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Introduction

We provide here a brief overview of both the research process and the resulting thesis.
This serves only to guide the reader. We will therefore introduce terms whose further
explanation and contextualization is postponed to the following chapter.

The main focus of this thesis is the study of unitary integrals over symmetric func-
tions, weighted by some weight function. Our original motivation for studying these
objects is their application to random matrix theory (RMT) and spectral statistics.
While RMT has mainly been applied to the study of chaotic quantum systems, a
unitary ensemble was introduced in 1993 by Muttalib and co-authors [4], which was
found to display the ‘intermediate’ statistics of quantum systems somewhere in be-
tween chaotic and integrable, such as disordered electrons at the mobility edge of
Anderson localization. This same matrix model was later found [5] to describe UpNq
Chern–Simons theory on a three-sphere, for which reason we refer to it as the Chern–
Simons matrix model (CSMM). Chern–Simons theory is a topological theory; our
aim was to use topological methods to better understand the chaotic-to-integrable
transition. Indeed, this transition lacks a local order parameter, which lead to the
suspicion by my supervisor, Vladimir Gritsev, that it is in fact a topological tran-
sition, borrowing intuition from topological condensed matter physics. However,
despite a large collection of previous publications on intermediate statistics in the
CSMM (see e.g. [6], [7], [8], [9], [10], [11], [12], [13]), our calculations did not reveal
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Introduction

any intermediate statistics in this model. Due to the usage of different techniques,
our results are difficult to reconcile (or even compare) with the previous literature.
With Wouter Buijsman, we are currently pursuing the question of intermediacy in
the CSMM through a numerical approach.

Although, contrary to our expectations, we did not find intermediacy in the CSMM,
our efforts described above eventually resulted in various results on unitary matrix
integrals over symmetric polynomials, including certain recursive expansions. These
allow one to break down a complicated problem into a set of simpler ones, resulting in
an expansion in terms of objects which are well understood. It soon became apparent
that our results could be naturally applied to the study of (what we refer to as) long-
range random walkers (LRRW), essentially given by long-range generalizations of
the XY-spin chain. These are given by non-intersecting (hard-core bosonic) random
walkers which can hop over greater distances than a single site, subject to mild
fall-off conditions on the hopping parameters. These models have gained increasing
attention in the last 15 years due in part to their experimental realizability in trapped
ion systems [14], see e.g. [15] for a review. They have also been increasingly applied
to various physical questions, such as localization on low-dimensional long-range
models by addition of diagonal disorder [16], [17] and systems with random hopping
parameters [18], [19], see e.g. [20], [21], [22] for other examples. It was shown by
Bogoliubov for the nearest-neighbor case, given by the XY-model at zero magnetic
field, that correlation functions of random walkers are given by unitary integrals over
symmetric polynomials [23], see also [24], [25]. This was later generalized to the long-
range case by Pérez-Garcìa and Tierz [26]. Applying our results on unitary matrix
integrals, as well as standard identities from the theory of symmetric functions, we
find various surprising relations and dualities between various LRRW correlation
functions, as well as convenient ways to compute them. In passing, we demonstrate
various results on long-range fermionic models as well, and suggest mathematical
and experimental applications.
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Introduction

This shift of focus, from RMT and spectral statistics, to unitary integrals as such
and their application to LRRW models, is reflected in the structure of the thesis. In
chapter 1, we will treat the relevant background material, starting from symmetric
functions and partitions, and applying them to the evaluation of unitary integrals
over symmetric polynomials. The remainder of chapter 1 presents various areas in
which these objects may be applied, starting from long-range random walkers before
continuing with RMT and spectral statistics, with particular attention given to the
CSMM and its previous application to the study of intermediate statistics.

Chapter 2 presents our mathematical results and is based mainly on [1]. Building
on the main result of [2], given in equation (2.8), we compute the average over
generalized power sum polynomials. Our expression, given in equation (2.30), gen-
eralizes a long-standing result due to Diaconis and Shahshahani, who considered
the same object in the CUE [27], [28]. We then apply our expression to bilinears
of Schur polynomials, leading to recursive expansions in terms of Schur polynomials
and generalized power sum polynomials. These are given in equation (2.46) and
(2.62), respectively.

In chapter 3, which is also based mainly on [1], we apply our results on unitary
integrals to long-range random walkers. Before doing so, we first consider standard
identities from the theory of symmetric functions. This leads to various results, in-
cluding equations (3.16), (3.17), (3.23), (3.24), (3.25). Most striking of these results
is quasi-local particle-hole duality, written in equation (3.33), which arises from the
involution between elementary and complete homogeneous symmetric polynomials
corresponding to the transposition of Young diagrams. We then note a relation
between the multiplication properties of power sum polynomials of degree n and
fermionic particles hopping by n sites. This allows us to interpret various results
in terms of an auxiliary fermionic (rather than hard-core bosonic) system. This
reasoning can be applied to the computation of the irreducible characters of the
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symmetric group, as we explain just above section 3.5. Further, combined with
identities we found in [2], the relation between power sums and fermions leads im-
mediately to expressions for certain correlation functions such as (3.52). In section
3.5, we use the relation between border strips and particle hopping to characterize
the action of the hamiltonian in terms of Young diagrams. In section 3.6, we use
the aforementioned relation between power sums and fermions to derive two results
on long-range fermionic models. First of all, if we take a fermionic configuration
(on a one-dimensional lattice) and consecutively move fermions to the right by var-
ious step sizes, the outcome depends only on the distribution of the step sizes and
not the order in which they are taken. Naturally, this statement also holds if we
move fermions to the left instead of the right. Secondly, we find that going from
any fermionic configuration A to another configuration B by consecutively moving
fermions by n lattice sites involves hopping over either an even or an odd number
of particles, depending only on the choice of A, B, and n. Sections 3.7 and 3.8 con-
sider the application of the recursive expansions derived in chapter 2 to long-range
correlation functions. Here, the expansion in generalized power sums is particularly
useful, as it gives an expansion in terms of powers of the time parameter, where
the expansion coefficients have simple expressions in terms of the relevant hopping
parameters. In section 3.9, we suggest particular correlation functions which could
be used for the benchmarking of experimental setups, such as the aforementioned
trapped ion systems.

Chapter 4 considers the application of unitary matrix integrals to RMT and spectral
statistics, focusing in particular on the calculation of the spectral form factor (SFF)
in the CSMM. First, a special case of the main result in [2] demonstrates that the
SFF of a broad class of matrix models is of standard Wigner-Dyson type, consisting
of a linear ramp which saturates at a plateau. We then consider the CSMM for
general matrix size before taking the ‘t Hooft limit, which should correspond to the
maximal disorder limit. Nonetheless, after unfolding, we recover WD-universality in
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the cases we consider, as was mentioned above. Interestingly, however, taking the ‘t
Hooft limit turns the SFF into a sequence of polynomials with surprising properties
which do not appear to have been described in the literature thus far, see section 4.5.
Further, the calculations in chapter 4 have applications in Chern–Simons theory and
knot theory as well, as the SFF is proportional to the HOMFLY invariant of a p2n, 2q-
torus link with components in the fundamental and antifundamental representations.
These, to the best of our knowledge, have not been calculated before.
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Chapter 1

Background material

1.1 Symmetric functions

We review here some aspects of symmetric functions and Young diagrams that will
be useful to us later. Symmetric functions have been studied for centuries due to
the fact that they arise naturally in the study of polynomial roots, as expressed in
Viète’s formulas. Symmetric functions have an intimate relationship with certain
combinatorial objects known as Young diagrams. Symmetric functions and Young
diagrams play in important role in a wide variety of mathematical fields, including
Galois theory [29], representation theory [30], enumerative combinatorics [31], and
geometry [32]. Throughout the remainder of this thesis, we will be applying the
properties of symmetric polynomials to the evaluation of unitary matrix integrals.

We first consider certain basic types of symmetric functions. Take a set of variables
x “ px1, x2, . . . q. The elementary symmetric polynomials are then defined as

ekpxq “
ÿ

i1ă¨¨¨ăik

xi1 . . . xik . (1.1)

6



Chapter 1. Background material 1.1. Symmetric functions

Some examples include

e0 “ 1 ,

e1px1q “ x1 ,

e1px1, x2q “ x1 ` x2 ,

e2px1, x2q “ x1x2 . (1.2)

Closely related are the complete homogeneous symmetric polynomials, defined as

hkpxq “
ÿ

i1ď¨¨¨ďik

xi1 . . . xik , (1.3)

which contain all monomials of degree k. Note the difference in the summation
bounds between (1.1) and (1.3). Some examples of hk include

h0 “ 1 ,

h1px1q “ x1 ,

h1px1, x2q “ x1 ` x2 ,

h2px1, x2q “ x1x2 ` x2
1 ` x2

2 . (1.4)

Another type of symmetric polynomial is the power-sum polynomial,

pkpxq “
ÿ

j

xk
j “ xk

1 ` xk
2 ` . . . (1.5)

The generating functions of ek and hk and their relation with power sums are as

77



1.1. Symmetric functions Chapter 1. Background material

follows [see e.g [33]],

Epx; zq “
8ÿ

k“0

ekpxqzk “
8ź

k“1

p1 ` xkzq “ exp

« 8ÿ

k“1

p´1qk`1

k
pkpxqzk

ff
,

Hpx; zq “
8ÿ

k“0

hkpxqzk “
8ź

k“1

1

1 ´ xkz
“ exp

« 8ÿ

k“1

1

k
pkpxqzk

ff
. (1.6)

From the above expressions, it is clear that Hpx; zqEpx;´zq “ 1. Checking every
order of z then gives, for all n ě 1 and any choice of x [e.g. (2.6’) from [33]],

nÿ

r“0

p´1qrhn´rpxqerpxq “ 0 . (1.7)

Partitions play an important role in the study of symmetric polynomials. A partition
of n P Z` is a sequence of non-negative integers λ “ pλ1, λ2, . . . , λℓpλqq, which we
will order these as λ1 ě λ2 ě . . . , satisfying

ř
j λj “ n. The size (or weight)

of a partition is given by the sum of its terms |λ| “ ř
j λj and its length ℓpλq

is the largest value of j such that λj ‰ 0. Closely related to partitions of n are
compositions of n, consisting also of a sequence of positive integers which sum to n,
but where a different ordering in these integers defines a different composition. A
weak composition of n is a composition which may include zeroes as its entries, that
is, a set of non-negative integers which sum up to n. A partition of n corresponds
to a Young (or Ferrers) diagram containing n cells, or ‘boxes’. We will use these
terms interchangeably. As an example, the diagram corresponding to a partition of
12 given by λ “ p6, 4, 2, 1q is given below, where λj equals the number of cells in the
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Chapter 1. Background material 1.1. Symmetric functions

jth row.

(1.8)

For future use, we define npλq “ ř
jpj ´ 1qλj. Further, for elements of λ, x “

pj, kq P λ with j, k positive integers, cpxq “ k ´ j is the content of x, and hpxq “
λj `λt

k ´ j ´k`1 is its hook-length. The latter equals one plus the number of boxes
to the right and below x.

We will denote a diagram consisting of b rows of a cells by pabq. For a partition λ,
we will write

eλ “
ź

jě1

eλj
, hλ “

ź

jě1

hλj
, pλ “

ź

jě1

pλj
. (1.9)

Further, we write

zλ “
ź

jě1

jmjmj! , mjpλq “ Cardtk : λk “ ju , (1.10)

i.e. mjpλq is the number of rows in λ of length j. We also write ελ “ p´1q|λ|´ℓpλq.
Newton’s identities then read

hn “
ÿ

|λ|“n

z´1
λ pλ ,

en “
ÿ

|λ|“n

ελz
´1
λ pλ . (1.11)
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1.1. Symmetric functions Chapter 1. Background material

In terms of the complete exponential Bell polynomial Bn
1, we have

hn “ 1

n!
Bn pp1, p2, 2!p3, . . . , pn ´ 1q!pnq ,

en “ p´1qn
n!

Bn p´p1,´p2,´2!p3, . . . ,´pn ´ 1q!pnq . (1.12)

Another type of symmetric polynomial is the Schur polynomial. Schur polynomials
play an important role as characters of irreducible representations, often referred
to as irreps, of general linear groups and subgroups thereof. Schur polynomials are
associated to a partition λ and a set of variables x “ px1, x2, . . . q in the following
way. For a choice of λ, a semistandard Young tableau (SSYT) is given by positive
integers Ti,j satisfying 1 ď i ď ℓpλq and 1 ď j ď λi. These integers are required
to increase weakly along every row and increase strongly along every column, i.e.
Ti,j ě Ti,j`1 and Ti,j ą Ti`1,j for all i, j. Label by αi the number of times that the
number i appears in the SSYT. We then define

xT “ xα1
1 xα2

2 . . . . (1.13)

The Schur polynomial sλpxq is given by [31].

sλpxq “
ÿ

T

xT , (1.14)

where the sum runs over all SSYT’s corresponding to λ i.e. all possible ways to
inscribe the diagram corresponding to λ with positive integers that increase weakly
along rows and strictly along columns. If λj “ 0 for all j, then λ is the empty
partition, which we denote by λ “ H. The Schur polynomial of the empty partition

1Complete Bell polynomials Bnpx1 . . . xnq can be defined by their generating function,ř8
n“0 Bnpx1 . . . xnqtn{n! “ exppř8

j“1 xjt
j{j!q
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Chapter 1. Background material 1.1. Symmetric functions

is set to unity, i.e.

sHpxq “ 1 , (1.15)

which is independent of the choice of variables x. Schur polynomials with N variables
equal to 1 and all other variables equal to zero give the hook-length formula for the
dimension of the representation, that is

sλp1Nq “
ź

xPλ

N ` cpxq
hpxq “: dimpλq , (1.16)

We give an example of an SSYT corresponding to a Young diagram λ “ p3, 2q and
with non-zero variables x1, x2, x3.

1 1 3

2 3
(1.17)

From (1.26) one can see that the contribution of this SSYT is given by x2
1x2x

2
3.

Summing over all monomials corresponding to all SSYT’s then gives the Schur
polynomial sp3,2qpx1, x2, x3q. We emphasize that the result is generally a symmetric
polynomial, as this may not be obvious from the definition. Consider the Schur
polynomials corresponding to a row or a column of n cells, shown below for n “ 4.

(1.18)

One can see that

sp1nq “ en , spnq “ hn , (1.19)
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1.1. Symmetric functions Chapter 1. Background material

for any choice of x. That is, the Schur polynomial of a column or row of n cells
is given by the degree n elementary or complete homogeneous symmetric polyno-
mial, respectively. Equation (1.19) simply follows from the requirement for SSYT’s
that integers increase weakly along rows and strongly along columns, compare with
(1.1) and (1.3). It follows that we can exchange between en and hn by transpos-
ing diagrams, that is, by reflecting across the main diagonal of the diagram, as
this exchanges rows and columns. For a diagram λ, its transpose is denoted as λt.
Since transposition is a reflection, it is an involution, i.e. pλtqt “ λ. It is clear
that pnqt “ p1nq i.e. this involution maps rows to columns and vice versa. As a
somewhat less trivial example, take λ “ p5, 4, 2, 1q, shown below on the left, and
λt “ p4, 3, 22, 1q, shown on the right.

(1.20)

Power sum polynomials can also be expressed in terms of Schur polynomials, in this
case in the form of a sum,

pn “
n´1ÿ

r“0

p´1qrspn´r,1rq . (1.21)

Here, pa, 1bq is a hook-shaped diagram consisting of a row with a cells followed by b

rows with a single cell. For example, λ “ p5, 13q is given by the following diagram.

1212
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(1.22)

Although equation (1.21) may not be immediately obvious, it can easily be seen to
arise in simple examples. If x “ px1, x2q and n “ 1, we have the following SSYT’s.

1 + 2 (1.23)

Which gives p1pxq “ sp1qpx1, x2q “ x1 ` x2. For n “ 2, the following SSYT’s
contribute,

1 1 + 1 2 + 2 2 ´ 1

2
(1.24)

Note that the rightmost SSYT corresponding to p12q contributes with a minus sign,
which results in p2pxq “ sp2qpx1, x2q ´ sp12qpx1, x2q “ x2

1 ` x2
2. One may convince

oneself that this generalizes to higher n and general choice of x.

Schur polynomials have a natural generalization to so-called skew Schur polynomials,
which are associated to skew diagrams. Skew diagrams are constructed from two
non-skew diagrams λ and µ such that µ Ď λ, which means that µi ď λi, @ i.
The skew diagram denoted by λ{µ is then the complement of µ in the diagram
corresponding to λ. For λ “ p4, 3, 2q and µ “ p2, 1q, the skew diagram λ{µ is given
by the following, where we indicate in black those cells which are removed from λ.

1313



1.1. Symmetric functions Chapter 1. Background material

O
= = (1.25)

The skew diagram on the right hand side is a border strip, which is a connected
skew diagram not containing a 2 by 2 subdiagram. This is an important class of
skew diagrams which we will encounter again later. For a general skew diagram,
define a skew semistandard Young tableau corresponding to λ{µ as above, namely,
as an array of positive integers Tij satisfying 1 ď i ď ℓpλq and µi ď j ď λi which
increase weakly along rows and strictly along columns. We then define the skew
Schur polynomial corresponding to λ{µ as

sλ{µ “
ÿ

T

xT , (1.26)

where the sum again runs over all SSYT’s corresponding to λ{µ. Note that if µ “ H,
we have sλ{µ “ sλ, and if µ “ λ, sλ{λ “ sH “ 1. Let us consider λ “ p3, 2q and
µ “ p1q. Below, we give a skew SSYT corresponding to the skew partition λ{µ,
which would contribute x2

1x2x3 to the skew Schur polynomial.

1 3

1 2
(1.27)

From the strong increase of integers along the rows of a (skew) SSYT, it follows
that,

sλ{µpx1, . . . , xnq “ 0 unless 0 ď λt
i ´ µt

i ď n for all i ě 1 . (1.28)

Note that an example of (1.28) is given by the fact that ekpx1, . . . , xNq “ 0 for
k ą N .
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We have the following expressions for skew Schur polynomials,

sλ{µ “
ÿ

ν

cλµνsν , (1.29)

and products of non-skew Schur polynomials,

sλsµ “
ÿ

ν

cνλµsν . (1.30)

The expansion coefficients cλµν are known as Littlewood-Richardson coefficients, which
are given by the number of Littlewood-Richardson tableaux of shape ν{λ and weight
µ. A Littlewood-Richardson tableau is an SSYT such that, when we read its entries
from right to left and top to bottom, any positive integer j appears at least as many
times as j`1. Note from (1.30) that cλµν “ cλνµ. For example, of the SSYT’s pictured
below, the one on the left is a Littlewood-Richardson tableau while the one on the
right is not.

1 1

2 2

1 3

1 2

2 2

1 3

(1.31)

The Littlewood-Richardson coefficients also appear in the following expression [equa-
tion (5.10) in [33]]

sλ{µpx, yq “
ÿ

ν

sλ{νpxqsν{µpyq , (1.32)

where the sum is over all ν satisfying µ Ď ν Ď λ. We apply the Littlewood-
Richardson rule to the special case where one of the diagrams consists of a single
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row. The result is known as the Pieri formula [33],

sλhn “
ÿ

ν

sν , (1.33)

where the sum is over all ν such that ν{λ is a horizontal strip, i.e. a skew diagram
with at most one cell in each column. Applying the involution which transposes all
diagrams, and therefore exchanges hn “ spnq with en “ sp1nq, we have

sλen “
ÿ

ν

sν , (1.34)

where the sum is now over all ν such that ν{λ is a vertical strip, i.e. a skew diagram
with at most one cell in each row. The Pieri formula states that cνλµ for µ “ pnq
is equal to 1 when ν{λ is a horizontal strip, and zero otherwise. Applying this to
sλ{pnq, we have

sλ{pnq “
ÿ

ν

sν , (1.35)

where the sum is now over all ν such that λ{ν is a horizontal strip. From (1.34), we
also have

sλ{p1nq “
ÿ

ν

sν , (1.36)

where λ{ν is a vertical strip. The Pieri formula in (1.35) is illustrated below for
λ “ p2, 1q and n “ 2, with the cells that are added onto λ are indicated in gray. It
is clear that ν{λ is a horizontal strip for all diagrams ν on the right hand side, as
there are no two gray cells in any column. For equation (1.34), one should simply
transpose the diagrams.
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= + + + (1.37)

We can use the Pieri rule to demonstrate
řn

r“0p´1qrhn´rer “ 0, equation (1.7). In
particular, for a, b ě 1, we have

haeb “ spa,1bq ` spa`1,1b´1q . (1.38)

The example for a “ 4 and b “ 3 gives the following:

= + (1.39)

Plugging this in gives

nÿ

r“0

p´1qrhn´rer “ hn ` p´1qnen `
n´1ÿ

r“1

p´1qr `
spn´r,1rq ` spn´r`1,1r´1q

˘ “ 0 . (1.40)

For 1 ď r ď n´1, the summand on the left for any r is cancelled with terms coming
from r ´ 1 and r ` 1. For r “ 0 and r “ n, we get the contributions hn and p´1qnen
which cancel with term from r “ 1 and r “ n ´ 1, respectively. For example, for
n “ 3, applying the Pieri formula gives the diagrams below.
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3ÿ

r“0

p´1qrh3´rer “ ´ ` ´

“ ´ ´ ` ` ´ “ 0 . (1.41)

Further, we have [e.g. theorem 7.17.1, [31]]

sλpn “
ÿ

ν

p´1qhtpν{λqsν , (1.42)

where ν{λ is a border strip of size n, i.e. a containing n cells. The height htpν{λq
equals the numbers of rows that the border strip occupies minus one. We will also
denote these border strips by (e.g.) η with |η| “ n and write νzη for the partition
obtained from ν after removing the border strip η. For λ “ p3, 2q and n “ 3,
equation (1.42) is as follows:

´ ´ + (1.43)

Similar to the Pieri formula, equation (1.42) can be inverted to give the following
expression for skew Schur polynomials,

n´1ÿ

r“0

p´1qrsλ{pn´r,1rq “
ÿ

ν

p´1qhtpλ{νqsν , (1.44)

1818



Chapter 1. Background material 1.1. Symmetric functions

where the sum is now over all ν such that λ{ν is a border strip of size n.

Schur polynomials can be expressed in determinantal form. First of all, the (anti-
symmetric) Vandermonde determinant can be expressed as

det
´
x

pN´kq
j

¯N

j,k“1
“

ź

1ďjăkďN

pxj ´ xkq . (1.45)

We then have

sλpxjq “
det

´
xN´k`λk
j

¯N

j,k“1

det
`
xN´k
j

˘N
j,k“1

. (1.46)

(Skew) Schur polynomials can be expressed in terms of elementary symmetric poly-
nomials or complete homogeneous symmetric polynomials via the following deter-
minantal expressions, known as the Jacobi-Trudi identities,

spµ{λq “ detphµj´λk´j`kqℓpµq
j,k“1 “ detpeµt

j´λt
k´j`kqµ1

j,k“1 ,

spµ{λqt “ detpeµj´λk´j`kqℓpµq
j,k“1 “ detphµt

j´λt
k´j`kqµ1

j,k“1 . (1.47)

Again, we see that the expressions in terms of hj and ej are related by transposition
of the skew diagram, pµ{λq Ñ pµ{λqt.
Schur polynomials can also be expanded in terms of power sum polynomials,

sλ “
ÿ

α

χλ
α

zα
pα , (1.48)

where the sum is over all partitions α, zα is defined in (1.10), and where χλ
α is

the character of the symmetric group Sn with n “ |λ| of an irrep λ associated to a
permutation of cycle type α, see e.g. [33], [31]. In fact, α can generally be a weak
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composition, and χλ
α does not depend on the order of the entries of α. However,

in (1.48), we only sum over a single α corresponding to each cycle type, which is
equivalent to summing over partitions. Equation (1.48) generalizes to the case of a
skew partition λ{µ instead of λ. The inverse of (1.48) is given by

pα “
ÿ

λ

χλ
αsλ . (1.49)

It is clear that pα does not depend on the order of the entries of α, it then follows from
the above expression that the same is true for χλ

α. To construct the latter objects,
we first define a border-strip tableau (BST) of shape λ and type α as follows. We
take a diagram λ and inscribe it with positive integers such that

1. The integers are weakly increasing along both rows and columns

2. The cells of λ that are inscribed by j form a border strip of size αj

The resulting object is called a border strip tableau, which we denote as T P BSTpλ, αq.
We show an example below for λ “ p7, 52, 3, 1q and α “ p42, 5, 3, 5q (remember that
α is a composition and its entries are not generally in non-decreasing order) where
cells belonging to a single border strip share the same color.

1 1 1 2 2 2 2

1 3 3 3 5

3 3 5 5 5

4 4 5

4

(1.50)

Denoting the border strips of length αj that appear in T as Bj, the height of T is
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defined as

htpT q “
ℓpαqÿ

j“1

htpBjq . (1.51)

For example, for the above BST for λ “ p7, 52, 3, 1q and α “ p42, 5, 3, 5q, we have

htpT q “ 1 ` 0 ` 1 ` 1 ` 2 “ 5 . (1.52)

We then have

χλ
α “

ÿ

TPBSTpλ,αq
p´1qhtpT q . (1.53)

This is known as the Murnaghan-Nakayama rule, see e.g. [33] or [31]. The Murnaghan-
Nakayama rule generalizes to skew diagrams λ{µ.

Consider a simple example we have encountered before. From (1.49), we have

pn “
ÿ

λ

χλ
pnqsλ “

n´1ÿ

r“0

p´1qrspn´r,1rq . (1.54)

This arises simply from the fact that any Young diagram consisting of a single
border strip is a hook shape, as this is the only type of non-skew diagram that has
no two by two subdiagram. This gives a sum over all hook shapes containing n cells,
pn ´ r, 1rq, where the sign appears from the fact that htppn ´ r, 1rqq “ r. We thus
see how equation (1.21) arises as a special case of (1.49). To calculate χλ

α, one can
use the following recursive formula [e.g. (2.4.4) [34]]

χλ
α “

ÿ

ρ

p´1qhtpρqχλzρ
α´α1

, (1.55)
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where the sum runs over all border strips ρ of λ containing α1 cells, λzρ is the results
of removing ρ from λ, and α ´ αj “ pα1, α2, . . . , αj´1, αj`1, . . . q. We emphasize
again that χλ

α does not depend on the order of the entries of α. This implies that
we can consecutively apply equation (1.55) by removing border strips of different
sizes in different orders, and end up with the same result. This may at first sight be
surprising, as removing border strips in different orders generally leads to a different
set of diagrams. Let us consider a simple example, where we remove border strips of
sizes 1 and 2 from λ “ p3, 2q “ in the two different orders. This is indicated

in the figure below, where two diagrams connected by an arrow as

λ µpj
(1.56)

indicates that partitions λ and µ are related by the removal of a border strip of size
j.

p1

p1

p1

p2

p1

p2

p2

p2

Figure 1.1: The Young diagram for λ “ p3, 2q and the removal of border strips of
sizes 1 (single cell) and 2 (domino), indicated by p1 and p2, respectively. The dashed
line connecting p2, 2q and p1, 1q indicates the only case where a border strip of odd
height is removed.

It is clear from figure 1.1 that going first along p2 and then along p1 only leads to
the result , where going first along p1 and then p2 leads to as well as ,

the latter in two different ways. As indicated in the figure, the dashed line connecting
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and involves the removal of a border strip of height equal to 1, whereas

all other border strips that are removed in figure 1.1 have height equal to 0. Consider
a composition α containing at least one row of length one and length two. Applying
(1.55) then gives

χp3,2q
α “

ÿ

µ,ρ

p´1qhtpρq`htpµqχpp3,2qzµqzρ
α´p2,1q “ χ

p2q
α´p2,1q ` p1 ´ 1qχp1,1q

α´p2,1q

“
ÿ

µ,ρ

p´1qhtpρq`htpµqχpp3,2qzρqzµ
α´p2,1q “ χ

p2q
α´p2,1q (1.57)

where µ and ρ are BS of sizes 1 and 2, respectively, and where α ´ p2, 1q indicates
that we remove a row of length 1 and a row of length 2 from α. Note the different
order of removal of µ and ρ in the top and bottom rows. We see that the sign given
by p´1qhtpρq ensures that removing border strips of different sizes in different orders,
as it leads to the cancellation between various ways to arrive at certain diagrams
that are unattainable via a different order of removal. We will treat the removal of
border strips from λ “ more extensively in section 2.3, see figure 2.1.

