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1 Introduction

The universe is a strange place. With the discovery of the atom, and subsequent
discoveries of even smaller particles like quarks and gluons that make up atomic
nuclei, physics has followed a reductionist line of thought: It aims to break things
into smaller parts to find the most fundamental constituents. These elementary
particles, as they are called, are the fundamental building blocks that constitute
matter around us, and mediate the forces that act upon them. They include
matter particles, like electrons, and force carrying particles, like photons.

Our everyday experiences do not prepare us well for how the universe operates on
the smallest scales. The theory that governs the behavior of elementary particles
is quantum mechanics. Its strange and sometimes bewildering predictions – from
its inherent indeterminism to wave-particle duality and the possibility of quantum
entanglement – have puzzled physicists over the years. However, time after time
we have found that these predictions agree very well with experiment; one could
even argue that quantum mechanics is one of the most successful theories, in the
sense of predictive power, that science has ever produced.

The modern framework for dealing with Nature at subatomic scales – one could
say ‘the language of theoretical physics’ – is quantum field theory (QFT). This
framework trades particles for quantum fields as its most fundamental constituent:
In this description particles are a derived concept that come about as local exci-
tations in some field that permeates all of space. Over the years, one of the main
goals of theoretical physics has been to write the physical laws that govern matter
and forces in the language of QFT.

There are four fundamental forces in Nature: electromagnetism, the strong force,
the weak force, and gravity. Of all four, gravity is probably the most well-known.
It makes things fall down, and keeps our planet in orbit. It is all the more surpris-
ing that we still do not have a good understanding of how gravity works at the
smallest of scales. Electromagnetism that deals amongst other things with light
and chemical properties of matter finds its fundamental description in quantum

1



1. Introduction

electrodynamics (QED), and the strong force that keeps the quarks and gluons
in the atomic nucleus together has a similar description in terms of quantum
electrodynamics (QCD). Also the weak force, a transformative force that plays
an important role in the chain of nuclear reactions that powers our Sun, has a
quantum description.

Quantizing gravity is a different matter. In 1915, Albert Einstein revolutionized
our understanding of the physical world with his theory of general relativity (GR).
Einstein’s theory says that spacetime (the combined notion of space and time) is
dynamical: It can curve or bend under the influence of matter, an effect that we
experience as gravity. This provides a deep relationship between the gravitational
force and the geometry of spacetime, and shows that gravity plays a somewhat
special role when compared to the other three forces.

To combine quantum mechanics and gravity into a theory of quantum gravity
requires an understanding of the fundamental building blocks of spacetime itself.
It is one of the biggest mysteries in modern theoretical physics, and it has been
for quite some time. Luckily, Nature has left us some breadcrumbs to follow. One
such important clue involves one of the most dramatic objects of all: black holes.

1.1 Black holes

Black holes are places where the gravitational attraction becomes so strong that
nothing can escape; not even light. They are characterized by an event horizon,
a boundary that demarcates the point of no return and hides everything on the
inside from view. Quite dramatically, all things that fall into a black hole inevitably
reach a singularity, a point with infinite curvature and zero size.

Einstein’s equations relate the spacetime geometry in terms of the metric tensor
gµν to the distribution of mass-energy in terms of the stress energy tensor Tµν .
They are usually written in terms of the Einstein tensor

Gµν ≡ Rµν −
1
2Rgµν , (1.1.1)

where Rµν is the Ricci curvature and R is the Ricci scalar associated to the metric.
Einstein’s equations now relate geometry to mass-energy via

Gµν + Λgµν = 8πGTµν , (1.1.2)

where G is Newton’s constant and Λ is the cosmological constant that determines
the curvature of our universe as a whole.

2



1.1. Black holes

Long before they were observed in Nature, black holes were predicted by GR. For
example, the Schwarzschild geometry is a solution to the field equations (1.1.2) in
flat1 (i.e., Λ = 0) four-dimensional space without matter, that describes a black
hole with mass M :

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 , (1.1.3)

where the function f(r) is given by

f(r) = 1− 2MG

r
. (1.1.4)

The location of its event horizon rh, and therefore the size of the black hole, is
determined by the equation f(rh) = 0. Using (1.1.4) it is given by rh = 2MG.
The geometry has a curvature singularity at r = 0 that cannot be removed by a
coordinate transformation.

Besides being solutions to the classical field equations, black holes turn out to
be excellent probes for the apparent dichotomy between general relativity and
quantum mechanics. Following upon an important observation of Jacob Beken-
stein [5, 6] and others [7–11] that black holes satisfy equations that are very rem-
iniscent of the laws of thermodynamics, Stephen Hawking [12] showed that black
holes are not really black when one includes quantum effects at the event horizon:
They carry away some of their mass in the form of radiation. The Hawking ef-
fect is fundamentally due to the entanglement structure of the vacuum state: The
spontaneous creation of virtual particles at the event horizon leads to an effective
Hawking radiation when one of the particles falls into the black hole, and its part-
ner escapes to infinity. Just like ordinary radiating objects, black holes therefore
have a temperature.

Given that black holes have a temperature, it is also possible to associate an
entropy to them. Let us for concreteness consider the Schwarzschild solution
(1.1.3) which has a temperature given by

T = 1
8πMG

. (1.1.5)

The first law of thermodynamics now says that

dS = dM

T
= 8πMGdM . (1.1.6)

1Nothing prevents us from studying solutions with a different number of dimensions, or with
different values of the cosmological constant. Most of this thesis will actually be devoted to
Anti-de Sitter space, a universe of constant negative curvature.
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1. Introduction

It relates the change in entropy dS to the change in total energy, in this case the
change in mass dM of the black hole. Integrating this relation, it follows that

S = 4πGM2 . (1.1.7)

Using the fact that the radius of the Schwarzschild black hole is twice its mass, we
find the Bekenstein-Hawking formula for the entropy of a black hole:

SBH = A

4G . (1.1.8)

A surprising feature of the Bekenstein-Hawking formula is that the entropy of a
black hole scales with the area of the event horizon. This result (which holds for
black holes in general) suggests that the information of a gravitating region can
somehow be encoded on its boundary surface.

For its apparent simplicity, (1.1.8) has had profound implications for our under-
standing of black holes. Usually in thermodynamics, entropy is statistical in na-
ture: It counts certain microscopic degrees of freedom that lead to the given
macroscopic state. Bekenstein [5,6] already proposed that the area of a black hole
should represent a statistical entropy that counts black hole microstates. How-
ever, in the case of black holes it is not so clear what those fundamental degrees of
freedom are. A proper theory of quantum gravity should account for the entropy
(1.1.8) in terms of the counting of some microscopic degrees of freedom. In fact,
one of the great achievements of string theory, a candidate theory for quantum
gravity, was to correctly account for the microstates of some specific types of black
holes [13]. It is still an open problem, however, to explain the statistical entropy
of generic black holes.

A related issue involves the black hole information problem. Hawking radiation
causes a black hole to slowly evaporate. In Hawking’s calculation [14] the resulting
radiation does not seem to contain any specific details about the formation process,
for example, about the stuff that was thrown into the black hole to begin with.
Therefore, naively it seems that information gets destroyed when a black hole
evaporates. However, in quantum mechanics such information loss cannot arise,
because of unitary time evolution. We expect that the tension between quantum
mechanical unitarity and information loss should be resolved in a full theory of
quantum gravity.

4



1.2. Holography

1.2 Holography
The observation that the Bekenstein-Hawking entropy does not scale with the
volume of the region (as is usually the case in statistical systems), but with the
horizon area has important implications. It suggests that the degrees of freedom of
quantum gravity live in one dimension fewer. This led ’t Hooft [15] and Susskind
[16] to propose the holographic principle: A theory of quantum gravity in d + 1
dimensions can be equivalently described by a quantum field theory in d dimensions
without gravity. In some way, quantum gravity behaves like a hologram, adding
one extra dimension that emerges from some underlying quantum description.

The most explicit realization of the holographic principle is the AdS/CFT corre-
spondence [17, 18] (see [19] for a review). In its most general form, it provides a
duality between gravity on (d + 1)-dimensional Anti-de Sitter space (AdS) and a
conformal field theory (CFT) in d dimensions. The CFT is a special type of QFT
that exhibits conformal symmetry. The AdS spacetime is usually represented as
a solid cylinder, with the CFT living on the compact boundary, as is depicted
in Figure 1.1. The correspondence is a weak/strong duality: A strongly coupled
CFT is dual to a weakly coupled gravity theory, and vice versa. The archetypal
examples of AdS/CFT come from string theory: the most famous one involves a
duality between type IIB string theory on AdS5 × S5 and N = 4 supersymmet-
ric Yang-Mills theory (SYM) with gauge group SU(N) on the four-dimensional
boundary of AdS5. In the large N → ∞ limit and for strong SYM coupling, the
gravitational theory reduces to classical GR.
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Figure 1.1: The AdS/CFT correspondence. A subregion R in the ‘boundary’ CFT,
has a corresponding geometric region in the ‘bulk’ AdS space, that is determined by the
Ryu-Takayanagi (RT) surface: the entanglement wedge (depicted in yellow).
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1. Introduction

One can think about the AdS/CFT correspondence as a dictionary: One can use
it to translate quantities in one theory to the other, and vice versa. Each physical
quantity in the gravitational ‘bulk’ theory should have an equivalent ‘boundary’
quantity that is dual to it. Much of the research in AdS/CFT is about uncovering
interesting parts of the holographic dictionary.

On a formal level, the correspondence provides an isomorphism between Hilbert
spaces:

HQG ←→ HCFT , (1.2.1)

i.e., a one-to-one mapping between states in quantum gravity and states in the
CFT. Since we do not (yet) have an independent description of the quantum
gravity Hilbert space, one can interpret the AdS/CFT correspondence in (1.2.1)
as giving a definition of quantum gravity in terms of a microscopic CFT.

First, note that the symmetries on both sides match. To be explicit, the isome-
tries of pure AdSd+1 constitute the conformal group SO(2, d), which is also the
symmetry group of a CFTd in Lorentzian signature. For this reason, the vacuum
state of the CFT (that is invariant under the full conformal group) gets mapped
to the pure AdS spacetime. One can also consider excited states in the CFT, by
acting with some operator on the vacuum. The corresponding geometries look
like AdS space close to the boundary, but can have a different interior: They are
asymptotically AdS spacetimes. An important class of examples are black hole
geometries that correspond to states in the CFT at finite temperature.

Another important entry in the holographic dictionary is entanglement entropy.
In quantum mechanics the entropy of a given quantum state, encoded in a density
matrix ρ, is computed by the von Neumann entropy

S = −tr ρ log ρ . (1.2.2)

As an example consider a system of two qubits that are maximally entangled (i.e.,
constitute an Einstein-Podolsky-Rosen (EPR) pair):

|Ψ⟩ = 1√
2

(|01⟩+ |10⟩) . (1.2.3)

The reduced density matrix (where we trace out the subsystem corresponding to
one of the two qubits) is proportional to the identity ρ = 1

21 operator, so that the
entanglement entropy, using (1.2.2), is non-zero: S = log 2. Therefore, the two
qubits that constitute |Ψ⟩ are entangled in a non-trivial way.

Given a CFT (or more generally any QFT) in a state |Ψ⟩, one can associate a
density matrix to a subregion R by tracing out the complement region R: The
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Figure 1.2: The entanglement entropy S(R) associated to some subregion R in the
CFT is computed by the area of the RT surface γR that extends into the holographic
AdS direction.

reduced density matrix is given by

ρ = trR̄|Ψ⟩⟨Ψ| . (1.2.4)

Using (1.2.2) one can now associate an entanglement entropy S(R) to a subregion
R. The holographic interpretation of this quantity is now given by the Ryu-
Takayanagi (RT) formula [20]

S(R) = A(γR)
4G , (1.2.5)

where A(γR) denotes the area of some spacelike codimension-2 extremal surface
γR in the bulk, the so-called RT surface, that is homologous to R and shares
the same boundary ∂R = ∂γR (See Figure 1.2). The RT formula therefore gives
a geometric interpretation to the boundary entanglement in terms of the area
of some surface. The RT formula (1.2.5) looks very similar to the Bekenstein-
Hawking formula (1.1.8) for black holes. There is a covariant generalization of
the RT formula due to Hubeny, Rangamani and Takayanagi (HRT) [21], and an
extension that includes quantum corrections due to the entropy of bulk fields, the
so-called quantum extremal surface (QES) prescription [22].

The AdS/CFT correspondence sheds light on some of the major problems associ-
ated with black holes. It tells us, for example, that no information loss is expected
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1. Introduction

for black holes in AdS, since an ordinary quantum field theory has unitary time
evolution. This provides a (somewhat formal) answer to the information problem
for evaporating AdS black holes. Similarly, the discrete spectrum of black hole mi-
crostates is readily explained from the boundary perspective: A CFT on a compact
space exhibits a discrete spectrum. The true problem that remains is therefore
to account for these issues, say information recovery or a discrete spectrum, from
a bulk geometric perspective by including certain non-perturbative effects. An
interesting approach towards such a description that will be investigated in this
thesis amounts to a careful treatment of the gravitational path integral that defines
quantum gravity as a ‘sum over geometries.’

1.3 Path integrals
Let us briefly explain the relation between path integrals and states in QFT, before
going into quantum gravity. The Euclidean path integral computes a transition
amplitude

⟨ϕ1|e−βH |ϕ2⟩ =
∫ ϕ(β)=ϕ1

ϕ(0)=ϕ2

Dϕe−SE[ϕ] , (1.3.1)

where SE[ϕ] is the Euclidean action of the theory. The fields ϕ1,2 are boundary
conditions for the fields ϕ at imaginary time tE = 0, β respectively. When the
QFT lives on a plane Rd, the Euclidean manifold M that is integrated over has
the topology of a strip Rd × [0, β], see Figure 1.3.
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Figure 1.3: The Euclidean path integral in QFT. The path integral is computed on a
Euclidean strip M = Rd × [0, β] with boundary conditions ϕ(0) = ϕ2 and ϕ(β) = ϕ1.

Equivalently, one can think about (1.3.1) as defining the matrix elements of the
(non-normalized) thermal density matrix ρ = e−βH at temperature T = 1/β. The
thermal partition function is given by

Z(β) = tr e−βH =
∑
i

⟨ϕi|e−βH |ϕi⟩ , (1.3.2)
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1.3. Path integrals

so it can be expressed in terms of the Euclidean path integral using (1.3.1). The
sum over states can be implemented by imposing periodic boundary conditions on
the strip, gluing the two sides of the Euclidean manifold into a cylinder. The ther-
mal partition function can therefore be computed via the Euclidean path integral
on an infinitely long cylinder Rd × S1 of period β.
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horizon

Figure 1.4: The thermal partition function Z(β). The trace over boundary conditions
amounts to gluing both sides of the strip into a Euclidean cylinder with period β.

To define the path integral in QFT we fix the Euclidean manifold M , and integrate
over all the fields ϕ on M . In quantum gravity on the other hand, we expect that
we have to integrate over all possible spacetime geometries as well. The gravitional
path integral can therefore be formally expressed as:

Z =
∫
DgDϕe−SE[g,ϕ] . (1.3.3)

where the action is given by the Euclidean Einstein-Hilbert action with possible
boundary terms Sbdy, and suitable matter content Smatter:

SE[g, ϕ] = − 1
16πG

∫
√
g(R− 2Λ) + Smatter + Sbdy . (1.3.4)

In analogy with QFT, we define the thermal partition function Z(β) in quantum
gravity as the path integral with boundary conditions such that the Euclidean
time coordinate is periodic with period β at infinity:

tE ∼ tE + β . (1.3.5)

Of course, we do not know how to compute, or even properly define this Euclidean
integral. In practice, the approach is to approximate the answer by means of a
saddle point analysis, where one evaluates the action at its classical solution:

Z(β) ≈ exp (−SE [gc, ϕc] + · · · ) . (1.3.6)

This is the semiclassical approximation to the path integral, and the · · · denote
higher loop corrections.
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1. Introduction

For example, in the case of the Schwarschild geometry (1.1.3) The Euclidean so-
lution can be obtained from the original geometry by sending t→ −itE :

ds2 = f(r)dt2E + f(r)−1dr2 + r2dΩ2 . (1.3.7)

The horizon rh = 2MG now simply corresponds to the origin of a disk in polar
coordinates with angular coordinate tE ∼ tE +β. To see this, we approximate the
function f(r) near the horizon rh via a Taylor expansion:

f(r) ≈ 4π
β

(r − rh) , where β = 4π
f ′(rh) . (1.3.8)

This leads to the following Euclidean metric near the horizon:

ds2 ≈ 4π
β

(r − rh)dt2E + β

4π
dr2

(r − rh) + r2dΩ2 . (1.3.9)

Introducing the coordinates ρ and θ defined by

ρ =
√
β

π
(r − rh) , θ = 2π

β
tE , (1.3.10)

the metric looks like a two-dimensional plane in polar coordinates:

ds2 ≈ dρ2 + ρ2dθ2 + . . . (1.3.11)

Requiring that the geometry is smooth (and does not have a conical singularity),
one has to impose that θ ∼ θ + 2π. As a consequence, tE also needs to be peri-
odic with period β given in (1.3.8). This gives a quick (and arguably somewhat
mysterious) derivation of the formula for the Hawking temperature (1.1.5). Af-
ter a careful analysis of the Euclidean action when evaluated on the Euclidean
Schwarzschild solution [23], one finds that the thermal partition function is given
by:

Z(β) ≈ e− β2
16πG . (1.3.12)

This indeed reproduces the usual thermodynamic relations (e.g., (1.1.8)) for the
Schwarzschild black hole.

Finally, let us come back to the AdS/CFT correspondence. Black holes in quantum
gravity are dual to thermal states in the CFT. The mapping between thermody-
namic quantities on both sides is now simply that they should be equal. In short,
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Figure 1.5: The Euclidean black hole. The ‘cigar’-shaped geometry exhibits a thermal
circle at infinity with period β, and caps off at the horizon.

we have the relation between partition functions2:

ZCFT(β) = Zgrav(β) . (1.3.13)

The left-hand side of (1.3.13) is the usual thermal partition function in the CFT,
and the right-hand side is given by the Euclidean path integral construction that
was described above. It is usually evaluated in a semiclassical way by relating
it to the Euclidean on-shell action. In principle, on should, however, include all
quantum corrections. While this is not feasible in general, we will see that the
situation in certain models for two-dimensional gravity is much better, and that
it will be possible to compute the gravitational path integral exactly.

1.4 What to expect?
This thesis broadly cover three topics, divided into five chapters. The first topic is a
study of the gravitational path integral in the context of a simple two-dimensional
model for quantum gravity, presented in Chapter 2 and 3. The second topic,
discussed in Chapter 4, is holographic quantum chaos. The third involves the
study of geometric phases in AdS/CFT, in Chapter 5 and 6. The overarching
theme is that all topics deal with aspects of topology change and the AdS/CFT
correspondence.

Let me now go into a bit more detail and present some of the more specialized
background that is useful later, and anticipate some of the important ideas that
will follow.

2This is a special example of the more general dictionary that relates path integral generating
functions on both sides of the duality.
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1.4.1 Euclidean wormholes

In recent years, there has been much interest in holographic setups on spacetimes
with multiple boundaries. The general picture to have in mind is a gravitational
theory on some Euclidean AdS bulk spacetime M , together with a collection of
quantum theories living on the disconnected boundaries of M (see Figure 1.6). A
component of such a manifold with disconnected boundaries but connected interior
is called a spacetime or Euclidean wormhole3. In this case, the bulk manifold has
a non-trivial topology.

Developments in two-dimensional gravity [24–26] have pointed towards the impor-
tance of such higher topologies in the Euclidean path integral. Most notably, it
was demonstrated that the unitary Page curve [27,28] for the Hawking radiation of
an evaporating black hole in AdS can be obtained by including Euclidean ‘replica’
wormholes in the computation [29,30]. The basic ingredient is the ‘replica trick’ on
n copies of the same black hole. Before the Page time, the dominant contribution
to the Rényi entropy comes from n disconnected spacetimes, whereas after the
Page time spacetime wormholes which connect the n copies dominate. The ana-
lytic continuation n→ 1 then results in the Page curve for the Hawking radiation.
This begs the question: What can we learn from the gravitational path integral if
we allow for more general topologies?

Figure 1.6: Multi-boundary holographic setup.

3The qualifier ‘spacetime’ indicates that the wormhole extends in space and time, distin-
guishing it from the more familiar Einstein-Rosen (ER) bridge, which only extends in the spatial
directions.
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Figure 1.7: The Euclidean black hole in JT gravity. The geometry is given by a hyper-
bolic disk, which is cut off at some distance from the boundary circle. The dashed line
represents the ‘wiggles’ due to the boundary dynamics of the Schwarzian theory.

A nice playground to investigate this question is in two dimensions, where we
have a good handle on the different spacetimes that can arise in the sum over
topologies. We will focus on Jackiw-Teitelboim (JT) gravity [31,32] with negative
cosmological constant, a theory of two-dimensional gravity that has a metric gµν
and a scalar field ϕ : M → R, called the dilaton. A nice feature of JT gravity is
that its Euclidean path integral can be given a precise mathematical definition,
and evaluates as a sum over topologies in terms of some expansion parameter
e−S0 . Each topology is specified by two integers (g, n), where g denotes the genus
of the surface and n the number of boundaries of spacetime, and contributions
from higher topologies are suppressed by the Euler characteristic

χ = 2− 2g − n . (1.4.1)

For example, in the case that M has a single boundary with regulated length β

the path integral splits into topological classes of the form:

Z(β) =
∫
DϕDg e−SJT ∼

∞∑
g=0

e(1−2g)S0Zg(β) . (1.4.2)

The residual path integral Zg(β) over surfaces with g handles can be computed
exactly as a function of G. It involves two distinct contributions: a boundary
graviton mode due to the boundary conditions that we impose, sometimes called
‘wiggly boundary’, and an integral over the internal bulk moduli space of metrics
that are allowed on the surface of given topology. Because S0 ∼ 1/G, the Euclidean
wormholes are non-perturbative effects in gravity.

The Euclidean black hole solution in JT has the topology of a disk with thermal
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circle (see Figure 1.7), and it turns out that the quantum dynamics are governed
by a boundary graviton mode that is described by the Schwarzian theory on the
circle [33]. The disk contribution to the path integral Z0(β) is therefore given
by the Schwarzian path integral, which can be solved exactly [34, 35]. Following
(1.3.13), the result should have the interpretation of a thermal partition function
in a putative microscopic theory, described by some Hamiltonian H:

Z0(β) = tr e−βH =
∫ ∞

0
dEρ(E) e−βE , (1.4.3)

where ρ(E) is the density of states. If we assume that JT gravity has a quantum
mechanical dual with a finite spectrum {Ei} that counts the microstates of the
black hole, its density of states should be a sum of delta function:

ρ(E) =
∑
i

δ(E − Ei) . (1.4.4)

However, the computation of the Schwarzian density of states shows that ρ(E)
is a continuous function. Therefore, the Euclidean disk geometry in JT gravity
does not seem to result in a discrete spectrum. How do we resolve this apparent
tension?

Another confusing aspect of the Euclidean path integral in JT involves the pres-
ence of spacetime wormholes. Assuming that the dual quantum mechanical theory
is local in the sense that two distant asymptotic boundary theories should be un-
correlated (which is true in the standard AdS/CFT dictionary) we expect that the
full gravitational path integral should be a product of path integrals of discon-
nected spacetimes, each with a single boundary dual. An immediate contradiction
arises when one allows Euclidean wormholes in the sum over bulk topologies: we
should then include both disconnected and connected contributions, which leads
to non-factorization.

For example, in the case of the two asymptotic boundaries the connected contri-
bution is given by a Euclidean wormhole Zconn(β1, β2), as depicted in Figure 1.8.
The full path integral therefore takes the form

Z(β1, β2) ∼ e2S0Z0(β1)Z0(β2) + Zconn(β1, β2) + . . . , (1.4.5)

which leads to an explicit non-factorization Z(β1, β2) ̸= Z(β1)Z(β2). Therefore,
a natural question arises: How do we interpret connected bulk contribution in an
underlying microscopic theory?

Both these issues, a continuous density of states and non-factorization, might be
resolved (or at least given an interpretation) if we relax our notion of holographic
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(a) (b)

Figure 1.8: The connected (a) and disconnected (b) contributions to the JT gravity
path integral with two boundaries. By including the connected contribution we obtain a
non-factorized answer.

duality. It may be true that the bulk gravitational theory is not dual to a single
well-defined quantum theory, but instead to a statistical ensemble of boundary
theories. The partition function of the boundary theory would then be a random
variable, and the bulk path integral computes averages over these observables in
some model-dependent statistical ensemble, denoted by ⟨· · · ⟩ = ⟨· · · ⟩ensemble. In
particular, ensemble averaging smoothens out the discrete density of states into a
continuous function

ρ(E) =
〈∑

i

δ(E − Ei)
〉

, (1.4.6)

and the lack of factorization is simply the statement that the random boundary
observables are correlated. In other words, Euclidean wormholes represent statis-
tical correlation. In particular, the two-sided spacetime wormhole corresponds to
a variance in the ensemble:

Zgrav(β1, β2) = ⟨Z(β1)Z(β2)⟩ ≠ ⟨Z(β1)⟩ ⟨Z(β2)⟩ . (1.4.7)

The most clean realization of this idea was presented in [36], where the holographic
dual of JT gravity was argued to be a (double-scaled) random matrix integral. The
precise statement is that the topological expansion of the Euclidean path of JT
agrees with the genus expansion of certain correlation functions of macroscopic
loop operators in the matrix integral, if we identify the expansion parameter eS0

with the size L of the random matrix via some double-scaling procedure. This
relation will be explained in much more detail in Chapter 2.

The first part of this thesis aims to understand this surprising duality, and the
appearance of a matrix integral dual, from a different perspective. The topologi-
cal expansion in wormholes is reminiscent of the expansion that appears in string
theory, where strings can merge and combine resulting in different world-sheet
topologies. In our setting, the role of the two-dimensional string world-sheet is
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Figure 1.9: The Euclidean path integral in JT as a sum over topologies.

played by the JT universe. Inspired by topological string theory, which is a spe-
cial type of string theory that is somewhat under control, we have constructed
a quantum field theory that reproduces the spacetime wormholes as correlations
functions of some fundamental scalar field Φ (not to be confused with the dilaton).

The relevant theory that describes the dynamics of this scalar field is the Kodaira-
Spencer (KS) field theory, that was originally studied by Robbert Dijkgraaf and
Cumrun Vafa [37] as the closed string field theory for the B-model topological
string [38–40]. The intricacies of the splitting and joining of strings, represented
by a cubic vertex in the KS theory, precisely reproduce the non-perturbative space-
time wormhole contributions as a perturbative expansion in the KS field theory
coupling constant. Following the terminology ‘string field theory’, we have coined
the term ‘universe field theory’ for this description. The non-trivial topologies are
then given an interpretation in terms of little ‘baby universes’ parting from (and
later recombining with) their larger ‘parent universe.’

On a technical level, our computation amounts to a careful study of certain re-
cursion relations associated to the moduli space of Riemann surfaces, that govern
the topology change in JT, and a demonstration that these can be realized as
Dyson-Schwinger equations for the universe field theory. One of the interesting
features of our framework is that it allows for the study of more general observ-
ables; in string theory it is actually very natural to consider extended objects on
which open strings can end: D-branes. In the KS theory these are represented by
vertex operators. Using some vertex operator calculus in the universe field theory
we are able to reproduce the non-decaying behavior of the spectral form factor,
a particular analytically continued two-point function, which strongly hints at a
connection between JT gravity and quantum chaos.

1.4.2 Holographic quantum chaos

A very interesting and fruitful research topic involves the interplay between quan-
tum chaos and quantum gravity (see for example [41–43]). In the seminal work [36]
it was shown that Euclidean JT gravity is dual to a (double-scaled) matrix integral,
demonstrating a very concrete model for holographic quantum chaos. Specifically,
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1.4. What to expect?

this duality provides an interesting relation between Euclidean wormholes and
quantum chaos.

A quantum chaotic system has energy levels that are well-modeled by random
matrix theory [44]. A generic matrix integral is given by

Z =
∫

dH exp(−LTrV (H)) , (1.4.8)

where dH is the flat measure on the space of L×L Hermitian matrices and V (H)
is some potential function. A characteristic feature of matrix models (and thus
quantum chaos) is eigenvalue repulsion: Individual eigenvalues tend to stay away
from each other. This makes the spectrum of a chaotic theory very rigid with a
typical level spacing ∆ ∼ e−S (as opposed to an integrable theory that can have
many degeneracies in the spectrum).

Eigenvalue repulsion manifests itself in correlation functions. A useful diagnostic
is the so-called spectral form factor. Let us first introduce the observable

Z(β; t) = tr e−βH−itH . (1.4.9)

This quantity can be obtained from the thermal partition function Z(β) by an an-
alytic continuation β → β+ it. For late times t, (1.4.9) fluctuates erratically (with
mean zero) due to the complex oscillatory factor. The size of these fluctuations is
captured by the quantity

G(β; t) ≡
∣∣∣Z(β; t)
Z(β)

∣∣∣2 = 1
Z(β)2

∑
n,m

e−β(En+Em)−it(En−Em) . (1.4.10)

The spectral form factor (at finite temperature) is now defined as the averaged
g(β; t) = ⟨G(β; t)⟩, where in the case of a random matrix theory the average
is taken with respect to (1.4.8). It has the effect of smoothing out the erratic
fluctuations, but leaving a small non-zero contribution at very late times, the so-
called ‘plateau.’ After t = 0 the curve starts dipping below the plateau value, after
which it exhibits a linear growth (the ‘ramp’) before reaching the plateau. This
‘dip-ramp-plateau’ structure of the spectral form factor is a characteristic feature
of quantum chaotic theories (that are well-described by (1.4.8)).

A quick way to see the size of the plateau effect is by computing the long time
average of the fluctuations:

lim
T→∞

1
T

∫ T

0
dtG(β; t) = 1

Z(β)2

∑
E

N 2
E e

−2βE , (1.4.11)
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Figure 1.10: The spectral form factor. The erratic fluctuations correspond to a single
realization, while the averaged version is smoothed out (depicted with the thick red
curve). It has a characteristic ‘dip-ramp-plateau’ shape, with corresponding timescales
called the Thouless time tTh and the plateau time tplateau.

where NE denotes the degeneracy of the energy E. Using that the partition
function scales as Z(β) ∼ ecS for some constant c, and assuming that the spectrum
is non-degenerate one finds that

lim
T→∞

1
T

∫ T

0
dtG(β; t) = Z(2β)

Z(β)2 ∼ e
−cS . (1.4.12)

Since S ∼ 1/G, the size of the plateau is a non-perturbative effect of the order of
the typical level spacing.

Certain two-point functions that exhibit a non-decaying behavior at late times
(e.g., the spectral form factor) were argued [45, 46] to be excellent probes for a
discrete spectrum in gravity. Indeed, at early times one can replace the discrete
sum over states in (1.4.10) by a continuous density: This is the semi-classical
gravity approximation leading to a decay that continues forever. However, at very
late times the discreteness of the spectrum becomes important, and a non-zero
value (1.4.12) remains. For this reason, it would be very interesting to under-
stand the full ‘dip-ramp-plateau’ structure of the spectral form factor from a bulk
computation.

Euclidean wormholes are argued to be responsible for (part of) this behavior. In
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1.4. What to expect?

particular, it was shown [26] that the connected contribution with two boundaries
provides a universal contribution to the spectral form factor that leads to a linear
growth. This gives a ‘bulk’ explanation of the ramp. A gravitational explanation
of the full quantum chaotic behavior (including the non-perturbative plateau in
the spectral from factor) was until recently lacking. This thesis will provide such
an answer.

In the chaos community, it is a well-known fact that at late times (after the so-
called Thouless time tTh) all quantum chaotic theories fall into certain universality
classes, and are described by a non-linear σ-model modeled on some supersym-
metric coset [47, 48]. Concretely, such a σ-model reduces to a finite-dimensional
matrix integral of Kontsevich type, which is called a ‘flavor matrix model.’ In
recent work [49] Alexander Altland and Julian Sonner revisited these techniques
in the context of holographic quantum chaos, which they describe in terms of a
symmetry breaking principle, so-called causal symmetry breaking. In Chapter 4,
we will show how the symmetry breaking principle and the corresponding flavor
matrix integrals can be realized in our framework of the universe field theory, in
terms of a dynamical theory of non-compact branes in KS theory. This gives an
explicit geometrical representation of quantum chaos at late ‘plateau’ times.

The inspiration for how everything weaves together is again found in string theory:
Since JT gravity is the analogue of a closed string, there is a dual open string de-
scription that knows about non-perturbative physics; it involves D-branes. From
the universe field theory perspective the appearance of the matrix integral de-
scription is therefore quite natural: it arises from an open/closed duality, and the
non-linear σ-model for quantum chaos is precisely the open string description. A
comprehensive diagram displaying all the relations (Figure 4.1) can be found in
Chapter 4.

This gives a very nice (and I believe deep) conceptual understanding of where
the chaotic behavior in quantum gravity comes from. Although the explanation
of the plateau in terms of D-brane calculus was already anticipated in earlier
work [36], our universe field theory allows for a treatment of these dynamical branes
in a controlled setting, and an explicit calculation of their partition function. An
interesting consequence of our work is that it provides a late-time bridge between
the microscopic SYK model and JT gravity, since they are both described by the
same flavor matrix integral [50].

1.4.3 Modular Berry phases

Another interesting example of the interplay between topology and quantum grav-
ity is the study of modular Berry phases in the context of AdS/CFT. One of the
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exciting challenges in holography is to understand the emergence of space and
time from the CFT. The notion of quantum entanglement plays a key role in this
relation [51], an idea that is nicely captured by the slogan ‘ER=EPR’ [52]. It turns
out that one can understand the entanglement spectrum of the CFT, abstractly,
in terms of a parallel transport problem for modular Hamiltonians, to which one
associates some geometric phase, the modular Berry curvature [53,54].

In quantum mechanics, Berry phases appear as geometric phases associated to
changes in a state. For concreteness consider a pure state |ψ⟩ in some Hilbert
space H. We can deform the state by some unitary (e.g., by turning on some
external magnetic field)

|ψ(λ)⟩ = U(λ)|ψ⟩ . (1.4.13)

The Berry connection is defined as

A = i ⟨ψ(λ)| δ |ψ(λ)⟩ = i ⟨ψ|U†δU |ψ⟩ . (1.4.14)

After making a closed loop γ in parameter space, the state has picked up a geo-
metric phase |ψ(λf )⟩ = eiθ(γ)|ψ⟩ which is given by

θ(γ) =
∮
γ

A =
∫
B

F , (1.4.15)

where we have used Stokes’ theorem to write it in terms of the flux of the Berry
curvature F = dA through a region B with the property ∂B = γ.

The notion of Berry phases can also be studied in the context of holography. While
(1.4.14) holds true for pure states, a similar geometric quantity can be associated
to a parallel transport of modular Hamiltonians. Let us anticipate some of the
ideas that go into the construction, relegating a more complete description to the
main text. The idea is to consider a global state |ψ⟩ and a subregion A on a time
slice of the CFT. The reduced density matrix is given by

ρA = trĀ |ψ⟩⟨ψ| . (1.4.16)

The modular Hamiltonian Hmod is defined by

ρA = e−Hmod/(tr e−Hmod) . (1.4.17)

We now modify the system by some auxiliary parameter λ (e.g., by changing the
location of the interval A or the global state |ψ⟩ of the system). This leads to a one-
parameter family of modular Hamiltonians Hmod(λ). Diagonalizing the modular
Hamiltonians as

Hmod = U†∆U , (1.4.18)
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Figure 1.11: A parallel transport problem for modular Hamiltonians. The space of
modular Hamiltonians (gray shape) is the base space of some fiber bundle, where the
vertical fibers are zero mode spaces. A generic closed loop Hmod(λ) in the base space
(indicated with orange), lifts to a non-closed curve in the fiber bundle, providing a non-
trivial ‘Berry phase.’

where ∆ is a diagonal matrix of eigenvalues, and taking a derivative with respect
to λ one finds

Ḣmod = [U̇†U,Hmod] + U†∆̇U . (1.4.19)

This equation exhibits a redundancy due to the presence of modular zero modes:

U → Ũ = UV , (1.4.20)

which are defined in terms of operators that commute with the modular Hamilto-
nian:

V = e−i
∑

i
siQi , where [Qi, Hmod] = 0 . (1.4.21)

The zero mode frame redundancy leads to a Berry transport problem for operators.
One can think about the zero mode ambiguity as a gauge symmetry in space of
modular Hamiltonians. After performing the parallel transport around a closed
loop, the operator U̇†U that appears in (1.4.19) has a definite value, but U itself
may differ by a modular zero mode:

U(λf ) = U(λi)e−i
∑

i
αiQi . (1.4.22)

It is also possible to associate a curvature F to this transport problem as well,
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Figure 1.12: Two types of parallel transport problems in AdS/CFT. Left: shape-
changing Berry transport, where the shape of the boundary subregion is changed, and the
global state |ψ⟩ is kept fixed. Right: state-changing Berry transport, where the location
of the subregion is kept fixed, and the global state |ψ⟩ is changed (indicated by a wiggly
orange line.) Both lead to a one-parameter family of modular Hamiltonians.

by considering parallel transport along an infinitesimal loop. This is the modular
Berry curvature.

In the context of holography, one can now ask the following question: What is the
bulk dual for a general transport problem on the boundary? In the final part of
this thesis, we make a significant contributions towards answering this question
by studying a fairly general class of state-changing transport problems. First, we
use Virasoro excitation in the context of AdS3/CFT2 to get a bulk description in
terms of geometries with a backreacted cosmic brane inserted at the RT surface.
Then, we go beyond the special case of symmetry-based transport, and compute
the Berry curvature associated to general coherent state deformations in arbitrary
dimensions. In both cases, we establish that the Berry curvature is holographically
related to a bulk symplectic form associated to the entanglement wedge. Although
previous discussions (e.g., [55]) are restricted to the full boundary, we have pro-
posed an explicit definition of the symplectic form associated to a subregion.
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2 Holography in two
dimensions

Holography is a powerful tool to study quantum gravity in AdS spacetimes. To
make computations tractable, it is often useful to work in certain simplified low-
dimensional models. For example, two-dimensional gravity is a toy model for
gravity with a single space and single time dimension. It allows for an exact (non-
perturbative) result for many quantities in the theory, such as the Euclidean path
integral. However, by virtue of the Gauss-Bonnet theorem, the usual Einstein-
Hilbert action does not generate any dynamics for the gravitational field in two
dimensions: It is a topological invariant. Therefore, to get something non-trivial
one has to construct slightly more involved models.

One important model, that has recently received a lot of attention, is Jackiw-
Teitelboim (JT) gravity. It has been solved completely on a quantum level. The
theory incorporates finite energy excitations that break the AdS2 asymptotics
[56]. These small deviations from the AdS2 geometry are called ‘nearly’ AdS2
geometries. In the context of the nAdS2/nCFT1 correspondence, the quantum
mechanical dual is still under investigation. Famously, it was shown that the
Sachdev-Ye-Kitaev (SYK) model [57–59] has a low-energy description in terms
of the Schwarzian theory that also governs JT gravity [33, 60–62], arguing for its
interpretation as a microscopic description of quantum black holes.

Besides being a testing bed for certain difficult questions in higher-dimensional
gravity, JT gravity also has applications in more realistic physical problems. For
example, the AdS2 geometry and corresponding JT dynamics arise naturally as
part of the near-horizon description of certain near-extremal black holes in four
dimensions (see, e.g., [63]). Our findings are therefore also relevant for these
higher-dimensional black hole settings.

In this chapter, I will present the relevant background that is useful for under-
standing the rest of this thesis. In Section 2.1, I will give the precise definition
of the Euclidean path integral in JT gravity as a ‘sum over all topologies.’ I will
argue that the Euclidean wormholes that arise are an indication that the dual
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2. Holography in two dimensions

description shares many features with random matrix theory. For this reason, I
will describe the basics of random matrix theory in Section 2.2, and its proposed
holographic relation to JT gravity.

2.1 The path integral in JT gravity

2.1.1 A topological expansion

The classical action of Euclidean JT gravity on a two-dimensional surface M is
given by

SJT[g, ϕ] = −S0 χ(M)− 1
2

∫
M

d2x
√
g ϕ(R+ 2)−

∫
∂M

du
√
hϕ(K − 1) . (2.1.1)

The field content constitutes a two-dimensional metric gµν and a scalar field ϕ,
the dilaton. The first term in the action is purely topological: It is the Euler
characteristic χ(M) of the manifold M . The second term can be used to derive
the bulk equations of motion

R+ 2 = 0 , (∇µ∇ν − gµν∇α∇α)ϕ+ gµνϕ = 0 . (2.1.2)

We assume that the boundary ∂M consists of a disjoint union of one-dimensional
circles,

∂M = S1 ∪ · · · ∪ S1 , (2.1.3)

so a choice of boundary conditions is required. A natural such choice involves
Dirichlet boundary conditions where we fix the fields near the boundary as

g|∂M = 1
ϵ2

, ϕ|∂M = ϕr
ϵ
. (2.1.4)

The holographic renormalization parameter ϵ defines a cut-off surface in the bulk
which approaches the boundary in the limit ϵ → 0. The length of the thermal
circle is taken to be β/ϵ and the boundary conditions (2.1.4) give rise to a graviton
mode [33] that parametrizes the ‘boundary wiggles’ of the cut-off surface.

With these boundary conditions it is possible to compute the Euclidean path
integral of JT gravity exactly. Doing the integral over ϕ along an imaginary contour
in field space puts a delta function in the integral over the metrics, enforcing
the equation of motion R + 2 = 0. In two dimensions, this equation can be
solved easily. The solutions are precisely the Riemann surfaces with negative
Euler number χ = 2 − 2g − n < 0, together with the hyperbolic disk and the
annulus. When we take the number n of asymptotic boundary components to
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2.1. The path integral in JT gravity

be fixed, this reasoning gives the following expansion for the path integral into
topologically distinct sectors

Z(β1, . . . , βn) =
∞∑
g=0

eS0(2−2g−n)Zg,n(β1, ..., βn) . (2.1.5)

This is an expansion in the genus (i.e., number of handles) of the surface. The
expansion parameter1 (eS0)χ comes from the topological term in the action (2.1.1),
so higher genus surfaces are suppressed. Having integrated out the ϕ-field there
is a residual path integral over the space of metrics on a surface of fixed topology,
and an integral for the boundary degrees of freedom. Symbolically, we have

Zg,n(β1, ..., βn) =
∫
d(moduli)g,n

∫
d(bdy wiggles) e−Sbdy . (2.1.6)

The remainder of this section will be devoted to evaluating this expression. Af-
ter careful analysis of the integration measure, we will find that the connected
contribution to the JT path integral is given by

Zc
g,n(β1, . . . , βn) =

∫ ∞

0

n∏
i=1

dℓiℓi Ztrumpet(βi, ℓi)Vg,n(ℓ1, . . . , ℓn) , (2.1.7)

where we have have written the residual path integral as a bulk contribution Vg,n,
which computes the volume of the geometric moduli, and a term Ztrumpet coming
from the path integral over the boundary degrees of freedom.

The expression for the path integral (2.1.7) holds for surfaces with χ < 0; the path
integral on the disk and the annulus are computed independently.

2.1.2 The disk and trumpet partition function

Let us first consider the disk partition function, where we have a single asymptotic
boundary of renormalized length β. The disk topology admits a hyperbolic metric
of the form

ds2 = dρ2 + sinh2 ρ dθ2 , (2.1.8)

where ρ and θ are respectively radial and angular coordinates on the disk. Accord-
ing to the boundary conditions defined in (2.1.4), the circumference of the cut-off
(which depends on ϵ) is fixed, but the location of the cut-off surface is allowed to
fluctuate (See Figure 2.1).

1The parameter S0 is referred to as the extremal entropy as it corresponds to the entropy of
a four-dimensional extremal black hole with throat region AdS2 ×S2 and near-horizon dynamics
described by JT gravity.
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2. Holography in two dimensions

Figure 2.1: The disk geometry in JT gravity. The dashed curve (ρ(u), θ(u)) encloses
a cut-out shape of the hyperbolic disk (dark purple), and describes the ‘wiggles’ due to
the boundary dynamics of the Schwarzian theory.

The action for these fluctuations follows from the extrinsic curvature term in
(2.1.1). In the limit ϵ → 0, the boundary action was shown [33] to reduce to
a Schwarzian theory for the reparametrizations u 7→ θ(u) of the angular coordi-
nate: ∫

∂M

du
√
hϕ(K − 1) −→ 2πϕr

β

∫ 2π

0
du {tan θ(u)

2 , u} , (2.1.9)

where the Schwarzian derivative of some function f = f(u) is defined by

{f, u} = f ′′′

f ′ −
3
2

(
f ′′

f ′

)2
. (2.1.10)

The resulting path integral can be written as an integral over the coadjoint orbit

O = diff(S1)/SL(2,R) . (2.1.11)

From the bulk perspective, the reparametrizations θ = θ(u) ∈ O are precisely the
diffeomorphisms of the circle modulo the ones which can be extended into the
bulk: The SL(2,R) group moves the cut-out shape around, but does not change
the global geometry of the hyperbolic disk. It acts as

tan θ2 →
a tan θ

2 + b

c tan θ
2 + d

, where ad− bc = 1 . (2.1.12)

The Schwarzian derivative (2.1.10) is indeed invariant under transformations of
this type. Hence, the configurations which are related to each other by the action
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<latexit sha1_base64="DPtM1A2TWOtLdaL4zByb4tzRgBM="></latexit>

�
<latexit sha1_base64="USYoLa93GSA+xg/1djLTc7SqMdI="></latexit>

`
<latexit sha1_base64="USYoLa93GSA+xg/1djLTc7SqMdI="></latexit>

`

X
<latexit sha1_base64="USYoLa93GSA+xg/1djLTc7SqMdI="></latexit>

`

Figure 2.2: The trumpet geometry.

of SL(2,R) should be made equivalent by dividing it out.

The resulting integral over the boundary wiggles is therefore given by

Z0,1(β) =
∫
d(bdy wiggles) e−Sbdy =

∫
O
dθ e−Sschw[θ(u)] . (2.1.13)

This path integral was shown [34,35,63,64] to be one-loop exact2 and evaluates to

Z0,1(β) = 1
4π1/2β3/2 e

π2/β . (2.1.14)

For the path integral over more general surfaces there is also a contribution coming
from the boundary: Near each of the boundary circles we can remove an annulus
by cutting along a geodesic of length ℓ. The resulting geometry has the shape of
a trumpet, as depicted in Figure 2.2. The JT trumpet has two boundaries (one
of renormalized length β and one of finite length ℓ), but one only needs a single
boundary term in the action.

The full isometry group of the disk is now broken to a U(1) ⊂ SL(2,R), where the
U(1) rotates the ‘funnel’ end of the trumpet. The corresponding coadjoint orbit
is therefore given by

O = diff(S1)/U(1) . (2.1.15)

Analogously to the disk computation, the extrinsic curvature term gives a (twisted)
version of the Schwarzian theory, and the boundary path integral is one-loop exact.

2One can see this, for example, by using a localization argument following Alekseev and
Shatashvili [65,66] who used a generalization the Duistermaat-Heckman formula [67] to compute
such orbital integrals.

27



2. Holography in two dimensions

(a) (b)

Figure 2.3: The double trumpet geometry (a) can be obtained from gluing two trum-
pets along a common geodesic of length ℓ (b). The resulting moduli space involves two
parameters: the length ℓ of the geodesic and the relative twist τ before gluing.

A similar computation shows that

Ztrumpet(β, ℓ) = 1√
4πβ

e−ℓ2/(4β) . (2.1.16)

For example, one can use (2.1.16) to compute the path integral Z0,2(β1, β2) on a
geometry with two asymptotic boundaries that are connected by a ‘double trum-
pet’. We simply have to ‘glue’ two such trumpets, with asymptotic boundaries of
renormalized lengths β1 and β2 respectively, along a common geodesic boundary
of length ℓ (the ‘throat’ of the wormhole). In the JT path integral one should
integrate over these distinct geometries. The internal moduli space amounts to an
integration over the length ℓ, as well as an integral over a relative twist parameter
τ . The twist parameter measures the length that a segment of a curve would travel
along the geodesic boundary after a relative twist between the two trumpets has
been made, before gluing them. The length and twist provide the following ‘gluing
measure’

d(moduli)0,2 = dℓ ∧ dτ (2.1.17)

It turns out that not all values of τ lead to a distinct geometry: Geometries that
can be obtained from one another by a full twist of the boundary are related by a
diffeomorphism, and should therefore be viewed as equivalent. Such a full twist of
the internal geodesic boundary is called a Dehn twist. Identifying τ ∼ τ + ℓ is an
example of dividing out the mapping class group (that is generated by such Dehn
twists). In general, on more complicated surfaces the mapping class group acts
highly non-trivially, but in the simple case of the double trumpet it amounts to
restricting the domain of integration to 0 ≤ τ < ℓ. A straightforward computation
shows that

Zc
0,2(β1, β2) =

∫ ∞

0
dℓ

∫ ℓ

0
dτZtrumpet(β1, ℓ)Ztrumpet(β2, ℓ) = 1

2π

√
β1β2

β1 + β2
. (2.1.18)
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2.1. The path integral in JT gravity

2.1.3 Weil-Petersson volumes

Let us now evaluate the general formula (2.1.6) in the case that spacetime has
Euler characteristic χ < 0. We have already seen how to deal with the boundary
degrees of freedom: In the neighborhood of each asymptotic boundary we cut out a
trumpet along some geodesic, and perform an additional integral over the wiggles
given by (2.1.16). The bulk spacetime that remains is a compact Riemann surface
M = Σg,n with geodesic boundaries. One is now instructed to integrate over all
possible metrics on this surface, up to diffeomorphism. In two dimensions this
computation is under control: Holding the the geodesic lengths ℓ1, ..., ℓn fixed, we
have to do a finite-dimensional integral over the moduli space.

Abstractly, the moduli space is defined as the space of Riemann surfaces with g

handles and n geodesic boundaries, up to diffeomorphism. Let us first define Te-
ichmüller space T (Σg,n) as the space of hyperbolic metrics up to small isometries,
i.e., isometries connected to the identity. To describe it more explicitly, we use a
particular decomposition of the surface Σg,n into simpler building blocks. For a
surface of genus g ≥ 2 with n geodesic boundaries there is a decomposition into
2g− 2 +n copies of a pair-of-pants geometry. This pair-of-pants surface has genus
zero and admits a hyperbolic metric with three geodesic boundaries of lengths
ℓ1, ℓ2, ℓ3. It turns out that the hyperbolic structure on this surface is uniquely
specified by fixing the hyperbolic lengths of the three geodesic boundaries. There-
fore, the internal moduli of Σg,n come from some additional freedom in combining
the individual building blocks.

XX

Figure 2.4: The pair-of-pants decomposition. A Riemann surface of genus g = 2 with
n = 1 boundary can be decomposed into 2g − 2 + n = 3 copies of the pair-of-pants
geometry. Note that this decomposition is by no means unique.

Similar to the double trumpet computation, the different ways of combing the
pieces are parametrized by a set of length and twist coordinates. For example,
by changing the length ℓ̃i of some internal gluing boundary we obtain a different
hyperbolic structure on the glued surface. One could also imagine twisting one
of the boundary components before gluing back, which leads another degree of
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2. Holography in two dimensions

freedom. Therefore, instead of the 3g − 3 + n internal boundary lengths ℓ̃i we
require some extra 3g − 3 + n parameters τi which specify the twist along the
gluing curves. This gives a homeomorphism of Teichmüller space T (Σg,n) with
R3g−3+n

+ × R3g−3+n.

The length and twist parameters
(
ℓ̃1, ..., ℓ̃3g−3+n, τ1, ..., τ3g−3+n

)
form a local co-

ordinate system known as Fenchel-Nielsen coordinates. The external boundaries
are assumed to have fixed length. Moreover, the twist parameter τ takes values
in R so both clockwise and counterclockwise rotations are allowed. Given a choice
of pair-of-pants decomposition there is a natural symplectic form such that length
and twist parameters are dual variables. The Weil-Petersson (WP) symplectic
form is given by

ΩWP = 1
2

3g−3+n∑
i=1

dℓ̃i ∧ dτi . (2.1.19)

Note that the pair-of-pants decomposition we used in the definition of the sym-
plectic form is by no means unique: There are different ways of decomposing a
given surface into pair-of-pants building blocks. However, it turns out that ΩWP
is independent of the pants decomposition [68]. Therefore, one can think about
the moduli space integral in the JT path integral as defined by the measure

d(moduli)g,n = 1
k!Ω

k
WP (2.1.20)

where k = 3g − 3 + n. It is the generalization of (2.1.17).

There is a subtlety associated to the expression in (2.1.20). Naively integrating
over the full space of length and twist parameters overcounts the degrees of free-
dom. Instead, one should be careful about the correct notion of diffeomorphism
invariance in the gravitational path integral. The definition we used above involved
only diffeomorphisms in the path component of the identity. There is however a
larger class of diffeomorphisms, the so-called mapping classes, which provide a
finer equivalence relation on the space of metrics. Formally, the mapping class
group MCGg,n of a surface M = Σg,n is defined via the short exact sequence

0→ Diff0(Σg,n)→ Diff(Σg,n)→ MCGg,n → 0 . (2.1.21)

It consists of the large diffeomorphisms of the space time which are not continu-
ously connected to the identity. In analogy with the situation for the torus, they
are also referred to as modular transformations. We now define the moduli space
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2.1. The path integral in JT gravity

of Riemann surfaces as the quotient3

Mg,n ≡ T (Σg,n)/MCGg,n . (2.1.22)

We will often write Mg,n = Mg,n(ℓ1, ..., ℓn) to make the dependence on the ex-
ternal boundary lengths manifest.

For now it is sufficient to mention that to get a sensible (finite) answer we should
only integrate over the fundamental domain Mg,n by modding out the action of
the mapping class group elements. Importantly, the WP symplectic form is still
defined on this domain. This gives the proper diffeomorphism invariant definition
of the space of all hyperbolic metrics which should be used in the gravitational path
integral. Integrating with respect to (2.1.20) one obtains the symplectic volumes
of the moduli space

Vg,n(ℓ1, ..., ℓn) = vol(Mg,n(ℓ1, ..., ℓn)) , (2.1.23)

the so-called Weil-Petersson (WP) volumes. This explains how the expression
(2.1.7) arises from a path integral computation.

We would like to stress that the above computations do not involve any saddle-
point approximations. Instead, the quantity Zg,n(β1, ..., βn) expresses an exact
path integral involving all possible off-shell configurations. In fact, the only con-
figuration which is a true classical solution of the theory (solving the equations of
motions (2.1.2) for both the metric gµν and for the dilaton ϕ) is the hyperbolic
disk.

2.1.4 Recursion relations
The problem of computing the WP volumes, and thereby the Euclidean path
integral in JT gravity, directly from the moduli space definition (2.1.23) is very
hard. It was therefore all the more surprising that Maryam Mirzakhani [69, 70]
was able to derive a set of recursion relations for the WP volumes, which could
be used to compute them up to arbitrary high order in the genus and number of
boundaries of the Riemann surface.

Let us for concreteness consider a (bordered) Riemann surface M = Σg,n. The
idea is, roughly speaking, that by stripping off a pair-of-pants from M the moduli
space integral reduces to an integral over WP volumes of ‘smaller’ surfaces, i.e.,
with larger Euler characteristic χ. When one removes a pair-of-pants geometry
from M , three distinct things can happen: Either it leaves the surface connected,

3The action of MCGg,n on a given surface extends to a properly discontinuous action on the
Teichmüller space T (Σg,n), so that the quotient defines an orbifold.
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Figure 2.5: Removing a pair-of-pants from a surface Σ can lead to three distinct sce-
narios. (a) The stripped surface Σ′ has one boundary less than Σ, but the genus stays
the same. (b) The surface Σ′ has one boundary more than Σ, but the genus goes down
by one. (c) The surface Σ′ splits into two disconnected pieces, such that the genera and
external boundaries of Σ get distributed among the two parts.

in which case it can leave behind one or two boundaries, or it separates the surface
into two disconnected pieces. The three outcomes are depicted in Figure 2.5.

One would perhaps expect that the computation of the WP volumes is similar
to the double-trumpet computation (2.1.18), where we split the cylinder into two
trumpets and computed the partition function using a simple gluing integral over
the internal modulus ℓ. However, that case was really special: The MCG acts in
a simple way by identifying τ ∼ τ + ℓ. In general, however, the MCG acts highly
non-trivially, and we have to be more careful. The problem is that the different
decompositions in Figure 2.5 are not invariant under the MCG. To describe the
quotient, one would have to find a fundamental domain for the MCG, but this is
a hard problem.

From a physical point of view this statement amounts to the fact that in a quantum
gravitational theory it is not natural to fix a particular time slice: One rather wants
to include a sum over all possible slices. By choosing a particular decomposition
we necessarily break some of the diffeomorphism invariance in the path integral
over the full manifold: The diffeomorphism group of the full spacetime is larger
than the combined diffeomorphism groups of the separate pieces. Therefore, the
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Figure 2.6: A ‘time slice’ in the surface Σ1,2. It gets cut along two internal geodesics
α1, α2, and decomposes into two copies of the pair-of-pants geometry. The moduli space
of the full surface does not factorize nicely.

gluing prescription for gravity has to be rather non-trivial.

As an illustrative example, we consider the surface Σ1,2 and a decomposition as
given in Figure 2.6, where we have written α1 and α2 for the two dividing cycles.
Accordingly, we have decomposed

Σ1,2 = Σ0,3 ∪α1,α2 Σ0,3 , (2.1.24)

in terms of two copies of the pair-of-pants geometry. Naively cutting open the
path integral would lead to a formula of the form

V1,2(ℓ1, ℓ2) !=
∫ ∞

0
dℓ ℓ

∫ ∞

0
dℓ′ ℓ′ V0,3(ℓ1, ℓ, ℓ

′)V0,3(ℓ, ℓ′, ℓ2) , (2.1.25)

where we integrate over the internal lengths ℓ = ℓ(α1), ℓ′ = ℓ(α2).

The problem with (2.1.25) is that the geometric moduli of a spacetime with handle
do not factorize in the way described. In fact, the right-hand side is divergent:
By naively cutting open the manifold we have broken part of this diffeomorphism
invariance that makes the left-hand side finite. As comparison, one would not
have this issue in a purely topological quantum field theory: For example, in the
topological BF theory4 on some surface Σ1,2 with two external holonomies V1, V2
we have the following identity:

V BF
1,2 (V1, V2) =

∫
dU1

∫
dU2 V

BF
0,3 (V1, U1, U2)V BF

0,3 (V2, U
−1
1 , U−1

2 ) . (2.1.26)

4One can write JT gravity without large diffeomorphisms in terms of topological BF theory,
by mapping the metric g to a gauge field A and the dilaton Φ to the scalar B in the adjoint
representation of a suitable non-compact gauge group. See for example [71].
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2. Holography in two dimensions

This captures the idea that we can cut along a non-contractible cycle and insert
a complete set of states to split the Euclidean path integral into smaller building
blocks (see, e.g., [72]). However, when large diffeomorphisms are included the
moduli space cannot be expressed in terms of the moduli spaces of the building
blocks in such a simple way. Instead, one needs a correction to account for the
sum over modular images.

The idea of Mirzakhani for making the decomposition invariant under the MCG
was to write the constant function ℓ on the Teichmüller space as a weighted sum
over MCG orbits of simple closed curves which bound a pair-of-pants. Instead of
summing over all ways to strip off a pair-of-pants, we can use this ‘resolution of the
identity’ to first pick a single pair-of-pants and then sum over orbits of the MCG
action, weighted by some functions on Tg,n. Mirzakhani called this ‘resolution of
the identity’ the generalized McShane identity5. Integrating the sum leads to an
integral over the moduli space of the stripped surface. This establishes a recursion
relation for the volumes Vg,n.

The starting point for Mirzakhani’s recursion will be two pieces of ‘initial data’:
the volume of the moduli space of a pair-of-pants and of a torus with one boundary,

V0,3(ℓ1, ℓ2, ℓ3) = 1 , V1,1(ℓ) = 1
24
(
ℓ2 + 4π2) . (2.1.27)

From these initial data it is possible to compute all Vg,n recursively. The result,
obtained by Mirzakhani, from integrating the generalized McShane identity is:

ℓ1Vg,n(ℓ) =
n∑
j=2

∫ ∞

0
dl lF2(ℓ1, ℓj , l) Vg,n−1(l, ℓ̂j)︸ ︷︷ ︸

(a)

+ 1
2

∫ ∞

0
dl l

∫ ∞

0
dl′ l′ F1(ℓ1, l, l

′)
[
Vg−1,n+1(l, l′, ℓI)︸ ︷︷ ︸

(b)

+
∑

g1+g2=g
J1⊔J2=I

Vg1,1+|J1|(l, ℓJ1)Vg2,1+|J2|(l′, ℓJ2)︸ ︷︷ ︸
(c)

]
. (2.1.28)

We have used multi-index notation ℓI = (ℓ2, . . . , ℓn) and I = (i2, . . . in) with length
|I| = n−1. The sum in the last term of is over all ways to partition I into subsets
J1 and J2, and over all distributions of the genus g into a sum g1 + g2. We have

5This name refers to a similar identity on the Teichmüller space of Riemann surfaces with
marked points discovered by McShane [73], generalized by Mirzakhani to the case were the
marked points are blown up to geodesic boundaries.
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labelled each terms by the corresponding situation in Figure 2.5. The functions F1
and F2 are determined by the hyperbolic geometry of a pair-of-pants. Explicitly,
they are given by

F1(l1, l2, l3) ≡ −2 log
(

1 + e−(l3+l2+l1)/2

1 + e−(l3+l2−l1)/2

)
, (2.1.29)

and
F2(l1, l2, l3) ≡ 1

2 (F1(l1, l2, l3) + F1(l1,−l2, l3)) . (2.1.30)

A useful interpretation of the recursion relation (2.1.28) is in terms of the splitting
and joining of closed strings. The right-hand-side describes the different ways the
string can split into two strings (F1), or join with another string (F2). From
this point of view, the JT gravity universes play the role of a string world-sheet,
and the recursive structure resembles that of a Dyson-Schwinger equation in the
corresponding string field theory. We will make this analogy precise in Chapter 3.

Having described the bulk contributions in terms of WP-volumes, the final step in
the computation of the JT path integral is to add the trumpets. To each geodesic
boundary, we glue a trumpet in the same way that we did for the cylinder, by
integrating over the length and twist coordinates τi and ℓi at each boundary.
Since neither Ztrumpet nor Vg,n depends on τi, the integral over the twist parameter
just gives a factor of ℓi for each trumpet. Taking these things into account, we
obtain (2.1.7). This finishes our computation of the Euclidean path integral in JT
gravity.

2.2 Random matrix theory

Let us now give some more background on random matrix theory, and its relation
to the path integral in JT gravity. For a more extensive account of matrix integrals
one can consult the recent review [74], and references therein. An important
technique that will be highlighted is the topological recursion formalism, that can
be used to solve the matrix integral recursively.

2.2.1 Eigenvalue repulsion

A Hermitian matrix integral is given by

Z =
∫
dH exp(−L trV (H)) , (2.2.1)
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2. Holography in two dimensions

where dH is the flat measure on the space of L×L Hermitian matrices and V (H)
is some potential function. The above formula should be interpreted as giving a
probability measure

p(H) ≡ 1
Z

exp(−L trV (H)) , (2.2.2)

for some ensemble of random matrices. One can also consider different types
of matrix ensembles, where one, for example, considers the space of symmetric
matrices, instead of Hermitians ones. This would lead to the Gaussian Orthogonal
Ensemble (GOE), instead of the Gaussian Unitary Ensemble (GUE).

Notice that the above probability distribution (2.2.2) is invariant under transfor-
mations of the form H 7→ UHU† for a unitary matrix U . This enables us to
express the probability measure in terms of the eigenvalues of H. Suppose that
we have diagonalized H via some unitary H = UΛU†, where Λ = diag(λ1, ..., λL)
is a diagonal matrix. We would like to compute the measure under the change
of coordinates H 7→ (Λ, U). Written in matrix elements we have the following
relation

dMij = (λj − λi)dVij + δijdλi , (2.2.3)

where dV = U†dU is anti-Hermitian. The Jacobian of the coordinate transfor-
mation is now readily computed to be given by the square of the Vandermonde
determinant:

∆2(λ) =
∏
i<j

(λi − λj)2 . (2.2.4)

After integrating out the the space of unitaries dU (which gives a finite volume
that can be absorbed in the normalization constant) one obtains a joint probability
distribution for the eigenvalues

p(λ1, . . . , λL) = ∆2(λ) exp
(
−L

L∑
i=1

V (λi)
)
. (2.2.5)

Note that a single eigenvalue is correlated to all others through the Vandermonde
determinant ∆2(λ). This terms acts like logarithmic potential that is responsi-
ble for a repulsive force between two eigenvalues when they get very close. The
logarithmic interaction prevents the eigenvalues to localize as L → ∞ and gives
a continuous spectrum that is spread out in some way. Eugene Wigner famously
computed the resulting density of states in the Gaussian case with potential

V (H) = 1
2H

2 . (2.2.6)

In that case, the spectral density of a single eigenvalue satisfies the following

36



2.2. Random matrix theory

limiting behaviour:

ρ(λ) = 1
L

〈
L∑
i=1

δ(λ− λi)
〉
−→ ρ0(λ) = 1

π

√
4− λ2 , (2.2.7)

as L→∞. This is known as Wigner’s semicircular6 law.
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Figure 2.7: Wigner’s semicircular law.

2.2.2 The resolvent trick

The result (2.2.7) can be obtained using a trick involving some complex analysis.
We consider the resolvent function which is defined as

R(x) ≡
〈

1
L

tr
(

1
x−H

)〉
. (2.2.8)

The expectation value is taken with respect to the ensemble (2.2.2). One can write
equivalently

R(x) =
∫

R
dλ

ρ(λ)
x− λ

, (2.2.9)

which has a good L → ∞ limit. The right-hand side of (2.2.9) is the Stieltjes
transform of the spectral density ρ(λ) and, by general arguments, it defines a
multi-valued function on the complex plane with a branch cut along the support
of ρ(λ). For large x → ∞ it contains the information of all the moments of the
density via a geometric series expansion.

If we know the spectral density we can compute the resolvent through the relation

6Unfortunately, the shape of the density function is actually a semi-ellipse and not a semi-
circle.
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given in (2.2.9). The converse is true as well. We have

R(x± iϵ) =
∫

R
dλ

ρ(λ)(x− λ)
(x− λ)2 + ϵ2

∓ i
∫

R
dλ

ρ(λ)ϵ
(x− λ)2 + ϵ2

. (2.2.10)

Taking the limit ϵ ↓ 0, it follows that the real part of R(x± iϵ) becomes precisely
the principal value of the integral R(x), while the imaginary part picks out the
spectral density7. To be precise

lim
ϵ↓0

R(x± iϵ) = Pr
∫

R

ρ(λ)
x− λ

dλ∓ iπρ(x) . (2.2.11)

Therefore, we obtain the formula

ρ(x) = 1
2πi lim

ϵ↓0
(R(x− iϵ)−R(x+ iϵ)) . (2.2.12)

To summarize, the behavior of the resolvent along the branch cut specifies the
spectral density.

