )
+ s e l f .Wy( hy ) )

re turn hy

Figure 2. — The results displayed in Figure 2 are from the best performing models of
the sMNIST experiments, precisely the same as those reported in Figure 7.6 (left) and
Table 7.2. The hyperparamters of these models are described in the sMNIST section
below. To compute the 2D Fourier transform, we follow the procedure of Davis et al.
(2021) (Davis, G. B. Benigno, et al., 2021): we compute the real valued magnitude
of the 2-dimensional Fourier transform of the hidden state activations over time
(using torch . fft . fft2 (seq ). abs () ). To account for the significant autocorrelation
in the data, we normalize the output by the power spectrum of the spatially and
temporally shuffled sequence of activations. We note that although this makes the
diagonal bands more prominent, they are still clearly visible in the un-normalized
spectrum. Finally, we plot the logarithm of the power for clarity.

Copy Task. — We construct each batch for the copy task as follows:
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def g e t _ c o p y _ t a s k _ b a t c h ( bsz , T ) :
X = np . z e r o s ( ( bsz , T+10 ) )
d a t a = np . random . r a n d i n t ( low =1 , h igh =9 ,

s i z e =( bsz , 1 0 ) )
X[ : , : 1 0 ] = d a t a
X[ : , −(10+1)] = 9
Y = np . z e r o s ( ( bsz , T+10 ) )
Y[ : , −10:] = X[ : , : 1 0 ]

X = F . one_ho t ( t o r c h . t e n s o r (
X, d t ype = t o r c h . i n t 6 4 ) . pe rmute ( 1 , 0 ) , 10)

Y = t o r c h . t e n s o r (Y ) . i n t ( ) . pe rmute ( 1 , 0 )

re turn X, Y

For the copy task, we train each model with a batch size of 128 for 60,000 batches.
The models are trained with cross entropy loss, and optimized with the Adam
optimizer. We grid search over the following hyperparameters for each model type:

• iRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]

– U Initialization: [I, U(− 1√
𝑛
, 1√

𝑛
)]

– Learning Rate: [0.01, 0.001, 0.0001]

– Activation: [ReLU, Tanh]

• wRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]

– Learning Rate [0.01, 0.001, 0.0001]

We find the following hyperparameters then resulted in the lowest test MSE for each
model:

The total training time for these sweeps was roughly 1,900 GPU hours, with models
being trained on individual NVIDIA 1080Ti GPUs. The iRNN models took between
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Model Parameter Sequence Length (T)
0 10 30 80 480

wRNN
(n=100, c=6,
k=3)

Learning Rate 1e-3 1e-3 1e-3 1e-3 1e-4
Gradient Magnitude Clip 1 0 0 1 1

iRNN
(n=100)

Learning Rate 1e-3 1e-3 1e-4 1e-4 1e-4
Gradient Magnitude Clip 10 1 1 1 10
U-initialization U I I I I
Activation ReLU ReLU ReLU ReLU ReLU

iRNN
(n=625)

Learning Rate 1e-3 1e-4 1e-4 1e-4 1e-4
Gradient Magnitude Clip 1 10 1 1 1
U-initialization U I I I I
Activation ReLU ReLU ReLU ReLU ReLU

Table D.1: Best performing hyperparamters for each model on the Copy Task.
Gradient clipping 0 means not applied, U initialization U means Kaming Uniform
Initialization.
1 to 10 hours to train depending on 𝑇 and 𝑛, while the wRNN models took between
2 to 15 hours to train.

Adding Task. — For the adding task we again train the model with batch sizes of
128 for 60,000 batches using the Adam optimizer. For this task models are trained
with a mean squared error loss. For both the iRNN and wRNN, we then grid-search
over the following hyperparameters:

• Gradient Clip Magnitude: [0, 1, 10, 100, 1000]

• Learning Rate: [0.01, 0.001, 0.0001]

In Table D.2 we report the best performing parameters for each task setting.

The total training time for these sweeps was roughly 1,200 GPU hours. The iRNN
models took between 1 to 7 hours, while the wRNN models took 6 to 12 hours each.

sMNIST. — For the sequential MNIST task we use iRNNs and wRNNs with 256
hidden units. To have a similar number of parameters, we use 16 channels with
the wRNN. The models are trained with a batch size of 128 for 120 epochs. The
learning rate schedule is defined such that the learning rate is divided by a factor
of lr_drop_rate every lr_drop_epoch epochs. We grid search over the following
hyperparameters for each model type. We find that the iRNN does not need gradient
clipping on this task and achieves smooth loss curves without it. We highight in
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Model Parameter Sequence Length (T)
100 200 400 700 1000

wRNN
(n=100, c=27,
k=3)

