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CHAPTER 1

Introduction

The twentieth century has seen pivotal discoveries in physics that greatly en-
hanced our understanding of nature at the microscopic level. The theoretical
description of Brownian motion [1,2] provided conclusive evidence for the atomic
hypothesis, which was followed by the discovery of the atomic nucleus [3] and
theoretical descriptions of the atom such as the Bohr model [4]. At the same
time, the development of quantum mechanics, and later quantum field theo-
ries, led to a groundbreaking new understanding of the microscopic laws of
physics. New subatomic fundamental particles were discovered, like quarks and
neutrinos [5–7]. Together with the weak- and strong nuclear forces and electro-
magnetism, these particles constitute the standard model of particle physics,
which forms our best description of the microscopic physics of ordinary matter
to date.

Despite this detailed understanding of the physical laws that describe individual
particles, applying them to the study of many-body systems is far from trivial.
A well-known case from classical mechanics is the dynamics of three bodies with
known initial position and momenta under gravity, also known as the three-body
problem [8]. While the equations of motion are simple to formulate, no closed-
form solution is known already for this small system, and it can, moreover, give
rise to chaotic behavior. In a similar fashion, to describe materials consisting
of many particles (N ∼ 1023) it is also not difficult to write down Hamiltonians
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of relatively broad generality

H = −
∑
I

~2~∇2

2MI
+
∑
I<J

ZIZJ∣∣∣~RI − ~RJ

∣∣∣︸ ︷︷ ︸
Hnucl.

−
∑
i

~2~∇2

2m +
∑
i<j

e2

|~ri − ~rj |︸ ︷︷ ︸
Hel.

+
∑
iI

ZIe∣∣∣~RI − ~ri∣∣∣︸ ︷︷ ︸
Hint.

, (1.1)

with ~RI (~ri), MI (m), and ZI (e) corresponding to the position, mass, and
charge of the ions (electrons), respectively. Hnucl. describes the nuclei and
the interactions between them, Hel. does the same for the electrons, and Hint.

corresponds to the interactions between the electrons and the nuclei. For sim-
plicity, we ignore attributes like spin. Solving this model in general turns out to
be impossible in practice, which necessitates the use of numerous approxima-
tions. Furthermore, although the interactions between the individual particles
are well understood, their mere number can give rise to new phenomena that are
very complex and extremely hard to describe based on these microscopic laws.
These effects are referred to as emergent phenomena [9]. Emergence is well-
known throughout the sciences and it describes the fact that the laws of meso-
or macroscopic systems can be fundamentally different from the laws of the un-
derlying microscopic system. Examples include how the weather is formed from
the interactions of individual molecules, how consciousness emerges from the
activity of large numbers of neurons, and how swarm behavior arises in flocks of
birds or schools of fish. In condensed matter physics, emergent behavior can be
found in the form of collective excitations such as skyrmions, superconductivity,
the fractional quantum Hall effect, or numerous exotic magnetic phases.

These phenomena can be studied by considering simplified Hamiltonians that
only take the dominant interactions in Eq. 1.1 into account. A paradigmatic
example is the Hubbard model [10, 11], which is a lattice model valid in the
tight-binding limit where the overlap of orbitals at neighboring sites is small. It
contains a kinetic hopping term that allows electrons to move between nearest-
neighbor sites and an on-site Coulomb repulsion term that gives a positive en-
ergy contribution when two electrons are located at the same site. The Hubbard
model has very rich physics and it, and its extensions, are commonly used to
study quantum magnetism and superconductivity. Despite the many simplifica-
tions compared to the general Hamiltonian in Eq. 1.1 it remains a challenging
model to solve and many sophisticated theoretical and numerical techniques
have been developed to study its properties [12, 13]. In certain limits, it can
be reduced further to even simpler Hamiltonians, for example at half-filling in
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the limit where the on-site potential term is dominant the model reduces to
the spin-1/2 Heisenberg model which we use extensively in this thesis. The
Hubbard model can also be formulated with bosonic particles in which case it
is known as the Bose-Hubbard model [14].

The range of models that can be solved exactly is relatively small, notable
exceptions include the Ising model in one dimension (1D) [15] and two dimen-
sions (2D) [16], and models that allow for a Bethe ansatz solution like the 1D
Heisenberg [17, 18] and the 1D Hubbard models [19]. The majority of cases
require sophisticated analytical and numerical tools to analyze their properties.
For finite systems that are sufficiently small, it is possible to numerically do an
exact diagonalization (ED). The obvious benefit of this method is that it pro-
vides direct access to many quantities, like the exact eigenstates. The system
sizes that can be studied are relatively small, however, due to the exponential
growth of Hilbert space dN with N the number of particles and d the dimen-
sion of the local Hilbert space at each lattice site. To achieve larger N , sparse
matrices and symmetries can be used, however, the attainable system sizes re-
main limited. Another commonly used numerical technique is quantum Monte
Carlo (QMC) which encompasses a broad family of algorithms based on the
Monte Carlo approach, i.e., methods based on random sampling. The quantity
that is being sampled differs for the various formulations. The accuracy of these
approaches can be systematically improved by increasing the number of samples
taken. For fermionic systems and models with frustration negative probabilities
arise in QMC methods though, which is known as the negative sign problem.
Although workarounds exist for specific models, it has been shown that the
problem is NP-hard for the general case [20].

In this thesis, we make use of tensor network methods. The density matrix
renormalization group (DMRG) algorithm [21, 22] is the best-known example
of a tensor network method. The approach was originally proposed in terms
of reduced density matrices, but it was later realized that DMRG can be re-
formulated in terms of matrix product states (MPS) [23, 24]. The MPS is a
variational wave function ansatz consisting of a product of rank-3 tensors, the
accuracy of which is systematically controlled by the dimension of the auxiliary
space, called the bond dimension. A central role in the success of DMRG is
played by entanglement. A broad range of ground states obey a so-called area
law in the entanglement entropy [25], i.e., the entanglement entropy between
two subsystems scales with their boundary. The MPS ansatz implicitly encodes
the 1D area law, which is an important reason for its success in the study of 1D
quantum systems.

The projected entangled-pair state (PEPS) [26–30] is a generalization of MPS
for higher-dimensional systems. Algorithms for PEPS are significantly more
complex than for MPS, but despite this, major progress has been achieved in
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the 2D case since their introduction. These developments have turned PEPS
into a powerful tool for the study of 2D strongly-correlated systems [31–53]. An
important advantage of PEPS, and tensor network methods in general, is that
they do not suffer from the negative sign problem. Another benefit is that it is
possible to formulate the ansatz in such a way that the thermodynamic limit
can be directly studied. This type of ansatz is known as an infinite projected
entangled-pair state (iPEPS) [54].

The success of tensor network methods for both 1D and 2D quantum systems
raises the question of whether these methods can also be used for the study
of three-dimensional (3D) quantum systems. Such methods would be highly
desirable to numerically study 3D strongly-correlated systems, such as quantum
magnets like the pyrochlore Heisenberg models [55], ultra-cold atoms in optical
lattices [56, 57], but also layered 2D systems with a non-negligible interlayer
coupling [58–63]. They can also be of interest to high-energy physics, e.g., for
lattice gauge theories [64–66].

The main difficulty facing these simulations is that they generally have a sig-
nificantly higher computational scaling in the bond dimension compared to the
algorithms for lower-dimensional systems, which limits the bond dimensions
that can be simulated accurately in a reasonable amount of time. For accurate
studies of 3D systems, however, lower bond dimensions are typically required
compared to the 1D and 2D cases. This is because 3D ground states are typi-
cally closer to a product state than their 2D counterparts. One way to under-
stand this is from the monogamy property of entanglement. Let us consider
a system consisting of three qubits. When two of these qubits are entangled
with each other, the entanglement that they can have with the third qubit
is constrained [67]. A similar statement has been proven for systems consist-
ing of N -qubits [68]. For higher-dimensional lattices, the monogamy property
suggests that the entanglement between each pair of lattice sites is generally
smaller because each site can be entangled with more sites along the different
axes of the lattice. As we will show later, the bond dimension determines the
maximum amount of entanglement that the iPEPS ansatz can describe. Hence
higher dimensional systems generally require a smaller bond dimension.

The main objective of this thesis is to develop iPEPS methods that can be used
to simulate ground states of 3D quantum systems. We will develop algorithms
both for the study of general 3D models as well as for the subclass of anisotropic
3D systems, which have a weak coupling in one direction. Finally, we will
apply the latter method to study the effect of the interlayer coupling in the
Shastry-Sutherland model (SSM), which is an effective model for the compound
SrCu2(BO3)2.

The rest of this thesis is organized in the following way. Chapter 2 gives a
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technical introduction to tensor network algorithms, with a focus on (i)MPS
and (2D) (i)PEPS. It starts by discussing the area law of entanglement entropy
in more detail. After this, we elaborate on several aspects of the 1D MPS ansatz
and the canonical form. This is followed by a discussion on the generalization of
the MPS to higher dimensions in the form of PEPS. One of the main numerical
challenges for PEPS is the evaluation of expectation values, which is treated next
for the 2D case. After this, we deal with ground-state algorithms for MPS and
PEPS. The chapter ends by treating two practical aspects: incorporating U(1)
symmetries into tensor network ansätze to improve computational efficiency and
how to perform accurate extrapolations.

In Chap. 3, we focus on iPEPS simulations for general 3D quantum systems,
for which we introduce two contraction approaches. In the first approach, only
a finite cluster of tensors is contracted exactly, while the rest of the network is
considered approximately. The main advantage of this approach is that it allows
for an evaluation of the network with a limited computational effort. The second
approach performs a full contraction of the network, which is more accurate,
but it also comes at a significantly higher numerical cost. The accuracy of the
approaches is assessed for the Heisenberg and Bose-Hubbard models through a
comparison to QMC and bosonic dynamical mean-field theory (B-DMFT).

After this, Chap. 4 shifts focus to a subset of 3D systems, namely layered 2D
systems with weak interlayer coupling. These systems are widely studied, the
most famous example being the cuprate high-Tc superconductors [58]. Often
these systems are analyzed by ignoring the interlayer coupling such that they
can be treated as a 2D problem. The interlayer coupling can, however, play an
important role on the quantitative level. We develop a specially designed algo-
rithm to treat these systems that is more efficient than the algorithm for general
3D systems developed in Chap. 3. The method is subsequently benchmarked
for the 3D Heisenberg model with anisotropic intra- and interlayer couplings
and the dimer singlet to antiferromagnetic Néel state transition in the SSM.

Finally, in Chap. 5, the method from Chap. 4 is used to study the phase diagram
of the SSM with interlayer coupling. The SSM is a 2D frustrated spin system,
and it is physically remarkably well realized in the compound SrCu2(BO3)2.
Some discrepancies exist, however. One of these is that the extent of the in-
termediate plaquette phase in the compound is experimentally measured to be
significantly smaller than in the theoretical model [63, 69]. We study the effect
of the interlayer coupling on the extent of this phase and find that it disappears
already for a coupling around J ′′/J ∼ 0.04 − 0.05, which is smaller than pre-
dicted in earlier studies based on series expansion (SE) [70]. Additionally, we
estimate the interlayer coupling in SrCu2(BO3)2 to be around J ′′/J ∼ 0.027 at
ambient pressure.
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CHAPTER 2

Introduction to projected
entangled-pair states

In this chapter, we give an overview of tensor network methods with an empha-
sis on PEPS. In Sec. 2.1, we first explain why tensor networks are especially
well-suited to describe ground states for many Hamiltonians, which is related
to the area law of entanglement entropy. Then we introduce a diagrammatic
notation for tensor networks which is commonly used. Section 2.2 discusses
the 1D MPS ansatz and its main properties. A special emphasis is put on a
particularly useful gauge of the MPS, which is known as the canonical form.
In Sec. 2.3, we introduce the projected-entangled pair states (PEPS), which is
a higher-dimensional generalization of the MPS. Contraction methods for 2D
PEPS, which are required to evaluate observables, are discussed in Sec. 2.4.
Section 2.5 covers algorithms that allow one to find an approximate MPS or
PEPS representation of the ground state. We end the chapter by going through
some practical considerations for PEPS algorithms. In Sec. 2.6, we explain
how to incorporate symmetries into our simulations to improve their numerical
efficiency. Finally, in Sec. 2.7 we briefly discuss extrapolations.

7



Chapter 2. Introduction to projected entangled-pair states

2

(a) (b)

H
Ground states

A

∂
B

Figure 2.1: (a) Partitioning of a quantum system into two subsystems A and
B, with their boundary indicated by ∂. (b) Ground states typically have a
significantly smaller entanglement compared to random states. Tensor networks
directly target this sector of Hilbert space.

2.1. Preliminaries

2.1.1. Area law

One of the main difficulties in many-body systems is that representing a state
quickly becomes problematic for a large number of particles. Let us consider
a system consisting of N particles, each having a d-dimensional local Hilbert
space. The total Hilbert space of the system is

H =
N⊗
k=1
Hk, (2.1)

where Hk is the local Hilbert space for particle k. The dimension of this
space grows exponentially as dN . A naive computation shows that already
for N ∼ O(100) the required number of basis states becomes larger than the
number of atoms in the observable universe. A more efficient representation is
thus required.

One property that sets ground states and low-energy states apart is that they
are much less entangled than a typical state in Hilbert space. More precisely,
for many models it can be shown that ground states satisfy the area law of
entanglement entropy [25]. Let us consider a quantum system that we partition
into two subsystems A and B, see Fig. 2.1(a). The von Neumann entanglement
entropy between A and B is defined as

SA|B = −Tr ρA log ρA = −Tr ρB log ρB , (2.2)

8
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2.1. Preliminaries

(a) (b) (c) (d)

s vi Mij Tijklm

Figure 2.2: Examples of tensors represented in the diagrammatic notation. (a)
Scalar s. (b) Vector vi. (c) Matrix Mij . (d) Rank-5 tensor Tijklm.

where ρA/B are the reduced density matrices of subsystems A and B, respec-
tively. The area law states that the entanglement entropy S between the sub-
systems scales as their boundary, i.e., S ∝ ∂. For example, when a 1D chain is
split into two subsystems (that are much longer than the correlation length), S
scales as a constant and is thus independent of the number of particles.

For 1D quantum systems, the area law has been proven to hold for local and
gapped Hamiltonians [71]. For higher dimensional systems, proofs of area law
behavior are much more limited. The area law is widely believed to hold for
local and gapped Hamiltonians in higher dimensions too, however [25]. Critical
systems can have a mild logarithmic violation of the area law. This is known to
be the case for models in 1D [72,73] and for some models in higher dimensions.

The MPS and PEPS ansätze by construction satisfy the 1D and higher-dimensional
area laws, respectively. This means that they can directly target the region
of Hilbert space that is relevant for ground states and low-energy states, see
Fig. 2.1(b). This property makes them especially well-suited to describe these
states, and it is an important reason for their success.1

2.1.2. Diagrammatic notation

Equations in the field of tensor networks can quickly become unwieldy, therefore
they are commonly represented by diagrams instead. In this language, a shape
represents a tensor while its indices are indicated by lines connecting to the
shape. Figures 2.2(a)-(d) show examples of a scalar, a vector, a matrix, and a
rank-5 tensor, respectively. By connecting the lines of two shapes a summation
over the respective index is implied, as is shown in Fig. 2.3(a) for a matrix-vector
multiplication. Some mathematical properties become immediately transparent

1Other types of tensor network ansätze also exist, such as the multiscale entanglement
renormalization ansatz (MERA) [74, 75] (which can describe logarithmic corrections to the
area law) and tree tensor networks (TTN) [76]. These ansätze are outside the scope of this
thesis.

9
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2

(a) (b) (c)

Mij vj

wi

=

∑
jMijvj = wi Tr(ABCDE) =

A

B

C D

E

D4

D5

D4

D4

Figure 2.3: Contractions in the diagrammatic notation. (a) A matrix-vector
multiplication. When a line connects two objects a summation is implied. (b)
A trace over 5 matrices. (c) It is important to choose the contraction order with
the lowest computational cost. When we assume the dimension of each index
is D, the contraction path at the top has a dominant scaling of O(D4), which
is preferable to the contraction order on the bottom which scales as O(D5).

through this language, such as the cyclic property of the trace which is shown
in Fig. 2.3(b). In our algorithms, we make use of the NCON function [77] to
contract diagrams. Note that the order in which a contraction is done can have
a significant impact on the computational scaling, as can be seen in the example
in Fig. 2.3(c). Assuming that the dimension of each index is D, two contraction
paths can be found with a dominant computational scaling of either O

(
D5)

or O
(
D4), the latter being preferable. For complex diagrams, determining the

optimal contraction order can be difficult to determine by hand. For such cases,
algorithms like NETCON [78] can be used to find the optimal order.

2.2. Matrix product state

The most famous example of a tensor network ansatz is the matrix product
state (MPS) [22–24]. The MPS lies at the basis of many powerful numerical
methods, including the DMRG approach [21], the time-evolving block deci-
mation (TEBD) method [79, 80], and the variational unitary matrix product
state (VUMPS) algorithm [81]. In this section, we discuss some of its main
properties and core concepts that are important for later sections as well.

Let us consider a chain consisting of N sites with open boundary conditions.

10



2

2.2. Matrix product state

C
= . . .

T [1] T [2] T [3] T [N ]

D

d

Figure 2.4: An MPS ansatz represents the wave function coefficient Cs1s2...sN

as a trace over a product of tensors T [i]. The initial tensor T [1] and final tensor
T [N ] are rank-2 tensors, while the others are rank-3 tensors. The physical legs,
corresponding to the local Hilbert spaces, are indicated by dashed lines, while
solid lines represent virtual bonds.

The wave function of this system can, in general terms, be written as

|ψ〉 =
∑

s1s2...sN

Cs1s2...sN
|s1s2 . . . sN 〉 , (2.3)

in which si corresponds to the local basis states at site i of a d-dimensional
Hilbert space and Cs1s2...sN

is a coefficient assigning a weight to each basis state
of the full system. An MPS is a variational wave function ansatz in which the
coefficient in Eq. 2.3 is represented by a product of tensors

Cs1s2...sN
=

∑
a1a2...aN−1

(
T [1]

)a1

s1

(
T [2]

)a1a2

s2
. . .
(
T [N ]

)aN−1

sN

, (2.4)

with T [i] a tensor at site i. In the diagrammatic notation, this MPS can be
written as shown in Fig. 2.4. The dashed, vertical lines correspond to the local
d-dimensional Hilbert space of each site, and they are called physical indices.
Note that each coefficient, which is obtained when the physical index at each site
is fixed, is given by a product of matrices (with vectors at the open boundaries),
hence the name matrix product states. The horizontal lines connecting the
tensors with each other are called virtual bonds, and they introduce an auxiliary
space with dimension D, which is called the bond dimension. For example, for
D = 1 the ansatz corresponds to a product state. The size of the bond dimension
can be varied to systematically control the accuracy of the ansatz.

An advantage of MPS is that it is possible to directly represent a wave function
in the thermodynamic limit by choosing a supercell of tensors and repeating it
infinitely many times. This type of MPS is also known as an infinite matrix
product state (iMPS). For example, an iMPS with a supercell consisting of two
tensors TA and TB results in a coefficient

C = Tr
(
. . . TAs2n

TBs2n+1
TAs2(n+1)

TBs2(n+1)+1
. . .
)
, (2.5)

where n counts the supercells. It is worth mentioning that for gapped systems,
thanks to the supercell, the number of variational parameters of an iMPS is
typically significantly smaller than for a finite MPS.
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(a)
T [1]

=
s[1]

U [1] V [1]†

=

A[1] M
[1]
L

(b) M
[i−1]
L T [i]

=

W
[i]
L

=
s[i]

U [i] V [i]†

=

A[i] M
[i]
L

Figure 2.5: The procedure to make the left-hand side of the MPS orthogonal,
as required in the Schmidt decomposition. (a) The transformation of the first
tensor T [1] using an SVD. (b) ML is moved from the left-hand side of tensor
T [i] to the right-hand side, while transforming the tensor into A[i].

2.2.1. Canonical form

An MPS representation of a state is not unique. This can easily be seen by
introducing an identity M−1M = I on one of the virtual bonds of the MPS
and by absorbing M−1 into the tensor on the left-hand side and M into the
tensor on the right-hand side. This gives us a different MPS without changing
the state it represents, an MPS thus has a large gauge freedom. In this section,
we will show how an MPS can be transformed into a gauge called the canonical
form which has some particularly useful properties.

Let us start by discussing the Schmidt decomposition. Imagine that we have
the state from Eq. 2.3, and we want to partition it into two sides A and B
around bond n (between sites n and n+ 1). The Schmidt decomposition of this
state around bond n is given by

|ψ〉 =
∑
k

λ
[n]
k |ak〉s1s2...sn

|bk〉sn+1...sN
, (2.6)

with λ
[n]
k the Schmidt coefficients, and |ak〉s1s2...sn

and |bk〉sn+1...sN
forming

orthonormal bases for A and B, respectively. It is possible to directly obtain
the Schmidt decomposition by performing a singular value decomposition (SVD)
on the wave function coefficient from Eq. 2.3. We first reshape the coefficient
into a matrix by combining the physical legs s1 . . . sn and sn+1 . . . sN into two
legs, and then we perform an SVD

Cs1...sn,sn+1...sN
= UsV †, (2.7)

with U and V unitary matrices and s a diagonal matrix with positive entries
called singular values. We use the convention that the singular values in s are
sorted by decreasing magnitude. By identifying λ = s, |a〉 = U , and |b〉 = V †

we obtain Eq. 2.6.
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2.2. Matrix product state

(a)
T [N ]

=
s[N−1]

U [N−1] V [N−1]†

=

B[N ]M
[N−1]
R

(b) M
[i]
RT [i]

=

W
[i]
R

=
s[i−1]

U [i−1] V [i−1]†

=

B[i]M
[i−1]
R

Figure 2.6: The method to make the right-hand side of the chain orthogonal as
required in the Schmidt decomposition. (a) The final tensor T [N ] is transformed
to an orthogonal tensor B[N ] using an SVD. (b) MR is moved from the right-
hand side of tensor T [i] to the left-hand side. The tensor T [i] becomes B[i].

We would now like to transform the MPS in Eq. 2.4 to this form as well. Let
us start by considering the left-hand side of the chain. An SVD of tensor T [1]

allows us to rewrite it as

T [1] = U [1]s[1]V [1]† = A[1]M
[1]
L , (2.8)

where A[1] = U [1] and M
[1]
L = s[1]V [1]†, see also Fig. 2.5(a). Note that, since

U [1] is unitary, A[1]†A[1] = I.