We will now show that the resolvent satisfies an algebraic equation from which it
can be solved exactly. The arguments are easily generalized to arbitrary matrix
potentials V (H), but for simplicity we will assume that we work in the Gaussian
model. The idea is to solve the L→∞model via a stationary phase approximation
where the integral localizes to the extrema of the effective potential

W ≡ 1
2

L∑
i=1

λ2
i −

2
L

∑
i<j

log(λi − λj) . (2.2.13)

The stationary point are solutions to the equation

∂W

∂λi
= λi −

2
L

∑
j ̸=i

1
λi − λj

= 0 , (2.2.14)

Multiplying this expression by 1
L

1
x−λi

and summing over i one obtains

1
L

L∑
i=1

λi
x− λi

= 2
L2

L∑
i=1

∑
j ̸=i

1
x− λi

1
λi − λj

. (2.2.15)

The left-hand side can be modified by adding and subtracting a factor x in the

7Here we use the expression limϵ↓0
1
π

ϵ
x2+ϵ2 = δ(x) for the nascent delta function.
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numerator, while the right-hand side is simplified by observing that(
1

x− λi
− 1
x− λj

)
1

λi − λj
= 1
x− λi

1
x− λj

. (2.2.16)

The result of these manipulations is

1
L

L∑
i=1

x

x− λi
− 1 =

(
1
L

L∑
i=1

1
x− λi

)2

− 1
L

d

dx

(
1
L

L∑
i=1

1
x− λi

)
. (2.2.17)

Because the derivative term is subleading in 1/L it vanishes when taking the
limit L → ∞, and by taking expectation values on both sides we end up with an
algebraic equation for the resolvent:

R(x)2 − xR(x) + 1 = 0 −→ R(x) = x

2 ±
√
x2

4 − 1 . (2.2.18)

As a last step we can compute the spectral density via (2.2.12), which precisely
reproduces Wigner’s semicircular law as given in (2.2.7).

The above stationary phase procedure for obtaining the resolvent can be easily
generalized to matrix ensembles with arbitrary potentials V (H). If we go through
similar steps, it is not hard to check that the resolvent takes the general form

R(x) = V ′(x)
2 ±

√(
V ′(x)

2

)2
− P (x) , (2.2.19)

where P (x) is some polynomial of degree d − 2 where d is the degree of V (x). It
is defined as the limit8

P (x) = lim
L→∞

〈
1
L

L∑
i=1

V ′(x)− V ′(λi)
x− λi

〉
. (2.2.20)

The above results are obtained in the strict L → ∞ limit, but it turns out that
the geometry of the saddle point solution contains more information about the
matrix model, in the sense that one can use it to compute correlation functions
recursively, using a technique called topological recursion.

8In practice, however, one hardly uses the above formula when trying to compute P (x).
Instead, one uses the asymptotic behaviour of R(x) for large x → ∞, which fixes this polynomial.
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2. Holography in two dimensions

2.2.3 Topological recursion

It is possible to completely solve the matrix model in a 1/L-expansion due to a set
of loop equations [75] that provide relations between correlation functions. These
loop equations are obtained through an integration by parts inside the matrix
integral, and can be used to efficiently compute correlation functions order by order
in a large L expansion. The structure of the loop equations in a Hermitian matrix
model were streamlined [76] into the framework of topological recursion [77].

We are mostly interested in (connected) correlation functions of resolvent operators

R(x1, . . . , xn) ≡ 1
Ln

〈
tr
(

1
x1 −H

)
· · · tr

(
1

xn −H

)〉
, (2.2.21)

and their corresponding 1/L-expansion [78] in terms of ‘t Hooft diagrams [79]:

R(x1, . . . , xn) =
∞∑
g=0

Rg,n(x1, . . . , xn)
L2g+n−2 . (2.2.22)

Note that the resolvent (2.2.19) is a multi-valued function (due to the presence of
the square root) and should therefore be understood as living on some algebraic
curve S , the so-called spectral curve. In the case at hand, it is given by the
following algebraic equation

S : y2 = V ′(x)2

4 − P (x) . (2.2.23)

More abstractly, we have a compact Riemann surface with two analytical functions
x and y on an open domain, that satisfy a relation of the form H(x, y) = 0, which
defines the spectral curve S . It is a branched cover of the spectral x-plane, with
branch points ai defined by dx(ai) = 0. The covering map corresponds to the
projection to the x-axis, which for our purposes is two-to-one. The two ‘sheets’ of
the double cover are exchanged in the neighborhood of a branch point by a local
involution.

The geometry of the spectral curve, combined with the associated Bergmann kernel
B, are the input for the topological recursion. The Bergmann kernel B of S is
defined by the property that, in local coordinates z, w, it is the unique bilinear
differential with a double pole at z = w and no other poles. We will consider the
case in which S is (topologically) the Riemann sphere

P1 = C ∪ {∞} . (2.2.24)
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2.2. Random matrix theory

In that case, the Bergmann kernel is simply given by9

B(z1, z2) = dz1 dz2

(z1 − z2)2 . (2.2.25)

The topological recursion associates to the spectral curve data, a set of so-called
symplectic invariants ωg,n on the spectral curve. They are defined recursively,
starting from the initial data

ω0,1(z) ≡ y(z)dx(z) , ω0,2(z1, z2) ≡ B(z1, z2) . (2.2.26)

The recursion kernel is defined by

K(z0, z) ≡
1
2
∫ z
z̃

B(z0, · )(
y(z)− y(z̃)

)
dx(z)

. (2.2.27)

Here, the coordinates z, w and the involution z → z̃ are defined locally near a
branch point ai. Moreover, 1

dx(z) denotes the contraction with the vector field(
dx
dz

)−1
∂z. The notation

∫
B(z0, · ) means that we integrate only with respect to

the second argument. This makes K(z0, z) a tensor of the type dz0 ⊗ ∂z. In other
words, when acting on a multilinear differential dz1⊗· · ·⊗dzn, it removes a factor
of dz and tensors with dz0.

The topological recursion then produces multi-differentials of the form

ωg,n(z1, . . . , zn) =Wg,n(z1, . . . , zn) dz1 ⊗ · · · ⊗ dzn , (2.2.28)

which are defined recursively by taking residues at the branch points,

ωg,n+1(z0, zI) =
∑
i

Res
z→ai

K(z0, z)
[
ωg−1,n+2(z, z̃, zI)︸ ︷︷ ︸

(b)

+
∑′

g1+g2=g
J1⊔J2=I

ωg1,1+|J1|(z, zJ1)ωg2,1+|J2|(z̃, zJ2)︸ ︷︷ ︸
(a)+(c)

]
.

(2.2.29)

We denote zJ = (zj)j∈J and the sum in the last term goes over all ways to

9If S is a higher genus Riemann surface, one additionally needs to specify a basis of non-
contractible A- and B-cycles on S , and require that the periods of the Bergmann kernel B
vanish on the A-cycles. This requirement ensures that B is unique: If there were two Bergmann
kernels, their difference would be holomorphic and therefore constant; vanishing of the A-periods
then implies that the constant is zero.
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2. Holography in two dimensions

partition the multi-index I = (i1, . . . , in) into subsets J1 and J2, and over all ways
to distribute g into g1 +g2. The prime indicates that terms involving (g, n) = (0, 1)
should be excluded from the summation.

The precise relation between the Hermitian matrix model and the topological
recursion is that the latter with the choice of spectral curve given by (2.2.23)
computes terms in the genus expansion of the resolvents correlation functions if
we indentify:

Wg,n(z1, . . . , zn) = 2nz1 · · · znRg,n(z2
1 , . . . , z

2
n) . (2.2.30)

Therefore, the topological recursion can be used, in principle, to solve the matrix
integral recursively in the large L expansion.

There is a structural similarity between the topological recursion (2.2.29) and
Mirzakhani’s recursion relations. The terms appearing on the right-hand side of
the topological recursion are packaged in a way similar to Mirzakhani’s recursion,
if we identify g and n with the genus and number of boundaries, respectively. To
make the comparison more transparent, we have labelled the terms by the three
scenarios (a), (b) and (c) which are depicted in Figure 2.5. The contact term
(a), which corresponds to the joining of two ‘JT universes’, is incorporated in the
topological recursion (2.2.29) as the (g1, g2) = (g, 0) term of the primed sum. At
each recursion step, this term is the only one that contains the Bergmann kernel
B = ω0,2.

There is a special case in which the topological recursion is indeed equivalent to
Mirzakhani’s recursion. The relevant spectral curve, that we will refer to as the
JT spectral curve, is given by

SJT : x(z) = z2 , y(z) = 1
4π sin(2πz) . (2.2.31)

The function x(z) = z2 gives SJT the structure of a branched double cover of the
spectral x-plane. There is a single10 branch point at z = 0, since dx = 2zdz. The
branch point z = 0 gets mapped to x = 0 on the spectral plane. The involution
that exchanges the sheets of the double cover is simply z → −z.

To be precise, it was proven [80] that a Laplace transform of Mirzakhani’s recursion
gives the topological recursion in the case that the spectral curve is given by
(2.2.31). The relation between the WP volumes and the symplectic invariants for

10Since the branch cut extends along the whole half-line, there is also a branch point at ∞.
However, we will only need to know the local behavior of y(z) near the branch point at z = 0,
because the topological invariants are defined as residues at the origin.
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2.2. Random matrix theory

general (g, n) is the following multi-Laplace transform:11

Wg,n(z1, . . . , zn) = 2−δg,1δn,1

∫ ∞

0

n∏
i=1

dℓi ℓi e
−ziℓiVg,n(ℓ1, . . . , ℓn) . (2.2.32)

It should be noted that the curve H(x, y) = 0 is not algebraic, since ω(x)2 is
not a finite polynomial12, so SJT is a non-compact Riemann surface. However,
since it can be parametrized by a single variable z ∈ P1 one could possibly add a
point at∞, and argue that SJT effectively has genus zero. However, the notion of
‘genus’ for such non-compact Riemann surfaces is somewhat vague, and another
interesting interpretation of SJT is as a Riemann surface of infinite genus of which
infinitely many A-cycles have been pinched. This interpretation can be justified
when we compare to the (2, p)-minimal string theory with p an odd integer, studied
for example in [81]. In that case, the spectral curve was found to be an odd power
y(z) ∼ zp, so that H(x, y) = 0 describes a compact Riemann surface of genus p.
We can thus quite possibly see the JT spectral curve y(z) ∼ sin(2πz), being an
odd power series in z, as a ‘infinite linear combination’ of (2, p)-minimal models,
as was recently advocated in [82,83].

The reason that we effectively see a genus zero spectral curve is that all the A-
cycles have been pinched to points, at the zeroes of the sin(2πz) where the two
sheets of the double cover meet. Non-perturbative effects may cause the zeroes of
y(z) to ‘open up’, adding small corrections to the right-hand side of (2.2.31) and
thereby un-pinching the A-cycles. Since sin(2πz) has infinitely many zeroes, this
un-pinching renders SJT a genus p → ∞ Riemann surface. The p → ∞ limit of
minimal string theory was recently studied more thoroughly in [84], where many
quantities were matched to quantities in JT gravity.

2.2.4 Double-scaling and JT gravity

The observation that the recursions relations for the WP volumes are equivalent
to the topological recursion relations that govern Hermitian one-matrix models
led [36] to propose the holographic duality that JT gravity is dual to a double-
scaled matrix integral. Since the Euclidean path integral of JT gravity can be
expressed in terms of the WP volumes they argued that one we should identify
JT gravity with some matrix model having the leading order spectral density

ρ0(λ) = 1
2π sinh(2π

√
λ) . (2.2.33)

11The factor of 1
2 is related to the extra Z2-symmetry of the one-holed torus (g, n) = (1, 1) [69].

12Note that ω(x) has an essential singularity at ∞.
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Figure 2.8: The Schwarzian density of states.

However, the above spectral density is unbounded, and does not arise from some
Hermitian matrix integral with polynomial potential. Instead, one should interpret
(2.2.33) as coming from some double-scaling procedure. The idea of double-scaling
is to take some ‘conventional’ matrix integral with normalized density ρ0(λ), and
take a double limit where L→∞, while simultaneously adjusting the potential in
such a way that some combination of parameters is kept fixed [85–87].

A nice example to illustrate the general idea is the Airy spectral curve (see,
e.g., [88, 89] for a discussion of the Airy matrix integral and its relation to pure
topological gravity), that is obtained from the Gaussian ensemble via a double-
scaling procedure. Let us start with the rescaled potential

V (H) = 8
c2H

2 , (2.2.34)

that depends on some external parameter c. Shifting the individual eigenvalues
by c we find the total eigenvalue density

ρtotal
0 (λ) = 8L

πc3/2

√
λ(1− λ/c) . (2.2.35)

If we now take the double-scaling limit, where

c, L→∞ with Lc−3/2 = eS0/8 fixed , (2.2.36)

the resulting density of states becomes

ρtotal
0 (λ) = eS0

π

√
λ . (2.2.37)

By double-scaling we zoom in on the tail of the eigenvalue distribution. Moreover,
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2.2. Random matrix theory

it effectively replaces the size of the matrix L in the 1/L-expansion of the matrix
integral by the parameter eS0 .

Using (2.2.32), one finds that the path integral in JT gravity computes correlation
functions in the double-scaled matrix integral of certain macroscopic loop operators

Z(β) = tre−βH =
L∑
i=1

e−βλi , (2.2.38)

that are related to the resolvent observables by a similar Laplace transformation.
This provides the schematic duality:

Euclidean path integral of JT ∼= double-scaled matrix integral ,

where the symbol ∼= indicated that the path integral contribution of a spacetime
with genus g and n boundaries in the e−S0 genus expansion is mapped to the
corresponding coefficient in the perturbative 1/L-expansion of the double-scaled
matrix integral correlation function:

Zg,n(β1, . . . , βn) ←→ ⟨Z(β1) . . . Z(βn)⟩g,n . (2.2.39)

Note that the higher order terms in gravity are non-perturbative, as they get
multiplied by a factor ∼ e−1/G, while from the matrix integral perspective they
are perturbative.

2.2.5 Spectral form factor and wormholes

We end this section with a discussion of the spectral form factor from a gravita-
tional perspective. At early times, it should be well approximated by the discon-
nected contribution of two separate disks:

Zc
0,1(β + it)Zc

0,1(β − it) ∼ 1
(β2 + t2)3/2 e

2π2β

β2+t2 , (2.2.40)

which decays to zero as t→∞. However, this is not the full answer: At some time,
the connected contribution should become important. Recall that the double-
trumpet partition function in JT is given by

Zc
0,2(β1, β2) = 1

2π

√
β1β2

β1 + β2
. (2.2.41)
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By analytically continuing this expression to β1 = β + it and β2 = β − it we find
that for large t

Z0,2(β + it, β − it) =
√
β2 + t2

4πβ ∼ t

4πβ , (2.2.42)

which represents the linear ramp behavior that is characteristic of quantum chaotic
theories at late times [26]. This surprising result is at the heart of the relation
between Euclidean wormholes and quantum chaos: By including non-perturbative
wormhole contributions to the computation, it is possible to reproduce the linear
ramp behavior that is typical for a quantum chaotic spectrum at late times.

However, this is not the complete answer: We know that at very late times (of
the order of an inverse typical level spacing) the spectral form factor stabilizes to
a small non-zero value. It is has not been clear how this plateau arises from a
similar computation in JT gravity, if it is possible at all. From the perspective of
the matrix integral the plateau is a non-perturbative effect,13 so this suggests that
one should look for certain doubly non-perturbative effects in JT gravity. Finding
a geometric interpretation of these effects is one of the main goals of Chapter 3
and Chapter 4.

13It manifests itself in the ‘sine-kernel’ [90] of the density-density correlator.
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3 A field theory for baby
universes

3.1 Introduction
Recently, the role of topology change in quantum gravity has found some renewed
interest. In particular, questions about the definition of the gravitational path
integral (GPI) and what it can tell us about the microscopic properties of gravity
have resurfaced. Heuristically, the GPI is a recipe for any theory of quantum
gravity that instructs us to sum over all fields of the theory, including the metric,
weighted by the gravitational action. It has been a long-standing debate whether
different topologies of the spacetime manifold should be included in this procedure
or not, but recent developments have shown that a great deal can be learned when
we do. For example, it was shown [29, 30] that one can obtain the Page curve for
the entanglement entropy of Hawking radiation of an evaporating black hole by
adding non-trivial topologies called ‘replica wormholes’ to the gravitational path
integral.

How to interpret these non-trivial topologies from a microscopic point of view is
still an open question, but developments of the past years have led to the following
intuition: While semiclassical gravity is a low-energy effective description of some
UV complete theory, the gravitational path integral still has access to some of the
UV data, but only in an averaged sense. The non-trivial topologies now probe
certain statistical correlations within the model-dependent average. Although the
general mechanism is not very well-understood, this idea has been concretely re-
alized in some controlled settings. Let us highlight two viewpoints that have been
influential:

Matrix models. In 2-dimensional Euclidean Jackiw-Teitelboim (JT) gravity
[31, 32] the relevant averaging procedure has been identified by Saad, Shenker
and Stanford [36] in terms of a double-scaled matrix integral. Instead of a single
well-defined boundary quantum system described by a Hamiltonian H, it was ar-
gued that the bulk JT gravity theory is dual to an ensemble of boundary theories,
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Figure 3.1: Baby universes. A pictorial representation of a baby universe splitting off
from some parent universe.

whose Hamiltonians are random matrices drawn from some probability distribu-
tion. Each boundary theory is characterized by a partition function:

Z(βi) = Tr e−βiH , i = 1 , . . . , n , (3.1.1)

where the inverse temperature βi corresponds to the (renormalized) length of the
i-th boundary. This partition function becomes a random variable in an ensem-
ble defined by a matrix integral ⟨· · ·⟩MM. The spacetime wormhole connecting n
boundaries now computes the n-th connected correlation function of the random
boundary partition function

Zwormhole(β1, . . . , βn) = ⟨Tr e−β1H · · ·Tr e−βnH⟩cMM , (3.1.2)

after taking some suitable double-scaling limit of the matrix model. See, for ex-
ample, [82–84, 91–99] for some related work on ensemble averaging in JT gravity,
including the generalization to JT supergravity, non-perturbative effects, conical
defect geometries and its relation to minimal strings and Liouville theory.

Baby universes. An interesting interpretation of the ensemble average is given
by Marolf and Maxfield [100], building upon earlier ideas on spacetime worm-
holes [101–103]. Roughly speaking, a theory of dynamical gravity, where space-
time itself is allowed to change its topology, is most clearly formulated in a third-
quantized picture. This means that on top of the usual rules of quantum field
theory we apply another quantization to account for the dynamics of the topol-
ogy change. The quantum mechanical system consisting of states labeled by these
topologically distinct universes is referred to as the Hilbert space of baby universes,
since in Lorentzian signature such geometries can be viewed as modeling the emis-
sion and absorption of auxiliary baby universes [104]. See Figure 3.1. Given this
quantum mechanical Hilbert space, one can define certain boundary creation op-
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erators which move you from one configuration to another. The ensemble now
comes from a decomposition into α-states, which are eigenstates obtained from
simultaneously diagonalizing these operators.

In this chapter, we present a framework that naturally incorporates both view-
points, in the case of JT gravity. Using intuition from string theory, where one
can describe the topological expansion for the splitting and joining of closed strings
in terms of a string field theory, we introduce a quantum field theory for the non-
perturbative splitting and joining of baby universes. This effective description lives
on an auxiliary space SJT called the spectral curve. The geometry of this space is
determined by the leading order density of states and is given by

SJT : y2 − 1
(4π)2 sin2(2π

√
x) = 0 , (3.1.3)

where x, y ∈ C. This curve can be uniformized by a single complex coordinate z
using

x(z) = z2 , y(z) = 1
4π sin(2πz) . (3.1.4)

In the string field theory analogy, the spectral curve should be viewed as defining
the target space geometry in which the JT universes (the equivalent of string
world-sheets or ‘JT strings’) propagate. The quantum field theory living on the
spectral curve now corresponds to the closed string field theory, in the sense that
it describes the splitting and joining of JT universes by a cubic interaction vertex.
Following [105], where a useful analogy with world-line gravity is presented (see
also [106]), we use the term universe field theory for this description.

We will show that our universe field theory is the 2-dimensional Kodaira-Spencer
(KS) theory of complex structure deformations of SJT, originally found by Dijk-
graaf and Vafa [37]. It is obtained as a dimensional reduction of the topological
B-model closed string field theory [107] to the spectral curve. This shows that JT
gravity can be understood in terms of the well-established topological string theory
framework (see [108] where a similar statement was made). However, the interpre-
tation from the gravity point of view is fundamentally different: the perturbative
expansion in the string coupling constant λ corresponds to the non-perturbative
genus expansion in JT gravity via the identification

λ = e−S0 , (3.1.5)

where S0 is proportional to 1/GN . Hence, higher loop corrections to the universe
field theory amplitudes correspond to non-perturbative wormhole configurations
on the gravity side.
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Figure 3.2: A triangle of relations between JT, KS and MM, together with their in-
terpretation in topological string theory. Dashed arrows depict perturbative expansions.
The term ‘holograpy’ refers to the JT/matrix integral correspondence [36] that relates
the Euclidean path integral to the double-scaled matrix integral.

The relation with KS theory connects the JT/matrix integral correspondence to
earlier work on the relation between matrix integrals and topological string theory,
e.g., [38, 39]. It also nicely agrees with the viewpoint [109–112] that JT gravity is
equivalent to the world-sheet topological gravity [88,89,113–115]. The formulation
in terms of KS theory is in some ways more transparent than the matrix integral,
as it is formulated directly in the double-scaling limit. Moreover, it makes the
embedding in topological string theory manifest and thus provides many useful
tools to study non-perturbative aspects of gravity.

More importantly, it gives another explanation for why the random matrix ensem-
ble of [36] arises in the study of JT gravity, namely as the dual open string field
theory [116,117] through a version of the open/closed duality [118,119]. Therefore,
we provide evidence for the claim that the JT/matrix integral correspondence is
a special example of a more standard open/closed duality in topological string
theory. This suggests the triangle Figure 3.2 of relations between JT gravity, the
matrix model (MM), and KS theory. We now outline the dictionary between the
KS theory and JT gravity:
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Observables. The basic field in KS theory is a Z2-twisted chiral boson J (z) =
∂Φ(z) which parametrizes the complex structure deformations of the spectral
curve. The KS field theory contains a cubic interaction that is localized on a
contour around the branch point z = 0:

Sint = λ

∮
dz

2πi
Φ(z)
ω(z)T (z) , (3.1.6)

where T (z) = 1
2 (JJ )(z) is the holomorphic stress tensor, and ω = y(z)dx(z) is

a holomorphic (1, 0)-form that encodes the complex structure of SJT. We will
show that the n-point function of J (z) in the KS theory, after an inverse Laplace
transform, computes the all-genus gravitational path integral for JT gravity with
n asymptotic boundaries:

ZJT(β1, . . . , βn) =
∫ c+i∞

c−i∞

n∏
i=1

dzi
2πie

βiz
2
i ⟨J (z1) · · · J (zn)⟩KS . (3.1.7)

The renormalized boundary length βi of the i-th boundary has the interpretation
of a fixed temperature in the boundary Schwarzian theory [33, 60–62, 120]. Note
that the left-hand side of (3.1.7) only makes sense as a perturbative expansion in
λ2g−2+n, where λ = e−S0 and g is the genus of the spacetime wormhole, while
the right-hand side is a correlator in a well-defined Euclidean non-gravitational
QFT. Expanding the interaction vertex (3.1.6) and doing Wick contractions gives
a matching expansion in λ−χ, where χ is the Euler number of the diagram. Thus,
the right-hand side provides a non-perturbative completion1 of the topological
expansion of the gravitational path integral in JT gravity.

Coming back to the discussion of ensemble averaging, we see that (3.1.7) expresses
the gravitational path integral as an ‘average’ ⟨· · ·⟩KS of the following boundary
operators:

Z(β) =
∫ c+i∞

c−i∞

dz

2πie
βz2
J (z) . (3.1.8)

Recursion relations. The argument for the identification (3.1.7) is the univer-
sal recursive structure present in both descriptions. Computing the JT gravity
path integral amounts to the computation of Weil-Petersson volumes Vg,n(ℓ) of
the moduli space of bordered Riemann surfaces. These volumes can be found
recursively, as was discovered by Maryam Mirzakhani [69,70], by iteratively ‘strip-

1This completion is by no means unique (for example, in defining the KS theory itself one
already has to make a choice of integration contour, similar to what happens for matrix models).
We will show that the KS theory contains brane-like objects, that reproduce correctly certain
non-perturbative effects characteristic of matrix models (like the ‘plateau’ of the density-density
correlator).
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3. A field theory for baby universes

ping off’ 3-holed spheres in a modular invariant way. Mirzakhani’s recursion is
related via a Laplace transform to the topological recursion relations of Eynard
and Orantin [76,77,80] for double-scaled matrix models. In this chapter, we iden-
tify yet another recursion relation: We will show that the Schwinger-Dyson (SD)
equations for Φ(z) in the KS theory imply the topological recursion relations. The
SD equations can be expressed as a differential equation for the generating func-
tional of connected correlation functions WKS[µJ ] = − logZKS[µJ ], where µJ (z)
is a source field for J (z). They take the following form:

δWKS
δµJ (z0)

∣∣∣
χ<0

= λ

4

∮
γ

dz

2πi
G(z0, z)
ω(z)

[
δ2WKS

δµJ (z)δµJ (z) + δWKS
δµJ (z)

δWKS
δµJ (z)

]
. (3.1.9)

The details of this equation will be explained in Section 3.2.2. In particular, we
show that expanding both sides in powers of λ gives the topological recursion
for the symplectic invariants ωg,n(z1, . . . , zn), which are identified with connected
correlation functions ⟨J (z1) · · · J (zn)⟩(g)

KS,c. Using the map (3.1.7) at fixed genus
g, this gives a recursion relation between contributions from spacetime wormholes
to the full GPI. In Appendix A.2, we show that these recursion relations can be
recast as a Virasoro constraint [114] in the oscillator formalism of the KS theory.

Non-perturbative effects. The topological string perspective provides a nat-
ural setting to study non-perturbative effects due to D-branes. The spectral curve
can be embedded in a 6-dimensional Calabi-Yau manifold, which defines the target
space of the JT string:

uv − y2 + 1
(4π)2 sin2(2π

√
x) = 0 . (3.1.10)

This geometry has non-compact submanifolds u = 0 and v = 0, which can be
wrapped by branes and anti-branes respectively [40]. In the KS theory, these
branes can be described by a pair of complex fermions ψ(E) = eΦ(E) and ψ†(E) =
e−Φ(E) in terms of the coordinate E = −x on SJT. We will identify the dual ob-
servables in JT gravity to be universes with fixed energy boundaries [121], ending
on branes in the target space geometry (3.1.10). Here, we do not fix the length of
the boundary metric, but we fix the dilaton and its normal derivative, which cor-
responds to a fixed energy E in the Schwarzian theory. The fixed energy boundary
conditions are related to the asymptotically AdS2 boundary conditions by a Leg-
endre transform. In fact, we will extend the dictionary (3.1.7) for n boundaries
with energies E1, . . . , En to

ZJT(E1, . . . , En) =
∫ c+i∞

c−i∞

n∏
i=1

dβi
βi
eβiEi ⟨Z(β1) · · ·Z(βn)⟩KS . (3.1.11)
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Using (3.1.8), the KS observables appearing on the right-hand side of (3.1.11) can
be rewritten in terms of the discontinuity of the boson Φ across the branch cut:

Z(E) ≡
∫ c+i∞

c−i∞

dβ

β
eβEZ(β) = disc Φ(E) =

∫ E

dE′ ρ(E′) . (3.1.12)

At the last equality, the discontinuity of Φ is rewritten as an integrated density
of states operator ρ(E), to make clear that Z(E) represents a microcanonical
partition function, in the same way that Z(β) is a canonical partition function
(3.1.1) in the boundary theory. We will show that non-perturbative corrections to
density correlators can be computed from insertions of the ‘energy brane’ operators
e±Ω(E), where Ω(E) ≡ 2πiZ(E). In particular, we retrieve the universal sine-kernel
for the connected part of the density-density amplitude:

⟨ρnp(E1)ρnp(E2)⟩cKS ≈ −
1

π2(E1 − E2)2 sin2

(
π eS0

∫ E1

E2

ρ0(E′)dE′

)
. (3.1.13)

The remainder of this chapter is organized as follows:

⋄ In Section 3.2, we introduce the KS field theory, and present a detailed deriva-
tion of the SD equations, which characterize the KS correlation functions up
to all orders in perturbation theory.

⋄ In Section 3.3, we make the connection to JT gravity. In particular, we
show that the SD equations of the universe field theory coincide with the
topological recursion relations, with a choice of initial conditions given by
the JT spectral curve. Therefore, the diagrams of the KS theory are in one-
to-one correspondence with the JT universes in the asymptotic expansion of
the GPI.

⋄ We generalize the setup in Section 3.4 to include fixed energy boundaries in
JT. On the KS side of the duality we interpret these boundaries as attached
to D-branes in the Calabi-Yau target space, which allows us to explore non-
perturbative physics. In particular, we show how to derive the sine-kernel in
the density-density correlator.

⋄ We conclude with a discussion and a list of open questions in Section 3.5.

⋄ Some KS calculations have been relegated to Appendix A.1. In Appendix A.2
we have worked out the relation with topological gravity in more detail, which
gives another perspective on the KS/JT duality in terms of the oscillator
algebra of a twisted boson, the baby universe Hilbert space and the Virasoro
constraints.
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3. A field theory for baby universes

3.2 A universe field theory
In Section 3.2.1 we present the universe field theory that describes dynamical
topology change in JT gravity. We will argue that this is the 2-dimensional KS
theory on the JT spectral curve. The precise identification follows from matching
the topological recursion relations for JT gravity with the SD equations for the
KS field theory, which will be derived in Section 3.2.2.

3.2.1 Kodaira-Spencer theory on the spectral curve

The KS theory on the spectral curve has the following path integral representation:

ZKS[µΦ, µJ ] =
∫

[dJ ][dΦ] exp
[
−SKS[Φ,J ]−

∫
SJT

µΦΦ−
∫

SJT

µJJ
]
, (3.2.1)

where µΦ and µJ are external source fields, and the action is given by

SKS[Φ,J ] =
∫

SJT

[
1
2 ∂Φ ∧ ∂Φ− J ∧ ∂Φ

]
+
∮
γ

[
ωΦ
λ

+ λ

2
Φ
ω
J 2
]
. (3.2.2)

Let us explain all the terms appearing in this action. First of all, the action consists
of a ‘bulk’ and a ‘boundary’ contribution: the bulk integral is over the JT gravity
spectral curve SJT given in (3.1.3). We will use a uniformizing coordinate z as
in (3.1.4). In particular, the relation x = z2 shows that in terms of the variable
z the KS theory is defined on a branched double cover of the spectral x-plane,
with a branch point at z = 0. The boundary integral is over a closed curve γ
encircling the branch point, which does not enclose any other poles or zeroes of
the holomorphic (1, 0)-form:

ω = ω(z)dz = y(z)dx(z) . (3.2.3)

We have used complex differential notation in the sense of Dolbeault cohomology,
so that for example ∂Φ = ∂Φ(z)dz, and d = ∂ + ∂ . We will always distinguish
form fields and ordinary fields by writing fields with their argument and form fields
without. For example, J = J (z)dz is a (1, 0)-form field, while J (z) is a function
of the local coordinate z on the spectral curve. To further ease our notation, we
define the integral

∫
SJT

to include a factor of i
2 to make the action real. This factor

arises from the usual relation d2z = i
2dz ∧ dz. Similarly, we define the contour

integral
∮
γ

to include a factor of 1
2πi to make the boundary action real. We will

also often drop the wedge product when it is clear from the context.

Having set the notation, we go on to analyze the field content of the theory. There
are two dynamical bosonic fields Φ = Φ(z) and J = J (z)dz. We do not explicitly
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3.2. A universe field theory

write the anti-holomorphic dependence on z, but on the level of the path integral
Φ and J are not necessarily chiral. For now, this is just a notational convenience,
but we will see that on-shell Φ and J will be chiral fields. The source fields µΦ and
µJ are (1, 1) and (0, 1)-form fields, respectively. The holomorphic (1, 0)-form ω

appears in the boundary contribution to the action, and it serves to give the chiral
boson J (z) a vacuum expectation value. The term proportional to Φ

ωJ
2 is the

most interesting: This cubic interaction term encodes all the non-trivial dynamics
of the splitting and joining of baby universes.

The action (3.2.2) was first written down by Dijkgraaf and Vafa [37] in the context
of topological string theory. There, it was obtained by reducing the 6-dimensional
KS theory of the closed string B-model developed in [107] to a chiral boson on a
Riemann surface. For this reason, we have labeled the action by KS, for ‘Kodaira-
Spencer’. This chiral boson perspective was used, for example, in the ‘re-modeling
the B-model’ program of [122]. See also [39, 40, 123, 124] for more work on the
relation between topological strings, matrix models and integrable systems.

As first observed in [37], the SD equations of the KS theory agree with the topo-
logical recursion relations. Our interpretation of this result (in addition to being
more explicit in analyzing the SD equation) is novel in the sense that it replaces
the worldsheet theory that underlies the topological string, by a 2-dimensional
gravity that one likes to study in its own right, which we take to be JT gravity. In
that sense, KS becomes a field theory for gravitational baby universes. In the next
subsection, we will explain the origin of the universe field theory action (3.2.2) in
topological string theory.

Topological string theory origin of SKS

As stated in the introduction, we will embed the spectral curve into a non-compact
Calabi-Yau manifold in the following way:

CY : uv = H(x, y) , u, v ∈ C , (3.2.4)

where H(x, y) is given by:

H(x, y) ≡ y2 − 1
(4π)2 sin2(2π

√
x) . (3.2.5)

The submanifolds where u or v vanish correspond to the spectral curve SJT :
H(x, y) = 0, and CY can be viewed as a fiber bundle over the spectral curve. The
defining relation (3.2.4) shows that CY has three complex dimensions, and the
complex structure of CY is encoded in the holomorphic (3, 0)-form:

ΩCY = 1
u
du ∧ dx ∧ dy . (3.2.6)
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3. A field theory for baby universes

The KS field theory on CY describes deformations of the complex structure such
that the cohomology class of ΩCY is unchanged. Upon reduction of the theory to
the base Riemann surface SJT, this translates to complex structure deformations
of SJT such that the holomorphic (1, 0)-form ω = y dx is preserved. To see this,
consider a 3-cycle C̃ in CY. For a Calabi-Yau modeled on a Riemann surface,
there is a one-to-one correspondence between 3-cycles in CY and 1-cycles on the
Riemann surface [124]. Explicitly, a 3-cycle C̃ can be made by fibering an S1 over
a disk D, whose boundary ∂D is a non-trivial 1-cycle C on the Riemann surface.
Computing a period of ΩCY on C̃ then reduces to a period integral of ω on C:∫

C̃

ΩCY =
∫
C̃

du ∧ dx ∧ dy
u

= 1
2πi

∮
S1

du

u

∫
D

dx ∧ dy =
∫
C

y dx . (3.2.7)

At the last equality, we have evaluated the residue at u = 0, followed by an
application of Stokes’ theorem. The complex structure deformations of SJT are
captured by deforming the ∂ operator:

∂ → ∂ − µ ∂ , (3.2.8)

where µ = µzz dz⊗∂z is a so-called Beltrami differential. In the deformed complex
structure, a function f is holomorphic if and only if (∂ − µ ∂)f = 0. As in the
6-dimensional KS theory [107], the 2-dimensional KS theory is the quantization
of fluctuations of the complex structure such that the cohomology class of ω is
unchanged. That is, we demand that there is a vector field ξ such that

µ = ∂ξ and δξω = dΦ , (3.2.9)

where Φ is the basic field of the KS action (3.2.2). Explicitly, the variation of ω
under a diffeomorphism ξ is found by taking the Lie derivative in the direction of
ξ:

δξω ≡ Lξω = d(ιξω)− ιξdω . (3.2.10)

Now we use that ω is a holomorphic (1, 0)-form, so that

dω = (∂ + ∂)ω = ∂ω = 0 . (3.2.11)

Here, we used that ∂ω = 0: there are no (2, 0)-forms on a Riemann surface.
Comparing (3.2.9) and (3.2.10) we conclude that ιξω = Φ up to a d-closed form,
which we can conveniently write as:

ξ = Φ
ω
. (3.2.12)
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3.2. A universe field theory

So we see that the Beltrami differential µ depends on the field Φ. Imposing that
δξω is holomorphic in the deformed complex structure implies:

(∂ − µ ∂)δξω = (∂ − µ ∂)∂Φ = 0 . (3.2.13)

This should be implemented in the field theory as an equation of motion. So we
see that the action should contain the term:

1
2

∫
SJT

∂Φ ∧ (∂ − µ ∂)Φ . (3.2.14)

This contains a kinetic term for Φ, as well as the interaction:∫
d2z µzz T (z) , (3.2.15)

where we have written T (z) for the stress tensor T (z) ≡ 1
2∂Φ(z)∂Φ(z). In the

quantum theory, T (z) is normal ordered in the usual way using a point-splitting
regularization, i.e., by subtracting the divergent part of the OPE. Plugging in the
expression for µ = ∂ξ explains the origin of the cubic interaction in the KS action
(3.2.2). Before going into the details, let us pause and give some more intuition
for why we have found the interaction (3.2.15).

Consider the cartoon of our setup in Figure 3.3. We have drawn the (compactified)

∞ 0

γ

ω = ∂Φcl ∮
γ
ξ T

−−−−−−→ ∂Φ

SJT

Figure 3.3: Fixing the behaviour of ω at ∞ determines the classical value ∂Φcl. As
one moves away from infinity, quantum fluctuations of ∂Φ can appear which deform the
complex structure. At the contour γ there is a coordinate change to the patch that covers
0.

spectral curve SJT as a single Riemann sphere, by going to the covering space. The
antiperiodicity is implemented by a twist field at 0 and ∞. The Riemann sphere
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3. A field theory for baby universes

is covered by two coordinate patches, with a transition function that determines
the complex structure. Basically, the complex structure defines what we mean by
a holomorphic function in each patch. In the left patch covering ∞, the complex
structure is such that ω = ydx is holomorphic. We want to think of ω as the
classical vacuum expectation value of the basic field ∂Φ, set, for example, by some
background gauge field. As we move away from infinity into the ‘bulk’ of SJT,
the 1-form ω is allowed to fluctuate:

ω + δξω = ∂Φcl + ∂Φ . (3.2.16)

Classically, only negative frequencies are allowed in the mode expansion of the
fluctuation ∂Φ (corresponding to positive powers of z) with the same behaviour
at infinity as ω. But quantum mechanically, there can also be positive frequencies
∂Φ+, which are expanded in powers of z−1. These modes fall off to 0 at z → ∞,
but they give non-zero contributions in the interior. Moving even further into the
bulk, there is a coordinate change to the right patch, which is implemented by the
operator ∮

γ

dz ξ(z)T (z) . (3.2.17)

In the right coordinate patch, δξω is holomorphic in the deformed complex struc-
ture. Indeed, we will show in subsection 3.2.1 that after an integration by parts,
the interaction (3.2.15) can be written as a contour integral (3.2.17). This gives
a nice interpretation of the KS interaction as a kind of Φ-dependent coordinate
transformation for the field ∂Φ.

The free theory

We will first analyze the free bosonic theory, i.e., without the interaction induced
by the complex structure deformation. Consider the free action

S
(0)
KS [Φ,J ] =

∫
SJT

[
1
2 ∂Φ ∧ ∂Φ− J ∧ ∂Φ

]
. (3.2.18)

The equation of motion for J forces Φ to be chiral:

∂Φ = 0 on-shell . (3.2.19)

This chirality constraint for Φ reflects the fact that the classical value of ∂Φ is ω,
which is holomorphic. However, J is not merely a Lagrange multiplier: it is a
dynamical field. In fact, the classical equation of motion for Φ shows that:

J = ∂Φ on-shell . (3.2.20)
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3.2. A universe field theory

This identification holds up to holomorphic forms. Now we see why we have used
the notation J : on-shell, it plays the role of the holomorphic current ∂Φ. The
monodromy properties of ∂Φ around the branch point follow from the fact that the
1-form ω is odd in z. The variation under a diffeomorphism δξω should preserve the
parity under the involution z → −z around the branch point, and so we conclude
that ∂Φ should also be odd. This shows that we are dealing with a Z2-twisted
chiral boson on the spectral curve.

Let us now compute the two-point functions of the free theory. Consider the free
partition function including the sources:

Z
(0)
KS = 1

Z
(0)
KS [0]

∫
[dJ ][dΦ] exp

[
−S(0)

KS [Φ,J ]−
∫

SJT

(µΦΦ + µJJ )
]
. (3.2.21)

Since this is a Gaussian integral in Φ and J , we can solve it using functional deter-
minants. The determinants cancel against the normalization Z(0)

KS [0]. In Appendix
A.1, we show in detail how to compute the functional integral, which gives the
result:

logZ(0)
KS =

∫
d2z

∫
d2w

[
µJ (z)B(z, w)µJ (w)

2 + µJ (z)G(z, w)µΦ(w)
]
, (3.2.22)

where we have defined
B(z, w) = 1

(z − w)2 + 1
(z + w)2 , (3.2.23)

G(z, w) = 1
z − w

− 1
z + w

. (3.2.24)

Defining connected correlation functions as functional derivatives of logZ(0)
KS [µΦ, µJ ],

we find that the only non-zero two-point functions are:

⟨J (z)Φ(w)⟩c0 = δ2 logZ(0)
KS

δµJ (z)δµΦ(w)

∣∣∣∣∣
µ=0

= G(z, w) , (3.2.25)

⟨J (z)J (w)⟩c0 = δ2 logZ(0)
KS

δµJ (z)δµJ (w)

∣∣∣∣∣
µ=0

= B(z, w) . (3.2.26)

In particular, we see that there are no contractions of Φ with itself. This will
be an important fact, when we make the connection to the topological recursion
in Section 3.3.1. It can be seen as a result of taking operator insertions inside
correlation functions on-shell: since ∂Φ = 0 on-shell, Φ only contains the negative
frequencies (positive powers of z), and so it does not have a two-point function in
the vacuum.
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3. A field theory for baby universes

However, we stress that we derived this fact purely in the functional formalism,
without making reference to mode expansions of Φ. Moreover, the functions
B(z, w) and G(z, w) agree with the standard two-point functions of a free Z2-
twisted chiral boson, as is explicitly verified in Appendix A.2.2.

The interacting theory

Up till now, we have not given our bosonic fields a vacuum expectation value,
although we argued that we want to think of ω as the classical value of ∂Φ. We
can incorporate this shift in ω by noticing that:∫

SJT

ω ∧ ∂Φ =
∮
γ

ωΦ . (3.2.27)

So we can simply shift J by ω and integrate by parts, using that ∂ω = 0:∫
SJT

[
1
2 ∂Φ ∧ ∂Φ− (J − ω) ∧ ∂Φ

]
=
∫

SJT

[
1
2 ∂Φ ∧ ∂Φ− J ∧ ∂Φ

]
+
∮
γ

ωΦ . (3.2.28)

This does not change the e.o.m. for Φ, since the identification ∂Φ = J only
holds up to a ∂-closed form. The shift of J by ω also does not affect connected
correlation functions, except for the classical one-point function:

⟨J (z)⟩0 = ω(z) . (3.2.29)

The boundary integral in (3.2.27) is along a contour γ that encircles the branch
point at z = 0. We can use a similar argument to show that the interaction
term localizes to the branch point. Plugging in our expression for the Beltrami
differential, and writing the stress tensor as T = T (z) dz⊗dz, the interaction that
implements the complex structure deformation is written as:

Sint =
∫

SJT

µ · T =
∫

SJT

∂ξ · T . (3.2.30)

The dot · is shorthand for contracting dw∂z = δwz in the second tensor factor and
then integrating the (1,1)-form µzz̄T (z)dz ∧ dz coming from the first tensor factor.
In perturbation theory, the stress tensor remains holomorphic:

∂T = 0 . (3.2.31)

We can thus integrate by parts in a region V where ξ(z)T (z) is holomorphic.
Notice that the vector field ξ = Φ

ω has poles at the branch point z = 0 and at the
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other zeroes of ω(z) ∼ z sin(2πz). The zeroes of ω(z) different from the branch
point correspond to the ‘pinched cycles’ of the Riemann surface SJT. We take V
such that its boundary is a collection of contours γi surrounding the zeroes of ω,
including the branch point, and use Stokes’ theorem:

Sint =
∫
V

∂(ξ · T ) =
∫
V

d(ξ · T ) =
∑
i

∮
γi

ξ · T . (3.2.32)

Now we argue that only the contribution from the branch point gives a non-zero
result inside correlation functions. To see this, recall that the spectral curve is a
branched double cover of the spectral plane, with a twist field σ(0) inserted at the
branch point. As explained in Appendix A.2.2, the twisted vacuum is related to
the conformally invariant free boson vacuum by |σ⟩ = σ(0) |0⟩. For any contour γj
which does not surround the branch point, the operator

∮
γj
ξ · T commutes with

σ(0) because their operator product is trivial (γj never gets close to 0). It then
annihilates the untwisted vacuum:∮

γj

ξ · T |σ⟩ = σ(0)
∮
γj

ξ · T |0⟩ = 0 . (3.2.33)

To see why the untwisted vacuum gets annihilated, let ζ be a local coordinate
around the j-th zero of ω(z). Then, expand the stress tensor in even powers of
ζ, the field Φ in odd positive powers of ζ, and ω(z)−1 in powers of ζ2i−2, i ≥ 0.
Working out the contour integral shows that only stress tensor modes Ln≥−1
appear in the operator

∮
ξ · T . Since the untwisted vacuum |0⟩ is conformally

invariant, it gets annihilated by {L−1, L0, L1}. Moreover, the normal ordering of
the stress tensor T ensures that the Ln>0 contain only annihilation operators to
the right of the creation operators. So we conclude that Ln |0⟩ = 0 for all n ≥ −1.
Therefore, the exponential of the interaction collapses to a single contribution from
the contour γ that does surround the branch point:

e−Ŝint |σ⟩ = e
−
∑

i

∮
γi
ξ·T
|σ⟩ = e

−
∮

γ
ξ·T |σ⟩ . (3.2.34)

This argument can easily be generalized to spectral curves with multiple branch
points and twist operators. In that case, the interaction term will localize to a
sum over contributions from the branch points only.

With this localization argument, we arrive at the action of the universe field theory
(3.2.2). Indeed, we can write the stress tensor on-shell as T = 1

2J
2, with the point-

splitting regularization

T (z) = 1
2 lim
w→z

(
J (w)J (z)− 1

(z − w)2

)
, (3.2.35)
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and plugging this into (3.2.32) we see that the interaction term is:

Sint = 1
2

∮
γ

Φ
ω
J 2 . (3.2.36)

Rescaling ω by λ gives the interaction a coupling constant. The fact that the
interaction is localized to a contour around z = 0 ensures that the theory is free of
UV divergences which normally crop up when adding an irrelevant deformation to
a CFT. When doing conformal perturbation theory and expanding the exponential
of Sint, the contours can be chosen to be non-intersecting so that operators are
never inserted at the same point [125]. In some sense, we can think of (3.2.36) as
a ‘topological’ interaction: The contour γ can be deformed at will, as long as it
does not cross or enclose the other zeroes of ω(z).

Most notably, the interaction is cubic in the fields Φ and J = ∂Φ. We will argue
that this cubic vertex represents the pair-of-pants that is used as a building block in
constructing hyperbolic surfaces, which are the relevant geometries in JT gravity.
The Feynman diagrams of J -correlators are then to be viewed as the ‘skeletons’ of
the spacetime wormholes. The usual rules of summing over all possible diagrams
then ensure the modular invariance of the GPI. In the next subsection, we will
establish a recursion relation between the diagrams of KS theory, which will be
matched to the topological recursion for JT gravity in Section 3.3.

3.2.2 Schwinger-Dyson equations

The Schwinger-Dyson (SD) equations in a quantum field theory can be seen as
the quantum version of the equations of motion. They are usually derived by
requiring that the measure is invariant under an infinitesimal linear shift in the
field variable, or equivalently, that the functional integral of a total functional
derivative is zero. This gives a set of differential equations for n-point functions,
which are sometimes taken as a definition of the theory.

In our case, we will have a SD equation for both Φ and J . The SD equation for
J just imposes the quantum version of the chiral constraint. The SD equation
for Φ→ Φ + δΦ is the most interesting equation: We will show that it is directly
equivalent to the topological recursion. The starting point will be the full interact-
ing partition function including sources in (3.2.1). Imposing that the path integral
is invariant gives the SD equation:

1
ZKS[0]

∫
[dJ ][dΦ] δΦ exp

[
−SKS[Φ,J ]−

∫
SJT

µΦΦ−
∫

SJT

µJJ
]

= 0 . (3.2.37)

Here, we have written the functional variation δΦ(. . . ) = δ
δΦ (. . . )δΦ. This variation
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3.2. A universe field theory

brings down two terms from the exponential:〈
δΦSKS +

∫
SJT

µΦ δΦ
〉
µΦ, µJ

= 0 . (3.2.38)

To make the variational problem well-defined, we need to specify boundary condi-
tions for the field variation δΦ. Since Φ is odd, we will also impose that δΦ is odd.
We further impose the regularity condition at the boundary that δΦ(z) → 0 as
z → 0. So in particular, δΦ cannot have a pole at the branch point. Summarizing,
we demand that:

δΦ
∣∣
γ

= odd and analytic . (3.2.39)

Let us now compute the variation of the action, carefully treating the surface and
boundary contributions:

δΦSKS =
∫

SJT

(
− ∂∂Φ + ∂J

)
δΦ +

∮
γ

[
ω δΦ
λ
− J δΦ + λ

2
J 2

ω
δΦ
]
. (3.2.40)

Notice that the first term inside the boundary integral vanishes, because both
ω and δΦ|γ are holomorphic. The second term in the boundary integral came
from an integration by parts in the bulk integral. Having separated the bulk and
boundary contributions to the variation in (3.2.38), both should vanish separately.
The SD equation in the bulk becomes:〈

−∂∂Φ + ∂J + µΦ
〉
µΦ, µJ

= 0 , (3.2.41)

since the bulk variation δΦ was arbitrary. This just gives the quantum version
of the classical e.o.m., J = ∂Φ. By writing Φ and J as functional derivatives of
the partition function, we can obtain the bulk SD equation in arbitrary n-point
functions. The more interesting condition is the SD equation for the boundary
term: 〈∮

γ

dz

2πi

(
λ

2
J 2(z)
ω(z) − J (z)

)
δΦ(z)

〉
µΦ, µJ

= 0 . (3.2.42)

At the boundary, the variation δΦ(z)|γ is an arbitrary odd and analytic function.
This means that in the Laurent expansion of the integrand all the terms with even
negative powers of z should vanish. The projection to the even negative powers of
z is done precisely with the free two-point function:

G(z0, z) = 1
z0 − z

− 1
z0 + z

=
〈
J (z0)Φ(z)

〉c
0 . (3.2.43)
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Using this projection, the SD equation (3.2.42) becomes

1
2

∮
γ

dz

2πiG(z0, z)
〈
λ

2
J 2(z)
ω(z) − J (z)

〉
µΦ, µJ

= 0 . (3.2.44)

The second term is just the even and singular part of J (z). So the requirement
that Φ is odd (which followed from the parity of ω) automatically allows us to
treat J (z) as an even function, and hence J = J (z)dz is odd in z. This was
already manifest in our on-shell identification J (z) = ∂Φ(z), but now we see that
also in the quantum theory the structure of the SD equation gives J (z) the right
properties of a twisted boson on the spectral curve.

We can now use the source field µJ to write J (z) as a functional derivative of the
KS partition function. We turn off the source for Φ, since it has disappeared from
the boundary SD equation. In terms of the free energy

WKS[µJ ] = logZKS[µJ ] , (3.2.45)

the SD equation (3.2.44) becomes the following functional differential equation:

δWKS
δµJ (z0)

∣∣∣
χ<0

= λ

4

∮
γ

dz

2πi
G(z0, z)
ω(z)

[
δ2WKS

δµJ (z)δµJ (z) + δWKS
δµJ (z)

δWKS
δµJ (z)

]
. (3.2.46)

The fact that we should pick the negative powers of z in J has been denoted by
χ < 0. Furthermore, there is an explicit normal ordering prescription through the
point-splitting regularization for T = 1

2J
2.

In the next section, we will show that the SD equation (3.2.46) is equivalent
to the topological recursion relation for JT gravity. The recursion relation is
supplemented with initial input, given by the free one- and two-point functions
(3.2.23) derived in the previous section:

⟨J (z)⟩c0 = ω(z) , ⟨J (z)J (w)⟩c0 = B(z, w) . (3.2.47)

We will show that these input data also agree with those of JT gravity, namely
the disk and annulus contributions.
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3.3 Connection to JT gravity

The observables in the KS theory that are relevant for JT gravity are defined as
the inverse Laplace transform of J :

Z(β) ≡ 1
2πi

∫ c+i∞

c−i∞
dz J (z) eβz

2
. (3.3.1)

The integration contour is along the interval (−i∞, i∞) which is shifted slightly to
the right by a small parameter c > 0 to avoid possible poles of J at the imaginary
axis2. From the gravity perspective the observables in (3.3.1) should be thought
of as creating an asymptotic boundary in spacetime (or string world-sheet) of
renormalized length β. In this section, we will argue that the spacetime wormhole
contributions to the JT gravity path integral will be given by connected correlation
functions of these observables in the KS theory:

Zc
JT(β1, . . . , βn) = ⟨Z(β1) · · ·Z(βn)⟩cKS . (3.3.2)

These correlation functions can be expanded in the coupling constant λ of the
KS theory by matching λ = e−S0 . The full genus expansion of the JT partition
function now follows from the perturbative expansion of the KS path integral.
In analogy with string field theory, each term in this expansion corresponds to a
world-sheet with a fixed topology.

3.3.1 Matching KS theory with JT gravity

First, we show that the disk and annulus partition functions are obtained using the
inverse Laplace transform (3.3.1) of the free one- and two-point functions (3.2.47).
After that, we match the higher genus contributions for an arbitrary number of
boundaries.

The disk. To obtain the one-point function of Z(β) in the KS theory we need
to compute the following inverse Laplace transform:

⟨Z(β)⟩cKS,0 =
∫ c+i∞

c−i∞

dz

2πi ⟨J (z)⟩0 e
βz2

=
∫ c+i∞

c−i∞

dz

2πi ω(z) eβz
2
. (3.3.3)

We see that the KS theory determines the leading term in the genus expansion from
the holomorphic one-form, which encodes the complex structure of the spectral

2In the case that J is regular at the origin, it need not be the Laplace transform of some
function. The definition (3.3.1) should then be understood in a distributional sense.
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curve:
ω(z)dz = y(z)dx(z) = 1

2π z sin(2πz)dz . (3.3.4)

Since ω(z) is regular at z = 0, we can set c = 0 and substitute z → −iw, giving:

⟨Z(β)⟩cKS,0 = 1
4π2

∫ ∞

−∞
dww sinh(2πw) e−βw2

= 1
4π1/2β3/2 e

π2/β . (3.3.5)

This expression agrees with the path integral of the disk in JT gravity.

The annulus. Next, we compute the free two-point function of Z(β) in KS
theory and match it to the annulus amplitude. For that we need to compute the
inverse Laplace transform of the free bosonic two-point function:

⟨Z(β1)Z(β2)⟩cKS,0 =
∫ c+i∞

c−i∞

dz

2πi
dw

2πi ⟨J (z)J (w)⟩c0 e
β1z

2+β2w
2
, (3.3.6)

where
⟨J (z)J (w)⟩c0 = B(z, w) = 1

(z − w)2 + 1
(z + w)2 . (3.3.7)

Again, we may rotate the contours to the real axis, and then note that both terms
in (3.3.7) give the same contribution upon sending w → −w in the second integral.
Expanding (z − w)−2 as a power series, and using gamma functions to compute
the resulting Gaussian moments, it can be shown that the double integral gives:

⟨Z(β1)Z(β2)⟩cKS,0 = − 1
4π2

∫ ∞

−∞
dzdw

e−β1z
2−β2w

2

(z − w)2 = 1
2π

√
β1β2

β1 + β2
. (3.3.8)

This matches the Euclidean wormhole contribution in JT gravity.

Higher genus amplitudes. The higher genus corrections in JT gravity are
computed recursively, either using Mirzakhani’s recursion for the Weil-Petersson
volumes Vg,n(ℓ), or, after a Laplace transform, using Eynard and Orantin’s topo-
logical recursion. In the KS theory, we can also compute higher-order corrections
to connected correlation functions of J (z) using the SD equation (3.2.46). We
show that the topological recursion is retrieved as the perturbative expansion of
the SD equation.

Let us denote the connected correlation functions by

Wn(z1, . . . , zn) ≡ ⟨J (z1) · · · J (zn)⟩cKS = δnWKS
δµJ (z1) · · · δµJ (zn)

∣∣∣
µJ =0

. (3.3.9)

We can expand the free energy WKS[µJ ] of the KS theory in terms of connected
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correlation functions as:

WKS[µJ ] =
∞∑
n=0

∫ n∏
i=1

dzi
µJ (z1) · · ·µJ (z1)

n! Wn(z1, . . . , zn) . (3.3.10)

Plugging this expansion in to the SD equation (3.2.46) and comparing powers of
µJ , the SD equation takes the form:

Wn+1(z0, zI) = λ

4

∮
γ

dz

2πi
⟨J (z0)Φ(z)⟩0

ω(z)

[
Wn+2(z, z, zI)

+
∑

J1⊔J2=I
W1+|J1|(z, zJ1)W1+|J2|(z, zJ2)

]
. (3.3.11)

The sum in (3.3.11) is over subsets J1 ⊔ J2 = I = {1, . . . , n}, and the multi-index
notation is given by zJ ≡ (zj)j∈J . Next, consider the perturbative expansion in
powers of the KS coupling constant λ:

Wn(z1, . . . , zn) =
∞∑
g=0

λ2g−2+nWg,n(z1, . . . , zn) . (3.3.12)

Substituting this into (3.3.11) and matching the terms with the same powers of λ
we obtain a system of recursive equations:

Wg,n+1(z0, zI) = Res
z→0
K(z0, z)

[
Wg−1,n+2(z, z, zI)

+
g∑

h=0

′∑
J1⊔J2=I

Wh,1+|J1|(z, zJ1)Wg−h,1+|J2|(z, zJ2)
]
. (3.3.13)

Here, we have defined the recursion kernel K(z0, z) in terms of the twisted propa-
gator as:

K(z0, z) ≡
⟨J (z0)Φ(z)⟩0

4ω(z) = 1
2

(
1

z0 − z
− 1
z0 + z

)
1

2ω(z) , (3.3.14)

where ω(z) = 1
2π z sin(2πz). The prime indicates that terms involving (g, n) =

(0, 1) should be excluded from the summation. We have replaced the contour
integral around the branch point by a residue at z = 0. The recursion relation
is therefore determined by the pole structure of the correlation functions in the
complex plane.

Importantly, the recursion in (3.3.13) corresponds precisely to the topological re-
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cursion relations applied to the spectral curve SJT, with input data3:

W0,1(z) = ω(z) , W0,2(z1, z2) = B(z1, z2) . (3.3.15)

The relevant background for the formalism of topological recursion is summarized
in appendices 2.2.3 and A.2. We can combine this result with Eynard and Orantin’s
observation [80] that the Weil-Petersson volumes Vg,n are related to the ‘symplectic
invariants’ Wg,n by a Laplace transform:

Wg,n(z1, . . . , zn) =
∫ ∞

0

n∏
i=1

dℓi ℓi e
−ziℓiVg,n(ℓ1, . . . , ℓn) , (χ < 0) . (3.3.16)

Using our proposal (3.3.1) for relating JT to KS, we go to the β-variable by
applying the inverse Laplace transform for each zi:

⟨Z(β1) · · ·Z(βn)⟩c,(g)
KS =

∫ c+i∞

c−i∞

n∏
i=1

dzi
2πi e

βiz
2
iWg,n(z1, . . . , zn) (3.3.17)

=
∫ ∞

0

n∏
i=1

dℓi ℓi Vg,n(ℓ1, . . . , ℓn)
∫ ∞

−∞

n∏
i=1

dwi
2π e

−βiw
2
i −iℓiwi (3.3.18)

=
∫ ∞

0

n∏
i=1

dℓi ℓi Vg,n(ℓ1, . . . , ℓn)Ztrumpet(βi, ℓi) . (3.3.19)

This indeed agrees with the Euclidean path integral Zc
g,n(β1, . . . , βn) in (2.1.7) for

the stable surfaces with χ < 0. Multiplying by λ2g−2+n and summing over the
genus we conclude that the perturbative expansion of the universe field theory
matches with the genus expansion of the gravitational path integral. Since all
correlation functions can be expressed in terms of connected correlations functions,
we see that the full JT gravity n-boundary path integral is the n-point function
of the boundary creation operators Z(β):

ZJT(β1, . . . , βn) = ⟨Z(β1) · · ·Z(βn)⟩KS . (3.3.20)

Let us emphasize that the right-hand side is a non-gravitational Euclidean path
integral with n operator insertions, whereas the left-hand side is the gravitational
path integral of JT gravity. We have thus expressed JT gravity as a Euclidean
‘universe field theory’ on the spectral curve. This provides a non-perturbative
completion (at least on a formal level) of the topological expansion of the Euclidean
JT path integral.

3This can either be verified using direct computation, or the generic argument presented in
(A.2.93).
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Given the geometric interpretation of the chiral boson J (z) as describing the
quantum fluctuations of the target space geometry around the classical value ω(z),
we can think about the ‘ensemble average’ ⟨· · ·⟩KS associated to JT gravity, roughly
speaking, as describing an average over background geometries in which the JT
string propagates.

3.4 Non-perturbative effects

Given the KS theory description for JT gravity and its embedding in the B-model
topological string theory, we can invoke intuition and tools from string theory to
study non-perturbative effects of order O(e1/λ) in the universe field theory. We
will study the insertion of certain topological D-branes [38–40, 126] in the target
space geometry. Their effect will be doubly non-perturbative in GN , as can be
seen from the identification λ = e−S0 . These contributions are very interesting
from the point of view of gravity, as they form an indirect probe of the discreteness
of the spectrum in a candidate microscopic theory.

In Section 3.4.1, we will study non-perturbative effects due to the D-branes. These
correspond to fermionic objects in the KS theory. In Section 3.4.2, we will give
these D-branes an interpretation in JT gravity as hypersurfaces on which fixed
energy boundaries can end. These boundaries are described by a boundary term
in the JT gravity action that can be obtained from the standard Dirichlet-type
boundary action by a Legendre transform, which on the level of the path integral
becomes a Laplace transform. As an application of the D-brane formalism, we will
show in Section 3.4.3 how to obtain non-perturbative corrections to the density-
density correlator, giving the ‘plateau’ feature of the spectral form factor [127].

3.4.1 Branes in KS theory

Since the basic KS field is a 2-dimensional chiral boson, we can use the familiar
boson-fermion correspondence and introduce the following fermionic fields4:

ψ(z) = eΦ(z) , ψ†(z) = e−Φ(z) . (3.4.1)

The exponentials are normal-ordered by subtracting the OPE singularities of
Φ(z)Φ(w) ∼ log(z − w) in the expansion of the exponential. These fermionic
fields have an interpretation as D-branes in the KS theory. Namely, recall that

4By Φ(z) we mean the full chiral boson with both positive and negative modes. We treat
it as the indefinite integral of J (z). For an account of the boson-fermion correspondence for
twisted fields, see [128,129].
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the spectral curve is embedded in the following non-compact Calabi-Yau:

CY : uv − y2 + 1
(4π)2 sin2(2π

√
x) = 0 . (3.4.2)

The base of this Calabi-Yau is the spectral curve SJT. This is where the bosonic
fields J and Φ live. The fibers over the spectral curve are defined by u = 0
and v = 0: If we specify a base point on SJT these are complex one-dimensional
manifolds in the geometry, which can be wrapped by topological D2-branes. In
the topological string terminology, u = 0 is wrapped by a brane, while a brane
that wraps the transverse fiber v = 0 has opposite flux and can be thought of as
an ‘anti-brane’ [130]. The fibers are parametrized by a point on the spectral curve,
so we can talk about a brane ‘inserted’ at a point ζ ∈ SJT.

In the topological string B-model, integrating out open strings ending on the
brane deforms the geometry in which the closed strings propagate [107]. This can
be thought of as the backreaction of a brane on the geometry, which deforms the
complex structure of CY. As before, the change in complex structure is encoded
in the period integral of the holomorphic (3, 0)-form ΩCY around a 3-cycle C̃

surrounding the D-brane. The change in complex structure due to a single D-
brane is found to be [123]:

δ

∫
C̃

ΩCY = λ . (3.4.3)

We can follow the same steps as in (3.2.7) to reduce the period integral on the
complex 3-cycle surrounding the 2-dimensional brane to a period integral of ω on
a contour C(ζ) surrounding the point ζ. The result is simply:

δ

∮
C(ζ)

ω = λ . (3.4.4)

What this equation is saying is that the insertion of a brane above the point ζ
deforms the complex structure of the spectral curve SJT by a small amount λ.
This is implemented in the quantum theory by a field ψ(ζ). Rescaling ω → ω/λ,
the property (3.4.4) can be written as an operator product, to be read inside
correlation functions: ∮

C(ζ)
dz ∂Φ(z)ψ(ζ) = ψ(ζ) . (3.4.5)

We used the defining relation δω = dΦ for the chiral boson Φ. We now recognize
the operator product expansion of a complex fermion of conformal weight h = 1

2
with the holomorphic bosonic current J (z) = ∂Φ(z):

∂Φ(z)ψ(ζ) ∼ 1
z − ζ

ψ(ζ) . (3.4.6)
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Figure 3.4: A pictorial representation of non-compact D-brane insertions on the spectral
curve S . The straight lines correspond to the non-compact fiber directions u = 0 or v = 0
which are wrapped by branes ψ and anti-branes ψ† respectively, having opposite flux as
indicated by the direction of the arrow. The branch cut is denoted by a red wiggly line.

Conversely, we can obtain J (z) by taking the coincident limit of a brane and an
anti-brane:

∂Φ(z) = lim
z′→z

{
ψ(z′)ψ†(z)

}
. (3.4.7)

The accolades signify normal ordering, by subtracting the OPE divergence ∼ 1
z′−z .

We conclude that the non-compact D-branes described above are indeed nothing
but complex fermions on the spectral curve5.

So far, we have defined the fermions on the double cover, which is also how we have
presented the KS theory. However, ultimately we will be interested in extracting
non-perturbative information from the fermions to correlation functions of the
density of states ρ(E), where E is related to the base space coordinate x = −E.
In particular, these quantities will be sensitive, at least semiclassically [132], to
the branched structure of the spectral curve. Therefore, we also want to define
fermionic fields ψ(x) on the spectral plane x = z2. However, this requires us to
choose a branch of z =

√
x. We therefore use the formalism developed in [133] to

describe Z2-twisted fermions on sheeted Riemann surfaces. To connect to the Z2-
twisted boson formalism outlined in Appendix A.2, we will use the spectral plane
variable x, and obtain physical quantities like ρ(E) by evaluating at x = −E in
the end.