Let us consider the object ppnqk. Using (1.49), we have

ppnqk “
ÿ

λ

χλ
pnkqsλ . (1.58)

From (1.53) (or (1.42) with λ “ H), the χλ
pnkq appearing in (1.58) are of the following

form

χλ
pnkq “

ÿ

TPBSTpλ,pnkqq
p´1qhtpT q , (1.59)

where the sum is over all border strip tableaux of shape λ and type α “ pnkq.
For α “ pnkq, it has been shown that the expansion in (1.59) is cancellation-free

2323



1.1. Symmetric functions Chapter 1. Background material

[corollary 10, [35]]. That is, for any fixed choice of λ, all BST’s appear with the
same sign, so that

χλ
pnkq “ ˘

ÿ

TPBSTpλ,pnkqq
1 . (1.60)

In fact, there is a more general result [theorem 2.7.27 in [34]], which states that

χ
λ{α
pnkq “ ˘

ÿ

TPBSTpλ{α,pnkqq
1 . (1.61)

In the above expression, µ is the so-called n-core of λ, which is the diagram that
remains after removing the maximum possible of border strips of size n. We denote
by wpλq the n-weight of λ, which is the number of border strips of size n which one
has to remove to obtain the n-core of λ. The number of partitions with n-core given
by µ is then given by [theorem 2.7.17 in [34]]

bpwq “
ÿ

twju

nź

j“1

ppwjq , (1.62)

where the sum is over all sets of n non-negative integers wj satisfying
řn

j“1wj “
wpλq, and where ppwjq is the number of partitions of wj.

We illustrate (1.61) for λ with empty n-core (i.e. (1.60)), in particular, for λ “
p6, 5, 22, 1q and α “ pnkq “ p44q. This gives the following border strip tableaux,
where border strips again share the same color.
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(1.63)

We see that the heights of the tableaux are given, from left to right, by 4, 6, 4, 6, so
that p´1qhtpT q “ 1. Note that the two leftmost BST’s appear with multiplicity two,
as one can remove the green and blue border strips in either order. This means that
χ

p6,5,22,1q
p44q “ 6. We see, then, that all BST’s contribute with the same sign as they

are all of even height. Equation (1.60) states that the BST’s always appear with the
same sign for any choice of λ and pnkq. One can see that this generalizes to skew
partitions λ{ρ by considering λ and ρ for which BSTpλ, pnkqq and BST pρ, pnkqq are
non-empty, and using the fact that htpTλ{ρq “ htpTλq´htpTρq, where Tλ{ρ is a border
strip tableau of type pnkq for some k.

1.2 Matrix integrals and Toeplitz minors

We review here the evaluation of weighted unitary integrals over Schur polynomials
using their relation with minors of Toeplitz matrices. The study of the asymptotics
of Toeplitz determinants dates back at least to Szegő, whose limit theorem proved
the existence of a phase transition in the Ising model on a square 2D lattice with sides
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identified (i.e. a square torus). One may consult e.g. [36] for further background and
other important applications. Szegő’s results were generalized by various authors
including Gessel [37], who applied them to various important enumerative problems.
The major work by Baik, Deift, and Johansson [38] on the asymptotics of longest
increasing subsequences of random permutations follows a similar approach, see also
e.g. [39]. These results were extended and related to unitary integrals by Bump and
Diaconis [40]. The main expression of interest for us, which we give in this section,
was derived by García-García and Tierz [41], [42], which draws mainly from the
aforementioned work by Bump and Diaconis.

Take an absolutely integrable function on the unit circle in C,

fpeiθq “
ÿ

kPZ
dke

ikθ . (1.64)

We require that fpeiθq satisfies the assumptions of Szegő’s theorem. That is, we
write fpeiθq as

fpeiθq “ exp

˜ÿ

kPZ
cke

ikθ

¸
, (1.65)

and demand that

ÿ

kPZ
|ck| ă 8 ,

ÿ

kPZ
|k||ck|2 ă 8 . (1.66)

Writing

DNpfq “ detpTNpfqq “ det pdj´kqNj,k“1 , (1.67)
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the strong Szegő limit theorem then states that [43],

lim
NÑ8

DNpfq
e´Nc0

“ exp

˜ 8ÿ

k“1

kckc´k

¸
. (1.68)

The above determinant and various generalization thereof can be related to integrals
over the group of N by N unitary matrices with some weight function f with the
insertion of Schur polynomials. We denote by TNpfq the N by N principal submatrix
of T pfq, i.e. the matrix obtained from T pfq by taking its first N rows and columns
and neglecting the remainder. That is,

T λ,µ
N pfq “ `

dj´λj´k`µk

˘N
j,k“1

. (1.69)

We will see that various matrix integrals with weight function f can be expressed
as minors of TNpfq, that is, as determinants of matrices obtained from TNpfq by
removing a (necessarily equal) number of rows and columns. For a unitary matrix
U with eigenvalues eiθ1 , eiθ2 , . . . , we write,

f̃pUq “ det fpUq “
Nź

k“1

fpeiθkq . (1.70)

We employ Weyl’s integral formula [44] to express the integral of f̃pUq over UpNq
with respect to the de Haar measure as

ż
f̃pUqdU “ 1

N !

ż 2π

0

ź

jăk

|eiθj ´ eiθk |2
Nź

k“1

fpeiθkqdθk
2π

, (1.71)

where the angles satisfy 0 ď θk ă 2π. The expression for the Vandermonde determi-
nant in (1.45) allows us to use an identity due to Andreiéf, sometimes referred to as
Heine or Gram identity [45]. Take gj and hj, j P t1, 2, . . . , Nu, to be two sequences
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of integrable functions on some measure space with measure µ, then

1

N !

ż
detpgjpxkqqNj,k“1 detphjpxkqNj,k“1

Nź

k“1

dµpxkq “ det

ˆż
gjpxqhjpxqdµpxq

˙N

j,k“1

.(1.72)

Choosing gjpe´iθq “ eipN´jqθ “ hjpeiθq and dµpeiθq “ fpeiθq dθ
2π

, we find

ż
f̃pUqdU “ detpdj´kqNj,k“1 , (1.73)

where dk are again the Fourier coefficients of f ,

dk “ 1

2π

ż 2π

0

fpeiθqeikθdθ . (1.74)

As before, let λ “ pλ1, . . . , λmq and µ “ pµ1, . . . , µnq be partitions of |λ| “ řℓpλq
i λi

and |µ| “ řℓpµq
j µj, respectively. One then obtains a Toeplitz minor T λ,µ

N pfq via the
following procedure:

• Take TN`κpfq, where κ “ maxtλ1, µ1u
• If λ1 ´ µ1 ą 0, remove the first λ1 ´ µ1 columns from TN`κpfq, otherwise

remove µ1 ´ λ1 rows.

• Then, keep the first row and remove the next λ1 ´ λ2 rows, then keep the
following row and remove the next λ2 ´ λ3 rows, and so on and so forth.

• Repeat the third step, replacing λj by µj and removing columns instead of
rows

Note that the second step ensures that the resulting matrix T λ,µ
N pfq is of order N . We

write sλpUq “ sλpeiθ1 , eiθ2 , . . . q. The determinant of T λ,µ
N pfq can then be expressed
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as [40],

Dλ,µ
N pfq :“ detT λ,µ

N pfq “
ż

UpNq
sλpU´1sqsµpUqf̃pUqdU

“ 1

N !p2πqN
ż 2π

0

sλpe´iθ1 , . . . , e´iθN qsµpeiθ1 , . . . , eiθN qˆ

ˆ
Nź

j“1

fpeiθjq
ź

1ďjăkďN

|eiθj ´ eiθk |2dθj

“ det
`
dj´λj´k`µk

˘N
j,k“1

. (1.75)

One can recognize the pattern of striking rows and columns involved in the con-
struction of T λ,µ

N pfq, as the index j is shifted to j ´ λj and k to k ´ µk.

We write the expectation value x. . .y with respect to the matrix model with weight
function f as

@
sλpUqsµpU´1qD “

ş
sλpUqsµpU´1qf̃pUqdUş

f̃pUqdU . (1.76)

We will often neglect to write U˘1 explicitly, instead writing xsλsµy or, more gener-
ally, xABy for symmetric polynomials A and B. For two functions of the form

apzq “
ÿ

kď0

akz
k , bpzq “

ÿ

kě0

bkz
k , (1.77)

the associated Toeplitz matrix satisfies

T pabq “ T paqT pbq . (1.78)

Let us therefore write fpeiθq as follows

fpzq “ Hpx; zqHpy; z´1q , (1.79)
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where Hpx; zq is the generating function of the homogeneous symmetric polynomials
hk given in (1.6) and where we assume that hkpxq and hkpyq are square-summable,
i.e.

ř
k|hk|2 ă 8. We can also define our weight function as

fpzq “ Epx; zqEpy; z´1q , (1.80)

at the cost replacing hj by ej everywhere, which is equivalent to transposing all
diagrams on either the left or right hand side of the equation. The unique UpNq-
invariant (Haar) measure corresponds to f “ 1, which corresponds to xj “ 0 for all
j for both fpzq “ Hpx; zqHpy; z´1q and fpzq “ Epx; zqEpy; z´1q. This is known as
the circular unitary ensemble (CUE) in random matrix theory, which will be treated
in section 1.4. We will consider the case where fpzq “ Hpx; zqHpy; z´1q for general
x and y unless stated otherwise.

It was shown by Gessel [37] that DNpfq can be expressed in terms of Schur polyno-
mials as

DNpfq “
ÿ

ℓpνqďN

sνpxqsνpyq . (1.81)

Equation (1.75) can be similarly expressed in terms of (skew) Schur polynomials
[40], [41], [42],

ż
sλpUqsµpU´1q det fpUqdU “

ÿ

ℓpρqďN

sρ{λpxqsρ{µpyq . (1.82)

We now take the limit N Ñ 8. From (1.82) and the fact that [Chapter I.5, example
26 in [33]]

ÿ

ρ

sρ{λpxqsρ{µpyq “
ÿ

ν

sµ{νpxqsλ{νpyq
ÿ

η

sηpxqsηpyq , (1.83)
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where the sums run over all partitions, it follows that [41], [42]

@
sλpUqsµpU´1qD “

ÿ

ν

sλ{νpyqsµ{νpxq , (1.84)

where the sum runs over all ν such that ν Ď λ, µ. As noted at equation (1.80), we
can also define fpzq “ Epx; zqEpy; z´1q at the cost of transposing diagrams. In this
case, one has

@
sλpUqsµpU´1qD “

ÿ

ν

spλ{νqtpyqspµ{νqtpxq , (1.85)

We will consider fpzq “ Hpx; zqHpy; z´1q and apply (1.84) unless stated otherwise.
If we take µ “ H in (1.84), the only choice for ν that contributes to the above sum
is ν “ H as well, and we have

xsλpUqy “ sλpyq ,
@
sµpU´1qD “ sµpxq . (1.86)

We also define the connected expectation value ,

@
sλpUqsµpU´1qD

c
:“ @

sλpUqsµpU´1qD ´ xsλpUqy @
sµpU´1qD

, (1.87)

which corresponds to subtracting the contribution corresponding to ν “ H in (1.84).

We now consider what the assumptions of Szego’s theorem imply for a function of
the form fpzq “ Hpx; zqHpx; z´1q or fpzq “ Epx; zqEpx; z´1q. Consider first the
case fpzq “ Hpx; zqHpx; z´1q. From the bottom line of (1.6), we see that

fpzq “ exp

˜ 8ÿ

k“1

pkpxq
k

zk ` pkpyq
k

z´k

¸
. (1.88)
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Therefore,

ck “ pkpxq
k

, c´k “ pkpyq
k

, k ‰ 0 , (1.89)

and (1.66) is written as

8ÿ

k“1

|pkpxq| ` |pkpyq|
k

ă 8 ,
8ÿ

k“1

|pkpxq|2 ` |pkpyq|2
k

ă 8 , (1.90)

where we ignore an irrelevant factor 2. We see that

lim
kÑ8

|pk| Ñ 0 , (1.91)

for both pkpxq and pkpyq, as
ř8

k“1
|pkpxq|

k
diverges otherwise. We see that equation

(1.91) requires that xj, yj ă 1. In the above expressions, if we replace Epx; zq by
Hpx; zq, we have pk Ñ p´1qk`1pk, so that the assumptions of Szegő’s theorem are
given by (1.90) as well.

1.2.1 Finite matrix size

Although the expressions given above were derived for N Ñ 8, some of them can,
in fact, be generalized to finite N in case the number of distinct non-zero variables
xj is smaller than N . From equations (1.81), (1.82), and (1.83), we see that, for
finite N and fpzq “ Hpx; zqHpx; z´1q,

@
sλpUqsµpU´1qD “

˜ ř
κpsκpxqq2ř

ℓpρqďNpsρpxqq2
¸ ÿ

ν

sλ{νpxqsµ{νpxq`

´
ř

ℓpνqąN sν{λpxqsν{µpxq
ř

ℓpρqďNpsρpxqq2 . (1.92)
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Let us denote the number of non-zero variables by imax, i.e. xi ‰ 0 for i ď imax and
xi “ 0 for i ą imax. In that case, sκpxq “ 0 for ℓpκq ą imax, see equation (1.28), so
that

ř
κpsκpxqq2ř

ℓpρqďNpsρpxqq2 “ 1 . (1.93)

Indeed, in case N ´ ℓpλq ą imax and N ´ ℓpµq ą imax, we can apply (1.28) again to
find

ÿ

ℓpνqąN

sν{λpxqsν{µpxq “ 0 . (1.94)

From this we conclude that, for N ´ |λ| ą imax and N ´ |µ| ą imax, we have

ş
sλpUqsµpU´1qf̃pUqdUş

f̃pUqdU “
ÿ

ν

sλ{νpxqsµ{νpxq , (1.95)

i.e. the asymptotic expression (1.84) still holds in this case. Again, the above
expressions still hold if we replace Hpx; zq by Epx; zq and all representations by
their transposes.

1.3 Long-range random walkers

We summarize here the derivation which relates correlation functions of one-dimensi-
onal long-range random walkers (LRRW) to weighted unitary integrals over Schur
functions. The random walkers considered here are ‘vicious’, that is, non-intersecting.
For random walkers which can move only a single site, these can be described either
by fermions or hard-core bosons. These were introduced in [46] and studied and
generalized by various authors, see e.g. [47], [48], [49], [50]. Bogoliubov [23] found
a relation with integrals over Schur polynomials, see also [24], [25]. This was gener-
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alized to LRRW models by Pérez-García and Tierz [26], in which case the particles
behave as hard-core bosons. The treatment presented here is based mainly on [23],
[24], and [26].

Consider what Bogoliubov refers to as the the XX0-model, that is, the XY-model
with zero magnetic field,

Ĥ “
ÿ

m,n

∆n,mσ
´
n σ

`
m , ∆m,n “ δn`1,m ` δn´1,m . (1.96)

We start with state with holes at all sites

|òy “ bn |Òyn “ bn

˜
1

0

¸

n

, (1.97)

which satisfies

Ĥ |òy “ 0 . (1.98)

Define the correlation function

Fj;lpτq “
A

ò
ˇ̌
ˇσ`

j e
´τĤσ´

l

ˇ̌
ˇò

E
. (1.99)

For now, we consider τ to be a general complex number, but we will mostly be
interested in the case where τ “ it where t is a real-valued time parameter. Using

“
σ`
n , σ

´
m

‰ “ σz
nδm,n ,

“
σz
n, σ

˘
m

‰ “ ˘2σ˘
n δm,n , (1.100)

we have

”
Ĥ, σ´

k

ı
“

ÿ

m

∆m,kσ
´
mσ

z
k , (1.101)
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which we apply to find

d

dτ
Fj;lpτq “ ´

A
ò

ˇ̌
ˇσ`

j e
´τĤĤσ´

l

ˇ̌
ˇò

E
“

ÿ

m

∆l,mFj;mpτq . (1.102)

In particular, for the XX0-model, where ∆m,n “ δn`1,m ` δn´1,m,

d

dτ
Fj;lpτq “ Fj;l`1pτq ` Fj;l´1pτq . (1.103)

We will generally consider the case where ∆m,n “ ∆m´n “ am´n, i.e. the hopping
amplitude depends only on the (positive or negative) distance between lattice sites m
and n. In this case, ∆m,n is a Toeplitz matrix, i.e. it is constant along its diagonals.
Taking L ` 1 lattice sites, as in [23], the hamiltonian is generally of the form,

Ĥ “ ´
Lÿ

m“0

pL´1q{2ÿ

n“1

`
anσ

´
mσ

`
m`n ` a´nσ

´
mσ

`
m´n

˘ ` h

2

Lÿ

m“0

pσz
m ´ 1q , (1.104)

where we demand that a´k “ ak̊, the complex conjugate of ak. We then have

”
Ĥ, σ´

k

ı
“ ´

ÿ

n

`
anσ

´
k´nσ

z
n ` a´nσ

´
k`nσ

z
k

˘ ´ hσ´
k , (1.105)

so that

d

dτ
Fj;lpτq “

ÿ

n

panFj´n;l ` a´nFj`n;lq ` hFj;l . (1.106)

It is clear that Fj;l only depends on |j ´ l|. The generating function fpz; τq “
ř

jPZ Fj;lz
j´l is given by [23], [26]

fpz; τq “ exp

˜
τ

ÿ

kPZ
akz

k

¸
, (1.107)
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where we set a0 “ h. Consider now the multi-particle correlation function, with
N ď L,

Fj1,...,jN ;l1,...,lN pτq “
A

ò
ˇ̌
ˇσ`

j1
. . . σ`

jN
e´τĤσ´

l1
. . . σ´

lN

ˇ̌
ˇò

E
. (1.108)

We impose periodic boundary conditions for simplicity. However, we will be taking
the thermodynamic limit and considering only configurations which contain an infi-
nite sequence of adjacent holes, with the particles either confined to a finite interval
in their initial configuration or starting with an infinite sequence of adjacent parti-
cles. As such, imposing periodic boundary conditions will have no effect on our final
result. We then have,

d

dτ
Fj1,...,jN ;l1,...,lN pτq “

ÿ

k,m

pakFj1,...,jN ;l1,...,lm`k,...,lN pτq ` akFj1,...jN ;l1,...,lm´k,...,lN pτqq `

` NhFj1,...,jN ;l1,...,lN pτq . (1.109)

Remember that the summations over k and m are over different ranges. The solution
to equation (1.109) is of determinantal form [23], [24], [26],

Fj1,...,jN ;l1,...,lN pτq “ det pFjr;lspτqqNr,s“1 . (1.110)

From the initial condition Fj;lp0q “ δj,l, it follows that,

Fj;lpτq “ 1

L ` 1

Lÿ

s“0

exp
`
τake

ikθs
˘
eipj´lqθs , (1.111)

where θs “ 2π
L`1

ps ´ L{2q. Using the determinantal expression for Schur functions
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in equation (1.46), Fj1,...,jN ;l1,...,lN pτq is given by

Fj1,...,jN ;l1,...,lN pτq “ 1

pL ` 1qN
ÿ

tsju
exp

˜
τ

Nÿ

j“1

pL´1q{2ÿ

k

ake
ikθsj

¸ ź

1ďjăkďN

|eiθsj ´ eiθsk |2 ˆ

ˆ sλpeiθs1 , . . . , eiθsN qsµpe´iθs1 , . . . , e´iθsN q , (1.112)

with λr “ jr ´ N ` r and µs “ ls ´ N ` s. We shift jr and lr by N , such that

λr “ jr ` r , µs “ ls ` s . (1.113)

This is merely a convenient relabelling of our lattice sites. We now take L Ñ 8.
Demanding that the hopping parameters ak decay at least as ak „ k´1´ϵ for some
ϵ ą 0, we then have [23], [24], [26],

Fj1,...,jN ;l1,...,lN pτq “ N eNhτ

ż π

´π

dθ1 . . .

ż π

´π

dθN
ź

1ďrăsďN

|eiθr ´ eiθs|2
ź

k“1

fpeiθk ; τqˆ

ˆ sλpeiθ1 , . . . , eiθN qsµpe´iθ1 , . . . , e´iθN q , (1.114)

where the weight function fpz; τq is in (1.107). We include in equation (1.114) a
normalization factor N which is determined by demanding

Fj1,...,jN ;l1,...,lN p0q “
Mź

k“1

δjk,lk . (1.115)

Note that (1.114) is the expression for an integral over UpNq weighted by some
weight function f with insertion of Schur polynomials sλ and sµ, as mentioned at
the start of this section. In particular, writing sλpUq “ sλpeiθjq, were eiθj are the
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eigenvalues of U , we have

Fj1,...,jN ;l1,...,lN pτq “
ż

UpNq
dUf̃pUqsλpUqsµpU´1q . (1.116)

When we take the limit τ Ñ 0, we have f “ 1, which recovers the integral over the
Haar measure on UpNq. In this case sλ{µpxq “ 0 for any λ{µ ‰ H, which greatly
simplifies many calculations.

If λ “ H “ µ, we have jr “ ´r “ lr, and we are simply considering the return
probability for N adjacent particles [51], [52], see also [53]. In general, we will write

Fλ;µpτq “ Fj1,...,jN ;l1,...,lN pτq , (1.117)

where equation (1.113) expresses the relation between λ, µ and tjru, tlru, respec-
tively. We will write the state corresponding to an empty diagram as |Hy. This can
be illustrated as follows, where a particle is indicated by a black dot and hole by a
white dot and the vertical line separates lattice sites 0 and 1.

|Hy “ ¨ ¨ ¨ t t t t t t t t t td d d d d ¨ ¨ ¨ (1.118)

For non-empty λ, µ, Fλ;µ corresponds to a correlation function where certain particles
are shifted by a finite number of sites. The well-known association between Young
diagrams and 1D configurations of spins (or fermions, or any other binary variable)
is as follows. We place a diagram in the corner where an infinitely long horizontal
and vertical line meet. We number the edges of these horizontal and vertical lines,
as well as external edges (i.e. those on the lower right) of the diagram, such that
the main diagonal passes between sites 0 and 1. We then associate a particle to
all vertical edges and a hole to all horizontal edges. This association is illustrated
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below2 for λ “ p5, 3, 12q, where we add a dotted diagonal line which separates lattice
sites 0 and 1.

. . .

...

tt
tt

t t tttttt
t

dddddd
d

(1.119)

The configuration corresponding to the above diagram is illustrated below, with
again a dotted line separating sites 0 and 1.

|λy “ ¨ ¨ ¨ t t t t t tt t t t t t td d d d d d d ¨ ¨ ¨ (1.120)

It is clear from the above association between diagrams and spin configurations that
λ affects particles from position j “ ´ℓpλq `1 up to j “ λ1, which means that there
is an interval containing ℓpλq particles and λ1 holes, the leftmost of which is a hole
and the rightmost a particle. In particular, the state |λy has a hole at j “ ´ℓpλq `1

and a particle at j “ λ1, and the remaining ℓpλq ´ 1 particles and λ1 ´ 1 holes are
are distributed over sites j “ t´ℓpλq ` 2,´ℓpλq ` 3, . . . , λ1 ´ 1u, which can be seen
explicitly for λ “ p5, 3, 12q above.

2We made grateful use of the illustrations in the excellent review [54] by Zinn-Justin, which
we adapt here for our purposes.
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1.4 Random matrices and spectral statistics

As mentioned in the overview, the original focus of this thesis was random matrix
theory and its application to spectral statistics of quantum chaotic and, in particular,
intermediate systems. However, our calculations did not reveal intermediate statis-
tics in the CSMM, as opposed to those of earlier authors who worked on this model.
This section serves to provide our original motivation and results with some broader
context by reviewing the relation between RMT, spectral statistics, and quantum
chaos, as well as random matrix treatments of intermediate statistics. This section
is somewhat broader and more historical in scope, which sets it apart from other
sections in this chapter. This difference is mainly due to the fact that RMT is an
enormously rich field with very many applications, although the same may perhaps
be said some of the other topics treated here. More importantly, the relation be-
tween quantum chaos (or lack thereof) and spectral statistics, as expressed in the
Bohigas–Giannoni–Schmit (or Berry–Tabor) conjecture, is one that was gradually
established through the consideration of many examples by many authors. As such,
any treatment of the relation between chaoticity and spectral statistics is bound to
consider this historical context. In spite of the fact that this section is broader in its
orientation than other sections in this chapter, the present treatment of RMT and
spectral statistics cannot do justice to such a rich area of mathematics and physics.
Nonetheless, we hope that it may serve as a helpful introduction and background
for our results in chapter 4. There are many excellent books and reviews on the
topic which one may consult for more information, including [55], [56], [57], see also
e.g. [58] for a more mathematical treatment, including the relation to the Riemann
hypothesis.
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1.4.1 Random matrix theory and quantum chaos

Random matrix theory provides a phenomenological description of a wide variety
of systems appearing in physics and beyond, starting with Wishart’s analysis of
covariance matrices in 1928 [59], then apparently lying dormant for some time until
it was applied by Wigner to nucleon scattering in the 1950’s [60], and later finding
applications in quantum chaos [61], disordered electronic [62] and mesoscopic [63]
systems, quantum chromodynamics [64], models of 2d quantum gravity and string
theory [65], economics [66], information theory [67], and number theory [68], as well
as other fields. RMT has recently received an increasing amount of attention from
the high energy physics community, particularly as a result of a remarkable relation
between the genus expansion of certain matrix integrals and partition function of
JT-gravity [69]. This theory of gravity arises as a low-energy limit of SYK-theory,
which is thought to exhibit certain universal low-energy behavior of black holes, see
e.g. [70], [71], [72], [73], [74] for this and related applications of RMT.

The application of RMT to black holes is intimately related to the fact that black
holes are chaotic objects, see e.g. [71]. This relation between RMT and quantum
chaos has been known for much longer. It was most clearly articulated by Bohigas,
Giannoni, and Schmit [61], although they were not the first to hint at such a rela-
tionship [75], [76]. The content of their statement, which has come to be known as
the Bohigas–Giannoni–Schmit (BGS) conjecture, is essentially that quantum chaotic
systems have energy spectra which exhibit the same statistics as Gaussian random
matrix ensembles (RME’s) of the appropriate symmetry type. These universal eigen-
value statistics are known as Wigner–Dyson (WD) statistics. The BGS-conjecture
has been so extensively corroborated that WD-statistics are nowadays seen almost
as a definition of quantum chaos.

To better explain the BGS-conjecture, we treat the relevant RME’s in a bit more
detail. We will generally consider random matrix ensembles which have partition
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functions in the form of a matrix integral,
ż
dMP pMq . (1.121)

Here, P pMq is the probability density function associated to a matrix M . We will
start by considering those cases where we integrate over all matrices that are ei-
ther real symmetric, hermitian, or self-dual quaternionic. These matrices have real
eigenvalues and can be diagonalized by orthogonal, unitary, or symplectic trans-
formations, respectively. Indeed, these RME’s are invariant under these transfor-
mations, e.g. the set of all hermitian matrices is invariant under unitary similarity
transformations. Writing the eigenvalues as xj and integrating out the diagonalizing
transformations leads to the following eigenvalue expression, see e.g. [77] or [55],

Z “ CN

ż Nź

i“1

dxi

2π
fpxiq

ź

iăj

pxi ´ xjqβ , (1.122)

where CN is some (typically irrelevant) multiplicative constant and fpxq is called
the weight function. Further, β “ 1, 2, or 4 for the case where the diagonalizing
transformation is orthogonal, unitary, or symplectic, respectively. Choosing

P pMq9 expp´αtrM2q , (1.123)

where α is some positive numerical constant, leads to the Gaussian orthogonal en-
semble (GOE), Gaussian unitary ensemble (GUE), or Gaussian symplectic ensemble
(GSE) for β “ 1, 2, or 4, respectively. We see that there appears a so-called Van-
dermonde determinant,

ś
iăjpxi ´ xjq, to the power β. This leads to a vanishing

probability that two eigenvalues will coincide, which is known as level repulsion.
In particular, when N “ 2, the distribution of spacings s between adjacent energy
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levels is given by (see e.g. [77] or [55])

P psq “

$
’’’&
’’’%

π
2
se´πs2{4 , GOE ,

32
π2 s

2e´4s2{π , GUE ,

218

36π3 s
4e´64s2{9π , GSE .

(1.124)

For N Ñ 8, the level spacing distributions are very similar to the case of N “ 2,
see e.g. section 5.12 in [55]. From the proportionality to sβ for β “ 1, 2, 4, we see
that P ps “ 0q “ 0 for all three Gaussian RME’s. On the other hand, uncorrelated
energy levels follows a Poisson distribution. In this case, P psq “ e´s, so that energy
level have a higher probability of lying close to one another, which is known as level
clustering. We will show examples of these different types of level statistics below.