We can now moveML through the MPS until we reach bond n−1. In Fig. 2.5(b),
we show how ML can be moved from the left-hand side of tensor T [i] at site i
to the right-hand side. We start by applying M [i−1]

L to T [i]

M
[i−1]
L T [i] = W

[i]
L , (2.9)

where W [i]
L is a D ×D × d tensor, which we can reshape to a dD ×D matrix

W
[i]
L by combining the physical and left-side virtual legs into one. This allows

us to perform an SVD

W
[i]
L = U [i]s[i]V [i]† = A[i]M

[i]
L , (2.10)

where A[i] is obtained by reshaping U [i] back into a D × D × d tensor and
M

[i]
L = s[i]V [i]†. This process can be iterated until we arrive at the desired

bond. In the following, reshaping before and after SVDs is done implicitly.

A similar procedure can be used on the right-hand side of the MPS. First, we
perform an SVD on the final tensor

T [N ] = U [N−1]s[N−1]V [N−1]† = M
[N−1]
R B[N ], (2.11)

with M
[N−1]
R = U [N−1]s[N−1] and B[N ] = V [N−1]†, as is shown in Fig. 2.6(a).

After this, we move MR to the left through the MPS until we reach bond n+ 1
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M
[n−1]
L T [n] T [n+1] M

[n+1]
R

=

W
[n]
M

=
s[n]

U [n] V [n]†

=
A[n]

λ[n]

B[n+1]

Figure 2.7: AfterML andMR have been moved to the center, a final transforma-
tion using an SVD is necessary to bring the MPS to a Schmidt decomposition.

by iterating

T [i]M
[i]
R = W

[i]
R = U [i−1]s[i−1]V [i−1]† = M

[i−1]
R B[i], (2.12)

with M [i−1]
R = U [i−1]s[i−1] and B[i] = V [i−1]†, see Fig. 2.6(b).

After we move ML and MR towards the desired bond, a special treatment is
required at bond n itself

M
[n−1]
L T [n]T [n+1]M

[n+1]
R = W

[n]
M = U [n]s[n]V [n]† = A[n]s[n]B[n+1], (2.13)

where A[n] and B[n+1] correspond to the unitaries U [n] and V [n]† reshaped back
into rank-3 tensors, see Fig. 2.7.

We have now transformed the MPS into a Schmidt decomposition. To see this,
we first note that, because A[i] and B[j] correspond to unitary matrices from
the SVD decomposition, they obey the conditions

A[i]†A[i] = I, (2.14)
B[j]B[j]† = I, (2.15)

for i ∈ 1, . . . , n and j ∈ n+ 1, . . . , N , as shown in Fig. 2.8. These condi-
tions imply that the bases of A and B in Eq. 2.6 can be identified as |a〉 =
A[1] . . . A[n] |s1 . . . sn〉 and |b〉 = B[n+1] . . . B[N ] |sn+1 . . . sN 〉, which are orthonor-
mal. The singular values s[n] can be identified with the Schmidt coefficients λ[n].
An MPS forming a Schmidt decomposition around bond n is also called canon-
ical around this bond.

There are several motivations why it is convenient to write an MPS in this form.
A first motivation is that computing local observables simplifies considerably.
As an example, consider computing the expectation value of a one-site observ-
able at site n, 〈ψ|On|ψ〉, which is shown in Fig. 2.9. Using the conditions in
Eqs. 2.14 and 2.15 starting from the first and final tensors we reduce the com-
putation to the contraction of the diagram on the right side in Fig. 2.9, thus
simplifying the contraction significantly.
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2.2. Matrix product state

(a) (b)

=

A[i]

A[i]†

I =

B[i]

B[i]†

I

Figure 2.8: The conditions obeyed by the tensors in an MPS when it is in
canonical form. (a) The left-canonical condition from Eq. 2.14. (b) The right-
canonical condition from Eq. 2.15.

. . .

. . .

. . .

. . .

=

Figure 2.9: The computation of a one-site observable 〈ψ|On |ψ〉 at site n. This
contraction simplifies significantly to the diagram on the right by making use
of the canonical conditions from Eqs. 2.14 and 2.15.

A second motivation for writing the MPS as a Schmidt decomposition is that
it provides direct access to the reduced density matrices

ρA =
∑
k

λ2
k |ak〉 〈ak| ρB =

∑
k

λ2
k |bk〉 〈bk| . (2.16)

From these, quantities like the von Neumann entanglement entropy can be
directly computed

SA|B = −Tr ρA log ρA = −
∑
k

λ2
k log

(
λ2
k

)
. (2.17)

When we choose the Schmidt coefficients in such a way that they are all equal
(but normalized), λk = 1/

√
D, we see that the maximum amount of entangle-

ment entropy for the bipartition of the MPS is S = log(D). The entanglement
entropy thus is independent of N and we find that the ansatz satisfies the 1D
area law. For models that are local and gapped, the ground state can be ap-
proximated well by an MPS with a non-diverging D.

A final motivation for writing the MPS in the form of a Schmidt decomposition
is that it allows one to truncate a bond to a lower bond dimension

|ψ〉 =
D∑
k=1

λk |ak〉 |bk〉 ≈
D′<D∑
k=1

λk |ak〉 |bk〉 , (2.18)
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with D′ < D. It can be shown that this provides the optimal rank-D′ approx-
imation of the rank-D wave function in the Frobenius norm. Truncations of
MPS play an important role in numerical algorithms, as we will see later.

Canonical form around other bonds

In the previous part of this section, we have explained how the canonical form
around bond n can be obtained. To obtain the canonical form around another
bond, λ[n] can be shifted through the MPS in a similar way to howML andMR

are moved to the right (Eqs. 2.9 and 2.10) and left (Eq. 2.12), respectively, until
we reach the desired bond. It is, however, also possible to use a more convenient
notation, that was introduced by Vidal [79], in which this transformation is not
necessary. To convert the MPS to this notation we make use of the singular
value matrices which were obtained from the transformation of the MPS to the
canonical form in Eqs. 2.8-2.12. We introduce the identities s[i] (s[i])−1 = I and(
s[i])−1

s[i] = I on bonds to the left and right of bond n, respectively. We then
rewrite

s[i−1]
(
s[i−1]

)−1
A[i] = λ[i−1]Γ[i], (2.19)

B[i]
(
s[i]
)−1

s[i] = Γ[i]λ[i], (2.20)

where Γ[i] =
(
s[i−1])−1

A[i] or Γ[i] = B[i] (s[i])−1 and λ[i] = s[i]. The resulting
MPS is shown in Fig. 2.10(a). The canonical conditions in Eqs. 2.14 and 2.15
become

Γ[i]†
(
λ[i−1]

)2
Γ[i] = I, (2.21)

Γ[i]
(
λ[i]
)2

Γ[i]† = I, (2.22)

which are also shown in Figs. 2.10(c)-(d).2 The diagram for the computation
of the one-site observable in Fig. 2.9 transforms to the diagram in Fig. 2.10(b).
When an MPS is put in this form every possible partition is in a Schmidt
decomposition with Schmidt coefficients λ[i].

Canonical form for iMPS

Let us now discuss how an iMPS can be converted to a canonical form. In
this case, it is not possible to follow the method discussed before because of the

2Note that for the first and final tensor we have Γ[1] = A[1] and Γ[N ] = B[N ]. They still
obey the conditions Γ[1]†Γ[1] = I and Γ[N ]Γ[N ]† = I.
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2.2. Matrix product state

(a) (b)

. . .

Γ[1] Γ[2] Γ[3] Γ[N ]λ[1] λ[2] λ[3] λ[N−1]

(c) (d)

=

Γ[i]λ[i−1]

Γ[i]†λ[i−1]

I =

Γ[i] λ[i]

Γ[i]† λ[i]

I

Figure 2.10: (a) The MPS from Eq. 2.4 is represented in the notation introduced
in Eqs. 2.19 and 2.20. (b) The contraction from Fig. 2.9 is represented in
this notation. (c) The left-canonical condition from Eq. 2.21. (d) The right-
canonical conditions from Eq. 2.22.

absence of a first and final tensor. Therefore, a different procedure must be used
to transform it to a canonical form, i.e., to make it satisfy Eqs. 2.21 and 2.22.
This can be achieved by following the procedure from Ref. [82], which we will
discuss in more detail. Note that alternative schemes exist like Ref. [83].

Let us assume the iMPS has a supercell containing one tensor Γ with a singular
value matrix λ on the bond. The method consists of iterating the following
steps, which are also shown in Fig. 2.11:

(i) Compute the diagram shown on the left-hand side of Fig. 2.11(a). When
the iMPS is non-canonical this gives a matrix vL 6= I. We then perform
an eigendecomposition

vL = WLDLW
†
L = X†LXL, (2.23)

where we identify X†L = WL

√
DL. On the right-hand side we follow a

similar procedure, shown in Fig. 2.11(b), i.e., vR = WRDRW
†
R = XRX

†
R

with XR = WR

√
DR.

(ii) Now we can insert the identities
(
XT
L

)−1
XT
L = I and XRX

−1
R = I into

the iMPS bonds in the way shown in Fig. 2.11(c). We then can take an
SVD of

XT
LλXR = Uλ̃V †, (2.24)

with λ̃ the new singular value matrix. We obtain the new tensor Γ̃ by
contracting the diagram in Fig. 2.11(d).
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=

Γλ

Γ†λ

vL= DL

W †
L

WL

=
XL

X†
L

(a)

=

Γ λ

Γ† λ

vR = DR

WR

W †
R

=
XR

X†
R

(b)

(c) (d)

XR X−1R Γ
(
XT
L

)−1
XT
L λ XR X−1R Γ

(
XT
L

)−1
XT
L

 I  I  I  I

U λ̃ V †

V † X−1R Γ
(
XT
L

)−1
U

Γ̃

=

Figure 2.11: The steps described in Ref. [82] to convert an iMPS to satisfy the
canonical form conditions in Eqs. 2.21 and 2.22, as described in the main text.
(a) The first step of the process consists of computing the matrix XL through an
eigendecomposition of the left-canonical condition. (b) The same procedure is
followed as in (a) starting from the right-canonical condition. (c) The identities(
XT
L

)−1
XT
L and XRX

−1
R are inserted into the virtual bonds, and an SVD is

done. This gives the updated singular value matrix λ̃. (d) The updated tensor
Γ̃ is computed by contracting the given diagram.

These steps are iterated until the canonical conditions in Eqs. 2.21 and 2.22 are
sufficiently satisfied.

2.3. Projected entangled-pair states

Because of the success of MPS in 1D, attempts were made early on to apply
it to 2D systems [84, 85]. A common way to do this is to take a finite-width
cylinder and wrap the MPS around it, as shown in Fig. 2.12(a). Interactions
with sites that are not connected directly through the MPS are treated as
further-neighbor couplings. By performing a careful extrapolation in the cylin-
der width, it is often possible to make a reliable approximation of the result in
the thermodynamic limit [86].

An important benefit of this approach is that the properties that make MPS
so convenient to use in 1D, like the canonical form, are still present in 2D. The
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2.3. Projected entangled-pair states

(a) (b)

Figure 2.12: Tensor network ansätze in 2D. (a) A "snake" MPS ansatz is shown
for a cylinder of width Ly = 4. The black lines correspond to the virtual bonds of
the MPS, while the gray lines indicate the nearest-neighbor couplings that must
be encoded by further-neighbor interactions in the MPS ansatz. For a partition
of the system along the dashed line, the interactions are carried over one MPS
bond. (b) A 4 × 4 PEPS is given in which each tensor is directly connected
to all its nearest-neighbor tensors through a virtual bond. A partition between
the left- and right-hand sides of the state, indicated by the dashed line, shows
that the number of cut PEPS bonds scales with the length of the boundary, in
correspondence with the 2D area law.

method does come with a significant drawback though. Ground states of 2D
quantum systems are expected to satisfy the 2D area law, i.e., when we consider
a system of size Lx × Ly and divide it into two subsystems in the way shown
in Fig. 2.12(a), the entanglement entropy should scale with the length of the
boundary Ly. The MPS, however, is an intrinsically 1D ansatz satisfying the
1D area law, i.e., for the partition in Fig. 2.12(a), the maximal entanglement
entropy that the MPS can reproduce is S = log(D), independent of the cylinder
width. As a consequence, to keep a fixed accuracy, it is necessary to scale the
bond dimension exponentially with the width of the cylinder [84]. This severely
limits the cylinder widths that can be studied reliably. Despite these limitations,
MPS have proven to be a successful tool to study challenging 2D systems, see,
e.g., Refs. [87–90].

A more natural ansatz for higher-dimensional systems is the projected entangled-
pair state (PEPS) [29, 30] (also known as tensor product state [26–28]). The
PEPS is a variational ansatz that generalizes the 1D MPS to higher dimensions,
and it is defined as

|ψ〉 =
d∑

s1...sN =1
Tr
(
T [~r1]
s1

. . . T [~rN ]
sN

)
|s1 . . . sN 〉 , (2.25)
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with T
[~ri]
si corresponding to a tensor at site ~ri and with si denoting the basis

states of the local Hilbert space. In this chapter, we limit ourselves to 2D
square lattices. Figure 2.12(b) shows an example of a 4× 4 PEPS ansatz. Each
(central) tensor has five indices, four virtual indices connecting the tensors in
a square pattern and one physical index connecting to the local Hilbert space.
The accuracy of the ansatz is again controlled by the bond dimension D of the
virtual indices. Similar to the MPS case, it is possible to directly represent
states in the thermodynamic limit by infinitely repeating a supercell of tensors
which is known as an infinite projected entangled-pair state (iPEPS) [54].

The most important difference between PEPS and MPS is that PEPS satisfy
the higher-dimensional area law. When we consider the examples in Fig. 2.12,
we see that for a partition of the MPS in Fig. 2.12(a) the entanglement entropy
did not scale with the system size, while for the cut of the PEPS in Fig. 2.12(b)
we have S ∝ O (Ly log(D)). This property strongly suggests that PEPS are
better suited to describe gapped ground states of two- or higher-dimensional
models.

A second difference is that PEPS can describe polynomially decaying correla-
tions [91], which are characteristic of certain types of critical points. This is in
contrast to MPS, which can only represent exponential decay.

The final difference between MPS and PEPS that we want to mention here is
that no canonical form is known for PEPS, which is due to the presence of loops
in the ansatz. These loops make it impossible to define a Schmidt decomposition
by cutting one bond as in the MPS case. Note that loops already arise in 1D
MPS when periodic boundary conditions are introduced, which make it impos-
sible to partition the MPS when cutting one bond. This is an important reason
why it is preferable to do MPS simulations with open boundary conditions. The
absence of a canonical form makes performing contractions or truncations of the
PEPS ansatz significantly more challenging in numerical algorithms.

In past decades, there has been substantial progress in the development of effi-
cient approximate contraction approaches, however, which have allowed PEPS
to become a very competitive tool for the simulation of strongly-correlated 2D
quantum systems. In the next section, several families of these approaches are
discussed in detail.

2.4. Contraction of iPEPS

To evaluate expectation values of an (i)PEPS, it is necessary to contract the
corresponding network. Unlike the MPS case, however, where we can make use
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2.4. Contraction of iPEPS

(a) (b)
T [i]

D

T [i]†

=
A[i]

D2
O

T [j]

T [j]†

=
A

[j]
O

Figure 2.13: (a) The norm tensor is obtained by contracting over the physical
leg of a tensor. In each direction, the legs are combined into one leg with bond
dimension D2. (b) A one-site observable can be computed by replacing the
norm tensor at the desired location with a tensor that has an operator applied
to the physical leg.

of the canonical form, the exact contraction of a PEPS scales exponentially with
the number of tensors. To be more precise, it has been proven that contractions
of PEPS belong to the #P-complete complexity class [92]. To evaluate a PEPS,
we therefore rely on methods that perform the contraction approximately.

In this section, we consider the evaluation of the norm 〈ψ|ψ〉, with |ψ〉 a square
lattice iPEPS. To simplify the discussion, we define a norm tensor which is
obtained by contracting the physical leg at each site. For site i, the norm
tensor is defined as

A[i] =
∑
si

T [i]
si
⊗ T [i]†

si
, (2.26)

see Fig. 2.13(a). This gives us a 2D network. Note that an observable 〈ψ|O |ψ〉
can be computed by inserting O before contracting the physical legs. For ex-
ample, a one-site observable at site j can be evaluated by replacing the norm
tensor A[j] by

A
[j]
O =

∑
s

j
s′

j

(
T [j]
s

j
Os

j
s′

j

)
⊗ T [j]†

s′
j
, (2.27)

which is shown in Fig. 2.13(b).

2.4.1. Corner transfer matrix renormalization group

The first contraction approach that we discuss is the corner transfer matrix
renormalization group method (CTM). The CTM formalism was introduced by
Baxter [93] in the context of 2D classical statistical mechanics problems, and
it was later adapted by Nishino and Okunishi [94] to numerically contract 2D
classical partition functions. The CTM procedure approximates the environ-
ment around a specific site by corner and edge tensors, representing quadrants
and half-rows of the network, respectively, see Fig. 2.14. By varying the bond
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χ

Figure 2.14: The general idea of the CTM is to approximate each quadrant of
the tensor network by a corner tensor and each half-row by an edge tensor. The
accuracy is controlled through the boundary bond dimension χ.

dimension of the environment tensors χ, the accuracy of the contraction can be
systematically controlled.

Various versions of the CTM exist. Let us first discuss the version originally
introduced by Nishino and Okunishi [94] to establish the main idea. We consider
the contraction of a network consisting of one tensor A with real entries that
obeys rotational and mirror symmetry. These symmetries allow us to only use
one corner tensor C and one edge tensor T in all directions. The corner and
edge tensors can be obtained with an iterative procedure:

(i) The corner is enlarged by absorbing a row and column in the way shown
on the left-hand side of Fig. 2.15, which we call C̃. This increases the
bond dimension of the corner to D2χ×D2χ. Note that C̃ is symmetric.

(ii) An eigendecomposition of the enlarged corner is done

C̃ = WDWT ≈W ′D′W ′T , (2.28)

with D a diagonal matrix containing the eigenvalues andW a matrix with
the orthonormal eigenvectors, see Fig. 2.15. We approximateW and D by
W ′ and D′, respectively, which are obtained by keeping only the largest
χ eigenvalues.

(iii) The renormalized corner C ′ and edge T ′ tensors are obtained by inserting
the approximate identities W ′W ′T ≈ I on the enlarged bonds in the way
shown in Figs. 2.16(a) and 2.16(b), respectively. TheW ′ andW ′T tensors
act as projectors to reduce the bond dimension of C ′ to χ× χ.
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2.4. Contraction of iPEPS

A
T

TC

= C̃ =
D

W T

W

≈ D′
W ′T

W ′

Figure 2.15: To obtain the projectors that renormalize the enlarged corner C̃ in
the CTM algorithm, an eigendecomposition of the enlarged corner is performed.
Only the χ largest magnitude eigenvalues are kept, as is shown in the final step.

(a) (b)

A
T

TC
W ′

W ′T

=
C ′

T
A

W ′T

W ′

=
T ′

Figure 2.16: The CTM tensors are renormalized by inserting approximate iden-
tities W ′W ′T ≈ I on the enlarged bonds. (a) The renormalized corner tensor.
(b) The renormalized edge tensor.

Note that the corner tensor reduces to C ′ = D′. These steps are iterated until
convergence is reached.

Although this version of the CTM is simple and efficient, it can unfortunately
not be applied to more general iPEPS which do not have symmetric tensors, and
which can consist of larger supercells. In the rest of this thesis, we therefore
make use of the directional CTM method which was introduced in Ref. [95].
Instead of updating all the environment tensors at the same time, the idea of
the directional CTM is to iteratively perform an update over each axis of the
network independently. As an illustration, we consider a left move which is
shown in Fig. 2.17. The left move consists of the following steps:

(i) Insert a column on the left-hand side of the network.

(ii) Absorb the additional column into the boundary tensors. This gives us
enlarged environment tensors on the left-hand side with a bond dimension
in the vertical direction of χD2.

(iii) To avoid exponential growth of the bond dimension we insert projectors
to truncate the vertical bonds back to χ.

Similar moves are done in the right-, up-, and down-directions which together
complete one update iteration. The iterations are repeated until sufficient con-
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Figure 2.17: A left move in the directional CTM. In step (i), a column is inserted
on the left. This column is contracted into the boundary tensors on the left in
step (ii) to form enlarged corner- and edge tensors. Finally, in step (iii), we
introduce projectors to truncate the environment bond dimension down from
D2χ→ χ. This gives the updated corner and edge tensors.

vergence is obtained.

A critical component of the algorithm is the method used to choose the projec-
tors. No unique way exists to determine them, and several schemes have been
proposed [32,95–97]. We will employ the commonly used method developed in
Ref. [32]. A diagrammatic overview of the approach is given in Fig. 2.18 for
the projectors used in the left move. The projectors are computed based on a
2 × 2 cell of tensors with their corresponding environment tensors as shown in
Fig. 2.18(a). The diagram is split at the bond that needs to be truncated and
on the opposite side of the diagram, and a QR decomposition is performed on
both halves.3 We then compute the SVD of RR̃

RR̃ = UsV † ≈ U ′s′V ′†, (2.29)

where we keep only the χ largest singular values, as can be seen in Fig. 2.18(b).
3Note that the QR decomposition that is used here is not necessarily required [98].
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Figure 2.18: Computation of the projectors for a left move in the directional
CTMmethod, as discussed in the main text. (a) A 2×2 cell with its environment
is split into an upper and lower half. On each half, a QR decomposition is
performed. (b) An SVD of RR̃ is done, and only the χ largest singular values
are kept. (c) An approximate identity is inserted into the bond that is being
truncated. The projectors P̃ and P are used to renormalize the enlarged bond.

25



Chapter 2. Introduction to projected entangled-pair states

2

Using the SVD tensors, the projectors are obtained by inserting an approximate
identity on the bond that needs to be truncated

R−1RR̃R̃−1 ≈ R̃V ′ 1
s′
U ′†R = P̃P, (2.30)

with P̃ = R̃V ′ 1√
s′

and P = 1√
s′
U ′†R, see Fig. 2.18(c). For a fast-decaying singu-

lar value spectrum s or for high χ, some of the singular values may reach values
around machine precision which are problematic in the inversion. Instabilities
can be avoided by setting singular values below a certain cutoff to zero.