5This is true locally. As explained in [40], for an arbitrary spectral curve ψ(z) is only defined
patch by patch and transforms as a wavefunction, instead of as a fermionic ‘half-differential’
ψ = ψ(z)

√
dz. The wavefunction interpretation of ψ(z) appears naturally from a Schrödinger

equation satisfied by ⟨ψ(z)⟩KS, see, e.g., [131].
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Z2-twisted fermions

We think of the spectral curve as two copies of the spectral x-plane, glued together
along the branch cut on the negative real axis. On each sheet, labelled by indices
0, 1, we define a bosonic field, such that after a 2πi rotation the fields are rotated
into each other:

Φ0(e2πix) = Φ1(x) , Φ1(e2πix) = Φ0(x) . (3.4.8)

In Appendix A.2.6, we introduce explicit mode expansions for Φ0 and Φ1 and show
that the KS field Φ(x) is the combination that diagonalizes the monodromy:

Φ(x) = 1√
2

(Φ0(x)− Φ1(x)) , x ∈ C \ R≤0 . (3.4.9)

Then, Φ(e2πix) = −Φ(x), so Φ is indeed an odd function of z. In terms of x,
it has an expansion in only half-integer powers of x. So in particular it has a
discontinuity across the branch cut, which we will call Ω(x). The discontinuity
can be expressed alternatively in terms of the fields on opposite sheets as they
approach each other on the negative real axis:

Ω(x) ≡ lim
x′→x

(Φ0(x)− Φ1(x′)) , x ∈ R≤0 . (3.4.10)

Next, on each sheet we introduce the following bosonized fermions:

ψa(x) = caeΦa(x) , ψ†
a(x) = cae−Φa(x) , a = 0, 1 . (3.4.11)

Again, the exponentials are implicitly normal ordered by subtracting the diver-
gences. Furthermore, we have used what is known as the Jordan-Wigner trick
to multiply the vertex operators by a cocycle ca that ensures the correct anti-
commutation between fermions on opposite sheets [134]. A consistent choice of
cocycles in this case is simply:

c0 = 1 , c1 = (−1)Nf +1 , (3.4.12)

where Nf is the fermion number operator6. This ensures that fermions on opposite
sheets anti-commute, for example:

ψ†
0(x)ψ1(x′) = e−Φ0(x)(−1)Nf +1eΦ1(x′) = −ψ1(x′)ψ†

0(x) . (3.4.13)

6It can be bosonized as Nf =
∮

dz
2πi

∂Φa(z) = α0, which, being the coefficient of 1
z

, can be
seen as the momentum of ∂Φa.
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For fields on the same sheet, the cocycles square to one and the anti-commutation
is ensured by the OPE:

ψa(x)ψ†
b(x

′) ∼ δab
x− x′ + reg. (3.4.14)

This is of course the expected OPE for fermion fields. As before, we have a boson-
fermion correspondence for fermions on the same sheet:

∂Φa(x) = lim
x′→x

{
ψa(x′)ψ†

a(x)
}
≡ lim
x′→x

(
ψ†
a(x′)ψa(x)− 1

x′ − x

)
. (3.4.15)

On the other hand, for two fermions on opposite sheets, we do not have to normal
order since Φ0(x′)Φ1(x) is regular, and we can simply add the exponentials in a
single normal-ordered exponential:

ψ0(x)ψ†
1(x) ≡ lim

x′→x
ψ0(x′)ψ†

1(x) = c0c1 e
Φ0(x)−Φ1(x) . (3.4.16)

Usually for OPE’s we implicitly demand the radial ordering |x′| > |x|. But here
we should be careful about the ordering of the x-arguments when we take the
coincident limit, since the points are on different sheets. We choose the convention
that ψ0(x′) is always left of ψ1(x) when we take the coincident limit. With this
convention, the product of fields when they approach each other from opposite
sheets gives the following weight one vertex operators:

eΩ(x) = lim
x′→x

ψ0(x′)ψ†
1(x) , e−Ω(x) = lim

x′→x
ψ†

0(x′)ψ1(x) . (3.4.17)

These operators will play an important role in the next section. The fermions have
the following monodromies when going around the branch point:

⟨σ|ψ0(e2πix) = −⟨σ|ψ1(x) , ⟨σ|ψ1(e2πix) = −⟨σ|ψ0(x) . (3.4.18)

We have multiplied from the left by the free bosonic twisted vacuum ⟨σ|, so that
the cocycles c0, c1 become ±1, respectively. However, from now on we will leave
the left-vacuum implicit. This is justified because, as we will see, to extract the
non-perturbative physics we will not need the higher genus corrections from the
interacting |KS⟩ vacuum; we will only need the free vacuum |σ⟩ correlation func-
tions.

3.4.2 Interpretation in JT gravity

To connect the discussion of branes on the spectral curve to JT gravity, we should
introduce a type of boundary directly in the gravitational theory which can end
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3. A field theory for baby universes

on branes in the target space geometry. We will thus introduce a set of boundary
conditions for the JT universes which do not have a fixed length, but are ‘hover-
ing’ in the bulk at some finite distance, and which have a fixed energy E. The
observables in the matrix model can now be obtained from the JT path integral
with this choice of modified boundary conditions, which on the level of the action
amounts to a Legendre transform7.

Fixed energy boundary conditions
Instead of fixing the dilaton and the boundary metric as in (2.1.4), one can also
impose Dirichlet-Neumann (DN) boundary conditions, in which one fixes both the
dilaton and its normal derivative at the boundary, but leave the metric free [121]:

ϕ∂M = ϕr
ε
, ∂nϕ∂M = ϕ′

r

ε
. (3.4.19)

Here, we have normalized the normal vector n, so that ∂nϕ has the same dimensions
as ϕ. In this case, the following boundary action must be added to the bulk JT
gravity action:

S∂DN = −
∫
∂M

du
√
γuu(∂nϕ− ϕK) . (3.4.20)

The DN boundary conditions are related to the standard DD boundary conditions
by a Legendre transform. To see this, we rewrite (3.4.20) in the following form:

S∂DN = 1
ε

∫
∂M

du
√
γuu(ϕr − ϕ′

r) +
∫
∂M

du
√
γuu ϕ(K − 1) (3.4.21)

=
∫ β

0
du
√
γuuE + S∂DD[γ] . (3.4.22)

We have written explicitly a dependence on the boundary metric γuu in the last
term, because in the DN action γ is kept free. We recognize the Legendre trans-
form8, with conjugate variables β and

E ≡ ϕr − ϕ′
r

ε
. (3.4.23)

One can show that (3.4.23) corresponds to a fixed energy E = ϕrSch(x, u) in the
boundary Schwarzian theory, when ϵ → 0. Therefore, the input of a particular
Dirichlet type boundary in the JT path integral is some temperature β describing
a canonical ensemble, whereas the input of a Neumann type boundary is some

7This can be viewed as a particular instance of the more general result in the AdS/CFT
correspondence [135], namely that a Legendre transformation in the boundary field theory at
large N leads to a change in the boundary conditions for the fields on the gravity side.

8Usually, the Legendre transform has a relative minus sign. The plus sign here means that
on the level of the path integral, we will get an inverse Laplace transform.
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fixed energy E describing a microcanonical ensemble in the boundary theory.

On the level of the path integral, the Legendre transform becomes an inverse
Laplace transform [121]:

ZJT(E) =
∫ c+i∞

c−i∞

Dγ
Diff S1 e

∫ β

0
du

√
γuu EZJT[γ] . (3.4.24)

We will often omit the superscript DN, as it should be clear from using the variable
E that we mean the path integral with DN boundary conditions. We can go to a
gauge where √γuu is constant, and then we have to divide by β to account for the
time reparametrization symmetry:

ZJT(E) =
∫ c+i∞

c−i∞

dβ

β
eβEZJT(β) . (3.4.25)

For example, we can compute the DN partition function of the disk (with ϕr = 1
2 )

to be
Zdisk(E) = eS0

8π4

(
2π
√
E cosh(2π

√
E)− sinh(2π

√
E)
)
. (3.4.26)

Furthermore, the trumpet partition function becomes

Ztrumpet(E, ℓ) =
∫ c+i∞

c−i∞

dβ

β
eβE

1√
4πβ

e− ℓ2
4β = 1

πℓ
sin(ℓ

√
E) . (3.4.27)

Looking at the form of the higher-genus partition functions (2.1.7), we see that
the β-dependence only comes in via the trumpets. So, the only modification to
the perturbative formula of ZJT(E) will be to change the integration kernel of the
trumpet to its DN counterpart:

Zg,n(E1, . . . , En) = 1
π

∫ ∞

0

n∏
i=1

dℓi sin(ℓi
√
Ei)Vg,n(ℓ1, . . . , ℓn) . (3.4.28)

The ℓi from the gluing measure has cancelled with the ℓi in the denominator of
(3.4.27). So Zg,n(E1, . . . , En) is simply multiple Fourier-type transform of the
Weil-Petersson volumes. We must be careful in evaluating these integrals, as the
volumes Vg,n are polynomials in ℓ2

i and so the above integral in general is divergent.
However, this divergence can be easily regularized, for example by introducing a
small exponential regulator.

Relation to matrix integrals

The fixed energy JT partition function ZJT(E) has a direct interpretation in the
dual matrix model. To see this, one can write ZJT(β) as the difference of two
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integrals in spectral plane coordinate x = z2 just above and below the negative
real axis:

ZJT(β) = − lim
ϵ→0

∫ 0

−∞

dx

2πie
βx
[
⟨∂Φ(x+ iϵ)⟩KS − ⟨∂Φ(x− iϵ)⟩KS

]
. (3.4.29)

To obtain ZJT(E) from this expression, we use the following integral representation
of the delta function:

δ(E + x) =
∫ i∞

−i∞
dβ eβ(E+x) . (3.4.30)

Sending x → −x, the DN path integral can be expressed in terms of KS field
insertions as:

ZJT(E) = lim
ϵ→0

∫ E

dE′
∫ ∞

0

dx

2πiδ(E
′ − x)

[
⟨∂Φ(−x+ iϵ)⟩KS − ⟨∂Φ(−x− iϵ)⟩KS

]
.

(3.4.31)

Since E′ ∈ R≥0, the delta function sets x = E′. From now on we use the short-
hand notation ∂Φ(E) ≡ ∂Φ(x)|x=−E , when ∂Φ is viewed as a function of E. This
amounts to moving the branch cut to the positive real axis. On the right-hand
side we then recognize the discontinuity of ∂Φ across the branch cut:

disc ∂Φ(E) ≡ 1
2πi lim

ϵ→0

(
⟨∂Φ(E + iϵ)⟩KS − ⟨∂Φ(E − iϵ)⟩KS

)
. (3.4.32)

We find that ∂Φ(E) plays the role of the resolvent and its discontinuity across the
branch cut is the density of states. Therefore, we will match our notation with
that from double-scaled matrix models and write:

ρ(E) ≡ disc ∂Φ(E) , E ∈ R≥0 , (3.4.33)
R(E) ≡ ∂Φ(E) , E ∈ C \ R≥0 . (3.4.34)

The DN path integral can now be expressed as an insertion of the integrated
density of states:

Z(E) ≡
∫ E

dE′ ρ(E′) . (3.4.35)

These are the analogues of the boundary creation operators (3.3.1) in the case of
DN boundary conditions. To be precise, we can obtain the JT path integral with
DN boundary conditions by inserting these observables in the KS theory:

ZJT(E1, . . . , En) = ⟨Z(E1) · · ·Z(En)⟩KS . (3.4.36)
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Figure 3.5: The creation of DD and DN boundary trumpets Z(β) and Z(E) in JT
gravity, indicated by blue and yellow boundaries respectively.

This completes the dictionary between JT gravity with DN boundary conditions
and the KS theory.

For example, the one-point function ⟨∂Φ(x)⟩KS,0 = ω(x) becomes the leading order
density of states:

ρ0(E) ≡ discω(E) = 1
4π2 sinh(2π

√
E) . (3.4.37)

Note that it has the correct universal
√
E-behaviour for low energy, typical of

double-scaled matrix models. Integrating, we obtain the disk contribution to the
DN path integral, which agrees with our previous answer (3.4.26):

Zdisk(E) =
∫ E

dE′eS0 ⟨disc ∂Φ(E′)⟩KS,0 (3.4.38)

= eS0

8π4

(
2π
√
E cosh(2π

√
E)− sinh(2π

√
E)
)
. (3.4.39)

Note that the E-integral came from the factor of 1/β present in the definition of
the microcanonical path integral. It arose from gauge fixing the U(1) symmetry
of trumpet boundary. If we had assumed some marked point on the DN bound-
ary, there would be no such factor of 1/β, and ZJT(E) would be computed from
insertions of ρ(E). Such operators were considered from the matrix model point
of view in [136], where they were called ‘energy eigenbranes’, because they fix a

77



3. A field theory for baby universes

particular energy eigenvalue in the matrix integral.

As another example, we can easily evaluate the contribution from two fixed energy
boundaries connected by a wormhole. We do this by glueing two DN trumpets
along their common geodesic boundary:∫ ∞

0
dℓ ℓZtrumpet(E1, ℓ)Ztrumpet(E2, ℓ) = 1

2π2 log
(√

E1 +
√
E2√

E1 −
√
E2

)
. (3.4.40)

As expected, the right-hand side of (3.4.40) is the discontinuity of the free two-
point function ⟨Φ(E1)Φ(E2)⟩0. Indeed, one can easily verify that taking derivatives
with respect to E1 and E2, followed by an inverse Laplace transform, precisely
returns the universal wormhole contribution (3.3.8).

We can now borrow the matrix model intuition to understand why we found a
twisted bosonic9 field ∂Φ to describe JT gravity. We have just seen that the
energy E that was fixed as a DN boundary condition, and which is dual to the
temperature β, is related to the spectral plane coordinate as x = −E. The branch
cut in the spectral x-plane is therefore mapped to the positive real axis in the
E-plane. We can view the branch cut, and therefore the fact that ∂Φ had to be
Z2-twisted, as a direct consequence of a continuous eigenvalue density created by
ρ0(E). This is the reason we called x the ‘spectral plane’ in the first place: a path
in the x-plane represents the spectrum of a double-scaled matrix model. A given
DD boundary, for which the temperature is fixed, can be thought of as having an
energy that is randomly drawn from a continuous statistical ensemble.

The double-scaled matrix model that gives rise to density of states ρ0(E) can
be identified explicitly in the topological string theory setup. In fact, there is a
precise way in which a stack of topological D2-branes wrapped around compact10

cycles in the target space geometry (3.2.4) give rise to a large N matrix integral,
which is dual to the closed string theory [39]. In that sense, the random matrix
H that leads to ρ0(E) is describing the open string degrees of freedom associated
to this brane configuration. The localization of the open string field theory, which
in this case is a 6-dimensional holomorphic Chern-Simons theory associated to
the space-filling D6-brane, to a matrix integral can be done explicitly [38] (see
also [138]). The notation that was used heuristically in (3.4.33) and (3.4.34) can
then be understood more formally as a statement of the open/closed duality in
topological string theory. Hence, from the perspective of the ‘JT string’ it follows

9The reason that we obtained a bosonic theory, is that the collective excitations of eigenvalues
in the double-scaled matrix model behave like bosons, even though single eigenvalues behave
fermionically. For more on the relation between conformal field theory and double-scaled matrix
models, see for example [137].

10Importantly these D-branes are compact and distinct from the non-compact D-branes in-
troduced before.
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that the double-scaled matrix integral is actually dual to the KS field theory, rather
than to JT gravity itself. This gives a new perspective on the role of the matrix
ensemble associated to the gravitational path integral.

3.4.3 Application: spectral correlation functions

Now we apply the formalism introduced in the previous section to extract non-
perturbative corrections to the leading-order result for density and density-density
correlation functions. First, recall that the density of states ρ(E) is the disconti-
nuity of the resolvent operator:

ρ(E) = 1
2πi (∂Φ0(E)− ∂Φ1(E)) . (3.4.41)

The (first order correction to the) collision of two branes on the same sheet
ψ0(E)ψ†

0(E) leads to the insertion of a closed string state ∂Φ as in (3.4.7). The
contribution coming from the interaction of branes on opposite sheets is given by

⟨ψ0(E)ψ†
1(E)⟩KS = ⟨eΩ(E)⟩KS ≈ e

2πi
λ

∫ E
dE′ρ0(E′) . (3.4.42)

Here, we have used that the operator Ω(E) can be written as

Ω(E) = 2πi
∫ E

dE′ρ(E′) , (3.4.43)

and kept only the genus zero contribution to the expectation value. The result is
entirely localized at the branch cut, and non-perturbative in the coupling constant.
Intuitively, one may think about this quantity as a ‘geometric phase’ that a brane
picks up when it is transported around the branch point, see Figure 3.6.

It turns out that this result captures non-perturbative contributions to the density
of states if we add the following corrections to the perturbative expansion:

∂Φ0(E)np ∼ ∂Φ0(E) + ieΩ(E) , (3.4.44)
∂Φ1(E)np ∼ ∂Φ1(E)− ie−Ω(E) . (3.4.45)

Crucially, the symbol ∼ indicates that the above operator identifications should
be read inside perturbative expectation values ⟨· · ·⟩KS of the KS theory. This is
the whole point of the construction: we are trying to extract non-perturbative
physics using perturbative computations. The precise mechanism that underlies
the above identifications is still rather mysterious, for now one should view it as
an observation. We expect that the answer can be found in the open string theory
dual to KS, and we hope to address this in future work.
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Figure 3.6: A pictorial representation of (Left) the collision of two fermions ψ0 and
ψ†

0 on the same sheet, (Right) the collision of two fermions ψ0 and ψ†
1 on opposite

sheets. Effectively, the latter is obtained from moving the anti-brane around the branch
point along the striped line, and then bringing the fermions together on the branch cut
(indicated by a red wiggly line).

In terms of the matrix model ∂Φ(E) = R(E) is the resolvent, so the fermions
ψ(E) = det(H − E) and ψ†(E) = 1/det(H − E) correspond to (inverse) deter-
minant operators. In particular, ψ† has singularities at the real axis and should
be regularized. This leads to two fermions ψ†

0 or ψ†
1 depending on the sign in

the ±iϵ prescription. Taking a single eigenvalue E using the probe brane ψ†
0 and

have it circle the branch point once results in the operator ψ†
1. In the process,

the eigenvalue ‘feels’ the force of the other eigenvalues, which is proportional to
the number of eigenvalues given by

∫ E
ρ0(E′)dE′, and this effect is captured by

the non-perturbative phase in ⟨ψ0(E)ψ†
1(E)⟩KS. We now make the following pro-

posal for an observable in the universe field theory that captures non-perturbative
corrections to the density of states, by analogy with (3.4.41):

ρnp(E) ∼ 1
2πi (∂Φ0(E)np − ∂Φ1(E)np) . (3.4.46)

The superscript ‘np’ indicates that we have defined an observable which takes
the non-perturbative corrections into account. With this proposal for a non-
perturbative density of states, we can compute perturbative correlation functions
in the KS theory.

Density correlator. The one-point function of ρnp(E) is computed straightfor-
wardly:

⟨ρnp(E)⟩KS ∼ ⟨ρ(E)⟩KS + 1
2π

(
⟨eΩ(E)⟩KS + ⟨e−Ω(E)⟩KS

)
. (3.4.47)
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In principle, we can compute this using the full interacting theory, including all
genus corrections, but it turns out that the leading-order result already has the
features that we are interested in, so we keep only the ‘disk’ and ‘annulus’ contri-
butions. Clearly, we have

⟨ρ(E)⟩KS ≈ e
S0ρ0(E) . (3.4.48)

For the other contribution we use the following identity:

⟨e±Ω(E)⟩KS ≈ exp
[
±⟨Ω(E)⟩c0 + 1

2 ⟨Ω(E)2⟩c0

]
. (3.4.49)

The annulus contribution, which should be appropriately normal ordered, can be
computed using the twisted two-point functions ⟨Φa(x)Φb(x′)⟩KS:

1
2 ⟨Ω(x)2⟩c0 ≡

1
2 lim
x′→x

〈
{Ω(x)Ω(x′)}

〉c

0
(3.4.50)

= lim
x′→x

[
log(
√
x−
√
x′)− log(

√
x+
√
x′)− log(x− x′)

]
(3.4.51)

= log 1
4x . (3.4.52)

Setting x = −E, and putting everything together, we thus find the leading-order
result:

⟨ρnp(E)⟩KS ≈ e
S0ρ0(E)− 1

4πE cos
(

2π eS0

∫ E

dE′ρ0(E′)
)
. (3.4.53)

This is the same result was found in [36] using matrix model techniques. As one can
see, the non-perturbative effects give small oscillations on top of the perturbative
leading order density of states ρ0(E) = 1

4π2 sinh(2π
√
E), where the size of the

oscillations is controlled by λ = e−S0 .

Density-density correlator. Next, we want to compute the density-density
correlator:

⟨ρnp(E1)ρnp(E2)⟩KS . (3.4.54)

Of course, there will be the factorized contribution, but we will see that the in-
teresting result comes from the connected contributions, which assemble into the
so-called sine-kernel, well-known in the matrix model literature. Expanding the
expression, there are many products that we need to compute:

ρnp(E1)ρnp(E2) = ρ(E1)ρ(E2) + 1
2πρ(E1)(eΩ(E2) + e−Ω(E2)) (3.4.55)
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+ 1
2π (eΩ(E1) + e−Ω(E1))ρ(E2) + 1

4π2 (eΩ(E1) + e−Ω(E1))(eΩ(E2) + e−Ω(E2)) .

The singularities in the cross-terms of ρ(E) with eΩ(E) + e−Ω(E) cancel, while the
OPE’s of eΩ(E1)eΩ(E2) and e−Ω(E1)e−Ω(E2) are also regular as E′ → E. The only
singular contributions come from the products ρ(E1)ρ(E2) and e±Ω(E1)e∓Ω(E2).
The first gives the perturbative contribution, keeping only the genus zero terms:

⟨ρ(E1)ρ(E2)⟩KS ≈ −
1

2π2(E1 − E2)2 + reg. (3.4.56)

where we have neglected terms which are regular as E′ → E. This perturbative
contribution to the density-density correlator is called the ‘ramp’, because after
a double Fourier transform it gives rise to the linear growth of the spectral form
factor. To obtain the second term, we compute the product:

eΩ(E1)e−Ω(E2) = 1
(E1 − E2)2

{
eΩ(E1)−Ω(E2)} . (3.4.57)

Here, we combined the product of normal-ordered exponentials into a single normal-
ordered exponential, with the normal ordering {. . . } given by subtracting log(E1−
E2) from the singular products Φ0Φ0 and Φ1Φ1, leading to the multiplicative fac-
tor. Now we can take the expectation value and keep only the genus zero contri-
butions:

⟨eΩ(E1)e−Ω(E2)⟩KS ≈
1

(E1 − E2)2 e
⟨Ω(E1)−Ω(E2)⟩0+ 1

2 ⟨(Ω(E1)−Ω(E2))2⟩c0 . (3.4.58)

The square in the last term of the exponent should be appropriately normal-
ordered by subtracting the singular pieces, as was the case for the density corre-
lator. It can be easily evaluated using the free two-point functions to be:

1
2
〈
(Ω(x)− Ω(y))2〉c

0 = 1
2

[
⟨Ω(x)2⟩c0 − 2 ⟨{Ω(x)Ω(y)}⟩c0 + ⟨Ω(y)2⟩c0

]
(3.4.59)

= log 1
4x + log 1

4y − 2
[
log
(√

x−√y
√
x+√y

)
− log(x− y)

]
(3.4.60)

= log
(
√
x+√y)4

16xy . (3.4.61)

Sending x = −E1 and y = −E2 and plugging this into (3.4.58), we find:

⟨eΩ(E1)e−Ω(E2)⟩KS ≈
1

(E1 − E2)2
(
√
E1 +

√
E2)4

16E2E1
e⟨Ω(E1)−Ω(E2)⟩0 (3.4.62)
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=
[

1
(E1 − E2)2 + reg.

]
e⟨Ω(E1)−Ω(E2)⟩0 . (3.4.63)

In the last line, we again expanded E1 around E2 and kept only the singular piece.
Repeating the calculation above we find the other OPE with signs flipped:

⟨e−Ω(E1)eΩ(E2)⟩KS ≈
[

1
(E1 − E2)2 + reg.

]
e−⟨Ω(E1)−Ω(E2)⟩0 . (3.4.64)

Putting everything together gives the connected contribution to the non-perturbative
density-density correlator:

⟨ρnp(E1)ρnp(E2)⟩cKS ∼

⟨ρ(E1)ρ(E2)⟩KS + 1
4π2

(
⟨eΩ(E1)e−Ω(E2)⟩KS + ⟨e−Ω(E1)eΩ(E2)⟩KS

)
(3.4.65)

≈ − 1
2π2(E1 − E2)2

[
1− cosh (⟨Ω(E1)− Ω(E2)⟩0)

]
. (3.4.66)

Using that ⟨Ω(E)⟩0 = 2πi
λ

∫ E
ρ0(E′)dE′ we conclude:

⟨ρnp(E1)ρnp(E2)⟩cKS ≈ −
1

π2(E1 − E2)2 sin2

(
πeS0

∫ E1

E2

ρ0(E′)dE′

)
. (3.4.67)

For E2 → E1, the integral can be approximated by (E1 − E2)ρ(E2). Adding the
disconnected piece, we arrive at the main result of this section:

⟨ρnp(E1)ρnp(E2)⟩KS ≈

⟨ρnp(E1)⟩0 ⟨ρnp(E2)⟩0 −
sin2(πeS0(E1 − E2)ρ0(E2)

)
π2(E1 − E2)2 . (3.4.68)

This is only an approximate answer, in the sense that we only considered genus zero
contributions and were interested in the singular part of the products. The above
computation was merely meant to show the universal behaviour of ⟨ρ(E1)ρ(E2)⟩KS
for |E1−E2| ≪ 1. Here, we have shown that the non-perturbative contributions in
the universal form of the sine-kernel [90] can be understood as arising from branes
in the KS theory. From the universe field theory side, these are described by
(bilinears of) fermion fields, while on the JT gravity side, they describe D-branes
where fixed-energy boundaries can end on.
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3. A field theory for baby universes

3.5 Discussion

Let us now discuss some subtleties, open questions and directions for future re-
search.

Open/closed duality. We have proposed that the modified holographic dictio-
nary which relates JT gravity to a matrix integral is in fact a consequence of a
more standard open/closed duality in topological string theory. Formulating JT
gravity in terms of the KS theory allows for a direct interpretation in string the-
ory and the ‘ensemble average’ should then correspond to the path integral in the
open string field theory dual of the KS theory, as outlined in Figure 3.2. Although
we have identified the relevant quantities on both sides, a detailed account of the
duality is still an open question. This requires a more careful study of both the
compact and non-compact D-branes that we have introduced.

An interesting step in this direction might be found in [139], where a Kontsevich
matrix model arises from the localization of a cubic open string field theory. It
would be interesting to make the connection between this perspective and the dy-
namics of the non-compact branes more precise. More speculatively, we expect
that the open string field, which can be represented by a Hermitian matrix H,
should be viewed as the Hamiltonian of some quantum mechanical system associ-
ated to the branes in the theory. It would be interesting to see if the underlying
fermionic theory of the open string degrees of freedom can be in some way related
to the SYK model.

Baby universes and α-states. Moreover, we expect that the KS theory gives a
well-defined construction of the baby universe Hilbert space (as defined in [100])
for JT gravity. One can formally represent the path integral of KS theory in terms
of an operator formalism. This would naturally lead to a notion of boundary
operators Ẑ(β). In fact, we expect a slight modification of the construction by
Marolf and Maxfield [100] in the sense that we need to consider a larger algebra
of observables by adding the ‘canonical momentum’ of Ẑ(β). We would then
have a non-commutative algebra of observables with not only boundary creation
operators but also boundary annihilation operators. This is close to the original
approach taken in [101].

In particular, this construction would lead to a precise definition of the Hartle-
Hawking state |HH⟩ with non-trivial topology, in terms of the interacting vacuum
of the KS theory. We can represent this state geometrically by an integration
over half the spectral curve. That is, we cut open the path integral on the slice
Re(z) = 0. The resulting baby universe Hilbert space is infinite-dimensional and
distinct from the baby universe Hilbert space that will be discussed in Appendix
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A.2, since the in- and out-states are treated symmetrically. In principle, this
construction would give us a definition of the microscopic α-states |α⟩ in JT gravity,
and an understanding of their role in the factorization problem [140].

Non-perturbative effects. It would be interesting to study further the non-
perturbative effects that were touched upon in Section 3.4. Although it seems
that the brane/anti-brane perspective leads to the correct results (3.4.53) and
(3.4.68), the geometrical interpretation of the precise mechanism is still rather
mysterious. For example, the non-perturbative correction in (3.4.44) and (3.4.45)
decouples the the two fields ∂Φ0, and ∂Φ1 in the sense that they are not anymore
related to each other by a 2π rotation. This seems to agree with the perspective
that non-perturbative effects have a dramatic effect on the target space decoupling
the two sheets of the branched geometry [132]. In particular, it leads to a branch
cut extending over the whole real axis [−∞,∞].

It would also be interesting to understand the connection to [49], where an effec-
tive field theory for the late-time behaviour of quantum chaotic systems is pre-
sented (see also [141]). For example, one could try to find an interpretation of
the Altshuler-Andreev saddle and notion of causal symmetry breaking, that are
important in the computation of the ‘plateau’ feature of the spectral form factor,
in the topological string theory setup. We expect these effects to become visible
in the open string field theory description dual to KS theory. These results are
presented in Chapter 4.

Super JT gravity. There are some generalizations of the construction which are
worth studying. It would be interesting to carry out a similar analysis in the case
of JT supergravity [92, 142]. It is defined on super Riemann surfaces for which
a recursion relation similar to Mirzakhani’s is derived. The topological recursion
for the matrix model associated to super JT is related to the Brezin-Gross-Witten
and the Bessel model [143]. Introducing both fermions and bosons, the super-
Virasoro algebra generated by the combined stress tensor leads to super-Virasoro
constraints [144]. A natural question is if these are equivalent to the ‘super-
Mirzakhani recursion’ and if we can extend the KS theory to a supersymmetric
model, whose SD equations impose the super-Virasoro constraints.

Pure 3d gravity as an ensemble. The precise form of the KS action and its
relation to JT gravity relied heavily on the interpretation of the spacetime in terms
of a string world-sheet. In that sense, the construction seems to be very specific
to models of 2-dimensional gravity. There is some evidence that wormholes in
pure 3-dimensional gravity can also be understood in terms of some averaging
prescription (research in this direction includes [95,145–151]). Our derivation was
fundamentally based on the universal recursive structure expressed in terms of
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3. A field theory for baby universes

the SD equation. If one could unearth a similar recursive structure in higher-
dimensional theories of quantum gravity, this would open up a way for finding a
similar field theory description.

We hope to address some of these questions in future work.
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4 Chaos in 2D gravity

4.1 Introduction

In recent years, there has been a renewed interest in two-dimensional quantum
gravity, most notably JT gravity [33, 36, 56, 64, 82], its supersymmetric cousins
[83,92,143], and more general dilaton gravity theories [98,152,153]. In particular,
the focus has been on understanding these toy models of quantum gravity at a fully
non-perturbative level. Much research has concentrated on the proposed comple-
tions as double-scaled matrix models, whose universal features capture hallmarks
of an underlying chaotic microscopic theory, such as the plateau in the spectral
form factor [43,93].

An alternative approach proposed [1] treats the two-dimensional JT universe as the
worldsheet of a closed topological string, whose splitting and joining is described
by a field theory in target space. The diagrammatic expansion of this simple
interacting 2d CFT – dubbed a ‘universe field theory’, after [105] – corresponds
to the genus expansion of the gravitational path integral, while non-perturbative
information can be accessed by allowing JT strings to end on D-branes. Besides
conceptually clarifying the matrix model origins of JT gravity, it also offers the
technical advantage of working directly in the double-scaling limit.

In this chapter, we use our universe field theory to connect JT gravity to a hallmark
in the field of quantum chaos, namely the ‘supersymmetry method’, as pioneered
by Efetov [154] and recently applied to holography in [49,141]. Given some ensem-
ble that models a quantum chaotic system, denoted by ⟨. . .⟩H , the supersymmetry
method extracts moments of the ensemble from ratios of determinants

Dn(X) =
〈

det(x1 +H) det(x2 +H) . . .det(xn +H)
det(x1 +H) det(x2 +H) . . .det(xn +H)

〉
H

. (4.1.1)

The complex variables xi = −Ei ± iη and xi = −Ei ± iη contain real energy
arguments as well as infinitesimal imaginary offsets which mark the causal struc-
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ture of the correlator1 [155, 156]. By taking derivatives of Dn(X) and setting
the energy arguments equal, one obtains nth moments2 of the spectral density
ρ(E) = tr δ(E − H). The method is called ‘supersymmetric’ because the deter-
minants and inverse determinants can be represented by integrals over fermionic
and bosonic vector degrees of freedom, manifesting an underlying U(n|n) super-
group structure. In the limit where the energy differences ∆E = |Ei−Ej | become
small and approach the mean level spacing ∆, the global U(n|n) is spontaneously
broken to U(n2 |

n
2 ) × U(n2 |

n
2 ) and the correlator (4.1.1) reduces to a non-linear

σ-model [157]:

Dn(X) ≃
∫

AIIIn|n

dQ exp
[
i
π

∆str(XQ)
]
. (4.1.2)

on the coset manifold [158]

AIIIn|n ≡
U(n|n)

U(n2 |
n
2 )×U(n2 |

n
2 ) . (4.1.3)

This σ-model universally captures the late time physics of any quantum chaotic
system: it only depends on the mean level spacing ∆ and the symmetry class of
the ensemble3. For JT gravity, the mean level spacing at energy E is determined
to first order in e−S0 by the Schwarzian density of states [34]

∆−1 = eS0

4π sinh
√

2πE . (4.1.4)

This is a perturbative input derived from semi-classical gravity. Crucially, we will
show that JT gravity, non-perturbatively completed by its universe field theory, is
capable of reproducing the full σ-model (4.1.2), thus demonstrating its quantum
chaotic nature.

From KS theory to the σ-model of quantum chaos. To derive the σ-model
directly from JT universe field theory, we study correlation functions of vertex
operators eΦ(x) and e−Φ(x), which can be seen as the double-scaled analogs of the
determinant and inverse determinant operators in (4.1.1). The field Φ(x) is a Z2-
twisted chiral boson living on the JT spectral curve, as we showed in Chapter 3.
Previously, we showed that correlation functions of the current ∂Φ compute all-

1We will always use serif variables for arguments of determinants, and sans serif for inverse
determinants.

2For example, from D2(X) one extracts the density-density correlator, which after Laplace
transform to ⟨Z(β1)Z(β2)⟩ and analytic continuation of the inverse temperatures yields the
spectral form factor.

3In the above discussion we have assumed the ensemble to be unitary invariant, but there
are in total 10 distinct symmetry classes, following the classification of [159].
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genus multi-boundary wormhole amplitudes in JT gravity, after inverse Laplace
transform [1]. This time we take an inverse Laplace (or Fourier) transform of
the vertex operators e±Φ(x) to demonstrate, in Section 4.3, that their correlation
function can be rewritten as a flavor matrix integral over the space of Hermitian
supermatrices in GL(n|n):〈{

eΦ(x1)e−Φ(x1) · · · eΦ(xn)e−Φ(xn)}〉
KS

=
∫

(n|n)
dA e−eS0 Γ(A)+eS0 str(XA) . (4.1.5)

Here the curly brackets denote a normal ordering prescription for the product
of vertex operators, and the angular brackets denote the expectation value in
Kodaira-Spencer (KS) universe field theory. On the right-hand side, the matrix
potential Γ(A) can be computed perturbatively, to arbitrary order in e−S0 , from
the topological recursion relations satisfied by ⟨∂Φ(x1) . . . ∂Φ(xn)⟩KS. To leading
order, it is given by the single supertrace Γ(A) = str Γ0(A), where the functional
form of Γ0(y) is determined by solving the spectral curve equation H(x, y) = 0
and integrating −xdy, the one-form dual to the canonical holomorphic one-form
ω = ydx, giving

Γ0(y) = −
∫ y

x(y′)dy′ . (4.1.6)

In the case of the ‘Airy’ spectral curve, H(x, y) = y2 − x, which governs the
low energy behavior of all topological gravity models [76], the potential is cubic
Γ(A) = 1

3 str(A3), and the flavor matrix integral becomes a graded version of the
celebrated Kontsevich matrix model [88]. For JT gravity, the spectral curve is
derived from the Schwarzian density of states (4.1.4), and is given by H(x, y) =
y2 − 1

(4π)2 sin2(2π
√
x). Like the Kontsevich model, one has to select appropriate

integration contours for the eigenvalues of A, which are analyzed in Appendix B.

After establishing the duality (4.1.5), we perform a stationary phase analysis of
the flavor matrix integral in the limit that the probe energies approach each other,
∆E → 0, and the mean level spacing ∆ (and hence e−S0) goes to zero, while
keeping their ratio fixed to

s = ∆E/∆ . (4.1.7)

Since ∆E → 0, we are probing the very late time behavior of the system. In
this ‘late time limit’ there is a whole saddle-point manifold over which one should
integrate, which turns out to be precisely the coset manifold AIIIn|n. In fact, we
show that the flavor matrix theory reduces to the non-linear σ-model of quantum
chaos in the late time limit∫

(n|n)
dA e−eS0 Γ(A)+eS0 str(XA) stationary−−−−−−→

phase

∫
AIIIn|n

dQei
π
∆ str(XQ) , (4.1.8)
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4. Chaos in 2D gravity

where ∆−1 is given by the disk JT density of states (4.1.4). This result demon-
strates that the completion of JT gravity in terms of its universe field theory
knows both about the perturbative (in e−S0) sum over topologies, as well as the
fully non-perturbative late time ergodic physics. For example, when s ≫ 1, the
main contribution to the σ-model comes from a perturbative expansion around
the standard saddle. For s ≳ 1, a new class of supersymmetry breaking saddles
becomes important, the so-called Andreev-Altshuler saddle points [160], as de-
scribed in [49]. When s < 1, one needs to integrate Q over the full Goldstone
manifold, corresponding to a phase where causal symmetry is restored. As one
can see, each of these phases is captured by universe field theory, and so the result
(4.1.8) improves on [1] where similar vertex operator calculus was used to derive
the sine kernel in JT gravity.

The open string perspective. It may seem like a miracle that a theory of semi-
classical gravity should be sensitive to the late time quantum chaotic properties
of the underlying microscopics. Our aim is to give a gravitational interpretation
of this result, using intuition from (topological) string theory.4 The main idea is
to access non-perturbative information (in e−S0) by allowing JT strings to end on
D-branes embedded in a higher dimensional target space CY. This six-dimensional
Calabi-Yau is a fibration of the spectral curve, defined by

uv −H(x, y) = 0 , (4.1.9)

where u, v, x, y ∈ C. To the Calabi-Yau one associates a holomorphic (3, 0)-form

Ω = du

u
∧ dx ∧ dy . (4.1.10)

We can wrap a one-complex-dimensional brane on the non-compact submanifold
u = 0, which is parametrized by v and a point on the spectral curve. Similarly,
we define anti-branes by wrapping them on v = 0. From uv = 0 we see that
du
u = −dvv , so that exchanging u and v amounts to a change of sign for Ω. This

shows that anti-branes can be viewed as branes with the opposite orientation.
Inserting a vertex operator eΦ(x) creates a brane, while e−Φ(x) creates an anti-
brane, above a point x on the spectral curve. The real part of x is interpreted
as an energy E in the Schwarzian theory, which is kept fixed by imposing fixed
energy boundary conditions on the JT gravity action [121, 136]. On the level of
JT gravity, the fixed energy boundary term is the Legendre transform of the usual
Dirichlet boundary term for fixed inverse temperature β. So, in the universe field
theory language, inserting a vertex operator eΦ(x) creates a brane in target space

4These ideas trace back to the seminal work of Dijkgraaf and Vafa on topological strings
and matrix models [37–40], as well as work by Maldacena, Moore, Seiberg and Shih on minimal
string theory [81,132].

90



4.1. Introduction

on which JT worldsheets with boundary energy E can end.

This D-brane point of view gives a simple explanation for the appearance of
the flavor matrix theory (4.1.5). Namely, inserting n pairs of vertex operators
eΦ(xi)e−Φ(xi) creates n brane/anti-brane pairs. When we consider the limit of co-
incident probe energies, xi → xi, we get a stack of branes and anti-branes and
the gauge group enhances to U(n|n) [130]. This is precisely the ‘causal symmetry’
alluded to in the context of quantum chaos. Indeed, we show in Section 4.4.1
that the effective brane worldvolume theory is to leading order in e−S0 equal to
the flavor matrix integral. The small imaginary offsets of the brane positions xi
spontaneously break the U(n|n) causal symmetry and finite energy differences ∆E
give rise to massive modes – this is the well-known Higgs effect for D-branes.

The open string perspective also provides an explanation for the color-flavor dual-
ity which connects the double-scaled matrix model of Saad, Shenker and Stanford
to the Kontsevich-like flavor matrix integral presented in this chapter. This du-
ality has been established using the supersymmetry method and a generalized
Hubbard-Stratonovich transformation in [161, 162]. In Section 4.4, we give this
duality an interpretation using the open string field theory in the target space CY.
Namely, the degrees of freedom of the flavor matrix theory are open JT strings
ending on the non-compact branes introduces above, whereas those of the color
matrix theory are open JT strings ending on compact branes, described in detail
in Section 4.4.2, which wrap the blown-up singularities of the spectral curve.

Connection to SYK. Finally, our results establish an interesting new connection
to the SYK model. As is well known, the SYK model [57, 58] reduces at low
energies to the Schwarzian theory [60], which is the same as JT gravity on the
disk. This relates JT and SYK on the most coarse-grained level, or at early
times. Interestingly, we have found that also the very late time description of
(non-perturbatively completed) JT quantum gravity, namely the non-linear σ-
model (4.2.5), is precisely the same as the late time ergodic phase of the SYK
model derived in [50]. Of course, this does not prove a full duality between JT
and SYK, but it shows that they are in the same universality class: they have
the same mean level spacing (4.1.4) and the same pattern of causal symmetry
breaking.

Outline: This chapter is meant to bridge a gap between the communities of
quantum chaos and holography. We have therefore summarized some necessary
background in Section 4.2: flavor matrix theory (fMT) is introduced as an orga-
nizing principle for quantum chaos. A more comprehensive treatment of can be
found in [49]. After setting the scene, we derive the non-linear σ-model of quantum
chaos directly from JT universe field theory in Section 4.3. This is accomplished
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Figure 4.1: A comprehensive diagram of the relevant theories in this chapter. Euclidean
JT gravity (left) is defined perturbatively as a sum over topologies. It may be completed
non-perturbatively – via the Saad, Shenker, Stanford (SSS) duality – by a large L color
matrix theory (cMT), double-scaled to the spectral edge, or by a flavor matrix integral
(fMT) using the color-flavor duality (middle). Both descriptions can be derived exactly
from the KS theory (top) or from the brane world-volume Chern-Simons (CS) theory
(bottom), by the insertion of suitable D-branes. A saddle point approximation of fMT
then leads to the σ-model of quantum chaos (right). The arrows that will be covered in
detail are highlighted in red.

by inserting brane/anti-brane operators and Fourier transforming them to a fMT,
whose saddle-point approximation in the late time limit is the sought-after σ-
model. In Section 4.4, we interpret this result by studying the brane worldvolume
theory, whose effective description when the branes coincide is given by a dimen-
sional reduction of U(n|n) holomorphic Chern-Simons theory. By identifying both
compact and non-compact branes in the target space geometry, we give an open
string interpretation of the color-flavor map. In Appendix B we perform a station-
ary phase analysis of the flavor matrix integral and select the defining integration
contours. It is shown how Stokes’ phenomena lead to causal symmetry breaking,
which allows us to identify which saddle points contribute. A schematic overview
of the relevant concepts and their interrelations is presented in Figure 4.1.
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Figure 4.2: Spectral density of a chaotic quantum system. A total number of L mi-
crostates is contained in a compact spectral support defined by a non-vanishing average
spectral density ρ(E). In the gravitational context, one is often interested in energies
‘double scaled’ to the ground state, E = 0, inset left. Different from the energy levels
of a generic system (right inset), levels of chaotic systems are almost uniformly spaced
(middle) and cannot ‘touch’.

4.2 Setting the scene

4.2.1 The nonlinear σ-model of quantum chaos

One of the beautiful aspects of ergodic chaotic quantum systems is that they
essentially all behave the same way. This phenomenon is often paraphrased as
random matrix universality: “Quantum systems that are classically chaotic are
equivalently described by random matrix theory at large time scales” [44]. Here,
‘large time scales’ refers to scales longer than the time it takes to establish ergodic
equilibration of the dynamics, called the Thouless time tT. This scale is non-
universal, and needs to be determined on a system-to-system basis. The longest
characteristic time scale is the Heisenberg time (aka plateau time), tH = ∆−1,
where ∆ = ⟨ρ(E)⟩−1 is the average microstate spacing at the chosen probe energy
E. For generic chaotic quantum systems, ⟨ρ(E)⟩ of a system with a total number
of L microstates exhibits smooth dependence on E, see Figure 4.2.

One might object that the statement of random matrix universality is somewhat of
a tautology. Conceptually, a random matrix Hamiltonian is just another represen-
tative in the class of chaotic quantum systems. So the statement is but repeating
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that they all behave identically. A more substantial characterization is as follows:
chaotic quantum systems spontaneously break a continuous symmetry related to
the causal structure of time evolution. In ergodic quantum dynamics, this sym-
metry gets restored after Heisenberg time tH . This symmetry breaking principle
finds its quantitative formulation in a simple mean field theory, which takes the
form of a non-linear σ-model. Much as mean field theory for, say, a magnetization
order parameter captures the universal features of of ferromagnetism, the σ-model
describes the universality class of ergodic quantum chaos.

In order to explain the symmetry breaking principle in general terms, let us write
the determinant ratio from the Introduction, (4.1.1), as a superdeterminant

Dn(X) = ⟨Sdet(X ⊗ 1c + 1f ⊗H)⟩H ≡ ⟨Sdet(Ξ)⟩H . (4.2.1)

We think of Ξ as an operator acting in a product Hilbert space H = Hf ⊗ Hc
of a 2n-dimensional graded ‘flavor-space’ Hf = Cn|n and L-dimensional ‘color
space’ Hc = CL. As such, Ξ carries an adjoint representation under the group
U(nL|nL). Transformations under this group change Ξ → UΞU−1 but naturally
leave our determinant correlation functions invariant. This huge symmetry group
possesses two interesting subgroups, the color group Uc = 1f ⊗ U(L) which acts
on H → UHU−1, leaving X invariant, and the 2n dimensional flavor group Uf =
U(n|n) ⊗ 1c, changing X → TXT−1, but leaving H invariant. The interplay of
the dual pair defined by the color and the flavor symmetry group is key to the
characterization of universality in quantum chaos.

The idea behind the construction of effective field theories of quantum chaos is to
turn the complexity of the theory in color space into an advantage: Averaging over
realizations of H will eradicate contributions to the spectral determinant that fluc-
tuate strongly under the action of the color group5. Eventually, in ergodic limits,
only contributions in the color singlet representation survive. In this projection
onto the color singlet sector, the measure associated to the integration over the
H-measure gets converted into an integration over flavor degrees of freedom. This
color-flavor duality assumes its purest form in the case of invariant matrix ensem-
bles, where ⟨. . .⟩H =

∫
dH exp(−LtrV (H)), with a potential function V (H). It

can be shown that [49]

⟨Sdet(X ⊗ 1c + 1f ⊗H)⟩H = ⟨Sdet(X ⊗ 1c +A⊗ 1c)⟩A , (4.2.2)

where A ∈ GL(n|n) is a flavor matrix, with n ‘bosonic’and n ‘fermionic’eigenvalues,
5The minimal averaging measures required to block color space fluctuations must be deter-

mined on a case to case basis. However, a rule of thumb is that for systems with ergodic chaotic
dynamics, averages over parameter windows corresponding to just a few microstate spacings can
already be sufficient.
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and the flavor matrix integral is ⟨. . .⟩A =
∫
dA exp(−L strW (A)). In the Gaussian

case, V (H) = H2, the flavor matrix potential W (A) = A2 is also quadratic in
A [48]. For general potentials, the color and flavor ensembles agree on the level
of the generating function [49]. The representation on the right then defines the
starting point for the construction of an effective flavor matrix theory. Besides
A being a low dimensional matrix, the advantage of this representation is that
Sdet(X ⊗ 1c + A ⊗ 1c) = sdet(X + A)L = exp(−L str ln(X + A)), due to color
isotropy: the flavor theory is amenable to a stationary phase analysis stabilized
by the large parameter L.

To anticipate what is awaiting us in this large-L analysis, let us go one step back
to the theory before having taken any averages. For small differences between
the probe arguments, (xi, xi), flavor symmetry is an approximate symmetry not
just of the correlation functions but of the operator Ξ itself: TΞT−1 ≈ Ξ. In
view of what has been said above, we expect these transformations to become
soft degrees of freedom of the putative flavor matrix theory (fMT). To understand
the structure of these theories, it is key to realize that they all (irrespective of the
detailed realization of H) live under the spell of a symmetry breaking principle. In
physically meaningful correlation functions, flavor symmetry is never realized in a
strict sense: we need our probe arguments infinitesimally shifted into the complex
plane as, say, Im(xj) = ±iη, and the same with the probes in the denominator, xi.
Even in the limit Re(xj) = Re(xj) = −E, flavor symmetry remains infinitesimally
broken by these increments. Referring to their physical meaning as indicators of
causality, we refer to the approximate symmetry under flavor transformations as
causal symmetry of the theory.

This is as much as can be said in the most general terms; no reference to chaos or
concrete realizations of H is made so far. However, let us now turn back to the role
played by the ensemble average ⟨. . .⟩H over microscopically different realizations
of any model. The eigenvalues of individual H’s define a set of finely spaced, yet
isolated singularities of Ξ in the complex x−plane. Averaging over an ensemble
will blur these point singularities into a cut structure, see Figure 4.2. On the level
of a crudest ‘mean field’ approximation applied to the averaged theory, we expect
the correlation function to assume the form

⟨Sdet(Ξ)⟩H −→ Sdet ((X + iγτ3)⊗ 1c + 1f ⊗H0) , (4.2.3)

where H0 is a possible un-averaged contribution to H, γ = γ(E) a finite imaginary
offset non-vanishing along the support set of the theory (the interval(s) of E for
which ρ(E) > 0), and τ̂3 = τ3 ⊗ 1f is a flavor Pauli matrix with sign structure
set by the η-parameters.6 The key point here is that the infinitesimal η sets the

6Without loss of generality, we assume as many positive as negative increments iη.
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4. Chaos in 2D gravity

sign of the finite γ: causal symmetry is spontaneously broken at the mean field
level inside the spectral curve. Still, no reference to chaos is made: averaging over
realizations of an integrable theory defines a cut structure too.

It is natural to expect that in a theory with large symmetry group, the mean field
configuration will be subject to fluctuations. To get an idea of their influence, con-
sider the full symmetry group action of U(nL|nL) on (4.2.3). Such transformations
preserve eigenvalues, and hence are compatible with the analytic structure of the
theory. However, at this point, differences between integrable and chaotic parent
theories begin to show. In the former case, fluctuations with non-trivial color
space structure may be physically significant even at large time scales (provided
they commute with H0.) However, in a chaotic ergodic phase the above mentioned
projection onto the color singlet sector becomes effective: Only T ∈ Uf remains in
the fluctuation spectrum, i.e. we are reduced to the degrees of freedom of fMT.
In fact, a stronger statement can be made. For n even, the effective degrees of
freedom assume the form

Q ≡ T τ̂3T
−1 ∈ U(n|n)

U(n2 |
n
2 )×U(n2 |

n
2 ) , (4.2.4)

where the divisor represents the unbroken symmetry group (transformations com-
muting with τ̂3). As in the introduction, we denote the coset supersymmetric
target space with Cartan’s notation AIIIn|n. Referring for a more detailed dis-
cussion to Section 4.3.3, these coset degrees of freedom arise as the reduction of
fMT to a non-linear σ-model. For finite differences between the probe arguments
contained in X, the fluctuations Q acquire a mass. To lowest order in this explicit
symmetry breaking, we will end up with a fluctuation integral

Dn(X) ≃
∫

AIIIn|n

dQeiS[Q] , S[Q] ≡ π

∆str(XQ) , (4.2.5)

where ∆ = ⟨ρ(E)⟩−1 is the averaged spectral density at the center value E (the
only characteristic energy scale in the problem). This is the non-linear σ-model
mentioned in the introduction. It provides a complete description of the ergodic
phase of quantum chaos.

To see how, let us discuss the role of the flavor coset space fluctuations described
by (4.2.5). In the limit of small energy differences |Ei − Ej | ≡ ∆E ∼ ∆, large
fluctuations signal that the ‘true configurations’ of the theory are far detached from
the naive cut-saddle points. These fluctuations act to restore the previously broken
causal symmetry. Remembering that causal symmetry breaking was equivalent to
the emergence of a cut structure along the spectral curve, the restoration of this
symmetry in the limit of small energy difference, or large times, must amount to the
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re-emergence of information on the discrete pole structure of the chaotic spectrum.
Indeed, one can do the Q integral in closed form to verify that it produces the
exact correlation functions (‘ramp+plateau’) of ergodic quantum chaos.

En route to the deep limit ∆E ≲ ∆, one encounters various physically interesting
intermediate structures: for ∆E ≫ ∆ the perturbative expansion around the ‘stan-
dard saddle point’ Qst = τ̂3 defines an asymptotic series equal to the perturbative
expansion of other effective theories of quantum chaos. Specifically, it can be shown
to be identical to the topological expansion of conventional color matrix theory
(more precisely to the limit of that expansion for small differences γ ≫ ∆E ≳ ∆),
or to the mini-universe expansion of JT gravity in the same limit. For ∆E ∼ ∆,
and n = 2, a second, supersymmetry breaking saddle point QAA = τ3 ⊗ τ3 begins
to play a rôle. This saddle point is known as the Altshuler-Andreev saddle, and
related to a standard saddle by a discrete (Weyl group) transformation in Uf [49].

Summarizing, a combination of phenomenological arguments and symmetry con-
siderations identifies the σ-model (4.2.5) as the effective theory of the quantum
ergodic phase. An implicit assumption in this construction was that our parent
theory, H, contains no anti-linear symmetries besides hermiticity. More generally,
one needs to distinguish between ten different classes of anti-linear symmetries, and
in the consequence ten different incarnations of fMT’s [159]. All have in common
that they assume the form of integrals over low dimensional ‘classical’ supergroups
or -coset spaces. In view of the generality of the construction, one expects any
theory describing an ergodic quantum phase must collapse to one of these variants
in the long time limit. In this chapter, we demonstrate this reduction principle
for a family of theories of two-dimensional gravity that includes JT gravity. To
understand how this happens, we first introduce universe field theory, which will
be our main tool connecting JT to quantum chaos.

4.3 fMT from universe field theory

In this section we derive a flavor matrix theory from brane creation operator inser-
tions in KS universe field theory. Our construction of the flavor matrix theory in
this section proceeds in three steps. In Section 4.3.1 we introduce vertex operators
in KS theory. Seen through the lens of the flavor matrix model, they probe eigen-
value correlations along the spectral curve. From the target space point of view,
they create branes and anti-branes. Either way, they play the same the role as the
determinant operators in (4.1.1), but instead of averaging over large color matrices,
we are computing a Euclidean correlation function in KS field theory. We show
in Section 4.3.2 that the correlator of brane/anti-brane vertex operators leads to
an eigenvalue representation of a flavor matrix integral. The crucial ingredient is
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4. Chaos in 2D gravity

to use the transformation properties of e±Φ(x) under symplectic transformations.
Having identified the fMT of JT gravity, the stationary phase analysis of this in-
tegral (Section 4.3.3) naturally gives rise to the nonlinear σ-model discussed in
Section 4.2.1.

4.3.1 (Anti-)brane creation operators

In Chapter 3 we have argued that semiclassical JT gravity is captured by the
perturbative expansion of the KS field theory on the spectral curve SJT. However,
our goal is to show that the fully non-perturbative physics of the theory is described
by a fMT, and upon further reduction the universal non-linear σ-model (4.2.5)
presented in Section 4.2.1.

As a first step towards realizing the fMT theory in the KS framework, we introduce
D-brane-like objects in the target space geometry assuming the role of the the
probe determinants in (4.1.1). In fact, the B-model topological string theory
allows for certain non-compact branes that do precisely that (see [40, 123], where
they are referred to as ‘B-branes’): they probe a particular ‘eigenvalue’ in the
spectral x−plane. Topological (anti-)branes wrapped around the submanifold

B : u = 0 , (x, y) ∈ SJT , (4.3.1)

in the Calabi-Yau (3.4.2) give rise to vertex operators7

ψ(x) = eΦ(x) , ψ†(x) = e−Φ(x) , (4.3.2)

on the spectral curve. Given the identification Re(x) = −E, we think about the
insertion of a fermionic field in (4.3.2) as defining a topological (anti-)brane, on
which JT universes with ‘fixed energy boundaries’ can end. The precise boundary
condition for the JT ‘worldsheet’ theory is Dirichlet-Neumann (DN), where one
fixes the dilaton and its normal derivative at the boundary. (Various choices of
boundary conditions in JT gravity, including DN, are nicely summarized in [121].)
This is to be contrasted with the Dirichlet-Dirichlet (DD) boundary condition,
that leads to the canonical partition function where one fixes the dilaton as well as
boundary lengths β1, β2, . . .. These correspond to temperatures in the Schwarzian
boundary theory. On the level of the action, one can move between both choices of
boundary condition by a suitable Legendre transform, so we can think about the
DN boundary conditions as fixing the energies E1, E2, . . . in the boundary theory:
it defines a microcanonical partition function. The path integral associated to

7These are normal ordered exponentials, meaning that the OPE divergences from ΦΦ contrac-
tions have been subtracted. Technically, Φ should be understood here as the indefinite integral
of J .
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the fixed energy boundaries is related to the fixed temperature boundaries by yet
another inverse Laplace transform

Z(E1, . . . , En) =
∫ c+i∞

c−i∞

n∏
i=1

dβi
βi
eβiEiZ(β1, . . . , βn) . (4.3.3)

For example, we can compute the DN partition function of the disk to be

Zdisk(E) =
∫ c+i∞

c−i∞

dβ

β
eβEZdisk(β) = eS0

∫ E

dE′ ρ0(E′) , (4.3.4)

which corresponds to the insertion of an integrated density of states. The DN
boundaries conditions relate to the presence of so-called energy-eigenbranes (as
defined in [136]) which fix a particular eigenvalue in the dual (color) matrix model.

The vertex operators in KS theory satisfy some useful properties. Firstly, they
obey the boson-fermion correspondence [123], which states that

lim
z′→z

{
ψ(z)ψ†(z′)

}
= ∂Φ(z) . (4.3.5)

Here the accolades signify subtracting the OPE singularity ∼ (z − z′)−1. This
property is the analog of the random matrix identity in which the derivative of
a ratio of determinants gives the resolvent, upon taking the energy arguments
equal. The role of the derivative, in the case at hand, is played by Wick’s theorem
in combining ψ and ψ† into a single normal ordered exponential. In [1], these
brane/anti-brane insertions (on the two-sheeted spectral curve SJT) were used to
study non-perturbative corrections to resolvent and spectral density correlation
functions.

Secondly, the vertex operators transform under coordinate transformations of x
and y that leave the symplectic form dx∧dy invariant. Their transformation prop-
erties are inherited from the higher-dimensional closed string field theory. In short,
the full six-dimensional KS theory on the Calabi-Yau (3.4.2) has a large symmetry
group, namely diffeomorphisms that leave the holomorphic (3, 0)-form invariant.
Upon reduction to the spectral curve, the symmetry is broken to diffeomorphisms
that preserve the symplectic form dx∧ dy. The chiral boson Φ can be seen as the
Goldstone boson for this broken symmetry. The broken symmetry generates Ward
identities in the quantum theory, which coincide with the SD-equations discussed
above [40]. Diffeomorphisms that leave the symplectic form invariant are called
symplectomorphisms, and the symplectic group of C2 is just Sp(2,C) ∼= SL(2,C).
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So a symplectic transformation acts simply as(
x′

y′

)
=
(
a b

c d

)(
x

y

)
, (4.3.6)

with ad−bc = 1. This leaves invariant dx′∧dy′ = dx∧dy, whereas the holomorphic
(1, 0)-form ω = ydx changes up to a total derivative

y′dx′ − ydx = dS . (4.3.7)

The vertex operator ψ(x) = eΦ(x) transforms under the symplectomorphism with
a weight determined by the function S(x, x′) as

ψ̂(x′) =
∫

dx√
λ
eS(x,x′)/λψ(x) . (4.3.8)

Similarly, the anti-brane operator ψ†(x) transforms with the opposite sign of
S(x, x′). Here λ = e−S0 is the KS coupling constant. (4.3.8) can be interpreted
by saying that the open string partition function transforms like a wave func-
tion [163–166]. We will be most interested in the ‘S-transform’, sometimes called
‘x-y symmetry’, which exchanges the coordinates x′ = y and y′ = −x. In [167,168]
it is explicitly shown, using topological recursion, that this transformation is a
symmetry of the KS partition function, to all orders in the genus expansion.

The observables ψ,ψ† transform in a natural way under the S-transform. Namely,
the classical action S(x, x′) corresponding to this transformation can be found
using the definition (4.3.7), x = −∂yS and y = −∂xS. This is solved by S = −yx,
and so ψ(x) and ψ†(x) transform by Fourier (or inverse Laplace) transforms under
the symplectic S-transformation

ψ̂(y) =
∫

dx√
λ
e−xy/λψ(x) , ψ̂ †(y) =

∫
dx√
λ
exy/λψ†(x) . (4.3.9)

Here the integration contours should be chosen such that the integrals converge —
we will come back to this point momentarily. By inverting the above Fourier trans-
form, we can similarly express ψ(x) and ψ†(x) in terms of the Fourier transformed
(anti-)brane operators.

We can study the brane operators (4.3.9) by inserting them in KS correlation
functions. Their perturbative expansion admits an ‘open string’ expansion

⟨ψ̂(y)⟩KS = exp
[
− 1
λ

∞∑
n=0

λnΓn(y)
]

(4.3.10)
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To leading order in λ, the disk contribution to the 1-point function is simply
exp 1

λ ⟨Φ̂(y)⟩0, where

⟨Φ̂(y)⟩0 = −
∫ y

x(y′)dy′ (4.3.11)

is the integral of the dual one-form −xdy, and x(y) is determined by the spectral
curve equation H(x, y) = 0. Therefore, in the limit λ→ 0 we see that the Fourier
transforms in (4.3.9) implement a Legendre transform of the disk potential

⟨Φ(x)⟩0 =
∫ x

y(x′)dx′ . (4.3.12)

In the case that the spectral curve is given by y2−x = 0, the potential in (4.3.11)
becomes the cubic

Γ0(y) = −⟨Φ̂(y)⟩0 = 1
3y

3 (4.3.13)

characteristic of the Airy integral. For the case of JT gravity, we can solve the
spectral curve SJT for x = arcsin2(y) (absorbing the factors of 2π for convenience),
and the leading order potential becomes8

Γ0(y) = −2y + 2
√

1− y2 arcsin y + y arcsin2 y . (4.3.14)

One can check that around y = 0, the JT potential can be expanded as 1
3y

3 +
O(y5). However, its behaviour away from the origin is quite different from the
Airy potential, as will be discussed in Appendix B.

The reason to introduce the canonically conjugate coordinate y may seem a bit
mysterious at this stage. However, from the point of view of JT gravity the Fourier
transformed vertex operators are rather natural objects. If we interpret the real
part of x as parametrizing the energy space of the boundary Schwarzian theory,
it makes sense to interpret the conjugate variable y’s real part as a temperature,
β, or boundary length. So we think of the insertion of ψ̂(y) as creating a D-brane
on which arbitrarily many open JT worldsheets can end. Notice the similarity to
our identification of the boundary creation operators Z(β) as the inverse Laplace
transform of J = J (x)dx = J (z)dz:

Z(β) =
∫ c+i∞

c−i∞
dx eβxJ (x) , ψ̂(y) =

∫ c+i∞

c−i∞
dx e−yxeΦ(x) . (4.3.15)

The above intuition is strengthened by the observation in [112] that the Fourier
transform maps the Virasoro constraints for correlation functions of vertex oper-
ators to the open topological recursion of [169, 170]. Moreover, we will see in the

8This potential has appeared in the literature once before (as far as we know), cf. [109].
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next section that the y-variable naturally arises as a matrix eigenvalue in the dual
flavor matrix theory.

4.3.2 fMT representation of the brane correlator

Having introduced the vertex operators ψ(x), ψ†(x) and their transformation prop-
erties under symplectomorphisms, we can go on to study correlation functions of
brane/anti-brane pairs,

Dn(X) =
〈
ψ(x1)ψ†(x1) · · ·ψ(xn)ψ†(xn)

〉
KS
. (4.3.16)

These are the analogs of determinant/inverse determinant insertions in a random
(color) matrix theory, so we expect to reduce their correlation function to a suitable
flavor matrix integral whose dimension is set by the number of vertex operator
insertions. To demonstrate this, let us invert the Fourier transforms in (4.3.9):

ψ(x) =
∫

C

dy√
λ
exy/λψ̂(y) , ψ†(x) =

∫
C′

dy√
λ
e−xy/λψ̂ †(y) . (4.3.17)

Substituting these symplectic transformations into the correlation function Dn(X)
gives〈

ψ(x1)ψ†(x1) · · ·ψ(xn)ψ†(xn)
〉

KS
=

λ−n
∫
dY estr(XY )/λ

〈
ψ̂(y1)ψ̂ †(y1) · · · ψ̂(yn)ψ̂ †(yn)

〉
KS

. (4.3.18)

Here we have defined dY =
∏
i dyidyi and collected the exponentials into a

supertrace over graded diagonal matrices X = diag(x1, . . . , xn| x1, . . . , xn) and
Y = diag(y1, . . . , yn| y1, . . . , yn). As a next step, we use Wick’s theorem to write
the operator product of the vertex operators ψ̂(y) = eΦ̂(yi) and ψ̂ †(y) = e−Φ̂(yi) as
a single normal-ordered exponential of chiral bosons. As before, we define normal
ordering {· · · } by subtracting all singular terms coming from the OPE of the chiral
boson Φ̂(y)Φ̂(y′) ∼ log(y − y′) + reg. After doing all the Wick contractions, this
procedure gives rise to a super-Vandermonde determinant

s∆(Y ) ≡
∏
i<j(yi − yj)

∏
k<l(yk − yl)∏

i,k(yi − yk) . (4.3.19)

Using Cauchy’s determinant formula, the super-Vandermonde determinant can be
written more elegantly as

s∆(Y ) = det
ij

1
yi − yj

. (4.3.20)
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Hence, the brane/anti-brane correlator (4.3.18) can be brought in the following
form

λ−n
∫
dY estr(XY )/λ s∆(Y )

〈{
eΦ̂(y1)−Φ̂(y1)+···+Φ̂(yn)−Φ̂(yn)}〉

KS
. (4.3.21)

Using the general formula ⟨expO⟩ = exp
∑∞
k=1

1
k! ⟨O

k⟩c for going between corre-
lation functions and connected correlation functions, we represent the brane/anti-
brane correlator (4.3.21) in a form that closely resembles a flavor matrix integral

Dn(X) = λ−n
∫
dY s∆(Y )e−Γ(Y )/λ+str(XY )/λ , (4.3.22)

where the potential Γ(Y ) is defined as a sum of connected correlation functions in
KS theory

Γ(Y ) = −
∞∑
k=1

λ

k!

〈{(
Φ̂(y1)− Φ̂(y1) + · · ·+ Φ̂(yn)− Φ̂(yn)

)k}〉c

KS
. (4.3.23)

As a last step, we normal order the brane correlator once more, but this time in
the (xi, xi)-coordinates, which gives another super-Vandermonde determinant. We
find 〈{

ψ(x1)ψ†(x1) · · ·ψ(xn)ψ†(xn)
}〉

KS
(4.3.24)

= 1
s∆(X)

〈
ψ(x1)ψ†(x1) · · ·ψ(xn)ψ†(xn)

〉
KS

(4.3.25)

= λ−n

s∆(X)

∫
dY s∆(Y ) e−Γ(Y )/λ+str(XY )/λ . (4.3.26)

This is precisely the eigenvalue representation of a GL(n|n) graded flavor matrix
integral with invariant potential Γ(A) and ‘external source’ X. To recognize this,
consider a Hermitian supermatrix A in GL(n|n) with eigenvalues {yi, yi}, diago-
nalized by a unitary supermatrix T ∈ Uf = U(n|n):

A = TY T−1 , Y = diag(y1, . . . , yn| y1, . . . , yn) . (4.3.27)

In terms of this decomposition the integration measure dA decomposes as

dA = dTdY s∆(Y )2 , (4.3.28)

where we have defined dY =
∏n
a=1 dyadya, and dT is the Haar measure on U(n|n).