The content of the BGS-conjecture is then that the energy eigenvalues of quan-
tum chaotic systems of the appropriate symmetry class exhibit the same eigenvalue
statistics (as exhibited e.g. by the level spacing distribution) as the above Gaussian
RME’s. That is, time-reversal invariant systems are described by the GOE, systems
with no time-reversal invariance by the GUE, and systems where the time-reversal
operator squares to minus the identity (spin systems) by the GSE. Conversely, it
was conjectured by Berry and Tabor [78] that ‘generic’ integrable systems display
Poissonian level statistics. The latter has come to be known as the Berry–Tabor
(BT) conjecture. In this case there exist various counterexamples, which is why it
should be emphasized that the BT-conjecture applies generically but not univer-
sally. Like the BGS-conjecture, it has seen ample corroboration, see e.g. [79] for
more information.

We consider an example of the BGS-conjecture for time-reversal invariant systems,
which was in fact treated by BGS in their original work [61]. This is the Sinai billiard,
which consists of a square billiard with a circle of size R cut out of the middle, see
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the inset on the top right of figure 1.2 for an image of (1{8th of) this billiard. It
was analyzed by Yakov Sinai in a seminal paper [80], where he demonstrated its
strong chaotic behavior. Upon quantization, one may compare the energy spectrum
with that of the GOE, as we are considering a time-reversal invariant system. To
make a faithful comparison, we need to define new energy variables in which the
average spacing between energy eigenvalues is the same for both spectra, typically
set to unity. This process is known as unfolding, which ensures that differences in
energy level statistics are not due to trivial large scale (compared to the average
level spacing) variations in level density. It should be emphasized that the authors
of [61] consider 1{8th of the Sinai billiard. This is obtained by reflecting the Sinai
billiard acros its 4 symmetry axes. As mentioned, the resulting, desymmetrized,
billiard is shown in the inset in the top right of figure 1.2. This desymmetrization
is done so as to eliminate ‘accidental’ degeneracies in the energy eigenvalues that
arise from the reflection symmetries of the Sinai billiard. After doing so, it can be
seen in figure 1.2 that the energy eigenvalues of the Sinai billiard follow the level
spacing of the GOE very closely. Although the level spacing distribution provides an
intuitive measure of the energy level statistics, it is typically very hard to compute
and not amenable to analytical methods. For this reason, we will be considering a
more convenient known as the spectral form factor (SFF), which we will introduce
in section 1.4.3.

4444



Chapter 1. Background material 1.4. Random matrices and spectral statistics

Figure 1.2: The numerically obtained level spacing of the desymmetrized Sinai bil-
liard compared with that of the GOE. One can see that they match closely, which
gives a foundational example of the BGS-conjecture. For comparison, the Poisson
distribution is indicated with a dotted line. This image is reprinted from [61].

We mentioned above that the BGS (and BT) conjecture ascribe (near) universal
eigenvalue statistics to quantum systems based purely on chaoticity (or lack thereof)
and symmetry. There exists a similar universality for random matrix ensembles. In
particular, upon unfolding, it can be shown that a broad class of weight functions
(including but not limited to the Gaussian choice) leads to the WD-statistics ex-
hibited by Gaussian RME’s. Moreover, RME’s can also be defined in terms of the
distribution of their matrix entries, for which it can also be shown that a large
class of distributions of matrix entries leads to WD-statistics. For a detailed sur-
vey, see e.g. [81]. Not only, then, do quantum chaotic systems display universal
WD-statistics, the same is true for a large class of RME’s. The latter is known as
random matrix universality, which is one of the central aspects of RMT [77], [55].
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Besides Guassian RME’s, an important and closely related class are those where
the matrices themselves are unitary. These are the circular ensembles, so named
because the eigenvalues of unitary matrices lie on the complex unit circle. These were
first introduced by Freeman Dyson in the early 1960’s [82]. The circular analogues
of the Gaussian ensembles are known as the circular orthogonal ensemble (COE),
the aforementioned circular unitary ensemble (CUE), and the circular symplectic
ensemble (CSE) which, as in the Gaussian case, refers to the transformations under
which the ensemble is invariant. For example, the CUE is the unique measure on
unitary matrices that is invariant under unitary transformations, which is known as
the Haar measure. In the asymptotic (N Ñ 8) limit, the eigenphases of the circular
ensembles exhibit the same eigenvalue statistics as the Gaussian ensembles, which is
why this is referred to as Wigner–Dyson statistics, see e.g. [55]. In the remainder of
this thesis, we will focus on the CUE and its generalizations. Unitary matrices are
themselves diagonalized by a unitary transformation. We again integrate out the
diagonalizing transformation to obtain the eigenvalue representation of the partition
function,

Z “ C̃N

ż Nź

j“1

dϕj

2π
fpeiϕjq

ź

jăk

|e´iϕj ´ e´iϕk |2 , (1.125)

where we again have a weight function f and where eiϕj are the eigenvalues. Taking
f “ 1 gives the CUE. Equation (1.125) features a squared Vandermonde deter-
minant

ś
jăk

|e´iϕj ´ e´iϕk |2, as for the GUE. Likewise, the COE and CSE feature a

Vandermonde determinant to the power one and four, respectively. Different choices
of f lead to different ensembles which can be treated using the methods outlined
in section 1.2, as well as our results which will be presented in chapter 2. Another
important tool in the study of RME’s are orthogonal polynomials, whose usage was
pioneered by Mehta [77]. However, we will only be requiring the expressions in
section 1.2, so we will not be treating the orthogonal polynomial approach here.
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1.4.2 Intermediate statistics

Certain systems which are somewhere in between chaotic and integrable, such as
disordered electrons at the mobility edge of Anderson localization [83], or pseudo-
integrable billiards [84], display so-called intermediate statistics. Various random
matrix ensembles have been introduced which exhibit these statistics. It appears
that the first such model was a solvable random matrix ensemble interpolating be-
tween Poisson and WD-statistics that was introduced by Gaudin [85]. The same
model was rediscovered later by Yukawa [86] in the context of a so-called Pechukas-
Yukawa gas. Another type of RME that was introduced to describe intermediate
statistics are the so-called banded RME’s [87], for which the entries of the random
matrices decay in a power-law fashion away from the main diagonal. There is also
the Moshe-Neuberger-Shapiro (MNS) ensemble [88], where the unitary invariance
of the ensemble is explicitly broken by a potential term involving a fixed matrix,
typically chosen to be diagonal. Bogomolny et al. [89] discovered a number of en-
sembles which are based on the Lax matrices of various integrable systems. These
ensembles exhibit intermediate statistics [90]. Further, a generalization [91] of the
Rosenzweig-Porter model [92], as well as standard β-ensembles, introduced in [93]
exhibit intermediate statistics [94].

Another class of matrix models was proposed in [4] to describe intermediate level
statistics, depending on some parameter q between zero and one. These ensembles
are defined in terms of a UpNq-invariant measure, as opposed to the aforementioned
ensembles with intermediate statistics. It was observed in [4] that WD-universality
is lost, leading instead to the same statistics as the banded and MNS-ensembles
mentioned above[7]. The relation of the (UpNq-invariant) RME introduced in [4] to
the (non-UpNq-invariant) banded and MNS-ensembles was argued to arise due to
a spontaneous breaking of UpNq-invariance [10]. The matrix ensemble proposed in
[4] appears in hermitian and unitary guises, analogous to the GUE and CUE. As
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noted in the introduction, we analyzed this matrix model in its unitary guise but,
to our surprise, did not find any evidence of intermediate statistics. This will be be
treated in section 4.1. The same RME introduced in [4] was later found by Mariño
as a matrix model of type A topological open string theory on the cotangent space
of S3 [5], which is described by UpNq Chern–Simons theory on S3 [95]. Due to the
relation of this RME to Chern–Simons theory, we refer to it as the Chern–Simons
matrix model (CSMM). It was famously shown by Witten [96] that Chern–Simons
expectation values of Wilson lines are given by knot and link invariants, such as
the Jones polynomial for SUp2q, or the HOMFLY polynomial for SUpNq. The
parameter q can be given by a real number or lie on the complex unit circle, see e.g.
[97] and [98]. As the previous application of the CSMM to intermediate statistics
considered real q between zero and one, we focus on this parameter range as well.
In section 1.5, we will review how these matrix models arise from Chern–Simons
theory and the matrix model computation of knot and link invariants.

For the hermitian version of the CSMM, the weight function is of the following
“log-squared” form, see also e.g. [12],

fpxq 9 exp

ˆ
´ 1

2gs
log2 x

˙
, |x| " 1 , (1.126)

where gs “ ´ log q. Sufficiently shallow confining potentials, which asymptotically
behave as V pHq „ log2H for |H| " 1, are associated with indeterminate moment
problems. This is to say that the weight function fpxq is not uniquely determined
by its moments mj “ ş

xjfpxqdx [6], [99]. In its unitary guise, the CSMM has the
following weight function

fpeiϕq “ Θ3peiϕ; qq “
ÿ

n

qn
2{2einϕ . (1.127)

That is, f equals Jacobi’s third theta function, which is defined on the complex
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unit circle 3. One immediately sees that the matrix model with this weight function
reduces to the CUE as we take q Ñ 0. We will consider this limit in more detail
below. On the other hand, it was shown in [4] that the hermitian version of the
CSMM, after unfolding, displays GUE statistics as one takes q Ñ 1. Intermediate
statistics were found for q away from these limits. These can be seen in figure 1.3,
which displays the level statistics found for the hermitian version of the CSMM in [4].
Somewhat confusingly, in [4], gs “ ´ log q is denoted by β, which is typically reserved
for the symmetry index. As one can see in figure 1.3, the eigenvalue statistics
found in [4] range from WD-statistics for log q´1 “ 0 to increasing intermediacy
as we increase log q´1, leading to a level spacing more closely resembling a Poisson
distribution. It should be noted that the intermediate level spacing distribution goes
to zero at the origin for any value of β, as opposed to the Poisson distribution.

Although our calculations did not reveal any intermediacy in (the unitary version of)
the CSMM, we can still be sure that figure 1.3 provides an example of intermediate
statistics. This is because the statistics found in [4] were identical to that of the
banded and MNS-ensembles, which are known to exhibit intermediacy.

3Note that the definition in (1.170) has qn
2{2 rather than qn

2

as expansion coefficients, the
latter being another common convention.
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Figure 1.3: The intermediate level spacing distribution, with WD and Poisson dis-
tributions for reference, reprinted from [4]. The controlling parameter log q´1 is
indicated here by β, where β “ 0 gives WD-statistics. Increasing β leads to greater
deviation from WD-statistics and increased similarity to Poisson statistics, although
any value of β gives a vanishing probability that two levels coincide.

1.4.3 Level density and spectral form factor

An important object in random matrix theory is the level density (or eigenval-
ue/eigenphase density, or density of states) given by

ρpϕq “ 1

N

Nÿ

j“1

δpϕ ´ ϕjq “ 1

2πN

Nÿ

j“1

ÿ

nPZ
einpϕ´ϕjq “ 1

2πN

ÿ

nPZ
trUneinϕ , (1.128)

where we used the fact that, for a unitary matrix U with eigenvalues eiϕj ,

trUn “
Nÿ

i“1

einϕj . (1.129)

The level density averaged over an RME, gives the probability of finding an eigen-
value at ϕ. As mentioned above, to faithfully compare different spectra, one has to
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transform to a new (energy or eigenphase) variable where the average level spacing
is the same everywhere, resulting in a flat level density. Strictly speaking, unfolding
involves a change of variables to the staircase function, (see e.g. section 5.19 of [55]),

σpθq “
ż θ

θc

dθ1ρpθ1q . (1.130)

The level density in terms of σ is a perfectly flat function. However, this unfolding
procedure is often difficult in practice, necessitating the usage of cruder approaches.

From the level densities, we can construct the n-point density correlation functions
for n “ 2, . . . and various related quantities. An important example thereof which
is often used to characterize the eigenvalue statistics of various ensembles is the
spectral form factor (SFF), which is the Fourier transform of the two-point level
density correlation function [77]. The two-point correlation function is given by,

xρpθqρpϕqy “ 1

N2

ÿ

k,lPZ
xtrUktrU lyeikθ`ilϕ ´ 1 . (1.131)

The SFF is then given by the expansion coefficients of einpθ´ϕq, n P Z`, rescaled by
a factor N´1, [77], [55],

Kpnq “ 1

N
x|trUn|2y . (1.132)

The choice of normalization is made so that, for n{N ě 1, the CUE SFF saturates
at unity. For future convenience, we also define the connected part of the SFF

Kpnqc “ Kpnq ´ 1

N
xtrUny2 . (1.133)

We will also occasionally use

F pnq “ NKpnq , (1.134)
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and F pnqc defined as in (1.133).

A well-known, heuristic way to understand the relation between SFF’s and spectral
statistics is as follows. If we consider a diagonal matrix V “ diagpeiϕ1 , eiϕ2 , . . . , eiϕN q
with all ϕj taking random values in r0, 2πq, and we average over ϕj, we get

@
|trV n|2

D “
C

Nÿ

k,l“1

einpϕk´ϕmq
G

“ N . (1.135)

Here, we use the fact that einpϕk´ϕmq equals 1 for k “ m, whereas for k ‰ m it is a
random variable on (2n copies of) the complex unit circle, which averages to zero.
A system with eigenphases distributed randomly across the unit circle therefore has
a constant SFF. In this case, the SFF, being a sum over complex numbers of unit
length, essentially describes a two-dimensional random walk.

On the other hand, random unitary matrices U display level repulsion with over-
whelming probability, so that their eigenvalues tend to distribute more evenly across
the complex unit circle. Therefore, x|trUn|2y is much lower than N for small values
of n, as evenly spaced complex numbers are more likely to mutually cancel out than
complex numbers which are distributed randomly and are thus allowed to cluster.
In particular, for systems in the WD-universality class, the connected SFF is given
by F pnqc “ n for n ď N , which we refer to as a linear ramp (of unit slope). How-
ever, for n close to N , we have that n becomes of the order of the average spacing
ϕk`1´ϕk. In that case, einpϕk´ϕlq is an approximately random element of the complex
unit circle for all k ‰ l, so that these again average to zero and only the constant
contribution N coming from k “ l remains. As a result, we have Kpnq “ 1 for
n ą N , so that the SFF reaches the so-called plateau. For Poisson-distributed (un-
correlated) eigenphases, the SFF immediately attains this plateau, as argued above.
We will be giving various examples of SFF’s, including plots, in chapter 4.
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1.5 Chern–Simons theory

We review the construction of Chern–Simons partition functions and knot and link
invariants using Heegaard splitting [96] and the knot operator formalism [100]. We
will also treat the matrix model description of these objects, referred to as the
CSMM, which was introduced in section 1.4.2. One may consult [101] for more
information on these topics, as well their application to topological string theory
and related questions in geometry.

1.5.1 Knot operator formalism

Heegaard splitting provides a way to calculate the Chern–Simons partition func-
tions of certain three-manifolds, which we generally denote by M . We construct M
by taking two separate three-manifolds M1 and M2 which share a common bound-
ary Σ, i.e. BM1 » Σ » BM2. M is then constructed by acting on Σ with some
homeomorphism f and then gluing M1 and M2 together, which we write as

M “ M1

ď

f

M2 . (1.136)

In this construction, we take the boundaries of M1 and M2 to have opposite ori-
entation, so that M is a closed manifold. Writing the Hilbert space of Σ as HpΣq
and its conjugate as H˚pΣq, performing the path integral over M1 gives a state
|ΨM1y P HpΣq, whereas performing the path integral over M2 to find a state xΨM2 |
in the conjugate Hilbert space H˚pΣq due to the fact that the boundaries of M1 and
M2 have opposite orientation. The homeomorphism f induces a map Uf on HpΣq
whose action we denote by

Uf : HpΣq Ñ HpΣq . (1.137)
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The partition function is then given by

ZpMq “ xΨM1 |Uf |ΨM2y . (1.138)

In a seminal paper [96], Witten found that HpΣq is given by the space of conformal
blocks of the corresponding Wess-Zumino-Novikov-Witten (WZNW) model on Σ at
level k. In case there are no marked points on Σ where Wilson lines are cut, i.e.
if all Wilson lines can be embedded on Σ, HpΣq is given by the characters of the
WZNW model on Σ. We will be considering only the latter case.

A relatively simple example of a Heegaard splitting is given by the division of S3

into two three-balls that share a boundary Σ “ S2. The only knot that can be
embedded on S2 is the unknot, which is the trivial example of an unknotted circle.
We therefore do not consider this example any further. Let us instead consider the
case where M1 and M2 are given by solid tori S1 ˆD2 which share a boundary torus
BM1 “ S1ˆS1 “ BM2. The manifolds which can be constructed via such a Heegaard
splitting on a torus are known as lens spaces [102]. The simplest example of a lens
space is found by taking f to be the identity map. In this case, we glue the two
copies of D2 along their boundaries to form S2, so that the resulting space is given
by S2 ˆS1. We normalize the Chern–Simons partition function for S2 ˆS1 to unity.
Let us consider an example where we act on T 2 with a nontrivial homeomorphism.
The group of homeomorphisms of T 2 is given by SLp2;Zq, which consists of matrices
of the following form

˜
a b

c d

¸
, ad ´ bc “ 1 , a, b, c, d P Z . (1.139)

SLp2;Zq is generated by the modular S and T -transformations. Representing the

1-cycles of the torus by basis vectors

˜
1

0

¸
and

˜
0

1

¸
, the S and T -transformations
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can be written as

S “
˜
0 ´1

1 0

¸
, T “

˜
1 1

0 1

¸
. (1.140)

That is, S interchanges the 1-cycles and reverses the orientation of the torus, while
T cuts open the torus along a 1-cycles to form a cylinder, twists one end of the
cylinder by 2π, and glues the two ends of the cylinder back together. Consider the
case where we glue two solid tori M1,2 along their boundaries after acting with an
S-transformation. Since S-transformations exchange the 1-cycles on the torus, the
contractible cycle of M1 is glued to the non-contractible cycle of M2 and vice versa.
We thus find a closed three-manifold with no non-contractible cycles which, from
the Poincaré conjecture, is homeomorphic to S3.

The construction of torus knots is analogous to the construction of lens spaces
in the sense that, if we insert a Wilson line corresponding to an unknot on the
boundary torus, we can act with arbitrary SLp2;Zq transformation on the torus
which turns the unknot into a non-trivial torus knot. Let us denote the torus
knot operators, to be defined more precisely below, by Wpp,qq

λ , where λ labels the
irreducible representation of the Wilson line that is tied into a knot, and p and
q are integers which count the winding of the knot around non-contractible and
contractible cycle of the torus, respectively. Note that p and q are coprime for
torus knots, whereas for p and q not coprime we would get a torus link, which is
a generalization of a torus knot with more than one component (i.e. more than
one knotted piece of string). The number of components of a torus link equals
the greatest common divisor of p and q. From the definition of the S and T -
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transformations, it is clear that they act on torus knot as follows

S´1Wpp,qqS “ Wpq,´pq ,

T´1Wpp,qqT “ Wpp,q`pq .

For example, if we insert an unknot around the non-contractible cycle of the torus
and act n times with the T -transformation, we get a knot which still winds around
the non-contractible cycle once but which now also winds around the contractible
cycle n times.

Figure 1.4: Two examples of p2n, 2q-torus links. The Hopf link, on the left, is the
p2, 2q-torus link. On the right, we have the p4, 2q-torus link.

It is easy to see that modular transformations map the set of torus knots into itself, as
these transformations do not change the number of components. Indeed, for any pair
of coprime integers pp, qq, one can easily see that pp, q ` pq are also coprime, so that
the number of components is unchanged under modular transformations. Further,
due to Bézout’s lemma [103], there is an SLp2;Zq-transformation corresponding to
any pair of coprime integers, so that we can construct any torus knot by acting on
an unknot with an SLp2;Zq-transformation.

The explicit form for the knot operators for SUpNq was found by Labastida, Llatas,
and Ramallo [100], using the relation to WZNW-models previously found by Witten
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[96]. Let us summarize the salient points of the knot operator formalism. As men-
tioned above, HpΣq is given by the conformal blocks of the corresponding WZNW-
model on Σ with group G at level k. In the case of Σ “ T 2 without marked points,
which we will be considering henceforth, HpΣq consists of the characters of inte-
grable representations of the corresponding WZNW-model. We denote the set of
fundamental weights by tviu and Weyl vector by ρ “ ř

i vi. A representation with
highest weight Λ is integrable if p :“ ρ ` Λ “ ř

i pivi is in the fundamental Weyl
chamber, that is,

ÿ

i

pi ă k ` y , pi ą 0 , @ i , (1.141)

where y is the dual Coxeter number of G, which equals N for G “ UpNq and
N ´ 1 for G “ SUpNq. Remember that an irrep with highest weight Λ “ ř

i Λivi

corresponds to a Young tableau where the length of the ith row is given by

Λi ` Λi`1 ` ¨ ¨ ¨ ` ΛI , (1.142)

where I equals N in the case of UpNq and N ´ 1 in the case of SUpNq. From now
on we will take G “ UpNq so that y “ N . We will denote ket states corresponding
to p by |py, which can be chosen in such a way that they form an orthonormal
basis. The vacuum state, that is, the state without any Wilson line inserted, is
given by |ρy “: |0y . If we act with a knot operator corresponding to an unknot in
representation corresponding to Λ, the result is [100]

Wp1,0q
Λ |ρy “ |ρ ` Λy “ |py . (1.143)

Consider the multiplication properties of knot operators. If we take WK
λ to be a
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knot operator corresponding to a knot K in representation λ, we can write

WK
λ WK

µ “
ÿ

ν

N ν
λµWK

ν . (1.144)

The coefficients N ν
λµ in (1.144) are the fusion coefficients of the WZNW-model.

When the representations under consideration are much smaller than N , N ν
λµ are

given by Littlewood-Richardson coefficients cνλµ. This allows us to construct the
invariants of torus links. We label a torus link by P,Q P Z, where the number
of components is given by S “ gcdpP,Qq and the representations are labelled by
j P t1, . . . , Su. These links are given by [100], [104], [105]

Sź

j“1

WP {S,Q{S
λj

“
ÿ

µ

cµλ1,...,λS
WP {S,Q{S

µ , (1.145)

where cµλ1,...,λS
are generalized Littlewood-Richardson coefficients appearing in the

product of representations λ1, λ2, . . . .

The only further ingredient we need are the explicit expressions for the Hilbert
space operators induced by the modular transformations. We simply state these
here, further details may be found in [100]

Tpp1 “ δp,p1e2πiphp´c{24q ,

Spp1 “ iNpN´1q{2

NN{2

ˆ
N

k ` N

˙N´1
2 ÿ

wPW
ϵpwq exp

ˆ´2πip ¨ wpp1q
k ` N

˙
. (1.146)

In the above expressions, W is the Weyl group, ϵpwq is the signature of Weyl reflec-
tion w, c is the central charge of the WZNW-model, and hp is the conformal weight
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of the primary field corresponding to p, which is given by

hp “ p2 ´ ρ2

2pk ` yq . (1.147)

1.5.2 Chern–Simons matrix model

Let us consider how the matrix model description of Chern–Simons theory arises.
As explained above, S3 can be constructed via a Heegaard splitting along a torus
on which we act with an S-transformation. We thus find that the Chern–Simons
partition function on S3 is given by

ZpS3q “ x0|S|0y “ S00 . (1.148)

We plug in the expression for S00 from equation (1.146) and use Weyl’s denominator
formula, ÿ

wPW
ϵpwqewppq “

ź

αą0

2 sinhpα{2q , (1.149)

where α are the positive roots of UpNq. Expressing the roots of UpNq in terms of
Dynkin coordinates xi, we find

ZpS3q “ e´ gs
12

NpN2´1q

N !

ż
dxi

2π

Nź

i“1

e´x2
i {2gs ź

iăj

´
2 sinh

xi ´ xj

2

¯2

. (1.150)

Lastly, we define a new set of variables yi :“ eNgs`xi , in which the partition function
is given by [5]

ZpS3q “ e´p7N3gs{12`N2gs{2´Ngs{24q
N !

ż 8

0

Nź

j“1

dyj
2π

ź

jăk

pyj´ykq2 exp
˜

´ 1

2gs

ÿ

j

log2pyjq
¸

.

(1.151)
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Alternatively, we can use the following expression, involving the third Jacobi Theta
function given in (1.127),

qn
2{2 “

ż 2π

0

dϕ

2π
Θ3peiϕ; qqeinϕ , (1.152)

This gives

ÿ

wPW
ϵpwqq 1

2
pwpρq´ρq2 “ 1

|W |
ÿ

w,w1PW
ϵpwqϵpw1qq 1

2
pwpρq´wpρ1qq2 (1.153)

“ 1

|W |

ż Nź

i“1

dϕi

2π
Θ3peiϕi ; qq

ÿ

w,w1PW
ϵpwqϵpw1qqipwpρq´wpρ1q¨θ ,

where we added another summation over the Weyl group in the first equality and
applied (1.152) in the second. Lastly, the Weyl group W is isomorphic to the
symmetric group SN so that |W | “ N !. Using the Weyl denominator formula again
leads to [106][107].

Z “ 1

N !

ż 2π

0

Nź

i“1

dϕi

2π
Θ3peiϕj ; qq

ź

jăk

|eiϕj ´ eiϕk |2 . (1.154)

Note that (1.151) and (1.154) correspond precisely to the matrix ensemble intro-
duced by [4], given in (1.126) and (1.127), respectively.

Torus knots and link invariants

We now outline the computation of torus knot and link invariants using the matrix
model for UpNq Chern–Simons on S3, for general N and q. The simplest knot, the
unknot, is given by the ensemble average of the matrix trace in the corresponding
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representation [108]. That is,

Wλ :“
A
Wp1,0q

λ

E
“ xtrλUy , (1.155)

where, for a matrix U with eigenvalues eiϕj ,

trλU “ sλpUq “ sλpeiϕjq . (1.156)

We will mostly write traces without specified representations, in which case it is
understood to be in the fundamental representation. Denote by λ the representation
conjugate to λ. This can be obtained by rotating the skew partition ppλ1qNq{λ by
180 degrees, where ppλ1qNq is the rectangular partition consisting of N rows of size
λ1. The simplest example is the conjugate of the fundamental representation ,
known as the antifundamental representation, which consists of a column of length
N ´ 1. We then have [101]

trλU´1 “ trλU . (1.157)

In the language of knot theory, taking trλU to trλU´1 corresponds to inverting the
orientation of the component carrying representation λ, see e.g. [101]. Of course, for
the unknot, this does not matter, as reverting the orientation can be compensated by
a simple parity transformation. The same is true for the Hopf link, as overcrossings
can be freely changed into undercrossings. For more complicated knots or links,
such as the p4, 2q-torus link on the right hand side of figure 1.4, overcrossings can no
longer be turned into undercrossings and inverting the orientation of one component
will generally lead to a different expectation value.

One can show [108], [109], [110] that xtrUny gives the invariant of an pn, 1q-torus
knot [111], which differs from any pn,mq-torus knot only by multiplicative factor
given by a rational power of q. Equation (1.21) gives an expansion of trUn in terms
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of hook-shaped Schur polynomials which, when averaged over the CSMM as in
(1.155), gives the unknot invariant for a hook-shaped representation. Further, one
may use equation (1.145) to multiply traces trUn to construct more complicated
knot and link invariants, which have been extensively treated in [112], [105]. Using
(1.157), we then conclude that x|trUn|2y give the HOMFLY invariant of a p2n, 2q-
torus link, with one component carrying the fundamental and the other carrying the
antifundamental representation. This gives a knot-theoretical interpretation to the
SFF of the CSMM.