A numerically cheaper variant of the projector scheme is obtained by basing
the projector computation only on the lower-left and upper-left corners of the
network in Fig. 2.18(a), which is the version that has been used in this work. In
addition, a significant reduction in the computational cost can be achieved by
using an iterative SVD. This allows us to only compute the χ leading singular
values instead of the full spectrum. This reduces the leading computational cost
from O(χ3D6) to O(χ3D4).

2.4.2. Coarse-graining contraction

An alternative family of iPEPS contraction approaches is formed by coarse-
graining methods [99–104]. The main idea of these methods is to contract a
group of tensors in the network to a single tensor and to replace this tensor
with an accurate lower bond dimension approximation. The truncation can be
performed using a local scheme which is computationally cheap [99, 101], or it
can be optimized by taking the effects of the environment into account [100,101]
and by removing short-range correlations more accurately [102–104].

To illustrate this class of algorithms we discuss one instance, the higher-order
tensor renormalization group (HOTRG) [101], in more detail. The HOTRG is
a coarse-graining algorithm based on a local truncation scheme. At each step
of a HOTRG contraction, a coarse-graining of two tensors is performed over
one axis of the network, as is shown in Fig. 2.19 for a square lattice. The new
tensor has an enlarged bond in the orthogonal direction, which is truncated to
χ to avoid exponential growth of the bond dimension. The bond dimension
χ controls the accuracy of the contraction. This truncation is performed by
inserting projectors onto the enlarged bond, in the way shown in Fig. 2.20(a).
The same procedure is followed for each axis of the network which together com-
plete one iteration. These iterations are repeated until sufficient convergence
is achieved. The computational cost of HOTRG scales as O(χ7) for square
lattices. It is straightforward to generalize the method to cubic networks, for
which the dominant scaling becomes O(χ11).
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Figure 2.19: The HOTRG contraction for a square lattice network. A coarse-
graining contraction is first done in the horizontal direction and after that in
the vertical direction. These steps are iterated until convergence. Each full
iteration reduces the total number of tensors in the network by a factor of four.

(a)

≈ =

(b)

T =

U (1)

U (2)

U (3)

S

Figure 2.20: (a) One step of the HOTRG method in the horizontal direction.
The projectors are obtained from a HOSVD decomposition. (b) A HOSVD
decomposition of a rank-3 tensor T .

The projectors are obtained using a higher-order singular value decomposi-
tion (HOSVD), which is a generalization of the (matrix) SVD to higher-rank
tensors [105]. To illustrate the HOSVD, let us consider a rank-3 tensor T . The
HOSVD of this tensor is given by

Ta1a2a3 =
∑
ijk

SijkU
(1)
ia1
U

(2)
ja2
U

(3)
ka3

, (2.31)

with U (i) unitary matrices and S the so-called core tensor, as can be seen in
Fig. 2.20(b). The core tensor obeys all-orthogonality, which means that

∑
jk

SαjkSβjk =
∑
ik

SiαkSiβk =
∑
ij

SijαSijβ = 0, (2.32)
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for α 6= β. Furthermore, the following ordering condition is enforced√∑
jk

S2
αjk ≥

√∑
jk

S2
βjk, (2.33)

for α < β. Similar to the SVD, a lower-rank approximation of T can be made
by truncating the core tensor. Unlike the SVD case, however, this truncation
is not guaranteed to be the optimal lower-rank truncation [106].

An improvement in accuracy over the HOTRG can be obtained in the closely
related higher-order second renormalization group (HOSRG) [101]. In this
method, we start from a HOTRG contraction, which we then attempt to im-
prove by optimizing the projectors. This is achieved through back- and for-
warded iterations which take the global tensor network environment around a
truncated bond into account.

For larger supercells or for tensors that are not rotationally symmetric, the
direct use of the HOSVD in the HOTRG contraction will not provide accurate
projectors. In that case, we can use a different scheme that was proposed in
Ref. [107]. Let us consider a HOTRG contraction in the x-direction, as shown
in Fig. 2.21(a). To compute the projectors that truncate the bond, we can
use an approach inspired by the projector computation in the directional CTM
discussed in Sec. 2.4.1. First, we perform two QR decompositions in the way
shown in Fig. 2.21(b). We then use R and R̃ to compute the projectors following
the steps shown in Figs. 2.18(b) and 2.18(c). Note that the computational cost
of the QR decomposition to obtain R can be reduced by contracting the tensors
with their Hermitian conjugate and performing an eigendecomposition, as is
shown in Fig. 2.21(c). A similar procedure can be followed for R̃.

2.4.3. MPS-MPO contraction

The final class of contraction algorithms that we want to discuss here are the
MPS-MPO methods [29, 30, 54, 108], which are inspired by algorithms used in
1D.

Let us first consider a finite PEPS contraction, as is shown in Fig. 2.22. The
first and last rows of the PEPS can be seen as MPSs |φ1〉 and |φN 〉, respectively,

|φ1〉 =
D2∑

d1...dN =1
Tr
(
T

[1,1]
d1

. . . T
[1,N ]
dN

)
|d1 . . . dN 〉 , (2.34)

|φN 〉 =
D2∑

u1...uN =1
Tr
(
T [N,1]
u1

. . . T [N,N ]
uN

)
|u1 . . . uN 〉 , (2.35)
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W †

W
=

R†

R

Figure 2.21: A generalization of the HOTRG contraction for larger supercells or
in the absence of rotationally symmetric tensors, following Ref. [107]. (a) The
projectors on one bond for a coarse-graining step in the x-direction. (b) To
obtain the projectors, we first perform QR decompositions on the tensors on
the top and the bottom. The projectors are computed using the R and R̃
tensors, based on the approach used in the directional CTM contraction shown
in Figs. 2.18(b) and 2.18(c). (c) A more efficient way to obtain R. The tensors
are contracted with their Hermitian conjugate, with the bottom legs left open.
An eigendecomposition WDW † is performed on this object, which is used to
compute R = W

√
D.

with T [i,j] a tensor at lattice site (i, j) and di and ui the vertical bonds of the
first and last row of the PEPS, respectively. The other layers of the PEPS are
seen as matrix product operators (MPO)

Mi =
D2∑

u1...uN =1
d1...dN =1

Tr
(
T

[i,1]
u1d1

. . . T
[i,N ]
uNdN

)
|d1 . . . dN 〉 〈u1 . . . uN | , (2.36)

where Mi is the MPO at row i.
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Figure 2.22: A diagrammatic overview of the MPS-MPO contraction method,
as discussed in the main text. We start from the initial PEPS and identify the
first and final rows as MPS |φ1〉 and |φN 〉, respectively. The other rows are seen
as MPO layers Mn. In step (i), the rows M2 and MN−1 are contracted with
|φ1〉 and |φN 〉, respectively, and a truncation is done. These steps are iterated
until we reach the desired row n, as shown in step (ii). Finally, in step (iii), the
leading eigenvectors from the left v0

L and right v0
R are determined which results

in a diagram that can be contracted directly.

The contraction now proceeds by iteratively applying the MPO to the boundary
MPS. For the MPS at the top, the i-th MPO can be applied to the boundary
MPS as

Mi

∣∣φ′i−1
〉

=
∣∣φ̃i〉 ≈ |φ′i〉 , (2.37)

with
∣∣φ̃i〉 and |φ′i〉 the new boundary MPS before and after truncation, respec-

tively. A similar procedure can be followed for the MPS on the bottom. The
accuracy of the contraction is controlled by the bond dimension of the boundary
MPS χ. The truncation from D2χ to χ can be done by various schemes, e.g.,
based on DMRG [29, 30] or TEBD [54]. Once all the rows are contracted into
the boundary MPS we obtain a 1D object, which can be contracted exactly.
This is done by computing the left- and right-leading eigenvectors v0

L and v0
R,
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respectively. This finally gives a diagram that can be contracted directly.

For an iPEPS, the contraction proceeds similarly, with the difference that we
are interested in computing the leading eigenvector |φ〉. When we assume that
the iPEPS consists of identical MPO-rows M we have

M |φ〉 = η |φ〉 , (2.38)

with η the leading eigenvalue. The leading eigenvector can, for example, be
computed by a power method [54] or by a fixed-point method as is done in the
VUMPS algorithm [108]. If the iPEPS is made up of a supercell that extends
k rows, the leading eigenvector of the combined MPO M1M2 . . .Mk should be
computed.

2.5. Ground state algorithms

In the previous sections, we defined the iPEPS ansatz and discussed how its
expectation values can be evaluated. We did not yet address how an iPEPS wave
function can be obtained that accurately represents the ground state though.
For some models, the ground state can be written down exactly as an iPEPS.
Well-known examples include the ground state of the AKLT Hamiltonian [109,
110] and of the toric code [91, 111], which can both be written down as an
iPEPS with D = 2. These cases, however, form the exception. For the vast
majority of models, it is necessary to make use of an optimization algorithm.
The most commonly applied algorithms can be divided into two classes. The
first class consists of algorithms that make use of an imaginary time evolution.
The second class is made up of methods that directly minimize the energy of
the ansatz based on the variational principle. Both classes are discussed in more
detail in the following sections.

2.5.1. Imaginary time evolution

The idea of an imaginary time evolution is that an initial state |φ〉 (e.g., an
iMPS or iPEPS ansatz with random entries) is projected down to the ground
state |ψ0〉 of a given Hamiltonian H by applying the imaginary time evolution
operator

lim
β→∞

e−βH |φ〉 = |ψ0〉 , (2.39)

with β the inverse temperature. To apply the imaginary time evolution operator
to the tensor network ansatz we first decompose it into a series of local operators
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Figure 2.23: An update step of the iTEBD algorithm at bond i, as discussed in
the main text. In step (i), the time evolution gate e−τHi is applied to the tensors
around bond i. This creates a tensor M , which is reshaped into a matrix. An
SVD of M is performed in step (ii), where we only keep the D largest singular
values. In step (iii), the unitary matrices are reshaped into rank-3 tensors,
and the singular value matrices on the neighboring bonds are reintroduced by
inserting identities onto those bonds and absorbing the inverse singular value
matrices into the tensors.

using a Trotter-Suzuki decomposition. When we assume that the Hamiltonian
can be written as a sum of local termsH =

∑
iHi, the first-order Trotter-Suzuki

decomposition can be written as follows

e−βH =
(
e−τ

∑
i
Hi

)M
=

M∏
j=1

∏
i

e−τHi +O (τ) , (2.40)

with β = τM . The error can be further reduced to O
(
τ2) by reversing the

order in which the Trotter gates e−τHi are applied to the ansatz at every other
time step. This is known as a second-order Trotter-Suzuki decomposition, and
it will be used in the rest of this work. The application of the Trotter gate
increases the size of the bond dimension, which needs to be truncated to avoid
exponential growth. There are various schemes to do this truncation which is
the main topic for the rest of this section.

Imaginary time evolution for iMPS

To introduce some basic ideas, we first discuss the 1D case. A popular method
to do imaginary time evolution for iMPS is the infinite time-evolving block dec-
imation (iTEBD) method [79,80,112]. We make use of an iMPS and adopt the
convention where we keep singular value matrices λ[i] on the bonds. We, fur-
thermore, assume that the iMPS is in canonical form. One step of the algorithm
is shown in Fig. 2.23 for an update on bond i, where we assume nearest-neighbor
interactions. The step proceeds as follows:

(i) Apply the imaginary time evolution gate e−τHi to bond i and contract
the resulting diagram as shown on the left-hand side of Fig. 2.23. We also
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absorb the singular value matrices on the neighboring bonds, which are
required by the canonical form. The resulting tensor is reshaped into a
matrix M .

(ii) An SVD is performed on this matrix

M = UsV † ≈ U ′s′V ′†, (2.41)

where a truncation is performed on the unitary matrices U → U ′ and
V → V ′, and on the singular value matrix s → s′ keeping only the D
largest singular values. We obtain the updated λ′[i] = s′.

(iii) Reshape U ′ and V ′† back to rank-3 tensors. On the open virtual bonds
on the left and right, we reintroduce the singular value matrices of the
neighboring bonds by inserting the identities λ[i−1] (λ[i−1])−1 = I and(
λ[i+1])−1

λ[i+1] = I, respectively. The matrices
(
λ[i−1])−1 and

(
λ[i+1])−1

are contracted into the rank-3 tensors giving the updated tensors Γ′[i] and
Γ′[i+1], respectively.

Similar steps are repeated for all the bonds in the ansatz to complete one time
step. These time steps, in their turn, are iterated until sufficient convergence
is reached. To decrease the Trotter error, the Trotter step τ can be gradually
reduced during the evolution.

Note that the imaginary time operator is non-unitary, and it does not keep the
iMPS in canonical form. To keep the truncation accurate this, in principle,
makes it necessary to transform the iMPS back to a canonical form after each
update step. Conveniently, it turns out that when τ is small enough, the gates
are close to identities, and the iMPS remains in a form that is close to canonical,
making this transformation unnecessary [83].

Imaginary time evolution for iPEPS

Imaginary time evolution for iPEPS is significantly more involved than for
iMPS. This is mainly due to the absence of a canonical form for iPEPS, which
makes performing accurate truncations of the ansatz more difficult and compu-
tationally expensive. A common way to do imaginary time evolution for iPEPS
is with the full update (FU) algorithm. After applying a Trotter gate to a bond,
an optimal truncation requires minimizing the norm distance

d =
∥∥ ˜|ψ〉 − |ψ′〉

∥∥2

= 〈ψ̃|ψ̃〉+ 〈ψ′|ψ′〉 − 〈ψ̃|ψ′〉 − 〈ψ′|ψ̃〉, (2.42)
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∂
∂p†d = A − b = 0

Figure 2.24: (a) A diagrammatic representation of the norm distance in Eq. 2.42.
The gray boundary represents the CTM environment E , while the bonds on the
top and the bottom correspond to the updated bond on the bra- and ket-sides,
respectively. The updated bond is renormalized by inserting projectors p and
q. (b) The projector p is optimized by taking the derivative of Eq. 2.42 and
solving the resulting linear equation. By iteratively optimizing p and q in this
manner, the norm distance can be minimized.

with ˜|ψ〉 the iPEPS with the Trotter gate applied to it and |ψ′〉 the truncated
iPEPS, see Fig. 2.24(a). To compute these overlaps, we need to perform a full
contraction of the iPEPS ansatz. Here, we will make use of the CTM which
gives us the environment E in Fig. 2.25. To truncate the updated bond, we
insert the projectors p and q and we optimize them iteratively such that they
minimize the distance in Eq. 2.42. We start by doing an optimization step for
p. When we fix q, an optimal p can be obtained by taking a derivative with
respect to p† in Eq. 2.42 and by solving the resulting linear equation

∂

∂p†
d = Ap− b = 0, (2.43)

where A and b are indicated in Fig. 2.24(b). We continue by fixing p and solving
for q. This procedure can be iterated until Eq. 2.42 is minimized sufficiently.
The tensors in the iPEPS ansatz are then updated and the next gate is applied.4

4Note that the projectors are not optimal globally. The reason is that they are obtained
for an iPEPS where only one bond is updated, while these projectors are subsequently used
to update all equivalent bonds in the iPEPS ansatz. In the FU method, this effect is assumed
to be negligible.
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E

=

Figure 2.25: The environment E around a horizontal iPEPS bond computed
using the CTM. The updated bonds are left open.

Due to the approximations in the iPEPS contraction as well as numerical error,
the CTM environment E will not be exactly Hermitian or positive semidefi-
nite. Numerical instabilities in the algorithm can be avoided by making the
environment Hermitian explicitly Ẽ =

(
E + E†

)
/2, and by making Ẽ positive

semidefinite by taking an eigendecomposition of Ẽ = WDW † and setting neg-
ative eigenvalues to zero

D+ =
{
Di Di ≥ 0
0 Di < 0 , (2.44)

withDi the i-th eigenvalue [113]. This results in the environment Ẽ+ = WD+W
†.

The computational cost of the FU procedure is dominated by the environment
contraction which has to be redone every time a new gate is applied. A method
to reduce this cost is the fast-full update (FFU) [114]. Since the change in the
environment is small after each update step, it is sufficient in most cases to only
perform one CTM step in the direction of the updated bond to approximate
the environment. Although this does not affect the dominant computational
scaling, the number of CTM update steps reduces significantly. To ensure that
the environment remains accurate, a recomputation of the environment can be
done after a certain number of update steps.

Although the FFU can significantly reduce the computational cost of an imagi-
nary time evolution with iPEPS, the cost to compute the environment can still
be prohibitively large in some cases. Therefore, less accurate, but computation-
ally significantly cheaper methods have been developed as well. These methods
make use of an approximate representation of the environment around the bond
that is updated. To finish the discussion on imaginary time evolution methods,
we will talk about two such approaches: the simple update (SU) and the cluster
update (CU) algorithms.
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Figure 2.26: An update step in the SU algorithm, as discussed in the main
text. In step (i), the gate is applied to the tensors and the resulting diagram
is contracted. We also contract the singular value matrices on the neighboring
bonds, which gives the tensor M . An SVD is then done in step (ii), where we
perform a truncation and only keep the D largest magnitude singular values.
In step (iii), the resulting unitaries U ′ and V ′† are reshaped back into tensors,
and the singular value matrices on the neighboring bonds are reinserted by
absorbing their inverses into the tensors.

Simple update

The simple update (SU) algorithm [115] can be understood as a direct applica-
tion of the iTEBD algorithm to iPEPS. Similar to iTEBD, it is convenient to
use the convention where the singular value matrices λ are kept on each bond.
One step of the algorithm is shown in Fig. 2.26, and it proceeds as follows:

(i) Apply an imaginary time evolution gate to the iPEPS tensors and contract
the resulting diagram. We also contract the singular value matrices of the
neighboring bonds. This gives the tensor M .

(ii) Reshape the tensor M to a matrix and perform an SVD. We truncate the
SVD tensors and only keep the largest D singular values.

(iii) Reshape the two unitary matrices U ′ and V ′† to tensors. We also insert
identities of the form λiλ

−1
i on the neighboring bonds and contract λ−1

i

with the tensors. This gives us the updated tensors.

A further reduction in the numerical cost of the SU can be achieved by splitting
off the physical leg from the iPEPS tensors before applying the Trotter gate
using a QR decomposition [116]. The algorithm can also be formulated in a
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(a) (b)

= I

Figure 2.27: (a) The environment approximation that is used in the SU. (b) The
left quasi-canonical form condition. For an iPEPS to be in the quasi-canonical
form, this condition should be satisfied by all tensors and in all directions.

similar way to FU by minimizing Eq. 2.42 with the environment approximation
shown in Fig. 2.27(a).

The SU method uses an environment approximation which is similar to the
environment that would be used for an iMPS truncation. While an iTEBD
evolution for iMPS with small τ brings the iMPS close to a canonical form,
a SU evolution transforms an iPEPS to a quasi-canonical form [82, 117] (also
known as a superorthogonal form [118]). In this form, the iPEPS satisfies the
condition shown in Fig. 2.27(b) for all tensors and in all directions.

Despite the rough environment approximation, the SU is typically able to iden-
tify the correct phases and provides reasonably accurate results for models with
short correlation lengths. For longer correlation lengths, more accurate opti-
mization methods are often required.

Cluster update

The cluster update (CU) [119–121] can be considered to lie in between the SU
and the FU both in terms of computational cost as well as its accuracy. In
the CU, the truncation of the bond dimension is based on a local environment
consisting of a finite cluster, for example, the 4 × 3 cluster, which is shown in
Fig. 2.28. With this environment, a minimization of the distance in Eq. 2.42
can be made. In general, a trade-off exists between the size of the cluster (and
thus the computational cost) and the accuracy of the optimization. The optimal
cluster choice thus depends on the model under consideration.

Practical considerations

Before continuing, we would like to discuss some practical considerations in
ground-state simulations. As in any optimization approach, imaginary time
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(a) (b)

=

=

Figure 2.28: A 4 × 3 environment that can be used in the CU. (a) A more
compact notation to represent the tensors at the corners and edges of this
cluster. The full black circles represent singular value matrices λ, while the black
half-circles represent their square root

√
λ. (b) The 4 × 3 cluster environment

in the horizontal direction.

evolution methods can get trapped in local minima, e.g., in meta-stable phases.
One reason for this is that the size of the variational subspace available in
a truncation dD → D is constrained by the value of D. This subspace can
sometimes be too small, which can cause a simulation to get stuck. Another
factor is the size of the supercell, which must be large enough to support the
ground state.

A good choice for the initial state can significantly reduce the chance of getting
stuck in a local minimum and it can also decrease the simulation time consid-
erably. A common strategy for CU or (F)FU simulations is to first perform
SU optimizations from several random initial states. The state with the low-
est energy can subsequently be selected as an initial state for a more accurate
optimization. Another strategy is to use an up- or down-ramping, where an
already optimized lower or higher bond dimension state, respectively, is used as
the initial state.

How prone a simulation is to these problems varies depending on the model
under consideration and it is often best to combine these strategies.

2.5.2. Energy minimization

An alternative strategy to find an (i)MPS or (i)PEPS approximating the ground
state is the energy minimization. The idea is to optimize the entries in the
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H2

−E = 0

N2

Figure 2.29: Example of the generalized eigenvalue problem from Eq. 2.47 ob-
tained in a single-site energy minimization scheme at the second site of the MPS.
The shaded regions on the left and right correspond to H2 and N2, respectively.

tensor network ansatz in such a way as to directly minimize the energy in
correspondence with the variational principle. For a certain bond dimension D

|ψ0,D〉 = arg min
|φD〉

〈φD|H|φD〉
〈φD|φD〉

, (2.45)

where |φD〉 is the tensor network ansatz with bond dimension D that is being
optimized and |ψ0,D〉 is the optimal wave function for fixed D.

As an example, let us consider a finite MPS consisting of five sites. A tensor Ti
of this MPS can be optimized by solving

∂

∂T †i

(
〈φD|H|φD〉
〈φD|φD〉

)
= 0, (2.46)

which can be rewritten as

HiTi − ENiTi = 0, (2.47)

with Hi and Ni defined as in Fig. 2.29. This process can be iterated over
all the tensors until convergence is reached. This method corresponds to a
reformulation of the single-site DMRG method in the MPS language [21,22].

Energy minimization schemes were adopted early on for finite PEPS as well [29,
30]. For iPEPS ansätze, however, energy minimizations can be difficult to im-
plement and early works, therefore, preferred the use of imaginary time evolu-
tion methods to find approximate ground state representations. One important
difficulty is that the optimization is highly non-linear because each tensor in
the iPEPS ansatz appears infinitely many times. Another difficulty is that the
computation of H in Eq. 2.47 involves a summation over an infinite number
of Hamiltonian terms which is challenging to compute. These problems were
largely addressed in Refs. [122,123], showing that energy minimization can pro-
duce results outperforming FU simulations. A more recent innovation has come
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from the incorporation of the automatic differentiation technique from machine
learning into energy minimization schemes, which greatly simplifies the imple-
mentation of the gradient computation [124].