Similar to ordinary matrix integrals, the super-Vandermonde determinant arises
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as the Jacobian of the change of variables from A to T and Y . It can be easily
derived as the volume form corresponding to the metric on the space of Hermitian
supermatrices

ds2 = str(dA2) = str(dY 2 + [dΩ, Y ]2) , (4.3.29)

where dΩ = T−1dT . Now consider a general flavor matrix integral with invariant
potential Γ(A) = Γ(TY T−1) = Γ(Y ) and external source term str(XA). One can
see this as the supersymmetric generalization of the Kontsevich matrix integral,
whose potential is Γ(A) = 1

3 str(A3). However, we will keep Γ(A) arbitrary for
now, and match it to JT gravity later. We also include a coupling constant λ.
Using the eigenvalue decomposition (4.3.27) the flavor matrix integral decomposes
as ∫

(n|n)
dA e−Γ(A)/λ+str(XA)/λ =∫

dY e−Γ(Y )/λ s∆(Y )2
∫
U(n|n)

dT estr(XTY T−1)/λ . (4.3.30)

The super-unitary integral appearing in (4.3.30) can be evaluated in closed form
[171, 172] and is a supersymmetric generalization of the famous Harish-Chandra-
Itzykson-Zuber integral. The integral turns out to be one-loop exact and evaluates
to9∫

U(n|n)
dT e

1
λ str(XTY T−1) = Cn λ

−n deti,j
(
exiyj/λ

)
detk,l

(
e−xkyl/λ

)
s∆(X)s∆(Y ) . (4.3.31)

Plugging this into (4.3.30), we can evaluate the determinants by exploiting the an-
tisymmetry of the Vandermonde determinants ∆(y) =

∏
j<i(yi − yj) and ∆(y) =∏

j<i(yi − yj) and the freedom to relabel dummy variables in the y and y inte-
gration. For example, when n = 2, there is a factor −∆(y)e(x1y2+x2y1)/λ, which
upon relabeling y2 ↔ y1 becomes +∆(y)e(x1y1+x2y2)/λ. So we are left with only
the diagonal contributions of exiyi/λ and e−xkyk/λ, which assemble into the super-
trace of XY . This argument is easily extended to general n, and we arrive at the
eigenvalue representation of the flavor matrix integral∫

(n|n)
dA e−Γ(A)/λ+str(XA)/λ =

C̃n
λ−n

s∆(X)

∫
dY s∆(Y ) e−Γ(Y )/λ+str(XY )/λ . (4.3.32)

9This is proven in [171] using a heat kernel method for the super-Laplacian operator on the
space of Hermitian supermatrices, analogous to Itzykson and Zuber’s original proof [173] in the
non-supersymmetric case.
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The prefactor C̃n (which now includes the symmetry factors from the above permu-
tation argument) can be absorbed in an overall normalization of the flavor matrix
integral. If we now identify the fMT coupling constant λ with the KS coupling
constant, and take as our invariant potential the KS potential (4.3.23), then we
see that the flavor matrix integral coincides with the brane/anti-brane correlator
(4.3.26). In conclusion, we have shown that the normal ordered expectation value
of n brane and n anti-brane creation operators in KS theory, inserted at positions
xi, xi, is exactly equal to a (n|n) graded flavor matrix integral with external source
X = diag(x1, . . . , xn| x1, . . . , xn):〈{

eΦ(x1)e−Φ(x1) · · · eΦ(xn)e−Φ(xn)}〉
KS

=
∫

(n|n)
dA e−eS0 Γ(A)+eS0 str(XA) . (4.3.33)

This is the main result of this section. In principle, one can compute the potential
Γ(Y ) to any order in the KS perturbation theory in powers of λ = e−S0 . In
the case that the spectral curve is the Airy curve y2 − x = 0, the higher genus
contributions vanish and the only non-zero contributions to Γ(Y ) come from the
disk and cylinder amplitudes10. For the JT spectral curve, there are non-trivial
corrections suppressed in powers of λ (for a single brane insertion these were
computed in [109]). In the matrix theory context, such refinement would describe
small corrections to the average spectral density. However, we are interested in the
limit that eS0 is very large, ∆E very small, and the ratio s ∼ eS0∆E kept fixed, as
explained in Section 4.2.1. In this limit, it suffices to keep only the leading order
potential function

Γ(Y ) ≈ −
n∑
i=1

(
⟨Φ̂(yi)⟩0 − ⟨Φ̂(yi)⟩0

)
(4.3.34)

=
n∑
i=1

(∫ yi

x(y)dy −
∫ yi

x(y)dy
)
. (4.3.35)

As explained before, the function x(y) follows from the spectral curve equation
H(x, y) = 0, and is given by x(y) = arcsin2(y) for the JT spectral curve. And, as
advertised, the right-hand side of (4.3.35) can be written as a supertrace, Γ(Y ) ≈
str Γ0(Y ), where the function Γ0(y) for the JT spectral curve was given in (4.3.14).
Note that for small values of the argument, x(y) ∼ y2, and so Γ0(Y ) ∼ str(Y 3).
Hence, near the spectral edge E → 0 our flavor matrix model is governed by

10One way to see this is to note that under the x-y symmetry the dual of the Airy spectral
curve has no branch point, since dy(z) = dz. So the topological recursion of [167] is identically
zero. The claim can also be checked order by order, by computing the ‘WKB’ form of ⟨ψ(x)⟩ =

e
1
λ

∑
n

λnSn(x) using topological recursion [77], and then doing a stationary phase analysis of
the Fourier transform in (4.3.9).
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a cubic potential, and thus reduces to graded variant of a Kontsevich matrix
model11. However, the potential behaves differently at infinity. This will influence
the choice of integration contours for the eigenvalues (yi, yi), as will be discussed
in more depth in Appendix B.

4.3.3 Reduction to the nonlinear σ-model
Having derived a flavor matrix integral from (anti-)brane insertions in KS theory,
we go on to show that the nonlinear σ-model introduced in (4.2.5) arises from a
stationary phase analysis of the flavor matrix integral (4.3.33) in the limit of large
eS0 . More precisely, we study the fMT in the limit discussed in the introduction,
where we take λ→ 0,∆E → 0 and s ∼ ∆E/λ held fixed. We will find that which
saddles dominate depends on the causal symmetry breaking parameters±iη, which
are the infinitesimal imaginary offsets in the (anti-)brane positions Im(xi) = ±iη
on the spectral curve.

To find the stationary points, we decompose A = TY T−1 as before and vary T

and Y :

str
[(
T−1XT + Γ′

0(Y )
)
δY
]

= 0 ,
str [(Y TX −XTY )δT ] = 0 .

(4.3.36)

Let us first discuss the diagonal solutions, for which T = 1. In that case, the
entries yi, yi of Y separately have to satisfy the equations

Γ′
0(yi) = xi , Γ′

0(yi) = xi . (4.3.37)

Looking at the form of Γ0(y) in (4.3.35), these equations are solved by inverting
x(yi) = xi, where x(y) is determined by the spectral curve SJT. Here the branched
structure of the spectral curve rears its head: for each diagonal element yi, yi, there
are two choices of branch when taking the square root, for example

y±
1 = ± sin(√x1) = ±iρ0(E1) . (4.3.38)

This naively gives a total of 2n diagonal saddles in the fMT. However, precisely
which saddle points contribute depends on the integration contour that is part of
the definition of the flavor matrix integral. In Appendix B we perform a steepest
descent analysis of the fMT with the potential Γ0(Y ). We find that the dominant
saddle is selected by the ±iη prescription of the external energy arguments. For
example, if we take the imaginary part of X to be iη τ̂3, where τ̂3 = τ3 ⊗ 1 is the

11This is similar to how the insertion of N FZZT branes in Liouville theory were shown to
give rise to a Kontsevich matrix integral by Gaiotto and Rastelli in [139]. Including anti-FZZT
branes [111], one expects to find the graded variant of the Kontsevich matrix integral.
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4.3. fMT from universe field theory

(flavor) Pauli z matrix, then the dominant saddle point will be

Yst = iρ0(E) τ3 ⊗ 1 . (4.3.39)

This is called the standard saddle. We have set the external energies equal to
E in Yst, because upon evaluating the potential at the saddle point the linear
term eS0strXYst should be expanded to leading order in s ∼ eS0∆E. Besides the
standard saddle, there are also subleading Andreev-Altshuler (AA) saddles [160],
which arise from iη-prescriptions such that a brane and an anti-brane are on
opposite sheets before taking their OPE limit. For example, in computing the
density-density correlator (n = 2), there is one such AA saddle, given by

YAA = iρ0(E) τ3 ⊗ τ3 . (4.3.40)

It can easily be verified that evaluating the fMT on the standard saddle gives
a vanishing action, while the action for the AA saddle is non-zero and purely
imaginary. This gives rise to the well-known oscillatory behavior of the spectral
density two-point function (the ‘sine kernel’) [90].

Having found the diagonal saddle points Y∗, we make the following simple obser-
vation: if [X,T ] = 0, then the saddle point equations (4.3.36) are also solved by
TY∗T

−1. For generic values of the external energies, X does not commute with
T . However, recall that we are considering the limit that ∆E is very small, and
so we can approximate [X,T ] ≈ 0. In other words, to leading order in s, TY∗T

−1

is an approximate solution to the saddle point equations. So instead of a sum over
distinct saddles, we have to integrate over a whole saddle point manifold.

To determine the saddle point manifold, we need to account for the redundan-
cies corresponding to transformations that commute with the diagonal saddle Y∗.
Without loss of generality, consider for Y∗ the standard saddle, Yst, which is pro-
portional to τ̂3. The stabilizer subgroup of Yst is U(n2 |

n
2 ) × U(n2 |

n
2 ), which acts

on U(n|n) in an obvious way. So the full saddle point manifold will be the coset
manifold

AIIIn|n = U(n|n)
U(n2 |

n
2 )× U(n2 |

n
2 ) (4.3.41)

as advertised in Section 4.2.1. The saddle point manifold continuously connects the
standard saddle to the AA saddles [49]. Parametrizing the coset by Q = T τ̂3T

−1,
and evaluating the fMT action on its solution A = iρ0(E)Q, we obtain the non-
linear σ-model on the Goldstone manifold∫

(n|n)
dA e−eS0 Γ(A)+eS0 str(XA) ≃ N

∫
AIIIn|n

dQei
ρ0(E)

λ str(XQ) , (4.3.42)
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to first order in s, in the late time limit λ→ 0, ∆E → 0. In the above expression
we have absorbed the potential term exp

[
−eS0str Γ0(Y )

]
into a normalization N ,

because it is independent of Q using the cyclicity of the supertrace. Moreover,
since Q is supertraceless, we can freely replace X by its symmetry breaking part
X → X − E1 containing the energy differences ∆E only. Concluding, we see
that the brane/anti-brane correlator in KS theory captures the universal late time
ergodic physics described by the NLSM.

Having derived the non-linear σ-model of quantum chaos from KS theory, one
can systematically study perturbative corrections in the parameter s. As shown
in [49], the s−1-expansion of spectral correlations is a topological expansion. This
expansion should be viewed as a limit of the JT topological expansion for which
the probe arguments are sent to small differences, ∆E, and only the relevant di-
agrams are kept. This can checked by explicit computation: Individual diagrams
contributing to the expansion of the NLSM can be represented in a ’t Hooft dou-
ble line syntax [49, 141] to verify that their perturbative s−1-degree maps to the
topological order of the KS/JT expansion. Conversely, one may take the limit
Ei → Ej in contributions of given genus order in the expansion of the JT path
integral to verify that the topological order determines the order of the highest
singularities in s−1 ∝ |Ei − Ej |−1, with matching coefficients.

However, we already mentioned that the correspondence between the asymptotic
expansion of the JT path integral in e−S0 to the NLSM is limited to values s−1 < 1.
In the opposite case, corresponding to post-Heisenberg or plateau times, the NLSM
leaves the regime of perturbation theory. Instead, the now small coupling constant
requires non-perturbative integration over the full graded coset manifold. This in-
tegration, which describes the restoration of the causal symmetry previously bro-
ken by large fluctuations, has no analog in semi-classical JT gravity. We conclude
that the latter knows about perturbative signatures of level correlations, but not
about their fine-grained microscopics. In this sense, JT gravity remains ‘UV in-
complete’. Our discussion has shown that the closure of the theory is provided by
KS field theory, which for pre-Heisenberg time scales is perturbatively equivalent
to JT, and to the NLSM beyond.

In this context, it is also worth mentioning connections to the SYK model. Early
work identified a bridge between SYK and JT at time scales which from the
perspective of our present discussion are ‘super-short’, t ∼ log(eS0). In this regime,
reflecting the approximate realization of a conformal symmetry, both reduce to
Liouville quantum mechanics [174] as a common effective theory. At larger scales
beyond the Thouless time (here identified with the dip time of the SYK form
factor), the SYK model is described by fMT [50], which close to the lower spectral
edge again takes the form of a graded Kontsevich model [49]. In this way a

108
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second link between the SYK model (at the spectral edge) and a gravitational
theory is drawn, via universe field theory12. This ‘late time bridge’ relies on
conceptually independent insights to that at early times. Its underlying symmetry
principle is the causal symmetry breaking/restoration of ergodic quantum systems.
Understanding how the respective symmetry principles connect at intermediate
time scales remains an open question.

4.4 D-branes and the color-flavor map

In the previous section we have shown how fMT arises directly from universe field
theory. This has been derived solely using a closed string field theory framework.
However, since a crucial role is played by D-branes in the target space geometry,
it is natural to expect that there is also an open string field theory which leads to
fMT.

In this section we will show that this is indeed the case, owing to an open-closed
duality in string field theory defined on a particular 6d Calabi-Yau. This open-
closed duality manifested itself in the previous section – in the 2d target space
theory on the spectral curve – as a type of boson-fermion correspondence between
‘fermionic’ operators ψ(x) and vertex operators eΦ(x). In the six-dimensional set-
ting, the open-closed duality relates Kodaira-Spencer theory (closed) to holomor-
phic Chern-Simons theory (open) [107]. Reducing this holomorphic Chern-Simons
theory to the worldvolume of a stack of non-compact branes and anti-branes gives
rise to the fMT, as will be explained in Section 4.4.1.

Moreover, the open string perspective naturally explains the color-flavor duality
described in Section 4.2.1. Recall from that section that the long time limit of er-
godic dynamics realized in Hilbert spaces of high color dimension, L, is equivalently
described by a matrix theory of low flavor dimension. Here we discuss a gravi-
tational interpretation of the color and flavor degrees of freedom, and describe
their duality from a D-brane worldvolume perspective. An idea of the relevant
constructions is given in Figure 4.3.

Before describing these D-branes explicitly, let us start with the general picture
to have in mind. As always, let us begin from the determinant ratio (4.1.1). We
can rewrite it in terms of graded integrals, keeping in mind the interpretation of
branes for the determinants in the numerator and anti-branes for those in the

12It would be interesting to see how our work relates to another recent connection between
SYK and string theory established in [175].
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Figure 4.3: A schematic picture of the different types of D-branes in KS theory. Color
branes (red) and flavor branes (blue) each have open string degrees of freedom associated
to the branes themselves (indicated by the color matrix H and flavor matrix A resp.)
and open string degrees of freedom Ψ,Ψ connecting both types of branes.

denominator. We thus have

Sdet(X ⊗ 1c + 1f ⊗H) =
∫
DΨ̄DΨ exp

[
−Ψ̄ (X ⊗ 1c + 1f ⊗H) Ψ

]
, (4.4.1)

where Ψ is a graded vector of dimension (nL|nL). The adjoint flavor group rep-
resentation carried by the operator Ξ = X ⊗ 1c + 1f ⊗ H in (4.2.1) implies the
following transformation in the fundamental representation for the vectors Ψ,Ψ:

Ψ→ TΨ, Ψ→ ΨT−1 , T ∈ U (n|n) . (4.4.2)

The idea is now to take the integral representation in (4.4.1) seriously, and identify
the vector Ψ as describing the open string degrees of freedom that stretch between
two types of branes in KS theory: non-compact branes (which we already touched
upon in Chapter 3) and compact branes. The causal symmetry given in (4.4.2) can
now be identified with the gauge symmetry of the gauge field on the configuration
of n coincident branes and anti-branes. Crucially, the Hermitian color matrix H,
which describes the microscopic degrees of freedom, is taken to large size L→∞
where L counts the number of compact branes. However, the flavor matrix A has
finite (possibly small) size 2n, where the index n counts the number of non-compact
(anti-)branes.

As explained in Chapter 3, the target space geometry is the non-compact Calabi-
Yau

CY : uv −H(x, y) = 0 , (4.4.3)

which is a fibration over the spectral curve defined by S : H(x, y) = 0. One
recovers JT gravity for the choice S = SJT. There are now two distinct ways of
introducing D-branes in the geometry [40]: we can either introduce non-compact
‘flavor’ branes, which can be related to a Kontsevich-like matrix model (see Section
4.4.1) or compact ‘color’ branes, which lead to the usual Hermitian matrix model
(see Section 4.4.2). The color branes are wrapped over a compact two-cycle in the

110
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CY geometry and their presence introduces a flux for the holomorphic (3, 0)-form

Ω = du

u
∧ dx ∧ dy , (4.4.4)

over the three-sphere linking the two-cycle. One can also deform the complex
structure at infinity by inserting flavor branes which wrap the non-compact fibers
u = 0,v = 0 in the CY. The open string sector associated to the branes can
be interpreted as an effective change of the geometry in which the closed strings
propagate. In both cases the world-volume theory associated to the branes can
be derived from the dimensional reduction of a holomorphic CS theory on the
space-filling D6 brane wrapping the entire CY [116]

Sopen = 1
gs

∫
CY

Ω ∧ str
[
A ∧ ∂̄A+ 2

3A ∧A ∧A
]
, (4.4.5)

where gs is the (open-)string coupling13. The supertrace str indicates that we are
considering a slightly unconventional version of the open string field theory, that
includes both branes and anti-branes (which have opposite flux). It was argued
in [130] that the inclusion of anti-branes can be implemented by upgrading the
(0, 1)-form gauge field A to be supermatrix-valued. In order to describe, say, a
stack of n branes and n anti-branes wrapped on B, we take the gauge group in
(4.4.5) to be the supergroup GL(n|n). This can be argued for topological branes
by examining their Chan-Paton factors [130], which carry opposite signs for string
world-sheets with an odd number of boundaries on an anti-brane. By examining
the four different kinds of annulus diagrams that correspond to the string having
endpoints on either a brane or an anti-brane, and assigning a minus sign to each
anti-brane boundary, one sees that the physical states arrange themselves into
a U(n|n) superconnection, or rather its complexification GL(n|n). We therefore
end up with a GL(n|n)-valued version of the holomorphic Chern-Simons theory
describing the B-model on the CY (4.4.5).

4.4.1 Non-compact branes: flavor

Let us first define the relevant probe flavor branes in the geometry (4.4.3). For a
fixed point (x0, y0) in the (x, y)-plane the equation

uv = H(x0, y0) (4.4.6)

13For the reader who may want to compare with the matrix-model convention frequently
employed in the literature, comparing the Dijkgraaf-Vafa matrix potential (4.4.22) with equation
(3.9) in [49], reveals the relation g2 = gsL.
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defines a subspace of complex dimension one. When (x0, y0) ∈ S , the above curve
develops a node uv = 0 and splits in two complex planes: u = 0 or v = 0. These
planes are wrapped by the flavor branes. Let us assume that the branes are at
some fixed position

B : u = 0 , (x, y) = (x0, y0) , (4.4.7)

where (x0, y0) ∈ S lies on the spectral curve. The world-volume of the brane –
or as will be the case relevant to us, a stack of branes – is parametrized by the
complex coordinate (v, v). We may also wrap anti-branes along these fibres, the
only difference being their orientation which is opposite to that of the branes14.
In the following, we will consider normal deformations of the brane (4.4.7) with
suitable boundary conditions at infinity |v| → ∞.

We now want to describe the effective theory associated to the open strings ending
on B. We will show that the result takes the form of a flavor matrix model. This
derivation closely follows [40,176] (with the exception that we accommodate both
branes and anti-branes). The dimensional reduction of the holomorphic CS action
(4.4.5) involves the following decomposition: the gauge field A splits as a gauge
field Ã on the world-volume of the brane and two Higgs fields A and B, which
describe the movement of the brane in the transverse direction. We will assume
that all fields depend only on the variables (v, v) along the brane B, so that we can
apply a dimensional reduction. Explicitly, the normal deformations of the brane
(4.4.7) are given by two scalar fields B = B(v, v̄) and A = A(v, v̄) in the adjoint
representation of GL(n|n). They represent the deformations of B in the directions
of the (x, y)-plane, according to the identification

(x, y) 7→ (B(v, v̄), A(v, v̄)) . (4.4.8)

Moreover, the holormorphic (3, 0)-form (4.4.4) can be written as

Ω = −dv
v
∧ dx ∧ dy , (4.4.9)

in terms of the variable v. This shows that only non-zero contributions in (4.4.5)
come from the dv, dx and dy components of the gauge field A, which we have
identified with the fields Ã(v, v̄), B(v, v̄) and A(v, v̄) respectively. The dimensional
reduction now leads to the action [176,177]

Sflavor = − 1
λ

∫
B

i

2
dvdv̄

v
str
[
BDA

]
, (4.4.10)

14Equivalently, one can obtain an anti-brane insertion on the spectral curve by putting a brane
along the v = 0 direction (instead of u = 0). This follows from (4.4.7), which implies du

u
= − dv

v
,

and so in terms of v the holomorphic (3, 0)-form (4.4.4) acquires a minus sign.
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where D = ∂ + [Ã, · ] is the antiholomorphic covariant derivative associated to Ã
and ∂ is the derivative with respect to v. The volume of the transverse directions
that have been integrated out have been absorbed into the coupling constant15,
which we identify with the expansion parameter λ, since we are considering a
stack of branes in the (double-scaled) closed string background. Integrating the
holomorphic three-form Ω yields a factor of Lgs, measuring the flux of the L

compact branes that have been dissolved in the geometry (see Section 4.4.3 below
for more detail), and we needed to rescale A→ A/g

1/4
s , B → B/g

1/2
s to get a finite

answer in the double-scaling limit, L → ∞, gs → ∞ with 1/λ = eS0 =
(
L/g3

s

)1/4

held finite.

Note that this theory inherits a GL(n|n) gauge symmetry, which acts as

B 7→ gBg† A 7→ gAg† Ã 7→ gÃg† + (∂g)g† , (4.4.11)

where g(v, v̄) is a GL(n|n) transformation depending on the fibre coordinate on
B. Gauge fixing to Ã = 0 leaves only the constant g ∈ GL(n|n), which for
n = 2, we recognise as the causal symmetry transformations appropriate for a
four-determinant ratio. In fact, we are interested in configurations of the branes
such that their classical position is fixed to the diagonal matrix X of external
energies introduced in (4.1.1). We see here that this corresponds to fixing the
asymptotic positions of the flavor branes on the spectral curve. These boundary
conditions can be implemented by a adding a boundary term (which we can think
of as a Legendre transform)

Sflavor = 1
λ

∫
B

i

2
dvdv̄

v
str (B −X)DA, (4.4.12)

implying that the field B at infinity is now fixed to the constant matrix B∞ =
X, while A∞ at infinity is free, and must be integrated over in the quantum
theory. As we described before, if the boundary condition parametrized by X

is not proportional to the identity matrix in flavor space, i.e. contains unequal
energy arguments on the diagonal, the small differences break the causal symmetry
explicitly. This action will give rise to a Kontsevich-like matrix model for the flavor
degrees of freedom in terms of the matrix A∞.

To see this, let us study the action (4.4.10) in a bit more detail. First, the gauge
field Ã can be set to zero by a suitable gauge transformation. The equation of
motion for Ã, given by [A,B] = 0, has to be imposed as a constraint, implying
that the matrices associated to the Higgs fields can be simultaneously diagonalized.
To simplify our analysis, we assume that the functions B and A are rotationally

15A compactification of the transverse directions is necessary to make the volume finite.
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symmetric and only depend on the radial direction r ≡ |v| of the brane. One can
now perform the integral over the angular coordinate θ ≡ arg v. This gives an
extra factor of 2π and leaves an integral over the radial direction:

Sflavor = 2π
λ

str
[∫ ∞

0
dr (B −X) ∂rA

]
= 2π

λ
str
[∫ A∞

A0

(B −X) dA
]
. (4.4.13)

Recall that we have assumed that the brane is at some fixed position B∞ = X

at infinity v → ∞, and takes some possibly different value on the spectral curve
at the origin v = 0. This leads to the final form of the effective action (up to an
irrelevant constant):

Sflavor = eS0str
[∫ A∞

BdA−XA∞

]
, (4.4.14)

where we have used that λ = e−S0 . Note that the equation of motion for this
action is given by B = X, so we can indeed interpret the matrix X as describing
the classical position of the branes in the x−plane.

In the case that the spectral curve S is given by y2−x = 0 (i.e., pure topological
gravity), the action takes a familiar form. The equation B = B(A) can be solved
directly as a function of A, and by integrating (4.4.14) we obtain:

Sflavor = eS0str
[

1
3A

3 −XA
]
, (4.4.15)

where we have renamed – by a slight abuse of notation – A ≡ A∞ to conform with
the notation that was used before. This is a graded version of the Kontsevich model
action with cubic interaction. Since we have Legendre transformed to an open
boundary condition on A(v, v̄), in the quantum theory we still need to integrate
over the value A∞, which has been identified with the matrix field A. The partition
function associated to the flavor branes is therefore given by

Zflavor(X) =
∫
dA exp

[
−eS0str

(
1
3A

3 −XA
)]

, (4.4.16)

up to some overall normalization. For this reason, the action in (4.4.14) gives rise
to a graded Kontsevich model. In fact, we can easily generalize this to a general
spectral curve H(x, y) = 0. In this case the resulting fMT takes the form

Zflavor(X) = exp
[
−eS0str (Γ0(A)−XA)

]
, with δΓ0(A)

δA
= B(A) , (4.4.17)
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where B(A) is determined by the equation H(B,A) = 0. It will not have escaped
the reader’s attention that this is effectively the flavor matrix integral (4.3.33),
in the large eS0 limit. This establishes a representation of the fMT (as found in
Section 4.3.2) in a gravitational setting, as a theory of non-compact flavor (anti-
)branes probing the backreacted closed-string background.

The integration over A in the quantum theory represents an integration over the
position of the brane at infinity. In the semiclassical limit eS0 ≫ 1, where we
also take the energy arguments in X close together, we may evaluate this matrix
integral by the method of steepest-descent, parallel to the analysis of Section 4.3.3.
Among the different possible choices of saddle point configurations of the matrix
A two are distinguished by being attainable by a contour deformation from the
original contour. We remind the reader that this is explained in detail for both
the Airy case and the JT spectral curve in Appendix B. In the present case these
correspond to semi-classical configurations of the gauge field A∗, such that the
original Chern-Simons GL(n|n) gauge symmetry, already dimensionally reduced
to (4.4.11) is broken to those g ∈ GL(n|n) which preserve A∗. In both cases, this
corresponds to the breaking

GL(n|n)→ GL
(
n
2 |
n
2
)
×GL

(
n
2 |
n
2
)

by the classical configuration of the flavor branes.

By considering the non-compact flavor branes in open string field theory, we identi-
fied classical saddle point configurations of the branes which encode the standard
and Altshuler-Andreev saddle points. One may morally compare this situation
with that of adding flavor degrees of freedom in AdS/QCD [178]: there one places
flavor D8-branes into the backreacted geometry of backreacted D4-branes, which
have been replaced by the closed string geometry, containing an AdS5 factor. The
action of the flavor-branes is the familiar (non-abelian) DBI action. Here we think
of the spectral curve H(x, y) as the closed-string geometry, and the flavor branes
we place into this background are described by the holomorphic Chern-Simons
theory. The important difference to standard AdS/CFT is that in our picture, the
flavor branes are objects that arise as boundary conditions on JT (or topological
gravity) universes, while in the AdS/QCD context they are boundary conditions
on fundamental strings embdedded inside the AdS background. In both cases the
relevant symmetry (causal or chiral symmetry) is broken by specific semiclassical
brane configurations. It may be enlightening to pursue this analogy further.
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4.4.2 Compact branes: color

We will now address the question of how to realize the color matrix H in the
KS theory. This will involve the introduction of a set of compact branes in a
slightly different geometry, that is related to the closed-string background (4.4.3)
by a geometric transition. In particular, we will find that the large L Hermitian
matrix integral will give rise to the JT target space geometry, which provides an
interesting perspective on how the microscopic degrees of freedom are converted
into geometry.

The CY geometry that gives rise to this type of matrix integral takes the form of
(4.4.3) with [38,39]:

H(x, y) = y2 − V ′(x)2 . (4.4.18)

The function V is directly related to the potential of the Hermitian matrix integral,
V (H). Note that the CY geometry defined by (4.4.18) is singular along the slice
u = v = y = 0: there are singularities at the critical points xc satisfying V ′(xc) =
0. It is useful to keep in mind the example V ′(x) = x, which corresponds to a
Gaussian matrix integral and has a single critical point at xc = 0. To make the
singularity manifest, we can redefine u = u′ − iv′, v = u′ + iv′, y = iy′ so that the
geometry takes the form u′2 + v′2 + x2 + y′2 = 0, which is the defining equation of
a conifold. For a more general choice of potential, the geometry in (4.4.18) looks
locally like a conifold near each one of the critical points, as long as V ′′(xc) = 0.

A well-known procedure for removing such conifold singularities is by ‘blowing
up’ the relevant singular points into finite two-spheres. The resulting geometry is
referred to as the resolved CY, for which we write CYres, and is, locally near the
singular point, a fiber bundle over the blown-up P1. The coordinate on the P1 is
denoted by z, while the two fiber directions are represented by sections χ, φ with
corresponding transition functions

z′ = 1/z , χ′ = χ , φ′ = z2φ+ V ′(χ)z , (4.4.19)

in going from the patch associated to the north pole (indicated by the coordinate
z) to the south pole (indicated by the coordinate z′). We can rewrite the above
transition map in a slightly different way by defining the coordinates

x ≡ χ , u ≡ 2φ′ , v ≡ 2φ , y ≡ 2z′φ′ − V ′(x) . (4.4.20)

Then, (4.4.19) becomes

CY : uv − y2 + V ′(x)2 = 0 . (4.4.21)
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Note that this is precisely the geometry given by (4.4.18). The blown-up two-
spheres are located at the zeros of V ′, because this is the only way to have φ =
φ′ = 0.

The relation of the resolved geometry CYres to the L×L Hermitian matrix integral
is through a stack of L topological branes that wrap the blown-up singularity16.
The effective theory associated to the compact branes can again be extracted
from (4.4.5), now defined on the target space (4.4.21). The dimensional reduction
involves the movement of the brane in the transverse fiber directions χ, φ. Since
we are dealing with a configuration of multiple branes, these fields are upgraded
to matrices in the adjoint reprentation of the gauge group U(L). Following a
similar procedure as for the non-compact branes in Section 4.4.1, one finds that the
partition function of the color branes localizes to a Dijkgraaf-Vafa matrix integral
with potential V (the details of this derivation are nicely worked out in [38,138]):

Zcolor =
∫
dHe− 1

gs
trV (H) . (4.4.22)

The constant L× L matrix H is identified with the scalar χ. We have also intro-
duced the coupling constant gs associated to the open string background (4.4.21)
(pre-double-scaling). Going from the open-string to the closed-string background
involves a double-scaling procedure, while simultaneously zooming in on the edge
of the eigenvalue spectrum by taking the ’t Hooft parameter g2 ≡ gsL large. The
definition of the matrix integral in (4.4.22) depends on a choice of contour integral.
In particular, one can choose a contour that leads to real eigenvalues, and (4.4.22)
then takes the form of an L × L Hermitian matrix integral. The eigenvalues of
H corresponds (using the definition (4.4.20)) to the x−position of the branes in
the geometry (4.4.21). The classic equation of motion is given by V ′(H) = 0 and
therefore the eigenvalues of H are classically located at the critical points of the
potential. This is precisely the configuration of topological branes that we are
considering. We conclude that, in our construction, the cMT is realized as the
effective theory associated to the compact branes.

4.4.3 Color-flavor map and the geometric transition

Having described the color and the flavor perspective, let us now discuss the geo-
metric interpretation of their duality, and its relation to the gravitational theory.
To describe the multi-determinant operators in (4.4.1) we consider the situation
where we have both color and flavor branes in the geometry (4.4.21). The flavor
branes introduce a new sector of open strings that stretch between both types

16In the case of more than one singularity, one can divide the branes over the different two-
spheres.
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of branes. These are described by fields living on the intersection locus (which
can be taken to be a single point on the blown-up two-sphere, say at z = 0): a
bi-fundamental field Ψ = Ψa

µ, whose Chan-Paton index µ labels the L-dimensional
color Hilbert space, while a labels the flavor Hilbert space. The flavor indices have
a (n|n) grading so that Ψa contains both fermionic and bosonic components, indi-
cating the presence of both branes and anti-branes. See the left panel of Figure 4.4
for an overview of the relevant D-brane configuration.

Figure 4.4: Left: The setup of a stack of L color branes and n flavor (anti-)branes.
The open string degrees of freedom that stretch between the two types of branes can be
described by a field Ψa

µ in the bi-fundamental representation of U(L) ⊗ U(n|n). Right:
After taking L → ∞ the color branes dissolve into a flux for the holomorphic three-form,
which is represented by a branch cut (dashed line) in the x-plane. The closed string
description is that of JT gravity on the world-sheet. The flavor branes (blue) in the
closed string background, on which JT universes with fixed energy boundaries can end,
correspond to probes for the color degrees of freedom.

The idea is now to start from the expression in (4.4.1) involving the open string
stretching Ψa

µ between the color and flavor branes, and integrate out the color
degrees of freedom. We will now highlight some of the important features of this
computation. As was shown in Section 4.4.2, the theory associated to the compact
branes is a Hermitian matrix integral with potential trV (H). Therefore, this step
involves taking the average with respect to ⟨. . .⟩H . This effectively introduces
bound states of open strings (which are the equivalent of ‘mesons’ in QCD):

Πab = Ψa
µΨb

µ , (4.4.23)

where the color index is summed over, so that they are indeed color singlets. To
be precise, the terms involving the color matrix H are replaced by a potential
term strV (Π) for the Ψ-fields. One can now integrate in a graded matrix Aab that
couples to Πab through strAΠ = Ψ(A⊗1c)Ψ and effectively replaces the potential
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by strV (A). In the target space geometry, the field Aab describes open strings
stretching between two flavor branes (as indicated in Figure 4.4). The integral
over Ψ-fields leaves a determinant operator Sdet(X⊗1c +A⊗1c)L, which realizes
the color-flavor duality (4.2.2). After applying a double-scaling limit (where both
the size of the color matrix size L and the open string coupling constant g are
taken to be large, while their ratio is kept fixed) to the flavor matrix integral,
one precisely lands on the graded Kontsevich model that we found as an effective
theory of the flavor branes in Section 4.4.1.

From the gravitational perspective, we can think about the above discussion in
terms of an open/closed duality. By integrating out the color degrees of freedom,
and taking the double-scaling limit L→∞, we are, in fact, replacing the compact
branes by a backreacted target space geometry for the closed string. To be precise,
the color branes dissolve into a branch cut, which leads to a non-trivial spectral
curve S . The theory of closed string propagation in this modified target space
geometry is precisely the KS theory. Its mini-universe expansion in different world-
sheet topologies gives rise to the universes on which the gravitational theory lives.
In the case of S = SJT this description is JT gravity. The open-string geometry
in Figure 4.4 left is, therefore, to be contrasted with the closed-string geometry
in Figure 4.4 right. We have effectively replaced the H/color-description with a
geometric description in terms of JT gravity.

Given that the probe flavor branes are still there after the large L transition (while
the color branes have disappeared), we obtain an additional sector in the theory.
On the closed string side of the duality, the probe branes introduce another set
of open string degrees of freedom, namely of open JT universes with fixed energy
boundaries, that stretch between two flavor branes (these are precisely the A-
fields). The KS theory allows for the inclusion of such degrees of freedom in terms
of vertex operators ψ = eΦ, ψ† = e−Φ. This provides a geometric understanding
of the relation (4.3.33) between vertex operator insertions and the fMT that was
derived by an explicit computation in Section 4.3.

Let us end this section with some more details on the relation between the open-
and closed-string background geometries. We have seen that there is a way to
resolve the singularities in (4.4.21) by inserting a P1 at each of the singular points,
leading to CYres. There is actually another way of smoothing out the singularities
by deforming the complex structure. For the conifold geometry this can be done
by turning on a parameter µ on the right-hand side of the equation: u′2 + v′2 +
x2 + y′2 = µ2. Having µ > 0 corresponds to inflating a three-sphere of radius
µ: the S3 appears as a real section of the conifold. For a general singularity of
the form (4.4.21) one needs a polynomial µ(x) of degree n − 1 to deform all the
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singularities
CYdef : uv − y2 + V ′(x)2 = µ(x) . (4.4.24)

Near each of the singular points the geometry looks like the deformed conifold.
Viewing the inflated S3 as a two-sphere fibered over an interval in the complex
x−plane, which appears as a branch cut. Indeed, taking again the conifold as
example the relevant interval is −√µ ≤ x ≤ √µ. For fixed x the deformed conifold
describes a two-sphere of radius

√
µ2 − x2, which disappears at the endpoints of

the interval: the total space is therefore a three-sphere. Effectively, in going from
CYres to CYdef , we thus replace each critical point (or ‘blown-up’ P1) by a branch
cut (or ‘inflated’ S3). This is precisely what happens in the double-scaling limit
of the cMT (4.4.22), where the eigenvalues cluster together around each critical
point leading to a branch cut in the spectral x−plane.

The above transition between the resolved and deformed conifold is known as the
‘conifold transition’ [118,179], and it is the archetypical example of an open/closed
duality. The physical interpretation of the open/closed duality (or ‘geometric
transition’) is that the open string theory on CYres with L branes wrapping the two-
spheres is equivalent in the double-scaling limit L → ∞ to the closed topological
string theory on CYdef , without the D-branes. The D-branes have been replaced by
fluxes for the holomorphic (3, 0)-form. The effective theory associated to the open
strings is a matrix integral (4.4.22) with potential V . The closed string theory, on
the other hand, is the KS theory of complex structure deformations of the spectral
curve S . In that sense, the KS on S is dual to the large L matrix integral [39],
with eS0 ∼ L1/4/g

3/4
s . As we have mentioned before, the precise ratio of L1/4g

−4/3
s

comes from an additional technical step in going from the background (4.4.24) to,
for example, the spectral curve S of pure topological gravity or JT gravity, where
we zoom in on the edge of the eigenvalue spectrum while taking L→∞.

4.5 Discussion

In this chapter we have laid out an arc spanning all the way from the theory
of quantum chaos to that of 2d quantum gravity. The guiding principle, from
the gravity perspective is the (doubly) non-perturbative completion of the semi-
classical path integral of JT gravity. From the perspective of quantum chaos,
the relevant contributions determine the hyper-fine structure of the spectrum of
energy eigenstates, which are quasi regularly ordered with an average spacing
of e−S0 (see Figure 4.2). In quantum chaotic theories this spectral structure is
universal and determined by a symmetry principle: the breaking and restoration
of causal symmetry, [49], as described by a remarkably simple low-dimensional
matrix theory, the fMT introduced in Section 4.2.1.
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The one line summary of our story is that all relevant players in the two-dimensional
gravitational framework – Kodaira-Spencer field theory, a system of D-branes in-
troduced into a six-dimensional Calabi-Yau manifold, and the SYK model (at the
spectral edge) as a putative boundary theory – map onto that fMT. This proves
that they all faithfully describe the universal ergodic phase of quantum chaos –
a finding not easily established otherwise. It also establishes their quantitative
equivalence in the long time limit. The setting is minimal in that further reduc-
tion, such as the perturbative representation of Kodaira-Spencer field theory in
terms of the JT gravitational path integral, looses information on the hyperfine
structure of the spectrum.

The mechanism behind the reduction to fMT is the fast ergodization of systems
with quantum chaotic dynamics. It implies the efficient entangling of all states in
a Hilbert space of high ‘color’ dimension, to the effect that long time correlations
are described by a universal effective theory whose low ‘flavor’ dimension is de-
termined by the number of probes (or the order of correlation functions) into the
chaotic phase. This color-flavor duality is universally observed in ergodic quantum
chaos and, as we show in this chapter, the effective theories of two-dimensional
gravity are no exception. The relationship between large-L ‘color’ matrix model
and finite-size ‘flavor’ matrix models, in particular of the Kontsevich had been ap-
preciated before in the topological- and minimal-string context [40, 132], but it is
very illuminating to see that it is in fact an expression of the universality of quan-
tum chaotic correlations even in the gravitational context, as we have established
in this work.

In Section 4.3 we described the above reduction to flavor theory for Kodaira-
Spencer (KS) field theory, with brane and anti-brane insertions assuming the role
of spectral probes. This setting led to a beautiful geometric view of the analytic
structure of the spectrum of 2D quantum gravity: KS theory is defined on the
multi-sheeted spectral curve of JT gravity with a branch cut describing the coarse
grained spectral density. Its perturbative expansion in e−S0 equals the ‘mini-
universe expansion’ of JT gravity, and at the same time reveals long ranged (on
scales of the microstate spacing) correlations in the spectrum. However, it takes
a computation non-perturbative in eS0 , in the presence of probe branes, to reveal
the micro structure of states as poles, rather than elements of a continuous cut.
Within the fMT framework, the discontinuity across the cut, and its resolution into
individual poles at hyperfine scales are associated to the breaking and restoration
of causal symmetry, respectively.

It would be interesting to connect this to recent work on the discrete spectrum of
a putative non-perturbative completion of JT gravity [180]17. In Section 4.4 we

17That work also noted the analogy to (classical) D-brane positions being ‘smeared’ into a con-
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looked at these principles from an even further expanded geometric perspective.
Starting from the parent geometry of a six-dimensional CY manifold, we showed
how it emerges from the world-volume theory of non-compact branes in a closed-
string background obtained by dissolving a stack of compact branes into the geom-
etry. In this setting, causal symmetry arises as the world-volume symmetry of the
flavor branes. The breaking and restoration of causal symmetry indicates a change
in the analytical structure of the target space perceived by the flavor branes: At
perturbative level in eS0 the target space presents branch cuts, which are resolved
into poles at the fully non-perturbative level. The semi-classical brane partition
function expanded around the saddle points presents branch points, while the full
quantum result is an entire function of the energy, that is target-space coordinate
(e.g. the Airy function at the topological point).

In theories of quantum chaos, the restoration of causal symmetry in the long time
limit reflects the hyperfine structure of the chaotic spectrum: Levels repel and
ultimately ‘crystallize’ into an approximately evenly spaced structure. Our work
shows how the same phenomenon occurs in the gravitational framework, but now
can be given a geometric interpretation, as outlined above. We note that story is
reminiscent of what happens in the study of the target space geometry of minimal
string theory [132] The fact that different effective descriptions of two-dimensional
gravity ‘want’ to contract to fMT at large time scales demonstrates the prevalence
of the ergodic quantum chaotic phase in this context.

tinuous spectral density. It would be interesting to find the analog of the Fredholm determinant
used by [180] directly in topological string / KS theory.
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5 Virasoro entanglement Berry
phases

5.1 Introduction

A particular goal of holography is to understand the emergence of geometry from
the boundary conformal field theory. Recent applications of quantum information
theory in holography have given a means of directly probing geometry of the bulk,
and thus have provided a promising avenue for addressing this question.

One geometrical application of entanglement is an auxiliary space for holography
known as kinematic space, which can be defined as the space of pairs of spacelike
points in a CFTd [181, 182]. Perturbations of entanglement entropy are seen to
propagate as fields on this space [183]. For CFT2, kinematic space can additionally
be obtained from the set of entanglement entropies associated to intervals [184].
While fixed by the asymptotic conformal symmetry, kinematic space provides a
tool for the reconstruction of bulk geometry in certain sufficiently symmetrical
and controlled settings. For instance, it reconstructs geometry for locally AdS3
spacetimes [185]. It also probes the geometry only outside of entanglement shadow
regions that are inaccessible to spacelike geodesics [186,187]. This auxiliary space is
a symplectic manifold, specifically it is a particular coadjoint orbit of the conformal
group [188].

The drawback here is of course the reliance on symmetries and special geome-
tries. Is it possible to use entanglement to probe more general geometries? To
this end, transport for 2d kinematic space was generalized to a parallel transport
process for the modular Hamiltonian [53,54]. In this setup, there is an associated
Berry connection on kinematic space that computes lengths of curves in the bulk.
More generally, a modular Berry connection can be shown to relate frames for
CFT algebras associated to different states and subregions. Entanglement pro-
vides a connection that sews together nearby entanglement wedges and probes
the geometry near the extremal surface. This connection builds spacetime from
entanglement, reminiscent of the ER=EPR proposal [52]. While the modular
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Hamiltonian admits a particularly simple, local description only in special cases,
the parallel transport of modular Hamiltonians is true more generally, and its bulk
description relies only on leading order in 1/N and sufficient smoothness of the
extremal surface.

The parallel transport of modular Hamiltonians has been studied in the setting
where the interval shape is varied, which connects to kinematic space [181]. Shape-
changing parallel transport has also been applied to study cases in holography
where the modular chaos bound is saturated, which is governed by a certain algebra
of modular scrambling modes that generate null deformations close to the extremal
surface [189].

We are interested in generalizing beyond the case where the shape or interval
location is varied, to consider modular parallel transport governed by a change
of global state (see also [190] for a similar approach). For instance, one could
imagine acting on a CFT on the cylinder by a large diffeomorphism contained in
the Virasoro algebra. This would modify the algebra of operators on the interval.
The redundancy by certain symmetries known as modular zero modes which change
the algebra but leave physical observables fixed results in a connection and non-
trivial parallel transport, even in the case where the interval remains fixed. A
general modular transport problem would consist of an amalgamation of these
two kinds of parallel transport, with a simultaneous modification of both the state
and interval shape.

Ultimately, we consider special transformations which do not lie in the Virasoro
algebra as typically defined since they are not analytic, rather they vanish at
the interval endpoints and are non-differentiable at these points. The reason for
this is technical: to uniquely isolate the zero mode contribution it is necessary to
have a decomposition into kernel and image of the adjoint action of the modular
Hamiltonian. As we explain in Appendix C.3, this is not possible for the Virasoro
algebra. This is a subtlety that, to our knowledge, has not been previously studied.
For a large class of transformations which obey certain properties, we derive a
general expression for the Berry curvature in Appendix C.2. We also explain how
these non-standard vector fields have a simple interpretation as plane waves in the
hyperbolic black hole geometry using the map of Casini, Huerta and Myers [191].

We define a suitable algebra of vector fields on the circle constructed from wave
packets of these eigenstates. Much as similar group-theoretic parallel transport
problems are governed by the geometry of symplectic manifolds known as coadjoint
orbits, here that is the case as well. We show that the Berry curvature for state-
changing parallel transport is equal to the Kirillov-Kostant symplectic form on an
orbit associated to this algebra of vector fields.
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State-changing parallel transport can also be related to bulk geometry. This has
the advantage of accessing different geometrical data in the bulk, compared to the
setting where only the interval shape is varied. We find that the Berry curvature
for a fixed interval and changing state computes the symplectic form for a Eu-
clidean conical singularity geometry obtained from the backreaction of a cosmic
brane, subject to a suitable principal value prescription for regulating divergences
near the interval endpoint. To match the curvature, we must impose Dirichlet
boundary conditions at the location of the extremal surface. We interpret this as
describing (and defining) a symplectic form associated to the entanglement wedge.
In the discussion, we connect to earlier work on the holographic interpretation of
the Berry curvature, and comment on the relation to the entanglement wedge
symplectic form in the case of operator-based parallel transport.

Modular parallel transport, either in the case of a changing shape or a changing
state, is a parallel transport of operators and density matrices. It is distinct from
existing algebraic applications of parallel transport of states, which for instance
transform under unitary representations of a symmetry group. As part of this
work we hope to clarify some of the differences, as well as various applications of
each. In particular, we both review how kinematic space for CFT2 can be under-
stood in the language of operator-based parallel transport in Section 5.2.1, while
also providing a new derivation of this same kinematic space using state-based
parallel transport in Appendix C.1. This gives two different ways of viewing the
same problem, both utilizing group theory, reminiscent of the ‘Heisenberg’ versus
‘Schrödinger’ pictures for quantum mechanics.

Outline: We begin in Section 5.2 by giving a summary of both state and operator-
based parallel transport, and providing a few examples of each. In Section 5.3,
we derive the boundary parallel transport process for transformations that diag-
onalize the adjoint action and compute the curvature in an example. We go into
further detail in Section 5.4 about the algebraic structure and the connection to
coadjoint orbits. In Section 5.5, we present our proposal for the bulk dual using
the symplectic form for Euclidean conical singularity solutions created from the
backreaction of a cosmic brane. We end with a discussion about some subtleties
and suggest future research directions. In Appendix C.1, we provide a derivation
of kinematic space using state-based parallel transport, and in Appendix C.2 we
derive a general expression for the curvature for operator-based parallel transport,
which applies for any algebra. Finally, in Appendix C.3 we discuss some subtleties
about diagonalization of the adjoint action for the Virasoro algebra.

125



5. Virasoro entanglement Berry phases

5.2 Geometric Berry phases
Geometric phases can arise in quantum mechanics when a Hamiltonian depends
continuously on certain parameters, such as an external magnetic field. This results
in a state that differs from the starting state by a phase under a closed path
in parameter space. Several generalizations of this notion have recently arisen
in studies of conformal field theory and holography, relying for instance on the
fact that entanglement can act as a connection that relates the Hilbert spaces of
different subsystems.

The applications to holography utilize group-based generalizations of the famil-
iar geometric phases of quantum mechanics. In this section, we will review the
tools that are relevant, making a distinction between two different approaches
for group-based parallel transport depending on whether it is applied to states
(a Schrödinger-type picture) or density matrices (a Heisenberg approach). Before
moving on to new results, we give some examples of how these different approaches
have so far been applied to holography.

5.2.1 States
We begin by describing the parallel transport of states that transform under a
unitary representation of a group (see [192] for applications to the Virasoro group).
The basic idea is to generalize beyond a path in a space of parameters, as in
quantum mechanics, to a path in a group representation. A gauge connection can
be defined relating different tangent spaces along the path. If some unitaries in
the representation act trivially on a starting state, this constitutes a redundancy
by which the state may not return to itself under a closed path through the group
manifold.

Specifically, consider a group G with Lie algebra g, and a unitary representation D
which acts on a Hilbert space H. Take a state |ϕ⟩ ∈ H that is an eigenstate of all
elements in a ‘stabilizer’ subalgebra h ⊂ g, or equivalently it is left invariant up to
a phase under the action of the corresponding subgroup H ⊂ G. Let U(γ(t)) ∈ D
with γ(t) ∈ G, t ∈ [0, T ] be a continuous path through this representation, which
corresponds to a continuous path of states |ϕ(t)⟩ = U(γ(t)) |ϕ⟩. The states |ϕ(t)⟩
for all γ(t) are often called generalized coherent states, and they parametrize the
coset space G/H [193,194].

The Berry connection is defined as

A = i ⟨ϕ(t)| d |ϕ(t)⟩ = i ⟨ϕ|U−1dU |ϕ⟩ , (5.2.1)

where d is the exterior derivative on the group manifold, and we have used
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U† = U−1 since the representation is unitary. The connection is just A =
i ⟨ϕ| D(Θ) |ϕ⟩ with Θ the Maurer-Cartan form associated to the group, Θ(γ̇(t)) =
d
dτ

∣∣
τ=t [γ(t)−1γ(τ)]. Under action by an element of the stabilizer subgroup, the

state changes by a phase |ϕ(t)⟩ → eiα |ϕ(t)⟩. The connection then transforms as a
gauge field, A→ A− dα.

The associated Berry curvature is

F = dA , (5.2.2)

and the geometric phase is defined as

θ(γ) =
∫
γ

A . (5.2.3)

This phase is in general gauge dependent, but is gauge invariant when the path γ
is closed. In this case, we can write

θ(γ) =
∮
γ

A =
∫
B|∂B=γ

F , (5.2.4)

where in the last line we have used Stokes’ theorem to convert this to the flux
of the Berry curvature over any surface B with boundary γ. This measures the
phase picked up by the state |ϕ⟩ under a closed trajectory through the group
representation.

Similar techniques are relevant in the study of Nielsen complexity, which describes
the geometry of the space of states related by unitaries, starting from a given
reference state. A specific path through unitaries is known as a ‘circuit.’ In
conformal field theory, one can choose a reference state such as a primary that
is invariant under a subset of the conformal symmetry. Defining the complexity
further requires a notion of distance between states. Certain choices have relations
to the Berry connection or curvature of state-based parallel transport [195–201].

Another application arises in a subfield of holography known as ‘kinematic space,’
which studies the geometric properties of the space of spacelike pairs of points in
a CFTd and their role in probing the geometry of the bulk anti-de Sitter (AdS)
spacetime [181–184]. It was demonstrated that certain bilocal operators in a CFT
pick up phases under a parallel transport that displaces the location of the spacelike
points where they are evaluated. In the bulk AdS spacetime this was shown to
compute the length of a curve traced out by geodesics limiting to these point pairs
on the boundary (see Figure 5.1) [53]. As we show in Appendix C.1, these results
for kinematic space can be understood using the language of state-based parallel
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(a)

Figure 5.1: (a) Kinematic space can be defined as the space of pairs of spacelike sep-
arated points in a CFT, which are in correspondence with bulk minimal area spacelike
geodesics ending on these points. The blue curve is one such geodesic, in the special case
that the endpoints lie on the same time slice. (b) The parallel transport of operators
in kinematic space can be related to lengths in the bulk AdS spacetime. Depicted here
is a constant time slice of anti-de Sitter spacetime. Pairs of points on the boundary
define bulk geodesics (blue, solid curves). As the interval position is varied, these trace
out an envelope in the bulk (dashed purple circle). The length of this envelope is di-
rectly related to the Berry phase associated to the boundary parallel transport of bilocal
operators evaluated at the endpoints [53].

transport.

5.2.2 Density matrices
Consider a subregion A on a time slice of a CFT. Associated to this region is an
algebra of operators AA. Assuming some short distance cutoff, the state is de-
scribed by a reduced density matrix ρA, obtained from tracing the full state over
the complement Ā of A. From this we can define the modular Hamiltonian Hmod
through ρA = e−Hmod/(tr e−Hmod). The modular Hamiltonian encodes informa-
tion about the entanglement properties of the state. It will be formally useful to
refer to the ‘complete’ modular Hamiltonian Hmod,A−Hmod,Ā. We will often drop
the subscript A, and additionally allow the modular Hamiltonian to depend on
some parameter Hmod(λ). This could for instance encode changes in the size of
region A as was studied in [53,54], or a change of state as we describe in the next
section.

The physical data associated to A is not the set of operators in A, but rather their
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expectation values. As such, there can be symmetries, i.e, transformations which
act on the algebra while leaving no imprint on measurable quantities. We define a
modular zero mode Qi as a Hermitian operator that commutes with the modular
Hamiltonian,

[Qi, Hmod] = 0 . (5.2.5)

The modular zero mode can be exponentiated to the unitary

V = e−i
∑

i
siQi . (5.2.6)

Under the flow O → V †OV , the expectation values of algebra elements are left
unchanged while taking the algebra to itself. The transformation by modular zero
modes therefore constitutes a kind of gauge redundancy.

Given an operator, it is often useful to separate the zero mode part out from a con-
tribution that is non-ambiguous. In the finite-dimensional case, we can compute
the zero mode contribution by using the projection operator

P0[O] =
∑
E,qi,q′

i

|E, qi⟩ ⟨E, qi| O |E, q′
i⟩ ⟨E, q′

i| , (5.2.7)

where |E, qi⟩ are simultaneous eigenstates of Hmod and Qi. Note that later we
will be working with an infinite-dimensional algebra, where this formula no longer
applies. We will show how to define an appropriate projection relevant for that
situation in Section 5.3.

The zero mode frame redundancy leads to a Berry transport problem for operators.
Imagine a process that modifies the algebra AA depending on a parameter λ, for
instance by changing the interval A or the state. We start by diagonalizing the
modular Hamiltonian,

Hmod = U†∆U , (5.2.8)

where ∆ is a diagonal matrix of eigenvalues. Hmod, U and ∆ are functions of λ that
vary along the path. Taking the derivative gives the ‘parallel transport equation,’

Ḣmod = [U̇†U,Hmod] + U†∆̇U , (5.2.9)

where · = ∂λ. The first term on the right-hand side lies in the image of the
adjoint action, [·, Hmod]. The second term encodes the change of spectrum under
the parallel transport. It is a zero mode since it commutes with the modular
Hamiltonian, in other words, it lies in the kernel of the adjoint action. We will
assume that there is a unique decomposition into the image and kernel of the
adjoint action, so that the entire zero mode contribution can be isolated from the
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second term: P0[Ḣmod] = U†∆̇U . For a discussion of subtleties associated with
this assumption for the Virasoro algebra, see Appendix C.3.

This equation exhibits a redundancy due to the presence of modular zero modes.
For instance, the modular Hamiltonian together with (5.2.9) could be equally well
expressed in terms of U → Ũ = UV where V given by (5.2.6) is generated by a
modular zero mode. Instead of (5.2.8) this gauge choice leads to

Hmod = V †U†∆UV . (5.2.10)

A reasonable choice for fixing this ambiguity is to impose that

P0[∂λŨ†Ũ ] = 0 . (5.2.11)

Since V preserves the zero mode space, P0[V †U̇†UV ] = V †P0[U̇†U ]V from (5.2.7).
Likewise, V̇ †V is a modular zero mode from (5.2.6), so it projects to itself. Thus,
this condition reduces to

−V †V̇ + V †P0[U̇†U ]V = 0 , (5.2.12)

where we have used V̇ †V = −V †V̇ since V is unitary. We therefore obtain a more
familiar expression for parallel transport of the operator V ,

(∂λ − Γ)V = 0 , (5.2.13)

where
Γ = P0[U̇†U ] (5.2.14)

is a Berry connection that encodes information about how the zero mode frame
changes as we vary the modular Hamiltonian. It transforms as Γ→ V †ΓV − V †V̇

under U → UV . After performing the parallel transport around a closed loop,
U̇†U has a definite value by (5.2.11). However, U itself may differ by a modular
zero mode,

U(λf ) = U(λi)e−i
∑

i
κiQi . (5.2.15)

Here, λf = λi are the endpoints of a closed path. The coefficients κi contain
information about the loop.

There is also a curvature, F , associated to this parallel transport process. We can
evaluate the curvature by performing parallel transport around a small loop. Here,
‘small’ means that we replace the derivatives with infinitesimal transformations.
We can think of the operator Sδλ = Ũ†δλŨ as a generator of parallel transport.
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It transforms as a gauge field

Sδλ → V †SδλV + V †δλV (5.2.16)

under a change of modular frame Ũ → ŨV and satisfies P0[Sδλ] = 0 by (5.2.11).
The curvature F associated to this gauge field is what we call the modular Berry
curvature. It can be represented in the usual way by performing two consecutive
infinitesimal transformations λi → λi+δ1λ, followed by λi+δ1λ→ λi+δ1λ+δ2λ.
Doing the same with (1↔ 2) and taking the difference gives a closed loop with

F = (1 + Sδ2λ(λi + δ1λ))(1 + Sδ1λ(λi))− (1↔ 2) . (5.2.17)

Here, we use that the holonomy operator along the line [λi, λi + δλ] is given by

exp
(∫ λi+δλ

λi

Ũ†δλŨ

)
= 1 + Sδλ(λi) . (5.2.18)

In Appendix C.2, we will derive a general expression for the curvature, (5.2.17),
and we apply it in Section 5.3 to the case of state-changing parallel transport.

Example: Shape-changing parallel transport
As an example, we will review how this framework for parallel transport of oper-
ators can be applied to a parallel transport process of the modular Hamiltonian
intervals whose location is varied in the CFT vacuum. This reduces to the study
of kinematic space, which we see can also be described using state-based parallel
transport in Appendix C.1.

We consider our subregion A to be an interval on a fixed time slice of the CFT
with endpoints located at θL and θR. Generalizing to subregions with endpoints
which are not in the same time slice is straightforward. The modular Hamiltonian
associated to A can be written in terms of sl(2,R) generators as

Hmod = s1L1 + s0L0 + s−1L−1 . (5.2.19)

Here, we have omitted the L̄ operators for simplicity. The coefficients in (5.2.19)
depend on θL, θR and can be determined by requiring that the generator keeps the
interval fixed. Explicitly, they are given by

s0 = −2π cot
(
θR − θL

2

)
, s±1 =

2π cot
(
θR−θL

2
)

e±iθR + e±iθL
, . (5.2.20)

In case of A extending along half the interval, taking for example θR = −θL = π/2,
the modular Hamiltonian can be found from (5.2.20) to be Hmod = π(L1 + L−1).
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We now construct a one-parameter family of modular Hamiltonians by changing
the shape of the interval. The simplest trajectory is given by just changing one
of the endpoints, e.g., taking the parameter λ = θL. The change in modular
Hamiltonian is now captured by the parallel transport equation (5.2.9), which in
this case reads

δθL
Hmod = [SδθL

, Hmod] . (5.2.21)

We can solve (5.2.21) for the shape-changing parallel transport operator SδθL
by

first diagonalizing the action of the modular Hamiltonian

[Hmod, Vµ] = iµVµ , (5.2.22)

with µ ∈ R. It is not difficult to see that the following operators are solutions

V−2π = ∂θL
Hmod , V0 = Hmod , V2π = ∂θR

Hmod , (5.2.23)

with µ = −2π, 0, 2π respectively. The operators V2π and V−2π saturate the modu-
lar chaos bound [189]. Importantly, notice that this class of deformations is char-
acterized by imaginary eigenvalues in (5.2.22). The generator of modular parallel
transport therefore takes the form

SδθL
= − i

2π∂θL
Hmod . (5.2.24)

For this particular operator (5.2.11) is automatically satisfied, since it can be writ-
ten as the commutator of Hmod. Similarly, one can show that SδθR

= i
2π∂θR

Hmod.
Then, using (5.2.17) one can compute the modular Berry curvature for this shape-
changing transport to be

F = [SδθL
, SδθR

] = − i

4π
Hmod

sin2 ( θR−θL

2
) . (5.2.25)

In particular, applying the projection P0 to this expression does not change it,
as the curvature is proportional to a zero mode. In Appendix C.1, we rederive
the result in (5.2.25) from the point of view of kinematic space. The curvature,
(5.2.25), is simply the volume form on kinematic space.

5.3 State-changing parallel transport
Let us apply the formalism above to a parallel transport process that modifies
not the location of the entangling interval, but rather the state of the system.
For definiteness, we work on the AdS3 cylinder with a choice of time slice in the
boundary CFT2.
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Consider a change of state by acting by an element ξ(z) of Diff(S1), starting from
the vacuum of AdS3. The operator that implements this is

Xξ = 1
2πi

∮
ξ(z)T (z) dz , (5.3.1)

where T (z) is the stress tensor of the boundary CFT. In particular, the diffeomor-
phism ξ(z) = zn is implemented by the usual Virasoro mode operator Xzn = Ln−1.

Under such a general transformation, the modular Hamiltonian Hmod associated
to some interval on the boundary transforms as

δξHmod = [Xξ, Hmod] . (5.3.2)

Notice that this is just the parallel transport equation, (5.2.9), minus the zero
mode piece.

Now imagine computing the curvature, (5.2.17), by taking the parallel transport
along a small square, i.e., first performing a transformation ξ1 followed by a trans-
formation ξ2, then subtracting the opposite order. The result for the curvature is
derived in Appendix C.2 and is given by

F = P0([Xξ1 , Xξ2 ]) , (5.3.3)

where P0 projects to the zero mode of its argument, and the operators Xξi
are

assumed to have no zero modes themselves. We note that while we focus here on
CFT2, this is a quite general result that applies to any parallel transport process
of the form (5.3.2). (5.3.3) together with its application in an explicit example
constitute the main results of this section.

The projection operator in (5.3.3) is defined by the property that it gives a nonzero
answer when evaluated on the modular Hamiltonian (and in general, any other
operators that commute with it). Meanwhile, it evaluates to zero on any other
operators, which we have assumed take the form [·, Hmod] in the decomposition
(5.2.9). It is possible to construct the projection explicitly in cases where the
modular Hamiltonian is known, for instance in our case of CFT2. Let θ be the
spatial boundary coordinate on a constant time slice. The modular Hamiltonian
for an interval of angular radius α centered around θ = 0 on the cylinder is [202,203]

Hmod =
∫ α

−α
dθ

cos θ − cosα
sinα T00(θ) . (5.3.4)

Here, the units are chosen so that the stress energy tensor is dimensionless, T00 ∼
−c/12 in the vacuum on the cylinder, with T00(θ) ≡ −(T (θ) + T (θ)).
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It will be useful to work in planar coordinates. We consider the conformal trans-
formation

z = eiθ (5.3.5)

to map the cylinder to the plane (with radial ordering). In particular, the interval
[−α, α] in the θ-coordinate is mapped to the circle arc with opening angle 2α in
the z-plane. The stress tensor transforms as

T (θ) =
(
∂z

∂θ

)2
T (z) + c

12{z, θ} , (5.3.6)

where the Schwarzian derivative is defined by

{z, θ} = z′′′

z′ −
3
2

(
z′′

z′

)2
. (5.3.7)

Applying the transformation (5.3.5), we find that the modular Hamiltonian on the
plane is given by

Hmod = 1
i

∮
|z|=1

1
2 (1 + z2)− z cosα

sinα T (z) dz . (5.3.8)

Notice that in (5.3.8) we have converted to the complete modular Hamiltonian
by integrating over the full range of coordinates instead of [−α, α]. The reason
is that an integration over the full circle allows for an expansion of quantities in
terms of Virasoro modes. Moreover, we have conveniently subtracted the vacuum
energy of the cylinder in going from Eq. (5.3.4) to Eq. (5.3.8) and only kept the
holomorphic part of the stress tensor.

For simplicity, we will take α = π/2 so that the interval extends along half of the
cylinder (from z = −i to z = i in the Euclidean plane). The generalization to
intervals with arbitrary α is straightforward. With this convention the modular
Hamiltonian simplifies to

Hmod = 1
2i

∮
(1 + z2)T (z) dz . (5.3.9)

We can also express this in terms of the Virasoro modes on the plane,

Ln = 1
2πi

∮
zn+1T (z)dz , (5.3.10)

which satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n + c

12m(m2 − 1)δm+n,0 . (5.3.11)
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5.3. State-changing parallel transport

Then, (5.3.9) can be re-expressed as

Hmod = π(L−1 + L1) . (5.3.12)

In the following, it will be useful to write formulae in terms of the diffeomorphism
ξ directly, rather than in terms of the corresponding operator Xξ. In particular,
we identify the modular Hamiltonian Hmod with the vector field ξ(z) = π(1 + z2),
as follows from (5.3.9). Moreover, if we take an operator of the form

Xξ = 1
2πi

∮
ξ(z)T (z) dz , (5.3.13)

the commutator with Hmod can also be expressed in ξ directly. Using Eqs. (5.3.9)
and (5.3.13), applying the OPE

T (w)T (z) = c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

+ ... (5.3.14)

and integrating by parts we find

[Hmod, Xξ] = 1
2i

∮ [
2zξ(z)− (1 + z2)ξ′(z)

]
T (z) dz . (5.3.15)

Applying several integration by parts directly onto (5.3.9), the term proportional
to the central charge identically vanishes in this case.