Computation of unknot and Hopf link invariants

To compute unknot and Hopf link invariants for general N and q, we will briefly
review some aspects of q-numbers. These are so-called q-deformations of more fa-
miliar (generally complex) numbers. We will only be considering q-deformation of
positive integers here, which are defined as

rnsq “ p1 ` q ` ¨ ¨ ¨ ` qn´1q “ 1 ´ qn

1 ´ q
, n P Z` . (1.158)

Other definitions of rnsq, such as q´n{2´qn{2
q´1{2´q1{2 , also appear in the literature. Their

common feature is that

lim
qÑ1´

rnsq “ n . (1.159)

Note that, for k,m, n P Z` satisfying m
n

“ k, we have

rmsq
rnsq “ rksqn ,

rr ¨ ms
rr ¨ ns “ rksqnr (1.160)
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for example,

r8sq
r2sq “ 1 ` q ` ¨ ¨ ¨ ` q7

1 ` q
“ 1 ` q2 ` q4 ` q6 “ r4sq2 . (1.161)

We will write rnsq as rns henceforth and only specify the deformation parameter in
case it is different from q. q-Factorials and q-binomials are defined as follows. For
n, k P Z`, we have

rN s! “ p1 ` qqp1 ` q ` q2q . . . p1 ` q ` ¨ ¨ ¨ ` qN´1q , (1.162)

and
«
N

k

ff
“ rN s!

rN ´ ks!rks! . (1.163)

We then introduce the q-Pochhammer symbol, which is defined as

pa; qqk “ p1 ´ aqp1 ´ aqq . . . p1 ´ aqk´1q . (1.164)

Note that

pa; qqn “ pa; qq8
paqn; qq8

. (1.165)

Further, we have,

rns! “ pq; qqn
p1 ´ qqn , (1.166)
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from which it follows that
«
N

k

ff
“ pq; qqN

pq; qqN´kpq; qqk “ p1 ´ qNqp1 ´ qN´1q . . . p1 ´ qN´r`1q
p1 ´ qqp1 ´ q2q . . . p1 ´ qkq . (1.167)

We see from this expression that, for q ă 1, we have

lim
NÑ8

«
N

k

ff
“ 1

pq; qqk , (1.168)

q-Pochhammer symbols can be generalized as follows

pa1, a2, . . . , am; qqn “
mź

j“1

paj; qqn . (1.169)

These are rather versatile objects. For example, Jacobi’s third theta function can
be expressed through the Jacobi triple product as

ÿ

nPZ
qn

2{2zn “ pq,´q1{2z,´q1{2{z; qq8 , 0 ă |q| ă 1 . (1.170)

Remember that a Schur polynomial with ones as variables gives the dimension of the
corresponding representation, that is, sλp1Nq “ dimpλq, see (1.16). If, instead, we
choose variables as xj “ qj´1, we get the following q-deformation of the dimension
of λ

sλpxj “ qj´1q “ qnpλq ź

xPλ

rN ` cpxqs
rhpxqs “: qnpλq dimqpλq . (1.171)

The quantity dimqpλq is known as the quantum dimension, or q-dimension. It is
given by the hook-length formula (1.16) where numbers are replaced by q-numbers.
Note that (1.160) implies that representations with the same dimension generally
have different quantum dimensions. For |q| ă 1 and N Ñ 8, quantum dimensions
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for reps with finite column lengths depend only on the hook-lengths. This is because
qN´k “ 0 for k finite, so that, for λ such that cpxq is finite for all x P λ,

ź

xPλ

rN ` cpxqs
rhpxqs “ 1

p1 ´ qq|λ|
ź

xPλ

1

rhpxqs . (1.172)

We will now use this to evaluate the matrix integrals for CSMM. In this case, fpeiθq
is equal to Θ3peiθq in (1.173). Let us therefore consider the Jacobi triple product
expansion of the third theta function

ÿ

nPZ
qn

2{2einθ “ pq; qq8
8ź

j“1

p1 ` qk´1{2eiθqp1 ` qk´1{2e´iθq

“ pq; qq8Epx; eiθqEpx; e´iθq , (1.173)

where we define x “ pq1{2, q3{2, . . . q in the last line. Then,
fpeiθq “ apq; qq8 Epx; eiθqEpx; e´iθq is the weight function of the Chern–Simons
matrix model.

We saw in section 1.2 how UpNq integrals over symmetric polynomials for general
N and weight function can be expressed as a minors of a Toeplitz matrix of symbol
fpzq “ ř

kPZ dkz
k, i.e. a Toeplitz matrix with dk on the kth diagonal [40]. We repeat

part of equation (1.75) for convenience.

Dλ,µ
N´1pfq “ detpdλj´j´µk`kqNj,k“1 “

ż

UpNq
f̃pUqsλpU´1qsµpUqdU . (1.174)

The weight function under consideration here is the third theta function, to which
we apply the triple product expansion (1.170). We then have

Dλ,µ
N´1pΘ3q “ det

´
qpλj´j´µk`kq2{2

¯N

j,k“1
. (1.175)
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First taking λ “ H “ µ, we see that the partition function of the CSMM is given
by

Z “ DN´1pΘ3q “ det
´
qpk´jq2{2

¯N

j,k“1
“

ź

jăk

p1 ´ qk´jq “
N´1ź

k“1

p1 ´ qjqN´j . (1.176)

Taking only λ “ H gives

Dµ
N´1pΘ3q “ detpdk´µk´jqNj,k“1 “

ż

UpNq
f̃pUqsµpUqdU

“ det
´
qpk´µk´jq2{2

¯N

j,k“1
. (1.177)

We have (see e.g. the appendix of [113]),

detpqpµk`k´jq2{2qNj,k“1 “ q
ř

k µ2
k{2 ź

jąk

p1 ´ qµj´µk`k´jq . (1.178)

Then,

Wλµ :“ @
sλpU´1qsµpUqD “ Dλ,µ

N´1

DN´1

. (1.179)

As mentioned, this equals the Chern–Simons average over a pair of Wilson lines
tied into a Hopf link where one Wilson line carries a UpNq representation λ and the
other carries µ, up to an irrelevant factor q to some rational power. For µ “ H, the
Hopf link reduces to an unknot carrying rep λ, and vice versa for λ “ H. Using
(1.178), we then have

Wµ “
det

´
qpk´µk´jq2{2

¯

det pqpk´jq2{2q “ q
ř

j µ
2
j {2

ś
jăkp1 ´ qk´j´µk`µjqś

jăkp1 ´ qk´jq
“q´npµq`ř

j µ
2
j {2sµp1, q, . . . , qN´1q , (1.180)
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where npµq “ řN
j“1pj ´ 1qµj. When we take N Ñ 8, we apply (1.85) to find

W8
µ “ sµtpqj´1{2q “ q|µ|{2`npµtq´npµqsµpqj´1q . (1.181)

The power appearing in the prefactor is given by the sum of the content, cpxq, over
the partition µ. Specifically, cpxq “ j ´ i for x “ pi, jq P µ, and [33]

ÿ

xPµ
cpxq “ npµtq ´ npµq , (1.182)

For general λ and µ, N , and |q| ă 1, we have [42], [107],

Wλµ “ 1

ZN

ż
sλpU´1qsµpUqfpUqdU

“ q
řN

j“1pλ2
j {2`µ2

j {2´pj´1qpλj`µjqqsµpqj´1qsλpq´µ1 , q1´µ2 , . . . , qN´1´µN q
“ q´npλq´npµq`řN

j“1pλ2
j {2`µ2

j {2qsµpqj´1qsλpq´µ1 , q1´µ2 , . . . , qN´1´µN q . (1.183)

For N Ñ 8 and |q| ă 1, we apply (1.85) to find

W8
λµ “

ÿ

ν

spλ{νqtpqj´1{2qspµ{νqtpqj´1{2q . (1.184)

We will be applying both equations (1.183) and (1.184) in chapter 4. Consider the
Schur polynomial sλpqj´1q appearing in (1.184). As mentioned, this is given by the
q-hook length formula in (1.171), and the result equals the quantum dimension of
λ. Applying (1.171), the hook-shaped Schur polynomial is found to be

spa,1bqpxi “ qi´1q “ qbpb`1q{2 rN ` a ´ 1s!
rN ´ b ´ 1s!ra ´ 1s!rbs!ra ` bs . (1.185)
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For cpxq ! N, @x P λ and N Ñ 8, (1.171) gives

sλpqj´1q “ qnpλq

p1 ´ qq|λ|
ź

xPλ
rhpxqs´1 “ qnpλq ź

xPλ
p1 ´ qhpxqq´1 . (1.186)

In particular, sλpqj´1q depends only on npλq and the hook lengths, so that e.g.
rN`a´1s
rN´b´1s “ p1 ´ qq´pa`bq. Therefore, for a partition λ for which

ÿ

xPλ
cpxq “ npλtq ´ npλq “ 0 , (1.187)

the unknot W8
λ is invariant under taking λ Ñ λt. One can clearly see from equa-

tion (1.171) that this is not the case for finite N . These examples illustrate the
simplifications which occur as qN Ñ 0, which will appear again in section 4.3.
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Chapter 2

Unitary matrix integrals

This chapter presents our mathematical results. It is mainly based on [1], which
builds on the main result we derived in [2]. There are further results in this dis-
sertation which could be considered of mathematical interest which will not be
presented in this chapter, such as the polynomials found in the ‘t Hooft limit, or the
implications of the fact that χ

λ{µ
pnkq is cancellation free. However, since these results

were derived in the context of physical questions, we present them in the following
chapters, in particular in sections 3.6 and 4.5. In this chapter, we focus on identities
which provide new ways to compute various objects, in particular unitary integrals
over symmetric polynomials, which can be used to tackle other mathematical prob-
lems.

2.1 Power sums and hook-shaped diagrams

We will consider here the calculation of the expectation vaue of a product of two
traces

@
trUntrU´k

D
, for k, n P N`, and weight function f satisfying the strong Szegő
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2.1. Power sums and hook-shaped diagrams Chapter 2. Unitary matrix integrals

limit theorem. We repeat here equation (1.54)

trUn “ pnpeiθjq “
n´1ÿ

r“0

p´1qrspn´r,1rqpUq . (2.1)

It is clear that this also holds when we replace U with U´1. Using (1.86), we have

xtrUny “ pnpyq ,
@
trU´n

D “ pnpxq . (2.2)

Then,

@
trUntrU´k

D “
n´1ÿ

r“0

p´1qrspn´r,1rq{νpyq
ÿ

ν

k´1ÿ

s“0

p´1qsspk´s,1sq{νpxq . (2.3)

The first sum on the right hand side runs over all representations ν satisfying ν Ď
pn ´ r, 1rq as well as ν Ď pk ´ s, 1sq. We list below the contributions arising for
various choices of ν. We will often omit the variables x and y henceforth.

1. If ν is the empty partition ν “ H, sλ{ν “ sλ i.e. the skew Schur polynomials
reduces to the usual (non-skew) Schur polynomial. This contributes

n´1ÿ

r“0

p´1qrspn´r,1rqpyq
k´1ÿ

s“0

p´1qsspk´s,1sqpxq “ pnpyqpkpxq . (2.4)

2. If ν “ λ, the skew Schur polynomial sλ{ν “ sλ{λ “ 1. For λ “ pn ´ r, 1rq and
µ “ pk ´ s, 1sq, one can only have λ “ ν “ µ if k “ n and r “ s. For k “ n

and ν “ pn ´ r, 1rq and we sum over r, we get a contribution of the following
form

n´1ÿ

r“0

psHq2 “ n . (2.5)
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This is where the term nδn,k in (2.8) originates.

3. Take k ď n without loss of generality. The only remaining choice for ν is
ν ‰ H and ν ‰ pn ´ r, 1rq. For λ “ pa, 1bq and ν “ pc, 1dq such that ν Ď λ,
we have λ{ν “ pa´ cq ˆ p1b´dq, e.g. for λ “ p4, 12q and ν “ p2, 1q, we have the
following:

/ = (2.6)

Fixing ν “ pa, 1bq and considering only the sum over r in (2.3), we have

n´1ÿ

r“0

p´1qrspn´r,1rq{pa,1bq “
n´aÿ

r“b

p´1qrhn´r´aer´b “ 0 , (2.7)

where we applied (1.7), see also the diagrams in (1.41). That is, we get zero
contribution for all ν ‰ H, pn ´ r, 1rq.

Combining the above arguments leads to the following expression, which is the main
result in [2],

@
trUntrU´k

D “ nδn,k ` pnpyqpkpxq . (2.8)

Of course, the same reasoning as above can be applied to other expectation values
involving trUn, such as

@
trU´nsλpUqD

c
“

ÿ

ν‰H

n´1ÿ

r“0

p´1qrspn´r,1rq{ν sλ{ν . (2.9)
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Again, the sum is over all ν ‰ H such that ν Ď λ, pn ´ r, 1rq. Fixing any ν Ď pn ´
r, 1rq in (2.9) with ν ‰ pn´ r, 1rq gives zero when summing over r by application of
(2.7). Therefore, we only get a non-zero answer for terms for which ν “ pn´1, 1rq Ď
λ. That is,

@
trU´nsλpUqD

c
“

ÿ

r

p´1qrsλ{pn´r,1rq , (2.10)

where the sum is over minp0, n´λ1q ď r ď minpn´ 1, λt
1 ` 1q. Using (1.44), we can

express this as

@
trU´nsλpUqD

c
“

ÿ

ν

p´1qhtpλ{νqsν , (2.11)

where the sum is over all ν such that λ{ν is a border strip η of size n, which we also
write as ν “ λzη. As an example, take λ “ p6, 4, 32, 2q and n “ 4. We show the
diagrams ν appearing in (2.11) below, where the cells that are removed are again
given in black.

´ + ´

(2.12)

2.1.1 Applying Wick’s theorem

We will now combine equation (2.8) with Wick’s theorem to compute more compli-
cated objects. In particular, for terms of the form

@
trUn1trUn2 . . . trU´k1trU´k2 . . .

D
,

we sum over all ways to contract between copies of trUnj and trUkm . This contrac-
tion is done using the connected version of equation (2.8), which equals the CUE
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Chapter 2. Unitary matrix integrals 2.1. Power sums and hook-shaped diagrams

result,

@
trUntrU´k

D
c

“ nδn,k . (2.13)

We first consider how Wick’s theorem arises from the properties of Young diagrams
for some relatively simple cases. For example, we have

@ptrU2q2trU´1
D
c

“ 2
@
trUtrU´2

D
c

@
trU´2

D “ 0 , (2.14)

where the factor two in the second expression arises from the fact that there are
two ways to contract between ptrU2q2 and trU´1, which both contribute a term
proportional to xtrUtrU´2yc “ 0. We will now express the same equation using
Young diagrams. Using (1.21), the diagrams corresponding to trU2 are as follows:

´ (2.15)

We take the square of the above expression and apply equation (1.42) (or, in this
case, the Pieri formulas (1.33) and (1.34)) to find the diagrams contributing to
ptrU2q2. These are as follows:

´ ` 2 ´ + (2.16)

We will denote the above sum over diagrams as
ř

λ bλsλ, i.e. bp4q “ 1, bp3,1q “
´1, bp2,2q “ 2, bp2,1,1q “ ´1, bp14q “ 1. Applying (1.84), we have

@ptrU2q2trU´1
D
c

“
ÿ

λ

bλsλ{l (2.17)
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That is, we take
ř

λ bλsλ and find the skew diagrams λ{l, found by removing a
single cell from λ which has no cells to its right or below it. From these constraints,
it follows that the resulting object after removing an cell is still a valid, non-skew
diagram. This gives the following sum over diagrams, which evidently mutually
cancel.

´ ´ ` 2 `

´ ´ ` “ 0 (2.18)

We thus explicitly confirm that Wick’s theorem is satisfied for the case of equation
(2.14). Consider now xptrU2q2trU´2yc. Using (2.8), this should give

@ptrU2q2trU´2
D
c

“ 2
@
trU2trU´2

D
c

@
trU2

D “ 4
@
trU2

D
(2.19)

We will check this explicitly as well. Applying (2.11) to
ř

λ bλsλ gives

@ptrU2q2trU´2
D
c

“
ÿ

λ

bλ
“
sλ{p2q ´ sλ{p12q

‰ “
ÿ

λ

bλ
ÿ

ν

p´1qhtpλ{νqsν , (2.20)

where the sum is over all ν such that λ{ν is a border strip of size 2, i.e. λ{ν “
or λ{ν “ . In terms of diagrams, this is given below. The first three diagrams

corresponds to λ{ν “ whereas the latter three correspond to λ{ν “ , which
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Chapter 2. Unitary matrix integrals 2.1. Power sums and hook-shaped diagrams

appear with a minus sign due to the factor p´1qhtpλ{νq.

´ ` 2 ´ 2 ` ´

“ 4 ´ 4 (2.21)

We see that xptrU2q2trU´2yc “ 2 xtrU2trU´2yc xtrU2y “ 4 ´ 4 “ 4 xtrU2y,
thus confirming (2.19). Lastly, we will briefly check

@ptrU2q2ptrU´1q2D
c

“ 0 . (2.22)

We have

ˆ = + (2.23)

Note that appears with a positive sign, instead of with a minus sign as it does

for trU2. Then,

@ptrU2q2ptrU´1q2D
c

“ sl
������* 0ÿ

λ

bλsλ{l `
ÿ

λ

bλ
“
sλ{p2q ` sλ{p12q

‰
, (2.24)

where we applied the fact that
ř

λ bλsλ{l “ 0, see the diagrams in equation (2.18).
Note that (2.24) gives an equation very similar to (2.20), but now sλ{p12q carries a
positive sign. This gives the same six diagrams as in the top line of equation (2.21),
except that the last three diagrams are multiplied by ´1. The result can be seen
below.
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´ ` 2 ` 2 ´ ` (2.25)

It is easy to see that all diagrams cancel out and the result is zero, which confirms
equation (2.22). From these relatively simple examples, one can explicitly see how
Wick’s theorem arises from equation (1.84) and the multiplication rules for Young
diagrams given in section 1.1. We proceed to apply Wick’s theorem to the compu-
tation of more general objects in the reminder of this section.

2.2 Integrating over generalized power sums

We use Wick’s theorem and equation (2.8) to generalize an identity due to Diaconis
and Shahshahani [27], see also [28]. Writing pρ “ pρ1pρ2 . . . pρℓpρq and mjpρq “
Cardtk : ρk “ ju, as in equations (1.9) and (1.10), respectively, we wish to calculate
xpρpUqpµpU´1qy. This is written out as follows,

@ptrU j1qmj1
pρqptrU j2qmj2

pρq . . . ptrU´k1qmk1
pµqptrU´k2qmk2

pµq . . .
D

. (2.26)

We start with a simpler object that we can more easily apply Wick’s theorem to.
We see that performing n contractions on

@ptrU jqaptrU´jqbD leads to the following
expression

Cn,j :“ a!b!jn

pa ´ nq!pb ´ nq!n!pjpxqb´npjpyqa´n , n ď Minpa, bq . (2.27)
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Further, we have Cn,j “ 0 for n ě Minpa, bq ` 1. Equation (2.27) arises as fol-
lows. There are a!b!

pa´nq!pb´nq!n! ways to perform n contractions between ptrU jqa and
ptrU´jqb, and the contracted terms contribute pxtrU jtrU´jycqn “ jn. The a` b´ 2n

uncontracted traces contribute xtrU jya´n xtrU´jya´n “ pjpxqb´npjpyqa´n. We now
consider all possible ways to perform n contractions between pρpUq and pµpU´1q.
This leads to a sum over α “ pα1, α2, . . . q which are partitions of n, which specify
the contractions that are performed. In particular, mjpαq gives the number of trU j

and trU´j which are contracted. The contribution coming from n contractions in
xpρpUqpµpUq´1y can then be written as

Cn “
ÿ

α

ź

j

Cmjpαq,j , (2.28)

where the sum is over α that are partitions of n. We denote by ñ is the maximal
number of contractions one can perform, which is given by

ñ “ Maxpnq “
ÿ

jě1

Minpmjpρq,mjpµqq . (2.29)

Summing over all possible contractions and applying (2.27) and (2.28), we arrive at
our result

@
pρpUqpµpU´1qD “

ñÿ

n“0

Cn . (2.30)

As mentioned before, this is a generalization of a result in [27], which considered
the CUE, where f “ 1 so that pjpxq “ 0 for all j ‰ 0. Therefore, in the CUE case,
one only gets a non-zero result when ρ “ µ. In our notation, their result reads

@
pρpUqpµpU´1qD

CUE “ zρδρ,µ , (2.31)
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where δρ,µ “ 1 for ρ “ µ and zero otherwise. Note that (2.31) is only the last term in
the full expansion in (2.30), corresponding to n “ ñ “ ř

j mjpρq, so that all power
sums in pρpUq and pµpU´1q are contracted.

2.3 Schur polynomials and border strips

We will derive two expressions for general xsλpUqsνpU´1qy which rely on removing
border strips from λ and ν. The first of these, equation (2.46), relates xsλpUqsνpU´1qy
to sums over xsµpUqy xsρpU´1qy, where µ and ρ are related to λ and ν by the removal
of border strips, respectively. The second expression, in equation (2.62), provides an
expansion of xsλpUqsνpU´1qy in terms of the power sums pkpxq and pkpyq. The latter
expression appears to be particularly useful, as power sums are simpler objects than
general Schur polynomials. In the context of LRRW models, pkpxq and pkpyq are
given by ˘τka˘k, where a˘k are the hopping parameters in (1.104). Equation (2.62)
therefore provides an expansion in τ , where the expansion coefficients depend on ak

which can be read off from the hamiltonian. We will treat the application of these
formulas to LRRW models in sections 3.7 and 3.8.

2.3.1 Expansion in Schur polynomials

From (1.44), (1.48), and (2.11), we have

xsλpnyc “
ÿ

η

p´1qhtpηq @
sλzη

D “
ÿ

µ

χλ
µ

zµ

@
pµ´pnq

D
nmnpµq , (2.32)

where the sum is over all µ containing a row of size n and µ ´ pnq is the remainder
of µ after removing a row of size n. We remind the reader that λzη is the diagram
that results from λ after removing border strip η with (in this case) |η| “ n. We
can also use the recursive definition of χλ

µ in equation (1.55) to see that the second
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equality in (2.32) should hold. From (1.10), it is clear that

zµ “ zµ´pnqnmnpµq . (2.33)

Plugging this into the rightmost expression in (2.32) and applying (1.55) leads to

xsλpnyc “
ÿ

µ

ÿ

η

p´1qhtpηqχ
λzη
µ´pnq

zµ´pnq

@
pµ´pnq

D
. (2.34)

We can then apply equation (1.48), which leads to the second equality in (2.32). If
we insert two identical power sums, we find the following

@
sλp

2
n

D
c

“
ÿ

η,ζ

p´1qhtpηq`htpζq @
spλzηqzζ

D ` 2 xpny xsλpnyc

“
ÿ

µ

χλ
µ

zµ

@
pµ´pn2q

D
2n2mnpµqpmnpµq ´ 1q ` 2 xpny xsλpnyc , (2.35)

where we consecutively remove border strips η and ζ satisfying |η| “ n “ |ζ|, re-
sulting in the partition pλzηqzζ. The sum on the right hand side runs over all µ
containing (at least) two rows of length n, and µ ´ pn2q is the remainder of µ after
removing two such rows. The term 2 xpny xsλpnyc arises from a single contraction
between pn and sλ. We can again apply equation (1.55) to demonstrate the sec-
ond equality in (2.35), where we focus on the term arising from two contractions.
Plugging

zµ “ zµ´pn2qn2mnpµqpmnpµq ´ 1q . (2.36)
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into the first term on the right of (2.35) leads to

ÿ

µ

ÿ

ζ,η

p´1qhtpζq`htpηqχ
pλzηqzζ
µ´pn2q

zµ´pn2q

@
pµ´pn2q

D
, (2.37)

which, by (1.48), recovers the top line of (2.35).

We then take
@
sλppnqkD

and perform all k contractions. This gives an object we
denote by Cpn, k;λq, which equals

Cpn, k;λq “
ÿ

µ

χλ
µ

zµ

@
pµ´pnkq

D
k!nk mnpµq!

pmnpµq ´ kq!
“

ÿ

η1,...,ηk

p´1qhtpTηq @
sλztηu

D
. (2.38)

The sum on the left is over all µ containing at least k rows of length n. The sum
on the right is over k border strips satisfying |ηj| “ n, where λztηu is the diagram
obtained after removing all ηj from λ, and Tη is the BST consisting of the union
of η1, . . . , ηk. It follows that the term in (2.38) gives zero if it is not possible to
construct a subdiagram of λ with k border strips of size n, e.g. simply if |λ| ă nk.
Note that Cpn, 1;λq “ xsλpnyc and Cpn, 2;λq “ xsλp2nyc ´ 2 xpny xsλpnyc.
We now consider

@
sλpUqsνpU´1qD

c
“

ÿ

µ,ρ

χλ
µ

zµ

χν
ρ

zρ

@
pµpUqpρpU´1qD

. (2.39)

When we consider those µ and ρ that contain a row of size n and we contract a single
copy of pn between pµpUq and pρpU´1q, we get an object we denote by Apn, 1;λ, νq,
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which is given by

Apn, 1;λ, νq :“
ÿ

µ,ρ

χλ
µ

zµ

χν
ρ

zρ
nmnpµqmnpρq @

pµ´pnqpUqD @
pρ´pnqpU´1qD

“ 1

n
xsλpnyc xsνpnyc . (2.40)

Using (2.32) gives the following for Apn, 1;λ, νq,

1

n
Cpn, 1;λqCpn, 1; νq “ 1

n

˜ÿ

η

p´1qhtpηq @
sλzη

D
¸ ˜ÿ

ζ

p´1qhtpζq @
sνzζ

D
¸

, (2.41)

where the sums are again over border strips satisfying |η| “ n “ |ζ|. Consider now
µ and ρ that contain at least two rows of length n and contract two copies of pn
between pµpUq and pρpU´1q,

Apn, 2;λ, νq “1

2

˜ÿ

µ,ρ

χλ
µ

zµ
nmnpµqpmnpµq ´ 1q @

pµ´pnqpUqD
¸

ˆ `µÑρ
λÑν

˘

“ 1

2n2
Cpn, 2;λqCpn, 2; νq . (2.42)

More generally, performing k contractions between ptrUnqk and ptrU´nqk results in

Apn, k;λ, νq “ 1

k!nk
Cpn, k;λqCpn, k; νq . (2.43)

Consider a partition α and, as above, contract over α1 copies of p1pUq and p1pU´1q,
α2 copies of p2pUq and p2pU´1q, etc. This gives the following,

Apn, α;λ, νq “ 1

zα

ź

jě1

Cpn, αj;λqCpn, αj; νq . (2.44)
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2.3. Schur polynomials and border strips Chapter 2. Unitary matrix integrals

We can apply the above expression and (2.38), leading to

xsλsνyc “
ÿ

α

1

zα

ź

jě1

Cpn, αj;λqCpn, αj; νq , (2.45)

which can be written out as

@
sλpUqsνpU´1qD

c
“

ÿ

α

1

zα

¨
˝ÿ

tηu
p´1qhtpTηqsλztηupyq

˛
‚ˆ

´y Ñ x

λ Ñ ν

¯
. (2.46)

The second sum above is over all border strips ηj satisfying |ηj| “ αj. The above
equation can be interpreted as follows. For any α, consider all ways to remove
α1 border strips of unit size (single cells) from λ and ν, α2 border strips of size
2, α3 of size 3, and so on. The resulting diagrams are written as λztηu and idem
for λ Ñ ν. Remember from equation (1.55) and the comments below that λztαu
does not depend on the order of the entries of α, that is, on the order in which we
remove border strips of various sizes. Indeed, λztαu only depends on λ and the set
of cardinalities mjpαq.
Equation (2.46) expresses general expectation values xsλsνyc in terms of the non-
skew Schur polynomials corresponding to λztηu and νztηu. On the other hand,
equation (1.84), which we started with, gives an expansion in terms of skew Schur
polynomials. There are various applications where an expression in terms of non-
skew Schur polynomials is desirable. In general, this may be due to the fact that
there are many more skew diagrams than non-skew ones, so that an expansion in
non-skew diagrams may reveal underlying structures that are otherwise difficult
to discern. This is also the case for the LRRW correlation functions we will be
considering in the next section, where equation (2.46) will reveal relations between
various correlation functions.
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We consider now the special case where one can form BST’s of shapes λ and ν from
αj border strips of size j, summed over j, such that we can fully contract between
pµpUq and pρpU´1q. That is, we consider the case where we can completely tile both
λ and ν with α1 single cells, α2 border strips of size 2 (dominoes), and so on, for
the same α. This clearly requires |λ| “ |ν| “ ř

jě1 jαj, which is a necessary (but
not sufficient) condition for χλ

α, χ
ν
α ‰ 0. Consider the CUE, where sλ{µ “ 0 for any

λ{µ ‰ H. Applying the Murnaghan-Nakayama formula,

ÿ

α1,...,αk

p´1qhtpTαq “ χλ
α , (2.47)

we then find that

xsλsνyCUE “
ÿ

α

z´1
α χλ

αχ
ν
α “ δλ,ν . (2.48)

This is just the orthonormality property for symmetric group characters, e.g. [Propo-
sition 7.17.6b, [31]]. Another way to arrive at the same expression is to directly plug
equation (2.31),

xpµpρyCUE “ zµδµ,ρ , (2.49)

into equation (2.39) to find the orthonormality relation in (2.48).