2.6. Symmetries

Symmetries lie at the basis of many modern physical theories and can often
be used to massively simplify problems. In numerical physics, symmetries can
be used to reduce the degrees of freedom that need to be considered, and thus
they can increase the efficiency of simulations. In exact diagonalization this,
for example, allows you to reach larger system sizes, and also in tensor network
algorithms symmetries can be used to simulate larger bond dimensions.

On a lattice, symmetries can be divided into two categories. The first one
consists of spatial symmetries, such as translation, rotation, or mirror symme-
tries. We have, for example, already demonstrated how translation symmetry
is exploited in the iMPS and iPEPS ansätze. The second category comprises
internal symmetries, such as SU(2) spin rotational invariance. Here, we are
concerned with incorporating the latter. In our discussion, we will be following
Refs. [125,126].

For concreteness, we consider a U(1) symmetry acting on a Hilbert space H.
The U(1) symmetry group is often used for spin models or in the case of par-
ticle conservation.5 We can define a linear representation of the U(1) group
U(φ) : H → H, where U(φ) satisfies

U(φ1) + U(φ2) = U(φ1 + φ2), (2.48)

for φ1, φ2 ∈ [0, 2π). This representation is unitary if it satisfies

U†(φ)U(φ) = U(φ)U†(φ) = I, (2.49)

for φ ∈ [0, 2π).

In the presence of the symmetry, the Hilbert space can be decomposed as a
direct sum over irreducible representations of the group

H =
⊕
k

Hk, (2.50)

with Hk a (possibly degenerate) subspace of H. Each Hk can be associated to
a charge ck.

5Because of practical considerations, in our simulations we will make use of a Zq symmetry
(which is a subgroup of U(1)) with a high q.
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(a) (b) (c)

|ψ〉

U(φ)

= e−iφM
|ψ〉 U †(φ)

O

U(φ)

= O

U †(φ)

U †(φ)

T
U(φ)

= T

Figure 2.30: Symmetry conditions for various objects. (a) State |ψ〉. (b) Matrix
O. (c) Rank-3 tensor T .

As an example, let us consider a spin model with a U(1) symmetry of the
z-component of the spin. The generator of the symmetry is the total magneti-
zation

M =
∑
i

Szi , (2.51)

which has eigenstates |mak〉 with eigenvalue M |mak〉 = m |mak〉. In this case,
m is the charge (which can be interpreted as the magnetization) and a label ak
accounts for a potential degeneracy of Hk. We can write U(φ) as

U(φ) = exp (−iφM) . (2.52)

Let us now consider a state |ψ〉 ∈ H. It is considered symmetric if it transforms
as

U(φ) |ψ〉 = e−iφm |ψ〉 , (2.53)

which is displayed diagrammatically in Fig. 2.30(a). This implies that |ψ〉 can
be written in the basis of the corresponding subspace Hk.

A matrix O, e.g., the Hamiltonian H, is symmetric if it transforms as

U†(φ)OU(φ) = O, (2.54)

which is also shown in Fig. 2.30(b). Note that it follows from Schur’s lemma
that

O =
⊕
k

Ok, (2.55)

which implies that O conserves charge, i.e., a symmetric state |ψ〉 applied to O
will remain in the same symmetry sector.

2.6.1. Symmetric tensor networks

Let us now look at a rank-n tensor T , with each index of the tensor acting on
a certain Hilbert space H. For this tensor, we also want to define a symmetry
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U(φ)

U †(φ)

U †(φ)

U(φ)

U †(φ)

= =

U(φ)

U †(φ)

U †(φ)

U(φ)

U †(φ)

U(φ)

U †(φ)

U(φ)
U †(φ)

U(φ)

U †(φ)

U(φ)

U †(φ)

U(φ)
U †(φ)

Figure 2.31: An example of a tensor network satisfying the symmetry condition.
On each of the connected bonds, identities can be introduced U(φ)U†(φ) = I.
By using the symmetry condition from Eq. 2.57 for each individual tensor, we
obtain the diagram on the right.

condition. This can be done by grouping the indices of the tensor into two
arbitrary groups I1 and I2, i.e.,

H1 =
⊗
i∈I1

Hi, H2 =
⊗
i∈I2

Hi. (2.56)

This allows us to write the tensor T as a matrix similar to Eq. 2.54. We will
refer to I1 and I2 as incoming and outgoing indices, respectively. We can thus
write the symmetry condition as(

U (1)(φ)
)†
T
(
U (2)(φ)

)
= T, (2.57)

with U (1)(φ) =
⊗

i∈I1
U (i)(φ) and U (2)(φ) =

⊗
i∈I2

U (i)(φ), also see Fig. 2.30(c).
Note that this implies that the tensor in this form also obeys Eq. 2.55 and that
the incoming and outgoing indices preserve charge in a similar way. Tensor
elements that do not conserve charge violate the symmetry condition and thus
vanish. By writing T as a symmetric tensor, we thus require fewer parameters,
which means that we found a much more efficient representation of the tensor.

A tensor network that is composed of symmetric tensors, in its turn, is also
symmetric, as is shown for an example in Fig. 2.31.

2.6.2. Algorithms with symmetric tensors

We now consider some common operations used in tensor network algorithms
and how they can be done with symmetric tensors. Two of the most important,
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A

B
=

A

B
= C

Figure 2.32: A contraction of two symmetric tensors A and B. First, the
indices are labeled as incoming or outgoing depending on the index that is
being contracted over. After that, the contraction proceeds by multiplying the
different symmetry blocks and combining the results to construct tensor C.

and computationally demanding, operations are contractions and factorizations
such as the SVD or eigendecompositions. We will first focus on the former.

Consider two tensors A and B that we want to contract over a certain index,
see Fig. 2.32. First, we reshape the tensors to matrices in a similar way as done
in Eq. 2.56, where the incoming and outgoing indices are chosen based on the
index that is contracted. This brings the tensors to a block-diagonal form

A =
⊕
k

Ak, B =
⊕
k

Bk. (2.58)

The contraction C = A·B now proceeds by multiplying the respective symmetry
blocks, i.e., Ck = Ak · Bk. After this is done for all sectors, we obtain C =⊕

k Ck, and the indices of C are reshaped back.

For a factorization, such as the SVD, we can also make use of this block struc-
ture. For example, an SVD of A can be done by performing an SVD for each
Ak = UkskV

†
k . We obtain the resulting matrices as U =

⊕
k Uk, s =

⊕
k sk,

and V † =
⊕

k V
†
k .

A significant numerical cost saving is achieved through this block structure.
When we assume A has q symmetry sectors with a degeneracy d, the cost of,
for example, the SVD would be q3d3 if we use non-symmetric tensors, while the
symmetry construction reduces this to qd3. Note that in practice, algorithms
making use of symmetric tensors can suffer from numerical overheads for small
bond dimensions which are associated with maintaining the symmetric form.

One complication arising for algorithms using symmetric tensors is determining
the optimal charge sectors to keep on each index for the problem at hand. While
the charge sectors for the physical index are determined by the local basis of the
Hamiltonian, this is not the case for the virtual indices. The number of charge
sectors kept on the virtual indices is restricted by the iPEPS bond dimension
D. In practice, the most relevant charge sectors are determined dynamically
during the algorithms.

43



Chapter 2. Introduction to projected entangled-pair states

2

2.7. Extrapolations

One of the main limitations of iPEPS simulations is that the bond dimensions
that can be accurately reached are often limited and too small to reach sufficient
convergence. Through the use of symmetries, the attainable bond dimensions
can be increased, but they can still be too small to reach sufficient conver-
gence and symmetries cannot be used in all cases. Therefore, extrapolations
are commonly used to find estimates of observables.

A commonly used method in iPEPS simulations is the 1/D extrapolation. The
idea of this approach is that the exact state can be approached for at most D →
∞ or 1/D → 0. Observables like the energy typically converge faster than linear
in 1/D, however, which means that the extrapolation provides a lower bound.
One way to obtain an estimate, therefore, is to take the mean between the
extrapolated result and the value at the largest simulated D (which provides an
upper bound). As an error on this estimate one can use the difference with the
extrapolated or largestD result. The main appeal of the 1/D extrapolation is its
simplicity. Its accuracy can be limited though, especially for closely competing
phases.

Another approach is finite correlation length scaling which can be used in the
presence of a diverging correlation length. These methods were originally de-
veloped for iMPS ansätze [127–130] but were later successfully extended to
iPEPS [131, 132]. The main idea is that the finite D acts to constrain the cor-
relation length that can be described by the iPEPS to a maximum value ξD,
which can be tuned by varying D. An extrapolation in 1/ξD can then be per-
formed in a similar fashion to finite-size scaling in, e.g., exact diagonalization
or quantum Monte Carlo (QMC).

Other approaches have also been developed, such as extrapolations in the error
of the truncation toD obtained in the optimization. When the ansatz represents
the ground state exactly this error becomes zero. This type of extrapolation is
commonly used in MPS studies and it can also provide more accurate results
for iPEPS simulations [133].
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CHAPTER 3

Contraction approaches for 3D iPEPS

Tensor network algorithms have proven to be very powerful tools for studying 1D
and 2D quantum many-body systems. However, their application to 3D quantum
systems has so far been limited, mostly because the efficient contraction of a 3D
tensor network is very challenging. In this chapter, we develop and benchmark
two contraction approaches for iPEPS in 3D. The first approach is based on a
contraction of a finite cluster of tensors including an effective environment to
approximate the full 3D network. The second approach performs a full contrac-
tion of the network by first iteratively contracting layers of the network with a
boundary iPEPS, followed by a contraction of the resulting quasi-2D network
using the CTM. Benchmark data for the Heisenberg and Bose-Hubbard models
on the cubic lattice show that the algorithms provide competitive results com-
pared to other approaches, making iPEPS a promising tool to study challenging
open problems in 3D.

The contents of this chapter are based on Ref. [134].
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3.1. Introduction

Thanks to significant progress in (i)PEPS algorithms over the past years, they
have become a powerful approach for 2D strongly-correlated systems, especially
for 2D fermionic and frustrated systems which are notoriously hard to simulate
with QMC, see, e.g., Refs. [31–33,35,39,42–46,48–50,135]. Besides the compu-
tation of ground states, for which (i)PEPS was originally developed, significant
progress has also been achieved in other applications, including the study of
thermodynamic properties [118, 136–154], excited states [155, 156], real-time
evolution [148,157–159], and open systems [148,160].

The successes of tensor networks for both 1D and 2D quantum systems raise
the question of whether these methods can also be applied to 3D quantum
systems. It is expected that ground states in 3D typically require a smaller bond
dimension than their lower-dimensional counterparts because the entanglement
of a site gets shared with more neighbors, such that 3D states typically lie closer
to a product state. On the other hand, the presence of additional legs on the
tensors implies a higher computational cost for the algorithms, forming one of
the main obstacles in their development.

The main challenge of higher dimensional tensor networks is that they cannot
be contracted exactly, but only approximately, in contrast to the MPS. Sev-
eral generalizations of the 2D iPEPS contraction methods discussed in Sec. 2.4
to 3D have been proposed, including CTM in 3D [97, 161] and course-graining
methods, such as the HOTRG [101] and other algorithms [162,163]. Generaliza-
tions of the MPS-MPO contraction have also been considered. These methods
make use of a boundary (i)PEPS instead of a boundary (i)MPS and they have
been introduced for 3D classical systems [164–169]. They are also commonly
used in the context of imaginary time evolution algorithms of 2D quantum
states at zero [54,114,115] and finite temperature [118,136–140,145,148], which
effectively corresponds to a contraction of an anisotropic 3D network. Alterna-
tive algorithms outside these families have been proposed for 3D networks as
well, including embedding a small bulk part in an entanglement bath [149,170],
graph-based PEPS [171,172], isometric tensor networks [173], and TTN [66].

In this chapter, we extend the algorithmic toolbox by proposing two contrac-
tion techniques for the study of 3D quantum models. The first method is based
on the exact contraction of only a finite number of tensors while using an ef-
fective environment to approximate the rest of the network. This approach,
which we call cluster contraction in the following, provides a simple, approx-
imate contraction, with the accuracy being controlled by the cluster size. It
forms an extension of the approximate two-site cluster contraction used in pre-
vious works [171,172,174,175], and a related idea was also used in the CU and
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evaluation procedures proposed in Refs. [113,119,120] in 2D.

In the second approach, a full contraction of the network is performed by defin-
ing a 2D boundary iPEPS and by iteratively absorbing layers of the 3D network
(which can be seen as infinite projected entangled-pair operator (iPEPO) lay-
ers) into the boundary iPEPS. The contraction is based on the SU scheme [115]
which is commonly used in imaginary time evolution algorithms. After con-
vergence of the boundary iPEPS, the 3D tensor network can be effectively
represented by a quasi-2D tensor network which is contracted using the CTM
algorithm. The accuracy of this SU+CTM algorithm can be systematically con-
trolled by the bond dimensions of the boundary iPEPS and CTM environment
tensors.

The chapter is organized as follows: The cluster contractions and the SU+CTM
method are introduced in Sec. 3.2 and Sec. 3.3, respectively. In Sec. 3.4 bench-
mark results for the Heisenberg and the Bose-Hubbard model on the cubic
lattice are provided, with a comparison to previous studies based on QMC and
other approaches. Finally, we present our conclusions and outlook in Sec. 3.5.

3.2. Cluster contraction

The first contraction method that we will discuss is the cluster contraction.
We will make use of iPEPS tensors with the convention that the singular value
matrices are kept on each bond, that was discussed in Sec. 2.2.1. In the cluster
contraction, instead of performing a full contraction of the network, only a
small cluster of the network is contracted exactly, while the rest of the network
is taken into account only in an approximate way by absorbing the singular
value matrices on the outer legs of the cluster, in a similar spirit as done in the
SU imaginary time evolution algorithm. The smallest clusters are the 1× 1× 1
and 2 × 1 × 1 clusters depicted in Fig. 3.1 which can be used to evaluate one-
and two-site operators respectively. These contractions have a relatively low
computational cost of O

(
D7) and they were used as an approximate contraction

method before [171, 172, 174, 175]. We note that these contractions are exact
on a Bethe lattice (containing no loops) and have been used frequently in this
context [76,176–179].

While these small clusters have the advantage of having a low computational
cost, the involved contraction error may be quite substantial because of their
small sizes and because they entirely neglect loops in the network. Furthermore,
without a systematic way of increasing the contraction accuracy, it is hard to es-
timate the magnitude of the contraction error. For these reasons, we will extend
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(a) (b)

Figure 3.1: Diagrams of the smallest clusters used in the cluster contraction. In
(a) the 1×1×1 cluster is displayed which is used to evaluate one-site operators
and in (b) the 2 × 1 × 1 cluster is shown which is used for two-site operators.
The black circles represent singular value matrices, which provide an effective
environment, approximating the rest of the tensor network surrounding the
cluster.

the cluster contractions to larger clusters in this work. Adding an additional
layer of tensors around the site(s) on which the operator is measured results in
the 3× 3× 3 and 4× 3× 3 clusters, which are depicted in Fig. 3.2(d)-(e). The
computational cost of contracting these clusters has a high scaling of O

(
D29),

therefore in practice, it can typically only be used for D = 2 (without approx-
imations). In addition, we consider the 2 × 2 × 2 cluster shown in Fig. 3.2(c)
with a contraction cost scaling as O

(
D12), which we find offers a good trade-off

between accuracy and computational cost.

Cluster contractions are expected to provide reasonable results for states with
short-ranged correlations. Their main advantage is that they are simple to
implement and, for the smaller clusters, computationally relatively cheap to
perform. They can therefore be used for a quick first analysis of a model and
to identify parameter regions that could be interesting to simulate using more
sophisticated methods, such as the SU+CTM contraction method we introduce
in the following.

3.3. SU+CTM contraction

In this section, we introduce a method to perform a full contraction of the
infinite 3D network with an accuracy that can be systematically controlled. The
approach is based on a boundary iPEPS onto which layers of the 3D network
(which can be seen as iPEPO’s) are absorbed, see Fig. 3.3, in a similar spirit
as done in MPS-MPO based contractions of 2D tensor networks [29] which
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(a) (b)

(c) (d)

(e)

= =

Figure 3.2: Cluster contractions for larger clusters. In (a) and (b) a more
compact notation is introduced for graphical clarity. A full black circle rep-
resents λi, while a half circle represents

√
λi. Note that keeping the tensors

separated typically gives a lower computational cost. In (c) the 2×2×2 cluster
is displayed. In practice, separate diagrams, with the operator inserted on the
different bonds of this cluster, are computed and averaged over. Diagrams (d)
and (e) show the 3× 3× 3 and 4× 3× 3 clusters, respectively.
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(a) (b)

Figure 3.3: To contract the 3D tensor network a 2D boundary iPEPS is defined.
For graphical clarity, the bulk 3D iPEPS tensors are represented in the way
shown in (a). The half circles represent

√
λi which are contracted into the bulk

tensors. In (b) a contraction of an iPEPO layer with the boundary iPEPS is
displayed.

were discussed in Sec. 2.4.3. Methods based on a boundary iPEPS have been
previously developed in the context of 3D classical models [164–169]. While
these approaches are typically based on a direct optimization of the boundary
iPEPS, here we propose a computationally cheaper scheme that is applicable
also for general 3D tensor networks without any mirror or rotational symmetries.

The method is based on iterative absorptions of iPEPO layers onto a boundary
iPEPS until convergence is reached. A single iPEPO layer absorption is per-
formed by splitting it into a product of two-body gates which are contracted
with the boundary iPEPS, followed by a truncation similar to the one used in
the SU imaginary time evolution algorithm. The method is applied twice in
opposite directions to obtain an upper and a lower boundary iPEPS, represent-
ing the upper and lower half of the 3D network, respectively. The entire 3D
network can then be effectively represented by a quasi-2D network made of the
two boundary iPEPSs with a bulk iPEPO layer in between. The remaining
three-layer network is then contracted using CTM. Each of these stages of this
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(a)

(b)

U (1)

√
s(1)√

s(1)

V (1)†

g(1)

M (1) g(2)

M (2)
g(3)

M (3)

g(4)

g(5)

Figure 3.4: In (a) we show the decomposition of a bulk tensor in the 3D iPEPS
to rank-3 tensors by sequentially splitting off legs using an SVD. After each SVD
the square root of the singular value matrix is absorbed on each side (see main
text for more details). In (b) the network of rank-3 tensors that is obtained
after the decomposition is shown for a bipartite cubic lattice.

algorithm, which we call the SU+CTM contraction, will be discussed in detail
in the following.

3.3.1. SU approach for the boundary iPEPS

We will start by explaining how an absorption of a single iPEPO layer onto the
boundary iPEPS is performed. First, the bulk tensors are decomposed in such a
way that the transformed network solely consists of rank-3 tensors. This is done
by performing a sequence of SVDs in the following way (see also Fig. 3.4(a))

T lrbfudp = Tup,lrbfd =
∑
a1

U(1)
up,a1

s(1)
a1

V(1)†
lrbfd,a1

=

=
∑
a1

g(1)
ua1pM

(1)
ra1,lbfd

=
∑
a1a2

g(1)
ua1pU

(2)
ra1,a2

s(2)
a2

V(2)†
lbfd,a2

=
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= · · · =
∑

a1a2a3a4a5

g(1)
ua1pg

(2)
ra1a2

g
(3)
la2a3

g
(4)
fa3a4

g
(5)
ba4d

, (3.1)

where T lrbfudp is a tensor of the iPEPS network with the square root of the
singular value matrices on the virtual bonds absorbed into it. At each decom-
position step the square root of the singular value matrix obtained from the SVD
is absorbed on each side, so we have g(j) = U(j)

√
s(j) and M(j) =

√
s(j)V(j)†.

Note that the bond dimension in the middle of each string of rank-3 tensors
can become large. In principle, a truncation can be done on the singular value
spectrum to reduce the computational cost. In practice, however, it turns out
that the CTM procedure, which is discussed in the next section, typically gives
the dominant contribution, therefore we do not perform a truncation here.

Figure 3.4(b) shows an example of the network that is obtained from this de-
composition for a bipartite lattice. The tensors on the two sublattices are split
in different orders, such that the connecting horizontal legs between neighbor-
ing pairs of tensors are properly aligned. By thinking of the pairs of rank-3
tensors as two-body gates, we can absorb them onto the boundary iPEPS and
perform a truncation in a similar way as in the SU imaginary time evolution
algorithm. A single step of this procedure is shown in detail in Figs. 3.5(a)-(d).
Both a gate from the bra- and the ket-layer are contracted at the same time.
Figure 3.5(e) shows the absorption of the tensors carrying the physical bond,
which does not involve a truncation. The maximum bond dimension that is
used for the boundary iPEPS is denoted by χb. The iterative contraction of
the iPEPO layers is continued until convergence is reached in the computed ex-
pectation values, which for the benchmark models that will be discussed later
is achieved in less than ten iterations. Alternatively, the convergence of the
boundary iPEPS singular value matrices can also be used as a convergence cri-
terion. In general, there is no reflection symmetry in the iPEPS. Therefore, a
contraction from the opposite direction (using another boundary iPEPS) is also
required with the mirrored procedure. The upper and lower boundary iPEPS
are initialized by a contraction of the bulk tensors as shown in Fig. 3.5(f). The
dominant scaling of the boundary iPEPS contraction is O

(
χ5
bD

8 + χ4
bD

10).
3.3.2. Three-layer CTM

In the first part of the algorithm discussed in the previous section, we explained
how to obtain the converged upper and lower boundary iPEPS which repre-
sent the upper and lower half of the 3D network, respectively. The entire 3D
network can then be represented by the double-layer network made of the two
boundary iPEPS. For the computation of observables, we additionally keep a
single bulk iPEPO layer sandwiched between the two boundary iPEPS, result-
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Figure 3.5: In (a)-(d) one step of the SU contraction is displayed. The open cir-
cles indicate the singular value matrices λbi that are introduced on the boundary
iPEPS. In (a), tensors from the bra- and ket-layer are applied onto the boundary
iPEPS tensors as are the singular value matrices from the neighboring bonds.
In (b), an (iterative) SVD is performed, after which the identities λbi

(
λbi
)−1 are

inserted on each external bond in (c). In (d) the
(
λbi
)−1 are contracted to ob-

tain the new tensors. In (e), an absorption of the tensors carrying the physical
bonds is shown which does not require a truncation. (f) shows the initialization
of the upper boundary iPEPS tensors which are obtained from a contraction of
the bulk iPEPS tensors. On the top, two singular value matrices of the bulk
tensors, which are indicated by filled black circles, are used as an effective envi-
ronment in a similar spirit as in the cluster contraction. The half circles indicate
that a square root of the singular value matrix is taken. The initial singular
value matrices of the boundary iPEPS are obtained by combining the bra- and
ket-layer singular value matrices from the bulk tensors in the plane.
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(a)

=

(c)

χc

χb

D

(b)

Figure 3.6: The 3D network is effectively represented by a three-layer network,
made of the two converged boundary iPEPS with an iPEPO layer of bulk tensors
sandwiched in between, shown in (a) for one site of the resulting quasi-2D
network. This 2D network is contracted using the CTM yielding the corner and
edge tensors surrounding the central site shown in (b), each representing part of
the system as indicated by the shaded regions. In (c) the diagram corresponding
to the expectation value of a one-site operator is displayed.

ing in the three-layer network shown in Figs. 3.6(a)-(b). In the second part of
the algorithm, this quasi-2D network is contracted using the directional CTM
method [95], with the renormalization procedure from Ref. [32].1 We will denote
the environment bond dimension by χc. The dominant scaling of this three-layer
CTM scheme is O

(
χ3
cχ

4
bD

4 + χ2
cχ

6
bD

6 + χ2
cχ

4
bD

9), which makes this the com-
1We note that the QR decomposition in Ref. [32] is not required for the computation of

the projectors [98].
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putationally most expensive part of the SU+CTM contraction algorithm.