Learning Rate 1e-3 1e-4 1e-4 1e-4 1e-4
Gradient Magnitude Clip 100 100 1 100 10

iRNN
(n=100)

Learning Rate 1e-3 1e-3 1e-3 1e-4 1e-3
Gradient Magnitude Clip 1000 100 10 100 1

Table D.2: Best performing settings on the Adding Task. Gradient clipping 0 means
not applied. We note that the iRNN failed to solve the task meaningfully for lengths
T = 700 & 1000, thus the hyperparameters found here are not significantly better
than any other combination for those settings.

grey the hyperparameters which achieve the maximal performance, and were thus
reported in the main text:

• iRNN

– Learning Rate: [0.001, 0.0001, 0.00001]

– lr_drop_rate: [3.33, 10.0]

– lr_drop_epoch: [40, 100]

• wRNN

– Gradient Clip Magnitude: [0, 1, 10, 100]

– Learning Rate: [0.001, 0.0001, 0.00001]

– lr_drop_rate: [3.33, 10.0]

– lr_drop_epoch: [40, 100]

The total training time for these sweeps was roughly 1000 GPU hours, with models
being trained on individual NVIDIA 1080Ti GPUs, iRNN models taking roughly
12 hours each, and wRNN models taking roughly 18 hours each.

psMNIST. — For the permuted sequential MNIST task, we use the same architecture
and training setup as for the sMNIST task. We find that on this task the iRNN
requires gradient clipping to perform well and thus include it in the search as follows:

• iRNN

– Gradient Clip Magnitude: [0, 1, 10, 100, 1000]
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– Learning Rate: [0.001, 0.0001, 0.00001]

– lr_drop_rate: [3.33, 10.0]

– lr_drop_epoch: [40, 100]

• wRNN

– Gradient Clip Magnitude: [0, 1, 10, 100, 1000]

– Learning Rate: [0.001, 0.0001, 0.00001]

– lr_drop_rate: [3.33, 10.0]

– lr_drop_epoch: [40, 100]

In an effort to improve the baseline iRNN model performance, we performed ad-
ditional hyperparameter searching. Specifically, we tested with larger batch sizes
(120, 320, 512), different numbers of hidden units (64, 144, 256, 529, 1024), addi-
tional learning rates (1e-6, 5e-6), a larger number of epochs (250), and more com-
plex learning rate schedules (exponential, cosine, one-cycle, and reduction on val-
idation plateau). Ultimately we found the parameters highlighted above to achieve
the best performance, with the only improvement coming from training for 250 in-
stead of 120 epochs. Regardless, in Figure 7.6 we see the iRNN performance is still
significantly below the wRNN performance, strengthening the confidence in our re-
sult. The total compute time for these sweeps was roughly 1,900 GPU hours with
models being trained on individual NVIDIA 1080 Ti GPUs. The iRNN models took
rougly 12 hours each, with wRNN models taking roughly 18 hours each.

For each of the wRNN models in Figure 7.7, the same hyperparameters are used as
highlighted above and found to perform well. The wRNN is tested over combinations
of 𝑛 = (16, 36, 64, 144) × 𝑐 = (1, 4, 16, 32), and the best performing models for
each parameter count range are displayed. For the iRNN, we sweep over larger batch
sizes (128, 512), learning rates (1e-3, 1e-4, 1e-5) and gradient clipping magnitudes
(0, 1, 10, 100) in order to stabalize training, displaying the best models.

nsCIFAR10. — For the noisy sequential CIFAR10 task, models were trained with
a batch size of 256 for 250 epochs with the Adam optimizer, lr_drop_epoch = 100,
and lr_drop_rate = 10. We found gradient clipping was not necessary for the
wRNN model on this task, and thus perform a grid search as follows, with the best
performing settings highlighted:

• iRNN
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– Learning Rate: [0.001, 0.0001, 0.00001]

– Number hidden units (n): [144, 256, 529, 1024]

• wRNN

– Learning Rate: [0.001, 0.0001, 0.00001]

– Number hidden units (n): [144, 256]

The total compute time for these sweeps was roughly 1,600 GPU hours with models
being trained on individual NVIDIA 1080 Ti GPUs. The iRNN models took roughly
15 hours each, with wRNN models taking roughly 22 hours each.