We work out the explicit example for λ “ p3, 2q, which is a sufficiently small par-
tition that we can still apply (1.84) for comparison. Indeed, applying (1.84) to@
sp3,2qsp3,2q

D
c

“ ř
ν sp3,2q{νsp3,2q{ν gives the following diagrams p3, 2q{ν :

, , , , , 2 (2.50)
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One also gets the empty diagram for ν “ p3, 2q “ λ,which we did not indicate above.
Note that appears with multiplicity 2 as it arises from ν “ p3, 1q and ν “ p22q.
By applying (1.44) for n “ 1 (or, equivalently, (1.35) or (1.36)) to the leftmost
diagram, we find the following:

= + (2.51)

This leads to

@
sp3,2qsp3,2q

D
c

“ `
sp2,2q ` sp3,1q

˘2 ` `
sp3q ` sp2,1q

˘2 ` s2p2,1q`
` `

sp2q ` sp12q
˘2 ` s2p2q ` 2s2p1q ` 1 . (2.52)

Note that the above equation is strictly speaking only correct when x “ y. For x ‰ y,
we have e.g.

`
sp2,2qpxq ` sp3,1qpxq˘ `

sp2,2qpyq ` sp3,1qpyq˘
instead of

`
sp2,2q ` sp3,1q

˘2,
but we write it in this way to avoid clutter.

We now apply (2.46) to compute
@
sp3,2qsp3,2q

D
c
. To do so, we successively remove

border strips from p3, 2q to find the various partitions p3, 2qztαu in (2.46). This is
illustrated below, where two diagrams connected by an arrow as

pjÝÑ again indicates
that partitions λ and µ are related by the removal of a border strip of size j. The
graph below contains all information about the removal of border strips from p3, 2q,
except for those cases where the removal of a border strip leads to the empty diagram.
All diagrams in figure 2.1 except for p3, 2q and p2, 2q are hook shapes and therefore
border strips, so that they are related to H by the removal of a single border strip.
The number of ways to arrive at a diagram by following the arrows in figure gives
the multiplicity of that diagram in (2.46). For example, for , the diagram

has multiplicity 5 for α “ p15q, as there are 5 distinct ways to arrive at following
arrows indicated by p1 in figure 2.1. For α containing elements of different sizes, a
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p1

p1

p1

p1

p2

p1

p1

p1

p1 p1

p2

p2

p4

p3p3

p2

p1

p2

Figure 2.1: The diagrams for λ “ p3, 2q and those obtained by removal of border
strips of size j, which is indicated by pj. The solid and dashed lines again indicate the
removal of border strips of even and odd heights, respectively. This graph indicates
all ways to remove border strips from p3, 2q and the resulting diagrams, except for
those cases where the removal of a border strip leads to the empty diagram.

single ordering should be fixed to find the correct multiplicity i.e. we do not sum
over different compositions of the same cycle type. Applying equation (2.46) then
leads to (2.53), where we indicate the compositions α of the power sums pα over
which we contract. That is, to arrive at a term indicated by some α, one should
start from and follow arrows indicated by the αj in any order, keeping in
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mind the sign given by p´1qhtpηjq with |ηj| “ αj.

@
sp3,2qsp3,2q

D
c

“
p1q`

sp2,2q ` sp3,1q
˘2 `

p2q
1

2
s2p3q `

p12q
1

2

`
2sp2,1q ` sp3q

˘2 `
p3q

`1

3
s2p12q `

p2,1q
1

2
s2p2q `

` 1

3!

`
3sp2q ` 2sp12q

˘2

p13q
`

ˆ
1

3
` 1

8
` 1

4
` 1

4
` 52

4!

˙
sp1q ` 1 . (2.53)

The last two terms on the bottom line of the expression above arise from |α| “
4, 5. In the latter case, following arrows indicated by pαj

leads to H. One can
see that there is only a single way to start at and arrive at H for α “
p4, 1q, p3, 2q, p3, 12q, p22, 1q, p2, 13q by following the corresponding arrows in the graph
above. However, we already noted that there are 5 distinct ways to start from

and arrive at following arrows with p1. This implies there is an equal number of
ways to arrive at H by removing single elements, simply by taking the additional
step p1ÝÑ H. We thus find 1

zp4,1q
` 1

zp3,2q
` 1

zp3,12q
` 1

zp2,13q
` 1

zp22,1q
` 52

zp15q
, which equals

1

4
` 1

6
` 1

6
` 1

12
` 1

8
` 52

5!
“ 1 , (2.54)

leading to the unit contribution in equation (2.53). Via this reasoning, one may
check that expression (2.53) and (2.52) are identical. The above example may not
appear to give a very convincing argument in favor of equation (2.46) over (1.84),
as the application of (2.46) appears to be more complicated than (1.84) for the case
of λ “ p3, 2q. Indeed, for partitions containing few cells, such as λ “ p3, 2q, it is
convenient to use (1.84), as the skew partitions λ{ν can easily be related to non-
skew partitions, as in (2.52). However, for larger partitions, this is no longer the
case, as (1.35), (1.36), and (1.44) can no longer be applied. When considering larger
partitions, then, equation (2.46) can still be used to express general objects xsλsνyc
in terms of non-skew Schur polynomials. This will allow us to express complicated
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correlation functions in terms of simpler ones in section 3.7, but can be used more
generally in situations where an expression for xsλsνy in terms of non-skew Schur
polynomials is desirable.

2.3.2 Expansion in power sum polynomials

For certain applications, such as the LRRW models we will be considering in the next
section, expanding xsλpUqsνpU´1qy in terms of power sums pkpxq and pkpyq may be
particularly useful. One way to do so is to use the expansion in (1.48), calculate all
χλ

α, χ
ν
α, and contract power sums using (2.8). However, this is rather inconvenient

as the computation of all the symmetric group characters is rapidly becomes more
complicated for larger λ, ν. Instead, it would be more effective to once more use
equation (1.55) to find a recursive expansion in terms of power sum polynomials. We
will do so here, ultimately leading to equation (2.62). For comparison, we will also
consider the more complicated method that involves the calculation of all χλ

α, χ
ν
α

at the end of this section to demonstrate its inconvenience compared to equation
(2.62).

The expression that we will be deriving provides an iterative method for expanding
in pγpxq and pωpyq that does not require us to find χλ

α and χν
α for all α and then

contract over all combinations of power sum polynomials. Essentially, we apply
equations (2.30) and (1.48) to xsλpUqsνpU´1qy and make use of the orthogonality
properties of the symmetric group characters. In particular, we will revert the order
of expansion in section 2.3.1 and start from the term with all pµ contracted, see
equation (2.48), then consider the term where a single pj is not contracted, then
two uncontracted power sums, and so on. For simplicity, we start by considering
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autocorrelation function up to the subleading term, which gives

@
sλpUqsλpU´1qD “

ÿ

µ,ρ

χλ
µ

zµ

χλ
ρ

zρ

@
pµpUqpρpU´1qD

“1 `
ÿ

jě1

ÿ

µ

pχλ
µq2
zµ

mjpµq
j

pjpxqpjpyq ` . . . (2.55)

where sum is over all µ containing a row of size j. We have µ “ ρ since this is the
only way to contract all of pµ with pρ except for two copies of pj (one from pµ and the
other from pρ). Using the recursive formula for χλ

µ in (1.55) and the orthogonality
of symmetric group characters in (2.48), we then find

ÿ

jě1

ÿ

µ

pχλ
µq2
zµ

mjpµq
j

pjpxqpjpyq “
ÿ

j

1

j2

ÿ

µ

´ř
ηp´1qhtpηqχλzη

µ´pjq
¯

ˆ pη Ñ ζq
zµ´pjq

pjpxqpjpyq

“
ÿ

jě1

pjpxqpjpyq
j2

ÿ

η

1 , (2.56)

where η and ζ are border strips of size j. Equation (2.56) then tells us that the
coefficient pjpxqpjpyq in the power sum expansion of xsλpUqsλpU´1qy is given by 1

j2

times the number of ways to remove a border strip of size j from λ. Consider another
term in this expansion, where µ “ pj, αq, ρ “ pk2, αq with j “ 2k, and contract over
pα leading to the term proportional to pjpxqpkpyq2. Via the same reasoning as above,
this is given by

pjpxqpkpyq2
2jk2

ÿ

η,ζ,ξ

p´1qhtpηq`htpζq`htpξqδλzη,pλzζqzξ , (2.57)

where the sums are over all η, border strips of size j, and ζ and ξ, border strips of size
k. We see that the terms appearing in the power sum expansion of xsλpUqsλpU´1qy
are found by removing border strips tηu and tζu from λ such that λztηu “ λztζu.
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Continuing this procedure gives the following. Consider not contracting pωpUq and
pγpU´1q for some ω and γ, leading to the term proportional to pωpyqpγpxq. In general
this leads to a sum over µ and ρ (in the middle expression in (2.56)) of the form

µ “ pω, αq , ρ “ pγ, αq , (2.58)

so that mjpµq ´ mjpωq “ mjpαq “ mjpρq ´ mjpγq for all j, and |ω| “ |η|. Since
we sum over µ and ρ for a fixed choice of ω and γ, this effectively leads to a sum
over α. Since there are 1

mjpαq!
mjpµq!
mjpωq!

mjpρq!
mjpγq! ways to perform mjpαq contractions of pj

appearing in pµ and pρ, we have

xpµpρy “ ¨ ¨ ¨ ` pωpyqpγpxq
ź

jě1

1

mjpαq!
mjpµq!

pmjpµq ´ mjpαqq!
mjpρq!

pmjpρq ´ mjpαqq!j
mjpαq`

` . . . (2.59)

where we explicitly show only the term proportional to pωpyqpγpxq. Using the fact
that,

zµ “ zα
ź

jě1

jmjpµq´mjpαqmjpµq!
mjpαq! , (2.60)

and again applying the orthogonality of symmetric group characters, we find that
the term proportional to pωpyqpγpxq in the expansion of xsλpUqsλpU´1qy is given by

pωpyqpγpxq
zωzγ

ÿ

tηu,tξu
p´1qhtpTηq`htpTξqδλztηu,λztξu , (2.61)

where the sum is over border strips η1, η2, . . . satisfying |ηj| “ ωj, as well as border
strips ξj satisfying |ξj| “ γj. Further, Tη and Tξ are the (generally disconnected)
skew diagrams consisting of the unions of the border strips in η and ξ, respectively,
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and htpT q is defined in (1.51). It is clear that the examples in (2.56) and (2.57) arise
as special cases of (2.61). The autocorrelation function can then be expanded as a
sum ω and γ, each contributing a term of the form appearing in (2.61). The same
reasoning can evidently be applied to more general correlation functions, which are
then given by

@
sλpUqsνpU´1qD “

ÿ

ω,γ

pωpyqpγpxq
zωzγ

ÿ

tηu,tξu
p´1qhtpTηq`htpTξqδλztηu,νztξu . (2.62)

The above expression can be straightforwardly applied by considering the different
ways to remove border strips from λ and ν such that the resulting diagrams are
identical, as expressed by the presence of δλztηu,νztξu. This provides a recursive ex-
pression which significantly simplifies various computations, especially when λ, ν are
large diagrams for which the computation of the symmetric group characters rapidly
grows more difficult. Equation (2.62) is particularly useful for applications where
one has access to pkpxq and pkpyq. This includes LRRW models, where pkpxq and
pkpyq are proportional to the time parameter and the hopping parameters, as we
will see in the next chapter.

We now apply (2.62) to xsλpUqsλpU´1qy for λ “ p3, 2q. Consider all distinct ways to
remove a single cell from . As can be seen in figure 2.1, this results in the

following diagrams.

(2.63)

Removing a single cell twice results in the following diagrams.
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2 (2.64)

We get multiplicity two for on the right as one can remove the single cells

indicated in black in either order, as can be seen from the fact that there are two
distinct ways to arrive at from by following p1 in figure 2.1. Removing

border strips of sizes 2, 3, 4 results in the diagrams below.

(2.65)

Note that the height ht of the border strips of sizes 3 and 4 is given by 1, so that
p´1qht “ ´1. It is easy to see that no border strips of size ě 5 can be removed from

, since it is a partition of 5 that is not a border strip. From the fact that

there are two distinct ways to remove a single cell from λ, and only a single way to
remove border strips of sizes 2, 3, 4, we see that the the corresponding contributions
are given by

2p1pxqp1pyq ` p2pxqp2pyq
4

` p3pxqp3pyq
9

` p4pxqp4pyq
16

. (2.66)

Consider now the term proportional to p1pxq2p1pyq2. The two diagrams which arise
from consecutively removing two single cells are and , where the former

appears with multiplicity two, as demonstrated above. We thus see that there are
four ways to take two copies of , consecutively remove two single cells, and

end up with . Conversely, there is only a single way to end up with
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via this procedure. Combined with pzp12qq2 “ 4, this demonstrates that we have

5p1pxq2p1pyq2
4

(2.67)

appearing in the expansion of
@
sp3,2qsp3,2q

D
. Lastly, we consider p2pxqp1pyq2`p1pxq2p2pyq.

One may remove either a border strip of size two or two single cells and end
up in , see the leftmost diagrams in (2.64) and (2.65). Combined with
zp12q “ 2 “ zp2q, this results in

p2pxqp1pyq2 ` p1pxq2p2pyq
4

. (2.68)

Although the effectiveness of (2.62) is already clear for , this is still a rather

small partition. For larger λ, it becomes progressively harder to compute χλ
α, in-

creasing the advantage of (2.62). We will work out more complicated examples in
section 3.8, where we apply the above results to correlation functions of LRRW
models.

We now proceed to compute
@
sp3,2qpUqsp3,2qpU´1qD

via the more laborious method
briefly outlined at the start of this subsection, where we compute χ

p3,2q
α for all α, ap-

ply (1.48), and perform all possible contractions between the power sum polynomials
appearing in (1.48). This provides both an explicit check of equation (2.62) as well
as a demonstration of its relative effectiveness for computing xsλpUqsλpU´1qy. We
will see in the following section, below equation (3.52), that one may calculate χλ

α

by using a relation with fermionic particles hopping on a one-dimensional lattice.
One may then apply Wick’s theorem to the resulting expression to find an expansion
of LRRW correlation funtions in terms of power sums. Although this may provide
a convenient method for calculating χλ

α, we will see here that its application to
the computation of xsλpUqsνpU´1qy is much less convenient than simply applying
equation (2.62). Using (1.55) and looking at figure 2.1, we see that the non-zero
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characters χλ
α are given by

χ
p3,2q
p15q “ 5 , χ

p3,2q
p2,13q “ 1 , χ

p3,2q
p22,1q “ 1 ,

χ
p3,2q
p3,12q “ 1 , χ

p3,2q
p3,2q “ ´1 , χ

p3,2q
p4,1q “ 1 . (2.69)

Applying (1.48) gives

sp3,2q “p51
24

` p31p2
12

` p21p3
6

` p22p1
8

´ p2p3
6

` p1p4
4

“pp15q
24

` pp2,13q
12

` pp3,12q
6

` pp22,1q
8

´ pp3,2q
6

` pp4,1q
4

. (2.70)

We then apply Wick’s theorem to
@
sp3,2qpUqsp3,2qpU´1

D
c
. We give three examples

below, again indicating the compositions α corresponding to the pα which are con-
tracted.

p4q
1

4
p1pxqp1pyq `

p22q
1

82
p1pxqp1pyq `

p3q
3

62
`
p2pxqp2pyq ´ p2pyqp1pxq2˘`

` 3

62
`
p1pxq2p1pyq2 ´ p2pxqp1pyq2˘ ` . . . (2.71)

We will use the above method to find the prefactors of pωpyqpγpxq for some examples
of ω, γ. Consider first γ “ ω “ p4q, leading to a term proportional to p4pxqp4pyq.
This term is rather simple to find as we only get a contribution from the rightmost
term in (2.70). In particular, we have

1

42
@
pp4,1qpUqpp4,1qpU´1qD

c
“ p4pxqp4pyq

42
` p1pxqp1pyq

4
` 1

4
, (2.72)

so that p4pxqp4pyq appears with a prefactor 1
42

in the expansion of
@
sp3,2qpUqsp3,2qpU´1qD

.
We consider now those terms proportional to p3pxqp3pyq arising from (2.70), where
the dots below refer to terms not proportional to p3pxqp3pyq and where we omit
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writing pU˘1q explicitly henceforth.

1

62
@
pp3,12qpp3,12q

D ` 1

62
@
pp3,2qpp3,2q

D “ p3pxqp3pyq
36

p2 ` 2q ` . . .

“ p3pxqp3pyq
9

` . . . (2.73)

We find that the terms whose contribution is proportional to p2pxqp2pyq are given

by xpp2,13qpp2,13qy
p12q2 ` xpp22,1qpp22,1qy

82
` xpp3,2qpp3,2qy

62
, which equals

p2pxqp2pyq
ˆ
3!

12
` 8

82
` 3

62
`

˙
` ¨ ¨ ¨ “ 1

4
p2pxqp2pyq ` . . . (2.74)

Considering the term proportional to p1pxqp1pyq, we find the following expression

@
pp15qpp15q

D

p24q2 `
@
pp2,13qpp2,13q

D

p12q2 `
@
pp3,12qpp3,12q

D

62
`

@
pp22,1qpp22,1q

D

82
`

@
pp4,1qpp4,1q

D

42
,(2.75)

is given by

p1pxqp1pyq
ˆp5!q2

p4!q3 ` 62

p12q2 ` 12

62
` 8

82
` 4

42

˙
` ¨ ¨ ¨ “ 2p1pxqp1pyq ` . . . (2.76)

Combining equations (2.72), (2.73), (2.74), and (2.76) then leads to equation (2.66),
albeit via a much less convenient method.

Consider the term proportional to p1pxq2p1pyq2, which receives contributions from

@
pp15qpp15q

D

p24q2 `
@
pp2,13qpp2,13q

D

p12q2 `
@
pp3,12qpp3,12q

D

62
. (2.77)

In particular, this contributes

p1pxq2p1pyq2
ˆ p5!q2

p4!q2p2!q23! ` p12q2
12

` 3

62

˙
“ 5p1pxq2p1pyq2

4
, (2.78)
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thus confirming equation (2.67). Lastly, we consider a mixed term, namely, the term
proportional to p2pxqp1pyq2 ` p1pxq2p2pyq. This is given by

@
pp15qpp2,13q

D

12 ¨ 24 ´
@
pp3,12qpp3,2q

D

62
`

@
pp2,13qpp22,1q

D

12 ¨ 8 “p2pxqp1pyq2
ˆ

5

24
´ 1

12
` 1

8

˙
` . . .

“p2pxqp1pyq2
4

` . . . (2.79)

Of course, inverting the order of pµpUq and pρpU´1q in xpµpUqpρpU´1qy above gives
the same contribution with x Ø y. The end result is therefore p2pxqp1pyq2`p1pxq2p2pyq

4
,

thereby confirming (2.68). It is clear from this simple example that the method
applied here is much less powerful than the application of equation (2.62), and this
becomes more acute when we consider larger partitions than λ “ p3, 2q as the χλ

α

are then a lot harder to compute.
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Chapter 3

Long-range random walks

We will now apply some of the results derived in the previous chapter, as well as stan-
dard identities from symmetric polynomial theory, to LRRW correlation functions.
The relation between unitary matrix integral and LRRW models was reviewed in
section 1.3, particularly equation (1.116). Here, we first consider identities relating
to elementary and complete homogeneous symmetric polynomials, before moving on
to power sum polynomials and border strips. We will generally take N Ñ 8 here,
although the presentation in sections 3.3, 3.5, and 3.6 is valid for finite N as well.
This chapter is based on [1].

3.1 Correlation functions

In the relation between unitary matrix integral and LRRW models, the weight func-
tion is given by equation (1.107), which we repeat here

fpeiθ; τq “ exp

˜
τ

ÿ

kPZ
ake

iθ

¸
. (3.1)
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where ak are the hopping parameters of the hamiltonian in (1.104). As noted before,
the hamiltonian is a Toeplitz matrix, and ak is the number on its kth diagonal. By
comparing with (1.6), we see that we can write the weight function as

fpzq “ Hpx; zqHpy; z´1q , (3.2)

with the following identification, for k ě 1,

τak “ pkpxq
k

,

τa´k “ pkpyq
k

. (3.3)

Alternatively, we can write

fpzq “ Epx; zqEpy; z´1q , (3.4)

by identifying, for k ě 1,

τak “ p´1qk`1pkpxq
k

,

τa´k “ p´1qk`1pkpyq
k

, (3.5)

and by transposing the diagrams as in (1.85). When τ Ñ 0, i.e. the CUE limit, we
have

Fλ;µp0q “ @
sλpUqsµpU´1qD

CUE “ δλ,µ , (3.6)

which is again simply the orthonormality of Schur polynomials as the irreducible
characters of UpNq. By using the strong Szegő limit theorem, we can compute
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3.1. Correlation functions Chapter 3. Long-range random walks

FH;H. Assuming a0 “ 0, i.e. zero on-site energy, we have

FH;Hpτq “ exp

˜
τ 2

8ÿ

k“1

ka2k

¸
. (3.7)

If we have a0 ‰ 0, we get an additional multiplicative term e´Nτa0 on the right,
where one should remember that we take N Ñ 8. Considering a1 “ ´1 “ a1 and
ak “ 0 otherwise, i.e. the XX0-model, and choosing τ “ it, we recover the result of
[52] and [51], see also [53],

FH;Hpitq “ e´t2 . (3.8)

Remember that equations (1.83) and (1.84) state that

Fλ;µpτq “ FH;Hpτq @
sλpUqsµpU´1qD

τ
, (3.9)

where x. . .yτ is given in equation (1.76) with weight function given by fpz; τq in
(1.107). We therefore define

Gλ;µpτq :“ Fλ;µpτq
FH;Hpτq “ @

sλpUqsµpU´1qD
τ
, (3.10)

i.e. we express correlations in terms of their proportionality to FH;Hpτq. We will
also write this as

Gλ;µpτq “: xλ|µyτ . (3.11)

If µ “ H (or λ “ H), we will simply write

Gλ;Hpτq “ xλ|Hyτ “: xλyτ . (3.12)
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Chapter 3. Long-range random walks 3.2. Row and column diagrams

We also define the following - connected - correlation function,

Gc
λ;µpτq “: xλ|µyτ ´ xλyτ xµy˚

τ . (3.13)

3.2 Row and column diagrams

We consider now some explicit examples. Using (1.12), we can express

xenyτ “ enpyq “ Gp1nq;H , xhnyτ “ hnpyq “ Gpkq;H , (3.14)

and their complex conjugates GH;p1nq and GH;pnq, in terms of pkpyq with k ď n. For
hn and en with n “ 4, the diagrams and corresponding configurations are given
below on the left and right, respectively.

. . .

...

tt
t ttttttt ddddddd . . .

...

t tt
tt
t t t

t

d d d

d
(3.15)

That is, hn correspond to taking only the single rightmost particle and moving it
n sites to the right, whereas en corresponds to taking the n rightmost particles
and moving them all a single site to the right. We noted above that with x “
px1, . . . , xKq, we have ejpxq “ 0 for j ą K (and likewise for y). This means that, for
any n,m ą K,

Fp1mq;p1nq “
Kÿ

j“0

ejej (3.16)
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3.2. Row and column diagrams Chapter 3. Long-range random walks

That is, when we move n ą K adjacent particles by a single site, the effect is the
same as to move K adjacent particles a single site.

Not only can we read off Gpnq;H and Gp1nq;H (and their complex conjugates). From
the corollary of the Pieri formula in (1.35), we have that, for any λ,

Gc
λ;pnq “ @

sλpUqhnpU´1qD
c

“
nÿ

j“1

hn´jsλ{pjq “
nÿ

j“1

hn´j

ÿ

νj

sνj , (3.17)

where the rightmost sum is over all νj such that λ{νj is a horizontal strip of length
j. Take, for example, λ “ p3, 2q,

. . .

...

tt
t t ttttt

ddddd (3.18)

which corresponds to

|p3, 2qy “ ¨ ¨ ¨ tt t tt t t t td d d d d ¨ ¨ ¨ (3.19)

We remind the reader that the dots on the left (right) refer to a string of particles
(holes). We take λ “ p3, 2q and n “ 2. For this choice of λ, the diagrams contributing
to the sum over ν1 and ν2 in (3.17) are given by equation (2.63).

We assign particles and holes to these diagrams and remind ourselves that the fact
that a diagram consisting of a single element corresponds to moving the rightmost
particle a single site to the right, that is,

Gp1q;Hpτq “ x¨ ¨ ¨ t tt td d ¨ ¨ ¨ yτ . (3.20)
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We then see that equation (3.17) is given by the following expression. For each
configuration, the dots on the left and right again indicate a sequence of particles
and holes, typically infinitely long, of which we show only the left- and rightmost,
respectively.

Gp3,2q;p2qpτq “ x¨ ¨ ¨ t t tt t t td d d d ¨ ¨ ¨ |¨ ¨ ¨ t tt t td d d ¨ ¨ ¨ yτ , (3.21)

which can be expanded as follows

˜
x¨ ¨ ¨ t t tt t td d d ¨ ¨ ¨ yτ ` x¨ ¨ ¨ t t tt t t td d d d ¨ ¨ ¨ yτ

¸
ˆ Gp1q;Hpτq `

` x¨ ¨ ¨ t t tt t td d d ¨ ¨ ¨ yτ ` x¨ ¨ ¨ t tt t t td d d d ¨ ¨ ¨ yτ (3.22)

The first line above corresponds to ν1 in (3.17), whereas the second line corresponds
to ν2. By comparing with equation (3.18), we see that the sum over ν1 contains all
diagrams related to by moving a single particle a single site to the left. The

sum over ν2 consists of all ways to move one or two particles by a total of two
sites, with the restriction that we cannot move two adjacent particles. This is the
interpretation of the corollary of the Pieri formula in (1.35), and it generalizes to hn

for any n P Z`. In particular, we can assign a particle-hole interpretation as follows,

sλ{pnq “
ÿ #

Distinct ways to move ď n particles a total of n sites
to the left without moving any two adjacent particles.

+
(3.23)

We can apply the same reasoning to xsλpUqenpU´1y by using (1.36). Similar to
(3.17), we have

Gλ;p1nq “
nÿ

j“1

en´jsλ{p1jq “
nÿ

j“1

en´j

ÿ

νj

sν , (3.24)
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3.2. Row and column diagrams Chapter 3. Long-range random walks

where
ř

νj is now a sum over all ν such that λ{ν is a vertical strip of length j. This
can be interpreted as follows,

sλ{p1nq “
ÿ #

Distinct ways to move n particles
a single site to the left.

+
(3.25)

Consider the case where x “ y (e.g. τ “ β P R and ak “ a´k). We can then apply
the Pieri formula once again, in this case to the products hn´jsλ{pjq in (3.17), as

hn´jsλ{pjq “
ÿ

ν

sν , (3.26)

where the sum is over all ν obtained from λ by removing a horizontal strip of size j

and then adding to the resuting diagram a horizontal strip of size n´j. We consider
again Gp3,2q;p2q “ sp3,2q{p1qh1 ` sp3,2q{p2q, where p3, 2q{p2q “ p2, 1q ` p3q. Applying the
Pieri formula to sp3,2q{p1qh1 “ sp3,2q{p1qsp1q gives the following diagrams, where the cell
that is added again indicated in gray. It is clear that λ “ p3, 2q appears twice, as
there are two ways to remove (and then add again) a single cell from λ.

(3.27)

We now briefly consider the single particle correlation functions Fj;l. The generating
function fpzq “ ř

j Fj;lz
j´l for one-particle correlations is written in (1.107). Writing
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again fpzq “ Hpx; zqHpx; z´1q for some x, we have

fpzq “
ź

j

p1 ´ xjzq´1p1 ´ yjz
´1q´1

“
8ÿ

j,k“0

hjpxqhkpyqzj´k “:
8ÿ

m“0

dmpzm ` z´mq , (3.28)

where hj are complete homogeneous symmetric polynomials. Then,

dm “
8ÿ

j“m

hjpyqhj´mpxq “ @
hMpUqhM´mpU´1qD “ Gj;lpτq , j ´ l “ m . (3.29)

where M is the largest number k such that hk ‰ 0, which is typically infinite.
Remember that the Gj;lpτq are the single-particle wavefunctions at site j and time
τ for a particle released from site l. The last two equalities in (3.29) relate Fj;lpτq to
single-particle wavefunctions at site M and time τ for a particle released from site
M ´ m. Since M is infinite for most choices of hopping parameters ak „ pk, this
correspond to releasing a particle at infinity and finding its wavefunction m lattice
sites away from where it was released at some Euclidean time τ . The fact that
hM´mpU´1q “ Gj;lpτq for M Ñ 8 agrees with the intuition that a single particle
at infinity does not feel the presence of the other remaining particles, which are
infinitely far away from it.