Once the environment tensors are converged, expectation values can be evalu-
ated in the standard way, as shown in Fig. 3.6(c) for the example of a one-site
operator. For two-site operators, only operators lying within the additional
iPEPO layer can be directly computed. To evaluate two-site operators along
the direction orthogonal to the iPEPO layer, another SU+CTM contraction is
performed using a rotated iPEPS network.

3.4. Results

3.4.1. Heisenberg model

To benchmark the contraction methods, we first present results for the spin-1/2
antiferromagnetic Heisenberg model on the cubic lattice. This model is given
by the Hamiltonian

H = J
∑
〈ij〉

SiSj , (3.2)

where Si are spin-1/2 operators and J > 0. The iPEPS tensors are obtained
using the SU imaginary time evolution algorithm. We make use of an ansatz
with two independent tensors on the two sublattices. We perform simulations
for D = 2 − 4 and, in order to reduce the computational cost, we use tensors
with a U(1) symmetry [125,126].

We start by analyzing the convergence behavior of the SU+CTM contraction,
first as a function of the CTM environment dimension χc, for fixed values of D
and χb. Figure 3.7 presents results for the energy per site and the average local
magnetic moment m = 1

N

∑N
i=1 |〈Si〉|, where i goes over all the non-equivalent

sites in the ansatz (i.e., N = 2 in our ansatz with two independent tensors). For
both observables, convergence is achieved at moderate values of χc, although
higher values are required for larger D and χb, as is expected. In the following,
the value of χc is fixed to a sufficiently large value, such that errors from the
CTM contraction are negligible.

We next study the convergence of the SU+CTM as a function of the boundary
iPEPS bond dimension, χb, first focusing on the energy shown in Fig. 3.8(a).
The SU+CTM contractions show a rapid convergence as a function of χb. The
χb required for convergence increases with D, still, even for the largest D = 4
already a modest χb ∼ 7 results in a very small contraction error. In the same
figure, we also present data obtained from the cluster contractions. The energy
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(a) (b)

Figure 3.7: Convergence of (a) the energy and (b) the local magnetic moment
m as a function of inverse CTM boundary dimension 1/χc, for various D and
χb.

obtained with the smallest 2 × 1 × 1 cluster shows a large deviation from the
SU+CTM results already for D = 2, with only little improvement for higher
D. The 2 × 2 × 2 cluster gives a significant improvement over the 2 × 1 × 1
cluster. The 4×3×3 cluster improves this result further and shows a remarkable
agreement with the SU+CTM result for D = 2. As mentioned in Sec. 3.2, it
was not possible to use this last cluster for higher values of D due to the high
computational cost.

For the local magnetic momentm, shown in Fig. 3.8(b), similar observations can
be made. The most important difference is that the 2×2×2 cluster contraction
provides a less significant improvement over the smallest 1× 1× 1 cluster.

To obtain an estimate of the energy and m in the exact infinite D limit, we at-
tempt an extrapolation based on the effective correlation length ξD, an approach
that has been used also for iPEPS in 2D [131,132] and which was explained in
Sec. 2.7. The correlation length can be computed from the two leading eigen-
values of the transfer matrix represented by the edge tensors in CTM [180], and
ξD corresponds to the value for a given D in the χb, χc →∞ limit.2 We make
use of the finite-size scaling ansatz for the energy and m2 derived in Ref. [181],
where the leading finite-size corrections scale as 1/L4 and 1/L2, respectively.

2The extrapolated values are ξD=2 = 0.489(1), ξD=3 = 0.528(4), and ξD=4 = 0.81(1).
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(a) (b)

(c) (d)

Figure 3.8: The results for (a) the energy and (b) the local magnetic moment
m obtained with the SU+CTM method as a function of the inverse boundary
iPEPS dimension 1/χb and the cluster contractions which are plotted on the
vertical axis. The QMC result extrapolated to the thermodynamic limit is
shown by the dashed line. In (c) and (d) a linear extrapolation based on the
effective correlation length ξD is presented for the energy as a function of 1/ξ4

D

and form2 as a function of 1/ξ2
D, respectively. For comparison, finite-size scaling

results from QMC using system sizes L = 6, 8, 10 and 12 are shown.

In Figs. 3.8(c) and (d) we present the iPEPS results for the energy and m2

in comparison with QMC data, obtained with the loop algorithm from the
ALPS library [182, 183] for system sizes up to L = 12 and at sufficiently low
temperatures (T = 0.005J) such that finite temperature effects are negligible
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(b)(a)

Figure 3.9: The HOTRG results for (a) the energy and (b) the local magnetic
moment m as a function of the inverse bond dimension 1/χ compared to the
SU+CTM results as a function of 1/χb.

compared to the error bars. For the energy, we find a good agreement between
the extrapolated iPEPS, −0.9024(1), and QMC result, −0.902325(11). The
estimate for m2 obtained with iPEPS, 0.1826(2), is slightly higher than the
QMC value, 0.1786(4), which is most likely due to the local SU optimization
scheme used here (which typically tends to overestimate the order parameter).
Still, the relative error is only ≈ 2%, and we expect that the accuracy can be
further improved by using more accurate optimization schemes.

Finally, in Fig. 3.9, we compare our SU+CTM results to a contraction of the
converged iPEPS tensors using HOTRG [101]. Here we use a modified approach
adapted to the anisotropic case where the projectors are computed in a similar
way as in Ref. [107], which was discussed in Sec. 2.4.2. We observe that the
convergence of the HOTRG results is strongly irregular and exhibits several
plateaus, in contrast to the SU+CTM results which exhibit a fast and regular
convergence. One possible reason for this behavior is that the distribution of the
singular values obtained in HOTRG decays only very slowly, much slower than
the spectrum in the SU+CTM approach. While there seems to be a tendency
that HOTRG approaches the SU+CTM results, it was not possible to reach
high enough χ to fully converge due to the high computational cost.
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3.4.2. Bose-Hubbard model

As a second benchmark case, we consider the Bose-Hubbard model defined by
the Hamiltonian

H = −t
∑
〈ij〉

b†i bj + U

2
∑
i

ni(ni − 1)− µ
∑
i

ni, (3.3)

with t the hopping amplitude, U the on-site interaction, µ the chemical poten-
tial, b†i (bi) the bosonic creation (annihilation) operator and ni = b†i bi the num-
ber operator. At zero temperature the model exhibits Mott insulating phases
with integer particle filling for t� U and a superfluid phase (SF) for t� U [14].

We again make use of the SU imaginary time evolution to obtain the iPEPS
tensors. To perform the iPEPS simulations with finite local Hilbert spaces we
introduce a cutoff on the maximum occupation number on each site. The size of
this cutoff is chosen such that the induced error is negligible. For the simulations
of the n = 1 and n = 2 Mott lobes, a cutoff of nmax = 3 and nmax = 4 are used,
respectively. To obtain the data in one of the phases, simulations are started
deep in this phase and the converged iPEPS at one data point is used as the
initial state of the SU optimization at the next data point. For a given value
of D, the phase transition point can be determined by locating the intersection
of the iPEPS energies of the two phases. In contrast to the Heisenberg case in
the previous section, the U(1) symmetry cannot be exploited here because it is
broken in the superfluid phase. For this reason, the maximal bond dimension
we consider here is D = 3. The SU+CTM contractions are performed using
χb = 8 and χc = 21, which are sufficiently large to make the remaining finite
χb and χc errors much smaller than the symbol sizes.

We first consider two selected cuts in the phase diagram at the tip of the first and
second Mott lobes. Figure 3.10 shows a comparison between results obtained
from the SU+CTM and cluster contractions for the energy, particle number, and
the order parameter

〈
b†
〉
close to the tip of the n = 1 lobe for fixed µ/U = 0.4

as a function of t/U . For the energy, the 2 × 1 × 1 cluster shows a large devi-
ation compared to the other results. The 2 × 2 × 2 cluster gives a significant
improvement and there is only a slight shift in the location of the phase transi-
tion compared to the SU+CTM contraction (which is mostly due to the small
angle at which the energies of the two phases intersect). For the particle number
and the order parameter a much smaller improvement is seen when going from
the 1× 1× 1 cluster to the 2× 2× 2 cluster when compared to the SU+CTM
result, as previously observed for m in the Heisenberg model. Still, the absolute
error on the scale shown in Figs. 3.10(b)-(c) is small. Figure 3.11 shows results
close to the tip of the second Mott lobe at fixed µ/U = 1.45, for which similar
observations can be made.
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(a)

(b)

(c)

Figure 3.10: A cut through the phase diagram at the tip of the first Mott lobe
for fixed µ/U = 0.4 as a function of t/U obtained with D = 3. In (a) the energy
of both phases is shown obtained using the cluster and SU+CTM contraction.
The inset displays a zoom of the same results close to where the contractions
indicate the phase transition to take place, marked by arrows. In (b) and (c)
the particle number and order parameter

〈
b†
〉
of the lowest energy state are

shown, respectively.
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(a)

(b)

(c)

Figure 3.11: Same as in Fig. 3.10 for a cut through the phase diagram at the
tip of the second Mott lobe with fixed µ/U = 1.45.

We note that the jump in the order parameter
〈
b†
〉
at the phase transition in the

2× 2× 2 cluster and the SU+CTM results seem to indicate that the transition
is of first order, whereas the transition is known to be of second order. This is
most likely an artifact of the SU optimization scheme used here which, since it
is a local update, does not accurately reproduce the diverging correlation length
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Figure 3.12: Ground state phase diagram of the first two Mott lobes of the
Bose-Hubbard model obtained with the cluster and SU+CTM contraction. For
comparison, results from B-DMFT [184], QMC [185], an exact solution for a
Bethe lattice with coordination number z = 6 [186], and static MF theory are
shown.

across a second-order transition. The accuracy of the order parameter around
the transition could be improved using more accurate optimization schemes [54,
114, 119, 124]. Still, we can nevertheless obtain an accurate estimate of the
critical point based on the intersection of the energies when compared to QMC
as we show in the following.

By performing simulations along additional cuts, we can construct the ground
state phase diagram for the first two Mott lobes shown in Fig. 3.12. We have
restricted these additional simulations to the cluster contractions, which are
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computationally substantially cheaper than the SU+CTM method, and, as we
have found previously, the 2× 2× 2 cluster already provides an estimate which
is close to the SU+CTM result. For comparison, we added previous results
from bosonic dynamical mean-field theory (B-DMFT) [184], QMC [185], an
exact solution on the Bethe lattice for coordination number z = 6 [186], and
the mean-field result (MF). While the D = 2 phase boundary only provides
a slight improvement over the MF result, the data obtained for D = 3 with
the 2 × 2 × 2 cluster and the SU+CTM contraction show a close agreement
with the QMC results. This demonstrates that already a relatively small bond
dimension is sufficient to obtain the phase diagram with a remarkable accuracy
that is competitive or even better than B-DMFT. Another observation we can
make is the agreement between theD = 3 results obtained by the 2×1×1 cluster
and the z = 6 Bethe lattice results. This is because the simulation based on the
SU imaginary time evolution approach brings the iPEPS to a quasi-canonical
form, see Sec. 2.5.1. Combined with the 2× 1× 1 contraction this is equivalent
to an iPEPS simulation on the Bethe lattice.

3.5. Summary and discussion

In this chapter, we have presented two iPEPS contraction approaches to study
3D quantum many-body systems. The cluster contraction provides an approx-
imation to the 3D contraction by only contracting a small cluster of tensors
exactly while the rest of the network is taken into account approximately via
the singular values on the boundary bonds of the cluster. The contraction error
for the smallest 1×1×1 and 2×1×1 clusters, which have been used in previous
studies [171, 172, 174, 175], can be quite large. A considerable improvement (at
least for the energy) is obtained when using the larger 2 × 2 × 2 cluster which
is computationally still affordable. The SU+CTM method enables a full con-
traction of the 3D tensor network by iteratively absorbing iPEPO layers with
a lower and upper boundary iPEPS, and by contracting the resulting quasi-2D
tensor network using CTM. The accuracy can be systematically controlled by χb
and χc, the bond dimension of the boundary iPEPS and the CTM environment
tensors, respectively. A fast convergence as a function of χb and χc is observed,
significantly outperforming a HOTRG contraction for the Heisenberg model.
For the Bose-Hubbard model, we found that already a relatively small D = 3
yields a phase diagram that is in close agreement with QMC. We have shown
that the combination of the two contraction approaches provides a practical
way to compute a phase diagram at a reasonable computational cost.

There are various ways in which the accuracy of the methods can be further
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improved. For the optimization of the iPEPS tensors, a higher accuracy can
be obtained by using FU [54], or FFU [114], which, for each truncation step
in the imaginary time evolution, takes the entire wave function into account,
in contrast to the local SU update. However, the computational cost of these
approaches is also substantially higher than the SU scheme. Alternatively, a
CU [113,119,120], which only takes a cluster of tensors into account to perform
a truncation, may provide an optimal trade-off between accuracy and computa-
tional cost. Schemes based on a direct energy minimization, e.g., based on au-
tomatic differentiation [124], may be another interesting option. The SU+CTM
contraction itself could in principle also be further improved by replacing the
SU with a full (or cluster) update scheme, albeit also here at the expense of a
higher computational cost.

We expect these methods to provide a promising path towards simulating chal-
lenging 3D quantum systems, such as, e.g., the pyrochlore Heisenberg model,
layered systems, and ultra-cold atoms in optical lattices, especially for cases
that are out of reach by QMC due to the negative sign problem. Finally, we
note that these approaches can also be extended to the finite temperature case
or to other types of lattices in a rather straightforward way, as was done in 2D.
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CHAPTER 4

Contraction approaches for layered
systems

Strongly-correlated layered 2D systems are of central importance in condensed
matter physics, but their numerical study is very challenging. Motivated by
the enormous successes of tensor networks for 1D and 2D systems, we develop
an efficient tensor network approach based on iPEPS for layered 2D systems.
Starting from an anisotropic 3D iPEPS ansatz, we propose a contraction scheme
in which the weakly interacting layers are effectively decoupled away from the
center of the layers, such that they can be efficiently contracted using 2D con-
traction methods while keeping the center of the layers connected in order to
capture the most relevant interlayer correlations. We present benchmark data
for the anisotropic 3D Heisenberg model on a cubic lattice, which shows close
agreement with QMC and full 3D contraction results. Finally, we study the
dimer to Néel phase transition in the SSM with interlayer coupling, a frustrated
spin model that is out of reach of QMC due to the negative sign problem.

The contents of this chapter are based on Ref. [187].
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4.1. Introduction

A special and highly relevant class of 3D quantum systems is formed by lay-
ered 2D systems, in which the effective intralayer couplings are much stronger
than the interlayer ones. Important realizations include the cuprate high-Tc
superconductors [58] as well as various quasi-2D frustrated magnets such as
Kagomé [60], triangular [61, 188–191], SSM [59, 192, 193], and honeycomb lat-
tice compounds [62,194–196]. While pure 2D models often already capture the
relevant physics of these systems, the interlayer couplings can play an important
role on the quantitative level. For example, they lead to a finite Néel transition
temperature in layered square lattice Heisenberg models as opposed to the pure
2D case [197], or they may play a significant role in the competition of low-
energy states in the 2D Hubbard model [35]. Thus, accurate tensor network
approaches to study these systems would be highly desirable.

In this chapter, we introduce an efficient tensor network algorithm for layered
2D systems, called the layered corner transfer matrix (LCTM) method, which
is substantially simpler and computationally cheaper than full 3D approaches.
Motivated by the layered nature of these systems, we start from an anisotropic
iPEPS ansatz, i.e., with a small interlayer bond dimension Dz compared to
the intralayer bond dimension Dxy, which control the accuracy of the ansatz.
The main idea of the algorithm is to contract the 3D tensor network by (1)
performing an effective decoupling of the layers away from the center of each
layer, (2) contracting the individual decoupled layers using the standard 2D
CTM method [32, 94, 95], and (3) contracting the remaining tensor network,
formed by the contracted layers connected with a finite bond dimension Dz > 1
in the center of each layer. A core ingredient of the approach is the effective
decoupling procedure that we implement based on an iterative FU truncation
scheme [54,114].

The chapter is organized as follows. In Sec. 4.2 the algorithm will be discussed.
We present benchmark results in Sec. 4.3 for the anisotropic Heisenberg model
on a cubic lattice, which show close agreement with a full 3D contraction and
with QMC data already for small Dz. As a more challenging example we con-
sider a frustrated spin model, the SSM with interlayer coupling, for which QMC
fails due to the negative sign problem. Finally, in Sec. 4.4 we draw our con-
clusions and highlight directions for future improvements and extensions of the
LCTM approach.
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Dxy

Dz

= D2
xy

D2
z

=

(a) (b)

(c)

Figure 4.1: (a) Anisotropic 3D iPEPS ansatz with intralayer and interlayer
bond dimensions Dxy and Dz, respectively. (b) The norm tensor represents the
combined bra- and ket-tensors on each site where pairs of auxiliary indices are
combined into new auxiliary indices with dimensions D2

xy and D2
z , respectively.

(c) Same as in (b) but with a local operator between the bra- and ket-tensors
for the evaluation of a local expectation value.

4.2. LCTM method

We consider a cubic iPEPS ansatz, shown in Fig. 4.1(a), in which each tensor
has seven indices: one physical index carrying the local Hilbert space of a site,
four indices with bond dimension Dxy connecting to the intraplane nearest-
neighbor tensors, and two indices of dimension Dz connecting to the tensors
in the neighboring planes. We choose Dxy ≥ Dz motivated by the anisotropic
nature of layered 2D systems. In the limit of Dz = 1, the ansatz corresponds to
a product state of 2D iPEPS layers, i.e., a state without entanglement between
the layers (but with entanglement within the layers, controlled by Dxy).

The main challenge of a 3D tensor network algorithm is the efficient, approxi-
mate contraction of the 3D tensor network, which is needed to compute, e.g., a
local expectation value. Let us consider computing the norm of the wave func-
tion. The corresponding tensor network is depicted in Fig. 4.2(a), where the
norm tensors (blue) represent the combined bra- and ket-tensors on each site
as shown in Fig. 4.1(b). To compute a local expectation value, we can simply
put an operator between the local tensors as shown in Fig. 4.1(c) and replace
the norm tensor with this new tensor at the desired location.

In the simplest case, for Dz = 1, this network consists of independent 2D square
lattice networks that can be efficiently contracted using the CTM method [32,
94,95]. For the case Dz > 1, a full 3D contraction algorithm as in Chap. 3 could
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(a) (b)

(c)

χ

(d)

Figure 4.2: The main steps of the LCTM contraction method. (a) 3D tensor
network representing the norm. (b) Tensor network with decoupled layers away
from the center, obtained by a projection (black triangles) of the vertical indices
of bra- and ket-tensors in (a) onto Dz = 1 (except in the center). (c) The
decoupled 2D layers are contracted using the CTM method, which yields the
environment tensors around the central tensor, i.e., four corner and four edge
tensors (in black), with an accuracy controlled by the boundary bond dimension
χ. (d) The infinite central chain with contracted layers can be evaluated by
replacing the neighboring layers by the left- and right-dominant eigenvector
(black squares) of the transfer matrix represented by a contracted layer. A
local expectation value can be computed by replacing the central norm tensor
by the yellow tensor shown in Fig. 4.1(c).

be used. This, however, is computationally expensive, and we thus follow a more
efficient strategy here, exploiting the anisotropic nature of the ansatz. The main
idea is to project the vertical indices of the bra- and ket-iPEPS tensors away
from the center of each layer onto Dz = 1 (see details below), while keeping
the full bond dimension Dz > 1 on the tensors in the center; see Fig. 4.2(b).
This leads to an effective decoupling of the 2D layers away from the center, such
that the standard 2D CTM approach can be used to contract them (Fig. 4.2(c))
while the most relevant interlayer correlations are still taken into account by
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(a) (b)

Figure 4.3: Relevant diagrams to compute (a) intra- and (b) interlayer nearest-
neighbor observables, where the yellow tensor is obtained from contracting
neighboring bra- and ket-tensors with a two-site operator in between.

the vertical connections of the tensors in the center. Since the bonds in the
z-direction carry only little entanglement, the projection onto Dz = 1 away
from the center is expected to induce only a small error on a local expectation
value measured in the center. After contracting each layer, the resulting tensor
network corresponds to an infinite 1D chain in the vertical direction with bond
dimension D2

z , which can be evaluated by sandwiching the central layer between
the left- and right-dominant eigenvector of the corresponding transfer matrix
(represented by a contracted layer), as shown in Fig. 4.2(d).

A core ingredient of the algorithm is the projection step from Dz > 1 to Dz = 1.
We use a scheme based on a FU truncation [54, 114], a technique that is also
applied in the context of imaginary time evolution algorithms to truncate a
bond index in an iPEPS, see App. 4.A.1. The FU does require the environment
tensors, which we initially do not have. We thus start from an initial approx-
imate projection based on the SU approach [115], which only considers local
tensors for the truncation, from which the environment for the FU projection is
computed. To improve the accuracy of the truncation, one can repeat the com-
putation of the environment iteratively. In practice, for the models considered
here, we find that one FU iteration is sufficient to reach convergence.