Ablation. — For the ablation results in Table 7.4, we first report the test MSE of the
best performing wRNN and iRNN models from the original Copy Task grid search
(identical to those in Figure 7.3). We then added the ablation settings to the grid
search, and trained the models identically to those reported above in the Copy Task
section. This resulted in the final complete grid search:

• iRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]

– U Initialization: [I, U(− 1√
𝑛
, 1√

𝑛
), Σ]

– V Initialization: [N (0, 0.001), Sparse-Identity]

– Learning Rate: [0.01, 0.001, 0.0001]

– Activation: [ReLU, Tanh]

• wRNN

– Gradient Clip Magnitude: [0, 1.0, 10.0]

– u Initialization: [Dirac, U(− 1√
𝑛
, 1√

𝑛
), u-shift]

– V Initialization: [N (0, 0.001), Sparse-Identity]

– Learning Rate [0.01, 0.001, 0.0001]

where Sparse-Identity refers to the V initialization described in section 7.2. In
the case of the iRNN, the V matrix is defined to have 1 channel for the purpose
of this initialization. The Dirac initialization is equivalent to an identity initial-
ization for a convolutional layer and is implemented using the Pytorch function:
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torch .nn. init . dirac_. We report the best performing models from this search in
Table 7.4.

For the wRNN (-u-shift-init), we note that for the sequence lengths 𝑇 where the
wRNN model does solve the task (MSE ≤ 1 × 10−10), i.e. T=0 & 10, the best
performing models always use the u initialization N(0, 0.001) and appear to learn
to exhibit traveling waves in their hidden state (as depicted in Figure 7.9), while the
dirac initialization always performs worse and does not exhibit waves.

D.3. Additional Results

Performance Means & Standard Deviations. — In the main text, in order to make
a fair comparison with prior work, we follow standard practice and present the test
performance of each model with the corresponding best validation performance. In
addition however, we find it beneficial to report the distributional properties of the
model performance after multiple random initalizations. In Table D.3 we include the
means and standard deviations of performance from 3 reruns of each of the models.

Task Metric iRNN wRNN

Adding T=100 MSE 1.40×10−5 ± 4.21×10−6 6.12×10−5 ± 7.95×10−5

Solved iter. 11,500.00 ± 2,910.33 233.33 ± 57.74

Adding T=200 MSE 5.13×10−5 ± 1.66×10−5 8.54×10−5 ± 7.91×10−5

Solved iter. 21,000.00 ± 4,582.58 1,000.00 ± 0.00

Adding T=400 MSE 7.70×10−2 ± 8.49×10−2 1.59×10−4 ± 1.07×10−4

Solved iter. 30,000.00 ± - 1,333.33 ± 577.35

Adding T=700 MSE 0.163 ± 2.08×10−3 5.29×10−5 ± 3.19×10−5

Solved iter. × 3,000.00 ± 0.00

Adding T=1000 MSE 0.160 ± - 4.36×10−5 ± 1.91×10−5

Solved iter. × 1,666.67 ± 577.35

sMNIST Test Acc. 98.20 ± 0.32 97.30 ± 0.34

psMNIST Test Acc. 90.85 ± 1.47 96.60 ± 0.10

nsCIFAR10 Test Acc. 51.80 ± 0.54 54.70 ± 0.42

Table D.3: Mean and standard deviation of model performance over 3 random
initializations for the best performing models in each category. We see model
performance is consistent with the best performing models reported in the main
text. The × means the models never solved the task after 60,000 iterations, and (±
-) means that the other 2/3 random initalizations also did not solve the task after
60,000 iterations or crashed.
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Additional Baseline: Linear Layer on MNIST. — One intuitive explanation for the
performance of the wRNN is that the hidden state ‘wave-field’ acts like a register or
‘tape’ where the input is essentially copied by the encoder, and then subsequently
processed simultaneously by the decoder a the end of the sequence. To investigate
how similar the wRNN is to such a solution, we experiment with training a single
linear layer on flattened MNIST images, equivalent to what the decoder of the
wRNN would process if this ’tape’ hypothesis were correct. In Figure D.1 we plot
the results of this experiment (again showing the best model from a grid search over
learning rates and learning rate schedules), and we see that the fully connected layer
achieves a maximum performance of 92.4% accuracy compared with the 97.6%
accuracy of the wRNN model.

Figure D.1: Training curves for a fully connected layer trained on flattened MNIST
images (FC) versus the standard wRNN presented in the main text. We see the
wRNN still performs significantly better, however the FC model does mimic the
rapid learning capability of the wRNN, suggesting that the wRNN’s learning speed
may be partially attributable to the wave-field’s memory-tape-like quality.