Lastly, we note that one can apply the Jacobi-Trudi identity (1.47) to hn and en

to find any skew Schur polynomials on the right hand side of (1.84). This, in ef-
fect, provides a way to compute any correlation function. Although the resulting
expressions generally grow quickly as one considers large partitions, the application
of this method itself is rather simple as it only requires the computation of a de-
terminant. In 3.4, we will outline various other, closely interrelated, methods to
calculate any xsλsµy, based on power sum polynomials rather than elementary and
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complete homogeneous symmetric polynomials.

3.3 Quasi-local particle-hole duality

As mentioned before, we can replace the generating function f1pzq “ Hpx; zqHpy; z´1q
by f2pzq “ Epx; zqEpy; z´1q at the cost of transposing the partitions appearing in
the correlation functions, see (1.84) and (1.85). This leads to a duality between
models related by an Ñ p´1qn`1an, as we demonstrate here. Though mathemati-
cally quite trivial, the physical interpretation of this duality is rather surprising. As
mentioned at the start of this chapter, this duality holds for finite as well as infinite
N . From (1.6), it follows that switching between f1pzq and f2pzq corresponds to
taking

pkpxq Ñ p´1qk`1pkpxq . (3.30)

From equations (3.3) and (3.5), it is clear that replacing as pkpxq Ñ p´1qk`1pkpxq
corresponds to ak Ñ p´1qk`1ak. In particular, we consider two hamiltonians for the
same an,

Ĥ1 “ ´
8ÿ

m“0

ÿ

n

an
`
σ´
mσ

`
m`n ` σ´

mσ
`
m´n

˘
,

Ĥ2 “ ´
8ÿ

m“0

ÿ

n

p´1qn`1an
`
σ´
mσ

`
m`n ` σ´

mσ
`
m´n

˘
. (3.31)

Correlation functions for Ĥ1 correspond to weight function f1pzq, whereas those for
Ĥ2 correspond to f2pzq. Let us compare correlation functions for Ĥ1 and Ĥ2, which
we will write as F

p1q
λ;µpτq and F

p2q
λ;µpτq, respectively. From Szegő’s theorem, we know

that FH;H only depends on pkpxqpkpyq, so taking pk Ñ p´1qk`1pk, has no effect on
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FH;H. Therefore,

F
p1q
H;Hpτq “ F

p2q
H;Hpτq , (3.32)

that is, the return probability for N adjacent particles for Ĥ1 is identical to that of
Ĥ2 for any τ . Moreover, by comparing (1.84) and (1.85), we see that, for general λ
and µ,

F
p1q
λ;µpτq “ F

p2q
λt;µtpτq . (3.33)

This establishes the following duality between correlations functions of Ĥ1 and Ĥ2.
It is well known that transposition of diagrams induces a particle-hole and parity
transformation on the corresponding particle-hole configuration. This simply fol-
lows from the fact that transposition exchanges left and right, and that it maps
vertical edges to horizontal ones (and vice versa). However, we are not implement-
ing particle-hole symmetry in (3.33) but instead we establish an equality between
different correlation functions corresponding to different models. Let us consider
the configurations associated to λ “ p5, 4, 2, 13q and λt “ p6, 3, 22, 1q, given on the
left and right below, respectively.

. . .

...
@

@

@
@

t tt
t t t t

t
tt t t t t

d
dd d d d d . . .

...
@

@

@
@

t t tt
t t

t t
t t t t t

d d
d d d d d

(3.34)
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These correspond to the following configurations,

|λy “ ¨ ¨ ¨ t t t t t t tt t t t t td d d d d d d ¨ ¨ ¨ ,

ˇ̌
λt

D “ ¨ ¨ ¨ t t t t t tt t t t t t td d d d d d d ¨ ¨ ¨ . (3.35)

where the vertical lines on the left and right correspond to the diagonal lines at the
lower left and upper right corners of λ and λt in (3.34), respectively. We see that
the regions in between the vertical lines for |λy and |λty are related by performing
a parity transformation and exchanging between particles and holes. Only a finite
interval ℓpλq ď r ď λ1 is affected non-trivially by this combination of particle-hole
and parity transformations. We thus establish a bijection between the correlation
functions corresponding to Ĥ1 and Ĥ2, given by the transposition of diagrams, which
we refer to as quasi-local particle-hole duality. It follows trivially from the above
treatment that if a2k “ 0 , @ k P Z` , then Hpx; zq “ Epx; zq, as can be seen
immediately from (1.6). It follows that when all even hopping parameters a2k are
zero, we have F

p1q
λ;µ “ F

p2q
λ;µ, so we can suppress the superscript. In this case, it follow

from (3.33) that

Fλ;µpτq “ Fλt;µtpτq . (3.36)

That is, any system with a2k “ 0 satisfies quasi-local particle-hole duality with itself.

3.4 Power sums and border strips

We consider now the particle-hole configurations corresponding to power sum poly-
nomials pk, which are a very natural basis for the application to LRRW models due
to their proportionality to τak. Consider specifically the case where τ “ it. Then,
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from (3.3), we have

pkpyq “ ´itka˚
k “ p´pkpxqq˚ “ eiϕpkpxq , ϕ :“ π ´ 2 argppkpxqq . (3.37)

Since pkpxq only differs from pkpyq by a phase, we can apply the usual multiplication
rules to objects of the form sλpxqsµpyq, which is an advantage over the usage of hj,
ej.

Remember that power sum polynomials are expanded as an alternating sum over
hook-shaped Schur polynomials, see equation (1.21). Note that

xtrUnyτ “ pn “
n´1ÿ

r“0

p´1qrGpn´r,1rq;H , (3.38)

can be read off from the hamiltonian by the identification in either (3.3) or (3.5).
As an example, the configuration corresponding to a hook shape λ “ p4, 12q is as
follows:

. . .

...

t tt
t ttttt

t
ddddd

d
(3.39)

That is, a hook-shaped diagram corresponds to taking the particle at site ´b and
moving it a ` b sites to the right. More generally, consider

xpn|sλy “
n´1ÿ

r“0

p´1qrGc
λ;pn´r,1rq “

n´1ÿ

r“0

p´1qr xpn ´ 1, 1rq|λy . (3.40)
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Using equation (1.44), this is given by

n´1ÿ

r“0

p´1qrsλ{pn´r,1rq “
ÿ

η

p´1qhtpηqsλzη , (3.41)

where the sum is over all η which are border strips of size n, see e.g. the example
in (2.12) for n “ 4. Note that there is only a single Schur polynomial appearing
on the right hand side, as opposed to (3.17) and (3.24), which contain factors of
en´j and hn´j, respectively. We consider a few specific examples of (3.41), already
noted in [2], before treating it in generality. In particular, consider xsλpnyc with
pn ´ r, 1rq Ę λ @ r P t0, . . . , n ´ 1u, such that λ1 ` λt

1 ´ 1 ă n. This gives

@
trU´ntrλU

D
c

“ 0 . (3.42)

Writing λ in Frobenius notation as λ “ pa1, . . . , ak|b1, . . . , bkq with aj satisfying
a1 ą ¨ ¨ ¨ ą ak and similar for bj. In this case, a1`b1`1 equals the hook-length of the
top left cell of λ. Equation (3.42) then states that xtrU´ntrλUyc “ 0 if a1`b1`1 ă n.
In terms of particle-hole configurations, (3.42) states that

řn´1
r“0 p´1qrGc

λ;pn´r,1rq “ 0

if n is greater than the distance (in units of lattice spacing) between the leftmost
hole and rightmost particle in the configuration corresponding to λ .

Further, write m “ a1`b1`1´n and consider λ “ pa|bq “ pa1, . . . , ak|b1, . . . bkq such
that m ď a1´a2´1 and m ď b1´b2´1, respectively. Take µ “ pa2, . . . , ak|b2, . . . , bkq,
obtained by removing the first row and column from λ. Any pn ´ r, 1rq Ď λ then
satisfies

λ{pn ´ r, 1rq “pa1 ` 1, 1b1q{pn ´ r, 1rq ˆ µ

“pa1 ` 1 ´ n ` rq ˆ p1b1´rq ˆ µ . (3.43)

Consider the example of p6, 4, 3, 12q{p5, 13q, which is given by the diagram below.
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(3.44)

We then apply (1.7) to find

@
sλpUqtrU´n

D
c

“
b1ÿ

r“n´a1´1

p´1qrsλ{pn´r,1rq “ ˘sµ

mÿ

k“0

p´1qkhm´kek “ 0 . (3.45)

Assigning particle-hole configurations to the diagrams above, we see that the corre-
lation function corresponding to xsλpUqtrU´nyc vanishes when the distance between
the leftmost hole and rightmost particle, as well as the distance between the right-
most particle and the second-to-rightmost particle (and vice versa for holes), are
sufficiently small compared to n.

We now consider (3.41) more generally. In this expression, ν is related to λ by the
removal of a border strip, i.e. a connected skew diagram not containing a subdiagram
that is a 2 by 2 block. In terms of particles and holes, a 2 by 2 block corresponds
to moving two adjacent particles by two sites to the right, see below.

. . .

...

tt
tt

tt
tt

dd
dd (3.46)

In equation (3.41), fact that a border strip has no 2 by 2 subdiagram therefore states
that (the configuration corresponding to) ν is related to λ by moving (a) particle(s)
left by n sites without moving two or more adjacent particles by two or more sites.
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The number of rows that λ{ν occupies (which is htpλ{νq ` 1) equals the number of
particles that are involved in this process, which follows immediately from the fact
that vertical edges on the boundary of a diagram correspond to particles. From the
fact that the border strip is connected, it follows that it occupies only consecutive
rows. For example, the skew diagram on the left is a border strip, whereas the one
on the right clearly is not.

(3.47)

This means that only consecutive (but not necessarily adjacent) particles are af-
fected. However, connectedness is a stronger condition, and in the case of border
strips this leads to the following observation. For a skew diagram λ{ν, we call the
outer rim the (horizontal and vertical) edges on the bottom right of the diagram of
λ{ν, as in e.g. [35]. Conversely, the inner rim consists of the edges on the top left
of λ{ν. For a border strip containing n cells, we number the edges of the inner and
outer rims by j “ t1, . . . , n ` 1u. We will refer to the jth edge on the outer rim as
the jth outer edge, and likewise for the inner rim. We consider an explicit example,
where λ “ p8, 62, 4, 1q and ν “ p52, 3, 2, 1q, leading to a border strip of size n “ 9

below. On the right hand side, we number the vertical edges of the inner and outer
rims of λ{ν.
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7 10

6 7

3 6

1 3

(3.48)

One can see in the above example that the first edge on the inner rim and the
ledge edge on the outer rim are both vertical, which is clearly true for any (skew)
diagram. Further, we see that all other vertical edges occupy the same positions on
the inner and outer rims, namely t3, 6, 7u. If e.g. the third edge on the inner rim
were horizontal, the resulting skew diagram would be disconnected and therefore
not a valid border strip, shown below.

(3.49)

It is clear that this holds generally for border strips. In particular, the inner and
outer edges of any border strip are identical for j “ 2, 3, . . . , n, and the outer (inner)
edge for j “ 1 is horizontal (vertical), whereas the outer (inner) edge for j “ n ` 1

is vertical (horizontal).

The configurations corresponding to λ and ν are related by taking the configuration
on the outer rim of λ{ν (as a subset of the outer rim of λ) and replacing it by the
configuration corresponding to the inner rim of λ{ν. What we effectively get is the
following. We take a particle at some site k and move it to site k ´ n, and we get a
factor p´1qhtpλ{νq. Here, htpλ{νq equals the number of particles the affected particle
jumps over, that is, the number of particles occupying sites tk ´ n ` 1, . . . , k ´ 1u.
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We thus see that p´1qhtpλ{νq simply implements fermionic statistics. Below, we show
the border strip λ{ν with empty cells as a subset of λ, where we indicate particles
and holes. The inner edge j and outer edge j for j “ 2, . . . , n are connected by
diagonal lines.

. . .

...

@
@ @
@ @
@

@
@ @
@
@

@ @
@

@
@

@
@

t t t tt
t

t t t t t t
t t t

d d d d d d
d d d

t t t t tt

t t t t
t t t

d d d d
d d d

(3.50)

The configurations corresponding to λ and ν are given by

|λy “ ¨ ¨ ¨ t t t t t tt t t t t t t t td d d d d d d d d ¨ ¨ ¨ ,

|νy “ ¨ ¨ ¨ t t t t t t tt t t t t t t t td d d d d d d d d d ¨ ¨ ¨ . (3.51)

It is clear that they are identical except for a single particle which has moved n “ 9

sites to the left, whereby it jumps over 3 other particles, leading to a factor p´1q3.
Summarizing the above, we have

n´1ÿ

r“0

p´1qrGc
λ;pn´r,1rq “

ÿ
p´1qP sλzηpyq

$
’’’’&
’’’’%

Distinct ways to move a
particle in λ to the left by n

sites, thereby hopping over
P ď n ´ 1 other particles.

,
////.
////-

(3.52)

We can apply the reasoning presented above to the calculation of χλ{µ
α , by considering

pαsµ in terms of fermionic particles hopping on a 1D lattice. In particular, starting

112112



Chapter 3. Long-range random walks 3.5. Time evolution

from some partition µ and fixing a choice of α, we consider all way to consecutively
take a particle in the configuration corresponding to µ and move it αj sites to
the right, summing over j ě 1, and adding a multiplicative factor ´1 for each
other particle which it hops over. We then add the resulting numbers p˘1q for all
cases where the end result of this process is the configuration λ. The outcome of
this computation is precisely χ

λ{µ
α . This might provide a convenient method for

computing χ
λ{µ
α , as it involves moving particles around on a line instead of a border

strip tiling problem. Although these two problems evidently identical, the former
might be simpler to implement practically.

3.5 Time evolution

When we consider the action of the hamiltonian in (1.104) in terms of diagrams, the
following picture arises. We remind the reader that the presentation given here does
not depend on taking N Ñ 8 and holds for finite N as well. We first consider the
XX0-model, in which case the action of Hn on some state with k particles can be
described in terms of k non-intersecting (vicious) random walkers that are allowed
to move a single site to the left or right at each time step, for n time steps [23].
For the XX0-model, considering H |λy in terms of diagrams then corresponds to
summing over all ways to add one cell to and to remove one cell from λ, as this
gives vicious random walkers move can take a single site to the right or left. For a
general long-range hamiltonian such as in (1.104), the action of H is given by vicious
random walkers which can move n sites right or left, weighted by a˘n and summed
over n. We saw above that removing a border strip of size n corresponds to taking
a single particle and moving it by n sites to the left, so it appears that

H |λy “
ÿ

n

an

˜ÿ

η

|λzηy `
ÿ

ν

|νy
¸

, (3.53)
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where η is a border strip of size n and ν is related to λ by the addition of a border
strip of size n, and we sum over all such η and ν. Note that we do not get the
minus sign that we get when considering xpnpUqsλpU´1yc as in (3.41). For n “ 1,
when we consider all ways to start with the empty partition and look at all ways
to successively add single cells, we simply get Young’s lattice. The action of the
XX0-model on some state |λy then corresponds to moving from λ along all edges in
Young’s lattice. For a general hamiltonian as in (1.104), the picture is clearly more
involved. Take, for example, the case where a4 ‰ 0 and an “ 0 for n ‰ 4. If we have
λ “ p5, 3, 1q, given below,

. . .

...

t t t t tttttt
dddddd

(3.54)

which corresponds to

|λy “ ¨ ¨ ¨ t t t tt t t t t td d d d d d ¨ ¨ ¨ . (3.55)

It is easy to see that there are two ways to move a single particle four sites to the left,
and there are six ways to move a particle four sites to the right. Correspondingly,
the action of the hamiltonian H |λy produces the eight diagrams in (3.56).

Consider a generalization of the Young’s lattice in the form of a graph where each
edge connects two diagrams that are related by addition or removal of some size n

border strip, for all n. The action Hn |λy of a general long-range hamiltonian as
in (1.104) corresponds to an n-site random walk on this graph, where edges cor-
responding to a border strip of size n carry weight an. This provides a general
description of the action of a hamiltonian in (1.104) in terms of (addition and re-
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moval of) border strips. We know from equation (1.62) how many diagrams there
are with some n-core µ and n-weight w, but due to the fact that the graph described
above has varying connectivity, the n-site random walk is more likely to end up in
some diagrams than others.

+ + +

+ + + +

+ + (3.56)

3.6 Fermionic models

As in section 3.5, the present treatment up to equation (3.59) does not require N Ñ
8. We saw that adding or removing a border strip η and multiplying with p´1qhtpηq

implements fermionic statistics, and that this can be applied to the calculation of
χ
λ{µ
α . Inverting this line of reasoning, we will now derive two relations for fermionic
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models using the properties of χλ{µ
α . The first of these involves the fact, noted at

equation (1.49) and below, that the order in which one adds border strips in the
construction of a border strip tableau BSTpλ{µ, αq is irrelevant to its outcome. That
is, χλ{µ

α does not depend on the order of the entries of α. The same is true for the
removal of border strips, as can be seen in equation (1.55) and the example in (1.57)
and figure 1.1. From the relation between removing or adding border strips in the
construction of χ

λ{µ
α and fermions hopping on a line, we can make the following

observation. Consider a one-dimensional fermion configuration corresponding to
some diagram µ, and consider all ways of moving not necessarily distinct fermions
to the right by α1, α2, . . . sites, where αj are unordered non-negative integers. We
then see that the order of the step sizes αj by which we move fermions has no
effect on the outcome of this process. That is, taking a fermion configuration and
consecutively moving fermions to the right by various step sizes depend only on the
distribution of the step sizes and not the order in which they are taken. It is clear
from applying (1.55) and the removal of border strips in the computation of χλ{µ

α

that the same statement holds when we consider fermions that can only hop to the
left instead of the right.

Consider a simple example which is partly given in figure 1.1 and in its entirety
in figure 2.1. Namely, consider again λ “ p3, 2q “ and now remove twice

a single cell and once a border strip of size 2 from λ. We can see this gives ,
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regardless of the order of the border strip sizes.

p2ÝÑ p1ÝÑ p1ÝÑ (3.57)

p1ÝÑ ` p2ÝÑ ` p1 ´ 1qˆ p1ÝÑ

p1ÝÑ ` p1ÝÑ 2ˆ ` p2ÝÑ

It is interesting to see that the fact that we arrive at follows either from the
cancellation between two different ways to arrive at , in the second line of (3.57),

or the fact that one cannot remove a size 2 border strip from , in the third

line of (3.57). Assigning particle-hole configurations to the diagrams above, given
in (3.18) for , and treating the particles as fermions gives an example of the

irrelevance of the order of step sizes.

Our second result for fermionic systems arises from equations (1.60), (1.61). These
state that χλ{µ

pnkq is cancellation-free, where µ is the n-core of λ [34], [35]. This leads
to the following observation. Take a fermionic hamiltonian Ĥf , where fermions are
only allowed to hop n sites, and denote a fermionic state corresponding to the n-
core µ of some λ as ∥µyy. The result of Ĥf∥µyy can then be expressed in terms of
symmetric functions as

sµpn `
n´1ÿ

r“0

p´1qrsµ{pn´r,1rq “
ÿ

ν

p´1qhtpν{µqsν `
ÿ

νn

p´1qhtpηqsµzη , (3.58)

where, as before, ν and µzη are related to µ by the addition and removal of a border
strip of size n, respectively. Compare with equation (3.53), especially the factors

117117



3.6. Fermionic models Chapter 3. Long-range random walks

p´1qht. We can keep iterating this step by adding and removing border strips of
size n to and from the resulting diagrams. From (1.60) and the comments below,

it then follows that all diagrams appearing in the expansion of
´
Ĥf

¯k

∥µyy have the
same sign for any k. Further, we saw that adding or removing border strips µ{ν
and multiplying by p´1qhtpµ{νq corresponds to letting fermions hop over a distance of
|µ{ν| lattice sites. It follows that, for a fermionic model where particles can only hop
n sites, all distinct ways to go from some configuration µ to another configuration
λ appear with the same sign, with the sign depending only on the choice of µ and
λ. In other words, all different ways to go from any configuration µ to any other
configuration λ involves fermions hopping over either an even or an odd number
of other fermions. Physically, this means that there is no interference between
various ways to arrive at some fermionic state. Fermionic states will spread through
Hilbert space rapidly upon time evolution, as they are not restricted by destructive
interference.

The same reasoning can be applied to various expectation values of the LRRW
models with hamiltonian (1.104). In particular, we will consider

@ptrUnqksλpU´1qD
c

. Repeatedly applying (1.44), which we have used at various points above, we get

@ptrUnqksλpU´1qD
c

“
kÿ

j“1

ÿ

νn,j

p´1qhtpTjqsνn,j
pxqpnpyqk´j . (3.59)

where we use the notation νn,j for diagrams related to λ by the consecutive removal
of j border strips of size n. For example, consider again λ “ p6, 5, 22, 1q and pnkq “
p44q. Then, the diagrams ν4,2 are given by removing the green and blue regions
from the diagrams in (1.63), for ν4,3 the orange regions are also removed, and after
removing the red regions we end up with ν4,4 “ H. Note that χλ

pnkq “ 0 for most
λ, one sufficient but far from necessary condition for this being that nk ‰ |λ|. In
general, consecutively removing border strips of some size n leads eventually to the
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aforementioned n-core of λ [31]. From (3.37), we have

sνn,j
pxqpk´j

n pxq “
ÿ

µ

dµn,j,ksµpxq , (3.60)

for some coefficients dµn,j,k. From (1.42), we know that sλp
k
n is expanded as a sum

over all diagrams related to λ by subsequently adding a k border strips of size n. On
the other hand, νn,j is related to λ by removal of j border strips of size j. Therefore,

@ptrUnqksλpU´1qD
c

“
kÿ

j“1

ÿ

ν̃kn,j

eiϕpk´jqp´1qhtpT1q`htpT2qsν̃k´j
n,j

pxq . (3.61)

In the above expression, the sum is over all ν̃k´j
n,j constructed by first removing j

border strips of size n from λ (which results in νn,j) and then adding k ´ j border
strips of size n, including multiplicities. Further, T1 is given by the BST constructed
of the union of the j border strips that are removed from λ, and T2 is the tableau
that is the union of the k ´ j border strips that are added to νn,j to construct ν̃k´j

n,j .
For λ “ p6, 5, 22, 1q, we consider

@ptrU4q2sλpU´1qD
c
. (3.62)

As mentioned above, contracting both copies of trU4 with sλ gives rise to the dia-
grams in (1.63) after removing the green and blue border strips. The ν̃1

4,1 are given
by the ways to remove from and then add to λ a border strip of size four. We see
from (3.61) that λ appears in the expansion of (3.62) with a multiplicity two, as
there are two distinct border strips of size four that one can remove from λ, namely,
the green and blue border strips on the top left diagram in (1.63). To find the
remaining diagrams appearing in (3.62), one should add border strips of size four to
the diagrams obtained after removing the green and blue border strips on the top
left diagram in (1.63). In general, we find that

@ptrUnqksλpU´1qD
c

is given by the
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following expression,

˘
kÿ

j“1

eiϕpk´jqsν̃k´j
n,j

pxq

$
’’’’&
’’’’%

Distinct ways to consecutively
move j particles in λ to the left
by n sites and then move k ´ j

particles to the right by n sites.

,
////.
////-

(3.63)

Note that the particles that are moved by n sites are not necessarily distinct. Fur-
ther, the right hand side appears with a positive or negative sign depending only on
the final configuration. This again follows from the fact that χλ{µ

α is cancellation-free.

3.7 Schur function expansion

We consider now the expansions for general correlation functions which were derived
in section 2.3. We first consider the application of (2.46) here, before moving on
to (2.62) in section 3.8. Equation (2.46) expresses xsλpUqsνpU´1qy as a sum over
diagrams obtained form λ and ν by removing border strips of size α1, α2, . . . for a
partition α, summed over α. In particular, it establishes a relation between xsλsνyc
and the correlation functions

@
sλztαu

D “ @Hˇ̌
sλztαu

D
, involving only a single non-

trivial configuration λztαu (and likewise for νztαu). Fixing some α, we sum over all
ways to start from λ and ν and move αj particles j sites to the left with fermionic
statistics (in the form of p´1qhtpTαq). Consider the autocorrelation for ν “ λ “
p8, 62, 4, 1q, which we show below.

(3.64)
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Equation (2.46) gives an expression in terms of diagrams obtained by removing
border strips from λ. Below, we show from left to right all border strips of size
1, 2, 3 that can be removed from λ “ ν.

(3.65)

In the middle diagram above, the green cell is shared between both a horizontal and
a vertical strip of size two. We can thus remove four border strips of both size 1
and 2, and two of size 3. It is easy to see that there is a single border strip of size 4
that can be removed from λ, three border strips for both sizes 5 and 6, and so on,
up to a single border strip of size λ1 ` ℓpλq ´ 1 “ 12. Applying (2.46) then gives

@
sλpUqsλpU´1qD

c
“ `

sp7,62,4,1q ` sp8,6,5,4,1q ` sp8,62,3,1q ` sp8,62,4q
˘2 `

` 1

2

`
sp63,4,1q ´ sp8,52,4,1q ` sp8,6,42,1q

˘2 `

` 1

3

`´sp8,5,4,12q ` sp8,62,12q
˘2 ` . . . (3.66)

In the above expression, the first, second, and third line correspond to the removal
of border strips of size one, two, and three, respectively. Further, we again write
psµ ` sρ ` . . . q2 instead of psµpxq ` sρpxq ` . . . q psµpyq ` sρpyq ` . . . q.
Consider now xsλpUqsνpU´1qy with λ as above and ν “ p83, 4, 1q, the latter of which
is shown below. We have here λ Ă ν, and we indicate ν{λ in gray.
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(3.67)

Consider again all ways to remove border strips from ν, and apply (2.46). This then
leads to the following terms appearing in the expansion of xsλpUqsνpU´1qy,

`
sp7,62,4,1q ` sp8,6,5,4,1q ` sp8,62,3,1q ` sp8,62,4q

˘ `
sp82,7,4,1q ` sp83,3,1q ` sp83,4q

˘ `
` 1

2

`
sp63,4,1q ´ sp8,52,4,1q ` sp8,6,42,1q

˘ `
sp8,72,4,1q ` sp82,6,4,1q ` sp83,2,1q

˘ ` . . . (3.68)

The diagrams appearing on the left (right) in the top and bottom lines of (3.68)
are found by removing border strips of sizes 1 and 2 from λ (ν), respectively. This
expansion can easily be continued by considering more or larger border strips. From
the relation between removal or addition of border strips as in (2.46) and fermionic
particles hopping on a line, we see that xsλpUqsνpU´1y is given by

ÿ

α

1

zα

¨
˚̊
˚̊
˚̊
˚̋

p´1qP sλztηupyq

$
’’’’’’’&
’’’’’’’%

Distinct ways to take ℓpαq
particles in λ and move
them α1, α2, . . . sites to
the left, thereby hopping
over Tα other particles

,
///////.
///////-

˛
‹‹‹‹‹‹‹‚

ˆ
´y Ñ x

λ Ñ ν

¯
(3.69)

Note that the ℓpαq particles mentioned above are not required to be distinct.
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3.8 Power sum expansion

From the fact that, for τ “ it, pkpxq and pkpyq are related by a phase, it is useful
to express LRRW correlation functions as expansions in terms of pkpxq and pkpyq in
order to reveal these phases. To do so, one may use the relation between Schur and
power sum polynomials in equation (1.48) and apply the Murnaghan-Nakayama
rule, as done for the relatively simple example of xsλpUqsλpU´1qy for λ “ p3, 2q
in section 2.3.2. However, as noted there, even this relatively simple example is
already somewhat non-trivial, as it requires the computation of χλ

α for all α. For
these purposes, it is more convenient to employ (2.62), which provides an expansion
of xsλpUqsνpU´1qy in terms of pkpxq and pkpyq. The prefactors appearing in this
expansion depend on the number of ways to remove border strips from λ and ν in
such a way that the resulting diagram is the same for both λ and ν. Taking again
ν “ λ “ p8, 62, 4, 1q, for which the diagrams resulting from removal of border strips
were treated in section 3.7 above. Applying (2.62) then gives

@
sλpUqsλpU´1qD

c
“ 4

ˆ
p1pxqp1pyq ` 1

4
p2pxqp2pyq

˙
` 2

9
p3pxqp3pyq ` 1

16
p4pxqp4pyq`

` 3

ˆ
1

25
p5pxqp5pyq ` 1

36
p6pxqp6pyq

˙
`

` 1

2

`
p21pxqp2pyq ` p2pxqp21pyq˘ `

` 1

6
pp3pxqp1pyqp2pyq ` p3pyqp1pxqp2pxqq ` . . . (3.70)

In the above expression, the first two lines on the right hand side are given by
(2.56), which is a special case of (2.62). As we saw previously, the terms „ pjpxqpjpyq

j2

in the first two lines of (3.70) arise as follows. The denominator is given by the
inverse of zpjqzpjq “ j2, and the numerator equals the number of distinct ways to
remove a border strip of size j from λ “ p3, 2q. The third and fourth lines give
mixed power sums obtained from not contracting a single pjpU˘q and two copies of

123123



3.8. Power sum expansion Chapter 3. Long-range random walks

pkpU¯q, pmpU¯q. From the diagrams in (3.65), one can see that there are four ways
to remove two border strips of unit size and arrive at a diagram that can alternatively
be obtained by removing a single border strip of size 2. This follows from the fact
that there are four ways to remove a border strip of size two, which can alternatively
be achieved by removing the two cells of such a border strip successively. However,
due to the factors p´1qhtpT q in (2.62), one of those four contributes with a negative
sign, leading to a prefactor of 2

zp12qzp2q
“ 1

2
multiplying „ p21p2 in the third line

of (3.70). There is a similar cancellation occurring from the term proportional to
p3p1p2. This expansion can then be continued by removing further border strips.
Consider again xsλpUqsνpU´1qy with λ “ p8, 62, 4, 1q and ν “ p83, 4, 1q, as at the end
of section 3.7. applying (2.62) leads to

@
sλpUqsνpU´1qD “ ´ 2

3
p1pxqp3pxq ` 1

4
p22pxq`

1

12
p1pxq4 ` 1

2
p22pxqp1pxqp1pyq ` . . . (3.71)

This can be seen by considering diagram corresponding to ν in (3.67), and covering
the gray 2 by 2 square with border strips of sizes from 1 to 3. We get no contribution
proportional to p2pxqp1pxq2 since the two ways to cover a 2 by 2 diagram with a single
border strip of size 2 and 2 border strips of size 1 appear with opposite sign. This
expansion can be continued by removing more or larger border strips from λ and ν,
which can be conveniently done by using the relation to fermionic configurations.