The accuracy of the LCTM method is controlled by the boundary bond dimen-
sion χ and by the number of Dz > 1 connections kept in the center. Here, we fo-
cus on the simplest case, where we only keep the connections on the central ten-
sor for the evaluation of one-site observables and interplane two-site observables
(see Fig. 4.3(b)), which we find is sufficient in the limit of weak interlayer cou-
pling, as we will show in our benchmark results. For intralayer two-site observ-
ables we keep two connections, as depicted in Fig. 4.3(a). The computational
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cost of these contractions are χ3D4
xy + χ2D6

xyD
2
z and min

[
χ3D6

xy, χ
3D4

xyD
4
z

]
,

respectively. In App. 4.A.4, we discuss other layer decoupling approaches and
we also consider a scheme with more connections, which is more accurate, but
also computationally more expensive.

The LCTM contraction method can not only be used for the computation of
observables, but also in combination with accurate optimization schemes (to
find the optimal variational parameters in the tensors for a given Hamiltonian),
e.g., in an imaginary time evolution with FFU [114] or in energy minimization
algorithms [122–124]. We further note that the LCTM method can be extended
to arbitrary unit cell sizes in a similar way to the standard CTM in 2D [32,96].

4.3. Results

4.3.1. Anisotropic Heisenberg model

To benchmark the method, we consider the anisotropic 3D Heisenberg model
on a cubic lattice given by the Hamiltonian

H = Jxy
∑
〈ij〉xy

SiSj + Jz
∑
〈ij〉z

SiSj , (4.1)

with Jxy the intralayer and Jz the interlayer coupling strengths and Si spin
S = 1/2 operators. We use an iPEPS ansatz with two tensors, one for each
sublattice, to capture the long-range antiferromagnetic order. The iPEPS is
optimized with the FFU imaginary time evolution algorithm [114], starting from
initial tensors obtained with SU optimization [115]. In the CTM approach, we
keep a sufficiently large boundary bond dimension χ, such that finite-χ effects
are negligible (see App. 4.A.4). To improve the computational efficiency, tensors
with implemented U(1) symmetry [125,126] are used.1 We compare our results
to the ones computed with the full 3D contraction approach (SU+CTM) from
Sec. 3.3 and with QMC results based on the directed loop algorithm from the
ALPS library [182, 183] (obtained at a sufficiently low temperature of T =
0.005Jxy). To extrapolate the QMC data to the thermodynamic limit, a finite
size scaling analysis is performed using the scaling relations for the isotropic
3D Heisenberg model on the cubic lattice from Ref. [181] for lattices of size
L × L × L/2 with L up to 20 for Jz/Jxy = 0.05 and 0.1, and with L × L × L
lattices for a maximum L of 12 for Jz/Jxy = 0.2− 0.4.

1We note that the SU(2) spin symmetry is broken in the ground state.
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(a)

(b) (c)

Figure 4.4: Results for the anisotropic 3D Heisenberg model with Jz/Jxy =
0.1 as a function of 1/Dxy, obtained for Dz = 1 − 3. For comparison, the
extrapolated QMC results are indicated by the horizontal dashed lines with
the extrapolation error bar shown on the y-axis, which is of the order of the
line width in (a) and (c). Data based on the full 3D contraction approach
(SU+CTM) is shown by the black symbols. (a) Energy per site e in units of
Jxy. (b) Local magnetic moment m. (c) Nearest-neighbor spin-spin correlator
in the z-direction, 〈SS〉z (top), and in the xy-direction, 〈SS〉xy (bottom).

We first consider the results for the energy per site, e, for Jz/Jxy = 0.1 in
Fig. 4.4(a), plotted as a function of inverse bond dimension Dxy for different
values of Dz. Already a product of iPEPS layers (Dz = 1) yields a value that
is remarkably close to the QMC result, with a relative error of only 0.15% for
Dxy = 6. When Dz is increased to 2, a significant improvement is found and the
relative error at Dxy = 6 is reduced to 0.05%, while a further increase to Dz = 3
only yields a small enhancement. Overall, the improvement of the variational
energy is clearly larger when increasing Dxy (at least up to 4) compared to
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Figure 4.5: Energy per site as a function of Jz/Jxy for different sets of bond
dimensions, in comparison with data from a full 3D contraction (SU+CTM)
and extrapolated QMC results.

the improvement when increasing Dz, which further motivates the use of an
anisotropic ansatz with Dxy > Dz. Comparing the LCTM scheme with the full
3D contraction (SU+CTM) only a small difference between the two methods is
found.

Results for the local magnetic moment m are shown in Fig. 4.4(b). Whereas
m systematically approaches the QMC result with increasing Dxy, the depen-
dence on Dz is small, suggesting that the reduction of the magnetic moment is
predominantly due to the intraplane quantum fluctuations. The relative error
of m at Dxy = 6 and Dz = 3 is 1.7(1)%. In Fig. 4.4(c) we present results for the
nearest-neighbor spin-spin correlators in the intraplane and z-direction. The
former is more accurately reproduced, which is a natural consequence of the
fact that the latter enters with a prefactor Jz/Jxy = 0.1 in the optimization of
the tensors. Still, we find that the QMC result is approached with increasing
Dz at large Dxy (note that increasing the two bond dimensions has an opposite
effect on the change in the 〈SS〉z correlator, see App. 4.A.4).

In Fig. 4.5 we present results for the energy per site as a function of Jz/Jxy,
for selected values of Dxy and Dz. Starting with the data for Dxy = 3 and
Dz = 2 we find that the deviation with respect to the SU+CTM result slightly
increases with increasing Jz/Jxy, although the deviation remains small even at
a relatively large value of Jz/Jxy = 0.4. For a small ratio Jz/Jxy = 0.05, a
product of iPEPS layers (Dz = 1) for Dxy = 6 already provides an energy close
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to the QMC result, with only a small improvement when increasing Dz to 2. In
contrast, for Jz/Jxy = 0.4 the energy gain is large when increasing Dz, which
is a natural consequence of the stronger entanglement between the layers for
larger interlayer coupling.

4.3.2. Shastry-Sutherland model

We next consider a more challenging problem, the Shastry-Sutherland model [198]
(SSM) - a frustrated spin model relevant for SrCu2(BO3)2 [59] for which QMC
suffers from the negative sign problem [199]. It is described by square lattice
layers of coupled dimers with Hamiltonian

H = J
∑
〈ij〉

SiSj + J ′
∑
〈ij〉′

SiSj + J ′′
∑
〈ij〉′′

SiSj , (4.2)

with J and J ′ the intra- and interdimer couplings, Si spin S = 1/2 operators,
and with an additional interlayer coupling J ′′ to the model as in Ref. [70]. We
make use of a cubic iPEPS ansatz, with one tensor per dimer as previously
done for the 2D model [69]. To improve the efficiency we use tensors with U(1)
symmetry.

We consider the dimer to antiferromagnetic phase transition for fixed J ′/J while
varying J ′′/J and compare it to fourth-order series expansion (SE) results [70].
The location of the phase transition is determined from the intersection of the
exact energy of the dimer state (−0.375J per site) with the energy of the antifer-
romagnetic state. To obtain the energies of the antiferromagnetic states across
the phase transition, we initialize the FFU optimizations from states obtained
in the antiferromagnetic phase. Thanks to hysteresis effects across the first or-
der phase transition, the state remains in this phase even beyond the critical
coupling. For J ′/J = 0.61, shown in Fig. 4.6(a), we find a close agreement with
the SE result at large bond dimensions and also based on an extrapolation in
inverse bond dimension.2 For larger values (within the dimer phase) no estimate
from SE exists due to convergence problems [70]. With iPEPS, in contrast, we
can accurately determine the transition, as shown in Fig. 4.6(b) for J ′/J = 0.66.
We will study the model in more detail in Chap. 5.

2The extrapolation of the energy is done based on an approach similar to the inverse
bond dimension extrapolation discussed in Sec. 2.7. Since we have two bond dimensions, we
perform a linear extrapolation in 1/κ, with Dxy = κ and Dz = (κ− 1)/2, using the data for
(Dxy = 5, Dz = 2), (Dxy = 7, Dz = 3) as well as the mean value of (Dxy = 6, Dz = 2) and
(Dxy = 6, Dz = 3). Since the energy typically converges faster than linearly in 1/D, we take
the average of the extrapolated value and largest D value as the infinite D estimate and its
difference to the largest D value as an estimate of the error bar.
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(b)(a)

Figure 4.6: Energies per site as a function of J ′′/J of the SSM, showing the
phase transition between the exact dimer state (horizontal dashed line) and
the antiferromagnetic state for different bond dimensions, for (a) J ′/J = 0.61
and (b) J ′/J = 0.66. The dashed-dotted line shows the energy extrapolated in
inverse bond dimension.

4.4. Conclusions

We have introduced the LCTM method, which is an efficient approach to study
layered 2D systems with a weak interlayer coupling. The main idea is to perform
a decoupling of the 3D network using the FU truncation onto Dz = 1 away from
the center of each plane, while keeping the full bond dimension Dz > 1 in the
center, such that the resulting network can be efficiently contracted with the
standard CTM method in each layer. Our benchmark results for the anisotropic
Heisenberg model demonstrate that the method yields values in close agreement
with a full 3D contraction (SU+CTM), at a substantially lower computational
cost. The results are close to QMC results even for a small interlayer bond
dimension Dz = 2. Although the accuracy decreases when Jz/Jxy is increased,
errors remain relatively small up to Jz/Jxy = 0.4. Our results for the SSM
demonstrate that LCTM also enables the accurate study of problems that are
out of reach of QMC due to the negative sign problem.

There are several promising ways to further improve the LCTM method. First,
the accuracy of the FU projection onto Dz = 1 could be improved by making
use of disentanglers between the layers [102, 200]. Second, the accuracy of the
contraction can be increased by including more Dz > 1 bonds in the center (see
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App. 4.A.4), although at a higher computational cost. Instead of keeping k open
legs with total bond dimension (Dz)k in between the layers, the total dimension
could be effectively reduced by introducing appropriate projectors between the
layers. Third, instead of a complete decoupling away from the center, a small
vertical bond dimension χz could be kept in the CTM environment tensors
in order to capture the most relevant interlayer entanglement away from the
center. And finally, the contraction scheme may also be combined with an
energy minimization based on automatic differentiation [124], which is expected
to provide more accurate tensors than the FFU optimization used here.

We believe our approach provides a powerful and practical tool for future stud-
ies of challenging layered 2D systems, especially models that are out of reach
of QMC. Finally, we note that the LCTM method can be straightforwardly ex-
tended to fermionic systems and finite temperature calculations, e.g., by adapt-
ing ideas from Refs. [116,201–203] and Refs. [147,148], respectively.
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4.A. Appendix

In this appendix, additional details and results on the LCTM method and the
iPEPS optimization are presented. In Sec. 4.A.1, the truncation used in the
Dz > 1→ Dz = 1 projection step and in the FFU optimization is discussed as
well as two computationally cheaper truncation approaches. Details on the
FFU optimization and a comparison between FFU and other imaginary time
evolution algorithms are presented in Sec. 4.A.2. Section 4.A.3 discusses the
decay of the singular value spectra of the iPEPS, which further justifies the use
of an anisotropic ansatz. Additional results on the accuracy and convergence of
the LCTM are provided in Sec. 4.A.4, including the dependence on the boundary
bond dimension χ, a comparison with the HOTRG method, the number of
interlayer Dz > 1 connections, and a comparison of different layer decoupling
procedures.

4.A.1. Truncation

In this section, we provide additional details on the truncation method, which
is used to perform the projection from Dz > 1 to Dz = 1 of the vertical bonds.
In the LCTM this is done with a FU truncation [54, 114] that involves the
minimization of the norm distance

d =
∥∥∣∣ψ̃〉− |ψ′〉∥∥2 (4.3)

where
∣∣ψ̃〉 and |ψ′〉 are the untruncated and truncated iPEPS, respectively. The

FU truncation was discussed in detail in Sec. 2.5.1 in the context of imaginary
time evolution. The FU requires the computation of the environment around the
bond that is being truncated, which is obtained using the LCTM approach. The
relevant diagrams for a horizontal and a vertical bond are shown in Figs. 4.7(e)
and Figs. 4.7(f), respectively.

Besides the FU truncation, which takes the full wave function into account to
truncate a bond, other schemes exist where the environment is approximated
through a local contraction. One such scheme is the SU [115] which makes use
of an environment consisting of only two tensors together with their adjacent
singular values as was discussed in Sec. 2.5.1. An improvement over the SU
truncation (but still less accurate than the FU) is provided by the CU trun-
cation [113, 119–121], which takes a larger environment consisting of a finite
number of tensors around the bond into account. Figures 4.7(c) and 4.7(d)
show examples of a 4 × 3 cluster environment for intraplane update steps and
a 3× 3 environment for the interplane bond, respectively.
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(a)

=

(b)

=

(c) (d)

(e) (f)

Figure 4.7: The environments used in our implementations of (a)-(d) the CU
truncation and (e)-(f) the FFU truncation. (a)-(b) For graphical brevity, a
compact notation is used. The small circles on the traced-out bonds represent
the corresponding singular value matrices on the bonds. (c) A 4 × 3 cluster
environment used for the intraplane update steps. (d) A 3×3 environment used
in the interplane direction. (e) The FFU environment used for an intraplane
bond. (f) The FFU environment for an interplane update step.
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(a) (b)

Figure 4.8: Comparison of results obtained with the SU, CU, and FFU
imaginary time evolution methods for the anisotropic Heisenberg model with
Jz/Jxy = 0.1 as a function of 1/Dxy and Dz = 2. For reference, extrapolated
QMC results are provided. (a) Energy per site e in units of Jxy. (b) Local
magnetic moment m.

4.A.2. Imaginary time evolution with LCTM

In the main text, results have been obtained based on the FFU approach. Al-
ternatively, we have also tested imaginary time evolution schemes based on a
SU and CU truncation, which are computationally cheaper but also less accu-
rate. Here, we compare the results of these variants obtained for the anisotropic
Heisenberg model with Jz/Jxy = 0.1 in Fig. 4.8. The SU leads to slightly higher
energies than the FFU, as shown in Fig. 4.8(a), whereas the CU yields similar
results to the FFU. For the local magnetic moment m, shown in Fig. 4.8(b),
the deviation between the SU and FFU is more pronounced. Also here, the CU
gives a significant improvement upon the SU result, with slightly larger values
compared to the FFU result at large bond dimensions.

4.A.3. Decay of the singular value spectrum

To further motivate the anisotropic ansatz and contraction approach, we con-
sider the singular value spectrum on the intra- and interplane bonds in Fig. 4.9
obtained for the 3D anisotropic Heisenberg model. The singular value matri-
ces are extracted from our FFU-optimized tensors using the algorithm from
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Figure 4.9: Spectrum of the singular values λi on the intra- and interplane
bonds in the iPEPS ansatz obtained for the anisotropic Heisenberg model with
Dxy = 6 and Dz = 3, exhibiting a fast decay (weaker entanglement) in the
z-direction and a slow decay (stronger entanglement) in the xy-direction for
small Jz/Jxy.

Ref. [82], which is similar to the procedure discussed in Sec. 2.2.1 to convert
an iMPS to the canonical form but adapted to iPEPS to transform it into a
quasi-canonical form.

A much faster decay of the singular values can be observed in the z-direction
than in the intraplane direction, as expected, due to the weak entanglement be-
tween the planes. Increasing Jz/Jxy leads to a slower decay in the z-direction,
suggesting that the value of Dz needs to be increased. Eventually, for suffi-
ciently large Jz/Jxy the singular values in all directions will become of similar
magnitude, such that an anisotropic ansatz in combination with the LCTM
contraction is no longer justified.

4.A.4. Accuracy of the LCTM contraction

The accuracy of the LCTM contraction is controlled by both the boundary
bond dimension χ of the CTM environment tensors as well as the number of
untruncated interlayer connections that are kept in the center of the network.
In this section, we analyze the dependence of the results on these parameters
for the 3D anisotropic Heisenberg model. We also provide a comparison to the
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(b)(a)

Figure 4.10: Convergence as a function of the inverse CTM boundary dimension
1/χ for Dxy = 4−6 and Dz = 2. The results are for the anisotropic Heisenberg
model with Jz/Jxy = 0.1. (a) The energy per site e in units of Jxy. (b) Local
magnetic moment m.

HOTRG method [101,107]. Finally, we examine alternative approaches for the
Dz > 1 to Dz = 1 truncation performed away from the center.

Convergence in χ

In Fig. 4.10(a) we show the energy per site, e, for Jz/Jxy = 0.1 as a function
of 1/χ for different values of Dxy and Dz = 2. Convergence is reached at
sufficiently large χ, where a higher χ is needed for larger Dxy for an accurate
evaluation, as expected. Interestingly, we find that an increase in Dz does not
require a larger χ to converge. Similar observations can be made for the local
magnetic moment m in Fig. 4.10(b). For the results in the main text, χ is
chosen sufficiently large such that finite-χ errors are negligible.

Comparison with HOTRG

In this section we present a comparison of the convergence behavior of the
LCTM method as a function of χ with results obtained with the HOTRG ap-
proach [101,107], which was discussed in Sec. 2.4.2. Figure 4.10 shows the results
for the energy and magnetization for different bond dimensions and Dz = 2, us-
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(a) (b)

Figure 4.11: Comparison between LCTM and HOTRG for the convergence of
the energy (a) and the magnetization (b) as a function of inverse bond dimension
1/χ.

ing tensors obtained from an FFU optimization (the same optimized tensors are
used for the two contraction approaches). For small bond dimension Dxy = 2
the two approaches yield similar results at large χ. However, with increasing
bond dimension it becomes more and more challenging to reach convergence
with HOTRG, which overall displays an irregular convergence behavior as a
function of χ and which is computationally substantially more expensive than
LCTM. Similar observations have been made for the isotropic 3D Heisenberg
model in Chap. 3, where it was found that SU+CTM shows a much more regu-
lar convergence behavior than HOTRG. For this reason, we have taken results
from SU+CTM as reference values in the main text.

Interlayer connectivity

The number of untruncated Dz > 1 interlayer connections is another param-
eter controlling the accuracy of the LCTM method. The results in the main
text have been obtained by just keeping a single connection in the center for
one-site observables and interlayer two-site observables, and two connections
for intralayer two-site observables. Here we present a comparison to a differ-
ent scheme, in which we also keep the interlayer connections on the tensors
neighboring the (two) central one(s). In practice, this can be implemented by
absorbing tensors with Dz > 1 into the environment tensors at the final CTM
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(c) (d)

Figure 4.12: The star LCTM contraction, which differs from the standard
LCTM because both the central and nearest-neighbor interlayer connections
remain untruncated. The yellow tensors indicate the contraction of bra- and
ket-tensors with an operator in between. (a) The star LCTM differs from the
standard LCTM at the final CTM step where a tensor with untruncated inter-
layer connections is absorbed into the environment. (b) The final diagram for
the computation of a one-site observable. The leading eigenvector is a larger ob-
ject compared to the standard LCTM due to the additional untruncated bonds.
(c) The diagram of an intraplane two-site observable. (d) The diagram of an
interplane two-site observable.
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(a) (b)

Figure 4.13: Contraction results for the nearest-neighbor spin-spin correlators
obtained with a 2D CTM, standard LCTM, and star LCTM for the anisotropic
Heisenberg model with Jz/Jxy = 0.1 as a function of 1/Dxy and with Dz =
2. For comparison, results obtained from a full 3D contraction (SU+CTM)
and extrapolated QMC results are provided. (a) Nearest-neighbor spin-spin
correlator in the intraplane direction 〈SS〉xy. (b) Nearest-neighbor spin-spin
correlator in the interplane direction 〈SS〉z.

step, as depicted in Fig. 4.12(a). Figures 4.12(b)-(d) show the diagrams to eval-
uate a one-site observable, an intraplane two-site observable, and an interplane
two-site observable, respectively. We call this scheme the star LCTM. It has
the advantage that more of the interlayer correlations are taken into account,
however, at the expense of a significantly higher contraction cost.

In Fig. 4.13(a) results for the nearest-neighbor spin-spin correlator in the intra-
plane direction are shown, using different contraction schemes to evaluate them.
The tensors have been obtained for Jz/Jxy = 0.1 using the FFU imaginary time
evolution based on the standard LCTM scheme. Besides the standard and star
LCTM approach, we also include data from the 2D CTM in which no interlayer
connections are kept (i.e., also the connection(s) on the central tensor(s) is (are)
truncated to Dz = 1), and from the full 3D contraction (SU+CTM) which we
take as reference values. We observe that without the interlayer connections
(2D CTM) the deviation from the SU+CTM result is relatively large, whereas
both the standard and star LCTM show a close agreement with the full 3D
contraction.

Figure 4.13(b) shows results in the interlayer direction. The deviation from the
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Figure 4.14: Results obtained with alternative layer decoupling approaches
based on tracing out the z-bond, a SU truncation, and a CU truncation using
a 3× 3 cluster size compared to a FU truncation. The energy per site is shown
as a function of 1/Dxy for the anisotropic Heisenberg model with Jz/Jxy = 0.1.
For reference, a SU+CTM contraction and an extrapolated QMC result are
provided as well. (a) Dz = 2. (b) Dz = 3.

SU+CTM result is larger here with the standard LCTM scheme, although it
performs much better than the 2D CTM. A significant improvement is obtained
by using the star LCTM, with a close agreement to SU+CTM for Dxy = 2 and
3. For larger Dxy we expect that the results can be further improved by keeping
even more interlayer connections.

As already pointed out in the main text, increasing the two bond dimensions
Dxy and Dz has an opposite effect on the change in the 〈SS〉z correlator, which
can be intuitively understood as follows. Firstly, an increase in Dz at fixed Dxy

naturally leads to a decrease in 〈SS〉z, because the higher bond dimension lowers
the variational energy on these bonds. The increase in 〈SS〉z with increasing
Dxy is less obvious, but can be best understood in theDz = 1 limit. In this limit,
the 〈SS〉z correlator (or equivalently the energy on a z-bond) is minimized by
the classical antiferromagnetic state which is realized for Dxy = 1, and amounts
to −m2, with m = 1/2 the magnitude of the local magnetic moment on each
site. By increasing Dxy, m will become smaller due to intraplane quantum
fluctuations (entanglement), and hence the 〈SS〉z correlator between the layers
with Dz = 1 will increase. We note that the opposite effect is observed for
〈SS〉xy, just that the dependence on Dz is very weak.
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Alternative layer decoupling approaches

A key step in the LCTM method is the decoupling of the layers away from
the center, which for the results in the main text is done by a FU truncation
to Dz = 1. In this section, we compare several alternative local truncation
approaches to the FU results.