Additional Ablation: Frozen Encoder & Recurrent Weights. — To further investigate
the difference between the wRNN model and a model which simply copies input
to a register, we propose to study the relative importance of the encoder weights V
and recurrent connections U for the wRNN. We hypothesized that the wRNN may
preserve greater information in its hidden state by default, and thus may not need
to learn a flexible encoding, or perform recurrent processing. To test this, we froze
the encoder and recurrent connections, leaving only the decoder (from hidden state
to class label) to be trained. In Figure D.2 we plot the training curves for a wRNN
and iRNN with frozen U and V. We see that the wRNN performs remarkably better
then the iRNN in this setting (89.0% vs. 44.3%), indicating that the wave dynamics
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do indeed preserve input information by default far better than standard (identity)
recurrent connections.

Figure D.2: Training curves for wRNN and iRNN models with frozen encoder and
recurrent connections (U & V) on the sMNIST task. We see that the wRNN performs
drastically better, indicating that the wRNN requires significantly less flexibility in
its encoder and recurrent connections in order to achieve high accuracy.

Additional Ablation: Locally Connected RNN. — In order to test if the emergence
and maintenance of waves requires the weight sharing of the convolution operation,
or is simply due to local connectivity, we perform an additional experiment where we
use the exact same model as the default wRNN, however we remove weight sharing
across locations of the hidden state. This amounts to replacing the convolutional
layer with an untied ‘locally connected’ layer. In practice, when initialized with same
the shift-initialization we find that such a model does indeed exhibit traveling waves
in its hidden state as depicted in Figure D.3. Although we notice that the locally
connected network does train to comparable accuracy with the convoluitional wRNN
on sMNIST, we present this preliminary result as a simple ablation study and leave
further tuning of the performance of this model on sequence tasks for future work.

Additional Visualizations of Copy Task. — Here we include additional visualizations
of the larger iRNN (n=625) for the copy task. We see that while it performs slightly
better than the smaller iRNN (n=100) it still performs very poorly in comparison
with the wRNN.

On the Emergence of Traveling Waves. — In this section we expand on the results
of Figure 7.9 and include additional results pertaining to the emergence of traveling
waves in recurrent neural networks with different connectivity and initialization
schemes. Specifically, in Figure D.6 we show the hidden state visualization for
models with varying initalizations. We see that models with shift-initialization
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Figure D.3: Hidden state and 2D Fourier transform for a locally connected RNN
showing the existence of traveling waves. These results imply that it is simply local
connectivity which is important for the emergence of traveling waves rather than
shared weights.

Figure D.4: Examples from the copy task for the larger iRNN (n=625) and wRNN
(n=100, c=6) as shown in the main text. We see the larger iRNN does slightly better
than the small iRNN (n=100) shown in Figure 7.4, but still significantly worse than
the wRNN. These results clearly show that the iRNN does not have the appropriate
machinery for storing memories over long sequences while the wRNN does.

exhibit waves directly from initialization, while randomly initialized convolutional
models do not initially exhibit waves but learn to exhibit them during training, and
identity initialized models never learn to exhibit waves. Furthermore, in Figure
D.5 we show the respective training curves for randomly initialized and identity
initialized wRNNs. We see that the randomly initialized wRNN achieves higher
final accuracy in correspondence with the emergence of traveling waves, reinforcing
the conclusion that traveling waves are ultimately beneficial for sequence modeling
performance.
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Figure D.5: Training curve on the sMNIST task for a wRNN with three different
initialization schemes: u-shift (default), random (U(− 1√

𝑛
, 1√

𝑛
)), and identity (dirac).

We see that the random initalization does not have the same rapid learning speed
as the u-shift initialization, however, it does still achieve significantly higher final
accuracy than the identity initialization, implying traveling waves are beneficial to
performance.
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Figure D.6: Visualization of hidden state (y-axis is hidden units) over timesteps (x-
axis) for a variety of different models and initalizations for U. We see that the wRNN
with u-shift initialization achieves the most consistent waves throughout training.
Interestingly, some other models learn to achieve traveling waves despite not having
them at initalization (wRNN with random (kaming uniform) initialization); while
other models, (iRNN with U-shift) initially have stronger traveling waves, and slowly
lose them throughout training. We see the wRNN with identity (dirac) initialization
never learns waves despite using convolutional recurrent connections.
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A p p e n d i x E

CHAPTER VIII APPENDIX

E.1. Implementation details

Common settings. — During the training stage, we randomly sample one single
transformation at each iteration. The batch size is set to 128 for both datasets. We
use Adam optimizer and the learning rate is set as 1𝑒−4 for all the parameters.
The encoder consists of four stacked convolution layers with the activation function
ReLU, while the decoder is comprised of four stacked transposed convolution layers.
For the prior evolution, the diffusion coefficient 𝐷𝑘 is initialized with 0 and we set
it as a learnable parameter for distinct 𝑘 . For MLPs that parameterize the potential
𝑢(z, 𝑡) and the force 𝑓 (z, 𝑡), we use the sinusoidal positional embeddings (Vaswani
et al., 2017) to embed the timestep 𝑡, and use linear layers for embedding the latent
code z. Tanh gates are applied as the activation functions of the MLPs. All the
experiments are run on a single NVIDIA Quadro RTX 6000 GPU.