To implement Eq. (5.3.3) for the modular Berry curvature one needs to define the
operator P0 which projects onto the zero mode. Following the general prescription
in Section 5.2.2, one would like to decompose an arbitrary operator X into the
image and the kernel of the adjoint action of Hmod,

X = κHmod + [Hmod, Y ] , (5.3.16)

where κ is the zero mode that needs to be extracted. However, it turns out that
there is a subtlety associated with the above decomposition in the case of the
Virasoro algebra. In general, there are operators which are neither in the kernel,
nor in the image of the adjoint action1, which leads to an ambiguity in the definition
of the zero mode projection P0. We refer to Appendix C.3 for a discussion of these
issues in the case of the Virasoro algebra. For this reason, we will consider a
different class of transformations, i.e., those which diagonalize the adjoint action
of the modular Hamiltonian Hmod (see [204] where a similar diagonalization in

1For finite-dimensional vector spaces this is not the case if the kernel and image are disjoint,
as follows from a simple dimension counting. In the infinite-dimensional set-up the situation is
more complicated, e.g., one can write down linear maps which are injective but not surjective.
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terms of so-called modular eigenmodes was considered). Therefore, we start from
the eigenvalue equation

[Hmod, Xλ] = λXλ , (5.3.17)

where we have used the short-hand notation Xλ ≡ Xξλ
for the operator associated

to the transformation ξλ. Using (5.3.15) it is not difficult to see that (5.3.17) is
solved by

ξλ(z) = π(1 + z2)
(

1− iz
z − i

)−iλ/2π
. (5.3.18)

In particular, we see that the operator with eigenvalue zero, λ = 0, is the modular
Hamiltonian itself, as one would expect from (5.3.17). Notice that the solutions
in (5.3.18) go to zero at the endpoints of the interval:

ξλ(z)→ 0 as z → ±i . (5.3.19)

The eigenfunctions of Hmod therefore correspond to the transformations which
change the state, but not the location of the boundary interval. They are not
analytic at z = ±i,2 so strictly speaking they are not part of the Virasoro algebra
(defined in the usual way as the space of smooth vector fields on the circle).
However, they seem to be the natural transformations to consider in this context.
We will refer to them as state-changing transformations as opposed to the shape-
changing transformations in Section 5.2.2.

From (5.3.17) combined with the Jacobi identity, these eigenfunctions form an
algebra with commutation relations

[Xλ, Xµ] = (λ− µ)Xλ+µ , (5.3.20)

which defines a continuous version of the Virasoro algebra3 with generators Xλ

labeled by a continuous parameter λ ∈ R. Note that in the following we are leaving
out the central extension (so strictly speaking we are working with a continuous
version of the Witt algebra). We will return to discuss how to include the central
extension in Section 5.3.3.

It is natural to define the transformations in (5.3.18) to have support only on the
subregion A. In the case at hand, this makes all the contour integrals collapse
to integrals over the semicircle from −i to i, e.g., the λ = 0 eigenfunction does
not correspond to the complete modular Hamiltonian, but simply to the half-sided

2Note that due to (5.3.19), it is valid to apply a single integration by parts. Thus, (5.3.15)
is maintained.

3A Virasoro algebra with continuous index also appears in the context of the so-called dipolar
quantization of 2d CFT [205, 206] which is related to the sine-square deformation [207, 208], as
well as in the study of non-equilibrium flows in CFT [209].
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one. The state-changing vector fields, which might look unfamiliar in terms of the
z-coordinate, take a more familiar form when we map the entanglement wedge to
a hyperbolic black hole geometry using [191].

This can be seen in the following way. Starting with the boundary CFTd on the
Euclidean cylinder R× Sd−1 with metric

ds2 = dt2E + dθ2 + sin2 θ dΩ2
d−2 , (5.3.21)

we consider a fixed sphere at tE = 0, θ = θ0. We can apply the following conformal
transformation considered in [191]:

tanh tE = sin θ0 sin τ
cosh u+ cos θ0 cos τ ,

tan θ = sin θ0 sinh u
cos θ0 cosh u+ cos τ , (5.3.22)

which conformally maps the causal development of the sphere to the hyperbolic
geometry R× Hd−1 given by

ds2 = Ω2 (dτ2 + du2 + sinh2 u dΩ2
d−2
)
, (5.3.23)

with conformal factor

Ω2 = sin2 θ0

(cosh u+ cos θ0 cos τ)2 − sin2 θ0 sin2 τ
. (5.3.24)

Taking d = 2 and θ0 = π/2 for the half interval entangling surface, the transfor-
mation (5.3.22) at the τ = 0 (or equivalently tE = 0) time slice reduces simply
to

tan θ = sinh u . (5.3.25)

Written in terms of the coordinate z = eiθ this leads to

eu = 1− iz
z − i

. (5.3.26)

Recall that the boundary region A corresponds to |z| = 1 and −π/2 ≤ arg(z) ≤
π/2 in the plane, so it is mapped to u ∈ R. Moreover, the components of the
vector field transform according to

ξλ(z) ∂
∂z

= ξλ(u) ∂
∂u

(5.3.27)
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with
du = −2i dz

1 + z2 , (5.3.28)

so that the transformations take the simple form

ξλ(u) = −2πi e−iλu/2π . (5.3.29)

Hence, we find that the state-changing transformations, when written in terms of
the u-variable, are simply plane wave solutions with frequency λ/2π in this black
hole background. Therefore, they are natural objects to consider in this geometry.

We can reintroduce both the right- and the left-movers by replacing u→ u+ iτ in
(5.3.26), so that z is allowed to take values in the half plane Re z ≥ 0 (the radial
direction in the z-plane corresponds to time evolution in τ). (5.3.27) is therefore
modified according to

ξλ(z) ∂
∂z

= ξλ(u+ iτ)
(
∂

∂u
− i ∂

∂τ

)
, (5.3.30)

ξλ(z̄) ∂
∂z̄

= −ξλ(−u+ iτ)
(
∂

∂u
+ i

∂

∂τ

)
. (5.3.31)

By setting λ = 0 and adding the right- and left-moving contributions, we see
that the modular Hamiltonian indeed acts by time translation in the black hole
geometry:

Hmod ∼
∂

∂τ
. (5.3.32)

Working in the algebra associated to the eigenfunctions of Hmod, we do have a
unique decomposition of the form (5.3.16): one simply decomposes an arbitrary
operator into eigenoperators, which have either λ = 0 or λ ̸= 0. Given such a
decomposition it is easy to write down an operation which extracts the zero mode
κ, namely a linear functional P0 which satisfies4

P0(Hmod) ∼ δ(0) , P0([Hmod, Y ]) = 0 . (5.3.33)

In the u-coordinate such a functional can be written as

P0(Xξ) = lim
Λ→∞

i

2π

∫ Λ

−Λ
ξ(u) du . (5.3.34)

4For technical reasons we set P0(Hmod) ∼ δ(0), instead of P0(Hmod) ∼ 1 as one might
have naively expected. This results from the plane-wave normalizability of the eigenfunctions,
(5.3.29). It ensures the modular Berry curvature is finite when evaluated on wave packets in
Section 5.3.1.
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Using the coordinate change (5.3.28), we can represent the projection in the z-
coordinate as

P0(Xξ) = lim
Λ→∞

i

2π

∫ Λ

−Λ
ξ(u) du = 1

π

∫ i

−i

ξ(z)
(1 + z2)2 dz . (5.3.35)

When applied to the eigenfunctions of Hmod the projection becomes

P0(Xλ) = lim
Λ→∞

2π
∫ Λ

−Λ
eiλu du = 4π2δ(λ) , (5.3.36)

which is a standard representation of the Dirac delta function. To show that P0
vanishes on commutators of the form [Hmod, Y ], it suffices to remark that one can
take Y to satisfy [Hmod, Y ] = λY with λ ̸= 0 without loss of generality. This shows
that (5.3.34) defines a good projection operator in the sense of (5.3.33). Unlike
for the case of the ordinary Virasoro algebra treated in Section C.3.3, there is no
ambiguity in the resulting projection.

5.3.1 Example

We now have all the ingredients to compute the curvature in an explicit example.
We consider a general perturbation of the form

z′ = z + ϵ ξ(z) +O(ϵ2) , (5.3.37)

where ξ(z) is a wave packet

ξ(z) = 1
2π

∫ ∞

−∞
c(λ)ξλ(z) dλ , (5.3.38)

with ξλ(z) defined in (5.3.18). We start by obtaining the correction to the trans-
formed modular Hamiltonian upon acting with (5.3.37). Let us expand both the
modular Hamiltonian and the parallel transport operator to first order in the small
parameter ϵ:

H ′
mod = H(0) + ϵH(1) +O(ϵ2) , S = S(0) + ϵ S(1) +O(ϵ2) . (5.3.39)

Using that z = z′− ϵξ(z′) +O(ϵ2), one can expand the transformed Hmod to order
O(ϵ2). One finds that H(0) = Hmod is the original modular Hamiltonian, while
the correction is given by

H(1) = − 1
2i

∮ [
2zξ(z)− (1 + z2)ξ′(z)

]
T (z) dz . (5.3.40)
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Here, we have neglected the Schwarzian contribution for simplicity. It will be
treated separately in Section 5.3.3. We now expand the parallel transport equation

δHmod = [S,Hmod] (5.3.41)

to first order in ϵ. This gives two separate equations:

0 = [S(0), H(0)] , H(1) = [S(0), H(1)] + [S(1), H(0)] . (5.3.42)

Solving (5.3.42) for the correction S(1) to the parallel transport operator gives the
solution

S(0) = 0 , S(1) = Xξ . (5.3.43)

Both S(0) and S(1) are defined up to a zero mode, meaning that one can add to
it an extra operator Q for which [Q,Hmod] = 0 (e.g., the modular Hamiltonian
itself) and the parallel transport equation would still be satisfied.

To compute the curvature we need to consider two different parallel transport
operators S1 and S2 which we take to be defined according to the transformations

ξ1(z) = 1
2π

∫ ∞

−∞
c1(λ)ξλ(z) dλ , ξ2(z) = 1

2π

∫ ∞

−∞
c2(λ)ξλ(z) dλ , (5.3.44)

respectively. After projecting out their zero modes, we take the commutator and
project to the zero modes again to obtain the value of the curvature component.
Therefore, we need to compute

[S(1)
1 − κ1H

(0), S
(1)
2 − κ2H

(0)] , (5.3.45)

where κi = P0(Si), is the zero mode coefficient of the parallel transport operator
Si. We can split (5.3.45) into terms that we can treat separately. Notice that
the term proportional to [H(0), H(0)] is zero and can be removed. Moreover, the
definition of the projection operator immediately implies

P0([S(1)
1 , H(0)]) = P0([S(1)

2 , H(0)]) = 0 . (5.3.46)

To evaluate the last commutator we use the commutation relations in (5.3.20) to
obtain

[S(1)
1 , S

(1)
2 ] = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
(λ1 − λ2)c1(λ1)c2(λ2)Xλ1+λ2 dλ1dλ2 . (5.3.47)
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Applying the projection operator sets λ1 = −λ2, so that we find

P0([S(1)
1 , S

(1)
2 ]) = 2

∫ ∞

−∞
λ c1(λ)c2(−λ) dλ . (5.3.48)

Therefore, the final result for the modular Berry curvature associated to the state-
changing transport problem is given by

F = 2
∫ ∞

−∞
λ c1(λ)c2(−λ) dλ . (5.3.49)

Note that the curvature appropriately vanishes when two perturbations lie along
the same direction, c1(λ) = c2(λ). If we take the modes to be peaked at the
eigenfunctions ξλi

(z) themselves, ci(λ) = δ(λ− λi), the above formula reduces to

F = (λ1 − λ2)δ(λ1 + λ2) , (5.3.50)

which is a local formula in terms of the parameters λi.

5.3.2 Lie algebra

To diagonalize the adjoint action, we saw that we must work with a continuous
version of the Virasoro algebra. Viewed in terms of vector fields on the circle, we
must consider non-smooth vector fields on the circle, (5.3.18), which have support
only along the interval. When mapped to the real line, these are just plane waves,
(5.3.29). In the last section, we performed parallel transport using wave packets
constructed out of these eigenfunctions. In terms of the coordinates on the real
line,

ξ(u) = 1
2π

∫ ∞

−∞
c(λ)ξλ(u)dλ . (5.3.51)

Now we would like to be more precise about the sense in which the corresponding
vector fields form a Lie algebra. This amounts to imposing extra conditions on
c(λ) for these to form a closed algebra, along with any other desirable properties.

The simplest choice would be to demand that the ξ(u) be smooth. Then, since
the smoothness of functions is preserved under pointwise multiplication, the cor-
responding vector fields ξ(u)∂u will form a closed algebra. However, an arbitrary
ξ(u) will not necessarily have finite zero mode projection, nor will there necessarily
exist a natural definition for a dual space. To define sensible wave packets we will
impose two additional requirements:

⋄ There is a notion of Fourier transform that maps the space to itself,

⋄ The ξ(u) are integrable. This means that the projection, (5.3.34), is finite,
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and this property is preserved under commutation of the vector fields ξ(u)∂u .
It also allows us to define a dual space in terms of distributions.

To accomplish this, it is convenient to work with wave packets ξ(u) that are
Schwartz functions. These are smooth, bounded functions whose derivatives are
also all bounded: |uα∂βξ(u)| < ∞ for all α, β > 0. In other words, they rapidly
go to zero as u → ±∞, faster than any reciprocal power of u. This definition
excludes for example polynomials, but includes polynomials weighted by an expo-
nential e−c|u|2 for c ∈ R. By the Leibniz rule, the Schwartz space S is closed under
pointwise multiplication, thus the corresponding vector fields form a closed Lie al-
gebra. We denote S for the space of Schwartz functions and s for the corresponding
algebra of vector fields.

Since these functions are integrable, it is natural to define a dual space S ′ consisting
of linear functionals T : S → C, in terms of distributions:

T [ξ(u)] =
∫ ∞

−∞
ξ(u)T (u)du . (5.3.52)

A pairing between Schwartz functions and dual elements can be defined from this
as ⟨T, ξ⟩ ≡ T [ξ(u)]. Likewise, there is also a dual space s∗ consisting of linear
functionals on s, the algebra of vector fields. This is inherited from the dual space
S ′, i.e., it consists of the space of distributions evaluated on Schwartz functions.
There is a pairing ⟨·, ·⟩ between s and s∗ which descends from the pairing on S
and S ′.

Notice that, evaluated on the wave packets (5.3.51), the projection operator (5.3.34)

P0 : ξ(u) 7→ 2πc(0) (5.3.53)

is a linear functional, and thus it is an element of the dual space. The pairing is
given by ⟨P0, ξ⟩ = P0(ξ) = 2πc(0).

In the coordinates on the circle, recall that this dual element can be expressed
from (5.3.35) as

P0 : ξ(z) 7→ 1
π

∫
dz

ξ(z)
(1 + z2)2 . (5.3.54)

Notice that this dual element is not a smooth quadratic form on the circle as
is typically considered in treatments of the dual space of the Virasoro algebra,
but rather a more general distribution that involves singularities at z = ±i5. A

5In the usual discussion of the Virasoro algebra the dual space is identified with the space
of smooth quadratic differentials. Formally, one could argue that distributions such as δ(z − z0)
and δ′(z−z0) are also part of some suitably defined notion of the dual space. Indeed, they define
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standard definition of the dual space is an attempt to get a space that is roughly
the same size as the algebra itself. For infinite-dimensional spaces the formal dual
is much larger and one needs some additional structure, e.g., that of a Hilbert
space, to limit it.

We emphasize that there is considerable freedom in these definitions. A different
choice would amount to taking a different set-up for varying the state in the
parallel transport process. Our definitions allow us to perform parallel transport
using wavefunctions that are ‘physical’ in the sense of being Fourier transformable
and integrable. The existence of a natural dual space also allows for contact with
a geometrical picture in terms of coadjoint orbits, which we describe in the next
section.

5.3.3 Central extension

We have so far only considered changing the state with a transformation of the
circle. When the transformations are diffeomorphisms on the circle, the group
Diff(S1) gets centrally extended to the full Virasoro group, Diff(S1)× R. Here we
are considering a continuous version of the Virasoro generated by the transforma-
tions, (5.3.18). For the central extension, we proceed in direct analogy with the
Virasoro case. In the following, the vector fields ξ(z) should be understood to have
non-zero support only between z = ±i, so that this is the only part of the integral
over the full circle that contributes.

We consider pairs (ξ, α), where ξ is a vector field of the form (5.3.18), which
diagonalizes the adjoint action, and α ∈ R. The Lie bracket is defined as

[(ξ, α), (χ, β)] =
(
−[ξ, χ],− 1

48π

∮
dz (ξ(z)χ′′′(z)− ξ′′′(z)χ(z))

)
, (5.3.56)

where [ξ, χ] := ξχ′ − χξ′ is the commutator of vector fields. This is identical
to the commutators for the Virasoro algebra, with the only difference being that
we integrate only over half the circle, and also consider transformations ξ which
are not smooth at the endpoints. In terms of the operators Xλ, this extends the
algebra in (5.3.20) to

[X̄λ̄, X̄µ̄] = (λ̄− µ̄)X̄λ̄+µ̄ + c

12 λ̄(λ̄2 + 1)δ(λ̄+ µ̄) . (5.3.57)

linear functionals
ξ 7→ ξ(z0) , ξ 7→ −ξ′(z0) , (5.3.55)

which evaluate a function (or its derivative) at some point z0. The projection operator P0 in Eq.
(5.3.54), when integrated over the full circle and properly regularized, can be regarded in this
fashion. See Appendix C.3 for more details, for example, Eqs. (C.3.29) - (C.3.31).
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5. Virasoro entanglement Berry phases

where we have defined rescaled barred variables through Xλ = −2πX̄λ, λ = −2πλ̄
to bring this to a form that more closely resembles the usual Virasoro algebra with
discrete labels.

One often introduces a new generator, denoted by c, which commutes with all
other elements in the algebra, to write

(ξ, α) = ξ(z)∂z − iαc . (5.3.58)

By definition, the central element c commutes with Hmod, i.e., [Hmod, c] = 0.
Therefore, we can think about the central element as another zero mode in the
parallel transport problem.

Luckily, the situation for the central element is simpler than for the modular
Hamiltonian itself. From the form of Hmod, Eq. (5.3.12), and the algebra, Eq.
(5.3.56), we see that the central element c does not appear in commutators of the
form [Hmod, X]. Therefore, the projection onto the coefficient of c is simply given
by the linear functional

(ξ, α)→ α . (5.3.59)

One way to include the information of the central term is to make the Berry
curvature give a U(1)×U(1)-valued number (organized in terms of an extra element
which we take to be c). More precisely, we define the zero mode projection operator
P c0 , which depends on c, by

P c0 ((Xξ, α)) = P0(Xξ)− αc . (5.3.60)

The first term is the usual zero mode, while the second term keeps track of the
central zero mode. It is easy to see how the result for the Berry curvature gets
modified. Using Eq. (5.3.3) with P c0 instead of P0, we see that the formula for the
Berry curvature is given by

F = P0([Xξ1 , Xξ2 ]) + c

48π

∮
dz (ξ1(z)ξ′′′

2 (z)− ξ′′′
1 (z)ξ2(z)) . (5.3.61)

As a consistency check, we can go back to our example in Section 5.3.1 and consider
the contribution from the Schwarzian term in (5.3.40). Expanding the parallel
transport equation, we need to solve

H(1) = [S(1), H(0)] , (5.3.62)

where the change in the modular Hamiltonian due to the Schwarzian derivative to
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first order is given by

H
(1)
Schw = c

24i

∮
dz(1 + z2)ξ′′′(z) , (5.3.63)

having used that {z′, z} = ϵξ′′′ + O(ϵ2). On the full circle, applying three in-
tegration by parts, this is just H(1)

Schw = 0 (equivalently, no diffeomorphism has
ξ′′′ = z−1 or z−3 which would give a pole). The situation is a bit more subtle on
the half circle, since due to non-differentiability at the endpoints it is no longer
valid to apply integration by parts multiple times. However, it is still the case that
none of the eigenfunctions, (5.3.18), have ξ′′′ = z−1 or z−3, and so the Schwarzian
contribution vanishes. Thus, in either case the solution to (5.3.62) with the new
Lie bracket (5.3.56) is still given by S(1) = Xξ . The extra contribution to the
commutator [S(1)

1 , S
(1)
2 ] due to the central charge is indeed given by (5.3.61).

Note while it is not possible to apply integration by parts multiple times on (5.3.63)
for the half circle, we have defined the central extension as the version that obeys
integration by parts three times. This is because we have chosen the antisymmet-
ric combination for the central charge part in (5.3.56). As a result, our bracket
respects the properties of the commutator, [Xξ, Xχ] = −[Xχ, Xξ]. Likewise, one
can check that the Jacobi identity is satisfied. Given elements (ξ, α), (χ, β), (ρ, γ)
which satisfy the algebra (5.3.56), we have

[(ξ, α), [(χ, β), (ρ, γ)]] + [(χ, β), [(ρ, γ), (ξ, α)]] + [(ρ, γ), [(ξ, α), (χ, β)]]

=
(

0,− 1
48π

∮ (
[χ, ρ] ξ(3) + [ρ, ξ]χ(3) + [ξ, χ] ρ(3)

))
. (5.3.64)

We can see this is identically zero by integrating each term by parts once onto the
commutator, which vanishes at the interval endpoints by (5.3.19) so that there is
no boundary contribution. These properties are sufficient to ensure the consistency
of the central extension.

5.4 Coadjoint orbit interpretation
Various versions of the parallel transport problem we consider exhibit connec-
tions to the geometry of symplectic manifolds known as coadjoint orbits. For the
state-based parallel transport summarized in Section 5.2.1 applied to the Virasoro
algebra, connections to coadjoint orbits were described in [192]. In Appendix C.1,
we additionally explain how to use state-based parallel transport to obtain coad-
joint orbits of SO(2, 1), which describe kinematic space [188]. We will begin by
reviewing the notion of coadjoint orbits, and then we explain how our operator-
based parallel transport can be related to the geometry of orbits.
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5. Virasoro entanglement Berry phases

Consider a Lie group G with Lie algebra g. Let g∗ be the dual space, i.e., the
space of linear maps T : g→ C. This defines an invariant pairing ⟨T,X⟩ ≡ T (X)
for X ∈ g, T ∈ g∗. The group G acts on the algebra g through the adjoint action,

Adg(X) = d

dλ

(
geλXg−1)∣∣∣∣

λ=0
, g ∈ G, X ∈ g . (5.4.1)

For matrix groups such as SO(2, 1), which we consider in Appendix C.1, (5.4.1)
is just Adg(X) = gXg−1.

The adjoint action of the algebra on itself can be defined from this as

adX(Y ) = d

dρ
(AdeρX (Y ))|ρ=0 = [X,Y ] , X, Y ∈ g . (5.4.2)

The adjoint action descends to an action on the dual space. This coadjoint action
ad∗
X on g∗ is defined implicitly through

⟨ad∗
Xz, Y ⟩ = ⟨z, adXY ⟩ , z ∈ g∗, X, Y ∈ g . (5.4.3)

For a given T ∈ g∗, the orbit OT = {ad∗
X(T ) |X ∈ g} generated by the coadjoint

action is known as a coadjoint orbit.

Let x1, x2 be coadjoint vectors tangent to the orbit OT , and let X1, X2 be the
adjoint vectors that are dual to these through the invariant pairing. Then, the
Kirillov-Kostant symplectic form associated to this orbit is [65,210–212]

ω(x1, x2) = ⟨T, [X1, X2]⟩ . (5.4.4)

This is manifestly anti-symmetric and G-invariant. It is also closed and nonde-
generate [210], and hence it defines a symplectic structure on OT . Thus, coadjoint
orbits are naturally symplectic manifolds. For matrix groups, the algebra and dual
space are isomorphic through the Cartan-Killing form, which is non-degenerate in
this case. It suffices to consider an orbit of the adjoint action, and these generate
symplectic manifolds. This is the setting of Appendix C.1. We emphasize that in
the general case this is not true and one must work in the dual space.

It will be useful to review the case of the Virasoro group, along with a suitable
generalization given by the algebra described in Sections 5.3.2 and 5.3.3 that ap-
plies to our case of interest. Recall that the Virasoro group consists of Diff(S1)
together with its central extension, D̂iff(S1) = Diff(S1) × R. For our problem,
we are considering a continuous version of the ordinary Virasoro algebra, with
a central extension described in Section 5.3.3. In either case, the formulae will
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5.4. Coadjoint orbit interpretation

be the same, with the difference that in the second scenario the vector fields ξ
should be understood to be non-differentiable at the interval endpoints, with van-
ishing support outside the interval. Thus, in the latter case all integrals should be
understood to cover only the range of the interval rather than the full circle.

For either algebra we consider elements ξ(z)∂z − iαc where ξ(z)∂z is a vector field
on the circle (smooth for Virasoro, and of the form (5.3.18) for its generalization)
and α ∈ R is a parameter for the central extension, generated by the algebra
element c. The only non-trivial commutators are

[ξ1(z)∂z, ξ2(z)∂z] = −(ξ1ξ
′
2 − ξ′

1ξ2)∂z + ic

48π

∮
dz (ξ1ξ

′′′
2 − ξ′′′

1 ξ2) . (5.4.5)

In the Virasoro case, using Ln = zn+1∂z the bracket (5.3.56) indeed leads to the
usual form of the Virasoro algebra, (5.3.11).

For both algebras we can define a pairing between an adjoint vector (ξ, α) and a
coadjoint vector (T, β) given by

⟨(T, β), (ξ, α)⟩ = −
[∮

dz T (z)ξ(z) + αβ

]
. (5.4.6)

Now consider algebra elements Xξ1 = (ξ1, α1) and Xξ2 = (ξ2, α2), and let xξ1 , xξ2

be the corresponding dual elements. The Kirillov-Kostant symplectic form through
dual element (T, β) is

ω(xξ1 , xξ2) = ⟨(T, β), [Xξ1 , Xξ2 ]⟩

=
∮
dz

[
T (ξ1ξ

′
2 − ξ′

1ξ2) + β

48π (ξ1ξ
′′′
2 − ξ′′′

1 ξ2)
]
. (5.4.7)

Focusing now on the case of our non-smooth generalization of the Virasoro algebra,
we can define the coadjoint orbit OT∗ through the unorthodox element T∗ = (P0, c)
of the dual space defined by the projection operator, (5.3.53), together with its
central extension c in the full algebra. Again considering elements xξ1 , xξ2 in the
dual space that correspond to algebra elements Xξ1 , Xξ2 through the pairing, and
using (5.3.35), this becomes

ω(xξ1 , xξ2) = ⟨T∗, [Xξ1 , Xξ2 ]⟩

= P0([Xξ1 , Xξ2 ]) + c

48π

∮
dz [(ξ1ξ

′′′
2 − ξ′′′

1 ξ2)] . (5.4.8)

This is precisely (5.3.61) for the curvature. Thus, the modular Berry curvature
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5. Virasoro entanglement Berry phases

for state-changing parallel transport is now related to the symplectic form on this
orbit.

What is the holographic bulk interpretation of such a non-standard orbit? We will
argue that the corresponding geometry is related to the backreaction of a cosmic
brane.

5.5 Bulk phase space interpretation
A Berry curvature for pure states constructed from Euclidean path integrals was
shown to be equal to the integral of the bulk symplectic form over a Cauchy
slice extending into the bulk in [55, 213] (see also [214]). The notion of Uhlmann
holonomy is one particular generalization of Berry phases to mixed states, and it
was argued in [190] that its holographic dual is the integral of the bulk symplectic
form over the entanglement wedge. However, the arguments for arriving at this
result for Uhlmann holonomy are purely formal, and to the best of our knowledge
this identification has not been worked out in an explicit example. The derivation
also lacks a precise definition for the entanglement wedge symplectic form, which
we will provide.

In this section, we will comment on a possible bulk interpretation of the modular
Berry curvature for state-changing parallel transport. We will see that the result
for the curvature that we obtained in the previous sections is closely related to
an integral of a bulk symplectic form on a geometry with a conical singularity.
See [215–219] for a related discussion of this geometry.

5.5.1 The conical singularity geometry
We consider a Euclidean geometry obtained through the backreaction of a codimension-
2 brane homologous to the boundary interval A. This leads to a family of Euclidean
bulk solutions, which we denote by Mn, where n is a function of the tension of
the brane [216]:

Tn = n− 1
4nG . (5.5.1)

In the limit n→ 1, the cosmic brane becomes tensionless and settles on the location
of the the usual RT surface associated to the entangling region, but for non-zero
tension the brane backreacts on the geometry. The resulting geometries Mn are
used in the context of the holographic computation of Rényi entropies Sn in the
boundary CFT, and we will argue that these are also relevant for a holographic
interpretation of the modular Berry curvature.

Let us first examine the boundary dual of the backreaction process. Inserting a
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1

0

2⇡

n

⌃n

Figure 5.2: The conical singularity geometry Mn and entanglement wedge region Σn

corresponding to the boundary region A. The thick striped line corresponds to the cosmic
brane extending from −i to i. The backreaction process creates a conical singularity of
opening angle 2π/n.

cosmic brane which anchors the boundary at z1 and z2 corresponds to the insertion
of twist fields On in the CFT at z1 and z2 [218]. The field On(z) is a (spinless)
conformal primary of dimension [220]

∆n = c

12

(
n− 1

n

)
. (5.5.2)

We use the fact that the cosmic brane can be computed as a correlation function
of Zn twist operators On,O−n in the boundary theory [216,218].

Geometrically, we can think about the twist field as creating a conical singularity
at the insertion point. Let us denote the two-dimensional geometry obtained
from On(z1),O−n(z2) by Bn. We are interested in the stress tensor profile on the
boundary of the backreacted geometry, which by this reasoning is given by the
stress tensor on the plane in the background of two twist fields:

⟨T (z)⟩Bn
= ⟨T (z)On(z1)O−n(z2)⟩C

⟨On(z1)O−n(z2)⟩C
. (5.5.3)

Using the general form of the three-point function in a CFT in terms of confor-
mal dimensions, it now follows that T (z) has poles of order two at z1 and z2
respectively.

To describe the geometryMn explicitly, we consider the complex plane with coor-
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dinate z which is flat everywhere except for two conical singularities at z = z1 and
z = z2. The singular points are assumed to have a conical deficit of magnitude

∆φ = 2π
(

1− 1
n

)
. (5.5.4)

We can use a uniformizing function f(z) to map the z-plane with conical singu-
larities to the smooth covering space, which we denote by B̃n, which is a complex
plane with coordinate z′ defined by

z′ = f(z) =
(
z − z1

z − z2

) 1
n

. (5.5.5)

This maps z1 → 0 and z2 →∞ so that the interval between z1 and z2 goes to the
positive real axis [0,∞). The power of 1

n removes the conical singularity by gluing
the n sheets of the z-plane together, each represented by a wedge of opening angle
2π
n .

In terms of the coordinate z′ we extend B̃n into the bulk by introducing a ‘radial’
coordinate w′ with metric of the form

ds2 = dw′2 + dz′dz̄′

w′2 . (5.5.6)

Here, we restrict the range of z′ by the identification z′ ∼ e2πi/nz′, as this rep-
resents a fundamental domain B̃n/Zn in the covering space. The bulk coordinate
approaches the boundary in the limit w′ → 0. The metric in (5.5.6) is a wedge of
three-dimensional hyperbolic space H3. We now use the following transformation:

w′ = w
1
N

√
f ′(z)f̄ ′(z̄) , z′ = f(z)− w2 1

N

f ′(z)f̄ ′′(z̄)
2f̄ ′(z̄)

, (5.5.7)

where f(z) is defined in (5.5.5) and

N = 1 + w2 f
′′(z)f̄ ′′(z̄)

4f ′(z)f̄ ′(z̄)
. (5.5.8)

This transformation reduces to the conformal transformation in (5.5.5) when we
go to the boundary w → 0. The metric in the new coordinates reads

ds2 = dw2

w2 + 1
w2

(
dz − w2 6

c
T̄ (z̄)dz̄

)(
dz̄ − w2 6

c
T (z)dz

)
, (5.5.9)
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where

T (z) = c

12{f(z), z} = c

24

(
1− 1

n2

)
(z1 − z2)2

(z − z1)2(z − z2)2 , (5.5.10)

with a similar expression holding for the anti-holomorphic component of the stress
tensor T̄ (z̄). The metric (5.5.9) falls into the class of Bañados geometries [221],
and T (z) has the interpretation of the expectation value of the stress tensor in the
boundary CFT on Bn. Therefore, (5.5.10) agrees with the expression, (5.5.3), in
terms of twist fields. The formula for T (z) can also be seen more directly from
the way the stress tensor in a CFT transforms under a conformal transformation.
Starting from the vacuum stress tensor in the z′-coordinate, T (z′) = 0, and ap-
plying (5.5.5), the transformation picks up precisely the Schwarzian contribution
in Eq. (5.5.10).

We can also give a description for these geometries in the language of Chern-Simons
(CS) theory. It is known that Euclidean AdS3 can be described by two copies of a
Chern-Simons theory with gauge connections A, Ā valued in sl(2,C), and where the
Chern-Simons coupling is related to Newton’s constant by k = (4G3)−1 [222]. We
can expand these connections (with complex coefficients) over sl(2,R) generators
L0, L± satisfying [L0, L±] = ∓L±, [L+, L−] = 2L0. In an explicit two-dimensional
representation of the algebra, these are

L0 = 1
2

(
1 0
0 −1

)
, L+ =

(
0 0
−1 0

)
, L− =

(
0 1
0 0

)
. (5.5.11)

We can then describe the geometries, (5.5.9), using the connections

A = 1
2w

(
dw −2 dz

w2 12
c T (z) dz −dw

)
, Ā = − 1

2w

(
dw w2 12

c T̄ (z̄) dz̄
−2 dz̄ −dw

)
. (5.5.12)

Each metric in this family of solutions corresponds to a choice of gauge connections,
(5.5.12), with the same T (z), T̄ (z̄) through the relation ds2 = 1

2 tr((A− Ā)2).

It will be useful to extract the radial dependence in (5.5.12) by using a suitable
gauge transformation

A = bab−1 + bdb−1 , Ā = b−1āb+ b−1db , (5.5.13)

with gauge parameters

a =
(

0 −dz
6
cT (z) dz 0

)
, ā =

(
0 − 6

c T̄ (z̄) dz̄
dz̄ 0

)
, b =

(
1√
w

0
0
√
w

)
. (5.5.14)
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5.5.2 Symplectic form

We now turn our attention to the bulk symplectic form. It is useful to work in the
Chern-Simons formulation of three-dimensional gravity. For a similar discussion
of the symplectic structure of 3d gravity in this setting, especially as pertains to
the connection to coadjoint orbits, see [223–226].

The CS action with CS coupling k and gauge connection A is given by

SCS =
∫
LCS = k

4π

∫
tr
(
A ∧ dA+ 2

3A ∧A ∧A
)
. (5.5.15)

We would like to evaluate the symplectic form. Taking the variation of the action
for a single copy gives

δLCS = k

2π tr (δA ∧ F ) + dΘ (5.5.16)

in terms of field strength F = dA + A ∧ A, and where Θ = k
4π tr(A ∧ δA). The

symplectic form for CS theory on some spatial region Σ is then given by

ω =
∫

Σ
δΘ = k

4π

∫
Σ

tr(δ1A ∧ δ2A) . (5.5.17)

In the following, we will assume that Σ is topologically a disk, i.e., it has a single
boundary but no singularities in the interior. The symplectic form is a two-form
on the space of classical solutions satisfying F = 0. Because we are working with a
disk which admits no nontrivial cycles, a variation δA which leaves this condition
invariant is of the form

δA = dAζ ≡ dζ + [A, ζ] (5.5.18)

for some gauge transformation ζ, as follows from δF = dAδA = d2
Aζ = 0.

We now consider the symplectic form for such a transformation. Using the identity

tr ([A, ζ] ∧ δA) = −tr (ζ ∧ [A, δA]) (5.5.19)

and integrating by parts we obtain

ω = k

4π

∫
Σ

tr(dAζ ∧ δA) = k

4π

∮
∂Σ

tr(ζ ∧ δA)− k

4π

∫
Σ

tr(ζ ∧ dAδA)

= k

4π

∮
∂Σ

tr(ζ ∧ δA) . (5.5.20)

From (5.5.20) we see that the symplectic form ω is localized at the boundary of
Σ.
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Suppose that ∂Σ lies in the asymptotic boundary of the geometry, in the w = 0
plane, and that we have gauged away the radial dependence. Using the explicit
form of the connections, Eqs. (5.5.12) and (5.5.14), we can evaluate the symplectic
form in (5.5.20). We see that the field variation can be expressed in terms of the
stress tensor as

δA = 6
c

(
0 0
δT 0

)
dz . (5.5.21)

It is also possible to solve (5.5.18) for δT . Decomposing ζ over the sl(2,R) genera-
tors as ζ = ζ−L−1 + ζ0L0 + ζ+L1 and using the form of the gauge field in (5.5.14),
one can compute dAζ. Matching with (5.5.21) gives a solution of the form

δT = c

12ξ
′′′ + 2Tξ′ + ∂Tξ , (5.5.22)

where we have written ξ ≡ −ζ− for the component of the gauge transformation
associated to the L−1 generator. This is the usual stress tensor transformation
law. From the form of the gauge transformation and the variation δA in (5.5.18),
and using the Brown-Henneaux relation (4G3)−1 = c/6 combined with the gravi-
tational value for the CS coupling, we find that

ω = 1
4π

∮
∂Σ
dz ξ ∧ δT . (5.5.23)

Using (5.5.22) the symplectic form becomes

ω = 1
4π

∮
∂Σ
dz
( c

12ξ ∧ ξ
′′′ + 2T ξ ∧ ξ′

)
. (5.5.24)

Plugging in two diffeomorphisms ξ1 and ξ2, the final result for the symplectic form
reads:

ω = 1
2π

∮
∂Σ
dz
(
T (ξ1ξ

′
2 − ξ2ξ

′
1) + c

24 (ξ1ξ
′′′
2 − ξ2ξ

′′′
1 )
)
. (5.5.25)

When the stress tensor T (z) = T is a constant, (5.5.25) is reminiscent of the
Kirillov-Kostant symplectic form on the coadjoint orbit

O = Diff(S1)/U(1) , (5.5.26)

(or O = Diff(S1)/SL(2,R) for the vacuum stress tensor) of the Virasoro group
D̂iff(S1) with central charge c. However to match onto the Berry curvature,(5.3.3),
with the zero mode projection (5.3.35), we must consider a non-constant vacuum
stress tensor. In fact the the stress tensor profile that reproduces the correct
projection is of the form (5.5.10). In other words, the zero mode projection for the
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parallel transport process is implemented by integrating against the stress-tensor
expectation value in the presence of two twist fields. We will now argue more
precisely that in order to match the modular Berry curvature we need to consider
a non-standard orbit corresponding to the conical singularity geometry described
in Section 5.5.1.

5.5.3 Contour prescription

Let us return to the Euclidean geometry Mn, which is obtained from the backre-
action of a cosmic brane with tension Tn. We showed that the stress tensor profile
at the boundary is given by (5.5.10). Let us now restrict to transformations which
leave the interval at the boundary fixed. This corresponds to Dirichlet boundary
conditions δA = 0 at the cosmic brane.

We consider the symplectic form

ωn = k

4π

∫
Σn

tr(δ1A ∧ δ2A) , (5.5.27)

supported on some region Σn which corresponds to the entanglement wedge in the
geometryMn, see Figure 5.2. The subscript in the symplectic form indicates that
it depends on n. The entanglement wedge has two boundary components:

∂Σn = γn ∪ Branen , (5.5.28)

where γn is the entangling region at the asymptotic boundary extending between z1
and z2 and Branen is the cosmic brane anchored at those points. In Section 5.5.2,
we have seen that the bulk symplectic form localizes to the boundary of Σn (using
that the region is topologically trivial), because tr(δ1A ∧ δ2A) = dη is an exact
form with η = tr(ξ ∧ δA). The expression for ωn therefore reduces to a boundary
term of the form

ωn = k

4π

[∫
γn

η +
∫

Branen

η

]
. (5.5.29)

The contribution at the cosmic brane vanishes due to the boundary conditions we
put on the field variations there, i.e., δA = 0 at Branen. We are therefore left with
the integral over the entangling region γn at the asymptotic boundary. There, η
takes the form

k η = ξ ∧ δT = c

12 (ξ1ξ
′′′
2 − ξ2ξ

′′′
1 ) + 2T [ξ1, ξ2] , (5.5.30)

in terms of the boundary stress tensor profile T of the geometryMn. Plugging in
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(5.5.10) with z1 = i and z2 = −i, we find that

ωn = c

12π

(
1− 1

n2

)∫
γn

[ξ1, ξ2]
(z2 + 1)2 dz + c

48π

∫
γn

(ξ1ξ
′′′
2 − ξ2ξ

′′′
1 ) dz . (5.5.31)

Note that the integrand is singular at the endpoints of the integration region γn.
Therefore, we should implement some kind of regularization procedure for the
integral to avoid the twist field insertion points. A standard choice would be the
principal value prescription, where we excise a small ball of size ϵ around each of
the singularities located at the endpoints of γn. After computing the integral, we
take ϵ→ 0. The resulting expression for ωn is UV divergent (ωn ∼ log ϵ).

In the limit n→ 1 the first term in (5.5.31) vanishes. This is expected, since as the
cosmic branes becomes tensionless the geometry reduces to pure AdS3, for which
the bulk symplectic form is identically zero (up to the central charge term). To
extract a non-zero answer from ωn, we first take a derivative with respect to n and
define

ω ≡ lim
n→1

∂

∂n

ωn
k

. (5.5.32)

This corresponds to studying the first order correction of the backreaction process.
The appearance of the operator limn→1 ∂n is not unfamiliar in the context of com-
puting entanglement entropy using Euclidean solutions with conical singularties
of the formMn

6. (5.5.32) is our proposal for the bulk symplectic form associated
to the entanglement wedge, and we will now show that it matches the modular
Berry curvature.

To make the connection with the boundary computation, we rewrite the integral
over the entangling region in terms of the variable u defined in (5.3.26). Notice
that the unit semicircle −π/2 ≤ arg(z) ≤ π/2 is mapped to the line u ∈ [−∞,∞],
since z = 1 goes to u = 0. In particular, the points u = ±Λ correspond to

z = 1 + ie±Λ

e±Λ + i
∼ e±i( π

2 −ϵ) , (5.5.33)

if we identify Λ with the UV regulator by Λ = − log ϵ
2 , in the limit Λ→∞, ϵ→ 0.

In the limit Λ→∞, the endpoints go to z → ±i along the unit circle, so (5.5.33)
is precisely the principal value prescription for γn.

Moreover, under the transformation in (5.3.26) the integration measure changes
as (5.3.28). Therefore, we can represent the integral over the entangling region γn

6In fact, the entanglement entropy S associated to the subregion A can be computed by the
formula S = − limn→1 ∂n logZn, where logZn ∼ −I [Mn] is the classical action evaluated on
the conical singularity geometry Mn.

155



5. Virasoro entanglement Berry phases

in terms of the u-variable as

1
π

∫ i

−i

ξ(z)
(1 + z2)2 dz = lim

Λ→∞

i

2π

∫ Λ

−Λ
ξ(u) du , (5.5.34)

which is precisely the projection operator P0(Xξ) in (5.3.34). Thus, we can rewrite
the symplectic form ωn as

ωn = c

12

(
1− 1

n2

)
P0([Xξ1 , Xξ2 ]) + c

48π

∫ i

−i
(ξ1ξ

′′′
2 − ξ2ξ

′′′
1 ) dz . (5.5.35)

Taking the derivative with respect to n and setting n → 1 according to (5.5.32)
gives the final result:

ω = P0([Xξ1 , Xξ2 ]) , (5.5.36)

which agrees with the curvature F in (5.3.3). Notice that the information about
the central zero mode discussed in Section 5.3.3 is also contained in ωn: it simply
corresponds to taking limn→1 ωn directly.

5.6 Discussion

We have considered the case of boundary parallel transport of a fixed interval
under a change in global state, which is in contrast to the situation considered
in [54] where the state is held fixed while the interval location is varied. However,
a general parallel transport process will change both the state and the location of
the interval. In such a situation, the curvature will contain cross-terms between
the Xλ’s of (5.3.34) and the Vµ’s of Section 5.2.2. Both are eigenoperators of the
adjoint action of the modular Hamiltonian, [Hmod, Xλ] = λXλ and [Hmod, Vµ] =
iµVµ, but notice that the eigenvalue of the Xλ’s is real while that of Vµ is purely
imaginary. By the Jacobi identity, the commutator [Xλ, Vµ] will have an eigenvalue
that is the sum of the two, thus it has both a real and imaginary part. This is never
zero, which means [Xλ, Vµ] does not have a zero mode. The curvature, (5.3.3), is
given by the projection onto this zero mode, which means that computed in these
directions that mix changes of state and interval location, it must vanish. Thus,
it appears to be sufficient to consider state and interval location-based transport
separately.

In the bulk, we have demonstrated an abstract connection between state-changing
parallel transport of boundary intervals and a certain family of Euclidean bulk
solutions. The holographic dual of the modular Berry curvature was argued to
be an entanglement wedge symplectic form on this geometry. This is similar in
spirit to the results of [55,213], but in the case of mixed states. However, a direct
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Figure 5.3: An example of a time-dependent geometry limiting to different boundary
states |ψi⟩ at each time. Could the Berry phase associated to state-dependent parallel
transport compute the length of a curve (such as the thick orange curve) in such a
geometry?

phase space interpretation of this symplectic form in Lorentzian signature is not so
obvious. Associating a phase space, i.e., a solution space of a proper initial value
problem, to an entanglement wedge involves some subtleties, e.g., the possibility
of edge modes [227–229] and boundary ambiguities at the RT surface that must be
fixed by a suitable choice of boundary conditions. Possibly, one could exploit the
relation to the hyperbolic black hole and identify the relevant phase space with
the one associated to the (outside of the) black hole. This would lead to geometric
setup for which the Lorentzian continuation is more well-behaved. In particular,
this approach requires a further study of the choice of boundary conditions that
are natural to put at the horizon.

It would also be interesting to explore a bulk description within a single Lorentzian
geometry. For instance, one could imagine constructing a time-dependent geom-
etry by gluing together certain slowly varying time-independent geometries that
are each dual to different boundary states. Since this will not in general give an
on-shell solution, one could try to turn on suitable sources on the boundary as a
function of time, in such a way that time evolution under the modified Hamilto-
nian (with sources) provides precisely the sequence of states under consideration.
In such a situation, one could look for a corresponding on-shell bulk solution with
modified asymptotics. It would be interesting to explore whether the Berry phase
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5. Virasoro entanglement Berry phases

associated to state-changing parallel transport computes a length within a time-
dependent geometry (see Figure 5.3).

Additionally, it would be interesting to explore further the connections to Uhlmann
holonomy described in [190]. This is a version of parallel transport constructed
from purification of density matrices subject to certain maximization conditions
on transition probabilities. Through appropriate insertion of stress tensors at the
boundary, this is claimed in [230–233] to describe the shape-changing transport
problem considered in Section 5.2.2. In this setting, the Berry curvature associated
to a parallel transport process that changes the state was argued to be dual to
the symplectic form of the entanglement wedge. While similar in spirit to much
of this work, it would be interesting to further study the relation to our work in
the context of key differences, such as the need for diagonalizing the adjoint action
and the use of non-smooth vector fields.

The problem we study also has relevance for thermalization in 2d CFT. For exam-
ple, the Krylov complexity contains information about operator growth in quan-
tum chaotic systems. Roughly speaking, this is given by counting the operators
that result under nested commutators with respect to a ‘Hamiltonian’ of the sys-
tem. In [234], the Krylov complexity was studied for the case where this Hamilto-
nian takes the form of (5.3.12), using an oscillator representation of the Virasoro
algebra. This is similar to the modular Berry transport process we have considered,
with the exception again of the use of non-smooth vector fields.

In studying operator-based parallel transport, we uncovered some subtleties re-
garding the diagonalization of the adjoint action for arbitrary Virasoro generators
(an explanation of these issues was given in Appendix C.3). For this reason we
considered a set of certain non-smooth vector fields on the circle, (5.3.18), which ex-
plicitly diagonalize the adjoint action so that the curvature results of Appendix C.2
may be applied. It would be interesting to further study this issue. For instance,
we found that the adjoint action could not be diagonalized over the usual Vira-
soro algebra, defined as the set of smooth vector fields on the circle.7 Instead, we
saw that the set of generators not expressible as [Hmod, X] was dimension three,
larger than the dimension of the kernel (which is in this case one-dimensional and
generated by Hmod). Furthermore, there was an ambiguity in the non-zero mode
piece. One could ask whether it is possible to consider parallel transport generated
by elements of the usual Virasoro algebra, and perhaps resolve the ambiguities in
the decomposition by taking a suitable choice of norm. Along these lines, one
could consider only Virasoro algebra elements that are contained within physical

7This is actually not uncommon in the case of infinite-dimensional vector spaces. For exam-
ple, when one tries to diagonalize the derivative operator on the space of polynomial functions
one naturally finds exponential functions, which are not part of the original space. The non-
analyticities we found should be regarded in the same way.
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correlators. It would be interesting to apply techniques from algebraic quantum
field theory to see if this eliminates some of the ambiguities we have encountered.

To properly diagonalize the adjoint action we were led to consider vector fields
on the circle that are non-differentiable on the endpoints of the interval. These
form a continuous version of the Virasoro algebra. Our Berry curvature can be
understood formally as the Kirillov-Kostant symplectic form on an orbit associated
to this algebra. It would be interesting to conduct a more rigorous study of this
algebra and its central extension. It is also worth noting that we considered a
dual space of distributions on the circle, which is larger than the set of smooth
quadratic differentials considered in the classification of [210]. For this reason,
the orbits we consider differ considerably from known Virasoro orbits since the
associated representative, (5.3.54), is not a quadratic form on the circle. To our
knowledge, such orbits have not been studied before in the literature. We have
identified at least one physical implication of such unconventional orbits, and thus
it would be interesting to revisit the classification of Virasoro orbits using more
general duals.
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6 Modular Berry phases and
the bulk symplectic form

6.1 Introduction
The growing interface between quantum information theory and gravity has shed
new light on many aspects of quantum gravity; for recent reviews see [235–239].
Within the realm of holography, it has been fruitful to search for bulk duals of
quantum information theoretic concepts on the boundary, so as to add new entries
to the AdS/CFT dictionary. Contrasted with earlier results in AdS/CFT, the
quantum information theory-based part of the dictionary often has a more direct
connection to bulk geometry.

In this chapter, we continue the approach of deriving new AdS/CFT dictionary
entries from quantum information theoretic quantities on the boundary side. We
will investigate a particular new quantum information theoretic boundary quantity,
which adapts the Berry parallel transport [240] to trajectories in the space of global
states. Unlike Berry transport for pure states in quantum mechanics, this parallel
transport transforms operators associated to a spatial subregion. This process has
been dubbed modular Berry transport because it relies on entanglement properties
of subregions, specifically on how the modular Hamiltonian is glued together across
different choices of subregion.

Modular Berry transport has been studied in some detail for trajectories defined
over kinematic space [184]—ones where boundary subregions vary in shape or
location [53,54]. In this case there is a direct bulk geometric dual: The Berry phase
reproduces lengths of bulk curves that can be reached by extremal surfaces, and
the Berry curvature is related to a bulk curvature. A close cousin of the modular
parallel transport generator was recently shown to act in three-dimensional bulk
geometries as the generator of ordinary parallel transport, which is described by
General Relativity [241].

Our setting here is different from those earlier works. We consider modular par-
allel transport along trajectories, which visit varying global states rather than
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6. Modular Berry phases and the bulk symplectic form

varying locations or shapes of boundary subregions. This approach was initiated
in a more restricted setting in the previous chapter, cf. [3]. There, we showed
that the curvature associated to a particular state-changing modular Berry trans-
port could be identified with an appropriately defined symplectic form associated
to an entanglement wedge. In that case, state deformations were implemented
through the action of a large diffeomorphism, whose form was dictated by the
Virasoro symmetry of a CFT2. (Berry phases on the Virasoro algebra were like-
wise considered in [192, 197, 204].) This setting further revealed a connection to
an auxiliary symplectic geometry derived from the group theory of the Virasoro
algebra: a coadjoint orbit. The triality between the Berry curvature, the entan-
glement wedge symplectic form, and the Kirillov-Kostant symplectic form on an
appropriate orbit (see also [201] for a similar triality for bulk duals of complexity)
revealed an interplay between group theory and quantum information in this case,
giving an additional handle on an important bulk geometric quantity of interest.

Our aim in this chapter is to set up Berry transport for a broad class of state defor-
mations in any dimension. Based on previous results in two dimensions, one might
imagine this to be a straightforward task. However, the power of group theory to
describe certain state-changing transformations in two dimensions also presents a
limitation in its generalization. To generalize state-changing Berry transport to
a larger class of state changes including state changes in higher dimensions, one
must invoke a very different toolkit. In the present work we make use of the Eu-
clidean path integral to implement state changes (analogously to [55, 213] in the
case of pure states, or see [190] for a different version of parallel transport based
on the Uhlmann phase1). We also use some new (from the perspective of modular
Berry transport) techniques such as modular Fourier decompositions, the KMS
condition from modular theory, as well as (from the bulk side) the equivalence be-
tween bulk and boundary modular flow and the modular extrapolate dictionary.
These tools have been useful in proving the ANEC and the quantum null energy
condition [231,244] and in setting the stage for a modular approach to bulk recon-
truction [244–246]. Intriguingly, though we employ very different techniques from
group theory, coadjoint orbits and Chern-Simons theory as utilized in [3], the end
result is similar: The expectation value of the Berry curvature in the global pure
state is equal to the symplectic form associated to an entanglement wedge.

Using a similar framework, we can also extract from the full Berry curvature a
symmetric quantity. We show that on the boundary, this describes a metric on
the space of density matrices, often referred to as the quantum Fisher information

1Excellent summaries of the different types of transport in quantum mechanical state spaces,
including Berry and Uhlmann transport, are given in [242] and [243]. Note, however, that those
works assume that the Hilbert space is finite-dimensional. Infinite-dimensional Hilbert spaces
can give rise to subtleties, see for example [3].
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Quantum Information 
 Metric

Modular Berry 
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Figure 6.1: Modular Berry transport provides a framework that encodes information
about not only the bulk symplectic form, but also the quantum information metric.

metric (this also goes by other names). In the bulk, we extract this from the bulk
symplectic form by taking a Lie derivative with respect to the generator of modular
flow. This describes the canonical energy, which has been used as a tool for deriving
the bulk equations of motion from entanglement entropy [247–249]. In the end, we
see that the modular Berry phase incorporates more information beyond simply
the bulk symplectic form, as is represented in the triangle in Figure 6.1.

Along the way, we can make contact with Berry transport in the shape-changing
case, now generalized to higher dimensions. We do so in two ways: first, by
considering the specific case of state deformations sourced by the stress tensor,
which incorporates shape changes. Next, we act with symmetry generators of the
higher dimensional conformal algebra, in a direct generalization of the techniques
of [3]. In doing so, we relate the Berry curvature for the higher-dimensional shape-
changing case to the Kirillov-Kostant symplectic form on a coadjoint orbit. The
full non-abelian Berry curvature lives on the coset space that is relevant for the
higher dimensional version of kinematic space, the space of causal diamonds in
a CFT [181–184, 250]. The connection to the Kirillov-Kostant symplectic form
relies on the fact that in this case, unlike for general state transformations, the
deformations which implement parallel transport lie in the symmetry algebra of
the boundary.

Outline: We set the stage in Section 6.2 by reviewing modular Berry transport
and state preparation using the Euclidean path integral. After introducing some
of the language of modular flow and modular Fourier decomposition, we use these
tools to derive the modular Berry curvature for general state deformations. We
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also introduce a symmetric derivative of the Berry curvature (see Appendix C.5
for the quantum information theoretic interpretation). Next, we extend these
quantities into the bulk in Section 6.3 using the modular extrapolate dictionary.
We show explicitly for operators sourcing bulk scalar fields that this computes
the bulk symplectic form (see Section 6.4.1 for a generalization beyond the scalar
case). The symmetric offshoot is related to the bulk canonical energy. Section 6.4
presents some explicit examples of the general formalism of the previous sections.
Specifically, we consider in Section 6.4.1 the case of a stress tensor source, which
in general implements a change of metric but also includes the shape-changing
case. Finally, in Section 6.4.2 we explicitly consider the higher-dimensional shape-
changing case by acting with symmetry generators, and elucidate the connection
to coadjoint orbits. Our conventions for the conformal algebra are presented in
Appendix C.4.

6.2 Berry curvature for coherent state deforma-
tions

First we consider a parallel transport problem purely defined on the boundary. We
will apply the modular Berry formalism to deformations that change the global
state on the boundary in arbitrary dimension. In Section 6.2.1, we review how to
construct such state deformations using coherent states and the Euclidean path
integral, and in Sections 6.2.2 and 6.2.3 we derive new results for the modular
Berry curvature and quantum information metric for state deformations. Our
results make convenient use of modular eigenstates and a modular Fourier basis.

6.2.1 Coherent state deformations

We would like to consider a modular Berry setup where the variation of η denotes
a change of state rather than a change of shape or location of the subregion. For
a CFT in two dimensions, one particular class of deformations δHmod that imple-
ment state changes involve elements of the infinite-dimensional Virasoro symmetry
algebra. (Due to certain subtleties, it is necessary to employ a continuous version
of the Virasoro algebra, which is described by certain non-smooth vector fields
on the circle [3].) For a CFT in d > 2 dimensions the story will necessarily be
different, since such state-changing transformations no longer lie in the symmetry
algebra so(d, 2).

To generalize the state-changing Berry construction to accommodate setups in
higher dimensions, it will be useful to introduce the language of Euclidean path
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Figure 6.2: The Euclidean manifold M that is integrated over to prepare the matrix
elements ⟨ϕA

+|ρ|ϕA
−⟩ of the density matrix. The two hemispheres are glued along the

complement region Ā, while the boundary conditions at the region A are left open. One
can prepare non-trivial coherent states by introducing non-trivial background sources λ
(which are represented by cats in the figure).

integrals.2 Specifically, we assume that the state |Ψ⟩ is a coherent state, in the
sense that it is prepared by the Euclidean path integral with a background source
λ. We consider deforming the state through the insertion of some operator O in
the path integral:

δS =
∫
ddx δλ(x)O(x) . (6.2.1)

The source δλ(x) determines the strength of the perturbation. At this point, there
is no need to restrict the support of the source, we take it to be anywhere in the
Euclidean half-plane.

The perturbation (6.2.1) leads to a change of the density matrix, and hence of the
modular Hamiltonian [231]. Denoting the collective field content of the theory by
ϕ, one can compute matrix elements of the density matrix by gluing the upper
and lower Euclidean half plane along the complement Ā at tE = 0:

⟨ϕA+|ρ|ϕA−⟩ = 1
Z

∫ ϕ(0+)=ϕA
+

ϕ(0−)=ϕA
−

[Dϕ] e−S[ϕ] , where Z ≡
∫

[Dϕ] e−S[ϕ] . (6.2.2)

2The Euclidean path integral is also useful for defining a CFT Berry transport process for
pure states, without restricting to a subregion [55, 213]. One goal of our work is to explicitly
adapt this to modular transport for mixed states. For a formal argument involving the mixed
state case and a different variety of parallel transport, see [190].
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Here, ϕA+ and ϕA− denote the value of the field ϕ just above and below the subregion
A respectively, and S[ϕ] is the Euclidean action of the theory with source λ. One
therefore integrates over the full Euclidean manifold M with a branch cut at the
location of the subregion (see Figure 6.2).

We now perturb the state according to (6.2.1). The new density matrix ρ′ is given
by

⟨ϕA+|ρ′|ϕA−⟩ = 1
(Z + δZ)

∫ ϕ(0+)=ϕA
+

ϕ(0−)=ϕA
−

[Dϕ] e−S[ϕ]−
∫
ddx δλ(x)O(x) . (6.2.3)

Using the geometric series relation

1
(Z + δZ) = 1

Z

(
1− δZ

Z
+ . . .

)
, (6.2.4)

and expanding the exponential in (6.2.3), we find that the change δρ ≡ ρ′ − ρ is
given by

⟨ϕA+|δρ|ϕA−⟩ = − 1
Z

∫ ϕ(0+)=ϕA
+

ϕ(0−)=ϕA
−

[Dϕ] e−S[ϕ]
∫
ddx δλ(x) : O(x) : + . . . , (6.2.5)

where we have introduced the renormalized operator : O :≡ O − ⟨O⟩. From now
on we will omit the notation : · :, and assume that all operators are background-
subtracted. Hence, up to first order in the source the density matrix changes
as

δρ = −
∫
ddx ρ δλ(x)O(x) . (6.2.6)

Recall that the modular Hamiltonian Hmod is related to ρ by

ρ = e−Hmod . (6.2.7)

Using the integral representation of the logarithm,

Hmod = − log ρ =
∫ ∞

0
dβ

(
1

ρ+ β
− 1

1 + β

)
, (6.2.8)

it follows from (6.2.6) that

δHmod =
∫
ddx δλ(x)

∫ ∞

0
dβ

(
ρ

ρ+ β
O(x) 1

ρ+ β

)
. (6.2.9)

To proceed, it is useful to use a spectral representation for the density matrix ρ.
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We consider modular frequency states |ω⟩, which are eigenstates of the modular
Hamiltonian:3

Hmod|ω⟩ = ω|ω⟩ . (6.2.10)

When evaluated in this basis, the change in the modular Hamiltonian takes a
relatively simple form. Inserting a resolution of the identity, one finds

⟨ω|δHmod|ω′⟩ =
∫
ddx δλ(x)⟨ω|O(x)|ω′⟩

∫ ∞

0
dβ

(
e−ω

e−ω + β

1
e−ω′ + β

)
. (6.2.11)

The integral over β can be performed easily. Indeed, we find that∫ ∞

0
dβ

(
e−ω

e−ω + β

1
e−ω′ + β

)
= ω − ω′

eω−ω′ − 1 . (6.2.12)

Plugging this back into (6.2.11), it follows that

⟨ω|δHmod|ω′⟩ =
∫
ddx δλ(x)n(ω − ω′)(ω − ω′)⟨ω|O(x)|ω′⟩ , (6.2.13)

where here we have introduced the quantity

n(ω) ≡ 1
eω − 1 , (6.2.14)

which will be convenient later. This gives a relatively simple expression for the
change in modular Hamiltonian in terms of the matrix elements of the operator
O.

Recall that the modular parallel transport problem relies on defining projection
P0 that sends an operator to its zero mode component. There is an ambiguity
in how to define this projection. A natural choice is to take the diagonal matrix
elements of the operator and multiply by the eigenstate |ω⟩⟨ω|:4

P0(O) ≡
∫
dω ⟨ω|O|ω⟩|ω⟩⟨ω| . (6.2.15)

This procedure defines a diagonal operator, which commutes with the modular

3As the existence of such states is only guaranteed in type I von Neumann algebras, our
analysis presumes that the more realistic settings of type II algebras (semi-classical gravity)
and/or type III algebras (quantum field theory) do not alter the overall picture.

4Under general circumstances, the integral in (6.2.15) might involve a non-trivial density of
states. The attendant degeneracies among states |ω⟩ generically arise from additional symmetries,
which commute with Hmod. If so, one can extend Hmod to a complete set of commuting operators
and declare ω to denote the corresponding complete set of quantum numbers. In this chapter
we assume that any degeneracies in the spectrum have been accounted for in this fashion, and
do not include explicit factors of the density of states.
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Hamiltonian since Hmod is diagonal in its own eigenbasis. It is easy to check that
the projection (6.2.15) satisfies

P0(Hmod) = Hmod , P0([Hmod, X]) = 0 . (6.2.16)

In other words, it is indeed the case that the kernel and image of the adjoint action
[·, Hmod] with respect to the modular Hamiltonian are disjoint.

We can now use P0 to define the parallel transport problem. We first subtract
off the zero mode part of δHmod, which is given by the diagonal component of
(6.2.13):

P0(δHmod) =
∫
ddx δλ(x)P0(O(x)) . (6.2.17)

Using the fact that

⟨ω|[X,Hmod]|ω′⟩ = (ω′ − ω)⟨ω|X|ω′⟩ , (6.2.18)

we recognize that the factor ω−ω′ in (6.2.13) comes from a commutator. Indeed,
we can choose an X with matrix elements

⟨ω|X|ω′⟩ = −
∫
ddx δλ(x)n(ω − ω′)⟨ω|O(x)|ω′⟩ . (6.2.19)

We additionally assume that X is zero mode free, P0(X) = 0, which also im-
plies P0(δHmod) = 0 by (6.2.17). Then, by comparing (6.2.18) and (6.2.19) with
(6.2.13), we see that X satisfies the transport equation

⟨ω|(δHmod − P0(δHmod))|ω′⟩ = ⟨ω|[X,Hmod]|ω′⟩ . (6.2.20)

Since X is assumed to be zero mode free, we can identify it with the generator of
parallel transport whose commutators compute the modular Berry curvature.

6.2.2 Berry curvature

Now that we have computed the matrix elements of δHmod in the modular eigen-
state basis and derived the generator X of parallel transport, we would like to
compute from this the Berry curvature. Recall that given two infinitesimal defor-
mations δ1λ, δ2λ and corresponding zero-mode free parallel transport generators
X1, X2, the Berry curvature is given by

F = P0([X1, X2]) . (6.2.21)

To further evaluate this expression it is useful to decompose the operator O in a
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6.2. Berry curvature for coherent state deformations

‘modular Fourier basis,’ where the action of the modular Hamiltonian is simple.
Such a basis was previously used in the context of bulk reconstruction in [245].
Let us first consider the modular flow associated to the algebra A and state |Ψ⟩,
defined by the operation

O ∈ A → Os = eiHmodsOe−iHmods ∈ A . (6.2.22)

One can use the modular flow to make a Fourier decomposition of the form

Oω =
∫ ∞

−∞
ds e−iωsOs , (6.2.23)

where the operators Oω are labeled by some modular frequency ω. We can now
decompose an operator O in terms of the modular Fourier basis as

O = 1
2π

∫
dωOω . (6.2.24)

Note that the operators Oω should always be viewed as being integrated against
some suitable function of the frequency ω to get finite expectation values. There-
fore, using the modular Fourier basis directly will introduce some intermediate
δ-functions5 in the computation, but the final answer for the curvature will be
finite.

The action of modular flow (6.2.22) on Oω is particularly simple. By shifting the
integration variable in (6.2.23) we find that

eiHmodtOωe−iHmodt = eiωtOω . (6.2.26)

Plugging this into the formula for the commutator

[Hmod,Oω] = −i d
dt

∣∣∣
t=0

eiHmodtOωe−iHmodt , (6.2.27)

gives the relation
[Hmod,Oω] = ωOω . (6.2.28)

We conclude that the operators (6.2.23) constitute a formal spectral decomposition
of the adjoint action of Hmod.

5Note that the Fourier zero mode O0 commutes with the modular Hamiltonian, but it is not
the same as applying the zero mode projection P0(O). They differ by an infinite normalization
factor coming from the extra δ-function:

O0 = P0(O0) = 2πδ(0)P0(O) , (6.2.25)

which reflects the fact that O0 by itself is in some sense a singular operator.
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The matrix elements of Oω in the modular frequency basis obey

⟨ω′|Oω|ω′′⟩ =
∫ ∞

−∞
ds ei(ω

′−ω−ω′′)s⟨ω′|O|ω′′⟩ = 2πδ(ω′ − ω − ω′′)⟨ω′|O|ω′′⟩ ,

(6.2.29)

so they are only non-zero when the frequencies satisfy the condition ω = ω′ − ω′′.
This can be used to our advantage. In particular, one can use (6.2.29) to show
that ∫

dω′′f(ω′′)⟨ω′|Oω|ω′′⟩ =
∫
dω′′f(ω′ − ω′′)⟨ω′|Oω′′ |ω′ − ω⟩ , (6.2.30)

and similarly∫
dω′′f(ω′′)⟨ω′′|O−ω|ω′⟩ =

∫
dω′′f(ω′ − ω′′)⟨ω′ − ω|O−ω′′ |ω′⟩ (6.2.31)

for any function f = f(ω).