The first alternative we consider is to trace out the bonds in the z-direction by
connecting the respective bonds of the iPEPS tensors in the bra- and in the ket-
layers. On these bonds, we include the corresponding singular value matrices in
the same spirit as done in the SU and CU truncation. Another option we test
is the SU truncation. Finally, we consider a CU truncation based on the 3× 3
environment shown in Fig. 4.7(d).

Figure 4.14(a) shows results for the energy per site, e, as a function of 1/Dxy

and Dz = 2 at Jz/Jxy = 0.1. Here we find that the alternative truncation ap-
proaches show a good agreement with the FU layer decoupling scheme. For the
Dz = 3 case, presented in Fig. 4.14(b), however, the scheme based on tracing
out the interlayer connections and the SU truncation both give a significant un-
derestimation of the energy compared to FU. Although the CU 3×3 truncation
performs better, it yields values that are too small as well. These results indicate
that performing an accurate truncation is important, at least for Dz > 2, and
they motivate the use of the computationally more expensive FU truncation in
the main text.
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CHAPTER 5

The Shastry-Sutherland model with
weak interlayer coupling

The layered material SrCu2(BO3)2 has long been studied because of its fasci-
nating physics in a magnetic field and under pressure. Many of its properties
are remarkably well described by the SSM. However, the extent of the interme-
diate plaquette phase discovered in SrCu2(BO3)2 under pressure is significantly
smaller than predicted in theory, which is likely due to the weak interlayer cou-
pling that is present in the material but neglected in the model. Using state-of-
the-art tensor network methods, we study the SSM with a weak interlayer cou-
pling and show that the intermediate plaquette phase is destabilized already at a
smaller value around J ′′/J ∼ 0 .04 − 0 .05 than previously predicted from series
expansion (SE). Based on our phase diagram we estimate the effective interlayer
coupling in SrCu2(BO3)2 to be around J ′′/J ∼ 0 .027 at ambient pressure.

The contents of this chapter are based on Ref. [204] (submitted to SciPost
Physics)
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5.1. Introduction

The competing interactions in frustrated materials give rise to a rich variety
of fascinating phenomena. A paradigmatic example is the layered material
SrCu2(BO3)2 which has attracted significant attention in the past decades,
in particular since the discovery of its intriguing sequence of magnetization
plateaus at 1/8, 2/15, 1/6, 1/4, 1/3, and 1/2 (and possibly 2/5) [192,205–214].
Substantial efforts have been invested in understanding the magnetic structures
of the plateaus, with a growing consensus that they correspond to crystals of
triplets at high magnetic field [59, 193, 215–219] and crystals of bound states
of triplets at low field [31, 220]. Another exciting direction has been the study
of the phase diagram under pressure [63, 153, 213, 221–227], which has revealed
two phase transitions at zero field, including a critical point at finite tempera-
ture [153], and an even richer phase diagram at finite field [226].

Many properties of SrCu2(BO3)2 are remarkably well described by the Shastry-
Sutherland model (SSM) [192, 193, 198], a frustrated S = 1/2 spin model of
orthogonal dimers on a square lattice, shown in Fig. 5.1(a). Its Hamiltonian is
defined as

H2D = J
∑
〈ij〉

SiSj + J ′
∑
〈ij〉′

SiSj , (5.1)

with J and J ′ the intra- and interdimer coupling, respectively. For small values
of J ′/J , the ground state is exactly given by a product of dimer singlets. In
the other limit, the model reduces to the square lattice Heisenberg model with
an antiferromagnetic (Néel) ground state. For intermediate J ′/J consensus has
been reached on the existence of an empty plaquette (EP) state [69, 228–230]
in the range 0.675(2) < J ′/J < 0.765(15) [69], in which strong bonds are
formed around half the empty plaquettes which do not contain a dimer. While
a weak first-order phase transition between the EP and Néel phase was found
in Ref. [69], more recently there have also been predictions of a deconfined
quantum critical point [231] (see also related Ref. [227]) or a narrow quantum
spin liquid region between the two phases [232,233].

At ambient pressure the effective coupling ratio in SrCu2(BO3)2 is around
J ′/J = 0.63 [212], which lies in the dimer phase but close to the plaquette phase.
Applying hydrostatic pressure causes the Cu-O-Cu angle to diminish, which re-
sults in a rapid decrease of J and a slower decrease in J ′ [234, 235], such that
the ratio J ′/J increases. Evidence of a phase transition into an intermediate
gapped phase around 1.8 GPa has been found in various experiments, including
NMR [221], X-ray scattering [222], inelastic neutron scattering (INS) [223], elec-
tron spin resonance (ESR) [224], magnetization measurements [213, 226], and
specific heat measurements [63,153]. The nature of the intermediate phase is still
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Figure 5.1: (a) The Shastry-Sutherland lattice with J the intradimer and J ′

the interdimer coupling. In gray, the underlying square lattice of orthogonal
dimers is shown. (b) Two dimers in adjacent layers interact via the interlayer
coupling J ′′ as indicated by the dotted lines. Each site of a dimer is coupled to
both sites of the orthogonal dimer in the neighboring layer.

not fully settled. There exist indications from NMR [221,227] and INS [223] that
the intermediate phase is not the EP phase but a closely related full plaquette
(FP) phase, in which strong bonds are formed around the plaquettes containing
a dimer. In the SSM this state is slightly higher in energy than the EP state,
but it can be stabilized in a weakly distorted SSM [236] (however, the strength
of the relevant couplings is not known). Antiferromagnetic order was observed
with INS below 117 K and above 4 GPa [223], close to a tetragonal-monoclinic
transition beyond which the SSM is no longer valid. Based on specific heat
measurements [63], another Néel phase with a substantially lower transition
temperature was discovered below 4 GPa, and the transition to the plaquette
phase was found to occur around 2.5-3 GPa. Converted to J ′/J [226] this cor-
responds to J ′/J ∼ 0.7− 0.71, which is significantly lower than the theoretical
prediction based on the SSM.

A natural cause of this discrepancy is the presence of small interlayer couplings
in the compound [63, 70], which are neglected in the 2D model. The dominant
interaction can be described by an additional Heisenberg term with strength J ′′
between the layers [59,70,237], such that the 3D model reads

H3D = H2D + J ′′
∑
〈ij〉′′

SiSj . (5.2)

The CuBO3 layers are stacked in such a way that the dimers have an alternating
orientation in neighboring layers [59] and each site of a dimer interacts with
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both sites of the neighboring dimer, see Fig. 5.1(b).1 This model has already
been studied in Ref. [70] using SE, where it was found, based on a fourth-
order expansion, that the extent of the plaquette phase shrinks rapidly with
increasing J ′′, and that it disappears beyond J ′′/J ∼ 0.08. However, results at
higher orders or from other numerical approaches have so far been lacking.

Regarding the strength of the interlayer coupling in SrCu2(BO3)2, there is still
no consensus. In Ref. [238] an estimate of J ′′/J = 0.09 was obtained from fits
to the magnetic susceptibility. In Ref. [239], based on an analysis of the bound
state energies of the two-triplet excitations, a much larger value J ′′/J = 0.21
was found. Calculations from density-functional theory (DFT) [234] predicted
a much smaller ratio, J ′′/J ≤ 0.025, but with values for J and J ′ which deviate
considerably from other predictions.

In this chapter, we refine the phase diagram of the SSM with weak interlayer
coupling using state-of-the-art tensor network methods for layered systems, the
LCTM algorithm which was introduced in Chap. 4. We show that the EP
phase becomes unstable at even smaller values of J ′′/J than predicted by SE.
From our phase diagram, we extract an estimate of J ′′/J in SrCu2(BO3)2, by
determining the value which leads to an extent of the plaquette phase that is
consistent with experiments. Besides this, we also analyze the effect of the
interlayer coupling on the competition between the EP phase and the FP phase
and show that the latter remains higher in energy also for finite J ′′/J .

The chapter is organized as follows. In Sec. 5.2 details on the simulation are
discussed. In Sec. 5.3 we first provide an overview of the phase diagram, followed
by a detailed study of the phase transitions along selected cuts. We then present
additional results on the competition between EP and FP states and the phase
diagram and we end the results section with a discussion on the estimate of the
effective interlayer coupling in SrCu2(BO3). Finally, in Sec. 5.4 we present our
conclusions.

5.2. Simulation details

The simulations in the present study are performed using iPEPS. We consider
a cubic lattice with one tensor per dimer [69], see Fig. 5.1(a). This results
in a supercell consisting of two tensors which are repeated on the two sub-
lattices. Motivated by the anisotropic nature of the model we take an ansatz

1We note that the model neglects the buckling of the CuBO3 layers which causes a small
difference in the distance between the Cu2+-ions in adjacent layers [59], and hence slightly
different J ′′ couplings. However, since the effect is expected to be small, we consider the same
coupling on all bonds for simplicity, as previously done in Ref. [70].
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with different bond dimensions in the intra- and interplane directions, Dxy and
Dz, respectively, with Dxy ≥ Dz. To contract the ansatz, we make use of the
LCTM contraction algorithm introduced in Chap. 4. To obtain accurate inter-
layer projectors within the LCTM we iterate the environment computation up
to three times. To improve the computational efficiency, we use tensors with
implemented U(1) symmetry [125,126].

The ansatz is optimized using a combination of energy minimization and FFU.
Initially, the tensors are optimized on the 2D lattice (i.e., with J ′′/J = 0) by
energy minimization. The resulting tensors are then used as initial states in an
FFU optimization with finite J ′′/J , which we found leads to better results than
optimizations initialized from a SU [115] optimization at the values of J ′/J and
J ′′/J considered. Simulations in the Néel phase are initialized at J ′/J = 0.8
and evolved using imaginary time steps τ = 0.1 and τ = 0.05, where the state
with the lowest energy is selected. For the simulations of the EP phase, a 2D
iPEPS at the corresponding J ′/J is used as the initial state and the FFU is
performed with τ = 0.05. In some cases, an increase in the energy is observed
after a certain imaginary time β. In these cases, the simulation is halted and
the tensors giving the lowest energy are selected. We note that the EP states
can be stacked in two different ways. While our main results have been obtained
with plaquettes in alternating positions in adjacent layers, we have also tested
the stacking with plaquettes on top of each other [231], which we found leads
to similar results.

To identify the phases, we introduce the following order parameters. For the
Néel phase, we consider the local magnetic moment

m =
√
〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2, (5.3)

with Si the spin operators. As an order parameter for the EP phase, we use

∆eEP = ēother − ēEP, (5.4)

where ēEP is the mean energy of the bonds belonging to the empty plaquette
and ēother is the mean energy of the remaining bonds.

5.3. Simulation results

The main results of this work are summarized in the phase diagram in Fig. 5.2.
For the range of couplings considered, the 3D model exhibits the same three
phases as the 2D model: a dimer phase made of exact singlets in the low
J ′/J region, an empty plaquette (EP) phase at intermediate values of J ′/J ,
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Figure 5.2: The phase diagram of the SSM with interlayer coupling (Dxy = 6,
Dz = 3), which includes a dimer, a Néel, and an empty-plaquette (EP) phase.
Previous iPEPS results for the 2D model [69] are shown by the black diamonds,
and the dashed-dotted lines correspond to fourth-order SE data [70]. The upper
horizontal axis shows the pressure corresponding to a particular coupling J ′/J ,
based on the pressure model from Ref. [226]. The location of the plaquette to
Néel phase transition found in experiments [63] is marked in light red.

and a Néel phase which dominates for sufficiently large J ′/J and/or large
J ′′/J . The EP phase destabilizes already at weak interlayer coupling of at
most J ′′/J ∼ 0.04 − 0.05 in favor of the Néel phase, while the dimer phase
survives at stronger interlayer coupling. That the Néel state gets energetically
favored for sufficiently large J ′′/J can be intuitively understood from the fact
that the antiferromagnetic layers can be stacked on top of each other without
frustrating the Néel order [70], and hence the additional interlayer coupling low-
ers the energy per site. This is in contrast to the interlayer energy of the 2D
dimer, which is exactly zero, or close to zero in case of the EP state.

Our results are in good agreement with the SE results from Ref. [70] for the
dimer singlet to Néel phase transition, however, the transition from the EP to
Néel phase is located at weaker interlayer coupling than predicted by SE shown
by the dashed-dotted line in Fig. 5.2.

In the following, we provide a detailed study of the phase transitions along
specific cuts for fixed J ′/J and varying J ′′/J .
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(d)(c)

(a) (b)

Figure 5.3: Energy per site e in units of J at J ′/J = 0.67 for different values of
J ′′/J around the phase transition between the dimer and Néel states. The latter
is plotted as a function of 1/Dxy for Dz = 1−3 and it includes an extrapolation
to the infinite bond dimension limit (see text for details). The exact energy of
the dimer state is shown by the dashed-dotted line.

5.3.1. Phase transition between dimer and Néel phase

In this section we consider the phase transition between the dimer singlet and
the Néel phase, focusing on a cut at J ′/J = 0.67. This transition has been
studied in Chap. 4 with the LCTM method for J ′/J = 0.61 and J ′/J = 0.66
as a benchmark example.

Figure 5.3 shows the energy per site e as a function of inverse bond dimension
1/Dxy and different values of Dz at J ′′/J = 0.06, 0.07, 0.08, and 0.09, respec-
tively. The dimer state has an exact energy of e = −3/8J per site, i.e., it is
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independent of J ′/J and J ′′/J , and it is already reproduced for Dxy = Dz = 1.
The energy of the Néel state exhibits a stronger dependence on Dxy than on
Dz, which is due to the weak interlayer coupling compared to the intraplane
coupling. While the energy gets considerably lowered from Dz = 1 to Dz = 2,
it hardly changes anymore when increasing it to Dz = 3. In contrast, substan-
tially larger changes are obtained by varying Dxy, which motivates using an
anisotropic ansatz with Dxy > Dz.

To obtain an estimate of the energy in the infinite bond dimension limit, we
perform an extrapolation in 1/κ, with Dxy = κ and Dz = κ−1

2 , i.e., using the
energy of the states for (Dxy = 5, Dz = 2), (Dxy = 7, Dz = 3), and the mean
of (Dxy = 6, Dz = 2) and (Dxy = 6, Dz = 3). Since the convergence in the
bond dimension is typically faster than linear, we take the mean between the
linearly extrapolated result and the lowest energy result at (Dxy = 7, Dz = 3)
to be the estimate. As an error estimate, we take half the difference between
the estimate and the lowest energy value at finite bond dimension.2

The location of the phase transition is obtained from the intersection of the
energies of the two states as a function of J ′′/J , shown in Figure 5.4(a).3 Since
the energy of the dimer state is fixed, each finite bond dimension result for the
critical coupling (J ′′/J)c corresponds to an upper bound. The largest bond
dimension (Dxy = 7, Dz = 3) yields (J ′′/J)c = 0.072, whereas a slightly lower
value is obtained based on the extrapolated energy, (J ′′/J)c = 0.0702(10).

In Fig. 5.4(b) the local magnetic moment m of the lowest energy state at fixed
D is shown, revealing a large jump at the phase transition. Increasing Dxy

has only a small effect on m near the phase transition which indicates that the
jump remains finite in the infinite D limit, corresponding to a first-order phase
transition.

5.3.2. Phase transition between empty plaquette and
Néel phase

We next consider the transition between the EP phase and the Néel phase, fo-
cusing on a cut at J ′/J = 0.7. In Fig. 5.5 the energy of the states as a function
of 1/Dxy is presented for J ′′/J = 0.02, 0.03, 0.04, and 0.05 respectively, includ-

2We note that a more accurate energy extrapolation in the gapless Néel phase could be
obtained using finite correlation length scaling [131, 132]. However, this requires an accurate
estimate of the correlation length which with the current version of the LCTM approach
cannot be obtained in a controlled way (since the approach is tailored to the computation of
local observables).

3We note that, due to hysteresis effects, a state initialized in the Néel phase remains a
Néel state even slightly beyond the transition into the dimer phase.
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(b)

(a)

Figure 5.4: Results for the dimer to Néel phase transition for fixed J ′/J = 0.67.
(a) Energies of the dimer and Néel states as a function of J ′′/J (Dz = 3), where
the phase transition is located at the intersection of the energies. (b) Local
magnetic moment m across the phase transition, revealing that the transition
is of first order.

ing an extrapolation performed in a similar way as described in the previous
section.

The dependence of the Néel state energy on Dz is weaker than in the case of
J ′/J = 0.67 in the previous section, due to the smaller interlayer couplings
that are considered here. An even weaker dependence on Dz is found for the
EP state, which is expected due to the inherent 2D nature of the state. Since
the local magnetic moment in the EP state vanishes, the interlayer energy is
exactly zero at lowest order for Dz = 1, corresponding to a product state of
2D iPEPS. Going beyond Dz = 1 introduces correlations between the planes,
which however remain very weak compared to the strong intraplane plaquette
correlations, and hence the interlayer energy remains close to zero.
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(b)

(c) (d)

(a)

Figure 5.5: Energy per site as a function of 1/Dxy for Dz = 1− 3 at J ′/J = 0.7
for different values of J ′′/J around the phase transition between the EP and
Néel states, including extrapolated energies.

Figure 5.6(a) shows the energy of the states as a function of J ′′/J in the vicinity
of the phase transition. When Dxy is increased from 4 to 6 the EP state de-
creases slightly faster in energy than the Néel state, causing the location of the
phase transition to shift to slightly higher J ′′/J . When increasing Dxy further
only a tiny shift to a smaller coupling (J ′′/J)c = 0.034 is found, suggesting that
the location of the critical point does not change significantly anymore. Based
on the extrapolated energies we get a critical coupling of (J ′′/J)c = 0.036.
By intersecting the upper and lower bounds of the error bars of the extrapo-
lated energies we obtain an error range on the transition between 0.026−0.042,
which should provide a rather conservative error estimate. A less conserva-
tive error range is obtained by intersecting half the error bar widths, yielding
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(a)

(b)

(c)

Figure 5.6: Results for the EP to Néel phase transition for fixed J ′/J = 0.7.
(a) Energies of the EP and Néel states as a function of J ′′/J (Dz = 3), where
the critical coupling is located at the intersection of the energies. Both the local
magnetic moment (b) and the EP order parameter (c) exhibit a jump at the
phase transition, indicating that it is of first order.

0.032− 0.039. Our value for the critical coupling is significantly lower than the
SE result (J ′′/J)c = 0.058 from Ref. [70].
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In Figs. 5.6(b) and (c) the values of the local magnetic moment and EP order
parameter across the phase transition are presented. Also in this case a discon-
tinuous jump in the order parameters is found, indicating that the transition is
of first order.

5.3.3. Competition between the empty and full plaque-
tte states

As mentioned in the introduction, the precise nature of the intermediate phase
in SrCu2(BO3)2 is still not fully confirmed. NMR [221, 227] and INS [223]
experiments suggest that the intermediate phase in SrCu2(BO3)2 is not the EP
but a full plaquette (FP) phase, in which strong bonds are formed around the
plaquettes containing a dimer, as opposed to the EP state. In the SSM it was
shown that the FP state is higher in energy than the EP state [236], but it can
be stabilized by a relatively small deformation of the model using two types of
intra- and interdimer couplings [236, 240]. In the following, we study the effect
of the interlayer coupling on the competition between the EP and FP states at
J ′/J = 0.7, in order to test whether the FP state gets potentially stabilized in
the 3D model.

In Figs. 5.7(a) and (b) we present the energies of the EP and FP states as
a function of J ′′/J , respectively. The simulations for the FP state have been
initialized in the 2D FP phase [236] by using two distinct dimer couplings on
the two orthogonal dimers, J2/J1 = 0.85, and J ′/J1 = 0.7.4 The dependence
of the energy on J ′′/J is found to be very weak for both states such that the
FP state remains higher in energy than the EP state as in the J ′′/J = 0 case.
For comparison, we have also added the energy of the purely 2D states by the
dashed lines which lie close to the energy obtained from the FFU optimization
with finite J ′′, showing that the gain in interlayer energy is small in both cases.
Thus, from these results, we conclude that the interlayer coupling does not
stabilize the FP state.

For completeness, we also present the corresponding local magnetic moment
and EP and FP order parameters in Figs. 5.7(c)-(f), where the latter is defined
in a similar way as the EP order parameter (i.e., ∆eFP = ēother − ēFP). In
both states, the magnetization remains vanishingly small, and the strength of
the corresponding plaquette orders does not change significantly with increasing
J ′/J .

4Due to stability issues for Dxy = 6 with τ = 0.05 we have used a smaller value of τ = 0.01
for Dxy = 6 which, however, does not have a significant effect on the energy.
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(a) (b)

(d)

(f)(e)

(c)

Figure 5.7: Comparison of results obtained for the EP (left column) and FP
(right column) states for J ′/J = 0.7 as a function of J ′′/J . (a)-(b) Energy
per site of the two states for different values of Dxy with Dz = 3. The dashed
lines indicate the energies of the initial 2D states for J ′′/J = 0. (c)-(d) show
the corresponding local magnetic moments, and (e)-(f) the EP and FP order
parameters, respectively.
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(b)(a)

Figure 5.8: The phase diagram for (a) Dxy = 4 − 7 and fixed Dz = 3, and (b)
fixed Dxy = 6 and Dz = 1 − 3. The phase transitions for the 2D model from
Ref. [69] are shown by the black diamonds.