MNIST. — The input images are of the size 28×28. The sequence of each transfor-
mation contains 9 states of variations. The scaling transformation scales the image
from 1.0 up to 1.8 times. The rotation transformation rotates the object by maxi-
mally 80 degrees, and the coloring transformation adjusts the image hue from 0 to
340 degrees. The model is trained for 90, 000 iterations.

Shapes3D. — The input images are resized to 64×64. Each transformation sequence
consists of 8 images. The model is also trained for 90, 000 iterations.

Weakly-supervised setting. — For the Gumbel-Softmax trick, we re-parameterize
𝑞𝛾 (𝑘 |x̄) by

𝑦𝑖 =
𝑒
𝑥𝑖+𝑔𝑖
𝜏∑

𝑖 𝑒
𝑥𝑖+𝑔𝑖
𝜏

(E.1)

where 𝑥𝑖 is the category prediction, 𝑔𝑖 is the sample drawn from Gumbel distribu-
tions, and 𝜏 is the small temperature to make softmax behave like argmax. We take
the ‘hard’ binary prediction in the forward pass and use the straight-through gradient
estimator (Bengio, Léonard, et al., 2013) during backpropagation. The temperature
𝜏 is initialized with 1 and is gradually reduced to 0.05 with the annealing rate 3𝑒−5.
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Baselines. — For the disentanglement methods, we largely enrich the original
MNIST dataset by adding the transformed images of the whole sequence. This
makes it possible for both 𝛽-VAE and FactorVAE to learn the given transformations
in an unsupervised manner. For tuning the interpolation range, we start from the
initial value 𝑧𝑖 and traverse till the appropriate bound which is selected from the
range [−5, 5] with the interval of 0.1.

Disentanglement metrics. — There are some traditional disentanglement met-
rics (Ridgeway and Mozer, 2018; Eastwood and Williams, 2018; R. T. Chen et al.,
2018), but they are designed for single-dimension traversal methods. When it comes
to vector-based disentanglement methods such as (Shen and Zhou, 2021; Tzelepis et
al., 2021; Y. Song, T. A. Keller, et al., 2023), the scores would drop considerably and
cannot be compared with those single-dimension baselines. Therefore, we directly
evaluate our method using the equivariance error instead of disentanglement metrics.

E.2. Ablation studies

We conduct two ablations to study the impact of different priors and PDE constraints.

Table E.1: Equivariance error of different
priors.

Prior Scaling Rotation Coloring

SG 190.24±2.18 158.93±3.25 164.18±2.77
MoG 188.23±2.45 157.79±2.86 161.49±2.62

VAMP 192.81±3.67 161.47±4.12 162.97±3.89
Diffusion 185.42±2.35 153.54±3.10 158.57±2.95

Table E.2: Equivariance error of different
PDEs.

Prior Scaling Rotation Coloring

Heat 223.95±3.38 212.47±3.85 207.66±2.91
FP 211.54±3.17 188.59±3.92 194.73±3.09

OHJ 190.43±2.48 163.87±3.03 162.38±2.86
GHJ 185.42±2.35 153.54±3.10 158.57±2.95

Impact of different priors. — We use diffusion equations to model the prior evo-
lution as random particle movement. It would also be intriguing to choose other
priors commonly used in the VAE literature, such as Standard Gaussian (SG) pri-
ors N(0, 1), mixture of Gaussian (MoG) priors

∑
𝑤𝑖N(𝜇𝑖, 𝜎2

𝑖
), and VAMP pri-

ors (Tomczak and Max Welling, 2018) which average aggregated posterior of 𝑁
pseudo-inputs as 1/𝑁∑𝑛 𝑞(z𝑛). Table E.1 presents the equivariance error of differ-
ent priors on MNIST. Among these priors, our diffusion equations achieve the best
performance. This meets our assumption that modeling the prior evolution as a dif-
fusion process suits more the random motion. Nonetheless, we see that the perfor-
mance gap between each baseline is narrow, which somehow implies that the im-
pact of different priors is limited.
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Impact of different PDEs. — We apply the generalized HJ (GHJ) equation as
the PINN constraint in order to achieve dynamic OT. It would be also interesting
to try other commonly used PDEs. We compare our GHJ with the ordinary HJ
(OHJ) equation, the Fokker Planck (FP) equation, and the heat equation. Table E.2
compares the equivariance error of PDEs on MNIST. Our GHJ and OHJ equations
achieve the best performance as they both satisfy the condition of dynamic OT. This
empirical evidence indicates that the OT theory can indeed model better latent flow
paths. Moreover, our GHJ outperforms the OHJ by a slight margin. We attribute
this advantage to the external driving force 𝑓 (z, 𝑡) which gives us more flexibility
and dynamics in modeling the velocity fields ∇𝑢𝑘 .