This identity can be used to transform an integral over modular frequency states to
an integral over modular frequency operators. Let us first decompose the operator
X1, X2 into modular Fourier modes X1,ω1 , X2,ω2 , and compute the commutator

⟨ω|[X1,ω1 , X2,ω2 ]|ω′⟩ =
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

×
∫
dω′′⟨ω|Oω1(x)|ω′′⟩⟨ω′′|Oω2(x′)|ω′⟩n(ω − ω′′)n(ω′′ − ω′)− (1↔ 2) .

(6.2.32)

We have inserted a complete basis of states and used the expression (6.2.19). We
will now consider the diagonal part of (6.2.32). First note that from (6.2.29),
⟨ω|Oω1(x)|ω′′⟩⟨ω′′|Oω2(x′)|ω⟩ is proportional to δ(ω − ω1 − ω′′)δ(ω′′ − ω2 − ω).
Thus, it is only non-zero when ω1 = −ω2. We are therefore allowed to multiply
the equation with a term δ(ω1 +ω2)δ(0)−1. The extra insertion of δ(0) will cancel
at the end of the computation, when we write the answer in terms of the original
operators. Using the identity (6.2.30) we find that∫

dω′′n(ω − ω′′)n(ω′′ − ω)⟨ω|Oω1(x)|ω′′⟩⟨ω′′|Oω2(x′)|ω⟩ = δ(ω1 + ω2)δ(0)−1

×
∫
dω′′n(−ω′′)n(ω′′)⟨ω|Oω′′(x)|ω − ω1⟩⟨ω − ω1|O−ω′′(x′)|ω⟩ . (6.2.33)

By integrating over the modular frequencies ω1, ω2 on both sides of the equality
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using (6.2.24), and then removing a resolution of the identity, one obtains∫
dω′′n(ω − ω′′)n(ω′′ − ω)⟨ω|O(x)|ω′′⟩⟨ω′′|O(x′)|ω⟩

= N−1
∫
dω′′n(−ω′′)n(ω′′)⟨ω|Oω′′(x)O−ω′′(x′)|ω⟩ , (6.2.34)

where N ≡ (2π)2δ(0). Putting this back into the expression for the commutator
[X1, X2], one finds

⟨ω|[X1, X2]|ω⟩ = N−1
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

×
∫
dω′′n(−ω′′)n(ω′′)⟨ω|[Oω′′(x),O−ω′′(x′)]|ω⟩ . (6.2.35)

Since the operator [Oω′′(x),O−ω′′(x′)] is diagonal already, the projection operator
P0 leaves it invariant. We conclude that the Berry curvature is given by

F = N−1
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω n(−ω)n(ω)[Oω(x),O−ω(x′)] .

(6.2.36)

This formula is one of the main results of this section, and it provides a useful
representation of the curvature associated to coherent state deformations of the
form (6.2.1).

Note that this modular Berry curvature F is operator-valued, due to the fact that
our transport problem is suited to density matrices, instead of pure states. In fact
it is easy to verify that the curvature is a zero mode, i.e., F ∈ A0. By virtue of
the Jacobi identity together with (6.2.28),

[Hmod, [Oω,O−ω]] = [Oω, [Hmod,O−ω]]− [O−ω, [Hmod,Oω]] = 0 , (6.2.37)

which shows that the curvature indeed satisfies [Hmod, F ] = 0. Moreover, the
expression (6.2.36) is anti-symmetric under interchanging 1 with 2. This can
be most easily seen by substituting ω with −ω in the integral: While the term
n(−ω)n(ω) is invariant, the commutator picks up a minus sign.

We would like to extract a number from this operator-valued curvature. Although
there is no canonical way to do so6, a simple and convenient choice is to take the

6From a mathematical perspective it corresponds to identifying a suitable dual space of the
algebra of zero modes A0, and corresponding bilinear pairing. In the case of infinite-dimensional
algebras this is very subtle (see for example [3] where the case of the Virasoro algebra was
discussed).
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expectation value of the operator F in the original pure state |Ψ⟩:

FΨ ≡ ⟨Ψ|F |Ψ⟩ = ⟨F ⟩ . (6.2.38)

As we will show in Section 6.3, it turns out that (6.2.38) results in the correct
identification with the bulk symplectic form. This agreement can be viewed as
an argument for why this choice is the most ‘physical’ one. However, from a
mathematical point of view we stress that this choice is by no means unique, and
the operator F contains more information.

To proceed in evaluating this expectation value, let us mention a well-known result
for two-point functions of operators in the global state |Ψ⟩, the so-called KMS
condition. (For a pedagogical exposition of the KMS condition, see for example
[251, 252].) Roughly speaking, it says that we can swap operators in a two-point
function provided that we evolve one of them in imaginary modular time. To be
precise, we introduce the Tomita operator SΨ as an anti-linear operator that sends

SΨO|Ψ⟩ = O†|Ψ⟩ . (6.2.39)

The modular operator is now defined by ∆ = S†
ΨSΨ, and satisfies ∆|Ψ⟩ = |Ψ⟩.

Using the definition (6.2.39) together with anti-linearity one can verify that

⟨Ψ|OO′|Ψ⟩ = ⟨Ψ|O′∆O|Ψ⟩ , (6.2.40)

for O,O′ ∈ A. One can represent the modular operator in terms of the two-sided
modular Hamiltonian Ĥmod ≡ Hmod − H̄mod = − log ∆ so that the modular flow
(6.2.22) is given by Os = ∆−isO∆is. Therefore, assuming that the operators
Os(x),O(x′) are in the algebra A associated to the subregion7 one obtains the
condition

⟨Os(x)O(x′)⟩ = ⟨O(x′)Os+i(x)⟩ . (6.2.41)

The action of modular flow on the Fourier modes Oω is particularly simple, i.e.,
see (6.2.26), so that the KMS condition (6.2.41) reads

⟨Oω(x)Oω′(x′)⟩ = e−ω⟨Oω′(x′)Oω(x)⟩ . (6.2.42)

By rearranging terms on both sides of the equation one finds the following identity

⟨Oω(x)Oω′(x′)⟩ = n(ω)⟨[Oω′(x′),Oω(x)]⟩ , (6.2.43)

7To ensure this we need to put a restriction on the support of the sources in the perturbation
(6.2.6). In the Euclidean picture we assume that the state is perturbed by changing the sources
at the branch cut only (using some suitable limiting procedure where we approach it from above
and below).
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where n(ω) was defined in (6.2.14). This relation is very useful in practice since we
can use it to rewrite the expectation value of a commutator in terms of a two-point
function.

We can now use this to evaluate (6.2.38). By recognizing the right-hand side of
(6.2.43) in FΨ, we obtain

FΨ = N−1
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω n(ω)⟨O−ω(x)Oω(x′)⟩ . (6.2.44)

One can rewrite the above result by putting one of the two operators in its original
form. Using the definition (6.2.23) and the condition ∆|Ψ⟩ = |Ψ⟩ one can show
that the modular Fourier modes satisfy the following relation:

⟨Oω(x)Oω′(x′)⟩ =
∫ ∞

−∞
ds

∫ ∞

−∞
ds′e−i(ωs+ω′s′)⟨Ψ|Os(x)Os′(x′)|Ψ⟩

=
∫ ∞

−∞
ds e−iωs

∫ ∞

−∞
ds′e−i(ω+ω′)s′

⟨Ψ|eiHmods
′
Os(x)O(x′)e−iHmods

′
|Ψ⟩

=
∫ ∞

−∞
ds e−iωs2πδ(ω + ω′)⟨Ψ|Os(x)O(x′)|Ψ⟩ = 2πδ(ω + ω′)⟨Oω(x)O(x′)⟩ .

(6.2.45)

Hence, we conclude that the δ(0) factor drops out of the final answer, and we
obtain

FΨ = 1
2π

∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω n(ω)⟨O(x)Oω(x′)⟩ . (6.2.46)

This last equation will be useful in finding a bulk interpretation for the Berry
curvature. But first we will show that one can also extract from the Berry curvature
a symmetric quantity, which behaves like an information metric on the space of
modular Hamiltonians.

6.2.3 Quantum information metric

We can obtain some additional information from F that will be also useful from the
bulk perspective. Specifically, it is convenient to construct a symmetric quantity
from F by taking one of the perturbations to be of the form [Hmod, X]. The
quantity

G = P0 ([X1, [Hmod, X2]]) (6.2.47)

is symmetric under exchanging X1 with X2. Using an additional commutation
[Hmod, ·] to turn the antisymmetric object P0([X1, X2]) into a symmetric one fol-
lows a well-known construction, which applies in finite-dimensional settings [243].

173



6. Modular Berry phases and the bulk symplectic form

To see how this works, we use the Jacobi identity reorganized in the form

[X1, [Hmod, X2]] = [X2, [Hmod, X1]] + [Hmod, [X1, X2]] . (6.2.48)

Since the last term lies in the image of the adjoint action of Hmod, it is zero-mode
free by (6.2.16), so that

P0([Hmod, [X1, X2]]) = 0 . (6.2.49)

Therefore, taking the projection on both sides of (6.2.48) gives the required relation

P0([X1, [Hmod, X2]]) = P0([X2, [Hmod, X1]]) . (6.2.50)

Using the fact that Oω is an eigenoperator with respect to the adjoint action
of Hmod, (6.2.28), we pick up an extra factor of ω when evaluating [Hmod, X2].
Indeed, the formula for F gets modified to

G = N−1
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω n(−ω)n(ω)ω[Oω(x),O−ω(x′)] .

(6.2.51)

Note that this expression is indeed symmetric under the replacement of ω with
−ω. As we did for FΨ, one can extract from G a number by taking an expectation
value, GΨ ≡ ⟨Ψ|G|Ψ⟩. Going through a similar set of computations one obtains

GΨ = 1
2π

∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω ω n(ω)⟨O(x)Oω(x′)⟩ . (6.2.52)

This expression can be rewritten in a form which makes the relation with quantum
information theory manifest. Namely, one can undo the Fourier transformation
(6.2.23) and write the integral over modular frequencies in terms of an integral
over modular time. The extra factor of ω in (6.2.52) comes in handy, since we can
replace ωn(ω) with the following integral8:

|ω|n(ω) =
∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)
e−iωs . (6.2.54)

8This can be derived from an application of the residue formula (by closing the s-contour
in the upper/lower half plane depending on the sign of ω) and the geometric series relation. In
particular, one uses that the residue at s = ik for k ∈ Z is given by

Ress=ik
π

sinh2(πs)
f(s) =

f ′(ik)
π

. (6.2.53)
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Combining (6.2.52) with (6.2.54) and applying the inverse of the Fourier decom-
position, (6.2.23), we find that

GΨ =
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)
⟨O(x)Os(x′)⟩ . (6.2.55)

This quantity agrees with a well-known quantum information theoretic ‘metric’ on
the space of mixed states [248, 249], which is obtained from the second variation
of the relative entropy. (See Appendix C.5 for more details.) We therefore see
that the parallel transport problem for modular Hamiltonians is closely related
to a metric on the space of density matrices. This should be reminiscent of the
similar situation in the case of pure states, where the Berry phase computes the
Fubini-Study metric on the space of pure states [55,213]. It also provides a natural
starting point for investigations of a bulk interpretation.

6.3 Relation to the bulk symplectic form

We would now like to derive a bulk interpretation of the modular Berry curvature
and information metric. Let us start out by defining a quantity that generalizes
both (6.2.46) and (6.2.52):

HΨ = 1
2π

∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dωF(ω)⟨O(x)Oω(x′)⟩ . (6.3.1)

HΨ reproduces FΨ for the choice F(ω) = n(ω), and GΨ for F(ω) = ω n(ω).

We would like to extend HΨ into the bulk. Let us for the moment assume that
the boundary operator O used to deform the state in (6.2.1) is a scalar of con-
formal dimension ∆+. By general AdS/CFT principles, the dual bulk description
is some scalar operator Φ localized in a spacelike slice Σ = ΣA of the entangle-
ment wedge associated to the boundary region A. Since the expression (6.3.1)
contains operators of the form Oω, we first need to describe the bulk analogue of
the modular Fourier decomposition. Using the equivalence of bulk and boundary
modular flows it is then possible to extend the modular frequency modes into the
bulk [245, 253, 254]. We will argue that the two-point function in (6.3.1) behaves
like the asymptotic flux of some suitably defined symplectic form. Its bulk exten-
sion provides a natural definition for the bulk symplectic form associated to the
entanglement wedge. A similar approach was used in [254] to find holographic
duals of the α-z relative Rényi divergences, which are certain generalizations of
relative entropy.

Note that while we will focus explicitly on the scalar case in this section, it is
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straightforward to extend to more general field deformations. An important gener-
alization are stress tensor insertions, which in the bulk correspond to perturbations
of the geometry, will be treated in Section 6.4.1.

6.3.1 Bulk operator algebra

To make the computation tractable we will make one further assumption, namely
that we are working in a free field approximation. We expect this approximation
to hold for a generic bulk quantum theory to leading order in 1/N . Moreover,
we are interested in the symplectic form evaluated at a particular point in phase
space, so in principle it is possible to find bulk variables Φ and Π that linearize
the symplectic form. Interactions can be included perturbatively.

The bulk phase space AΣ can now be described explicitly in terms of the operators
Φ(X) and canonically conjugate operators Π(X) for X ∈ Σ. They satisfy the
canonical commutation relations

[Φ(Y ),Π(X)] = iδ(X − Y ) . (6.3.2)

Let us again now introduce the bulk modular flow associated to Σ, implemented by
some bulk density matrix ρbulk. Following a similar procedure as in the boundary
CFT one can now decompose the operators Φ into modular Fourier modes

Φω =
∫ ∞

−∞
ds e−iωsρ−is

bulkΦρisbulk , (6.3.3)

and similarly for Π. Given that the operators {Φ(X),Π(X) |X ∈ Σ} are a formal
basis for AΣ, we can express the operator (6.3.3) as the linear combination

Φω(X) =
∫

Σ
dY [αω(X,Y )Φ(Y ) + βω(X,Y )Π(Y )] , (6.3.4)

with αω(X,Y ), βω(X,Y ) coefficients in the expansion. By acting with the com-
mutator on (6.3.4) and taking the expectation value in the state ρbulk we find
that

αω(X,Y ) = i⟨[Π(Y ),Φω(X)]⟩ = i

n(ω) ⟨Φω(X)Π(Y )⟩ , (6.3.5)

where we have used the KMS condition (6.2.43) adapted to the bulk correlation
function. Similarly we have,

βω(X,Y ) = −i⟨[Φ(Y ),Φω(X)]⟩ = − i

n(ω) ⟨Φω(X)Φ(Y )⟩ . (6.3.6)
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By plugging this into (6.3.4) one obtains the final result

Φω(X) = i

n(ω)

∫
Σ
dY [⟨Φω(X)Π(Y )⟩Φ(Y )− ⟨Φω(X)Φ(Y )⟩Π(Y )] . (6.3.7)

One can also view (6.3.7) as a Bogoliubov transformation, which changes the
operator basis from Φ,Π to modular Fourier modes. As mentioned in Section 6.2.2,
the advantage of using the operators Φω is that in this basis the action of the (bulk)
modular Hamiltonian is relatively simple. Note that to completely specify the
right-hand side of (6.3.7) requires some boundary condition at the finite boundary
of Σ, i.e., at the RT surface. We will come back to this issue later, and will argue
that the behavior of the integrand near the RT surface is related to the presence
of a zero mode in the Berry transport problem.

6.3.2 Modular extrapolate dictionary

Up to this point, we have only used some basic properties of the bulk operator
algebra in a free field approximation to write (6.3.7). Let us now invoke the
AdS/CFT dictionary to relate the operator Φω to the corresponding boundary
operator Oω. We denote the holographic direction of the AdS space by z, so that
the bulk coordinate is given by X = (z, x). The extrapolate dictionary now states
that the properly regularized version of Φ approaches the operator O near the
asymptotic boundary:

lim
z→0

z−∆+Φ(x, z) = O(x) . (6.3.8)

Since we are interested in the modular frequency modes, we will need to use a
version of the extrapolate dictionary that is suited to this decomposition. A crucial
result was given in [253], where the authors show that the bulk and boundary
modular flows agree to first order in 1/N . This can be used to derive the so-called
modular extrapolate dictionary [245]:

lim
z→0

z−∆+Φω(x, z) = Oω(x) . (6.3.9)

We will use (6.3.9) to extend the operator HΨ into the bulk. Indeed, we can take
the boundary limit on both sides of the equation in (6.3.7):

Oω(x) = i

n(ω)

∫
Σ
dY [⟨Oω(x)Π(Y )⟩Φ(Y )− ⟨Oω(x)Φ(Y )⟩Π(Y )] . (6.3.10)

This formula provides a bulk expression for the boundary operator Oω(x) in terms
of some bulk-to-boundary propagators. Note that (6.3.10) is non-local expression
in the bulk, which is a reflection of the non-locality of the action of the modular
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flow. We can now plug (6.3.10) into (6.3.1) to obtain

HΨ = 1
2π

∫
Σ
dY

∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫
dω C(ω)

× [⟨Oω(x′)Π(Y )⟩⟨O(x)Φ(Y )⟩ − ⟨Oω(x′)Φ(Y )⟩⟨O(x)Π(Y )⟩] . (6.3.11)

We have collected the additional dependence on the modular frequency ω in the
function C(ω). It is given by

C(ω) ≡ iF(ω)n(ω)−1 . (6.3.12)

The expression (6.3.11) takes a very simple form when written in terms of the bulk
fields. Note that the bulk density matrix ρbulk gets perturbed in a similar way as
the boundary density matrix (6.2.6). From the coherent state deformation

δρbulk = −
∫
ddx ρbulkδλ(x)O(x) , (6.3.13)

we find that the expectation value of the operator Φ in the perturbed density
matrix δρbulk is given by

δϕ(Y ) ≡ −
∫
ddx δλ(x)⟨O(x)Φ(Y )⟩ . (6.3.14)

Note that δϕ is a number, while Φ is an operator. Using again that the bulk and
boundary modular flows agree we also obtain the relation

δϕω(Y ) =
∫
ddx δλ(x)⟨O(x)Φω(Y )⟩ =

∫
ddx δλ(x)⟨O−ω(x)Φ(Y )⟩ . (6.3.15)

Introducing similar expressions for the canonical conjugate bulk fields δπ and δπω
defined in terms of Π and Πω one finds that (6.3.11) simplifies to

HΨ = 1
2π

∫
Σ
dY

∫
dω C(ω) [δ2π−ω(Y )δ1ϕ(Y )− δ2ϕ−ω(Y )δ1π(Y )] . (6.3.16)

The variations δ1,2 that we introduced in the above expression correspond to the
choice of sources δ1,2λ respectively in (6.2.6).

6.3.3 Entanglement wedge symplectic form

As a final step we will now perform the integral over modular frequencies to obtain
the bulk symplectic form. A convenient trick is to first replace the ω-integral by
the action of a suitable differential operator on the bulk fields [254]. Specifically,
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starting with the modular Fourier modes for an arbitrary function f

f−ω =
∫ ∞

−∞
ds eiωsfs , (6.3.17)

we can apply an integration by parts on a wavepacket of such modular Fourier
modes to obtain∫

dω C(ω)f−ω(Y ) = 2π
∫ ∞

−∞
ds (C(i∂s)fs(Y )) δ(s) . (6.3.18)

We thus have ∫
dω C(ω)f−ω(Y ) = 2π

(
Ĉ fs(Y )

) ∣∣∣
s=0

, (6.3.19)

where we have defined a differential operator Ĉ that acts on the modular time s
as Ĉ = C(i∂s).

Now we have all the ingredients necessary to match our expression for HΨ to a
bulk symplectic form. Formally, we define the entanglement wedge symplectic
form in terms of the field perturbations and corresponding canonical momenta by

Ω(δ1ϕ, δ2ϕ) =
∫

Σ
dY [δ1ϕ(Y )δ2π(Y )− δ1π(Y )δ2ϕ(Y )] . (6.3.20)

Note that Ω(δ1ϕ, δ2ϕ) is manifestly anti-symmetric under interchanging 1 with 2.
Combining (6.3.16) with (6.3.19) we find that

HΨ = Ω(δ1ϕ, Ĉ(δ2ϕ)s|s=0) . (6.3.21)

The modular Berry curvature FΨ in (6.2.46) is a particular case of this general
relation. Recall that the curvature is described by FΨ, which is obtained from
HΨ by taking the constant function C(ω) = i. From (6.3.12), this corresponds to
the choice F = n(ω) in HΨ. Then from (6.3.21), the modular Berry curvature is
exactly proportional to the bulk symplectic form:

FΨ = iΩ(δ1ϕ, δ2ϕ) . (6.3.22)

Note that the factor of i comes from the canonical commutation relations, (6.3.2).
The above equality constitutes the main result of this section. It provides a bulk
dual for the boundary modular Berry curvature.

The modular Berry metric GΨ derived in (6.2.52) also arises as an example of
HΨ with the function C(ω) = iω. In this case, the differential operator acts non-
trivially, as Ĉ = −∂s, which corresponds to the infinitesimal action of bulk modular
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flow. We therefore find that the Berry metric is equal to the bulk symplectic form
with an extra action of the modular flow on one of the variations:

GΨ = Ω(δ1ϕ,−∂s(δ2ϕ)s|s=0) . (6.3.23)

The presence of bulk modular flow in (6.3.23) can be linked to the extra insertion
of the action of the modular Hamiltonian in defining (6.2.47). One can also reverse
the logic and argue that the Berry curvature FΨ via (6.3.22) provides a natural
symplectic form on the space of modular Hamiltonians that agrees with the bulk
symplectic form.

Let us now come back to the contribution from the RT surface γA in (6.3.10). The
contribution that is localized on the RT surface is related to the zero mode of the
operator O. From the bulk perspective this is quite easy to see: the action of the
bulk modular flow leaves the RT surface fixed so, in particular, operators localized
at the RT surface commute with the modular Hamiltonian, i.e., they correspond
to modular zero modes. (See Section 4 of [245] for an explicit expression of the
zero mode O0 in terms of an integral over the RT surface γA in the case that O
is a scalar.) In our derivation relating the Berry curvature to the bulk symplectic
form, we therefore see that the boundary term corresponds to the ω = 0 part of the
integral over modular frequencies in (6.2.46). But this term comes from the zero
mode in the original transport operator X as computed in (6.2.19). Therefore,
imposing P0(X) = 0 by subtracting the zero mode from it, and fixing the zero
mode ambiguity in the boundary parallel transport problem, naturally fixes the
ambiguity in the boundary condition for the entanglement wedge symplectic form
to be Dirichlet.

6.4 Explicit examples
We will now give some explicit examples that illustrate the formalism we have
introduced, but restricted to the scenarios where our state transformation are
suitable for describing shape transformations. In Section 6.4.1, we will consider
the case where the perturbing operator O in the Euclidean path integral (see
Section 6.2.1) is given by a stress tensor deformation. Such a deformation will in
general cause a change of the boundary metric, so that it lies in the class of state-
changing transformations. However, for a particular choice of deformation, namely
one generated by a conformal Killing vector, this instead implements a change of
shape of the entangling surface. From the bulk perspective, this example also
illustrates how the derivation of the bulk symplectic form given in Section 6.3
straightforwardly generalizes beyond scalar operators.

In Section 6.4.2, we will describe shape deformations in terms of symmetries rather
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than using the Euclidean path integral, which connects to the language of [3].
We will explain how in the particular case of shape-changing deformations, the
Berry curvature is equal to the symplectic form on a special geometry known as
a coadjoint orbit. This is reminiscent of the group theoretic structure that was
uncovered in two dimensions [3,188]. However, we emphasize that the connection
to coadjoint orbits will not carry over in the more general state-changing case.

6.4.1 Stress tensor insertions

We first consider a specific version of (6.2.6) where we perturb the state by an
insertion of the CFT stress tensor. This class of transformations includes the
special case of a state transformation that implements a change of shape of the
subregion [230–232] but also includes non-trivial changes to the boundary metric.
In the bulk dual, this will involve perturbations of the gravitational field.

For concreteness, we consider a d-dimensional CFT on the plane R1,d−1 in some
global state |Ψ⟩ with some ball-shaped region A in the t = 0 slice. We consider the
modular Hamiltonian associated to some reduced state ρ = ρA that is obtained by
tracing out the complement of the ball-shaped region A. In general, the modular
Hamiltonian is a complicated non-local operator, but in the case that |Ψ⟩ = |0⟩ is
the vacuum state it has an explicit local expression. One can write

Hmod =
∫
A

dSνξµATµν , (6.4.1)

where Tµν is the CFT stress tensor and ξA is the vector field that generates modular
flow; in particular, it preserves the causal diamond D(A) of the region A. We would
like to deform the modular Hamiltonian via the the action ξ of some coordinate
transformation

xµ 7→ x′µ = xµ + ξµ(x) . (6.4.2)

One can show that the action of ξ is implemented by the action of some operator
on the modular Hamiltonian

δξHmod − P0(δξHmod) = [X,Hmod] , (6.4.3)

where X is defined by
X =

∫
A

dSνξµTµν . (6.4.4)

The transport problem (6.4.3) is in fact a special example of the coherent state
formalism that we discussed in Section 6.2, where we now take O = Tµν and
λ = ∂µξν . Before going into the details, we stress that the equality in (6.4.3) is
actually quite subtle. A general coordinate transformation ξ does not leave the
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metric hµν of the CFT invariant. Instead, we have

δhµν = Lξhµν ≡ ∂µξν + ∂νξµ . (6.4.5)

If ξ is a Killing vector we have δhµν = 0, but in general the variation is non-
zero. The idea is, that for a generic transformation ξ, the change in metric can
be traded for a change in the state of the CFT implemented by some unitary
on the Hilbert space. For this reason, we are able to utilize the formalism of
state-changing transformations developed earlier in the chapter to describe shape
changes by restricting to the particular case where ξµ is a conformal Killing vector.

Deforming the boundary metric
We would like to derive the parallel transport equation, (6.4.3), for this special
case of stress tensor insertions. The following subsection will review some results
derived in [230], while adapting them to the modular Berry setup.

Under a change of the metric the action of the theory picks up a piece of the form

δS ∼
∫
ddx δhµν(x)Tµν(x) . (6.4.6)

Hence, we can think of the deformed state as being obtained from the original
state by introducing a source for the stress tensor. We take (6.2.13) as a starting
point with the appropriate source and operator. Using a version of the integral
formula (6.2.54), one can write this as

⟨ω|δHmod|ω′⟩ =
∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)

∫
ddx δhµν(x)⟨ω|ρisTµν(x)ρ−is|ω′⟩ .

(6.4.7)

The above formula is true for arbitrary metric deformations. Let us now specialize
to the case where it is generated by a diffeomorphism:

δhµν = ∂µξν + ∂νξµ . (6.4.8)

We split the integral over the Euclidean plane into two pieces: a tubular neighbor-
hood Rb of width b around the entangling region ∂A, and its complement R̃. Let
us first do the integral over R̃. It can be localized to an integral over the boundary
∂R̃ using an integration by parts:∫

R̃

ddx ∂µξνT
µν = −

∫
R̃

ddx ξν∂µT
µν +

∫
∂R̃

dSµ ξνT
µν . (6.4.9)

By conservation of the stress energy on the support of the diffeomorphism, only
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the second term in (6.4.9) survives. Let us therefore consider the boundary of
R̃ that consist of three parts ∂R̃ = ∂Rb ∪ ∂R̃+ ∪ ∂R̃−, i.e., the boundary of the
tubular neighborhood, and the region just above and below the branch cut at A.
We first consider the term coming from the branch cut:

δHmod
∣∣
cut =

∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)

(∫
∂R̃+

−
∫
∂R̃−

)
dSµ ξνT

µν
−s . (6.4.10)

Here the modular-evolved stress tensor is defined according to (6.2.22) by Tµν−s =
ρisTµνρ−is. To perform the integral over the branch cut we note that the value of
the stress tensor above and below the branch cut are related by modular evolution
in Euclidean time. (Recall that Euclidean modular evolution acts geometrically by
circular flow around the branch points.) Therefore, we can change the integration
region from ∂R̃− to ∂R̃+ by applying a substitution s→ s+ i− 2iϵ in the integral
over s. Hence, it follows that:

δHmod
∣∣
cut =

∫ ∞

−∞
ds

(
π

2 sinh2(π(s+ iϵ))
− π

2 sinh2(π(s− iϵ))

)∫
∂R̃+

dSµ ξνT
µν
s .

(6.4.11)

Since the contour now only encloses the pole at zero, the integral over s now
precisely picks up the double pole at s = 0. From (6.2.53) we find that the residue
at s = 0 is given by

1
2π

d

ds

∣∣∣
s=0

Tµνs = i

2π [Hmod, T
µν ] . (6.4.12)

In the limit b → 0, the region ∂R̃+ becomes equal to the subregion A, so we
conclude that:

δHmod
∣∣
cut = −

∫
A

dSµ ξν [Hmod, T
µν ] . (6.4.13)

This already reproduces the result (6.4.3). For a detailed derivation of the corner
term contribution from ∂Rb, see [230]. For our purposes, we will neglect this
term since it is unaffected by a shift in modular time (which is how the modular
Hamiltonian acts close to the boundary of the subregion). Thus, it will commute
with the modular Hamiltonian and therefore only contributes to the zero mode
piece P0(δHmod) in the modular transport problem, and will not affect the Berry
curvature.

Gravitational bulk symplectic form
Since the stress tensor perturbations on the boundary are related to perturba-
tions of the bulk geometry, we will compute the gravitational bulk symplectic
form explicitly, and compare to the result obtained from the Berry curvature. A
standard way to compute the bulk symplectic form is using the covariant phase
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space formalism [255–258]. This starts from the general action

S =
∫
L , (6.4.14)

where L is the Lagrangian density which is a (d+1)-form on spacetime. We follow
standard conventions and denote the exterior derivative on field space by δ, and
the exterior derivative on spacetime by d.

We write the variation of the Lagrangian as

δL = E δφ+ dΘ , (6.4.15)

where φ denotes the collection of dynamical fields of the theory, and E are the
equations of motion (which vanish on-shell). The boundary term Θ is a one-form
on field space and a d-form on spacetime. Its variation ω ≡ δΘ is a two-form on
field space that can be integrated to give a symplectic form:

Ω =
∫

Σ
ω . (6.4.16)

The d-dimensional surface Σ is usually taken to be a complete Cauchy surface of
the bulk spacetime. In our case, we will be interested in the situation where Σ
only covers part of the Cauchy slice that corresponds to the entanglement wedge
of some boundary subregion. Let us now consider the case of pure Einstein gravity
with Lagrangian

L = 1
16πG (R− 2Λ) ϵ , (6.4.17)

where ϵ is the (d + 1)-dimensional volume form. We will take gαβ to be the bulk
metric. It is straightforward to show that Θ takes the form Θ = θ · ϵ with

θα = 1
16πGg

βγ (∇γδgαβ −∇αδgβγ) . (6.4.18)

Let us now compute the pullback of θ to the surface Σ. Denoting by na the unit
normal vector to Σ, and ϵΣ the associated volume form, one finds that

nαθα = 1
16πG

(
nρg

βσ − nσδβρ
)
δΓρσβ = 1

16πG
(
nργ

βσ − nσδβρ
)
δΓρσβ , (6.4.19)

where we have introduced the induced metric γαβ = gαβ − nαnβ on Σ. Then the
pullback of Θ to Σ can be written in terms of the extrinsic curvature as [258,259]

Θ|Σ = nαθ
αϵΣ = δ

(
− 1

8πGKϵΣ
)
− 1

16πG
(
Kαβ −Kγαβ

)
δγαβϵΣ +dC . (6.4.20)
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The term C = c · ϵΣ is given by

cα = − 1
16πGγ

αβnρδgβρ , (6.4.21)

and vanishes if we impose Dirichlet boundary conditions. In that case, we can
express (6.4.20) in terms of the quantities

παβ ≡ − 1
16πG

(
Kαβ −Kγαβ

)
, ℓ ≡ 1

8πGKϵΣ . (6.4.22)

Indeed, we have
Θ|Σ = παβδγαβϵΣ − δℓ . (6.4.23)

The fields παβ will play the role of the canonical momenta associated to the induced
metric. Finally, taking another variation of (6.4.23) one finds that

δΘ|Σ =
(
δπαβ ∧ δγαβ

)
ϵΣ . (6.4.24)

This leads to the final expression for the bulk symplectic form in Darboux form:

Ω(δ1g, δ2g) =
∫

Σ
dX

[
δ1π

αβδ2γαβ − δ2π
αβδ1γαβ

]
. (6.4.25)

The boundary quantity (6.3.1) that comes from the Berry transport problem in
the case of stress tensor deformations is given by

HΨ = 1
2π

∫
dωF(ω)

∫
ddx

∫
ddx′ δ1λµν(x)δ2λστ (x′)⟨Tµν(x)T στω (x′)⟩ , (6.4.26)

where δλµν(x) is generated by a change of boundary metric as in (6.4.6). Let us
now compare (6.4.25) to the Berry curvature. The computation is very similar to
that of the scalar field, with the difference that some extra indices appear. We
denote the bulk operator corresponding to the induced metric γαβ by Γαβ , and its
canonical conjugate operator by Παβ . The commutation relations are analogous
to the scalar field case [254]:

[Γαβ(X),Πστ (Y )] = i

2(δασδβτ + δατδβσ)δ(X − Y ) . (6.4.27)

As before, we can define the modular Fourier modes Γωαβ associated to the operator
Γαβ , and expand in terms of Γαβ ,Παβ . Similarly to before, the coefficients can
be written in terms of two-point functions using the KMS condition. Applying
a version of the modular extrapolate dictionary (6.3.9) that is suited to metric
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perturbations one finds that

Tµνω (x) = i

n(ω)

∫
Σ
dX

[
⟨Tµνω (x)Γαβ(X)⟩Παβ(X)− ⟨Tµνω (x)Παβ(X)⟩Γαβ(X)

]
.

(6.4.28)

Plugging (6.4.28) into (6.4.26) we find that

HΨ = 1
2π

∫
Σ
dX

∫
dω C(ω)

∫
ddx

∫
ddx′ δ1λµν(x)δ2λστ (x′)

×
[
⟨Tµν(x)Παβ(X)⟩⟨T στω (x′)Γαβ(X)⟩ − ⟨Tµν(x)Γαβ(X)⟩⟨T στω (x′)Παβ(X)⟩

]
.

(6.4.29)

Similarly to the scalar field case, one can now write the above expression in terms
of the metric perturbations and canonical momenta by evaluating the relevant
operator in the perturbed state. For example, we have an identity of the form

δγαβ−ω = −
∫
ddx δλµν(x) ⟨Tµνω (x)Γαβ⟩ . (6.4.30)

Using this together with similar expressions for the perturbations δγαβ , δπαβ , δπαβ−ω,
one can write

HΨ = 1
2π

∫
Σ
dX

∫
dω C(ω)

[
δ1παβ(X)δ2γ

αβ
−ω(X)− δ1γαβ(X)δ2π

αβ
−ω(X)

]
.

(6.4.31)

Applying (6.3.19) to remove the integral over frequencies one finds that

HΨ =
∫

Σ
dX

[
δ1παβ Ĉ

(
δ2γ

αβ
)
s

∣∣∣
s=0
− δ1γαβ Ĉ

(
δ2π

αβ
)
s

∣∣∣
s=0

]
, (6.4.32)

where the insertion of the operator Ĉ is defined in (6.3.19). In the case of the
Berry curvature FΨ where C(ω) = i is the constant function, this explicitly agrees
with the gravitational bulk symplectic form (6.4.25).

For the symmetric quantity (6.2.47), which results from taking C(ω) = iω to no
longer be constant, one finds that

GΨ = Ω(δ1g,Lξδ2g) , (6.4.33)

where the bulk modular flow in the vacuum acts geometrically via a Lie derivative
Lξ. This quantity is also known as the canonical energy [248, 254, 260]. From the
boundary definition, it is obvious that (6.2.47) defines a symmetric quantity. To
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see from the bulk perspective that (6.4.33) is symmetric under the interchange of
1 and 2, one can use the product rule and Cartan’s magic formula to write

Ω(δ1g,Lξδ2g)− Ω(Lξδ1g, δ2g) =
∫

Σ
LξδΘ =

∫
Σ
d(iξδΘ) . (6.4.34)

At the last equality we have also used that the symplectic potential ω = δΘ is
closed, i.e., dω = 0. Now we can use Stokes’ theorem to localize the integral in
(6.4.34) to the boundary ∂Σ, which consists of the RT surface and the asymptotic
boundary. Using the fact that the diffeomorphism ξ is an asymptotic Killing vector
which vanishes at the RT surface as well, we find that the boundary terms vanish:

Ω(δ1g,Lξδ2g)− Ω(Lξδ1g, δ2g) =
∫
∂Σ
iξδΘ = 0 . (6.4.35)

This confirms that the canonical energy is symmetric, following our derivation of
(6.4.33).

6.4.2 Symmetry transformations
We will now study the case where the diffeomorphisms that implement the defor-
mation explicitly lie in the conformal group. This is the direct higher-dimensional
generalization of the shape-changing setup that was considered in [53, 54] and re-
viewed in [3] for the case of AdS3/CFT2. In particular, we will show that the
resulting geometric space has the structure of a coadjoint orbit of the conformal
group. Notably, the specific state-changing transformations that were considered
in [3] are not part of the symmetry algebra of CFTd when d > 2, which is finite-
dimensional. This is to be contrasted with the situation in d = 2, where the
symmetry algebra is the infinite-dimensional Virasoro algebra.

Berry curvature
Let us consider a CFTd in the vacuum state. The modular Hamiltonian associated
to a spherical region A of radius R is an element the conformal algebra, so(2, d).
For example, using planar coordinates (t, x⃗) for the boundary CFT, and choosing
a sphere of midpoint x⃗0 and radius R in the t = 0 slice, Hmod is generated by the
conformal Killing vector that preserves a diamond, which is given by [182]

Hmod = π

R

[
(R2 − |x− x0|2 − t2)∂t − 2t(xi − xi0)∂i

]
. (6.4.36)

Using the conventions of Appendix C.4, we can write this operator in terms of the
conformal group generators as

Hmod = π

R

[
−(R2 − |x⃗0|2)P0 − 2xi0M0i − C0

]
. (6.4.37)
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A crucial ingredient in the computation of the modular Berry curvature is the par-
allel transportation equation. We will start by changing the modular Hamiltonian
by acting with an element in the symmetry group X ∈ so(2, d):

δHmod − P0(δHmod) = [X,Hmod] . (6.4.38)

These shape-changing variations change the spherical region without modifying
the global state of the CFT9. Recall that (6.4.38) is a special example of (6.4.3)
where we take the diffeomorphisms to be conformal Killing vectors.

Clearly, not all generators X in (6.4.38) lead to a change of the modular Hamil-
tonian. The ones which satisfy δHmod = 0, are the modular zero modes, and
are formally defined as elements Q ∈ so(2, d) which commute with the modular
Hamiltonian:

[Q,Hmod] = 0 . (6.4.39)

This is precisely the definition of the stabilizer subalgebra h ≡ stab(Hmod). In the
case that Hmod is given by (6.4.37) a suitable basis for the space of zero modes
can be given by

Qi = 1
2R

[
−(R2 + |x⃗0|2)Pi − 2x0iD + 2xj0Mij + 2x0ix

j
0Pj + Ci

]
, (6.4.40)

Qij = Mij + x0iPj − x0jPi , (6.4.41)

where i, j = 1, . . . , d − 1. Indeed, using the conformal algebra one can explicitly
check that

[Qi, Hmod] = [Qij , Hmod] = 0 . (6.4.42)

The first class of zero modes in (6.4.40) correspond to ‘boosts’ (directed in the
i-th direction of the x⃗ plane) that preserve the causal diamond associated to the
spherical region on the boundary. The second class of zero modes, (6.4.41), rotate
the spherical region while leaving the diamond invariant. The algebra of the zero
modes is given by:

[Qi, Qj ] = Qij , [Qi, Qjk] = Qkδij −Qjδik . (6.4.43)

Together with the modular Hamiltonian itself, the zero mode space A0 can there-
fore be identified with the subalgebra

h = so(1, 1)× so(1, d− 1) . (6.4.44)

9Of course, as explained in Section 6.4.1, one can equivalently think of them in terms of a
procedure where we keep the subregion fixed, but change the global state by insertion of a stress
tensor operator in the Euclidean path integral.
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zero modes
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Figure 6.3: A parallel transport problem. The Berry curvature is associated to the
principal H-bundle defined by G → G/H with fibers that are isomorphic to H. A closed
curve of modular Hamiltonians Hmod(λ) in the base space G/H is parallel lifted (using
the Berry connection) to a non-closed curve in the group G. The endpoints of the curve
differ by an element in the zero mode space H.

Note that the space of zero modes has a non-abelian component so(1, d− 1).

The general structure of the modular Berry transport can now be described as
follows: The space of modular Hamiltonians that we consider is locally given by
the variations (6.4.38) and therefore parametrized by X ∈ g/h. Exponentiating,
we conclude that the parameter space is given by the coset space

OHmod ≡
SO(2, d)

SO(1, 1)× SO(1, d− 1) . (6.4.45)

This is nothing other than the coset space describing the space of causal diamonds
in a d-dimensional CFT, known as kinematic space [181–184].

The action of the symmetry group on parameter space is through conjugation and
the subgroup of zero modes satisfies

V HmodV
−1 = Hmod (6.4.46)

for V ∈ H. A path in the coset space (6.4.45) can be identified with a one-
parameter family of modular Hamiltonians. One can think of this as describing a
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fiber bundle10

G→ G/H , (6.4.48)

which geometrizes the zero mode ambiguity in (6.4.46) by associating to each
modular Hamiltonian in the parameter space a fiber of zero modes that projects
to the same element (see Figure 6.3).

On an abstract level, the modular Berry connection now corresponds to a one-form
on G that takes values in the non-abelian zero mode space. Similarly, the Berry
curvature F takes the general form

F = FHmodHmod +
∑
Q

FQQ , (6.4.49)

where the sum overQ indicates a sum over a suitable basis of zero modes (excluding
Hmod itself). Hence, F ∈ h takes values in a non-abelian zero mode space, and
satisfies [Hmod, F ] = 0. One can compute the Berry curvature associated to two
transformations X1, X2 from the general formula

F = P0([X1, X2]) . (6.4.50)

The map P0 : g → h denotes the zero mode projector, that extracts the compo-
nent of the commutator in these directions. Explicitly, decomposing an arbitrary
operator X as

X = αHmod +
∑
Q

αQQ+ [Hmod, Y ] , (6.4.51)

the projection operator will extract the parts with coefficients α and αQ.

Given the non-abelian structure of the zero mode space (6.4.44), one needs to
decompose the projector P0 into subprojectors that extract each of the coefficients
in (6.4.51) separately. In general, without introducing more structure, there is no
unique procedure for doing this. In fact, one can simply redefine the operators Q
that constitute the zero mode basis to get a new set of coefficients αQ in (6.4.51).
However, at this point we can use the fact that we are working with a finite-
dimensional Lie algebra and introduce the notion of inner product ⟨·, ·⟩ on the
zero mode space. By choosing an orthonormal basis of zero modes, one can easily
distinguish between them. A natural choice of inner product on the Lie algebra

10This defines a principal H-bundle in the following sense. There is an action of H on G
through left-action:

U → V U , (6.4.47)
which is compatible with the projection G → G/H, and the isomorphism g ∼= g/h ⊕ h implies
that the group G is locally isomorphic to the trivial principal H-bundle.
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so(2, d) is the Cartan-Killing form given by

⟨X,Y ⟩ ≡ 1
2tr(XY ) , (6.4.52)

where the trace is taken in the fundamental representation. Let us now choose a
linearly independent set of zero mode generators Qa which are orthonormal with
respect to the metric:

⟨Qa, Qb⟩ = δab . (6.4.53)

Such an orthonormal basis can, for example, be obtained using the Gram-Schmidt
procedure. Moreover, we require that ⟨Hmod, Qa⟩ = 0. One can use the metric
and corresponding orthonormal basis to extract the coefficients from the operator
X. For example, we can define the projection PHmod

0 on the Hmod-component of
the operator through

PHmod
0 (X) ≡ c−1

Hmod
⟨Hmod, X⟩ = α , (6.4.54)

where the normalization is such that cHmod = ⟨Hmod, Hmod⟩. One can check that
(6.4.54) indeed satisfies the properties that we usually associate with a projection

PHmod
0 (Hmod) = 1 , PHmod

0 (Qa) = 0 , PHmod
0 ([Hmod, Y ]) = 0 , (6.4.55)

by using the orthogonality of zero modes. Moreover, the last equality in (6.4.55)
can be proved using the cyclicity of the trace

tr(Hmod[Hmod, Y ]) = 0 . (6.4.56)

Using this explicit form of the subprojector, we can compute the curvature com-
ponent of (6.4.49) in the direction Hmod via the formula

FHmod = PHmod
0 ([X1, X2]) . (6.4.57)

The non-abelian part of the curvature F can be extracted in a similar fashion. To
this end, we construct the subprojection operators onto the other zero modes

PQa

0 (X) ≡ c−1
Qa
⟨Qa, X⟩ = αQa , (6.4.58)

and a different normalization cQa
= ⟨Qa, Qa⟩. In particular, the curvature compo-

nent in the Qa-direction is given by FQa = PQa

0 ([X1, X2]). This gives a concrete
prescription for computing all the components of the modular Berry curvature in
the case of shape-changing transformations. We will now show that the numbers
that we extract from the operator F can be computed from a symplectic form on
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6. Modular Berry phases and the bulk symplectic form

certain coadjoint orbits of the conformal group.

Relation to coadjoint orbits
Recall that the parameter space (6.4.45) of the modular Hamiltonian associated
to shape-changing transformations is given by

OHmod = SO(2, d)
SO(1, 1)× SO(1, d− 1) . (6.4.59)

We will now observe that this has the structure of a geometry known as a coadjoint
orbit.

Consider our algebra g = so(2, d). It admits a bilinear pairing ⟨·, ·⟩ given by (C.4.3)
between elements of so(2, d). Since the pairing is non-degenerate, the algebra and
dual space g∗ (the space of linear maps on the algebra) are isomorphic. A coadjoint
orbit is properly defined in terms of an orbit through the dual space, but due to this
isomorphism it suffices to consider orbits of the algebra under a particular action:
the adjoint action given by the Lie commutator. Such orbits form symplectic
manifolds, and admit a symplectic form known as the Kirillov-Kostant symplectic
form [211].

To define the Kirillov-Kostant symplectic form, let us first consider the Maurer-
Cartan form

Θ = U−1dU , (6.4.60)

on the group U ∈ SO(2, d). Using the dual pairing the Kirillov-Kostant symplectic
form is defined as

ω ≡ ⟨Hmod,Θ ∧Θ⟩ . (6.4.61)

To show that ω defines a symplectic form we use the Maurer-Cartan equation:

dΘ + Θ ∧Θ = 0 . (6.4.62)

Indeed, from (6.4.62) it immediately follows that d(Θ ∧Θ) = 0 which shows that
dω = 0. Hence, ω indeed defines a closed form on the group. Moreover, one can
check from the definition (6.4.60) that

Θ ∧Θ(X1, X2) = [X1, X2] , (6.4.63)

so that the Kirillov-Kostant form can also be written as

ω(X1, X2) = ⟨Hmod, [X1, X2]⟩ . (6.4.64)

Due to the presence of zero modes, (6.4.64) has degeneracies when defined on the
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full group. The fact that ω descends to a symplectic form on the parameter space
OHmod follows from the observation:

tr(Hmod[X1, X2]) = −tr([X1, Hmod]X2) = 0 , (6.4.65)

whenever X1 ∈ stab(Hmod). Because the stabilizer of the modular Hamiltonian is
precisely given by the subgroup H = SO(1, 1) × SO(1, d − 1), this shows that ω
defines a symplectic form on the coadjoint orbit. Note that (6.4.64) agrees with
the formula (6.4.57) for FHmod up to a normalization constant. Thus, we find
that the abelian part of the modular Berry curvature equals the Kirillov-Kostant
symplectic form on kinematic space. This result was anticipated for the case d = 2
in [3], and we have now established it here in full generality.

For the non-abelian part of the curvature, the situation is slightly different, in the
sense that

FQa = 0 (6.4.66)

on the stabilizer stab(Qa), which consists of elements that commute with the zero
mode Qa. Of course, Hmod is such a stabilizing element (by definition of Qa), but
in general stab(Hmod) ̸= stab(Qi). Therefore, the non-abelian components of the
curvature do not descend a two-form on OHmod , but on a different coadjoint orbit
OQa

. Of course, this coadjoint orbit has the same global structure as (6.4.59)
(from a mathematical perspective there is nothing special about the zero mode
Hmod compared to the other Qa), but the explicit parametrization in terms of
conformal group generators will be different. The rest of the arguments that
were given above still go through, so that we can identify the Qa-component of
the shape-changing Berry curvature with the Kirillov-Kostant symplectic form on
OQa

.

Low-dimensional examples
Let us now work out some low-dimensional examples, and use the parallel transport
formalism to compute the modular Berry curvature by changing the shape of the
entangling region. The results will agree with the Crofton formula for computing
lengths of geodesics in the bulk [184]. (For the higher-dimensional case, see [261].)

We first restrict to the case of a CFT2 on the plane. The entangling region on the
boundary is an interval (specified by its midpoint x0 and radius R), with modular
Hamiltonian (6.4.37) given by

Hmod = π

R

[
−(R2 − x2

0)P0 − 2x0M01 − C0
]
. (6.4.67)

For the unit-interval centered at the origin (x0, R) = (0, 1) this expression reduces
to Hmod = −π [P0 + C0] . A representation of the corresponding vector field is
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Q

Figure 6.4: Left: The action of Hmod on the causal diamond. Right: The action of Q
on the causal diamond.

provided in Figure 6.4 (left panel). Note that it preserves the causal diamond
associated to the interval. The case d = 2 allows for one additional zero mode in
(6.4.40), which we denote by Q, and is given by

Q = 1
2R
[
−(R2 − x2

0)P1 − 2x0D + C1
]
. (6.4.68)

Again, for (x0, R) = (0, 1) we have Q = 1
2 [−P1 + C1]. It amounts to a spatial

‘boost’ that fixes the entangling surface at x = x0 ± R, see Figure 6.4 (right
panel).

The Berry transport problem involves a modification of the entangling region by
some generators of the conformal group. Given our parametrization of the modular
Hamiltonian (6.4.67) in terms of the midpoint x0 and radius R a natural choice of
shape-changing transformations are translations and widenings of the interval. In
these cases, the parallel transport equation in (6.4.38) becomes

∂x0Hmod = [Sδx0 , Hmod] , ∂RHmod = [SδR, Hmod] . (6.4.69)

The operators that implement the changes in shape are denote by Sδx0 and SδR
respectively. Using the commutation relations in Appendix C.4, it is easy to see
that the parallel transport operator for translations is

Sδx0 = P1 . (6.4.70)

Similarly, one can show that

SδR = − 1
R

(x0P1 −D) . (6.4.71)
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Let us now study the relevant subprojection operators PHmod
0 and PQ0 . The mod-

ular Berry curvature associated to this parallel transport problem is given by

FHmod = 0 , FQ = PQ0 ([Sδx0 ,SδR]) = 1
R2 . (6.4.72)

Note that it is proportional to the zero mode Q, and for this reason naturally lives
on the kinematic space of boundary intervals in CFT2:

OQ = SO(2, 2)
SO(1, 1)× SO(1, 1) . (6.4.73)

The associated (x0, R)-component of the Kirillov-Kostant symplectic form is now
given by

ωQ = 1
R2 dx0 ∧ dR . (6.4.74)

We can rewrite (6.4.74) in a more familiar form by using a cylindrical coordinate
θ on the boundary time slice via the identification x = tan (θ/2). In particular,
identifying

R = tan (α/2) , (6.4.75)

where the parameter α measures the opening angle of the boundary subregion,
the symplectic form (6.4.74) at x0 = 0 becomes

ωQ = 1
4 sin2(α/2)

dθ ∧ dα . (6.4.76)

This result agrees with the well-known Crofton formula for RT surfaces on the
hyperbolic disk [184], which is identified with the t = 0 time slice of AdS3. In
particular, it can be used to compute lengths of curves in the bulk.

Note that the full symplectic form on OQ also includes information about shape-
changes that, for example, tilt the interval, and take it away from the fixed time
slice. To access this information one would need to compute the components of
the curvature associated to these deformations as well. For now we will restrict to
changes implemented by Sδx0 and SδR as in (6.4.72), that act within a single time
slice.

Let us also consider the case of CFT3, where we take the boundary region to be
a disk on the (x1, x2)-plane with radius R. According to (6.4.37) the modular
Hamiltonian associated to this spherical region is given by:

Hmod = π

R

[
−(R2 − (x1

0)2 − (x2
0)2)P0 − 2(x1

0M01 + x2
0M02)− C0

]
. (6.4.77)
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For the unit-circle this again reduces to the simple expressionHmod = −π [P0 + C0].
There are three distinct zero modes, as can be seen from (6.4.40) and (6.4.41):

Q1 = 1
2R
[
−(R2 + (x2

0)2 − (x1
0)2)P1 − 2x1

0D + 2x2
0M12 + 2x1

0x
2
0P2 + C1

]
,

Q2 = 1
2R
[
−(R2 + (x1

0)2 − (x2
0)2)P2 − 2x2

0D − 2x1
0M12 + 2x2

0x
1
0P1 + C2

]
,

Q3 ≡ Q12 = M12 + x1
0P2 − x2

0P1 , (6.4.78)

which constitute a non-abelian so(1, 2) algebra:

[Q1, Q2] = Q3 , [Q1, Q3] = Q2 , [Q2, Q3] = −Q1 . (6.4.79)

These correspond to two ‘spatial’ boosts and one rotation that preserve the spher-
ical entangling region |x⃗ − x⃗0| = R. The Berry transport equations (6.4.69) are
unchanged, except that we now have two translations indicated by Sδxj

0
, with

j = 1, 2. These are given by:

Sδx1
0

= P1 , Sδx2
0

= P2 , SδR = 1
R

(
D − x1

0P1 − x2
0P2
)
. (6.4.80)

Now we can compute the commutator associated to a change of center position
and a change of radius to be

[Sδxj
0
,SδR] = − 1

R
Pj . (6.4.81)

Hence, we find that the component of the Berry curvature in the Hmod-direction
vanishes:

FHmod = PHmod
0

(
[Sδxj

0
,SδR]

)
= − 1

R
PHmod

0 (Pj) = 0 . (6.4.82)

The component in the Qi-direction will be non-zero. Indeed, the curvature is given
by

FQi = − 1
R
PQi

0 (Pj) = δij
1
R2 , for i = 1, 2 , (6.4.83)

and FQ3 = 0. Note that the non-zero component of the curvature depends on
the direction of the translation: Acting with Sδxj

0
leads to FQj ̸= 0. Similarly by

setting the center to x⃗0 = 0, the relevant component of the symplectic form in the
(xi0, R)-direction is again given by:

ωQi
= 1
R2 dx

i
0 ∧ dR . (6.4.84)
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6.5 Discussion

We have considered modular parallel transport involving a change of state in holog-
raphy in general dimensions. The resulting modular Berry curvature, which is
operator-valued, contains information about both the bulk symplectic form as
well as the quantum Fisher information metric and its bulk dual, the canonical
energy. We additionally treated shape-changing modular transport in higher di-
mensions, which is a special case of the state-changing transformations, and in
this case provided a connection to the geometry of coadjoint orbits.

One could interpret the current work as a continuation of [3], where the modular
Berry phase is studied in the specific example of AdS3/CFT2, extended to a larger
class of state deformations and to the higher-dimensional setting. Of course, that
setting is rather special in the sense that certain properties of AdS3 gravity and
two-dimensional CFTs do not generalize to higher dimensions. For example, the
state-changing transformations that were considered in [3] are not part of the sym-
metry algebra of CFTd when d > 2. In higher dimensions, the finite-dimensional
conformal group only contains shape-changing transformations. This is to be con-
trasted with CFT2, where we have the full infinite-dimensional Virasoro algebra
at our disposal. To set up a non-trivial transport problem in higher dimensions
we had to introduce a more general formalism of coherent state deformations, that
are not restricted to act within the symmetry algebra. Another important differ-
ence arises in the bulk computation: While AdS3 has a topological Chern-Simons
theory description that makes the computation of the symplectic form somewhat
tractable, no such simplification happens in general Einstein-Hilbert gravity. In
the present work, we instead use the covariant phase space formalism directly in
the metric formalism to find an expression for the bulk symplectic form. However,
as we have shown here, the relation between the Berry phase and symplectic form
persists even in this more general setting.

We should also discuss our results in light of previous work on the role of Berry
phases in the AdS/CFT correspondence. A notable example involves [55, 213]
where an interesting connection between the Berry phase and bulk symplectic
form is established. Their computation involves the space of coherent pure states
that are prepared via the Euclidean path integral by turning on sources. The
corresponding Berry phase is shown to agree with the bulk symplectic form asso-
ciated to the full Cauchy slice. Our approach involves a similar set-up with the
important difference that our computations work for deformations of density ma-
trices associated to general subregions in the CFT. The corresponding bulk dual is
now the symplectic form supported on the entanglement wedge. In that sense, our
work provides a natural extension of these previous results to CFT subregions, and
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6. Modular Berry phases and the bulk symplectic form

places the Berry phase/bulk symplectic form duality on a more general footing.

To associate a geometric phase to deformations of density matrices we used the
construction of the modular Berry phase. It is built upon the idea that there
is a zero mode ambiguity in the choice of basis frame for the modular Hamilto-
nian. There is a slightly different version of the parallel transport problem due to
Uhlmann that relies on the idea of parallel purifications [262, 263]. The resulting
Uhlmann holonomy is closely related to, but not exactly the same as the modular
Berry curvature. One difference is that the Uhlmann equations are written in
terms of the change of density matrix itself while the modular Berry curvature
makes use of the change of the modular Hamiltonian as a starting point. There
is a non-trivial transformation, cf. (6.2.9), that relates both perspectives. More
importantly, the zero mode projection that is crucial in defining modular Berry
transport is absent in the Uhlmann case. While the Uhlmann holonomy is also
related to a distance measure on the space of mixed states, i.e., the fidelity, our
results indicate that the modular Berry phase is instead related to the quantum
Fisher information metric on the space of mixed states. To understand this more
deeply would be useful for many reasons. For example, the Uhlmann holonomy
was used by [190] to make a claim that is similar in spirit to ours: that there is a
direct connection between the geometric phase and some bulk entanglement wedge
symplectic form.
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7 Conclusion

In this thesis, I have studied certain aspects of black holes in solvable low-dimensional
models for holographic quantum gravity. I will conclude by providing an overview
of the main results that were obtained – structured according to the three cat-
egories: ‘wormholes,’ ‘chaos’ and ‘holography’ – and end with some interesting
questions that are left unanswered.

Wormholes

A formal approach towards formulating a theory of quantum gravity involves the
gravitational path integral. While generically such a construction, where one in-
tegrates over all possible geometries, is beyond what is currently possible, certain
simple models of two-dimensional gravity allow for a exact computation of the Eu-
clidean path integral including non-perturbative effects. These non-perturbative
effects arise in the form of spacetimes with higher topologies. In particular, Eu-
clidean wormholes, which describe connected spacetimes with disconnected bound-
aries, seem to play an important role. In this thesis, I have mostly focused on the
study of JT gravity: In that case the path integral reduces to a simple expression
in terms of the WP volumes associated to the moduli space of Riemann surfaces,
and some boundary integral over a coadjoint orbit of the Virasoro group. This
computation was explained in Chapter 2.

In Chapter 3, I have presented a field theoretic description of Euclidean JT gravity
when different topologies are included. I have shown that the relevant field theory
describes the complex structure deformations of the spectral curve. The theory
has a cubic interaction supported at the origin of the spectral curve which leads to
the correct perturbative expansion. To be precise, the Euclidean wormhole contri-
bution with n boundaries is computed from the n-point function of the field theory.
By matching the Schwinger-Dyson equations with the topological recursion rela-
tions I have shown that there is agreement up to all order in the genus expansion
parameter. Thus, the diagrammatics of the SD equations match one-to-one with
the recursion relations between volumes of moduli spaces of Riemann surfaces.
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This is reminiscent of a string field theory, albeit in a much simpler context. The
name ‘universe field theory’ alludes to this analogy.

The universe field theory can be obtained from a reduction of the Kodaira-Spencer
(KS) theory to the two-dimensional spectral curve SJT. This shows that JT grav-
ity can be embedded in the well-established topological string theory framework.
In the string theory analogy, the spectral curve should be seen as defining the tar-
get space in which the JT universes, the equivalent of the strings, propagate. An
upshot of the field theory construction is that it is very natural to include certain
non-perturbative geometric objects. One such object, a topological D-brane, plays
an important role in understanding the quantum chaotic properties of gravity.

Chaos

Black holes represent paradigms of chaotic quantum dynamics. The energy levels
of quantum chaotic systems are well-described by random matrix theory, which
I have introduced in Chapter 2. An interesting probe for the quantum chaotic
spectrum is the spectral form factor. Its characteristic ‘dip-ramp-plateau’ struc-
ture is typical for such systems. While it was argued that including certain non-
perturbative effects (i.e., higher topologies) to the gravitational path integral can
explain part of this behavior, a full account from the gravity perspective was still
lacking. Therefore, we arrive at the following question: Can one find a geometrical
interpretation of quantum chaos, also at late plateau times?

In Chapter 4, I have introduced a low-dimensional flavor matrix theory (fMT) as a
important concept for studying these effects in the framework of two-dimensional
gravity. Crucially, the fMT defines a description of chaotic correlations on all
time scales and the duality of a given theory to a particular reduction of fMT, a
zero-dimensional flavor nonlinear σ-model (fNLSM), is a sufficient and necessary
condition for it to lie in the universality class of ergodic quantum chaos. Generally
speaking, the fMT describes a symmetry breaking phenomenon common to all
chaotic systems in ergodic phases, ‘causal symmetry breaking’, and its dynamical
restoration at long (plateau) scales.

The fMT description naturally arises in the context of the universe field theory
that we described before. This framework naturally incorporates D-branes on
which JT universes can end, described by vertex operators. Specifically, I have
established a connection between probe D-brane insertions (i.e., correlators of
vertex operators) in two-dimensional Kodaira-Spencer (KS) field theory and fMT
at long time scales. The advantage of this formulation is that it works directly in
the double-scaling limit, as opposed to the the high-rank matrix theories considered
in the gravitational setting of e.g., [36, 98, 136], throughout called ‘color’ matrix
theories (cMT). They are dual to fMT via a ‘color-flavor duality’, that I also
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interpret geometrically in the universe field theory.

On a more conceptual level, the results of Chapter 4 establish a deep link between
the ideas of quantum ergodicity and quantum gravity. The effective field theory of
quantum chaos described in [49] can be viewed as a ‘third-quantized’ field theory
of two-dimensional universes: This construction gives a physical picture to the
(doubly) non-perturbative contributions needed to restore unitarity at late times
(namely during the ‘ramp’ and the ‘plateau’ phase) in terms of D-brane dynamics.
Finally, in the double-scaled limit there is equivalence to the fMT describing SYK.
The emergence of identical fMTs proves that bulk and boundary are in the same
universal phase of ergodic quantum chaos.

Holography

Throughout this thesis, we have seen that holography is a powerful tool to study
black holes in quantum gravity. In particular, many of the results in this thesis are
important for a better understanding of the AdS/CFT correspondence in lower-
dimensional models of quantum gravity.

First, in Chapter 3 and 4 I have studied a version of the AdS2/CFT1 correspon-
dence, where JT gravity is dual to a matrix integral. It was shown that this
‘modified’ holographic dictionary is, in fact, a consequence of a more standard
open/closed duality in topological string theory. In KS theory the JT universe
plays the role of the closed string world-sheet. It was further shown in [49] that in
certain cases, the effective theory of quantum chaos gives rise to a certain matrix
model of Kontsevich type, an example of an open string field theory. Thanks to
an open-closed type duality between these two descriptions, which is established
in Chapter 4, it is possible to understand these two frameworks, the matrix in-
tegral and JT gravity, as dual manifestations of the same physics. The ensemble
corresponds to the path integral in the open string field theory dual of the KS
theory. From a geometric point of view we are ‘averaging’ over deformations of
the background geometry in which the JT universes propagate.

Finally, in Chapter 5 and 6 I have studied certain geometric phases in the AdS/CFT
correspondence. The notion of modular Berry phase generalizes the usual quantum
mechanical Berry phase to the holographic setting, and can be applied to general
mixed states. It incorporates the entanglement spectrum of the CFT in an ab-
stract parallel transport problem for modular Hamiltonians. In chapter 5, I study
a class of state-changing transformations in AdS3/CFT2 by acting with Virasoro
generators on the vacuum state and keeping the subregion fixed, to obtain a one-
parameter family of density matrices. Transporting along an infinitesimal loop of
this sort, results in a non-trivial operator-valued Berry curvature. This curvature
is explicitly computed in our AdS3/CFT2 setting, and it was shown that it can be
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computed holographically by some suitably defined entanglement wedge symplec-
tic form. This bulk symplectic form is computed in the background of a Euclidean
conical singularity geometry with a backreacted cosmic brane inserted at the RT
surface. Using the Chern-Simons formulation of three-dimensional AdS-gravity,
the expression for the symplectic form simplifies dramatically and one finds agree-
ment with the modular Berry phase.

In chapter 6, I set up a more general formalism that goes beyond the symmetry-
based transport and works in any dimension (so is not specific to CFT2). The
parallel transport problem is now based on perturbations of coherent states that
are prepared via the Euclidean path integral. I derive an explicit formula for the
modular Berry curvature associated to two such perturbations, and show that
this expression agrees with a bulk symplectic form associated to the entanglement
wedge. In special cases, where we do act with symmetry generators, this rela-
tion recovers the well-known structure of kinematic space and coadjoint orbits.
Hence, the results of this chapter provide a new entry in the holograpic dictionary,
showing that the modular Berry phase is a nice organizational principle for bulk
reconstruction.

Future directions
To end things, I will list some unanswered question and interesting directions for
future research. In doing so, I will be a bit more speculative than in the main text.

There are some possible generalizations of the universe field theory construction
which are worth studying. It would be interesting to carry out a similar analysis
in the case of JT supergravity. The super analogue of the JT/matrix integral
correspondence was already discussed in [92]. I expect the relevant universe field
theory to come from a supersymmetric generalization of the construction we have
presented. Another generalization is provided by the other matrix ensembles (e.g.,
orthogonal or symplectic), that should be incorporated in a more general frame-
work, called refined topological string. The relevant flavor D-branes that give rise
to the specific matrix ensemble should now be of a different type.

Moreover, it might be interesting to study the connection between the KS theory
and c < 1 minimal string1. In this context Liouville gravity is coupled to a (2, p)
minimal model with p odd. It is proposed that one can view JT gravity as the
p→∞ of these models by matching the leading order density of states [84]. The
precise way JT gravity arises as a limit of such minimal string theories is not yet
understood. The KS theory could be useful framework for making this relation
precise. At finite p, I expect these p-deformed JT gravity theories to correspond

1The relation between minimal string theory and random matrices in the context of two-
dimensional gravity goes back to [85–87,264–266]. For reviews see [267,268]
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to different choices of classical background geometry in the KS theory.