5.3.4. Phase diagram for different bond dimensions

To get more insights into the finite bond dimension effects on the phase diagram,
we present results for different Dxy and Dz in Figs. 5.8(a)-(b), respectively.
Overall, on the scale of the phase diagram, the changes on the phase transition
lines are hardly visible at large bond dimensions. As discussed in Sec. 5.3.1, the
transition line between the dimer and Néel phase shifts to slightly lower values
with increasing Dxy and Dz since the energy of the exact dimer state is fixed,
whereas the Néel state energy gets lowered with increasing bond dimension.
The EP to Néel transition line is initially shifted to larger values of J ′′/J with
increasing Dxy, but for Dxy = 7 essentially the same (slightly lower) value is
found as for Dxy = 6. Increasing Dz has the opposite effect, because the gain
in energy for the Néel state is considerably higher than for the EP state, as
we have seen in Sec. 5.3.2, but the change from Dz = 2 to Dz = 3 is very
small. We note that since the EP state energy is only very weakly dependent
on J ′′/J and the dimer energy is constant, we have approximated the dimer to
EP phase transition by a vertical line with the corresponding error bar from the
2D result [69].
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5.3.5. The effective interlayer coupling in SrCu2(BO3)2

Based on our phase diagram we can now discuss how large the effective value
of J ′′/J in SrCu2(BO3)2 should be, such that the extent of the plaquette
phase is compatible with experiments. It is clear that it cannot be beyond
J ′′/J ∼ 0.05, because at these values the plaquette phase vanishes entirely. To
relate the pressure to the coupling ratio J ′/J we use the pressure model from
Ref. [226], with the pressure dependence of the coupling parameters given by
J(p) = −5.13 [K/GPa] p + 81.5 [K] and J ′(p) = −1.43 [K/GPa] p + 51.35 [K].
Based on specific heat measurements in Ref. [63] the phase transition between
the plaquette and the Néel phase was found to occur around 2.5-3 GPa, cor-
responding to J ′/J = 0.704(8) and indicated by the light-red area in Fig. 5.2.
At this coupling ratio the critical interlayer coupling in our phase diagram for
(Dxy = 6, Dz = 3) is J ′′/J = 0.032(4). Assuming that the pressure dependence
of J ′′ is negligible compared to the pressure dependence of J , we find the ef-
fective interlayer coupling at ambient pressure to be around J ′′ = 2.2(3) K or
J ′′/J = 0.027(4).

This value is compatible with DFT calculations [234] predicting J ′′/J . 0.025.
However, it is substantially smaller than the estimates from fits to the magnetic
susceptibility (J ′′/J = 0.09) [238] based on exact diagonalization of a 16-site
system, which may be due to finite size effects, limitations of the mean-field
ansatz which was used to include the interlayer effects, or the chosen temper-
ature range which excluded the data below 100 K. We note that the LCTM
approach can also be extended to finite temperature, offering the possibility to
perform accurate fits to the magnetic susceptibility as done for the 2D model in
Ref. [150], which is an interesting direction for future research. An even larger
value was obtained in Ref. [239], J ′′/J = 0.21, based on an analysis of the bound
state energies of the two-triplet excitations, however, the relevant coupling ra-
tio was predicted to be J ′/J = 0.603 and the phase transition was found at
J ′/J = 0.63 which is too low compared to more recent estimates. Finally, one
may wonder how this estimate would change in a slightly deformed Shastry-
Sutherland model in which the FP state is slightly lower in energy than the EP
state [236]. Since the change in energy of the AF state between J ′′/J = 0 and
J ′′/J = 0.1 is roughly an order of magnitude larger than the typical energy
difference between the EP and FP states, we can expect that the energies of
the AF state and FP state intersect at a critical value (J ′′/J)c which is only
slightly shifted compared to the standard SSM, yielding an estimate for the
interlayer coupling that is not substantially different from the one we obtain
for the standard SSM. A quantitative analysis would require simulations of the
deformed model; however, the values of the effective couplings are not known.
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5.4. Conclusion

In this chapter, we have performed a systematic study of the phase diagram
of the SSM with weak interlayer coupling using 3D iPEPS with the LCTM
approach. Our results are in qualitative agreement with fourth-order SE results,
however, on the quantitative level we found that the transition between the
EP and the Néel phase occurs at a lower J ′′/J than predicted by SE, with
critical couplings of at most J ′′/J ∼ 0.04 − 0.05. Based on our phase diagram
and the extent of the plaquette phase found in experiments, we estimated the
effective interlayer coupling in SrCu2(BO3)2 to be around J ′′/J ∼ 0.027 at
ambient pressure. We also investigated the effect of the interlayer coupling on
the competition between EP and FP phases and found that the dependence on
J ′′ is very weak for both states, such that the EP state remains lower in energy
than the FP state.

From the perspective of tensor network methods, applications to 3D quantum
systems have been very limited so far and they form an exciting and challenging
frontier. This study constitutes the first application of the LCTM approach be-
yond benchmark calculations, demonstrating the potential of iPEPS to explore
challenging problems in the field of weakly-coupled layered systems.
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CHAPTER 6

Conclusion

In this thesis we developed several iPEPS algorithms that can be used for the
study of strongly-correlated quantum systems in 3D. In Chap. 3, we focused on
general 3D quantum systems for which we developed two iPEPS contraction
algorithms. In the cluster contraction, we evaluate a finite cluster of tensors ex-
actly, while the rest of the network is considered approximately. This approach
performs a reasonably accurate contraction at a moderate computational cost.
With the SU+CTM contraction, on the other hand, a full contraction of the
network can be done, which gives a better accuracy, although at a significantly
higher numerical cost. In this method, the 3D tensor network is first approxi-
mated by a 2D boundary iPEPS, after which we evaluate the resulting quasi-2D
network using the CTM. We provided benchmark results for the 3D Heisenberg
model and found a good agreement with QMC data. We also studied the 3D
Bose-Hubbard model and found a close agreement between the D = 3 iPEPS
simulations and results from B-DMFT [184] and QMC [185].

Both the cluster and SU+CTM contractions are promising tools to study chal-
lenging 3D models, and it will be exciting to let them shed light on these models
in future studies. Nevertheless, there is still room for improvement on the algo-
rithmic side. The most pressing problem to tackle, which at the same time is the
most challenging one, is to find methods that further reduce the computational
cost of the SU+CTM contraction approach without significantly affecting its
accuracy. This is critical to make the study of iPEPS with higher D possible,
and it would allow us to explore the application of more accurate iPEPS opti-
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mization approaches, such as (F)FU [54, 114] or energy minimization schemes
based on automatic differentiation [124]. Since the dominant contribution to
the computational cost comes from the CTM contraction, it is important to find
efficiency gains there, e.g., by exploring one- or two-layer contraction schemes
to replace the three-layer approach we use here. It can also be fruitful to study
the CU imaginary time evolution scheme to improve over the accuracy of the
SU optimization at a more moderate numerical effort than would be the case
in the (F)FU or energy minimization.

In Chap. 4, we considered a contraction approach, the LCTM, for layered 2D
systems with weak interlayer coupling. The idea of this approach is to decouple
the layers of the network away from the center, such that we can contract them
using the CTM method. In the center, the layers remain connected to capture
the most relevant interlayer correlations. We evaluated its accuracy through
simulations of the anisotropic Heisenberg model and showed that the results
agree well with QMC, even for relatively strong interlayer couplings. We also
simulated the dimer singlet to Néel state transition in the SSM, where we found
a close agreement with SE results [70].

In future research, the accuracy of the LCTM can be increased by taking the
interlayer correlations into account to higher accuracy. One option is to extend
the CTM scheme by introducing a small vertical bond dimension that captures
interlayer correlations further away from the center. Such extensions most likely
also involve an increase in the numerical cost. It would furthermore be interest-
ing to use the LCTM contraction in an energy minimization approach based on
automatic differentiation. Another remaining question is what the best proce-
dure is to accurately extrapolate the results of the LCTM scheme. In our work,
we used an extrapolation in the inverse bond dimension, which is known to have
limited accuracy. It will be interesting to find ways to improve the quality of
the extrapolations, for example, based on finite correlation length scaling that
is commonly used for 2D iPEPS [131,132].

We used the LCTM to evaluate the phase diagram of the SSM around a regime
relevant to experimental studies of SrCu2(BO3)2 in Chap. 5. An important
motivation behind this study was a discrepancy in the extent of the plaquette
phase, which is predicted to be larger in theoretical studies of the 2D SSM [69]
than what was observed in specific heat measurements [63]. We found that the
J ′/J-range where the ground state corresponds to the plaquette state quickly
decreases when the strength of the interlayer coupling J ′′/J is increased. The
plaquette state vanishes completely around J ′′/J ∼ 0.04−0.05, which is weaker
than an earlier prediction from a SE study [70]. Furthermore, based on the
extent of the plaquette phase in Ref. [63] we approximate the interlayer coupling
in SrCu2(BO3)2 to be around J ′′/J ∼ 0.027.
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This study demonstrates that it is possible to study challenging and relevant
layered 2D systems that are out of reach of QMC with LCTM, and we pave
the way for future studies of other layered systems. There are still some open
questions regarding the SSM as well. In our study, we find that the intermediate
state is formed by the EP state. Experimental evidence exists which suggests
that the actual ground state is an FP state. We therefore performed simulations
of the FP state as well, and we found that it is higher in energy than the EP
state, similar to what has been found in studies of the 2D SSM. In Ref. [236]
it was shown that the FP phase can be stabilized through an anisotropy in
the coupling strength. It can be interesting to extend this study by looking at
the effect of an interlayer coupling in this analysis and whether it affects our
estimate of the interlayer coupling obtained for the isotropic case.

With this thesis, we hope to have provided a valuable contribution to the field
of strongly-correlated systems, and in particular to tensor network algorithms.
Although many 3D systems are difficult to study, we have nonetheless shown
that tensor networks can play an important role in their further understanding.
There is still plenty of room for the algorithms to be improved, but already in
their current form, it will be exciting to apply them to other challenging 3D
strongly-correlated systems, such as quantum magnets [55,59–62] and ultra-cold
atomic systems [56, 57], especially those that are inaccessible by QMC. It will
also be interesting to extend the current methods to study fermionic models
based on ideas from Refs. [116,201,203]. Further comparisons of our 3D iPEPS
algorithms to other methods for 3D systems will also be desirable, in particular
other generalizations of tensor networks to 3D, such as 3D TTN [66] and 3D
DMRG [241].
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Summary

Tensor Network Algorithms for Three-Dimensional
Quantum Systems
Understanding the phenomena arising in strongly-correlated quantum systems
is one of the key endeavors in modern physics. The interactions in these systems
give rise to many types of emerging behavior, such as superconductivity, exotic
magnetic phases, and many types of collective excitations. Often the models
used to describe these phenomena are too complex to study analytically and we
therefore rely on numerical approaches.

Algorithms based on tensor networks constitute an important family of numer-
ical techniques. The most prominent example of a tensor network state is the
matrix product state (MPS), which is a one-dimensional wave function ansatz
underlying the famous density matrix renormalization group (DMRG) algo-
rithm. It has created substantial advancements in the study of one-dimensional
quantum systems. A generalization of the MPS to higher dimensional systems is
the projected entangled-pair state (PEPS). Although the algorithms for PEPS
are much more involved than for MPS, they have become a successful tool for
the study of two-dimensional quantum systems.

Although the power of tensor network methods has been clearly shown in one-
and two-dimensional systems, it remains an open question whether they can be
applied effectively to three-dimensional quantum systems. Extensions of tensor
networks to three dimensions have been relatively unexplored, yet they could
provide valuable insight into many open problems, e.g., in frustrated magnetism,
ultra-cold atomic systems, and layered two-dimensional materials.

The goal of this thesis is to develop PEPS algorithms to study three-dimensional
quantum systems. The main challenge in these algorithms is the evaluation of
expectation values which require a contraction of the tensor network. Develop-
ing efficient contraction algorithms therefore is an important topic of this thesis.
We will make use of infinite projected entangled-pair states (iPEPS), which are
a type of PEPS that allow us to directly probe the thermodynamic limit.

In Chap. 3, we study methods to perform iPEPS simulations for general three-
dimensional quantum systems. We propose two contraction approaches. The
first approach is the cluster contraction. The main idea of this method is to only
contract a small number of tensors exactly and to use an effective description
for the rest of the tensor network. The main benefit of this approach is the
low numerical cost compared to full contractions of the network, although its
accuracy does have limitations. The second approach is the SU+CTM contrac-
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tion. In this method, we perform a full contraction of the tensor network. The
main idea of this algorithm is to first define and optimize a two-dimensional
boundary iPEPS, such that the three-dimensional tensor network can be rep-
resented by a quasi-two-dimensional one. We can then evaluate this network
using the two-dimensional corner transfer matrix renormalization group (CTM)
method, which is a standard contraction approach for two-dimensional iPEPS.
The SU+CTMmethod is more accurate than the cluster contraction, but it does
have a significantly higher numerical cost. We benchmark the two approaches
for the Heisenberg and the Bose-Hubbard models and we find a good agreement
with quantum Monte Carlo and bosonic dynamical mean-field theory.

The attention in Chap. 4 shifts to a particular subset of three-dimensional sys-
tems that consist of two-dimensional layers with weak coupling between the
planes. These systems are widely studied and highly relevant; prominent ex-
amples include the cuprate high-Tc superconductors and frustrated magnets
on, e.g., triangular, honeycomb, Kagomé, or Shastry-Sutherland lattices. Many
studies assume the effect of the interlayer coupling to be negligible such that
they can be treated as two-dimensional systems, however the interlayer coupling
can play an important role on the quantitative level. This chapter proposes a
contraction algorithm for iPEPS, the layered corner transfer matrix renormal-
ization group (LCTM), that allows us to study these systems. In the approach,
we decouple the layers away from the center such that they can be contracted
using the two-dimensional CTM method. In the center, we keep the layers
connected in order to capture the most relevant interlayer correlations. The
approach has a significantly lower numerical cost than the SU+CTM approach
proposed in Chap. 3 for general three-dimensional iPEPS networks. We assess
the accuracy of the approach by studying the anisotropic Heisenberg model,
where we find a good agreement with contractions by the SU+CTM method
and with quantum Monte Carlo results. We also analyze the dimer to Néel
phase transition in the Shastry-Sutherland model (a two-dimensional frustrated
spin model describing coupled orthogonal dimers) and show that our results are
consistent with a series expansion study.

In Chap. 5, we apply the LCTM method to study the phase diagram of the
Shastry-Sutherland model with a weak interlayer coupling in more detail. The
model is physically remarkably well realized in the compound SrCu2(BO3)2,
although discrepancies exist. One of these is that the extent of the plaquette-
singlet phase found in experimental studies of SrCu2(BO3)2 is significantly
smaller than predicted from theoretical studies of the Shastry-Sutherland model.
A possible explanation is the effect of the interlayer coupling in the compound.
In our study, we perform simulations around the regime relevant to experiments
and find that the extent of the plaquette phase decreases quickly already at a
weak interlayer coupling. We also obtain an estimate for the interlayer coupling
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in SrCu2(BO3)2 of J ′′/J ∼ 0.027 at ambient pressure.

With this thesis, we hope to show the potential of tensor networks for the ac-
curate study of three-dimensional strongly-correlated quantum systems. There
are many ways in which the algorithms can still be improved by performing
more accurate contractions and optimizations of the iPEPS ansatz. But al-
ready in their current form, tensor networks can be a powerful tool to provide
insight into many problems in three-dimensional quantum systems, especially
into models that are difficult to study using quantum Monte Carlo due to the
negative sign problem.
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Samenvatting

Tensornetwerkalgoritmen voor Driedimensionale
Kwantumsystemen
Een van de belangrijkste inspanningen in de moderne natuurkunde is het be-
grijpen van de verschijnselen die zich voordoen in sterk gecorreleerde kwan-
tumsystemen. De interacties in deze systemen zorgen voor een grote variëteit
aan emergent gedrag, zoals supergeleiding, exotische magnetische fasen en vele
soorten collectieve excitaties. Vaak zijn de modellen die gebruikt worden om
deze fenomenen te beschrijven te complex om analytisch te bestuderen waardoor
we afhankelijk zijn van numerieke methoden.

Methoden gebaseerd op tensornetwerken vormen een belangrijke groep van nu-
merieke technieken. Het meest bekende voorbeeld van een tensornetwerk Ansatz
is de matrix product state (MPS), een Ansatz voor de golffunctie in eendi-
mensionale systemen die ten grondslag ligt aan het bekende density matrix
renormalization group (DMRG) algoritme. De DMRG-methode heeft geleid
tot belangrijke doorbraken in onderzoek naar eendimensionale kwantumsyste-
men. Een variant van de MPS voor hoger-dimensionale systemen is de projected
entangled-pair state (PEPS). Hoewel de algoritmen voor PEPS veel complexer
zijn dan voor MPS zijn ze een succesvolle methode geworden voor de studie van
tweedimensionale kwantumsystemen.

Alhoewel de kracht van tensornetwerkmethoden voor een- en tweedimension-
ale systemen duidelijk is aangetoond, blijft het een open vraag of ze ook ge-
bruikt kunnen worden voor driedimensionale kwantumsystemen. Toepassin-
gen van tensornetwerken in drie dimensies zijn nog schaars, maar ze hebben
wel het potentieel om waardevolle inzichten te verschaffen in veel open vra-
gen, bijvoorbeeld voor gefrustreerde magneten, ultrakoude atomaire systemen
en voor materialen die opgebouwd zijn uit tweedimensionale lagen.

Het doel van dit proefschrift is om PEPS-algoritmen te ontwikkelen die deze
driedimensionale kwantumsystemen kunnen simuleren. De grootste uitdaging
voor deze algoritmen is de berekening van verwachtingswaarden, waarvoor een
contractie van het tensornetwerk nodig is. Het ontwikkelen van efficiënte con-
tractie algoritmen is daarom ook een belangrijk onderwerp in dit proefschrift.
We maken gebruik van infinite projected entangled-pair states (iPEPS), een
variant van PEPS waarmee de thermodynamische limiet direct gesimuleerd kan
worden.

In hoofdstuk 3 ontwikkelen we methoden om iPEPS-simulaties uit te voeren
voor algemene driedimensionale kwantumsystemen. We introduceren twee con-
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tractiemethoden. De eerste is de clustercontractie. Het idee van deze methode is
om slechts een klein aantal tensors exact samen te trekken en voor de rest van het
tensornetwerk een benadering te gebruiken. Deze methode heeft het voordeel
dat de numerieke kosten relatief laag zijn in vergelijking met volledige contrac-
ties van het netwerk, alhoewel de nauwkeurigheid van de contractie beperkin-
gen heeft. De tweede methode die we voorstellen is de SU+CTM-contractie.
Dit algoritme voert een volledige contractie van het tensornetwerk uit. De
methode begint door een tweedimensionale iPEPS-rand te definiëren en te opti-
maliseren, zodat het driedimensionale tensornetwerk gerepresenteerd kan wor-
den door een quasi-tweedimensionaal netwerk. We kunnen dit netwerk vervol-
gens samentrekken met behulp van de tweedimensionale corner transfer matrix
renormalization group (CTM) methode, wat een veel gebruikt algoritme is voor
tweedimensionale iPEPS-simulaties. De SU+CTM-methode is nauwkeuriger
dan de clustercontractie, maar heeft wel aanzienlijk meer rekenkracht nodig. We
testen de nauwkeurigheid van de twee methoden door simulaties te doen van het
Heisenberg- en het Bose-Hubbard-model en we vinden een goede overeenkomst
met kwantum Monte Carlo en bosonic dynamical mean-field theory.

De focus verschuift in hoofdstuk 4 naar een subgroep van driedimensionale sys-
temen die bestaan uit tweedimensionale lagen met een zwakke koppeling tussen
de lagen. Er wordt veel onderzoek gedaan naar dergelijke systemen; promi-
nente voorbeelden zijn de cupraat hogetemperatuursupergeleiders en gefrus-
treerde magneten op driehoekige-, honingraat-, Kagomé- of Shastry-Sutherland-
roosters. Om de eigenschappen van deze modellen te beschrijven wordt vaak
aangenomen dat het effect van de koppeling tussen de lagen verwaarloosbaar
klein is, zodat ze als tweedimensionale systemen behandeld kunnen worden.
Deze koppeling kan desondanks kwantitatief een belangrijke rol spelen. In dit
hoofdstuk introduceren we een contractiealgoritme voor iPEPS waarmee deze
systemen bestudeerd kunnen worden, de layered corner transfer matrix renor-
malization group (LCTM). In deze methode ontkoppelen we de lagen overal
behalve in het centrum, zodat ze kunnen worden samengetrokken met behulp
van de tweedimensionale CTM-methode. In het midden blijven de lagen verbon-
den zodat de meest relevante correlaties tussen de lagen mee worden genomen.
De methode heeft een veel lagere numerieke kosten dan het SU+CTM-algoritme
dat in hoofdstuk 3 wordt voorgesteld voor algemene driedimensionale iPEPS-
netwerken. We beoordelen de nauwkeurigheid van de methode door simulaties te
doen van het anisotrope Heisenberg-model. We vinden een goede overeenkomst
met SU+CTM-contracties en met kwantum Monte Carlo-resultaten. We analy-
seren ook de faseovergang van de dimeer-singlet naar Néel fasen in het Shastry-
Sutherland-model (een tweedimensionaal gefrustreerd spinmodel dat gekoppelde
orthogonale dimeren beschrijft) en we laten zien dat onze resultaten consistent
zijn met een series expansion studie.
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In hoofdstuk 5 gebruiken we de LCTM-methode om het fasediagram van het
Shastry-Sutherland-model met een zwakke koppeling tussen de lagen nader te
bestuderen. Het materiaal SrCu2(BO3)2 kan opmerkelijk nauwkeurig beschreven
worden door dit model, hoewel er afwijkingen zijn. Een van deze afwijkingen
is dat de omvang van de plaquette-singlet-fase in experimentele metingen van
SrCu2(BO3)2 significant kleiner blijkt te zijn dan voorspeld op basis van theo-
retische studies van het Shastry-Sutherland-model. Een mogelijke verklaring is
het effect van de koppeling tussen de lagen in het materiaal. We voeren simu-
laties uit van het model rond de koppelingen die relevant zijn voor SrCu2(BO3)2
en we vinden dat de omvang van de plaquettefase al snel afneemt bij een zwakke
koppeling tussen de lagen. We maken ook een schatting van de koppeling tussen
de lagen in SrCu2(BO3)2 en komen op J ′′/J ∼ 0, 027 bij atmosferische druk.

Met het werk in dit proefschrift tonen we de potentie van tensornetwerken aan
voor de nauwkeurige studie van driedimensionale sterk gecorreleerde kwantum-
systemen. Er zijn vele mogelijke manieren waarmee de algoritmen nog verbeterd
zouden kunnen worden, in het bijzonder door nauwkeurigere contracties en opti-
malisaties van de iPEPS-netwerken uit te voeren. Maar ook in hun huidige vorm
kunnen tensornetwerken een krachtig hulpmiddel zijn om inzicht te verwerven in
veel onbeantwoorde vragen over driedimensionale kwantumsystemen, met name
voor modellen die moeilijk te bestuderen zijn met behulp van kwantum Monte
Carlo vanwege het negatieve tekenprobleem.
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