E.3. HJ equations as dynamic optimal transport

We now turn to introduce why HJ equations could minimize the Wasserstein distance.
As stated in (Benamou and Brenier, 2000), the 𝐿2 Wasserstein distance can be re-
formulated in the fluid mechanical interpretation as

𝑊2 = inf
∫
𝐷

∫ 1

0

1
2
𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)2 𝑑𝑥 𝑑𝑡 (E.2)

where the density satisfies the continuity equation (𝜕𝑡𝜌 = −∇ · (𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)). If
we introduce the momentum 𝑚(𝑥, 𝑡) = 𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡) and two Lagrange multipliers
𝑢 and 𝜆, the Lagrangian function of the Wasserstein distance would be:

𝐿 (𝜌, 𝑚, 𝜙) =
∫
𝐷

∫ 1

0

| |𝑚 | |2
2𝜌

+ 𝑢(𝜕𝑡𝜌 + ∇ · 𝑚) − 𝜆(𝜌 − 𝑠2) (E.3)

where the second term is the equality constraint, the third term is the inequality
constraint (𝜌 > 0), and 𝑠 is a slack variable. Using integration by parts formula, the
above equation can be re-written as

𝐿 (𝜌, 𝑚, 𝜙) =
∫
𝐷

∫ 1

0

| |𝑚 | |2
2𝜌

+
∫
𝐷

𝑢𝜌 |10 −
∫
𝐷

∫ 1

0
(𝜕𝑡𝑢𝜌 +∇𝑢 ·𝑚) − 𝜆(𝜌 − 𝑠2) (E.4)

Based on the set of Karush–Kuhn–Tucker (KKT) conditions (𝜕𝑚𝐿 = 0, 𝜕𝑢𝐿 = 0,
𝜕𝜌𝐿 = 0, and 𝜆 ≥ 0), we would have:

𝜕𝑚𝐿 = 𝑚
𝜌
− ∇𝑢 = 𝑣 − ∇𝑢 = 0

𝜕𝑢𝐿 = 𝜕𝑡𝜌 + ∇ · 𝑚 = 0

𝜕𝜌𝐿 = − | |𝑚 | |2
2𝜌2 − 𝜕𝑡𝑢 − 𝜆 = −1

2 | |𝑣 | |
2 − 𝜕𝑡𝑢 − 𝜆 = 0

(E.5)
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Scaling Rotation Coloring

Figure E.1: More visualizations of the learned latent flows on MNIST (LeCun,
1998).

where the first condition indicates that the gradient ∇𝑢 acts as the velocity field,
and the third condition implies the optimal solution is given by the generalized HJ
equation:

𝜕𝑡𝑢 +
1
2
| |∇𝑢 | |2 = −𝜆 ≤ 0 (E.6)

We thus apply the generalized HJ equation (i.e., 𝜕𝑡𝑢+ 1
2 | |∇𝑢 | |

2 ≤ 0) as the constraints.
We further use an extra negative force because this would give more dynamics for
modeling the posterior flow.

E.4. More visualizations

Fig. E.1 and E.2 display more visualization results of the latent evolution on MNIST
and Shapes3D, respectively. On both datasets, our method presents precise control
of the given transformations. Fig. E.3 and E.4 show more latent evolution results of
switching transformations (top) and combining transformations (bottom) on MNIST
and Shapes3D, respectively. Our latent flows learn to compose or switch different
transformations precisely and flexibly.
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Figure E.2: More visualizations of the learned latent flows on Shapes3D (Burgess
and H. Kim, 2018).
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Figure E.3: More visualizations of switching and superposing transformations on
MNIST (LeCun, 1998).
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Figure E.4: More visualizations of switching and superposing transformations on
Shapes3D (Burgess and H. Kim, 2018).
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A p p e n d i x F