The above examples show that (2.62) can be conveniently applied to xsλpUqsνpU´1qy
for larger λ, ν as well, for which χλ

α and χν
α would be very hard to compute. Indeed,

as hinted at above, it is particularly useful for the following three reasons.

1. Equation (2.62) provides a controlled expansion of general correlation func-
tions xsλpUqsνpU´1qy in terms of power sums. These power sums can be di-
rectly read off from the hamiltonian, see (3.3) and (3.5).
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2. This expansion can be straightforwardly applied, including to correlation func-
tions involving large diagrams λ, ν. Using the comments below (3.46), the
removal of border strips is related to fermionic particles hopping on a line,
which could further simplify the application of this method.

3. The power sums pkpxq and pkpyq are proportional to τ , so that (2.62) provides
an expansion in terms of powers of τ . Depending on the application and the
range of τ one would like to consider, this expansion can be truncated at any
desirable order that provides sufficient precision. For τ “ it, this pkpxq and
pkpyq are related by a complex phase, leading to various simplifications that
are hard to reveal otherwise.

From the treatment above, it follows that the expression for xsλpUqsνpU´1qy in
equation (2.62) has the following particle-hole interpretation.

ÿ

ω,γ

pωpyqpγpxq
zωzγ

p´1qP

$
’’’’&
’’’’%

Distinct ways to move particles in λ and ν

to the left by γ1, γ2, . . . and ω1, ω2, . . . sites,
respectively, hopping over P other particles
and ending up in the same configuration.

,
////.
////-

(3.72)

3.9 Experimental benchmarking

We provide some suggestions for the benchmarking of experimental setups using
correlation functions involving power sum polynoials. In experimental contexts such
as trapped ion systems, one could measure the correlation functions corresponding to
xpnpU˘1qy “ xtrU˘ny “ pn experimentally. Remember that pn can be read off from
the hamiltonian as in (3.3) or (3.5) due to their direct proportionality to a˘n, and is
given by a superposition of configurations corresponding to hook-shaped diagrams
as in (3.39). Therefore, one could measure xpnpU˘1qy and compare them with the
intended values of a˘n to benchmark experimental setups. Further, one can use
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equation (2.8),

@
|trUn|2

D “ n ` pnpxqpnpyq , (3.73)

and consider trUn as a superposition of states (when properly normalized), as before.
Then, the correlation function corresponding x|trUn|2y is proportional to FH;H with
proportionality given by n`pnpxqpnpyq, up to normalization. When we have certain
hopping parameters an ‰ 0, the only way to get independence from time is to have
no dependence on the power sums pn „ τnan, as they contain a factor of τ . The τ -
independence of the connected part of the correlation function corresponding to (2.8)
therefore sets it apart from other correlation functions, and might offer an effective
way to benchmark experimental setups. Remember that the pλ form a basis for all
symmetric polynomials. In case ℓpλq ě 2 (or ℓpνq ě 2) so that pλ “ pλ1pλ2 . . . ,
Wick’s theorem tells us that xpλpµyc will contain terms where not all pλj

and pµk

are contracted. These give contributions containing pkpxq „ τ (and/or pjpyq „ τ).
Therefore, 1?

n
x|trUn|2yc for any integer n is the only non-zero connected correlation

function that does not depend on τ . Lastly, one could use
@
trUntrU´k

D
c

“ nδn,k

(after proper normalization) to see if the system is truly translationally invariant,
as its derivation is predicated on the assumption of translational invariance.
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Chapter 4

Spectral statistics

This chapter will treat the calculation of SFF, focusing mainly on the CSMM. We
will first consider the SFF in the limit N Ñ 8 for matrix models satisfying Szegő’s
strong limit theorem. After that, we will compute the SFF of the CSMM for gen-
eral N and q and then take the ‘t Hooft limit. In all cases, we will recover WD-
universality, where the CSMM for general N and q as well as in the ‘t Hooft limit
involves some non-trivial unfolding. This chapter is based on [3] which builds on
the main result of [2].

4.1 Spectral form factors and universality

Finding the SFF when the strong Szegő limit theorem holds is a simple matter of
applying a result derived in chapter 2. In particular, plugging k “ n into (2.8), we
find that, for n

N
ă 1, the connected SFF of all such matrix models is given by a

linear ramp of unit slope,

F pnqc “ @
|trUn|2

D
c

“ n . (4.1)
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The disconnected SFF is given by pnpxqpnpyq (for both fpzq “ Hpx; zqHpy; z´1q and
fpzq “ Epx; zqEpy; z´1q). Eventually, the linear ramp gives way to a plateau, which
comes about as follows. Remember that sλpxq vanishes if the longest column in λ

contains more boxes than the number of non-zero variables in the set x (1.28). We
saw that we get a contribution equal to unity for every term for which pn ´ r, 1rq “
ν “ pn´ s, 1sq for 0 ď r ď Minpn´ 1, N ´ 1q. However, there are only N such reps,
as spa,1bqpxq “ 0 if b ě N . Therefore, we see that

NF pnqc “ 1 , n{N ą 1 . (4.2)

We thus conclude that, for RME’s which satisfy Szegő’s strong limit theorem, the
connected SFF is exactly given by a linear ramp which saturates at a plateau.
Moreover, these RME’s have a flat level density, so that we do not have to unfold
the spectrum. In particular,

ρpθq “ 1

2π

«
1 ` 1

N

ÿ

kě1

`
pkpyqeikθ ` pkpxqe´ikθ

˘
ff

“ 1

2π
, (4.3)

where the second equality follows from the finiteness of pkpxq, pkpyq, by the assump-
tions of Szegő’s theorem, and the fact that we take N Ñ 8. We thus see that
RME’s satisfying Szegő’s strong limit theorem exibit WD-universality. This in-
cludes the CSMM for q ă 1, in spite of the fact that this was introduced to describe
intermediate statistics. We will now consider the SFF of the CSMM for finite N

and general q, before taking the ‘t Hooft limit.
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4.2 General matrix size

Before computing the SFF, we first consider the Hopf link for λ “ l “ µ as a
warm-up exercise. Applying equation (1.183) and using (1.32), we find

Wll “ rN s ` q2rN srN ´ 1s NÑ8Ñ 1

1 ´ q
` q2

p1 ´ qq2 . (4.4)

On the right hand side, we consider the limit N Ñ 8 and applied limNÑ8rN sq “
limNÑ8 1´qN

1´q
“ 1

1´q
for |q| ă 1. On the other hand, applying (1.184)

W8
ll “

ÿ

ν

pspl{νqpqj´1{2qq2 “ pslpqj´1{2qq2 ` psHpqj´1{2qq2

“ qrN s2 ` 1 “ q

p1 ´ qq2 ` 1 “ lim
NÑ8 Wll . (4.5)

As one can see, the fact that terms of the form qN go to zero as N Ñ 8 leads to
the agreement between equations (4.4) and (4.5).

We proceed to calculate the SFF, which is given by

Kpnq :“ 1

N

@
|trUn|2

D “ 1

N

n´1ÿ

r,s“0

p´1qr`s
@
spn´r,1rqspn´s,1sq

D
. (4.6)

Plugging equation (1.183) into (4.6), we see that Kpnq is given by qn
2

N
times

n´1ÿ

r,s“0

p´1qr`sq´npr`sqspn´s,1sqpqj´1qspn´r,1rqpq´n`s, 1, . . . , qs´1, qs`1, . . . , qN´1q . (4.7)

The first Schur polynomial appearing in the sum, spn´s,1sqpqj´1q, is given in (1.185).
The second Schur polynomial, sλpqj´µj´1q for hook-shaped λ and µ, is more compli-
cated. We write λ “ pa, 1bq and µ “ pc, 1dq. Defining the sets of variables x “ q´c,
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y “ qd`1, . . . , qN´1, z “ 1, . . . , qd´1, we apply (1.32), twice for µ “ H to give

sλpx, y, zq “
ÿ

ρ,ν

sλ{ρpxqsρ{νpyqsνpzq , (4.8)

where the sum runs over all partitions satisfying ν Ă ρ Ă λ. For λ “ pa, 1bq and
x, y, z as defined above, we get non-zero contributions only when λ{ρ is a horizontal
strip, as x “ q´c consists only of a single variable, so that sλ{ρpxq “ 0 for λ{ρ
containing a column of length ě 2. We then have to carefully distinguish between
two types of partitions ρ.

1. For ρ “ pe, 1bq, we again have λ{ρ “ pa´ eq which is clearly a horizontal strip.
Then,

sλ{ρpq´cq “ q´cpa´eq . (4.9)

The requirement that ν Ă ρ then leads to ν “ pf, 1gq so that ρ{ν “ pe ´ fq b
p1b´gq for ν ‰ H and ρ{ν “ µ for ν “ H.

2. For ρ “ pe, 1b´1q, we have λ{ρ “ l b pa ´ eq so that

sλ{ρpq´cq “ q´cpa´e`1q . (4.10)

Then, ν “ pf, 1gq so that ρ{ν “ pe ´ fq b p1b´g´1q and ρ{ν “ ρ for ν “ H.
This situation of course does not occur for b “ 0, in which case λ “ paq.

Note that spaqpxq “ hapxq and sp1aqpxq “ eapxq, the complete homogeneous and
elementary symmetric polynomials of degree a, respectively. We then have, for
ρ{ν “ pe ´ fq b p1b´gq

sρ{νpyq “ he´f pyqeb´gpyq . (4.11)
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Chapter 4. Spectral statistics 4.3. Appearance of the linear ramp

We illustrate these two choices for ρ in equations (4.9) and (4.10) for λ “ p4, 12q. As
a specific example, we set e “ 2, so that the first choice of ρ “ pe, 1bq “ p2, 12q. This
gives λ{ρ “ p4, 12q{p2, 12q “ p2q. λ{ρ is represented in terms of Young diagrams
below.

O
= .

Consider now the second choice, ρ “ pe, 1b´1q “ p2, 1q, so that λ{ρ “ p4, 12q{p2, 1q “
p2q ˆ p1q, represented in Young diagrams as follows.

O
= ˆ

The result is again a horizontal strip, consisting in this case of two disconnected
components. We consider these two choices for µ and sum over all partitions satis-
fying ν Ă ρ Ă λ to calculate spn´r,1rqpx, y, zq. In particular, we sum over g from 0
to minpb, d ´ 1q or to minpb ´ 1, d ´ 1q, corresponding to ρ “ pe, 1bq or ρ “ pe, 1b´1q,
respectively. We then sum over f from 1 to e and lastly over e from 0 to a. This
allows the computation of the full SFF, the results of which we discuss below.

4.3 Appearance of the linear ramp

For finite N ą n, we consider how the linear ramp appears for the connected SFF,
which is found by subtracting the disconnected contribution, xtrUny2, from the full
SFF. The disconnected contribution is thus given by the square of

xtrUny “ qn
2{2

n´1ÿ

r“0

p´1qrq´nrspn´r,1rqpqj´1q . (4.12)
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4.3. Appearance of the linear ramp Chapter 4. Spectral statistics

For n “ 1, 2, 3, this equals

xtrUy “q1{2rN s “ q1{2p1 ´ qNq
1 ´ q

@
trU2

D “p1 ´ qNqp´q ` qN ` qN`1 ` qN`2q
1 ´ q2

@
trU3

D “q3 ´ qN`1p1 ` q ` q2q2 ` q2Np1 ` q2qp1 ` q ` q2q2
q3{2p1 ´ q3q `

´ q3Np1 ` q2qp1 ` q ` q2 ` q3 ` q4q
q3{2p1 ´ q3q (4.13)

The connected SFF for small n is then given by,

F p1qc “q sp1qpqj´1qsp1qpq´1, q, q2, . . . q ´ qpsp1qp1, q, q2 . . . qq2
“qrN sp1 ´ qq “ 1 ´ qN

F p2qc “p1 ´ qNqp2q ´ qN ` q2N ´ q2`N ` 2q1`2N ` q2`2Nq
q

,

F p3qc “ ´ 1

q4
p´3q4 ` q3N ´ 2qN ` q5N ` q2`N ` 2q3`N ` 3q4`N ` 2q5`N`

` q6`N ´ 2q1`2N ´ 4q2`2N ´ 8q3`2N ´ 8q4`2N ´ 8q5`2N ´ 4q6`2N`
´ 2q7`2N ` 6q1`3N ` 10q2`3N ` 16q3`3N ` 18q4`3N ` 16q5`3N`
` 10q6`3N ` 6q7`3N ` q8`3N ´ 6q1`4N ´ 12q2`4N ´ 16q3`4N ´ 18q4`4N`
´ 16q5`4N ´ 12q6`4N ´ 6q7`4N ´ 2q8`4N ` 2q1`5N ` 5q2`5N ` 6q3`5N`
` 8q4`5N ` 6q5`5N ` 5q6`5N ` 2q7`5N ` q8`5Nq (4.14)

Examples of the SFF for higher n are too long to print here. One thing one can see
from (4.14), which persists for higher (but finite) n, is that the SFF is of the form,

F pnqc “ n ` OpqAq , A “ N ` . . . . (4.15)
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Chapter 4. Spectral statistics 4.3. Appearance of the linear ramp

Therefore, for N Ñ 8 and q ă 1 fixed, qN Ñ 0 and F pnqc Ñ n. This reproduces
the exact linear ramp for all RME’s satisfying the assumptions of Szegő’s theorem.

Linear ramp from Schur bilinears

We saw at the start of this chapter that, for q ă 1 and N Ñ 8, in which case the
CSMM satisfies the strong Szegő limit theorem, we get a contribution equal to 1
when considering two identical hook-shaped partitions pn´r, 1rq “ pn´s, 1sq. Since
there are n hook-shaped partitions containing n boxes, we get a contribution equal
to n, which is the linear ramp. More details can be found in [2].

The above consideration leads us to conclude that, for finite N and for r “ s ď N´1,
we should have that the summand of the SFF in (4.7) is of the following form

ApN, n, q, r, rq :“ @
spn´r,1rqspn´r,1rq

D

“ qn
2´2nrspn´r,1rqpqj´1qspn´r,1rqpq´pn´rq, 1, . . . , qr´1, qr`1, . . . , qN´1q

“ 1 ` Opqq . (4.16)

Further, we should have

ApN, n, q, r, sq “ Opqq , r ‰ s . (4.17)

There are two types of terms of Opqq in the above expressions. First of all, there
are terms of the form qN`..., which go to zero as we take N Ñ 8 for fixed q ă 1.
Secondly, there are powers of q not containing factors of N , which do not go to zero
as N Ñ 8. Therefore, to recover the linear ramp as N Ñ 8, all the lower powers
of q should mutually cancel out between the various terms in the sum in (4.7).

We start by verifying (4.16). Note that q-numbers and products thereof (such as
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q-factorials and q-binomials) are themselves of Op1q. For example,

rN sq “ 1 ´ qN

1 ´ q
“ p1 ´ qNq

8ÿ

k“0

qk “ 1 ` q ` q2 ` ¨ ¨ ¨ ´ qN ´ qN`1 ` . . . . (4.18)

Let us consider ApN, n, q, 0, 0q. Plugging the following

spnqpq´n, q, . . . , qN´1q “ q´n2 ` Opq´n2`1q . (4.19)

into (4.16) leads to

qn
2

spnqpqj´1qspnqpq´n, q, . . . , qN´1q “qn
2

«
N ` n ´ 1

n

ff ´
q´n2 ` Opq´n2`1q

¯

“1 ` Opqq , (4.20)

where we use the aforementioned fact that q-binomials are of the form 1 ` Opqq.
When r “ s ‰ 0, the calculation is slightly more involved. First, we read off from
(1.171) that

spn´r,1rqpqj´1q “ qrpr`1q{2 p1 ` Opqqq . (4.21)

We then determine the lowest power of q appearing in
spn´r,1rqpq´pn´rq, 1, . . . , qr´1, qr`1, . . . , qN´1q. Using (4.8), this Schur polynomial can
be expressed as

ÿ

µ,ν

spn´r,1rq{µpq´pn´rqqsµ{νp1, . . . , qr´1qsνpqr`1, . . . , qN´1q . (4.22)

Consider the case where µ “ p1rq and ν “ H. This gives λ{µ “ pn´ r ´ 1q ˆ p1q, so
that spn´r,1rq{µpq´pn´rqq “ q´pn´rq2 . Further, we have sµpq, . . . , qr´1q “ qrpr´1q{2, and
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sν “ sH “ 1. Therefore,

spn´r,1rqpq´pn´rq, 1, . . . , qr´1, qr`1, . . . , qN´1q “ q´pn´rq2qrpr´1q{2p1 ` Opqqq . (4.23)

Plugging this into (4.16) gives

ApN, n, q, r, rq “ qn
2´2nrqrpr`1q{2q´pn´rq2qrpr´1q{2p1 ` Opqqq “ 1 ` Opqq . (4.24)

One can readily check that any other choice of µ and ν leads to higher powers of
q. For example, choosing ν “ p1q increases the power of q by 2, and choosing a
different partition for µ either increases the power of q by n ´ r or gives zero (when
ℓppn ´ r, 1rq{µq ą 1). This leads to equation (4.16).

Let us now consider the case where r ‰ s, to derive equation (4.17). We take r ă s

without loss of generality. Taking first r “ 0, we have

ApN, n, 0, s, qq “ qn
2´nsspn´s,1sqpqj´1qspnqpq´pn´sq, y, zq

“ qn
2´nsqsps`1q{2q´npn´sqp1 ` Opqqq

“ qsps`1q{2p1 ` Opqqq “ Opqq . (4.25)

where y “ p1, . . . , qs´1q and z “ pqs`1, . . . , qN´1q, as before. Lastly, we check the
case where 0 ‰ s ‰ r ‰ 0, choosing again r ă s without loss of generality. Following
the same procedure that leads to (4.23), we find that
spn´r,1rqpq´pn´sq, 1, . . . , qs´1, qs`1, . . . , qN´1q is given by

q´pn´rq2qrpr´1q{2p1 ` Opqqq , (4.26)

so that this term, too, appears with a positive power of q,

ApN, n, r, s, qq “ qppr´sq2`r`sq{2p1 ` Opqqq . (4.27)

135135



4.4. Saturation at plateau Chapter 4. Spectral statistics

We have thus shown that terms with r “ s contribute 1 ` Opqq, whereas Schur
bilinears with r ‰ s contribute terms of Opqq. As mentioned above, powers of q

which do not contain a factor N cancel out in the sum over r and s, leaving only
a linear ramp plus terms of the form qpN`... q, as can be seen in some examples in
(4.14).

The calculations described here have a simple knot-theoretical interpretation. Re-
member that ApN, n, r, s, qq is proportional to the HOMFLY invariant of a Hopf
link, where the two components of the Hopf link carry UpNq respresentations cor-
responding to partitions pn ´ r, 1rq and pn ´ s, 1sq, respectively. The above results
entail that Hopf links of Wilson lines carrying hook-shaped representations only give
a unit contribution for two identical representations. Therefore, in the limit q Ñ 0,
where the CSMM reduces to the CUE, all Hopf link invariants with different n-box
hook-shaped partitions go to zero. On the other hand, those with identical n-box
hook-shaped partitions go to one, which is simply the orthogonality of Schur poly-
nomials a characters of UpNq. This means, for example, that an unknot carrying
pa, 1bq with b ‰ 0 has invariant equal to zero, but if we tie two of these unknots
together to form a Hopf link the resulting invariant equals one. On the other hand,
an unknot carrying representation paq has invariant equal to one, but if we tie it to
an unknot carrying pa ´ b, 1bq with b ‰ 0 to form a Hopf link, the result is again
zero.

4.4 Saturation at plateau

If we relax the assumption that n ă N , the SFF will eventually reach a plateau
for large enough n. This can be seen from the simple random walk argument pre-
sented in section 1.4.3. Alternatively, the emergence of the plateau can be un-
derstood to arise from the fact that sλpxq “ 0 for ℓpλq ą |x|. In particular, the
averages appearing on the right hand side of (4.6), are weighted matrix integrals
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written in (1.174) over Schur polynomials of the form spn´r,1rqpUq “ spn´r,1rqpeiϕjq.
If ℓpspn´r,1rqq “ r ` 1 ą N , then spn´r,1rqpUq “ 0. Therefore, only Schur bilinears of
the form

@
spn´r,1rqpUqspn´s,1sqpU´1qD

, r, s ď N ´ 1 , (4.28)

give a non-zero contribution to (4.6). It was demonstrated in the previous subsection
that, for r, s ď N ´ 1,

@
spn´r,1rqpUqspn´s,1sqpU´1qD “ δr,s ` Opqq , (4.29)

from which arises the linear ramp. From equation (4.29), it follows that the linear
ramp arising from r “ s ď N ´ 1, saturates at a plateau for n “ N . However, one
should note that this does not take into account terms of OpqNq, which will turn
out to have a significant impact on the shape of the SFF, delaying the onset of the
plateau as one increases qN .

To implement n ą N in the expression for the SFF derived at the start of this
section, one should take into account that

1. spe,1bqpyq “ 0 for b ą N ´ d ´ 2

2. eb´gpyq “ 0 for g ą d ` b ` 1 ´ N ,

where x “ q´c, y “ qd`1, . . . , qN´1, and z “ 1, . . . , qd´1, as before. Note that the
functions above both arise as sρ{νpyq for ρ “ pe, 1bq in equation (4.8), where eb´gpyq
is given in equation (4.11), whereas sρ{νpyq reduces to spe,1bqpyq for ν “ H. We plot
Kpnq resulting from this calculation for N “ 10 and N “ 20 and various choices of
and q.
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Figure 4.1: The full SFF for N “ 10 and various values of q.

As one can see, the SFF is closest to a linear ramp for small values of q, which is to be
expected as the limit q Ñ 0 corresponds to the CUE. Further, the disconnected SFF
becomes large for small n as we increase q, leading to large, oscillating deviations
close to the origin. Comparing figures 4.1 and 4.2 reveals that, for fixed q, deviation
from a linear ramp decreases as we increase N .

The aforementioned observations that (for the full SFF), as we increase q, a dip
emerges and the slope of the SFF decreases, are not unrelated. In particular, we
find that

řk
n“1 F pnq for large enough k ě N is almost independent of q. That is, as

we increase q, we get positive contributions to Apkq arising from the disconnected
SFF which are compensated by a decrease in the slope of F pnq. We define, for
k ą N , the logarithm of the difference between the sum over the SFF of the CSMM
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and the CUE (q Ñ 0) SFF,

Apkq :“ log

«
kÿ

n“1

F pnq ´ N2{2 ´ NpN ´ kq
ff

. (4.30)

We plot the results for N “ 10 and k “ 10, . . . , 20 below. It is clear that the
difference decreases quite rapidly with k until it stabilizes around some small value.
Further, we see that the difference decreases more slowly and acquires a larger
minimum value as we increase q.

Figure 4.2: The full SFF for N “ 20 and various values of q.

The SFF’s plotted in figures 4.1 and 4.2 were found without unfolding. To see the
effect of unfolding, the connected SFF was computed numerically for N “ 10 and
N “ 20 numerically, using the Metropolis algorithm to generate the spectra. The
unfolding is done via Gaussian kernel density estimation using the Silverman rule
for bandwidth selection. The data sets for N “ 10 and N “ 20 contain at least
10.000 and 5.000 samples, respectively, such that at least 100.000 levels are involved
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in the calculation of both SFF’s. These are plotted below, where, to distinguish
them from the analytically calculated (and non-unfolded) SFF’s, we denote the nu-
merically computed SFF’s by Lpnq 1. We emphasize once more that these are the
connected SFF’s, where we omit the disconnected part to enable easier comparison
with Wigner–Dyson universality. The SFF’s for N “ 10 and N “ 20 are distin-
guished by the fact that they arrive at a plateau at n “ 10 and n “ 20, respectively.
As we can see, for both N “ 10 and N “ 20 and all values of q we consider, the con-
nected SFF’s exhibit Wigner–Dyson universality rather than intermediate statistics.
We will arrive at similar conclusions for the ‘t Hooft limit below, albeit via different
methods.

Figure 4.3: The logarithm of the difference between the sum over the CSMM SFF
for N “ 10 and the CUE (q Ñ 0) SFF, plotted for various values of q. We see
that the difference is very small and decreases quite rapidly with k but, conversely,
increases with q.

1We gratefully acknowledge Wouter Buijsman for providing us with the data for these plots.
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Figure 4.4: The numerically computed connected unfolded SFF’s for N “ 10 and
N “ 20, which can be distinguished by the fact that they arrive at a plateau at
n “ 10 and n “ 20, respectively. Note that we plot only the connected SFF
here, as opposed to figures 4.1 and 4.2, to simplify comparison with Wigner–Dyson
universality. It is clear that Wigner–Dyson universality is recovered to high precision
for both N “ 10 and N “ 20 and all q considered here.

4.5 Taking the ‘t Hooft-limit

In the string theory literature on the CSMM, the ’t Hooft limit has been considered,
where one takes N Ñ 8 and simultaneously q Ñ 1 such that y “ qN remains finite.
This idea goes back to pioneering work by ‘t Hooft in the context of UpNq gauge
theories at large N [114]. In the type A topological open string theory on T ˚S3

described by the UpNq Chern–Simons theory, certain large N dualities appear. In
particular, it has been argued that the topological A-type open string theory on
T ˚S3 undergoes a conifold transition to a closed type A topological string theory
on the resolved conifold [115]. The magnitude of the B-field on the S2 blowup of
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the conifold is given by t “ Ngs, the ‘t Hooft parameter. The mirror dual of the
conifold geometry can be seen to arise from the resolvent of the matrix model in
the large N limit [116], [97], see also [117], [118]. These dualities and related results
have important applications in enumerative geometry and intersection theory.

As far as the authors are aware, the ‘t Hooft limit has heretofore not been explicitly
considered for the CSMM in the RMT literature. In [119], a closely related limit
was considered for a Hermitian version of the q-deformed ensemble considered here,
where the weak disorder (GUE) limit corresponds to q “ e´γ Ñ 1 and N Ñ 8
such that γN Ñ 0, while the strong disorder limit involves γN “ constant. In the
latter limit, which is essentially the ’t Hooft limit, an approximate expression for the
parametric density correlation function was found in [119]. Further, a similar limit
was considered for another, closely related, q-deformed circular unitary ensemble in
[120], see also [6]. It was found that deviations from the CUE level density only
persist in the infinite N limit if one simultaneously scales q such that p1 ´ qqN
remains finite, which is essentially the ‘t Hooft limit.