A more ambitious pathway would be to explore the generalization to higher dimen-
sions. It is far from clear if (and how) the above construction generalizes to the
higher-dimensional setting. The precise form of the KS action and its relation to
JT gravity relied heavily on the interpretation of the spacetime in terms of a string
world-sheet. In that sense the construction seems to be very specific to models
of two-dimensional gravity. However, the derivation was fundamentally based on
the universal recursive structure expressed in terms of the SD equation. If one
could find a similar recursive structure in higher-dimensional theories of quantum
gravity, this would open up a way for finding such a field theory description.

For example, in three dimensions it is believed that pure quantum gravity does not
have a well-defined quantum mechanical dual. There is some evidence that these
issues are similar to the ones in JT gravity, and might be resolved if one thinks
about the dual in terms of an ensemble of theories. These findings suggest that
this ensemble is a generalization of random matrix theory, and is referred to as a
‘random CFT’ (e.g., [145]). Liouville theory might be the right perspective to study
the universal feature of such CFTs. A useful starting point for addressing this
question might be to restrict to a class of three-manifolds with topology Σg,n×S1,
as they are closest to the JT gravity geometries. Ideally, one would want to
construct a theory for the propagation of branes of this form and find a ‘topological
recursion’ for the correlation functions in this theory. This would give some insight
into the higher-dimensional analogue of the duality between JT gravity and a
double-scaled matrix integral.

The ideas of Chapter 4 might point to the correct direction. Although the set-
up of KS theory seems to be specific to 2D, the chaos story seems to be fairly
general: Any quantum chaotic theory in the ergodic phase reduces to a non-
linear σ-model. For example, a wide range of ideas about the role of chaos in
AdS/CFT, whether it be via random-matrix [145, 269] or ETH-type correlations
in the bulk [270] as well as their generalization to statistics of OPE coefficients in
AdS3/CFT2 [147,271,272], have been considered, and can be studied in the frame-
work of the flavor σ−model [141,150]. In addition, it would be very interesting to
carry out a computation of entanglement entropies in this set-up, and connect the
quantum chaotic structure more directly to the replica wormholes that appear in
the ‘resolution’ to the black hole information problem.

From the boundary perspective, the appearance of a matrix integral (i.e., aver-
aged) dual to JT is quite puzzling: Is the averaging fundamental or more like an
effective description of the underlying microscopics? One interesting perspective
on the non-factorization of the boundary correlation functions in the presence of
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Euclidean wormholes is presented in the work [100] by Marolf and Maxfield on
baby universes and α-states. In principle, it should be possible to construct the
α-states in JT gravity explicitly. This would shed some light on the microscopic
degrees of freedom that are needed to obtain factorization, and I expect them to be
related to some D-brane like objects (e.g., [98,121,136]) in the theory. This would
show that the averaging is not fundamental, but can be resolved if one introduces
D-branes in the theory. However, it turns out that there is an interesting subtlety
with diffeomorphism invariance in gravity (that does not arise in the simple topo-
logical toy model that is considered in [100]), and prevents a naive implementation
of the GNS construction in this setting. A priori, it is not so clear how to im-
plement diffeomorphism invariance as a single null state constraint on the Hilbert
space when higher topologies are included. It would be nice to understand these
technical obstacles from a physical perspective.

Finally, the theory of modular Berry phases has a very rich structure, and allows
for many directions of future research.

The fact that the metric and the symplectic form are related in a simple way
through (6.3.23) suggests an underlying geometric structure. In fact, the rela-
tion immediately brings to mind the situation for a Kähler manifold where the
symplectic form and metric are related by an extra insertion of the (almost) com-
plex structure. This is familiar from the usual Berry phase in finite-dimensional
quantum mechanics, where the space of pure states takes the form of a complex
projective space, which does indeed exhibit a natural Kähler structure. It is well
known that in this case the Berry curvature is closely related to the Fubini-Study
metric. However, in the case of mixed states we have found that to go from the
modular Berry curvature to the quantum Fisher information metric requires an
extra action of the modular Hamiltonian. This procedure does not seem to have
a natural interpretation as an almost complex structure: Importantly, it does not
square to minus one when acting on general tangent vectors. Only in special cases
(for example, when we are acting purely with shape-changing transformations) do
we expect that the presence of such underlying geometric structure can be made
precise. Nevertheless it would be interesting to understand these observations
better.

Likewise, one might ask whether this generalized symplectic structure defines a
natural Hilbert space through geometric quantization. In the the shape-changing
case, recall that the Berry curvature could be related to the Kirillov-Kostant sym-
plectic form on a special symplectic geometry known as a coadjoint orbit. By
the ‘orbit method,’ which is a version of geometric quantization, such symplectic
manifolds can be equated with a particular representation of the group which de-
fines the coadjoint orbit through quotienting [211]. In this more general setting
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involving state-changes, it would be interesting to learn if similar relations persist,
and what one can learn from them about the Hilbert space for quantum gravity.

Finally, the role of operator algebra techniques has gained some renewed interest in
the context of holography and black hole physics. In particular, it was argued that
the large N limit of the boundary CFT (in the specific setting of the eternal black
hole) should be a type III1 von Neumann algebra [273,274]. Type III von Neumann
algebras are rather complicated in the sense that many quantities that we like to
use in quantum mechanics (e.g., density matrices, von Neumann entropies) are not
well-defined. It is therefore natural to ask how our computations depend on details
of the underlying operator algebra. Crucially, entropy differences (e.g., the relative
entropy) are well-defined in type III von Neumann algebras. Since the final answer
for the Berry curvature is related to the quantum Fisher information metric, which
can be written in terms of the relative entropy, it is certainly possible that there
exists some suitable continuum limit of our computations. One idea is to define a
version of the Berry phase problem in terms of the algebra of observables without
any reference to an underlying state deformation. It would be interesting to study
further the Berry phase in connection with the emergent type III1 structure.
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A Computations in the
universe field theory

A.1 Free two-point functions of the universe field
theory

We compute the two-point functions of the free theory including sources (3.2.21)
with action (3.2.18). The partition function is just a Gaussian integral in Φ and J ,
so we can solve it by functional determinants. We will start with the Φ-integral.
Integrating by parts, the terms involving Φ are:

1
2Φ ∂∂ Φ− Φ ∂J − µΦΦ . (A.1.1)

The Laplacian ∆ = ∂∂ on the spectral curve has a Green’s function ∆−1, which
can be found by first projecting to the spectral x-plane, and then transforming
back to the double cover via x = z2. There is a branch cut on the negative real
axis and therefore the Green’s function on the x-plane can be found using the
method of images [275]. Transforming to the double cover, x = z2, y = w2, we
find the result

∆−1(z, w) = 1
2 ln

∣∣∣∣z − wz + w

∣∣∣∣ . (A.1.2)

We can now solve the Φ-integral by completing the square:∫
[dΦ] exp

[
1
2Φ ∂∂ Φ− Φ ∂J − µΦΦ

]
= N exp

[
−1

2(∂J + µΦ)∆−1(∂J + µΦ)
]
. (A.1.3)

Here, we have used the condensed notation

A∆−1B ≡
∫
d2z

∫
d2wA(z)∆−1(z, w)B(w) . (A.1.4)
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A. Computations in the universe field theory

We have also denoted the functional determinant by N , which is just a (possi-
bly infinite) constant that drops out, because we have normalized the partition
function. Explicitly, the functional determinant is

N =
∫

[dΦ] exp
[

1
2

(
Φ−∆−1(µΦ + ∂J )

)
∆
(

Φ−∆−1(µΦ + ∂J )
)]

(A.1.5)

=
∫

[dΦ′] exp
[
−1

2Φ′(−∆)Φ′
]

= det(−∆)−1 . (A.1.6)

In general, the determinant should be regularized, but we do not have to worry
about this since we have normalized the partition function with sources. Having
done the Φ-integral, we are left with the integration over J :

Z
(0)
KS = N

Z
(0)
KS [0]

∫
[dJ ] exp

[
−1

2(∂J + µΦ)∆−1(∂J + µΦ)− µJJ
]
. (A.1.7)

Now we introduce the Green’s function for the ∂-operator on the spectral curve.
It is simply the derivative of the Green’s function in (A.1.2):

∂
−1 = ∂∆−1 = dz

z − w
− dz

z + w
. (A.1.8)

Writing ∂
−1 ≡ ∂−1(z, w) dz, we perform the shift

J → J − ∂−1 · µΦ , (A.1.9)

where the · means that we integrate with respect to the second argument of ∂−1:

∂
−1 · µΦ ≡

∫
d2w

(
∂

−1(z, w)µΦ(w)
)
dz . (A.1.10)

The exponent of (A.1.7) now becomes

−1
2∂J ∆−1 ∂J − µJ

(
J − ∂−1 · µΦ

)
. (A.1.11)

Integrating the first term by parts, and using that ∂∆−1 = ∂−1, we see that the
free partition function is

Z
(0)
KS = N

Z
(0)
KS [0]

∫
[dJ ] exp

[
1
2J ∂

−1∂J − µJJ
]

exp
[
µJ ∂

−1
µΦ

]
. (A.1.12)
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We can complete the square in the first exponent and do the Gaussian integral,
which gives us

Z
(0)
KS [µΦ, µJ ] = N N ′

Z
(0)
KS [0]

exp
[

1
2µJ ∂∂

−1
µJ + µJ ∂

−1
µΦ

]
. (A.1.13)

We have written the functional determinant N ′ as

N ′ =
∫

[dJ ] exp
[

1
2

(
J − (∂−1∂)−1µJ

)
∂−1∂

(
J − (∂−1∂)−1µJ

)]
(A.1.14)

=
∫

[dJ ′] exp
[
−1

2J
′(−∂−1∂)J ′

]
= det(−∂−1∂ )−1 . (A.1.15)

In arriving at (A.1.13), we have also used that (∂−1∂)−1 = −∂∂−1, as can be
verified by acting from the left with ∂−1∂ and integrating by parts. The factors N
and N ′ cancel against the normalization, as can be seen by turning off the sources.
Therefore, we have shown that:

Z
(0)
KS [µΦ, µJ ] = exp

[
1
2µJ ∂∂

−1
µJ + µJ ∂

−1
µΦ

]
. (A.1.16)

In particular, this implies that there are only contractions between J and J , and
between J and Φ. There is no contraction of Φ with itself. Here, ∂−1 is given by
(A.1.8) and

∂∂
−1 = dz dw

(z − w)2 + dz dw

(z + w)2 . (A.1.17)

So, if we define the following functions:

B(z, w) = 1
(z − w)2 + 1

(z + w)2 , G(z, w) = 1
z − w

− 1
z + w

, (A.1.18)

we arrive at the result claimed in the main text:

logZ(0)
KS =

∫
d2z

∫
d2w

[
1
2µJ (z)B(z, w)µJ (w) + µJ (z)G(z, w)µΦ(w)

]
.

(A.1.19)

A.2 Baby universe Hilbert space and Virasoro
constraints

In this appendix, we give another perspective on the duality between KS theory
and JT gravity by exploiting the relation to topological gravity, making the under-
lying Virasoro symmetry manifest. The approach is similar to the SD equation,
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but makes use of the operator formalism instead of path integrals and should be
viewed as complementary. We show that one can reformulate the KS recursion
relation in terms of a Virasoro constraint on the partition function, which is also
satisfied by the Weil-Petersson volumes (when viewed as intersection numbers of
the moduli space). This naturally leads to a definition of a baby universe Hilbert
space.

The Weil-Petersson volumes can be expressed in terms of the intersection theory
of the moduli space via:

Vg,n(ℓ) =
∫

Mg,n

exp
(

ΩWP + 1
2

n∑
i=1

ψiℓ
2
i

)
, (A.2.1)

where ℓ = (ℓ1, . . . , ℓn), ΩWP is the Weil-Petersson symplectic form on the moduli
space and ψi are ψ-classes on the moduli space. See, for example, [112] for more
details. Attaching the trumpets (we set ϕr = 1 in (2.1.4) for convenience), and
using the integral identity

∫∞
0 x exp(− 1

2ax
2)dx = a−1, we can write the genus g

contribution to the JT path integral with n boundaries of lengths β = (β1, . . . , βn)
in the following form1:

Zc
g,n(β) =

∫ ∞

0

n∏
i=1

dℓi
ℓi√
2πβi

e− 1
2 ℓ

2
i /βi

∫
Mg,n

eΩWP+ 1
2ψiℓ

2
i (A.2.2)

=
∫

Mg,n

eΩWP

∫ ∞

0

n∏
i=1

dℓi
ℓi√
2πβi

exp
(
−1

2
(
β−1
i − ψi

)
ℓ2
i

)
(A.2.3)

=
∫

Mg,n

eΩWP

n∏
i=1

√
βi
2π (1− βiψi)−1 . (A.2.4)

We can interpret this result in the following way. When we define JT gravity on
hyperbolic surfaces without boundaries (allowing only marked points), we do not
need to include any boundary terms in the action. So correlation functions in this
theory are simply defined by integrating over the moduli space:

⟨· · · ⟩g =
∫

Mg,n

eΩWP(· · · ) . (A.2.5)

From (A.2.4) we now see that one can create an asymptotically AdS2 boundary

1All integral manipulations with the ψ-classes should be understood formally via the Taylor
series of each function in the integrand. This is well-defined because the integral over Mg,n only
picks out the d-form from the Taylor expansion, where d = 6g−6+2n is the dimension of Mg,n.
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of renormalized length β by inserting the ‘observable’

Z(β) = λ

√
β

2π (1− βψ)−1 . (A.2.6)

This point of view is familiar in the context of 2d topological gravity [89,113,114].
Note that the observables have an extra factor of λ compared to the main text.
Summing over the genus counting parameter λ = e−S0 , we can thus think of the JT
gravity path integral as the correlation function of ‘boundary creation operators’
Z(βi) in topological gravity:

Zc
χ<0(β) = ⟨Z(β1) · · ·Z(βn)⟩ ∼

∑
χ<0

λ2g−2⟨Z(β1) · · ·Z(βn)⟩g . (A.2.7)

The operators Z(βi) are called macroscopic loop operators in the context of matrix
models, see, for instance, [264] (and more recently [110]). We will now make the
notation of (A.2.7) precise, by rewriting Z(β) as a creation operator Z+(β) in a
bosonic Fock space.

A.2.1 Virasoro constraints

To turn Z(β) into a differential operator, we introduce the generating function F

for the intersection numbers of ψ-classes and the Weil-Petersson symplectic form2:

F (t) =
∞∑
g=0

λ2g−2
∫

Mg,n

exp(ΩWP +
∑
i

tiσi) , (A.2.8)

where the ti are ‘sources’ for σdi ≡ ψ
di
i . Expanding Z(β) in a geometric series, we

have:

Z(β) = λ

√
β

2π

∞∑
k=0

(ψβ)k = λ√
2π

∞∑
k=0

σkβ
k+ 1

2 . (A.2.9)

Therefore, we can write the connected JT path integral over the stable surfaces
(with χ < 0) as differential operators acting on the generating function:

Zc
χ<0(β) = Z+(β1) · · ·Z+(βn)F (t)

∣∣∣
t=0

, (A.2.10)

2Sometimes, the convention is to replace ΩWP by κ1. The κ-classes are related to the ψ-
classes in the following way. Let π : Mg,n+1 → Mg,n be the map that ‘forgets’ the (n + 1)-th
marked point on a surface. Then we define κd = π∗(ψd+1

n+1) as the pushforward of ψd+1
n+1 to Mg,n.

Wolpert [68] showed the remarkably simple relation that ΩWP = 2π2κ1, so the conventions differ
only by a numerical factor. Furthermore, one can add a parameter s in front of ΩWP to generate
κ-class intersections, but for JT gravity we only need s = 1.
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where
Z+(βi) = λ√

2π

∞∑
ki=0

β
ki+ 1

2
i

∂

∂tki

. (A.2.11)

We see that F (t) is the generating function for connected contributions to the JT
path integral, and has the interpretation of a ‘free energy’. Therefore, its exponent
eF has the interpretation of the full partition function of no-boundary JT gravity3.
Acting with suitable trumpet creation operators Z+(βi) on eF thus produces both
connected and disconnected contributions to the path integral. The free energy F
generates just the spacetime wormholes, whereas eF contains both wormholes and
factorized contributions. For example, acting with Z+(β1)Z+(β2) on eF produces,
graphically, the two contributions in Figure A.1.
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Figure A.1: Both wormholes and factorized contributions appear in
Z+(β1)Z+(β2) expF .

A natural question is how Mirzakhani’s recursion can be rephrased in the operator
language that we have just described. Since F (t) can be used to generate Weil-
Petersson volumes, a natural guess would be that the integral recursion relation of
Mirzakhani can be written in a differential version as some combination of trumpet
creation operators Z+(βi) acting on the partition function:

Ô
[
{ti, ∂ti}i

]
eF (t) = 0 . (A.2.12)

The precise form of the operator Ô can be found in [276]. An intermediate result
reads:

(2k + 3)!! ∂F

∂tk+1
=

∞∑
i,j=0

Fijk tj
∂F

∂ti+j+k︸ ︷︷ ︸
a)

(A.2.13)

3With the exception of the disk and annulus.

212



A.2. Baby universe Hilbert space and Virasoro constraints

+ λ2

4

∞∑
i=0

∑
j1+j2=
i+k−1

F̃i j1j2

( ∂2F

∂tj1∂tj2︸ ︷︷ ︸
b)

+ ∂F

∂tj1

∂F

∂tj2︸ ︷︷ ︸
c)

)
∀ k > 0 .

The coefficients are given by:

Fijk = (2(i+ j + k) + 1)!!
(2j − 1)!! ũi , (A.2.14)

F̃i j1j2 = (2j1 + 1)!!(2j2 + 1)!! ũi , (A.2.15)

where the ‘moduli’ ũi are defined as the Taylor coefficients of the function4

4π
√
x

sin(2π
√
x) ≡

∞∑
i=0

ũix
i . (A.2.16)

One proceeds by rewriting (A.2.13) in terms of the partition function eF , and
rearranging terms into a single operator acting on eF . To get rid of the double
factorials, we rescale the source parameters ti as:

t2i+1 ≡
ti

(2i+ 1)!! . (A.2.17)

Including terms for k = −1, 0 (corresponding to the base cases V0,3 and V1,1 in
Mirzhankani’s recursion), equation (A.2.13) is rewritten as:

LkeF = 0 , ∀k ≥ −1 , (A.2.18)

where the differential operators Lk are given by:

Lk = − 1
2

∂

∂t2k+3︸ ︷︷ ︸
LHS

+
(
t21
λ2 + π2

12

)
︸ ︷︷ ︸

(1,1)

δk,−1 + δk,0
8︸︷︷︸

(0,3)

(A.2.19)

+ 1
2

∞∑
i,j=0

′
(2j + 1)ũi t2j+1

∂

∂t2(i+j+k)+1
+ λ2

8

∞∑
i=0

∑
j1+j2=
i+k−1

ũi
∂2

∂t2j1+1∂t2j2+1
.

The first term, labelled LHS, comes from the left-hand side of (A.2.13). The next
two terms, denoted by (1, 1) and (0, 3), arise from the torus with one hole and
the pair-of-pants, respectively. The prime indicates that the term with i = j = 0,
k = −1 is excluded from that sum. The rest is just a rewriting of the right-hand

4A closed form can be given in terms of the Bernoulli number B2i by ũi =
(−1)i−1(2π)2i(22i+1 − 4) B2i

(2i)! .
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side of (A.2.13).

We would like to study the algebra associated to the infinite tower of differential
equations imposed by {Lk}k≥−1. The commutation relations are given by

[Lm,Ln] = (m− n)
∞∑
i=0

ũiLm+n+i . (A.2.20)

We now apply the simple transformation:

L̃k ≡
∞∑
i=0

uiLk+i , (A.2.21)

where ui are the reciprocal coefficients of ũi, defined by:

sin(2π
√
x)

4π
√
x
≡

∞∑
i=0

uix
i . (A.2.22)

One can show that the algebra spanned by the operators {L̃k} with k ≥ −1 is the
Virasoro algebra [

L̃m, L̃n
]

= (m− n)L̃m+n . (A.2.23)

The condition in (A.2.18) is therefore referred to as a Virasoro constraint. The
structure underlying Mirzakhani’s recursion relation is a Virasoro symmetry, which
expresses an underlying integrable structure, closely related to the Korteweg-de-
Vries (KdV) hierarchy. For more background on its relation to intersection theory
on the moduli space of Riemann surfaces, see [89,114,276,277].

A.2.2 Chiral boson with a Z2 twist

A crucial role in deriving a bosonic theory that describes JT gravity is played by
the Laplace transform. Consider the boundary creation operator Z+(β), written
in terms of the rescaled parameter t2k+1:

Z+(β) = λ√
2π

∞∑
k=0

βk+ 1
2

(2k + 1)!!
∂

∂t2k+1
. (A.2.24)

Using the identity (2k + 1)!! = 2k+1
√
π

Γ(k + 3/2), (and setting back ϕr = 1/2, as
was used in the main text) we find that the Laplace transform of Z+(β) can be
written as: ∫ ∞

0
dβ Z+(β) e−βx = λ

2

∞∑
k=0

x−k−3/2 ∂

∂t2k+1
. (A.2.25)
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Since β has the interpretation of a boundary length it is naturally defined on the
positive real axis. The dual variable x can then be taken as a complex ‘frequency’.
The half-integer powers of x appearing in (A.2.25), show that the coordinate x is
only defined on the complex plane with a branch cut, the spectral plane. We will
choose the convention that the branch cut lies on the negative real axis. When
traversing a rotation of 2π around the branch point,

√
x picks up a minus sign.

We want to interpret the Laplace transformed operator (A.2.25) as some complex
scalar field Φ(x). By the above argument it should have anti-periodic boundary
conditions across the branch cut:

Φ(e2πix) = −Φ(x) . (A.2.26)

Therefore, it should be a Z2-twisted boson. To make the correspondence precise,
we introduce the following creation and annihilation operators for k ≥ 0:

αk+ 1
2

= λ

2
∂

∂t2k+1
, α−k− 1

2
= 2
λ

(
k + 1

2

)
t2k+1 . (A.2.27)

These oscillators generate a representation of a twisted Heisenberg algebra. Namely,
evaluating their commutator gives:

[
αn, αm

]
= nδn+m,0 , n,m ∈ Z + 1

2 . (A.2.28)

The twisted vacuum state |σ⟩ is defined by requiring that:

αk+ 1
2
|σ⟩ = 0 , ⟨σ|α−k− 1

2
= 0 , ∀k ≥ 0 . (A.2.29)

It can be related to the vacuum of the untwisted free boson by the insertion of a
twist operator σ(x) [278,279] at the origin and infinity:

|σ⟩ = σ(0) |0⟩ , ⟨σ| = ⟨0|σ(∞) . (A.2.30)

The derivative of the field can be expanded in half-integer powers of x as:

∂Φ(x) =
∑
k∈Z

α−k− 1
2
xk− 1

2 . (A.2.31)

We split ∂Φ(x) into positive and negative modes:

∂Φ(x) = ∂Φ−(x) + ∂Φ+(x) =
∞∑
k=0

α−k− 1
2
xk− 1

2 +
∞∑
k=0

αk+ 1
2
x−k− 3

2 . (A.2.32)

215



A. Computations in the universe field theory

Then, we recognize the Laplace transform of the trumpet operator Z+(β) as the
positive frequency part of ∂Φ(x):∫ ∞

0
dβ Z+(β) e−βx = ∂Φ+(x) . (A.2.33)

We see that adding a trumpet boundary of length βi in JT gravity corresponds
to inserting ∂Φ+(xi) at a point xi on the spectral plane, where xi and βi are
related by the Laplace transform. We now want to relate the Virasoro constraints
(A.2.18), which we found to be equivalent to Mirzakhani’s recursion, to the stress
tensor of the twisted boson.

The stress tensor T (x) of the twisted theory is constructed via a normal ordering
prescription:

T (x) = 1
2
{
∂Φ∂Φ

}
(x) ≡ 1

2 lim
y→x

(
∂Φ(x)∂Φ(y)− 1

(x− y)2

)
. (A.2.34)

Note that there are two notions of normal ordering. Firstly, there is the normal
ordering at the level of modes, which puts all α−n− 1

2
to the left of the αn+ 1

2
, where

n ≥ 0. This respects the twisted vacuum |σ⟩, and will be denoted by colons : · · · :.
Secondly, there is the normal ordering which subtracts the singular piece from the
operator product expansion. This will be denoted by brackets

{
· · ·
}

.

The two-point function in the twisted vacuum is easily computed to be

⟨∂Φ(x)∂Φ(y)⟩σ =
∞∑
k=0

∞∑
n=0
⟨σ|
[
αk+ 1

2
, α−n− 1

2

]
|σ⟩x−k−3/2yn−1/2

=
∞∑
k=0

(
k + 1

2

)
x−k−3/2yk−1/2 = 1

2

√
x
y +

√
y
x

(x− y)2 . (A.2.35)

This has the correct antiperiodicity in both x and y, and it also exhibits the OPE
singularity ⟨∂Φ(x)∂Φ(y)⟩ ∼ (x− y)−2, as x→ y. From the definition of the stress
tensor we find that

⟨T (x)⟩σ = 1
2 lim
y→x

〈
∂Φ(x)∂Φ(y)− 1

(x− y)2

〉
σ

= 1
16x2 . (A.2.36)

Comparing to the other normal ordering prescription, whose expectation value is
zero in the twisted vacuum by construction, we have

T (x) = 1
2 :∂Φ(x)∂Φ(x) : + 1

16x2 . (A.2.37)
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The stress tensor has the following mode expansion:

T (x) =
∑
n∈Z

Lnx
−n−2 , (A.2.38)

where, for n ≥ −1, we have

L−1 =
∞∑
k=1

α−k− 1
2
αk− 1

2
+ 1

2(α− 1
2
)2 , (A.2.39)

L0 =
∞∑
k=0

α−k− 1
2
αk+ 1

2
+ 1

16 , (A.2.40)

Ln>0 =
∞∑
k=0

α−k− 1
2
αn+k+ 1

2
+ 1

2

n−1∑
k=0

αk+ 1
2
αn−k− 1

2
. (A.2.41)

These operators are related to the operators L̃n in (A.2.21) in the following way:

L̃n = Ln −
1
λ

∞∑
k=0

ukαk+n+ 3
2
. (A.2.42)

To prove this, we rewrite the differential operators Lk of equation (A.2.19) in terms
of the twisted creation and annihilation operators:

Lk = − 1
λ
αk+ 3

2︸ ︷︷ ︸
LHS

+
[
(α− 1

2
)2 + π2

12

]
︸ ︷︷ ︸

(1,1)

δk,−1 + δk,0
8︸︷︷︸

(0,3)

+
∞∑
i=0

ũi

[ ∞∑
j=0

′
α−j− 1

2
αk+i+j+ 1

2
+ 1

2
∑
j1+j2

=k+i−1

αj1+ 1
2
αj2+ 1

2

]
. (A.2.43)

We can incoorporate the terms multiplying δk,0 and δk,−1 into the sum over i, by
realizing that δk+i,−1 is only nonzero for k = −1 and i = 0, while δk+i,0 is nonzero
for both k = i = 0 and k = −1, i = 1. Using the values for ũ0 = 2 and ũ1 = 4π2

3 ,
we then find for k ≥ −1:

∞∑
i=0

ũi

[
1
2(α− 1

2
)2δk+i,−1 + δk+i,0

16

]
=
[
(α− 1

2
)2 + π2

12

]
︸ ︷︷ ︸

(1,1)

δk,−1 + δk,0
8︸︷︷︸

(0,3)

. (A.2.44)

Therefore, we recognize the operators Lk to be a simple transformation of the
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stress tensor modes:
Lk = − 1

λ
αk+ 3

2
+

∞∑
i=0

ũiLk+i . (A.2.45)

Recalling the definition of the Virasoro operators L̃n, we thus prove equation
(A.2.42):

L̃n =
∞∑
k=0

ukLk+n = Ln −
1
λ

∞∑
k=0

ukαk+n+ 3
2
, (A.2.46)

where we used the fact that ui and ũi are reciprocal coefficients,
∑k
i=0 uiũk−i =

δk,0.

We use the moduli ui to construct the following function:

ω(x) = 1
λ

∞∑
k=0

ukx
k+ 1

2 = 1
4πλ sin(2π

√
x) . (A.2.47)

We then define the shifted stress tensor Tω(x) by translating ∂Φ(x) → ∂̃Φ(x) =
∂Φ(x)− ω(x):

Tω(x) ≡ 1
2
{
∂̃Φ ∂̃Φ

}
(x) = T (x)− ω(x)∂Φ(x) + 1

2ω(x)2 . (A.2.48)

It has a mode expansion

Tω(x) =
∑
n∈Z

L̃nx
−n−2 , (A.2.49)

where the modes with n ≥ −1 are precisely the Virasoro operators (A.2.42):

L̃n =
∮

0

dx

2πix
n+1Tω(x) =

∮
0

dx

2πix
n+1T (x)−

∮
0

dx

2πix
n+1ω(x)∂Φ(x) (A.2.50)

= Ln −
1
λ

∞∑
k,j=0

uk α−j− 1
2

∮
0

dx

2πix
n+k+j+1 (A.2.51)

= Ln −
1
λ

∞∑
k=0

ukαk+n+ 3
2
. (A.2.52)

We can think of ω(x) as giving ∂̃Φ(x) a vacuum expectation value. Note that this
VEV was chosen in a particular way to match Mirzakhani’s recursion, but more
generally we could take any set of moduli ui, and treat ω(x) as a formal power
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series. The Virasoro constraints may then still have a geometric interpretation5,
although it will not describe JT gravity. Indeed, various choices of ω(x) have been
related to the generalized Kontsevich-Witten model [282,283], topological gravity
on arbitrary backgrounds [112,114] and minimal models [81,133].

We write the generating function in the coherent state basis:

eF (t) = ⟨t|Σ⟩ , (A.2.53)

where the coherent state is expressed as ⟨t| = ⟨σ| eV with

V = 2
λ

∞∑
k=0

t2k+1αk+ 1
2
. (A.2.54)

The coherent state ⟨t| is a left eigenstate of the annihilation operator α−n− 1
2
:

⟨t|α−n− 1
2

= λ−1(2n+ 1)t2n+1 ⟨t| . (A.2.55)

Therefore, when acting on eF with an operatorO(tn, ∂tn
), we can bring it inside the

‘expectation value’ ⟨t| . . . |Σ⟩ by converting it into oscillator language O(α−n, αn).
The precise relation is given by (A.2.27). The state |Σ⟩ is then fully determined
by the Virasoro constraint:

L̃ne
F = 0 ⇐⇒ L̃n |Σ⟩ = 0, n ≥ −1 , (A.2.56)

where on the left-hand side it is implied that L̃n is written in terms of t and ∂
∂t ,

and on the right-hand side L̃n is expressed in terms of twisted bosonic oscillators.

Looking at the mode expansion (A.2.49) of Tω(x), we see that the modes with
n ≥ −1 correspond to the negative powers of x. So instead of the infinite number
of equations imposed by (A.2.56), we can write the Virasoro constraint as a single
requirement that the expectation value of Tω(x) is non-singular as x→ 0:

⟨t|Tω(x)|Σ⟩ = analytic . (A.2.57)

It is simply the requirement that the theory is conformally invariant at the quan-
tum level. This is a non-trivial requirement, because in terms of the spectral
variable x, the twisted boson ∂̃Φ(x) has a branch point at the origin. The branch
point breaks the conformal invariance, and the modes of ∂Φ should be ‘dressed’
to restore conformal invariance [283]. The dressing is defined through the new

5In fact, much recent progress in this direction has been made in [280], where so-called
quantum Airy structures are introduced as a generalizations of the Virasoro constraints (for an
introduction to the subject, see [281]).
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SL(2,C)-invariant state |Σ⟩, which we can formally write as some ‘dressing op-
erator’ eλŜ |σ⟩ acting on the twisted vacuum. We would like to think of Ŝ as an
interaction term in an interacting theory, with coupling constant λ, which perturbs
the free theory.

In the case of the so-called topological point, for which ω(x) ∼
√
x, such an operator

Ŝ was explicitly constructed in [284]. It was found to be cubic in the bosonic
oscillators αk. For general ω(x), one can always use appropriate shift operators
Vω to obtain the solution:

|Σ⟩ = eVωeλŜ |σ⟩ . (A.2.58)

A.2.3 Back to JT gravity

We have seen that the full JT path integral on connected stable surfaces with n

boundaries could be obtained by acting n times with a boundary creation operator
Z+(βi) on the free energy F (t). After an n-fold Laplace transform this can be
written as∫ ∞

0

n∏
i=0

dβie
−βixiZc

χ<0(β) = ∂Φ+(x1) · · · ∂Φ+(xn)F (t)
∣∣∣
t=0

. (A.2.59)

We can use the coherent state ⟨t| to bring ∂Φ+(x) inside the correlation function
⟨t| . . . |Σ⟩. This puts all the dependence on the sources into ⟨t|, and so setting t = 0
boils down to replacing ⟨t| by the vacuum ⟨σ|. For the JT gravity path integral,
including connected and disconnected spacetimes, this implies:∫ ∞

0

n∏
i=0

dβie
−βixiZχ<0(β) = ⟨σ|∂Φ+(x1) · · · ∂Φ+(xn)|Σ⟩

⟨σ|Σ⟩ . (A.2.60)

Here, we divided by the normalization factor ⟨σ|Σ⟩, which has the effect of ex-
cluding the contributions from JT universes without boundaries. Note that the
dependence on the background ω(x) is encoded in the state |Σ⟩.

Let us interpret this formula from the point of view of the baby universe Hilbert
space. The operator insertions of ∂Φ(x) are radially ordered, and so one may
think of equation (A.2.60) as an operator representation of the JT path integral
in radial quantization. So we should read it from right to left: one in the twisted
vacuum |σ⟩, which can be thought of as a type of ‘Big Bang’ for a (possibly
disconnected) universe. In particular, the initial state has no boundaries. Then,
there is a complicated splitting and joining of baby universes, determined by the
interaction Ŝ in |Σ⟩ = eλŜ |σ⟩. The requirement that these processes respect
modular invariance is imposed by the Virasoro constraint on |Σ⟩. Finally, the
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A.2. Baby universe Hilbert space and Virasoro constraints

trumpet boundaries are glued to the spacetime prepared by |Σ⟩. The gluing is
represented by the overlap

Zχ<0(β) = ⟨β1, . . . , βn|Σ⟩ , (A.2.61)

where the normalized n-trumpet state ⟨β| is given by:

⟨β1, . . . , βn| =
⟨σ|Z+(β1) · · ·Z+(βn)

⟨σ|Σ⟩ . (A.2.62)

This intuitive interpretation of the formula (A.2.60) is depicted in Figure A.2. It
corresponds to the particular (Euclidean) time slicing in the universe field theory
in which all the asymptotically AdS2 boundaries are in the infinite future. The
upshot of this (Euclidean) time-slicing is that it is manifestly invariant under the
large diffeomorphisms. However, the downside is that the in and the out-state
are treated asymmetrically, contrary to the proposal of [100]: the state |Σ⟩ is
prepared from one side. Therefore, we could refer to the Hilbert space generated
by the states above as the one-sided baby universe Hilbert space.

X

X X

X
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Figure A.2: An example inner product in the one-sided baby universe Hilbert space:
a genus 4 Riemann surface is prepared by |Σ⟩, and the overlap is computed with a 4-
trumpet state.

A.2.4 The disk and the annulus

So far, we have mainly focused on the stable (χ < 0) hyperbolic surfaces. However,
there are two special contributions to the Euclidean path integral coming from the
disk, which represents the classical solution to the JT equations of motion, and
the double-trumpet.
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The double-trumpet corresponds after Laplace transform to the free two-point
function that we computed in (A.2.35), and the disk corresponds to ω(x), which
we interpreted as the classical VEV of the twisted boson. To get the full (discon-
nected) JT path integral, one should consider expectation values of insertions of
the full ∂̃Φ(x) on the spectral plane. To implement the shift by ω(x) we introduce
a shift operator:

Vω =
∮

0

dx

2πiΦ(x)ω(x) = − 1
λ

∞∑
k=0

uk

k + 3
2
αk+ 3

2
. (A.2.63)

We see that translation of ∂Φ by ω is implemented by conjugating with expVω:

e−Vω∂Φ(y) eVω = ∂Φ(y)− [Vω, ∂Φ(y)] = ∂Φ(y)− ω(y) = ∂̃Φ(y) . (A.2.64)

We can use the shift operator to move around the dependence on ω(x) inside
correlation functions:

⟨σ|∂̃Φ(x1) · · · ∂̃Φ(xn)|Σ⟩ = ⟨σ|e−Vω∂Φ(x1) · · · ∂Φ(xn)eVω |Σ⟩ . (A.2.65)

Denoting
⟨ω| = ⟨σ| e−Vω and |Σ0⟩ = eVω |Σ⟩ , (A.2.66)

the full n-boundary JT gravity partition function, including disk and annulus
contributions, can be written as the following integral transform of an n-point
correlation function of twisted bosons on the spectral plane:

Z(β) =
∫ c+i∞

c−i∞

n∏
i=1

dxi
2πie

βixi
⟨ω|∂Φ(x1) · · · ∂Φ(xn)|Σ0⟩

⟨ω|Σ0⟩
. (A.2.67)

For the positive frequencies ∂Φ+, the formula coincides with equation (A.2.60),
because eVω commutes with ∂Φ+. For the negative frequencies, however, we get
precisely the disk and annulus contributions that were missing in (A.2.60).

We illustrate this with an instructive example. Consider the two-point function

⟨∂Φ(x)∂Φ(y)⟩Σ ≡
⟨ω|∂Φ(x)∂Φ(y)|Σ0⟩

⟨ω|Σ0⟩
. (A.2.68)

If we split ∂Φ into positive and negative frequencies, and commute all negative
modes to the left, we get four contributions. Using that ⟨ω| is a left eigenstate of
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∂Φ− with eigenvalue ω, and computing the commutator

[
∂Φ+(x), ∂Φ−(y)

]
= 1

2

√
x
y +

√
y
x

(x− y)2 , (A.2.69)

we find for the normalized full two-point function:

⟨ω|∂Φ(x)∂Φ(y)|Σ0⟩
⟨ω|Σ0⟩

= ω(x)ω(y)︸ ︷︷ ︸
1

+ω(x) ⟨∂Φ+(y)⟩Σ + ⟨∂Φ+(x)⟩Σ ω(y)︸ ︷︷ ︸
2

+ ⟨∂Φ(x)∂Φ(y)⟩σ︸ ︷︷ ︸
3

+ ⟨∂Φ+(x)∂Φ+(y)⟩Σ︸ ︷︷ ︸
4

. (A.2.70)

The terms have been labelled by the type of geometry that they represent in the
JT path integral, see Figure A.3.

+ + +

1︷ ︸︸ ︷ 2︷ ︸︸ ︷ 3︷ ︸︸ ︷ 4︷ ︸︸ ︷

Figure A.3: The terms in (A.2.70) correspond to distinct geometries in the JT path
integral. Term 1 corresponds to two disks. Term 2 is the disconnected contribution of a
disk and a sum over genus g > 0 Riemann surfaces with one trumpet boundary. Term
3 is the genus zero wormhole contribution, the double trumpet. And 4 is the sum over
connected stable spacetime wormholes, Zχ<0(β1, β2), with two trumpet boundaries.

Let us now explicitly check that this correctly reproduces the JT gravity results.
For the boundary creation operators, we have already seen that the Laplace trans-
form of Z+(β) gives ∂Φ+(x), and so the integral transform

∂Φ+ 7→
∫ c+i∞

c−i∞

dx

2πi e
βx∂Φ+(x) (A.2.71)

is the standard inverse Laplace transform. However, there is no function6 whose
Laplace transform gives the negative modes ∂Φ−(x). Nonetheless, the integral
transform in (A.2.71) may still exist. In such a case, we will still call it an ‘inverse
Laplace transform’, even though it is not actually the inverse of a convergent
Laplace transform.

6It can only be defined in a distributional sense, with the help of delta functions.
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Im(x)

Re(x)

Figure A.4: The keyhole contour for evaluating the inverse Laplace transform of ω(x).

The disk. Indeed, we want to compute the integral∫ c+i∞

c−i∞

dx

2πi e
βxω(x) =

∫ c+i∞

c−i∞

dx

2πi e
βx sin(2π

√
x)

4πλ . (A.2.72)

Since we chose the branch cut of ω(x) to lie on the negative real axis, eβx should
grow in the right-half plane7. So the condition is that β > 0. The small offset
0 < c≪ 1 is included to avoid the branch point at x = 0. To compute the integral
over the offset imaginary axis, we then close the contour in the counter-clockwise
direction into a so-called keyhole contour, shown in Figure A.4.

Since the integrand is holomorphic inside the keyhole contour, the total contour
integral should vanish. As we take the radius of the outer arcs to infinity, the
radius of the inner arc to zero, and c to zero, the only non-zero contributions to
the integral come from the path along (−i∞, i∞) and the two paths just above
and below the negative real axis. Therefore, we can express the integral (A.2.72)
as ∫ c+i∞

c−i∞

dx

2πi e
βxω(x) =

∫ ∞

0

dx

2πie
−βx (ω(−x+ iϵ)− ω(−x− iϵ)) , (A.2.73)

where have sent x → −x. Now as we take ϵ → 0, the second term gets an extra
minus sign from the discontinuity of the square root across the branch cut. Using

7For the integral to be non-zero, the exponential eβx needs to grow in the region of the
complex plane where the integrand is holomorphic. If this were not the case, we could close the
integration contour in that region and conclude that the integral would be zero.
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that sin(2πi
√
x) = i sinh(2π

√
x), we obtain:∫ c+i∞

c−i∞

dx

2πi e
βxω(x) = 2i

∫ ∞

0

dx

2πie
−βx sinh(2π

√
x)

4πλ . (A.2.74)

This integral can be evaluated using Gaussian integration. Upon setting x = z2,
and writing λ−1 = eS0 , we precisely retrieve the disk partition function:∫ c+i∞

c−i∞

dx

2πi e
βxω(x) = eS0

4π1/2β3/2 e
π2/β = Zdisk(β) . (A.2.75)

The annulus. We now show that (A.2.67) reproduces the correct result for the
double-trumpet partition function. We want to compute∫ c+i∞

c−i∞

dx

2πi
dy

2πie
β1x+β2y ⟨∂Φ(x)∂Φ(y)⟩σ

=
∫ c+i∞

c−i∞

dx

2πi
dy

2πie
β1x+β2y

1
2

(√
x
y +

√
y
x

)
(x− y)2 . (A.2.76)

Again we can close both the x- and y-contours in the left-half plane via a keyhole
contour. For a fixed value of x, the y-contour may enclose a pole at x = y, but
the residue of this pole is zero:

Resx→y⟨∂Φ(x)∂Φ(y)⟩σ = lim
x→y

1
4
∂

∂x

(√
x

y
+
√
y

x

)
= 0 . (A.2.77)

So we can express the integral along the imaginary axis in terms of the discontinuity
across the negative real axis. Making the substitution x = −z2, y = −w2, we then
find: ∫ c+i∞

c−i∞

dx

2πi
dy

2πie
β1x+β2y ⟨∂Φ(x)∂Φ(y)⟩σ

= − 1
4π2

∫ ∞

−∞
dzdw e−β1z

2−β2w
2 z2 + w2

(z2 − w2)2 . (A.2.78)

We can split the integrand as a sum of two terms

z2 + w2

(z2 − w2)2 = 1
2

[
1

(z − w)2 + 1
(z + w)2

]
, (A.2.79)

and then notice that both terms give the same integral, upon sending w → −w in
the second term. Expanding (z−w)−2 as a power series, it can be shown that the
double integral in (A.2.78) precisely gives the double trumpet partition function
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Zc
0,2(β1, β2).

This completes the proof of the dictionary (A.2.67) between the twisted boson and
the full n-boundary JT gravity path integral.

A.2.5 Topological recursion in the twisted boson formalism
Using our dictionary between Zc and operator insertions ⟨

∏n
i=1 ∂Φ(xi)⟩Σ, we de-

rive that the symplectic invariants ωg,n can be expressed as the following correla-
tion functions:

Wg,n(z) = ⟨∂Φ(z1) · · · ∂Φ(zn)⟩(g)
Σ,c , (A.2.80)

for (g, n) ̸= (0, 2)8. Here, the subscript c means that we take the connected
correlation function, and the superscript g denotes the order λ2g−2 contribution.
We have summarized the relations between the various quantities in Figure A.5.

Vg,n(ℓ)

Trumpet

Zg,n(β )
Laplace 〈∏n

i=1 ∂Φ(xi)
〉(g)

Σ

Laplace
Wg,n(z)

Double cover

Figure A.5: Relations between Weil-Peterson volumes Vg,n, symplectic invariants Wg,n,
twisted boson correlators, and Dirichlet-Dirichlet JT partition functions.

The operators ∂Φ(z) are related to the twisted boson on the spectral plane ∂Φ(x)
by substituting x = z2 and performing a coordinate transformation as 1-forms:

∂Φ(z)dz = ∂Φ(x)dx . (A.2.82)

Since Φ(x) is expanded in half-integer powers of x, Φ(z) is expanded in odd powers
of z. Taking into account the extra factor of z from dx = 2zdz, we see that ∂Φ(z)
is even.

To make contact with the Virasoro constraints, we will rewrite the topological
8In defining W0,2 we subtract the singular part of the OPE

W0,2(z, w) = ⟨∂Φ(z)∂Φ(w)⟩(g=0)
Σ,c −

1
(z − w)2 . (A.2.81)

This finite renormalization is directly related to the normal ordering prescription of the twisted
stress tensor.
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A.2. Baby universe Hilbert space and Virasoro constraints

recursion in a more transparent way. First, we introduce a generating function for
insertions of ∂Φ(z) on the double cover:

ZΣ[µ] =
〈

exp
∮

0

dz

2πiµ(z)∂Φ(z)
〉

Σ
. (A.2.83)

We split ∂Φ(z) into positive and negative modes ∂Φ+(z) and ∂Φ−(z). Using that
eA+B = eAeBe− 1

2 [A,B] for [A,B] central, we can split the exponential inside the
generating function (A.2.83) as:

ZΣ[µ] = ⟨ω|e
∮

dz
2πiµ(z)∂Φ−(z)e

∮
dz

2πiµ(z)∂Φ+(z)

e
1
2

∮
dz1
2πi

dz2
2πi µ(z1)µ(z2)

[
∂Φ+(z1),∂Φ−(z2)

]
|Σ0⟩ . (A.2.84)

The commutator between positive and negative modes gives

[
∂Φ+(z), ∂Φ−(w)

]
= 1

(z − w)2 + 1
(z + w)2 = ⟨∂Φ(z)∂Φ(w)⟩σ , (A.2.85)

and ∂Φ−(z) also pick up a commutator from acting on ⟨ω| = ⟨σ| eVω :[
Vω, ∂Φ−(z)

]
= ω(z) . (A.2.86)

We can therefore write the logarithm of the generating function as:

logZΣ[µ] =
∮

0

dz

2πiµ(z)ω(z)︸ ︷︷ ︸
Disk

+ 1
2

∮
0

dz1

2πi
dz2

2πiµ(z1)µ(z2) ⟨∂Φ(z1)∂Φ(z2)⟩σ︸ ︷︷ ︸
Annulus

+ log
〈

exp
∮

0

dz

2πiµ(z)∂Φ+(z)
〉

Σ︸ ︷︷ ︸
Stable

. (A.2.87)

The first two terms represent the connected contributions from the disk and the
annulus, and the last term contains the contributions from all the stable (χ < 0)
surfaces. So, we see that the connected correlation functions can be expressed as
functional derivatives of WΣ[µ] ≡ logZΣ[µ] with respect to the sources:

⟨∂Φ(z1) · · · ∂Φ(zn)⟩Σ,c = δ

δµ(z1) · · ·
δ

δµ(zn)WΣ[µ]
∣∣∣
µ=0

(A.2.88)

= ω(z)δn,1+ ⟨∂Φ(z1)∂Φ(z2)⟩σ δn,2 + ⟨∂Φ+(z1) · · · ∂Φ+(zn)⟩Σ,c .

We can use the generating function ZΣ[µ] to directly show the equivalence between
the Virasoro constraints and the topological recursion. The topological recursion
can be written as a functional differential equation for the generating functional
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of connected correlation functions WΣ[µ]:

δWΣ

δµ(z0)

∣∣∣
χ<0

= Res
z→0

⟨∂Φ(z0)Φ(z)⟩σ
2ω(z)

1
2

[
δWΣ

δµ(z)
δWΣ

δµ(z) + δ2WΣ

δµ(z)δµ(z)

]
. (A.2.89)

Here, it is assumed that the second derivative δ2

δµ(z)2 is normal ordered according
to (A.2.81). It is also implicit that the (g, n) = (0, 1) term is excluded. To show
that this equation indeed generates the topological recursion, we expand WΣ in
powers of the coupling constant λ:

WΣ[µ] =
∞∑
g=0

λ2g−2
∞∑
n=0

µ(z1) · · ·µ(zn)
n! ⟨∂Φ(z1) · · · ∂Φ(zn)⟩(g)

Σ,c . (A.2.90)

If we insert this expansion into (A.2.89) and compare powers of λgµn, we find the
following recursion for 2g − 2 + n ≥ 0:

Wg,n+1(z0, zI) = Res
z→0

⟨∂Φ(z0)Φ(z)⟩σ
4ω(z)

[
Wg−1,n+2(z, z, zI) (A.2.91)

+
∑′

g1+g2=g
J1⊔J2=I

Wg1,1+|J1|(z, zJ1)Wg2,1+|J2|(z, zJ2)
]
.

The normal ordering prescription (A.2.81) has taken care of the term W0,2(z, z)
corresponding to the computation of the one-holed torus amplitude W1,1(z):

W0,2(z, z) ≡ lim
w→z

(
⟨∂Φ(z)∂Φ(w)⟩σ −

1
(z − w)2

)
= 1

4z2 . (A.2.92)

At first sight, this recursion looks slightly different from the topological recursion
(2.2.29). The W0,2 obtained in the twisted boson formalism after normal ordering
is (z +w)−2, whereas the Bergmann kernel was (z −w)−2. Furthermore, we have
dropped the minus signs for z̃ = −z. However, the recursion (A.2.91) actually
computes the same invariants as the topological recursion (2.2.29). This can be
checked either by direct computation, or by making the following observations:

⋄ The recursion kernel (2.2.27) is odd in its first argument, K(−z0, z) =
−K(z0, z). The topological recursion (2.2.29) then implies that all the sym-
plectic invariants except ω0,2 are also odd in their first argument:

ωg,n+1(−z0, zI) = −ωg,n+1(z0, zI) . (A.2.93)

Therefore, the functions Wg,n(z) are all even in their first argument. In
[76] it is furthermore shown that the invariants ωg,n are symmetric multi-
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A.2. Baby universe Hilbert space and Virasoro constraints

differentials, from which it follows that the Wg,n(z) are even in each argu-
ment. This, of course, agrees with our observation that the fields ∂Φ(z) are
even in z.

⋄ The recursion kernel (2.2.27) is even in its second argument, K(z0,−z) =
K(z0, z). Writing K(z0, z) = κ(z0, z) dz0⊗∂z, we conclude that κ(z0, z) is an
odd function of z. Since all the other Wg,n(z) are even, the kernel κ(z0, z)
projects to the even part in z of (z − w)−2. But the even part in z of
(z −w)−2 is the same as the even part of (z +w)−2. Therefore, we have for
all (g, n) ̸= (0, 2):

Res
z→0

κ(z0, z)
1

(z − w)2Wg,n(z, zI) = Res
z→0

κ(z0, z)
1

(z + w)2Wg,n(z, zI) .

(A.2.94)
This allows us to replace the Bergmann kernel by the regularized two-point
function.

Lastly, note that the recursion kernel K(z0, z) for JT gravity matches the recursion
kernel in (A.2.91). Namely, we have:

⟨∂Φ(z0)Φ(z)⟩σ
4ω(z) = 1

2

(
1

z0 − z
− 1
z0 + z

)
πλ

2z sin(2πz) = κ(z0, z) , (A.2.95)

which agrees with (2.2.27).

We would like to show that the topological recursion, rewritten in the form (A.2.91),
is equivalent to the Virasoro constraint for the twisted stress tensor. To do so, we
write the functional differential equation (A.2.89) as an operator equation (to be
read inside correlation functions):

∂Φ+(z0) = Res
z→0

⟨∂Φ(z0)Φ(z)⟩σ
2ω(z)

1
2
{
∂Φ(z)∂Φ(z)

}
. (A.2.96)

To see that this equation generates (A.2.89), one replaces the operator ∂Φ(z) by
a functional derivative δ

δµ(z) and act on ZΣ = eWΣ . On the right-hand side we
now recognize the stress tensor T (z) = 1

2
{
∂Φ∂Φ

}
(z). Multiplying by ω(z0) and

integrating around zero we find:∮
0

dz0

2πi
ω(z0)∂Φ(z0)
w − z0

−
∮

0

dz0

2πi
ω(z0)
w − z0

∮
0

dz

2πi
⟨∂Φ(z0)Φ(z)⟩σ

2ω(z) T (z) = 0 . (A.2.97)

We have written the residue as a contour integral, and introduced a point w with
|w| > |z0| to project onto the negative powers of z0. Furthermore, we have replaced
∂Φ+ by ∂Φ, which can be done because ω is holomorphic.
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Figure A.6: The contour deformation argument for
∮

0 dz
∮

z
dz0 =

∮
0 dz0

∮
0 dz −∮

0 dz
∮

0 dz0.

Next, we deform the z and z0 contours in the second term according to the contour
deformation argument in Figure A.6. Using the fact that ω(z0) is holomorphic and
⟨∂Φ(z0)Φ(z)⟩σ has no poles at z0 = 0, we conclude that the

∮
0 dz

∮
0 dz0 integral

vanishes. So, the second term of (A.2.97) can be written as∮
0

dz0

2πi
ω(z0)
w − z0

∮
0

dz

2πi
⟨∂Φ(z0)Φ(z)⟩σ

ω(z) T (z) (A.2.98)

= 1
2

∮
0

dz

2πi

∮
z

dz0

2πi
⟨∂Φ(z0)Φ(z)⟩σ

w − z0

ω(z0)
ω(z) T (z) (A.2.99)

= 1
2

∮
0

dz

2πi

(
1

w − z
− 1
w + z

)
T (z) . (A.2.100)

The integration kernel 1
2 ((w − z)−1 − (w + z)−1) is odd in z, so it projects to the

even negative powers of T (z). However, since T (z) is already even in z, the kernel
simply projects to the negative powers of T (z). Plugging this result into (A.2.97),
we obtain ∮

0

dz

2πi
1

w − z

[
ω(z)∂Φ(z)− T (z)

]
= 0 . (A.2.101)

Since ω(z) is holomorphic, we can freely add 1
2ω(z)2 inside the brackets. Doing so

gives ∮
0

dz

2πi
1

w − z
Tω(z) = 0 , (A.2.102)

where Tω(z) is defined in (A.2.48). In correlation functions this gives the require-
ment (A.2.57) that the expectation value of Tω is analytic, which is precisely the
Virasoro constraint.
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A.2.6 Z2-twisted fermions

We provide an operator formalism for the twisted fermion fields introduced in
Section 3.4.1. Firstly, we introduce Φ0(x) and Φ1(x) on the two sheets, which we
expand in both integer and half-integer powers of x:

∂Φ0(x) = 1√
2
∑
n∈Z

αnx
−n/2−1 , (A.2.103)

∂Φ1(x) = 1√
2
∑
n∈Z

(−1)nαnx−n/2−1 . (A.2.104)

where the oscillators satisfy the commutation relation [αn, αm] = n
2 δn+m. As one

can see, the fields rotate into each other due to the square root:

Φ0(e2πix) = Φ1(x) , Φ1(e2πix) = Φ0(x) . (A.2.105)

Taking the difference leaves only odd n = 2k + 1 in the sum, and so the following
combination diagonalizes the monodromy:

∂Φ(x) ≡ 1√
2

(∂Φ0(x)− ∂Φ1(x)) =
∑
k∈Z

α2k+1x
−k− 3

2 . (A.2.106)

If we rename α2k+1 ≡ αk+ 1
2
, we see that [αk+ 1

2
, αl+ 1

2
] = (k+ 1

2 )δk+l, which matches
precisely with our definition of the twisted boson in (A.2.28). Now we compute
the vacuum two-point functions in the usual way:

⟨∂Φ0(x)∂Φ0(y)⟩σ = 1
2

∞∑
n=0

∞∑
m=1
⟨σ|αnα−m|σ⟩x−n/2−1ym/2−1 (A.2.107)

= 1
2

∞∑
n=1

n

2x
−n/2−1yn/2−1 =

(
√
x+√y)2

4√xy
1

(x− y)2 . (A.2.108)

This has the correct behaviour of bosonic two-point functions as x→ y. Integrat-
ing with respect to x and y, we get:

⟨Φ0(x)Φ0(y)⟩σ = log(
√
x−√y) = log(x− y) + reg. (A.2.109)

The same answer is found for ⟨∂Φ1∂Φ1⟩σ and ⟨Φ1Φ1⟩σ. Next, we compute the
free two-point functions for bosons on opposite sheets:

⟨∂Φ0(x)∂Φ1(x)⟩σ = 1
2

∞∑
n=1

n

2 (−1)nx−n/2−1yn/2−1
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= − 1
4√xy(

√
x+√y)2 , (A.2.110)

which is regular as x → y. So in particular, we do not have to normal order
combinations of Φ0 and Φ1. Integrating, we obtain the two-point function:

⟨Φ0(x)Φ1(y)⟩σ = log(
√
x+√y) . (A.2.111)

The same results hold for ⟨∂Φ1∂Φ0⟩σ and ⟨Φ1Φ0⟩σ. For consistency, we check that
the KS field Φ(x) has the free two-point function that we derived in (A.2.35):

⟨Φ(x)Φ(y)⟩σ

= 1
2

(
⟨Φ0(x)Φ0(y)⟩σ + ⟨Φ1(x)Φ1(y)⟩σ − ⟨Φ0(x)Φ1(y)⟩σ − ⟨Φ1(x)Φ0(y)⟩σ

)
= log(

√
x−√y)− log(

√
x+√y) . (A.2.112)

Having computed the bosonic correlators, we can go on to study the bosonized
fermions. First, let us compute the OPE between two fermions on the same sheet:

ψa(x)ψa(y)† =
{
eΦa(x)}{e−Φa(y)} ∼ 1

x− y
eΦa(x)−Φa(y) ∼ 1

x− y
. (A.2.113)

The symbol ∼ means that we have only kept singular terms in the limit that
x→ y. We used the OPE computed above that Φa(x)Φa(y) ∼ log(x− y). As one
can see, the cocycles have squared to one. By the boson-fermion correspondence,
we have for a = 0, 1:

∂Φa(x) = lim
y→x

{
ψa(x)ψ†

a(y)
}
≡ lim
y→x

(
ψ†
a(x)ψa(y)− 1

x− y

)
. (A.2.114)

For two fermions on opposite sheets, we do not have to normal order since Φ0(x′)Φ1(x)
is regular, and we can simply add the exponentials in a single normal-ordered ex-
ponential:

ψ0(x)ψ†
1(x) ≡ lim

x′→x
ψ0(x′)ψ1(x) = c0c1

{
eΦ0(x)−Φ1(x)} . (A.2.115)
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B.1 Steepest descent contours

Let us study in more detail the steepest descent contours for the eigenvalue inte-
grals of the fMT. Naively, looking at the transformations

ψ(x) =
∫

C
dy exyψ̂(y) , ψ†(x) =

∫
C′
dy e−xyψ̂†(y) , (B.1.1)

for the brane and anti-brane vertex operators, one might expect that C will be a
contour along the imaginary axis, and C′ along the real axis. This is also what one
expects based on the color-flavor duality in the finite L matrix theory. However, in
the double-scaling limit we have to make sure that the contours C, C′ go to infinity
in a region where the potential grows, to ensure that the flavor matrix integral
converges.

Let us first consider the the case of a single brane insertion

⟨ψ(xi)⟩KS =
∫

C

dy√
λ
e

1
λxiy− 1

λ Γ0(y)(1+O(λ)) . (B.1.2)

For the purposes of our analysis, we have kept only the leading order term as
λ→ 0. In the case of the Airy curve the potential is given by

Γ0(y) = −⟨Φ̂(y)⟩0 =
∫
x(y)dy = y3

3 , (B.1.3)

and so the integral in (B.1.2) becomes the well-known integral representation of
the Airy function. The real part of y3 is positive in three wedges of the complex
y-plane, and there are two independent non-trivial choices of contour, defining the
‘Airy’ and the ‘Bairy’ function, respectively. The Airy contour C can be chosen
along the imaginary axis, as long as it remains in the left half-plane (see the black
striped contour in Fig. B.1.).

233



B. Contour analysis for fMT

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

Figure B.1: Real part of the Airy potential y3

3 . The blue shaded areas are regions
where the real part is negative. Left, black striped: integration contour C for the brane
insertions. Right, red and yellow striped: two distinct choices of C′

± for the anti-brane
insertion.

Similarly, for a single anti-brane insertion we obtain the integral

⟨ψ†(xi)⟩KS =
∫

C′

dy√
λ
e− 1

λ xiy+ 1
λ Γ0(y)(1+O(λ)). (B.1.4)

In the Airy case, we now see that the naive integral along the real axis diverges,
since y3 blows up as Re(y) → ∞. The integration contour may start on the
negative real axis, but then it should enter into one of the two asymptotic regions
π
6 < |Arg(y)| < π

2 , such as the red C′
− or yellow C′

+ striped contours in Fig. B.1.
Of course, another valid option would be to integrate parallel to the imaginary
axis in the right half-plane, but by Cauchy this contour can always be deformed
to a linear combination of the red and yellow contours.

We can repeat the analysis for the JT spectral curve. In this case, the spectral
curve equation is solved by x(y) = arcsin2(y), and the leading order potential is

Γ0(y) = −2y +
√

1− y2 arcsin y + y arcsin2 y . (B.1.5)

Its real part has been plotted in Fig. B.2. As one can see, for small y, the real
part is very similar to the Airy case, but its large y behavior is different. In
particular, for large y, the complex y-plane is divided into only two regions: in the
left half-plane, the real part is positive for large enough Re(y), while in the right
half-plane it becomes negative1. Moreover, there is a branch cut from the analytic
continuation of the arcsin(y) on two pieces of the real axis (−∞,−1]∪ [1,∞). This
means that for the brane insertions (B.1.2), we can choose the integration contour
C to be homotopic to the Airy contour, as long as it passes through the real axis
in the interval (−1, 1) (see also [109]).

1The lines where the sign of the potential changes are indicated in light blue.
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Figure B.2: Real part of the JT potential. Close to the origin, the potential looks like
Airy potential, while the behavior at infinity is different: the potential is positive and
growing for Re(y) ≪ 0, while it is negative for Re(y) ≫ 0.

However, for the anti-brane (B.1.4), the contours C′
± no longer give rise to a

convergent integral, because the integral parallel to the negative real axis grows
exponentially for sufficiently negative Re(y). One possible solution is to integrate
y parallel to the imaginary axis, shifted into the positive half-plane. However, if
we want to make contact with some finite L flavor integral pre-double scaling,
this contour choice should be excluded, for the integration contour in the anti-
brane sector pre-double scaling is parallel to the real axis (see, for example, the
analysis in Appendix A of [141]2). The resolution of this apparent tension is to
take into account the branched structure of the potential Γ0(y). The plot above
was generated using the principal branch of arcsin(y) = −i log(iy+

√
1− y2), but

there are infinitely many branches, related by arcsin(y) + 2πk, for k ∈ Z. As an
example, we have plotted the real part of Γ0(y) taking the branch k = −1: we see
that a contour which passes through the branch cut onto the next sheet enters a
sheet where the potential grows again. We will select precisely such a contour for
the anti-brane integrals yi.

Having discussed the asymptotic behavior of the integration contours, we want to
deform them into steepest descent (or stationary phase) contours passing through
the saddle points. Let us first briefly describe the Airy case of a single brane
insertion. Varying the action in (B.1.2) we find two saddle points, y± = ±

√
x. If

we position the brane slightly above the negative x-axis in the spectral x-plane,
x = −E + iη, the saddle points y± lie on opposite sides of the imaginary y axis.
The steepest descent (and ascent) contours through these saddle points are plotted
in figure B.4 (left). The original black dashed Airy contour can be deformed to the
sum of the red and blue descent contours, so both saddle points contribute to the

2On a technical level, the integration parallel to the real axis ensures that the Hubbard-
Stratonovich transform (necessary in the color-flavor duality) is well-defined [162].
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Figure B.3: Right: principal branch of Γ0(y). Left: the k = −1 sheet of Γ0(y). In red
a steepest descent contour that goes to infinity in different sheets of the multiple cover.

integral. However, the contribution of y+ is exponentially suppressed compared to
that of y−. On the other hand, if we position the brane slightly below the negative
x-axis, x = −E − iη, the dominant contribution will come from y+ instead of y−,
see Fig. B.4 (right). This is an example of a Stokes’ phenomenon: the relative
dominance between the saddle points is exchanged when we cross the anti-Stokes
line on the branch cut of

√
x.

For the anti-brane, the original integration contour can only be deformed to one
of the steepest descent contours, passing through only one saddle. The red dashed
contour in Fig. B.1 is deformable to the steepest descent contour passing through
y−, while the yellow dashed contour is deformable to the steepest descent path
through y+. This is another example of a Stokes phenomenon: which saddles
(cease to) contribute depends on the argument of the external parameter x.
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Figure B.4: Background: real part of xy − y3

3 . Shaded areas are < 0, bright areas > 0.
Black dots are the saddle points. The steepest descent+ascent contours passing through
them are drawn in red and blue. Left: x = −E + iη, right: x = −E − iη.
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Figure B.5: Background: real part of xy − Γ0(y). Shaded areas are < 0, bright areas
> 0. Black dots are the saddle points. The steepest descent+ascent contours passing
through them are drawn in red and blue. Left: x = −E + iη, right: x = −E − iη.

Let us now turn to the case of JT gravity. The saddle points are located at

y± = ± sin
√
x . (B.1.6)

The steepest descent (and ascent) contours through the saddles have been plotted
in Fig. B.5, for x = −E + iη (left) and x = −E − iη (right). The black dotted
line is the original integration contour for the brane insertions. It can be deformed
to the sum of the red and blue steepest descent contours, as these go to the
same asymptotic infinity on the next sheet. So both saddle points contribute, and
which saddle dominates is determined by the ±iη prescription exactly as in the
Airy case. For the anti-brane, one should follow a steepest descent contour that
passes through sheet k = −1 from an asymptotic infinity, enters the principal
branch through the left branch cut and then goes through only one of the saddle
points. This is again identical to the Stokes’ phenomenon of the Airy anti-brane.
So we see that the pattern of symmetry breaking precisely follows from the ±iη
prescription of the external matrix X, in the same way that this was the case for
the finite size matrix integrals of [49].
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C.1 Kinematic space example

We will now describe a version of the state-based parallel transport summarized
in Section 5.2.1, which reproduces some of the results from kinematic space for
CFT2 on a time-slice. As we saw in Section 5.2.2, the parallel transport process for
kinematic space could also be derived in the operator-based transport language.
In this way of formulating the problem, the geometrical description of kinematic
space in terms of coadjoint orbits [188] is more readily transparent.