CHAPTER IX APPENDIX

F.1. Experiment Details

Model Architectures — All models presented in this paper were built using the con-
volutional layers from the SESN (Sosnovik et al., 2020) library for consistency
and comparability (https://github.com/ISosnovik/sesn). For scale equiv-
ariant models, we used the set of 6 scales [1.0, 1.25, 1.33, 1.5, 1.66, 1.75]. To con-
struct the rotation equivariant backbones, we use only a single scale of [1.0] and
augment the basis set with four 90-degree rotated copies of the basis functions at
[0𝑜, 90𝑜, 180𝑜, 270𝑜]. These rotated copies thus defined the group dimension. This
technique of basis or filter-augmentation for implementing equivariance is known
from prior work and has been shown to be equivalent to other methods of construct-
ing group-equivariant neural networks (B. Li et al., 2021). For translation models,
we perform no basis-augmentation, and again define the set of scales used in the ba-
sis to a single scale [1.0], thereby leaving only the spatial coordinates of the final
feature maps to define the output group.

On MNIST (LeCun and Cortes, 2010), we used a backbone network 𝑓 composed
of three SESN convolutional layers with # channels (32, 64, 128), kernel sizes (11,
7, 7), effective sizes (11, 3, 3), strides (1, 2, 2), padding (5, 3, 3), no biases, basis
type ‘A’, BatchNorm layers after each convolution, and ReLU activations after each
BatchNorm. The output of this final ReLU was then considered our z for contrastive
learning (with L𝐴−𝑆𝑆𝐿 and L𝐻−𝑆𝑆𝐿) and was of shape (128, 𝑆 × 𝑅, 8, 8) where 𝑆
was the number of scales for the experiment (either 1 or 6), and 𝑅 was the number
of rotation angles (either 1 or 4). For experiments where the transformation studied
was not translation, we average pool over the spatial dimensions before applying the
projection head ℎ to achieve a consistent dimensionality of 128. For classification, an
additional SESN convolutional layer was placed on top with kernel size 7, effective
size 3, stride 2, and no padding, thereby reducing the spatial dimensions to 1, and
the total dimensionality of the input to the final linear classifier to 128.

On CIFAR10 we used a ResNet20 model composed of an initial SESN lifting layer
with kernel size 7, effective size 7, stride 1, padding 3, no bias, basis type ‘A’, and
9 output channels. This lifted representation was then processed by a following

https://github.com/ISosnovik/sesn
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SESN convolutional layer of kernel size 7, effective size 3, stride 1, padding 3, no
bias, basis type ‘A’, and 64 output channels. This initial layer was followed by a
BatchNorm and ReLU before being processed by three ResNet blocks of output sizes
(128, 256, 512) and initial strides of (1, 2, 2). Each ResNet block is composed of
3 SESN Basic blocks as defined here (https://github.com/ISosnovik/sesn/
blob/master/models/stl_ses.py#L19). The output of the third ResNet block
was taken as our z for contrastive learning (again for L𝐴−𝑆𝑆𝐿 and L𝐻−𝑆𝑆𝐿) of shape
(512, 𝑆 × 𝑅, 7, 7). Again, as for MNIST, for experiments where the transformation
studied was not translation, we average pool over the spatial dimensions before
applying the projection head ℎ to achieve a consistent dimensionality of 512. For
classification, the vector z was first max-pooled along the scale/rotation group-axis
(𝑆 × 𝑅), followed by a BatchNorm, a ReLU, and average pooling over the remaining
7 × 7 spatial dimensions. Finally, we apply BatchNorm to this 512-dimensional
vector before applying the non-linear projection head ℎ.

On Tiny ImageNet we use a Resnet20 model which has virtually the same structure
as the CIFAR10 model, but instead uses 4 ResNet blocks of output sizes (64, 128,
256, 512) and strides (1, 2, 2, 2). Furthermore, each ResNet block is composed of
only 2 BasicBlocks for TIN instead of 3 for CIFAR10. Overall this results in a z of
shape (512, 𝑆 × 𝑅, 4, 4), and a final vector for classification of size 512. We note
that we do not include Translation results in Table 9.1 for Tiny ImageNet precisely
because the spatial dimensions of the feature map with this architecture are too small
to allow for effective H-SSL training in the settings we used for other methods.

All models used a detached linear classifier for computing the reported downstream
classification accuracies, while the Supervised baselines used an attached linear layer
(implying gradients with respect to the classification loss back-propagated though
the whole network). All models additionally used an attached non-linear projection
head ℎ constructed as an MLP with three linear layers. For MNIST these layers have
of output sizes (128, 128, 128), while for CIFAR10 and TIN they have sizes (512,
2048, 512). There is a BatchNorm after each layer, and ReLU activations between
the middle layers (not at the last layer).