We will start by setting up some geometry that is relevant for this problem.
Consider the group SL(2,R). Its Lie algebra sl(2,R) consists of generators tµ,
µ = 0, 1, 2 satisfying the commutation relations [tµ, tν ] = ϵµν

ρtρ, where the in-
dices are raised by a metric ηab with signature (−,+,+). We will make use of an
explicit finite-dimensional representation by 2× 2 matrices given by

t0 = 1
2

(
0 1
−1 0

)
, t1 = 1

2

(
0 1
1 0

)
, t2 = 1

2

(
1 0
0 −1

)
. (C.1.1)

This basis will be most convenient for the calculation of the Berry curvature. It
can be easily expressed in terms of the basis used in Section 5.5 as t0 = 1

2 (L− +
L+), t1 = 1

2 (L−−L+), t2 = L0. Now consider embedding coordinates (X0, X1, X2)
describing 3-dimensional Minkowski spacetime with metric

ds2 = −(dX0)2 + (dX1)2 + (dX2)2 . (C.1.2)

Recall that SL(2,R)/Z2 ∼= SO(2, 1). A convenient parametrization for the algebra
sl(2,R) is given through the isomorphism to Mink3:

1
2

(
X2 X1 +X0

X1 −X0 −X2

)
↔ (X0, X1, X2) . (C.1.3)
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X0

X1

X2
|�i

Figure C.1: The dS2 hyperboloid describing kinematic space, which is a coadjoint orbit
of SO(2, 1). The arrow points to a special point that corresponds to the coherent state
|ϕ⟩.

The reason to express sl(2,R) in this way is that the coadjoint orbits of the Lie
group can be realized geometrically in Minkowski space. Any element of sl(2,R)
lies in one of three conjugacy classes (up to an overall factor ±1). These can be
classified by the value of ϵ ≡ |tr(g)|/2 where g ∈ SL(2,R): ϵ < 1 is elliptic, ϵ = 1
is parabolic and ϵ > 1 is hyperbolic. We will assume that our representative is in
the diagonal class

Λ = diag(λ,−λ)/2 (C.1.4)

with λ ∈ R. Since |tr(eΛ)|/2 > 1 for all λ, this is a hyperbolic element. Other
choices lead to different orbits.

Consider a general group element

g =
(
a b

c d

)
∈ SL(2,R) , (C.1.5)

with a, b, c, d ∈ R and ad− bc = 1. The coadjoint orbit is generated by the adjoint
action of Λ with arbitrary g,

g · Λ · g−1 =
(
λ
2 (bc+ ad) −λab

λcd −λ2 (bc+ ad)

)
. (C.1.6)

The determinant is constant along the orbit, det(g · Λ · g−1) = −λ2/4 . Applying
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the map to Minkowski space, (C.1.3), this results in the condition

−(X0)2 + (X1)2 + (X2)2 = λ2 . (C.1.7)

This is the defining equation of a single-sheeted hyperboloid with radius λ. Take
the embedding coordinates

X0 = λ cot t ,
X1 = λ csc t cos θ ,
X2 = λ csc t sin θ . (C.1.8)

These satisfy (C.1.7) and from (C.1.2) result in the induced metric

ds2 = λ2 csc2 t(−dt2 + dθ2) . (C.1.9)

This is just the metric on dS2 ≃ SO(1, 2)/SO(1, 1). We saw that this describes
the coadjoint orbit passing through the representative, (C.1.4).

The coadjoint orbit can be thought of as a fiber bundle whose base space is
SO(1, 2)/SO(1, 1) and its fiber is SO(1, 1). We want to consider an appropri-
ate section of the fiber bundle. The discussion below follows closely [192]. Using
the embedding coordinate (C.1.8) and the map (C.1.3), we obtain the constraints

2tr(gΛ g−1 t0) = −X0 = −λ cot t ,
2tr(gΛ g−1 t1) = X1 = λ cos θ csc t ,
2tr(gΛ g−1 t2) = X2 = λ sin θ csc t . (C.1.10)

Solving this system of equations, (C.1.10), we obtain

b = −cot t+ cos θ csc t
2a , c = a(1− sin θ csc t)

cot t+ cos θ csc t , d = 1 + sin θ csc t
2a . (C.1.11)

We have the freedom to impose a = 1, in which case the expressions somewhat
simplify. Applying this back to (C.1.5), we obtain a section g : dS2 → SL(2,R)
for the bundle given by

g =
(

1 − 1
2 (cos t+ cos θ) csc t

tan ( t−θ2 ) 1
2 (1 + csc t sin θ)

)
. (C.1.12)

Notice that g reduces to the identity for t = θ = π/2 which corresponds to the
point of intersection of the hyperboloid with the axis labeled by the t2 generator.

Now we will apply some of these tools to the problem of state-based parallel
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transport for the group SL(2,R), with the aim of describing kinematic space.
Recall that to define a state-based Berry phase it is necessary to choose a suitable
‘Hamiltonian’ with an eigenstate |ϕ⟩ that serves as the base state for the parallel
transport process. The ‘Hamiltonian’ is one which generates a specified subgroup
of SL(2,R), which we interpret as a flow in time. The state is acted on by group
elements in a unitary representation, which we denote by D(g), D(u) for g ∈
SL(2,R), u ∈ sl(2,R). In the coadjoint orbit language, eigenstates of subalgebras of
the symmetry algebra are known as coherent states. Specifically, we will choose our
Hamiltonian to be t2, which generates an so(1, 1) subalgebra. This exponentiates
to the hyperbolic group element

J = eηt2/2 (C.1.13)

with η ∈ R. Taking X → JXJ−1 using the isomorphism, (C.1.3), we see the
adjoint action with respect to J acts geometrically as

X0 → X0 cosh (η/2) +X1 sinh (η/2) , (C.1.14)
X1 → X0 sinh (η/2) +X1 cosh (η/2) , (C.1.15)
X2 → X2 , (C.1.16)

in other words, it acts as a boost with rapidity −η/2 in the X0 −X1 direction in
embedding space.

We define our coherent state through the condition that the boost leaves it invari-
ant up to a phase,

D(J ) |ϕ⟩ = eiηζ |ϕ⟩ ,D(t2) |ϕ⟩ = 2ζ |ϕ⟩ , (C.1.17)

with ζ ∈ R since D(J ) is assumed to be unitary and D(t2) Hermitian in the rep-
resentation. By a theorem of Perelomov [193] (see also [194]), coherent states are
in one-to-one correspondence with points on an orbit. Our state |ϕ⟩ corresponds
to the point (0, 0, 1) on the dS2 hyperboloid that is left fixed by the action of the
boost (see Figure C.1). It is geometrically simple to see that the action of the
other generators t0, t1 do not leave this point invariant, which corresponds to the
statement that |ϕ⟩ is not also an eigenstate of these generators.

Recall that the Maurer-Cartan form is given by

Θ = g−1dg . (C.1.18)
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The Berry phase is

θ(γ) =
∮
γ

A , A = i ⟨ϕ| D(Θ) |ϕ⟩ . (C.1.19)

We now use (C.1.12) to evaluate the pullback of the Maurer-Cartan form from
SL(2,R) to dS2. Taking the expectation value of the generators in the state |ϕ⟩,
then applying the commutation relations, the eigenvalue condition (C.1.17) and
using ζ ∈ R, we see that only t2 has a nonvanishing expectation value in |ϕ⟩. Thus,
only this part contributes to the Berry phase. We find

A = i ⟨ϕ| D(Θ) |ϕ⟩ = iζ csc t cos
(
t+ θ

2

)
sec
(
t− θ

2

)
(dt− dθ) . (C.1.20)

From this we can define the Berry curvature

F = dA = iζ

sin2 t
dt ∧ dθ . (C.1.21)

Using Stokes’ theorem one can write the integral of the Berry connection in
(C.1.20) as

θ(γ) = iζ

∫
B

1
sin2 t

dt ∧ dθ , (C.1.22)

where B is any two-dimensional region with boundary ∂B = γ.

For a CFT2 restricted to a time-slice, kinematic space consists of the space of
intervals on this time-slice. Given a causal ordering based on containment of
intervals, this is just a dS2 spacetime, (C.1.9), with a time coordinate set by the
interval radius, (θR − θL)/2 [184]. The curvature, (C.1.21), is a volume form on
kinematic space. Recalling the relation between time and interval size, it matches
the kinematic space curvature, (5.2.25), derived from the operator-based method in
Section 5.2.2 (note that an exact matching of the normalization is unimportant, as
the overall normalization for the modular Berry phase will be at any rate affected
by the choice of normalization for the modular Hamiltonian). The Berry phase,
(C.1.22), computes the volume of region B within this dS2 spacetime. It also
precisely reproduces the Berry phase for kinematic space derived by other means
in [53,54].

C.2 General formulation
We will derive a general formula for the curvature assuming that there is a unique
way of separating out the zero mode. As we discuss in the next appendix, this
is not generally true when the state-changing transformations are elements of the
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Virasoro algebra, however it holds for the transformations that we consider in
the main text. The results of Section 5.3 utilize the formula for the curvature
presented in this appendix.

Consider a Lie algebra g and a trajectory of elements X(λ) ∈ g specified by some
parameter λ. We write AdX for the adjoint action of X on g, AdX(Y ) = [X,Y ].
We make the assumption that the kernel of AdX and the image of AdX do not
intersect anywhere along the path, which is guaranteed if [X,Y ] ̸= 0 implies
[X, [X,Y ]] ̸= 0. Moreover, we will be interested in smooth trajectories X(λ)
along which the kernel and image of AdX vary smoothly. In particular, we will
assume their dimensions do not jump.

Crucially, we will make the further assumption1 that any Y can be uniquely de-
composed as Y = K + I with K in the kernel and I in the image of AdX . We will
call the corresponding projection operators PK and PI , with the property that

PI + PK = 1 . (C.2.1)

Notice that we are not using an inner product, which means that the projectors
are not orthogonal in any sense.

Besides the projectors PK and PI , we will denote AdX simply by A, and its inverse
by A−1. Note that A has a kernel so it does not have an inverse, but since by
assumption A defines a non-degenerate map from the image of the image of AdX
to itself, it does have a well-defined inverse on these subspaces. The map A−1

is defined to be the inverse on these subspaces and zero everywhere else. These
operators then obey the following set of identities:

APK = PKA = 0 , (C.2.2)
A−1PK = PKA

−1 = 0 , (C.2.3)
AA−1 = A−1A = PI . (C.2.4)

We now vary X to X+δX by some small change δλ along the path. In particular,
we can use the above identities to express the variations of PK , PI and A−1 in
terms of the variation of A. After some algebra we find that

δPK = −δPI = −PKδAA−1PI − PIA−1δAPK , (C.2.5)
δA−1 = −A−1δAA−1 + PIA

−2δAPK + PKδAA
−2PI . (C.2.6)

1For finite-dimensional Lie algebras the dimensions of the kernel and the image add up to the
total dimension of the Lie algebra. Since they do not intersect, this then implies that the kernel
and image of AdX together span the full Lie algebra. For infinite-dimensional Lie algebras the
situation is more complicated, as we explain in Appendix C.3.
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In particular, we used

PKδPI = PKδA
−1API , PIδPI = PIA

−1δAPK , (C.2.7)

for deriving (C.2.5) and

PKδA
−1 = δPIA

−1 , PIδA
−1 = A−1δPI −A−1δAA−1 , (C.2.8)

for (C.2.6). We also used that PIA−1 = A−1PI = A−1 and PIA = API = A.

Given a variation δX, we want to express it as

δX = [S,X] + PKδX , (C.2.9)

where PKδX is in the kernel of AdX . Moreover, we want to remove the modular
zero mode from S, so that S is uniquely defined. We do this by requiring that
PKS = SPK = 0, and with the above equations it is then easy to see that

S = −A−1(δX) . (C.2.10)

We are now going to compute the parallel transport along a small square, by first
doing the variation δ1X and then δ2X, and then subtracting the reverse order.
For the difference, we get

F = (1− (A−1 + δ1A
−1)(δ2X))(1−A−1(δ1X))− (1↔ 2) . (C.2.11)

The first order terms vanish, thus it is necessary to expand to second order. One
term we get at second order is

F1 = −[A−1(δ1X), A−1(δ2X)] . (C.2.12)

There is also another term coming from the variations of A−1, which evaluates to

F2 = (A−1δ1AA
−1 − PIA−2δ1APK − PKδ1AA

−2PI)(δ2X)− (1↔ 2) . (C.2.13)

In order to simplify (C.2.13) further, we need several other identities. For example,
multiplying

A([Y,Z]) = [AY,Z] + [Y,AZ] (C.2.14)

by A−1 we get the identity

A−1([AY,Z] + [Y,AZ]) = PI([Y,Z]) . (C.2.15)

245



C. Details on Berry phases

From this it follows that

A−1[Y, PKZ] = A−1[PIY, PKZ] = PI([A−1Y, PKZ]) , (C.2.16)

where we used Eqs. (C.2.1), (C.2.3) and (C.2.4).

Next we consider the first term in F2 minus the same term with 1 and 2 inter-
changed. It is given by

F 1
2 = A−1δ1AA

−1(δ2X)− (1↔ 2) . (C.2.17)

We use δ1AY = [δ1X,Y ] to rewrite it as

F 1
2 = A−1([δ1X,A

−1(δ2X)] + [A−1(δ1X), δ2X])
= A−1([(AA−1 + PK)δ1X,A

−1(δ2X)] + [A−1(δ1X), (AA−1 + PK)δ2X])
= PI([A−1(δ1X), A−1(δ2X)]) +A−1([PKδ1X,A

−1(δ2X)]
+ [A−1(δ1X), PKδ2X]) . (C.2.18)

In the last equality we make use of (C.2.15). Applying (C.2.16) to the last two
terms gives

F 1
2 = PI([A−1(δ1X), A−1(δ2X)]

+ [A−2(δ1X), PKδ2X]− [A−2(δ2X), PKδ1X]) . (C.2.19)

The second term in F2 reads

F 2
2 = −PIA−2δ1APK(δ2X) + PIA

−2δ2APK(δ1X)
= −A−2([δ1X,PKδ2X]− [δ2X,PKδ1X]) . (C.2.20)

Using the identity (C.2.16) twice it follows that

F 2
2 = −PI([A−2(δ1X), PKδ2X]− [A−2(δ2X), PKδ1X]) . (C.2.21)

The last term to consider is

F 3
2 = PKδ2AA

−2PI(δ1X)− PKδ1AA
−2PI(δ2X)

= PK([δ2X,A
−2(δ1X)]− [δ1X,A

−2(δ2X)]) . (C.2.22)

This expression does not admit an obvious simplification. Combining all terms we
see that the first term in F 1

2 cancels part of F1, the second and third terms in F 1
2

cancel against F 2
2 , so that we are left with a simple and compact expression for
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the full curvature:

F = −PK([A−1(δ1X), A−1(δ2X)]
+ [δ1X,A

−2(δ2X)]− [δ2X,A
−2(δ1X)]) . (C.2.23)

One can easily check that the curvature commutes with X.

Notice that only the PI components of δX contribute to the curvature due to the
observation that

PK([PIY, PKZ]) = PK([AA−1Y, PKZ]) = PKA([A−1Y, PKZ]) = 0 , (C.2.24)

where we used (C.2.14). Moreover, we find that

W = A2([A−2(δ1X), A−2(δ2X)]) (C.2.25)
= 2[A−1(δ1X), A−1(δ2X)] + [PIδ1X,A

−2(δ2X)] + [A−2(δ1X), PIδ2X]

is almost the same as (C.2.23), except for the factor of two, and the appearance
of the projector PI . It is obvious that PKW = 0 and if we add PKW to F we can
drop the PI in the resulting expression, as follows from (C.2.24). Therefore, the
final expression for the curvature reads

F = PK([A−1(δ1X), A−1(δ2X)]) . (C.2.26)

The simple form of this result suggests that there is a shorter derivation and it
would be interesting to further investigate this possibility.

C.3 Non-diagonalization for Virasoro

There are subtleties in expressing a Virasoro generator X as X = X0 + [Hmod, Y ]
with X0 a zero mode of the modular Hamiltonian Hmod in the Virasoro algebra.
We will give here a summary of why the assumed decomposition, (C.2.9), used
to derive the curvature cannot be applied to the full Virasoro algebra, and hence
why we have chosen to restrict to a different set of transformations.

We will first be more precise about the notion of ‘generator.’ A generator of
Diff(S1) can be expressed as

X =
∑
n

cnLn , (C.3.1)

where the modes Ln satisfy the Virasoro algebra, (5.3.11). We can equivalently
represent X as a function on S1, f(θ) =

∑
cne

inθ, or as a vector field, ξ =∑
cnz

n+1∂z in radial quantization. For the arguments we are interested in the
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central charge can be considered separately, see Section 5.3.3.

One can ask what values of cn are allowed in (C.3.1). This leads to different ‘defini-
tions’ of the Virasoro algebra. Some choices that are preserved under commutation
are:

⋄ algebraic: require only a finite number of the cn to be non-zero ,

⋄ semi-algebraic: require that cn = 0 for n sufficiently negative (alternatively,
one could require cn = 0 for n sufficiently positive) ,

⋄ analytic: require the function f or vector field ξ to be smooth .

In the case where the generators are self-adjoint, then semi-algebraic reduces to
algebraic.

For each of these choices of infinite-dimensional Lie algebras, we can ask to what
extent the statement that any generator X can be written as X = X0 + [Hmod, Y ]
with X0 a zero mode of the modular Hamiltonian Hmod holds.

C.3.1 Algebraic and semi-algebraic case

In the algebraic case, one can prove that the only algebra element that commutes
with Hmod is Hmod itself. First, recall that

Hmod = π(L1 + L−1) . (C.3.2)

Now consider elements with only a finite number of non-zero cn, running from
n = −L, ...,K, with K and L positive. Then, the commutator

[Hmod,

K∑
n=−L

cnLn] =
K+1∑

n=−L−1
c′
nLn (C.3.3)

maps a vector space of dimension K+L+1 into a vector space of dimension K+L+
3. Its kernel is dimension one so its cokernel must be dimension three. Therefore,
the number of generators which can be written as [Hmod, X] is codimension three.
In fact, one can write every generator as

X = aHmod + bL2 + cL−2 + [Hmod, Y ] , (C.3.4)

for some a, b, c, which can be seen iteratively by taking a suitable Y with L =
K = 1 and combining Hmod, L2, L−2 to isolate L0, then taking a suitable Y with
L = 1,K = 2 combined with all the previous generators to isolate L3, and so on
and so forth. Crucially, this decomposition is not unique. For instance, we could
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have equally well written a similar decomposition with L3, L−3 instead of L2, L−2.

To solve
L−2 = [Hmod, Y ] , (C.3.5)

it is necessary to express Y as an infinite series Y =
∑−∞
k=−3 ckLk which is not part

of the algebra:

Y = 1
4L−3 −

2
4 · 6L−5 + 2

6 · 8L−7 −
2

8 · 10L−9 + . . . (C.3.6)

If we denote by Yk the sum of the first k terms which truncates at L−2k−1, then
we have

1
π

[Hmod, Yk] = L−2 + (−1)k+1

k + 1 L−2k−2 , (C.3.7)

so that for large k this becomes ‘close’ to L−2. We can introduce a metric so that
this notion of closeness becomes more precise, e.g.,

||
∑
n

cnLn||2 ≡
∑
n

|cn|2 (C.3.8)

defines a metric on the Lie algebra. But the Lie algebra is not complete with
respect to this metric, i.e., limits of Lie algebra elements which converge in this
norm will not in general converge to an element of the Lie algebra.

Even ignoring the fact that the algebra is not complete with respect to (C.3.8),
there is the additional issue that this way of interpreting L−2 as the commutator
of an element of the algebra with Y is too strong. Indeed, we can also find an
infinite series Y obeying

[Hmod, Y ] = Hmod , (C.3.9)

which looks like

Y = . . .+ c6L6 + c4L4 + c2L2 + c−2L−2 + c4L−4 + c−6L−6 + . . . (C.3.10)

This also has the property that if one truncates Y , the Yk obeys [Hmod, Yk] =
Hmod + Zk, with Zk small defined with respect to the above norm. This would
not allow for a decomposition separating out the zero mode part from the image
of the adjoint action without intersection.

Notice that considering the semi-algebraic rather than algebraic case also does not
fix the issue. A semi-infinite series in one direction can either remove L2 or L−2
from the expression (C.3.4), but not both.
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C.3.2 Analytic case

In the analytic case, the equation [Hmod, X] = Y is the differential equation

(1 + z2)X ′(z)− 2zX(z) = − 1
π
Y (z) , (C.3.11)

where we replaced everything by the corresponding smooth function. This differ-
ential equation is equivalent to

d

dz

(
X(z)
1 + z2

)
= − 1

π

Y (z)
(1 + z2)2 . (C.3.12)

Therefore,

X(z) = −c0

2 (1 + z2)− 1
π

(1 + z2)
∫ z Y (z′)

(1 + z′2)2 dz
′ , (C.3.13)

where c0 is an integration constant, and the integration is over the circle. The
differential equation does not have an analytic solution for all Y (z). In fact, we
will argue that in order to find an analytic solution we require three conditions on
Y , so that once again the space of smooth vector fields which can be written as
[Hmod, X] is codimension three.

The first two conditions come from exploring the behavior of the integrand near
z = ±i, where we find that there will be logarithmic branch cut singularities unless
the residues at z = ±i vanish. Thus, the first two conditions on Y (z) for (C.3.13)
to be analytic are

Resz=±i
Y (z)

(1 + z2)2 = 0 . (C.3.14)

Note that it is admissible for Y (z)/(1 + z2)2 to have double pole at z = ±i, as
these integrate to a single pole, which is then canceled by the (1 + z2) prefactor
in (C.3.13). Therefore, the double poles do not give rise to singularities.

There is also another condition, namely that the contour integral of X ′(z) around
the unit circle vanishes so that we get a periodic function X(z) after integration.
Since polynomials in z are automatically periodic, it suffices to consider the be-
havior of the integrand, Y (z)/(1 + z2)2. Assuming that Y (z) is analytic except
possibly at z = 0, this amounts to the condition

Resz=0
Y (z)

(1 + z2)2 = 0 . (C.3.15)

Note that poles near z = ±i do not affect the periodicity so we can subtract them
before applying this condition if necessary, and we also assume the residues vanish
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as above, so that we have a well-defined integral.

To see how this works in practice, it is useful to evaluate this for a trial function
Y inspired by the algebraic case:

Y0 = a(1 + z2) + bz−1 + cz3 , (C.3.16)

which contains L2, L−2 and Hmod. We notice that

Y0

(1 + z2)2 = i(b+ c)
4(z − i)2 + −b− ia+ c

2(z − i) + . . . , (C.3.17)

Y0

(1 + z2)2 = −i(b+ c)
4(z + i)2 + −b+ ia+ c

2(z + i) + . . . (C.3.18)

near z = ±i respectively. The residue of Y0/(1 + z2)2 at z = i equals −(iY0(i) +
Y ′

0(i))/4 and the residue at z = −i equals (iY0(−i) − Y ′
0(−i))/4, and these are

required to vanish by (C.3.14). This translates to b = c and a = 0. Recall that the
differential equation, (C.3.11), extracts the non-zero mode part, i.e., the vector
fields that can be written as [Hmod, X]. We could also ask how to extract the zero
mode part. In this case it seems the most natural choice to extract a, which is
given by the difference of the two residues, as the coefficient of the zero mode.

Even in the case b = c and a = 0 with vanishing residues, we see that X will now
involve a term (1 + z2) log z since Y = z−1 + z3 = (z2 + 1)2z−1 − 2z. This still
has a branch cut singularity, and therefore will not be single-valued. This is where
a version of the third condition, (C.3.15), is necessary. To be more precise about
this requirement, take a finite polynomial in z, z−1 for Y . We first subtract the
harmless double poles and the harmful single poles (which we require to vanish
independently) so that we get an expression of the type

Z(z) ≡ Y (z)−A−Bz − Cz2 −Dz3

(1 + z2)2 , (C.3.19)

where the coefficients A,B,C,D are chosen so as to cancel the single and double
poles. To accomplish this, it is necessary for an overall factor (1 + z2)2 to factor
out of the numerator. The choice of coefficients can then be determined by the
requirement that the numerator of Z and its derivative both vanish at z = ±i.
Explicitly, they are given by

A = 1
4(2Y (−i) + 2Y (i) + iY ′(−i)− iY ′(i)) , (C.3.20)

B = 1
4(3iY (−i)− 3iY (i)− Y ′(−i)− Y ′(i)) , (C.3.21)
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C = i

4(Y ′(−i)− Y ′(i)) , (C.3.22)

D = 1
4(iY (−i)− iY (i)− Y ′(−i)− Y ′(i)) . (C.3.23)

With this choice of coefficients the expression, (C.3.19), is now well-behaved ev-
erywhere, i.e., the numerator has a factor (1+z2)2, and the quotient is also a finite
polynomial in z and z−1. The only problematic contribution to the integral is com-
ing from the z−1 term which does not become a periodic function when integrated.
So the remaining number is the coefficient in front of z−1 in the polynomial Z(z)
in (C.3.19).

We denote by Y− the terms in Y with a negative power of z. The non-negative
powers in Y only give rise to non-negative powers in Z and are never problematic.
So we can equivalently consider

Z−(z) ≡ Y−(z)−A−Bz − Cz2 −Dz3

(1 + z2)2 , (C.3.24)

and we are interested in the coefficient in front of z−1 in Z−(z). We can extract
this using a small contour integral. But we might as well extract it using a large
contour integral as Z− is analytic everywhere except at 0 and ∞. Then the
integral is dominated by D, so it is necessary that D = 0 for the integral to be
single-valued. In fact, D is equal to the sum of the residues at z = i and z = −i,
as can be seen from (C.3.23), so this version of the third condition with the double
poles subtracted out reduces to

Resz=i
Y−

(1 + z2)2 + Resz=−i
Y−

(1 + z2)2 = 0 . (C.3.25)

Since the residues of the complete Y/(1 + z2)2 have to vanish separately, we could
equivalently require the same condition for Y+.

For more general non-polynomial Y , we can apply the same argument, except that
now Y− is analytic outside the unit disk and Y+ is analytic inside the unit disk. By
the version of the Riemann-Hilbert problem that applies to simple closed curves,
a decomposition of analytic functions on the circle of the type Y− + Y+ exists.

C.3.3 Issues from non-diagonalization

In this subsection, we will show that the ambiguities in the diagonalization of the
Virasoro algebra with respect to the adjoint action translate to ambiguities in the
projection operator. This leads to different answers for the Berry curvature that
are physically inequivalent. As a result, there is no sensible bulk interpretation.
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It is because parallel transport acting by elements of the usual Virasoro algebra
is plagued with ambiguities that we are forced to extend to a non-standard alge-
bra constructed from vector fields on the half-circle as in Section 5.3, where the
construction is unique.

For the ordinary Virasoro case, we want to construct a zero-mode projector P0
so that it evaluates to zero for the integrand of (5.3.15), while it gives a non-zero
value for (5.3.9). In other words we can devise a contour integral prescription in
such a way as to satisfy the properties:

⋄ The functional is non-zero on the modular Hamiltonian, i.e., P0 (Hmod) = 1 ,

⋄ It projects out the commutator of the modular Hamiltonian with anything
else, i.e., P0 ([Hmod, Xξ]) = 0 , for any vector field ξ(z) .

We emphasize that this is a different projection operator than the one considered
in Section 5.3, in particular it is finite rather than a delta function.

There are several different choices that obey both of these properties:

P
(1)
0 (Xξ) ≡ −

1
π2

∫
|z+iϵ|=1

ξ(z)
(1 + z2)2 dz , (C.3.26)

P
(2)
0 (Xξ) ≡

1
π2

∫
|z−iϵ|=1

ξ(z)
(1 + z2)2 dz , (C.3.27)

P
(3)
0 (Xξ) ≡

1
2

(
P

(1)
0 (Xξ) + P

(2)
0 (Xξ)

)
. (C.3.28)

By explicitly computing the residues, one can express these in terms of the diffeo-
morphism ξ and its derivative evaluated at the endpoints of the interval as

P
(1)
0 (Xξ) = 1

2π [ξ(−i) + iξ′(−i)] , (C.3.29)

P
(2)
0 (Xξ) = 1

2π [ξ(i)− iξ′(i)] , (C.3.30)

P
(3)
0 (Xξ) = 1

4π [i ξ′(−i)− i ξ′(i) + ξ(−i) + ξ(i)] . (C.3.31)

Note that the sum of contours P (2)
0 − P

(1)
0 does not satisfy the required prop-

erties, as it vanishes on the modular Hamiltonian. The difference of contours,
Eqs. (C.3.28) and (C.3.31), is perhaps the most symmetrical choice. It can be
seen to result from the decomposition, (C.3.4), by additionally imposing that the
linear functional evaluated on the extra terms L2, L−2 in the decomposition give
zero. However, recall that this decomposition was not unique. A different choice
would have resulted in a different linear functional, and therefore a different P0.
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Figure C.2: One simple choice of linear functional, constructed from the difference
of |z − iϵ| = 1 and |z + iϵ| = 1 contours. When considering a non-restricted set of
generators, there is an ambiguity in the choice of projection. For instance, it is also
possible to choose either of these contours separately (but not their sum) and still satisfy
the required properties for the linear functional. This ambiguity is tied to the fact that
the adjoint action is not diagonalizable over the Virasoro algebra.

Moreover, we have considered the possibility of defining a zero mode projector
P0 using very early or very late time modular flow. However, we found that this
prescription is also ambiguous and depends on whether one considers very early
or very late times.

It is also easy to see that this has a direct physical implication by leading to
different results for the curvature. For instance, consider an infinitesimal diffeo-
morphism of the form

θ → θ + 2ϵ sin (mθ) , (C.3.32)

where m ∈ Z. The parameter ϵ is assumed to be small and dimensionless.

One can consider a parallel transport process consisting of a series of such infinites-
imal transformations, where m can vary from step to step. It is described by a
function m(λ), where λ denotes the point along the path evaluated in the contin-
uum limit. Mapping from the cylinder to the plane using (C.3.32) and expanding
to first order in ϵ, this sinusoidal perturbation becomes

ξ(z) = z + ϵ(zm+1 − z−m+1) +O(ϵ2) . (C.3.33)

Up to terms that are higher order in ϵ, (C.3.33) can be inverted to z = ξ−ϵ(ξm+1−
ξ−m+1) +O(ϵ2). Inserting this in (5.3.9) for Hmod, we find the correction to the
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modular Hamiltonian:

H(1) = π [(m+ 1)(L−m+1 + Lm−1) + (m− 1)(L−m−1 + Lm+1)] . (C.3.34)

Recall that expanding both the parallel transport equationHmod = [S,Hmod] order
by order in ϵ gave (5.3.42). Solving for the correction to the parallel transport
operator gives

S(1) = Lm − L−m , S(0) = 0 . (C.3.35)

Take two transformations of the form Eq. (C.3.33) with different values for the
integer m, say m1 and m2. This gives two different parallel transport operators,
S1 and S2. To compute the curvature, (5.3.3), we are interested in computing the
commutator

[S(1)
1 − κ1H

(0), S
(1)
2 − κ2H

(0)] , (C.3.36)

where κi = P0(Si), is the zero mode coefficient of the parallel transport operator
Si. We can split (C.3.36) into terms that we can treat separately. Notice that the
term proportional to [H(0), H(0)] is zero and can be neglected. By definition, the
projection operator vanishes on [S(1)

i , H(0)], so this contribution to the curvature
is zero. An explicit computation shows that

[S(1)
1 , S

(1)
2 ] = (m1 −m2)(Lm1+m2 − L−m1−m2)

+ (m1 +m2)(L−m1+m2 − Lm1−m2) . (C.3.37)

We will now project onto the zero modes of each of the terms. This is where the
ambiguity enters since the result depends on the choice of linear functional. We
find

F (1) = P
(1)
0 ([S(1)

1 , S
(1)
2 ]) = 2i

π
(m2

2 −m2
1) sin

(m1π

2

)
sin
(m2π

2

)
, (C.3.38)

F (2) = P
(2)
0 ([S(1)

1 , S
(1)
2 ]) = −F (1) , (C.3.39)

F (3) = P
(3)
0 ([S(1)

1 , S
(1)
2 ]) = 0 . (C.3.40)

Notice that in the case where the m1,m2 are even, all curvatures agree and in
fact identically vanish. Indeed, it is possible to argue that the curvature defined in
this way always vanishes for diffeomorphisms that vanish on the interval endpoint.
However, in general they do not agree and the result is ambiguous.
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C.4 Conformal algebra

We will review here some facts about the d-dimensional conformal algebra, which
will set our conventions.

The conformal generators are

D = −xµ∂µ , Pµ = −∂µ , Cµ = x2∂µ − 2xµxρ∂ρ , Mµν = xµ∂ν − xν∂µ . (C.4.1)

The resulting commutation relations are given by

[D,Pµ] = Pµ , [D,Cµ] = −Cµ ,
[Cµ, Pν ] = 2(ηµνD −Mµν) ,

[Mµν , Pρ] = −ηµρPν + ηνρPµ ,

[Mµν , Cρ] = −ηµρCν + ηνρCµ ,

[Mµν ,Mσρ] = −ηµσMνρ + ηνσMµρ − ηνρMµσ + ηµρMνσ . (C.4.2)

Note that we have written µ = (0, i), where i = 1, . . . , d− 1 is some spatial index.

The bilinear product on the conformal algebra is given by

⟨X,Y ⟩ ≡ 1
2tr(XY ) , X, Y ∈ so(2, d) , (C.4.3)

where the trace is taken in the fundamental representation. In terms of the above
generators the inner product is normalized such that non-zero entries are given
by:

⟨D,D⟩ = ⟨M0i,M0i⟩ = −⟨Mij ,Mij⟩ = 1 , ⟨P0, C0⟩ = −⟨Pi, Ci⟩ = 2 . (C.4.4)

C.5 Relative entropy and quantum Fisher infor-
mation

In this appendix we review the derivation of a metric on the space of density
matrices from the second variation of the relative entropy [248,249]. The relative
entropy between two states σ and ρ is given by:

S(σ||ρ) ≡ tr(σ log σ)− tr(σ log ρ) . (C.5.1)

Let us view σ as obtained from ρ by some small perturbation:

σ = ρ+ εδρ+O(ε2) , (C.5.2)
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where ε is some small parameter. Then, the second derivative with respect to this
parameter can be expressed as:

d2

dε2S(σ||ρ) = tr
(
δρ

d

dε
log(ρ+ εδρ)

)
. (C.5.3)

To compute the derivative we use the following integral representation for the
logarithm of an operator:

log(ρ+ εδρ) = −
∫ ∞

0

ds

s

(
e−s(ρ+εδρ) − e−s

)
. (C.5.4)

One can now take the derivative by using the relation

d

dε
eA+εB =

∫ 1

0
dx eAxBe(1−x)A , (C.5.5)

for two operators A and B. Using (C.5.4) it now follows that

d2

dε2S(σ||ρ) =
∫ 1

0
dx

∫ ∞

0
ds tr

(
δρ e−xsρδρ e−(1−x)sρ

)
. (C.5.6)

We can now evaluate the trace in the eigenbasis of the modular Hamiltonian
associated to the state ρ:

ρ|ω⟩ = e−ω|ω⟩ . (C.5.7)

We can write this as:

d2

dε2S(σ||ρ) =
∫ 1

0
dx

∫ ∞

0
ds

∫
dω

∫
dω′|⟨ω|δρ|ω′⟩|2e−sx(e−ω−e−ω′

)e−se−ω′

=
∫
dω

∫
dω′|⟨ω|δρ|ω′⟩|2eω(ω − ω′)n(ω − ω′) . (C.5.8)

Using again the sinh-formula (6.2.54) to replace the integral over frequencies by
an integral over modular time, and removing the explicit |ω⟩ basis we find that
this expression is equivalent to

δ(2)S(σ||ρ) =
∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)
tr(ρ−1δρ ρ−isδρ ρis) . (C.5.9)

This is an expression for the second-order variation of the relative entropy. We
will now define a metric on the space of quantum states starting from the above
expression. The second derivative of the relative entropy (C.5.9) is a quadratic
function in the state perturbations δρ, so we can upgrade it to a bilinear form by
taking two (possibly) different variations δ1ρ, δ2ρ on the right-hand side. Plugging
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in the expressions for δρ in terms of the operators O using (6.2.6) we find that

δ1δ2S(σ||ρ) =
∫
ddx

∫
ddx′ δ1λ(x)δ2λ(x′)

∫ ∞−iϵ

−∞−iϵ
ds

π

2 sinh2(πs)
⟨O(x)Os(x′)⟩ ,

(C.5.10)

where the expectation value is taken in the reference state ρ. This is also known as
the quantum Fisher information metric [248,249]. This expression agrees with the
‘metric’ GΨ associated to the modular Berry curvature (6.2.55). We have therefore
established our identification.
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[3] J. de Boer, R. Esṕındola, B. Najian, D. Patramanis, J. van der Heijden,
and C. Zukowski, “Virasoro entanglement Berry phases,” JHEP 03 (2022)
179, arXiv:2111.05345 [hep-th].

[4] B. Czech, J. de Boer, R. Esṕındola, B. Najian, J. van der Heijden, and
C. Zukowski, “Changing states in holography: From modular Berry
curvature to the bulk symplectic form,” Phys. Rev. D 108 no. 6, (2023)
066003, arXiv:2305.16384 [hep-th].

[5] J. D. Bekenstein, “Black holes and the second law,” Lett. Nuovo Cim. 4
(1972) 737–740.

[6] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7 (1973)
2333–2346.

[7] S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys.
Rev. Lett. 26 (1971) 1344–1346.

[8] S. W. Hawking, “Black holes in general relativity,” Commun. Math. Phys.
25 (1972) 152–166.

[9] D. Christodoulou, “Reversible and irreversible transforations in black hole
physics,” Phys. Rev. Lett. 25 (1970) 1596–1597.

[10] D. Christodoulou and R. Ruffini, “Reversible transformations of a charged
black hole,” Phys. Rev. D 4 (1971) 3552–3555.

259



Bibliography

[11] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black
hole mechanics,” Commun. Math. Phys. 31 (1973) 161–170.

[12] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys.
43 (1975) 199–220. [Erratum: Commun.Math.Phys. 46, 206 (1976)].

[13] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking
entropy,” Phys. Lett. B 379 (1996) 99–104, arXiv:hep-th/9601029.

[14] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,”
Phys. Rev. D 14 (1976) 2460–2473.

[15] G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C
930308 (1993) 284–296, arXiv:gr-qc/9310026.

[16] L. Susskind, “The World as a hologram,” J. Math. Phys. 36 (1995)
6377–6396, arXiv:hep-th/9409089.

[17] J. M. Maldacena, “The Large N limit of superconformal field theories and
supergravity,” Adv. Theor. Math. Phys. 2 (1998) 231–252,
arXiv:hep-th/9711200.

[18] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math.
Phys. 2 (1998) 253–291, arXiv:hep-th/9802150.

[19] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large
N field theories, string theory and gravity,” Phys. Rept. 323 (2000)
183–386, arXiv:hep-th/9905111.

[20] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement
entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602,
arXiv:hep-th/0603001.

[21] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A Covariant
holographic entanglement entropy proposal,” JHEP 07 (2007) 062,
arXiv:0705.0016 [hep-th].

[22] N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic
Entanglement Entropy beyond the Classical Regime,” JHEP 01 (2015)
073, arXiv:1408.3203 [hep-th].

[23] J. B. Hartle and S. W. Hawking, “Path Integral Derivation of Black Hole
Radiance,” Phys. Rev. D 13 (1976) 2188–2203.

[24] J. Maldacena and X.-L. Qi, “Eternal traversable wormhole,”
arXiv:1804.00491 [hep-th].

260



Bibliography

[25] D. Harlow and D. Jafferis, “The Factorization Problem in
Jackiw-Teitelboim Gravity,” JHEP 02 (2020) 177, arXiv:1804.01081
[hep-th].

[26] P. Saad, S. H. Shenker, and D. Stanford, “A Semiclassical Ramp in SYK
and in Gravity,” arXiv:1806.06840 [hep-th].

[27] D. N. Page, “Information in black hole radiation,” Phys. Rev. Lett. 71
(1993) 3743–3746, arXiv:hep-th/9306083.

[28] D. N. Page, “Time Dependence of Hawking Radiation Entropy,” JCAP 09
(2013) 028, arXiv:1301.4995 [hep-th].

[29] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, “Replica
Wormholes and the Black Hole Interior,” arXiv:1911.11977 [hep-th].

[30] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini,
“Replica Wormholes and the Entropy of Hawking Radiation,” JHEP 05
(2020) 013, arXiv:1911.12333 [hep-th].

[31] C. Teitelboim, “Gravitation and hamiltonian structure in two spacetime
dimensions,” Physics Letters B 126 (1983) 41–45.

[32] R. Jackiw, “Lower dimensional gravity,” Nuclear Physics B 252 (1985)
343–356.

[33] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its
breaking in two dimensional Nearly Anti-de-Sitter space,” PTEP 2016
no. 12, (2016) 12C104, arXiv:1606.01857 [hep-th].

[34] D. Stanford and E. Witten, “Fermionic Localization of the Schwarzian
Theory,” JHEP 10 (2017) 008, arXiv:1703.04612 [hep-th].

[35] T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, “Solving the Schwarzian
via the Conformal Bootstrap,” JHEP 08 (2017) 136, arXiv:1705.08408
[hep-th].

[36] P. Saad, S. H. Shenker, and D. Stanford, “JT Gravity as a Matrix
Integral,” arXiv:1903.11115 [hep-th].

[37] R. Dijkgraaf and C. Vafa, “Two Dimensional Kodaira-Spencer Theory and
Three Dimensional Chern-Simons Gravity,” arXiv:0711.1932 [hep-th].

[38] R. Dijkgraaf and C. Vafa, “Matrix models, topological strings, and
supersymmetric gauge theories,” Nucl. Phys. B 644 (2002) 3–20,
arXiv:hep-th/0206255.

261



Bibliography

[39] R. Dijkgraaf and C. Vafa, “On geometry and matrix models,” Nucl. Phys.
B 644 (2002) 21–39, arXiv:0207106 [hep-th].

[40] M. Aganagic, R. Dijkgraaf, A. Klemm, M. Marino, and C. Vafa,
“Topological strings and integrable hierarchies,” Commun. Math. Phys.
261 (2006) 451–516, arXiv:hep-th/0312085.

[41] S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,”
JHEP 03 (2014) 067, arXiv:1306.0622 [hep-th].

[42] J. Maldacena, S. H. Shenker, and D. Stanford, “A bound on chaos,” JHEP
08 (2016) 106, arXiv:1503.01409 [hep-th].

[43] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker,
D. Stanford, A. Streicher, and M. Tezuka, “Black Holes and Random
Matrices,” JHEP 05 (2017) 118, arXiv:1611.04650 [hep-th]. [Erratum:
JHEP 09, 002 (2018)].

[44] P. W. Brouwer, C. Mudry, B. D. Simons, and A. Altland, “Delocalization
in coupled one-dimensional chains,” Phys. Rev. Lett. 81 no. 4, (1998) 862.

[45] J. M. Maldacena, “Eternal black holes in anti-de Sitter,” JHEP 04 (2003)
021, arXiv:hep-th/0106112.

[46] K. Papadodimas and S. Raju, “Local Operators in the Eternal Black Hole,”
Phys. Rev. Lett. 115 no. 21, (2015) 211601, arXiv:1502.06692 [hep-th].

[47] K. Efetov, “Supersymmetry and theory of disordered metals,” Advances in
Physics 32 no. 1, (1983) 53–127.

[48] M. R. Zirnbauer, “The supersymmetry method of random matrix theory,”
arXiv:0404057 [math-ph].

[49] A. Altland and J. Sonner, “Late time physics of holographic quantum
chaos,” SciPost Phys. 11 (2021) 034, arXiv:2008.02271 [hep-th].

[50] A. Altland and D. Bagrets, “Quantum Ergodicity in the SYK Model,”
Nucl. Phys. B930 (2018) 45–68, arXiv:1712.05073 [cond-mat.str-el].

[51] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,”
Gen. Rel. Grav. 42 (2010) 2323–2329, arXiv:1005.3035 [hep-th].

[52] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,”
Fortsch. Phys. 61 (2013) 781–811, arXiv:1306.0533 [hep-th].

[53] B. Czech, L. Lamprou, S. Mccandlish, and J. Sully, “Modular Berry
Connection for Entangled Subregions in AdS/CFT,” Phys. Rev. Lett. 120

262



Bibliography

no. 9, (2018) 091601, arXiv:1712.07123 [hep-th].

[54] B. Czech, J. De Boer, D. Ge, and L. Lamprou, “A modular sewing kit for
entanglement wedges,” JHEP 11 (2019) 094, arXiv:1903.04493
[hep-th].

[55] A. Belin, A. Lewkowycz, and G. Sárosi, “The boundary dual of the bulk
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Samenvatting

Zwarte gaten zijn bijzondere objecten in het heelal. Om ze volledig te begrijpen
hebben we een theorie nodig die zowel de effecten van de quantummechanica als
van de algemene relativiteitstheorie meeneemt. De eerste is nodig om het uni-
versum op de kleinste schaal, de wereld van elementaire deeltjes, te beschrijven.
De laatste wordt pas belangrijk op veel grotere schalen, en beschrijft de aantrek-
kingskracht tussen zware objecten. Het combineren van beide theorieën tot een
geheel, ook wel ‘een theorie van alles’ genoemd, is een van de belangrijkste open
problemen in de theoretische natuurkunde.

Wanneer je probeert om te veel massa in een te klein volume te stoppen is het
resultaat een object met zo’n sterke aantrekkingskracht dat niets eraan kan ont-
snappen. Dit gebeurt bijvoorbeeld als een ster tegen het einde van zijn leven,
onder invloed van zijn eigen zwaartekracht, in elkaar stort. Zelfs licht, dat een
soort universele snelheidslimiet verschaft, kan niet aan deze aantrekkingskracht
ontsnappen. Het resultaat is een waarnemingshorizon: een fictief grensvlak dat
alles aan het zicht onttrekt. In een zwart gat vallen is niet bijzonder plezierig.
Ervan uitgaande dat je niet uit elkaar wordt getrokken door extreme getijden-
krachten, is de onvermijdelijke bestemming van iedereen die de horizon passeert
de singulariteit: een punt in de ruimtetijd met oneindige kromming.

Het kwam als een grote verrassing toen Stephen Hawking aantoonde dat zwarte
gaten niet volledig zwart zijn wanneer je quantumeffecten bij de horizon meeneemt.
De quantummechanica voorspelt dat zwarte gaten een deel van hun energie ver-
liezen in de vorm van straling. Deze Hawkingstraling geeft aanleiding tot veel
van de raadsels rondom zwarte gaten. Aangezien een zwart gat straalt, kun je
er een temperatuur aan toekennen. Een object met een temperatuur heeft ook
een entropie die volgens de standaardregels van de statistische fysica het aantal
microscopische configuraties telt dat je met een bepaalde macroscopische toestand
van het systeem kunt associëren.

In gebruikelijke thermodynamische systemen schaalt de entropie met het volume
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van het systeem. Zwarte gaten daarentegen lijken een ander soort regel te volgen:
Ze hebben een entropie die schaalt met het oppervlak van de horizon. Terwijl we
voor een heet gas weten wat de statistische entropie telt, namelijk de verschillende
configuraties van de individuele moleculen waaruit de gaswolk bestaat, is de si-
tuatie voor een zwart gat veel moeilijker. Intüıtief, zouden deze microtoestanden
moeten overeenkomen met een soort fundamentele bouwstenen van de ruimtetijd
zelf. Maar wat deze bouwstenen precies zijn, en waarom ze een oppervlaktewet
volgen, is nog steeds een groot mysterie.

Het feit dat de entropie van een zwart gat een oppervlaktewet volgt gaf aanleiding
tot het ‘holografisch principe’: Een theorie van quantumzwaartekracht is duaal aan
een quantumtheorie zonder zwaartekracht die in één dimensie minder leeft. Hierbij
gedraagt zwaartekracht zich dus als een soort hologram, waarbij de informatie van
een driedimensionaal beeld is gecodeerd in een tweedimensionaal object. In het
geval van het zwarte gat wordt de informatie aan de binnenkant in zekere zin op
het horizonoppervlak ‘opgeslagen’.

Het idee van holografie klinkt op het eerste gezicht misschien wat vreemd. Toch
is er een natuurkundig model gevonden waarin het op een prachtige manier wordt
gerealiseerd: de AdS/CFT-correspondentie. Deze correspondentie relateert quan-
tumzwaartekracht en quantumveldentheorie op een holografische manier. AdS/CFT
vindt zijn oorsprong in de snaartheorie, een kandidaattheorie voor quantumzwaar-
tekracht, waarin elementaire deeltjes worden vervangen door kleine trillende sna-
ren. Helaas gaat de AdS/CFT correspondentie niet over ons eigen universum,
maar over zwaartekracht in Anti-de Sitterruimte (AdS), een universum met een
negatieve kosmologische constante. Aangenomen wordt dat ons eigen universum
een kleine positieve kromming heeft en daarom (bij benadering) wordt beschreven
door de Sitterruimte (dS). Vanuit een wiskundig perspectief zijn beide universa
echter oplossingen van Einsteins vergelijkingen, en een gedetailleerd begrip van
AdS-zwaartekracht kan ons hopelijk veel leren over quantumzwaartekracht in ons
eigen universum.

In het kort, zegt AdS/CFT dat quantumzwaartekracht in (d + 1)-dimensionale
AdS-ruimte equivalent kan worden beschreven door een conforme veldentheorie
(CFT), een speciale quantumtheorie met veel symmetrie, in d dimensies. Gewoon-
lijk wordt de CFT gevisualiseerd op de asymptotische rand van de AdS-ruimte. In
die zin werkt de dualiteit een beetje als een soepblik: Door de buitenkant te lezen,
kun je construeren wat er binnenin gebeurt. De AdS/CFT-correspondentie bestaat
uit een uitgebreid ‘woordenboek’ dat een manier biedt om bepaalde grootheden
van de ene theorie naar de andere te ‘vertalen,’ en vice versa. Zo’n dualiteit is
buitengewoon handig: Om een moeilijk probleem in de zwaartekracht op te lossen,
kun je het te vertalen naar een gemakkelijker vraagstuk in de CFT, of andersom.
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Hoewel we in de loop der jaren veel aspecten van de AdS/CFT-correspondentie
hebben begrepen (d.w.z., we hebben een zeer uitgebreid holografisch woordenboek
opgebouwd), zijn er nog steeds veel open vragen. Een aantal van deze vragen
komen in dit proefschrift aan de orde. Alle ideeën die hier worden gepresenteerd
vinden plaats in de context van de AdS/CFT-correspondentie, en de meeste hebben
betrekking op een eenvoudig model voor tweedimensionale zwaartekracht, met een
ruimte- en een tijdsdimensie. Deze vereenvoudiging maakt dat alle berekeningen
exact kunnen worden uitgevoerd

Euclidische wormgaten
Een formele benadering voor het quantiseren van zwaartekracht is de gravitatio-
nele padintegraal. In het padintegraalformalisme wordt men gëınstrueerd om bij
een berekening alle mogelijke uitkomsten bij elkaar op te tellen, ieder met een
bepaald gewicht (meer precies loopt de som over alle mogelijke paden in de ruimte
van quantumvelden die een bepaalde begin- en eindtoestand met elkaar verbin-
den). Hoewel de padintegraal verre van rigoureus is op een wiskundig niveau, is
het een essentieel onderdeel in ons begrip van de quantumwereld. Je kunt pro-
beren dezelfde technieken toe te passen op zwaartekracht. Het toevoegen van
quantumfluctuaties van de ruimtetijd zelf is echter een zeer ingewikkelde onder-
neming. In dit proefschrift hebben we ervoor gekozen om een eenvoudig model
voor tweedimensionale zwaartekracht te bestuderen waarbij het mogelijk is om
een klasse van dergelijke quantumfluctuaties, die overeenkomen met meetkundes
met een niet-triviale topologie, precies te definiëren (en te berekenen).

Topologie is de wiskundige term die de globale vorm van een object beschrijft: Het
is een van de eigenschappen die een tennisbal en een donut verschillend maakt.
In onze setting gebruiken we het concept van topologie om quantumcorrecties op
de ruimtetijd te bestuderen. De padintegraalberekening die we uitvoeren omvat
meer algemene topologieën, waar de ruimtetijd bijvoorbeeld handvatten (zoals bij
een donut) of extra randen kan hebben. Een belangrijke bijdrage wordt geleverd
door Euclidische wormgaten die meerdere randen van de ruimtetijd verbindt door
een soort tunnel. Een van de voornaamste resultaten van dit proefschrift is de
presentatie van een formalisme voor het systematisch bestuderen van deze ho-
gere topologieën, een zogenaamde ’universumveldentheorie.’ Je kunt deze theorie
gebruiken om de quantumeffecten tot op zeer hoge resolutie te bestuderen. Ver-
rassend genoeg blijken de niet-triviale oppervlakken belangrijke informatie over de
onderliggende microscopische theorie te bevatten: Ze wijzen op een diepe connectie
met quantumchaos.

Quantumchaos
Chaostheorie gaat over de verborgen structuur in ogenschijnlijk chaotische sys-
temen. In populaire fictie wordt chaos vaak geassocieerd met het ‘vlindereffect’,
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waarbij het fladderen van de vleugels van een vlinder de precieze details (bijvoor-
beeld de locatie) van een tornado weken later kan bëınvloeden. Met andere woor-
den: Kleine veranderingen kunnen uit de hand lopen, en dramatische gevolgen
hebben. Dit is een kenmerk van chaos in klassieke systemen. Het analogon voor
quantumsystemen is veel moeilijker te karakteriseren. Een belangrijk kenmerk dat
natuurkundigen hebben ontdekt is dat de energieniveaus van een chaotisch quan-
tumsysteem aan zeer strikte regels voldoen: Twee van deze energieniveaus stoten
elkaar af, wat betekent dat ze de neiging hebben om uit elkaars buurt te blijven.
Dit gedrag wordt goed gemodelleerd door ‘toevalsmatrixtheorie,’ een quantumme-
chanisch model waarbij de energieën worden getrokken uit een statistisch ensemble.

Er zijn aanwijzingen dat zwarte gaten voldoen aan dezelfde regels van quantum-
chaos. Het zijn bijvoorbeeld snelle ‘scramblers’: Informatie die het zwarte gat
binnenkomt wordt heel snel over de horizon verspreid. Bovendien hangt de uit-
komst van een deeltjesproces dicht bij de horizon, zeg het verschil tussen naar
binnen vallen of ontsnappen, sterk af van de precieze begintoestand. Onze tech-
niek om de chaotische eigenschappen in bredere zin te begrijpen is met behulp van
de padintegraal. We laten zien hoe de kleine quantumeffecten die het individuele
energieniveau bepalen geometrisch kunnen worden gerealiseerd in termen van de
niet-triviale topologieën die we eerder bespraken. Dit toont aan dat zwarte gaten
in tweedimensionale AdS-ruimtetijden voldoen aan de regels van quantumchaos,
en dat de relevante quantumeffecten geometrisch kunnen worden gerealiseerd in
de universumveldentheorie.

Berry-fasen
Het laatste onderwerp dat ik in dit proefschrift heb bestudeerd betreft het concept
van Berry-fasen. In de quantummechanica is het mogelijk dat deeltjes veranderen
wanneer ze langs een gesloten pad worden getransporteerd: Ze komen anders terug
dan dat ze begonnen zijn, en pikken een waarneembare quantumfase op. Het is
een beetje zoals een ommetje maken: Bij terugkomst kun je je een heel ander mens
voelen dan toen je vertrok. Dergelijke geometrische fasen zijn uitgebreid bestu-
deerd in de setting van quantummechanica. Een van de doelen van dit proefschrift
is om een vergelijkbaar concept te importeren in de holografische context.

Als we aannemen dat AdS-quantumzwaartekracht een duale beschrijving heeft in
termen van een CFT, kun je de volgende vraag stellen: Welke zwaartekrachts-
berekening komt overeen met de quantummechanische Berry-fase? Met andere
woorden: Hoe vertalen we het begrip ‘Berry-fase’ via het holografisch woorden-
boek? Allereerst vereist deze vraag een zorgvuldige definitie van wat we bedoelen
met Berry-fasen in een holografische CFT. De juiste generalisatie, die ook werkt
in het geval van dichtheidsmatrices die behoren bij een deelgebied van de CFT, is
de modulaire Berry-fase. Het legt belangrijke informatie vast over het verstrenge-
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lingsspectrum van de CFT. Quantumverstrengeling (bekend als ‘spookachtige actie
op afstand’) tussen deeltjes is een vreemde eigenschap die geen klassiek analogon
heeft. Dit begrip is van essentieel belang voor manier waarop we tegenwoordig
tegen de emergentie van ruimtetijd aankijken.

In dit proefschrift hebben we aangetoond dat de modulaire Berry-fase duaal is aan
een geometrische grootheid die geassocieerd is met de ‘entanglement wedge,’ een
bepaald gebied in de AdS-ruimtetijd dat informatie bevat over een deel van de
rand. Dit voegt een nieuw ‘woord’ toe aan het holografische woordenboek.
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Black holes are some of the most mysterious objects in Nature. They provide a
unique laboratory, mostly in a theoretical sense, where both the effects of quan-
tum mechanics and general relativity are important. The former is necessary to
understand the universe at the smallest scales, those associated with elementary
particles. The later becomes important at much larger scales, when we are dealing
with the gravitational pull between very massive objects. To combine both theo-
ries into a unified framework, sometimes called ‘a theory of everything’, is one of
the most important open problems in theoretical physics.

The laws of gravity dictate that when one tries to put too much mass in too small
a volume, the result is an object with a gravitational attraction that is so strong
that nothing can escape. Not even light – that provides some sort of universal
speed limit – can escape its pull. The result is an event horizon: a fictitious black
boundary surface that covers everything from view. Falling into a black hole is
not particularly enjoyable: Assuming that you are not ripped apart by extreme
tidal forces, the inevitable destination of any in-falling observer is the singularity,
a point of zero size and infinite curvature.

It came as a big surprise when Stephen Hawking showed that black holes are
not actually black when one includes quantum effects at the horizon. Quantum
mechanics predicts that black holes carry away some of their energy in the form
of radiation. This so-called Hawking radiation is at the heart of many confusions
that arise in the study of black holes. Given that a black hole radiates, one can
associate a temperature to it. An object with a temperature also has an entropy
which counts, following standard statistical mechanics, the number of microscopic
configurations that one can associate to a given macroscopic state of the system.

In usual thermodynamic systems, the entropy scales with the volume of the region.
Black holes on the other hand seem to follow a different rule: They have an
entropy that scales with the area of the event horizon. While for a hot gas we
know that the statistical entropy is counting, namely the different configurations
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of the individual molecules that make up the cloud, the situation for a black hole
is much harder: What are the precise microstates that the black hole entropy is
counting? Intuitively, they should correspond to some fundamental building blocks
of spacetime itself. What these units are, and why they satisfy an area-scaling law
is still an open question, that a full theory of quantum gravity should answer.

An important idea that came out of this observation, and found a concrete re-
alization in string theory, is the holographic principle. It states that a theory of
quantum gravity is dual to a quantum theory that lives in one dimension fewer. In
that sense, it behaves like a hologram, where the information of a three-dimensional
picture is encoded in a two-dimensional object. This explains, in part, why the
information inside the black hole should somehow be encoded on its boundary
horizon.

The idea of holography might sound a bit strange at first sight. However, we have
actually found a physical model where it is beautifully realized: the AdS/CFT cor-
respondence. It relates gravity and quantum field theory in a holographic fashion.
Unfortunately, this correspondence does not deal with our own universe, but with
gravity in Anti-de Sitter (AdS) space, a universe which has negative cosmologi-
cal constant. Our own universe is believed to have small positive curvature and
is therefore described (in an approximate sense) by de Sitter (dS) space. How-
ever, from a mathematical perspective both spacetimes are solutions to Einsteins
equations, and a detailed understanding of AdS gravity can hopefully teach us
something about quantum gravity in our own universe.

In short, AdS/CFT says that quantum gravity in (d + 1)-dimensional AdS space
can be equivalently described by a conformal field theory (CFT), a special quantum
theory with lots of symmetry, in d dimensions. Usually, the CFT is visualized as
living on the asymptotic boundary of AdS space. In that sense, the duality works
a bit like a soup can: By reading the boundary, one can construct what happens
on the inside. Most of the AdS/CFT correspondence consists of an elaborate
dictionary that provides a way of translating certain quantities from one theory
into the other and vice versa. Such a duality is extremely useful: To solve a
difficult problem in gravity, one can try to translate it to an easier question in the
CFT, or the other way around.

While over the years, we have understood many aspects of the AdS/CFT corre-
spondence (i.e., we have built up a very extensive holographic dictionary), there
are still lots of open questions remaining. A few of those are addressed in this the-
sis. All the ideas that are presented here take place in the context of the AdS/CFT
correspondence, and many involve a simple toy model for two-dimensional gravity,
with a single space and a single time dimension. This simplification makes the
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computations more tractable.

Euclidean wormholes
A formal approach to quantizing gravity is the gravitational path integral. Roughly
speaking, in quantum mechanics one is instructed to sum over all possibilities,
where each possible path is given some weight. This idea was concretely realized
by Richard Feynman in his path integral formalism. Although it is far from rigor-
ous on a mathematical level, the path integral has been an essential tool for our
understanding of the quantum world. One could try to naively apply the same
techniques to gravity, but there the situation is even worse. To include quantum
fluctuations of spacetime itself is a difficult task, and one quickly runs into trouble.
In this thesis, we have studied a simple model for two-dimensional gravity where
it is possible to exactly define (and compute) a class of such quantum fluctuations,
which correspond to geometries with non-trivial topology.

Topology is the mathematical term that describes the global shape of some object:
It is one of the differences (besides their respective taste) between a tennis ball
and a donut. In our setting, we use the concept of topology to study quantum
corrections to spacetime. The path integral computation that we carry out includes
more general topologies, where spacetime can exhibit handles or extra boundaries.
An important contribution of this sort are given by Euclidean wormholes which
connect multiple boundaries by a tube. One of the main results in this thesis is
the presentation of a systematic framework for studying these higher topologies,
a so-called ‘universe field theory.’ One can use this framework to carefully study
the quantum effects up to very high resolution. Surprisingly, it turns out that the
non-trivial shapes carry important information about the underlying microscopic
theory: They point towards a deep connection with quantum chaos.

Quantum chaos
Chaos theory deals with the hidden structure in seemingly chaotic systems. In
popular fiction, chaos is often associated with the ‘butterfly effect,’ where the
distant flapping of a butterfly’s wings can affect the precise details (for example,
location or trajectory) of a tornado weeks later. In other words: Small changes,
can blow up to have dramatic consequences. This is a characteristic feature of
chaos in classical systems. The analogue for quantum systems is much harder to
characterize. One important feature that people have found is that the energy
levels of a chaotic quantum system satisfy very strict rules: For example, two such
energy levels repel each other, meaning that they have the tendency to not be
close together. This behavior is well-modeled by random matrix theory, a quan-
tum mechanical model where the energies are drawn from some specific statistical
ensemble.
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There is evidence that black holes satisfy the same rules of quantum chaos. For
example, they are fast scramblers, in the sense that information that enters the
black hole is spread around the horizon very rapidly. Moreover, the outcome of a
particle process near the horizon, the difference between falling into the interior or
escaping to infinity, depends heavily on the precise initial condition. Our technique
to exhibit the chaotic properties more broadly is to study quantum gravity via the
path integral. We show how the tiny quantum effects that govern the individual
energy level can be realized geometrically in terms of the non-trivial topologies
that we discussed earlier. This shows that black holes in two-dimensional AdS
spacetimes satisfy the rules of quantum chaos, and that the relevant quantum
effects can be realized geometrically in the universe field theory.

Berry phases
The last topic that I have studied in this thesis involves the notion of Berry phases.
In quantum mechanics, it is possible for particles to change when they get trans-
ported along a closed loop: They do not come back the way they started out, and
pick up an observable phase. It is a bit like taking a walk: After getting back to
your starting position you can feel like a changed person. Such geometric phases
have been studied extensively in the setting of quantum mechanics. One of the
aims of this thesis is to import a similar concept to the holographic context.

If we assume that AdS quantum gravity has a dual description in terms of a CFT,
one can ask the following question: What gravitational quantity corresponds to
the quantum mechanical Berry phase? In other words: How do we translate the
concept ‘Berry phase’ via the holographic dictionary? First of all, this question
requires a careful definition of what we mean by Berry phases in a holographic
CFT. The correct generalization that also work in the case of density matrices
associated to some subregion is the modular Berry phase. It captures important
information about the entanglement spectrum of the CFT. Quantum entanglement
(famously known as ‘spooky action’ at a distance) between particles is a strange
property that does not have a classical analogue. It is one of the most important
quantities that we use in our current understanding of what spacetime is built
from.

In this thesis, we have argued that the modular Berry phase is dual to some
geometrical quantity associated to the entanglement wedge, a certain region in
the AdS spacetime that carries information about part of the boundary. This
adds a new entry to the holographic dictionary.

290





A ta l e  o f  t opo logy  
in  quantum gravi ty

and

J E R E M Y  VA N  D E R  H E I J D E N

JE
R

E
M

Y
 V

A
N

 D
E

R
 H

E
IJD

E
N

C
ha

os, w
orm

holes, a
n

d
 hologra

p
hy 0100011001110010

0110010101100101
0111101001100101
0010000001101001
0110111000100000
0110100001100101
0110110001101100
0010110000100000
0100001001100001
0111010001101101
0110000101101110

H O L O G R A P H Y

W O R M H O L E S

C H A O S


	Introduction
	Black holes
	Holography
	Path integrals
	What to expect?
	Euclidean wormholes
	Holographic quantum chaos
	Modular Berry phases


	Holography in two dimensions
	The path integral in JT gravity
	A topological expansion
	The disk and trumpet partition function
	Weil-Petersson volumes
	Recursion relations

	Random matrix theory
	Eigenvalue repulsion
	The resolvent trick
	Topological recursion
	Double-scaling and JT gravity
	Spectral form factor and wormholes


	A field theory for baby universes
	Introduction
	A universe field theory
	Kodaira-Spencer theory on the spectral curve
	Schwinger-Dyson equations

	Connection to JT gravity
	Matching KS theory with JT gravity

	Non-perturbative effects
	Branes in KS theory
	Interpretation in JT gravity
	Application: spectral correlation functions

	Discussion

	Chaos in 2D gravity
	Introduction
	Setting the scene
	The nonlinear -model of quantum chaos

	fMT from universe field theory
	(Anti-)brane creation operators
	fMT representation of the brane correlator
	Reduction to the nonlinear -model

	D-branes and the color-flavor map
	Non-compact branes: flavor
	Compact branes: color
	Color-flavor map and the geometric transition

	Discussion

	Virasoro entanglement Berry phases
	Introduction
	Geometric Berry phases
	States
	Density matrices

	State-changing parallel transport
	Example
	Lie algebra
	Central extension

	Coadjoint orbit interpretation
	Bulk phase space interpretation
	The conical singularity geometry
	Symplectic form
	Contour prescription

	Discussion

	Modular Berry phases and the bulk symplectic form
	Introduction
	Berry curvature for coherent state deformations
	Coherent state deformations
	Berry curvature
	Quantum information metric

	Relation to the bulk symplectic form
	Bulk operator algebra
	Modular extrapolate dictionary
	Entanglement wedge symplectic form

	Explicit examples
	Stress tensor insertions
	Symmetry transformations

	Discussion

	Conclusion
	Computations in the universe field theory
	Free two-point functions of the universe field theory
	Baby universe Hilbert space and Virasoro constraints
	Virasoro constraints
	Chiral boson with a Z2 twist
	Back to JT gravity
	The disk and the annulus
	Topological recursion in the twisted boson formalism
	Z2-twisted fermions


	Contour analysis for fMT
	Steepest descent contours

	Details on Berry phases
	Kinematic space example
	General formulation
	Non-diagonalization for Virasoro
	Algebraic and semi-algebraic case
	Analytic case
	Issues from non-diagonalization

	Conformal algebra
	Relative entropy and quantum Fisher information

	Bibliography
	Samenvatting
	Summary
	Lege pagina
	Lege pagina