Training Details — For training we use the LARS optimizer with an initial learning
rate of 0.1, and a batch size of 4096 for all models. We use an NCE temperature
(𝜏) of 0.1, half-precision training, a learning rate warm-up of 10 epochs, a cosine
lr-update schedule, and weight decay of 1 × 10−4. On MNIST we train for 500
epochs and on CIFAR10 and Tiny ImagNet (TIN) we train for 1300 epochs. On

https://github.com/ISosnovik/sesn/blob/master/models/stl_ses.py#L19
https://github.com/ISosnovik/sesn/blob/master/models/stl_ses.py#L19
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average each MNIST run took 1 hour to complete distributed across 8 GPUs, and
each CIFAR10/TIN run took 10 hours to complete distributed across 64 GPUs. In
total this amounts to roughly 85,000 GPU hours.

Empirical Validation — For the experiments in Table 9.1, we use two different
methods for data augmentation, and similarly two different methods for selecting
the representations ultimately fed to the contrastive loss for the A-SSL and H-SSL
settings.

For A-SSL we augment the input at the pixel level by: randomly translating the image
by up to ± 20% of its height/width (for translation), randomly rotating the image
by one of (0𝑜, 90𝑜, 180𝑜, 270𝑜) (for rotation), or randomly downscaling the image
between 0.57 and 1.0 of its original scale. For S-SSL we use no input augmentations.

For both methods we use only a single fiber, meaning the base size |g0 | is 1. For
A-SSL, we randomly select the location g0 for each example, but we use the same
g0 between both branches. For example, in translation, we compare the feature
vectors for two translated images at the same pixel location. Similarly, for scale and
rotation, we pick a single scale or rotation element to compare for both branches.
For H-SSL, we randomly select the location g independently for each example and
independently for each branch, effectively mimicing the latent operator.

H-SSL Without Structure — In Table 9.2, we use the same overall model architec-
tures defined above (3-layer model or ResNet20), but replace the individual layers
with non-equivariant counterparts. Specifically, for the MLP, we replace the con-
volutional layers with fully connected layers with outputs (784, 1024, 2048). For
the convolutional models (denoted CNN (6×𝐶𝐻𝑊)), we replace the SESN kernels
with fully-parameterized, non-equivariant counterparts, otherwise keeping the out-
put dimensionality the same (resulting in the 6 × larger output dimension).

Furthermore, for these un-structured representations, in the H-SSL setting, we
‘emulate’ a group dimension to sample ‘fibers’ from. Specifically, for the MLP we
simply reshape the 2048 dimensional output to (16,128), and select one of the 16
rows at each iterations. For the CNN, we similarly use the 6 times larger feature
space to sample 1

6
𝑡ℎ of the elements as if they were scale-equivariant.

Parameters of H-SSL — For Figure 9.3 (left), we select patches of sizes from 1 to
|𝐺 | − 1 with no padding. In each setting, we similarly increase the dimensionality
of the input layer for the non-linear projection head ℎ to match the multiplicative
increase in the dimension of the input representation z(g). For the topographic
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distance experiments (right), we keep a fixed base size of |g0 | = 1 and instead vary
the maximum allowed distance between randomly sampled pairs 𝑔1 & 𝑔2.

F.2. Related Work

Our work is undoubtedly built upon the the large literature base from the fields
equivariant deep learning and self-supervised learning as outlined in Sections ??
and 9.2. Beyond this background, our work is highly related in motivation to a
number of studies specifically related to equivariance in self-supervised learning.
Most prior work, however, has focused on the undesired invariances learned by A-
SSL methods (Xiao et al., 2021; Tsai, T. Li, et al., 2022) and on developing methods
by which to avoid this through learned approximate equivariance (Dangovski et al.,
2022; Wang, Geng, et al., 2021). Our work is, to the best of our knowledge, the first
to suggest and validate that the primary reason for the success of feature-space SSL
objectives such as DIM(L) (Hjelm et al., 2019) and GIM (Löwe, O’Connor, et al.,
2019) is due to their exploitation of equivariant backbones.

F.3. Broader Impact

This work is primarily related to understanding and improving self-supervised learn-
ing – a training method for deep neural networks which is able to leverage large
amounts of unlabeled data from the internet, making it one of the most used meth-
ods for state of the art image and text generative models today (Radford, J. W. Kim,
et al., 2021; Ramesh, Pavlov, et al., 2021). Such models have significant broader im-
pact and potential negative consequences which are beyond the scope of this work.
We refer readers to discussions of those paper for further information. Specifically,
this work aims to improve such SSL techniques, thereby inheriting the broader im-
pact of these models.
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