The ‘t Hooft limit is given by the following double scaling,

N Ñ 8 , gs Ñ 0 , such that t :“ Ngs “ finite . (4.31)

The ‘t Hooft limit of the CSMM has been considered in the context of topological
string theory in e.g. [115], [97], [117]. In this case, one has y “ qN “ e´t ‰ 0. In
this limit, q taken to a finite power will simply give 1, whereas q to the power of
multiples of N will give powers of y, which we need to keep track off to calculate
the SFF. In the ‘t Hooft limit, the hook-shaped Schur polynomial in (1.185) goes to

lim
qÑ1´

1

pa ´ 1q!b!pa ` bq
ˆ
1 ´ y

1 ´ q

˙a`b

, (4.32)

which we write as a limit as it is a divergent quantity. However, we will find that the
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connected SFF is in fact not divergent for the explicit examples we calculated, which
demonstrates that a precise cancellation of these divergent terms has to occur. To
reveal this cancellation, we cannot simply use (1.185), as we need to keep track of
the powers of q as well. Instead, we will write,

spa,1bqpxi “ qi´1q “ qbpb`1q{2

ra ´ 1s!rbs!ra ` bsloooooooooomoooooooooon
“Aa,b

rN ` a ´ 1s!
rN ´ b ´ 1s! “ Aa,b

śa`b´1
k“0 p1 ´ yqa´1´kq

p1 ´ qqa`b
!,

“ Aa,b

p1 ´ qqa`b
pyqa´1; q´1qa`b,

(4.33)

where one should keep in mind that we take the limit q Ñ 1´. In particular, for m

finite, one can write

«
N ` m

k

ff
“ pyqm; q´1qk

rks!p1 ´ qqk . (4.34)

as a convenient way to extract factors of y.

In the ‘t Hooft limit limit, the SFF turns into a remarkable sequence of polynomials
of degree 2n ´ 1 in y. We will first consider these polynomials and their properties,
before turning to the question of unfolding. We have calculated the connected SFF
for n “ 1, . . . , 11, resulting in the expressions on the following pages.
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F p1qc “1 ´ y ,

F p2qc “2 ´ 4y ` 6y2 ´ 4y3 ,

F p3qc “3 ´ 9y ` 36y2 ´ 84y3 ` 90y4 ´ 36y5 ,

F p4qc “4 ´ 16y ` 120y2 ´ 560y3 ` 1420y4 ´ 1968y5 ` 1400y6 ´ 400y7 ,

F p5qc “5 ´ 25y ` 300y2 ´ 2300y3 ` 10150y4 ´ 26880y5 ` 43400y6`
´ 41800y7 ` 22050y8 ´ 4900y9 ,

F p6qc “6 ´ 36y ` 630y2 ´ 7140y3 ` 47880y4 ´ 200592y5 ` 544824y6`
´ 974160y7 ` 1137780y8 ´ 834960y9 ` 349272y10 ´ 63504y11 ,

F p7qc “7 ´ 49y ` 1176y2 ´ 18424y3 ` 173460y4 ´ 1042524y5 ` 4187736y6`
´ 11565624y7 ` 22246686y8 ´ 29742020y9 ` 27087984y10`
´ 16024176y11 ` 5549544y12 ´ 853776y13 ,

F p8qc “8 ´ 64y ` 2016y2 ´ 41664y3 ` 522480y4 ´ 4237632y5 ` 23380896y6`
´ 90830784y7 ` 253846296y8 ´ 515838400y9 ` 762521760y10`
´ 810927936y11 ` 604107504y12 ´ 299065536y13 ` 88339680y14`
´ 11778624y15 ,

F p9qc “9 ´ 81y ` 3240y2 ´ 85320y3 ` 1372140y4 ´ 14394996y5 ` 103900104y6`
´ 535847400y7 ` 2026445850y8 ´ 5713765200y9 ` 12118597920y10`
´ 19364383584y11 ` 23165382240y12 ´ 20414698920y13`
` 12853423440y14 ´ 5468226192y15 ` 1407913650y16 ´ 165636900y17 ,
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F p10qc “10 ´ 100y ` 4950y2 ´ 161700y3 ` 3240600y4 ´ 42617520y5`
` 388588200y6 ´ 2556668400y7 ` 12488661900y8 ´ 46202499200y9`
` 131172321280y10 ´ 287919216000y11 ` 489596250000y12`
´ 642659556000y13 ` 644511582000y14 ´ 484405727520y15`
` 263957736900y16 ´ 98425126800y17 ` 22457091800y18`
´ 2363904400y19 ,

F p11qc “11 ´ 121y ` 7260y2 ´ 287980y3 ` 7031310y4 ´ 113142744y5`
` 1269259992y6 ´ 10345746840y7 ` 63147440070y8 ´ 295025713840y9`
` 1071727584928y10 ´ 3059501029728y11 ` 6907003486240y12`
´ 12358366232520y13 ` 17490417413040y14 ´ 19447530019632y15`
` 16771920490182y16 ´ 10982054062980y17 ` 5272925154640y18`
´ 1749762036880y19 ` 358415185128y20 ´ 34134779536y21 . (4.35)

The complicated form of these polynomials belies the fact that the SFF appears
to be very close to a straight line for any y, with decreasing slope for increasing y,
see figure 4.5. We emphasize again that the SFF’s plotted in figure 4.5 were found
without applying any unfolding. We will consider the issue of unfolding by rescaling
the spectrum in section 4.5, see in particular figure 4.7. It turns out that there are
three choices of y for which the SFF is a perfectly straight line. Writing F pn; yqc to
indicate dependence on y, we have

F pn; 0qc “ n ,

F pn; 1{2qc “ n

2
,

F pn; 1qc “ 0 . (4.36)

The fact that F pn; 0qc “ n was already mentioned in section 4.3. The last equality,
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written as a limit for y, can easily be seen to be generally true and will be further
commented on in section 4.6. The middle equality, on the other hand, is a priori
completely unexpected (at least to the authors).

Figure 4.5: The connected SFF in the ‘t Hooft limit, without unfolding, written in
equation (4.35). As one can see, the resulting SFF is very close to a straight line for
any choice of y.

One can see from the above plot that the SFF appears to be symmetric around
F pn; 1{2qc “ n

2
. Indeed, we find that

F pn; yqc ` F pn; 1 ´ yqc “ n . (4.37)

It can be seen that the polynomials F pnqc appearing in (4.35) can be factorized into
the product of a factor np1 ´ yq and polynomials pnpyq of degree 2n ´ 2. The first
few of them are given below.
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p1 “1,

p2 “1 ´ y ` 2y2,

p3 “1 ´ 2y ` 10y2 ´ 18y3 ` 12y4,

p4 “1 ´ 3y ` 27y2 ´ 113y3 ` 242y4 ´ 250y5 ` 100y6,

p5 “1 ´ 4y ` 56y2 ´ 404y3 ` 1626y4 ´ 3750y5 ` 4930y6 ´ 3430y7 ` 980y8,

p6 “1 ´ 5y ` 100y2 ´ 1090y3 ` 6890y4 ´ 26542y5 ` 64262y6 ´ 98098y7

` 91532y8 ´ 47628y9 ` 10584y10,

p7 “1 ´ 6y ` 162y2 ´ 2470y3 ` 22310y4 ´ 126622y5 ` 471626y6 ´ 1180606y7

` 1997492y8 ´ 2251368y9 ` 1618344y10 ´ 670824y11 ` 121968y12,

p8 “1 ´ 7y ` 245y2 ´ 4963y3 ` 60347y4 ´ 469357y5 ` 2453255y6 ´ 8900593y7`
` 22830194y8 ´ 41649606y9 ` 53665614y10 ´ 47700378y11 ` 27813060y12

´ 9570132y13 ` 1472328y14. (4.38)

We were able to identify the coefficients for the following powers of y as

y0 : 1

y1 : ´n

y2 : n2pn ` 3q{2
y3 : ´npn ´ 1qp2 ` 10n ` 6n2 ` n3q{6
y4 : npn ´ 1qp´72 ´ 224n ´ 28n2 ` 87n3 ` 40n4 ` 5n5q{144

y2n´1 : ´pC2n
n q2p2n ´ 1q{2pn ` 1q

y2n : pC2n
n q2{pn ` 1q, (4.39)

where we have the binomial coefficient C2n
n “ p2nq!{pn!q2. It seems that no further
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information about the expansion coefficients of pnpyq can be obtained easily. This
prevents us from generalizing the connected SFF beyond the 11 terms written in
(4.35).

Level density

We now consider the question of unfolding in the ‘t Hooft limit, where we have

N´1 xtrUny “ 1

2n log y
rPnp2y ´ 1q ´ Pn´1p2y ´ 1qs , (4.40)

where Pn is the Legendre polynomial. This was already found in [113]. In particular,
xtrUny diverges in the ‘t Hooft limit in such a way that N´1 xtrUny is generally finite,
as can be seen from taking q Ñ 1 in (4.13). We thus have a level density which is
no longer flat but contains an oscillatory contribution as well,

ρpθ; yq “ p2πq´1

«
1 ` 1

log y

8ÿ

n“1

Pnp2y ´ 1q ´ Pn´1p2y ´ 1q
n

cospnθq
ff

. (4.41)

For |t| ă 1, the generating function of the Legendre polynomials reads

P px, tq “
8ÿ

n“0

Pnpxqtn “ 1?
1 ´ 2xt ` t2

, (4.42)

which can be integrated to find, for |z| ă 1,

ż z

0

P px, tq “
8ÿ

n“1

Pn´1pxqzn
n

“ log
´
z ´ x ` ?

1 ´ 2xz ` z2
¯

´ log p1 ´ xq . (4.43)

Similarly,

8ÿ

n“1

Pnpxqzn
n

“ log 2 ´ log
´
1 ´ xz ` ?

1 ´ 2xz ` z2
¯

. (4.44)
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Figure 4.6: The level density in the ‘t Hooft limit plotted for various values of y.
For y ą 0, a gap opens at θc “ arccosp2y ´ 1q which increases in size with y, with
the level remaining a convex function.

Using Abel’s theorem, one may find that

ρpθ; yq “ 1

2π
` 1

2π log y
rlog 2 ´ logRpcos θ, 2y ´ 1qs , (4.45)

where

Rpz, xq “
$
&
%

p?
1 ` z ` ?

z ´ xq2 , x ă z

1 ` x , x ě z .
(4.46)

It is easy to see that the second case listed above, x ě z, gives a zero level density,
since then logRpz, xq “ log 2y. In particular, a gap opens in the spectrum,

ρpθ; yq “ 0 , θ ą θc “ arccosp2y ´ 1q . (4.47)
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This critical angle θc was already found in [113], although our level density appears
to be different from the expression obtained there. The resulting level densities are
plotted in figure 4.6 for y “ .1, .2, . . . , .9. One can see that these level densities are
approximately of semicircular form. Indeed, writing rpθ; yq “ ρp0; yq

b
1 ´ θ2

θ2c
, the

difference between ρpθ; yq and rpθ; yq for y “ 0.1, 0.2, . . . , 0.9 remains smaller than
0.006 for all θ and decreases with y.

Unfolding

To compare the connected SFF in the ‘t Hooft limit with the CUE result, we have
to unfold the spectrum. Strictly speaking, unfolding involves a change of variables
to the staircase function, (see e.g. section 5.19 of [55]),

σpθq “
ż θ

θc

dθ1ρpθ1q . (4.48)

The level density in terms of σ is a perfectly flat function. The unfolded SFF is then
given by

1

N
x|

Nÿ

j“1

e2πiσj |2y . (4.49)

However, this unfolding procedure is often difficult in practice, and our case is
no exception. Finding σpθq using the closed form expression for the level density
obtained above is not very complicated, but the expression in (4.49) is not amenable
to evaluation. For this reason, we instead perform a constant rescaling to a variable
s in terms of which the level density ρpsq averaged over its support is independent of
qN , that is, we simply rescale so that the average spacing is the same for all y. For
any value of y, we take the support of the level density and imagine we can replace
the level density by a box-shaped density of the same support. We then rescale the
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support so that it is again of size 2π. To do so, we write

spθq “ πθ

θc
, s P r0, 2πq , (4.50)

so that averaging over its (rescaled) support gives

ρ “ 1

2π

ż 2π

0

dsρpsq “ 1

2π
. (4.51)

In terms of the rescaled eigenphases, the level density ρpsq is of almost exactly the
same shape for any y ą 0, that is, the various densities in 4.6 are approximately
related by rescaling. With this unfolding, the SFF is given by

F̃ pnq “
C∣∣∣∣∣

Nÿ

j“1

e2πisj

∣∣∣∣∣

2G
“ F

ˆ
πn

θc

˙
. (4.52)

The discrete SFF, F
´

πn
θc

¯
, can only be evaluated at integer πn

θc
. However, we saw

in figure 4.5 that F pnqc is very close to a linear ramp with slope ď 1. That is, since

F pnqc « fpyqn , 0 ď fpyq ď 1 , (4.53)

the unfolded connected SFF is approximately given by

F̃ pnqc « π

θc
F pnqc “: Gpnq , (4.54)

which is plotted in 4.7. It is clear that Gpnq closely resembles a linear ramp of
unit slope for all y except close to unity, with resemblance increasing with n. This
entails that fpyq « θc

π
. Only for y close to 1 do we get a significant deviation from

WD-universality, with Gpnq Ñ 0 for y Ñ 1´.
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Figure 4.7: The unfolded connected SFF, Gpnq “: π
θc
F pnqc, for n “ 1, . . . , 11. At

y “ 0, we have exactly Gpnq “ n. For y ą 0, it is clear that Gpnq « n remains true
to high precision, especially for larger n, so that the unfolded connected SFF is very
close to a linear ramp with unit slope. Only for y Ñ 1´ does Gpnq go to zero and is
any resemblance to WD-universality lost.

This demonstrates that the unfolded connected SFF in the ‘t Hooft limit reproduces
WD-universality to high precision for n “ 1, . . . , 11 and for all y except y « 1.
Although it might be that deviations from WD universality will emerge for lower
values of y as we increase n beyond 11, the aforementioned facts that Gpnq is close to
a linear ramp and that this precision in fact increases with n would appear to render
such deviations rather unlikely. Conversely, it may be that deviations from WD will
continue to be squeezed into an ever smaller interval below y “ 1 as we increase
n, but here, too, we cannot make definitive statements. We note again that the
unfolding implemented here involved only a constant rescaling of the eigenphases.
Perhaps unfolding as in (4.49) would remove what deviations from the linear ramp
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remain in the plot below. Further, spectral form factors of various systems often
display non-universal behavior close to the origin, which then disappear further away
from the origin where the SFF approaches a linear ramp. The deviations seen in
the plot below, except for the region y « 1, may be just such an effect.

As mentioned previously, the CSMM reduces to the CUE for q Ñ 0, where we know
WD-universality to hold. We demonstrated that WD-universality holds for any
q ă 1 and N Ñ 8 as well. The ‘t Hooft limit, which involves q Ñ 1´, should then
constitute the greatest possible deviation from the CUE result, yet WD-universality
reappears for all y other than y « 1 after even a very simple unfolding. This would
appear to be rather unexpected, as the CSMM was introduced and extensively
studied as a random matrix model for intermediate statistics, as described in more
detail in the introduction and section 1.4.2. We further comment on this result and
its implications in the conclusion.

4.6 Non-commutativity of limits

One can see from the expression of the SFF that the limits q Ñ 1 and N Ñ 8 do
not commute. Such non-commutativity has been discussed in the literature already
decades ago, see [113]. In particular, if we take q Ñ 1 into expression (1.183) for
finite N , the Schur polynomials simply give the dimension of the representation,
that is

sλp1, 1, . . . , 1q “ dimλ . (4.55)

Plugging this into (1.183) with λ “ pn ´ r, 1rq and µ “ pn ´ s, 1sq shows that the
SFF would be simply given by

˜
n´1ÿ

r“0

p´1q pN ` n ´ r ´ 1q!
pN ´ r ´ 1q!pn ´ r ´ 1q!r!n

¸2

“ N2 . (4.56)

153153



4.6. Non-commutativity of limits Chapter 4. Spectral statistics

for all n. In terms of knot theory, we see that taking q Ñ 1 for N finite breaks the
p2n, 2q-torus link that is the SFF up into its separate pn, 1q-torus knot components,
as we have

lim
qÑ1

x|trUn|2y “ lim
qÑ1

xtrUnyxtrU´ny “ lim
qÑ1

pxtrUnyq2 . (4.57)

The connected SFF then equals zero, as was the case in section 4.5. We consider the
case where t “ Ngs ! 1 is very small. This allows us to use the following expansion
[[33] I.3, example 10],

sλp1 ` x1, 1 ` x2, . . . , 1 ` xNq “
ÿ

µ

dλµsµpx1, . . . , xNq , (4.58)

where we sum over all µ Ď λ and where

dλµ “ det

˜
λi ` n ´ 1

µj ` n ´ j

¸

1ďi,jďN

. (4.59)

Some simple examples are given by (see e.g. [121])

dλH “ dimλ , dλl “ dimλ
c1pλq
N

, (4.60)

where the first Casimir invariant is given by c1pλq “ |λ| “ ř
i λi. For q “ e´gs close

to 1 and Ngs ! 1, we see that spa,1bqpqj´1q is approximately given by

spa,1bqp1, 1 ´ gs, 1 ´ 2gs, . . . q “
ÿ

µ

dpa,1bqµsµp0,´gs,´2gs, . . . q . (4.61)
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Expanding up to linear order in gs, we only get contributions for µ “ H and µ “ l,
which gives

spa,1bqp0,´gs,´2gs, . . . q “ dimpa, 1bq
ˆ
1 ` a ` b

N
p´gs ´ 2gs ´ . . . q

˙

“ dimpa, 1bq
ˆ
1 ´ pa ` bqpN ´ 1q

2
gs

˙
. (4.62)

Further, spa,1bqpq´c, 1, q, . . . , qd´1, qd`1, . . . , qN´1qq is approximately given by
spa,1bqpcgs,´gs, . . . ,´pd ´ 1qgs,´pd ` 1qgs, . . . q, which equals

dimpa, 1bq
„
1 ` pa ` bq

ˆ
1 ´ N

2
` c ` d

N

˙
gs

ȷ
(4.63)

Plugging this into (1.183) for λ “ pn ´ r, 1rq and µ “ pn ´ s, 1sq gives

xWλµy ´ xWλyxWµy “ dimpn ´ r, 1rq dimpn ´ s, 1sqn
2gs
N

` Opg2sq (4.64)

We thus see that, to first order in Ngs, the Wilson loop factorizes, so that

F pnqc “ tn2 ` Opt2q . (4.65)

If we now take N Ñ 8 in such a way that t remains small, we clearly get a very
different result from the linear ramp F pnqc “ n that is found when taking q Ñ 1

after N Ñ 8. Indeed, one may check that the connected SFF in the ‘t Hooft limit
for small n and y À 1 is very close to tn2.
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Concluding remarks

This thesis treated unitary integrals over symmetric polynomials, their evaluation,
and their application to long-range random walkers and the spectral statistics of uni-
tary random matrix ensembles. The introduction and chapter 1 gave an overview
of the thesis and reviewed the relevant background material in decreasing order of
generality, starting from symmetric functions and the evaluation of their unitary
integrals, then treating LRRW models and spectral statistics of RME’s, including
the particular example of the Chern–Simons matrix model. Chapter 2 proceeded
with the derivation of our mathematical results, which focused on the case where the
strong Szegő limit theorem applies. Here, we derived three expansions for unitary
integrals over symmetric polynomials. Chapter 3 applied these results, as well as
basic identities from symmetric function theory, to LRRW models. This leads to var-
ious relations between these correlation functions and convenient ways to compute
them, as well as auxiliary results on fermionic models. Chapter 4 then considered
the application to spectral statistics, focusing in particular on the calculation of the
spectral form factor for the CSMM.

The mathematical results presented here generalize previous results in various ways.
Our expression for unitary integrals over generalized power sums generalizes a long-
standing result due to Diaconis and Shahshahani, whose result for the CUE con-
stitutes the last term in our expansion. The two expansions we found for unitary
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integrals over Schur bilinears provide expansions in either non-skew Schur or power
sum polynomials. These make use of the iterative structure of the symmetric group
characters, allowing for controlled expansions of complicated expectation values,
which provides a distinct advantage over the expansion in terms of skew Schur poly-
nomials that was our starting point. This is because there are many more skew
diagrams than non-skew ones which tends to obfuscate the underlying structure of
an expression in terms of skew Schur polynomials. The unitary integrals considered
in this work arise in a wide variety of contexts, some of which were mentioned in
the introduction and chapter 1, where the expressions derived here may find further
application.

Chapter 3 was mostly concerned with hard-core bosonic LRRW models, which have
various physical applications and implementations. First of all, LRRW models such
as we consider here have seen increasing activity in both experimental and theoreti-
cal contexts due to the experimental accessibility of such systems and the surprising
phenomena they exhibit. We believe our work can be applied along some of these
lines of research, including the consideration of localization by addition of (diagonal)
disorder [16], [17]. Adding such disorder will generally break translational invari-
ance, and the expressions in this work will no longer apply. One may also consider
translationally invariant disorder such as random hopping parameters, as in [18],
[19], in which case the results derived here would still apply as long as the hopping
parameters satisfy the aforementioned asymptotic fall-off conditions. All results in
chapter 3 can, in principle, be checked experimentally, where the expressions would
be expected to hold up to the time that finite size effects start to occur. Besides
checking our results in experimental setups, we identified correlation functions in-
volving power sum polynomials which may be used for experimental benchmarking.
Further, we saw that the multiplication properties of power sum polynomials bear
close relation to long-range fermionic models. This opens up the possibility of ap-
plying the fermionic picture to the computation of symmetric group characters.
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Further, this led to the derivation of some results on fermionic models. These have
direct physical implications, such as the fact that 1D models where fermions can
only hop a distance of n sites are not restricted by destructive interference. These
results can also be tested in long-range systems, but then of a fermionic rather than
hard-core bosonic type.

We then applied our results to the spectral statistics of unitary RME’s. In case
Szegő’s strong limit theorem applies, we saw that a special case of the first re-
sult derived in chapter 2 states that the connected SFF exhibits Wigner–Dyson-
universality, consisting of a linear ramp of unit slope which saturates at a plateau.
The remainder of chapter 4 focused on the Chern–Simons matrix model, where we
first consider general matrix size N and ‘disorder parameter’ q, before taking the ‘t
Hooft limit. In all cases, we recover WD-universality upon unfolding. As described
in the introduction, the CSMM was originally introduced [4] to describe the interme-
diate statistics of disordered electrons at the mobility edge, and there is a significant
amount of literature on this application of the CSMM and related ensembles, see e.g.
[6], [7], [8], [9], [10], [11], [12], [13]. Indeed, the ‘t Hooft limit involves q Ñ 1, which
is the opposite extreme of the CUE limit, q Ñ 0, yet WD-universality is recovered
even here, including for all y “ qN except y « 1. We do not know at this stage
how to reconcile our results with previous works on the CSMM, whose authors did
find intermediacy. It should be noted that their analysis centered on the hermitian
version of the CSMM where the weight function is „ e´α log2pxq for x P R, and it
employed the theory of orthogonal polynomials and kernels rather than expanding
in Schur bilinears. These differences in choice of model and treatment complicate
the comparison between our results and earlier work. With Wouter Buijsman, who
generated the data for figure 4.4, we are currently working to clarify the question of
intermediacy in the CSMM through numerical means.

Some of the results derived in chapter 4 may also be of mathematical interest.
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As mentioned in chapter 4, the SFF is proportional to the HOMFLY invariant of
a p2n, 2q-torus link with components carrying fundamental and antifundamental
representations. The calculation of the SFF thus provides explicit expressions for
new link invariants, both for general q, N as well as in the ‘t Hooft limit. Due to the
relation of UpNq Chern–Simons theory at large N with various topological string
theories, and its application to enumerative geometry and intersection theory, the
results derived here could be of mathematical interest beyond knot theory.
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Deze lekensamenvatting biedt een kort overzicht van de verschillende onderwerpen
die in dit proefschrift behandeld worden. Als eerste worden hier Young-diagrammen
beschouwd, alsook de rol die ze spelen in het berekenen van bepaalde wiskundige
objecten; zogenaamde unitaire matrixintegralen. Deze objecten hebben verschil-
lende natuurkundige toepassingen waarvan er hier twee belicht worden, namelijk
lange-afstands-toevalsbewegingen en chaotische kwantumsystemen.

In dit proefschrift worden, in brede zin, toevalsprocessen onderzocht, zoals het
opgooien van een munt of een dobbelsteen. De objecten die in dit proefschrift
beschouwd worden zijn echter geen munten of dobbelstenen, maar zogenaamde
Young-diagrammen. Dit zijn een soort blokkentorens, waarvan er op de volgende
pagina een voorbeeld weergegeven is. Stel dat een kind een blokkentoren probeert
te bouwen in een kamer waarvan de vloer erg scheef is, zodat dus de enige manier
om te voorkomen dat de blokken van elkaar af schuiven is om de toren met één kant
tegen de linkermuur van de kamer te bouwen. Dit betekent dat de blokkentoren
vanaf links en onder gebouwd wordt, zodat later geplaatste blokken zich rechts en/of
boven eerder geplaatste blokken bevinden. Dit leidt bijvoorbeeld tot de blokken-
toren die op de volgende pagina is weergegeven. In deze blokkentoren zijn getallen in
de blokken geschreven. Dit object wordt strikt gezien een Young-tableau genomend
in plaats van een Young-diagram, maar dit is hier verder niet van belang. Men
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kan zich voorstellen dat het blokje met het getal 1 als eerste is geplaatst, met 2 als
tweede geplaatst, etcetera. Het aantal manieren om een blokkentoren te bouwen is
gelijk aan het aantal manieren om de getallen 1, 2, . . . in de blokken te schrijven
onder voorwaarde dat de getallen naar rechts en naar boven toenemen in grootte.
Dat wil zeggen dat het getal in een blokje is groter dan de getallen in blokken die
zich links en onder het eerstgenoemde blokje bevinden. Deze eis zorgt ervoor dat
de blokkentoren inderdaad vanaf de vloer en de linkermuur wordt opgebouwd.

8

5 13

4 6 9 12

1 2 3 7 10 11

Het is begrijpelijk dat men zich op dit punt begint af te vragen waarom wis- en
natuurkundigen zich bezighouden met het bouwen van blokkentorens. Dit soort
structuren vervullen echter een centrale rol in tal van toepassingen, waarvan er
in dit proefschrift een aantal beschouwd worden. Daarnaast zijn veel belangrijke
vraagstukken in de wis- en natuurkunde, zoals hierboven, van ‘combinatorieke’ aard.
Dit betekent dat deze vraagstukken in essentie de verschillende manieren beschouwen
om een bepaalde structuur, zoals een blokkentoren, te construeren.

In dit proefschrift worden de eigenschappen van deze blokkentorens toegepast op zo-
genaamde integralen over unitaire matrices. Unitaire matrices beschrijven onder an-
dere hoe kwantummechanische systemen kunnen veranderen, bijvoorbeeld als gevolg
van ontwikkeling in de tijd. Integralen zijn wiskundige objecten die, kort gezegd, een
bepaald gemiddelde van een wiskundige functie berekenen. In dit proefschrift wor-
den deze functies simpel gezegd gekenmerkt door blokkentorens, wat betekent dat er
voor elke blokkentoren een functie bestaat met bepaalde unieke eigenschappen. De
matrixintegralen over dit soort functies hebben belangrijke toepassingen in de hi-
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ervoor genoemde toevalsprocessen, maar ook in andere vakgebieden zoals de studie
naar priemgetallen, gekromde ruimtes en bepaalde deeltjesfysica. In hoofdstuk 1
wordt de benodigde achtergrondinformatie over Young-diagrammen en gerelateerde
objecten behandeld, alsook de rol die deze diagrammen spelen in het oplossen van
matrixintegralen en de verschillende natuurkundige toepassingen ervan.

Hoofdstuk 2 beschouwt de wiskundige resultaten, die nieuwe manieren bieden om
dit soort ingewikkelde integralen te berekenen. Deze resultaten generaliseren eerder
gevonden uitdrukkingen in de wiskundige literatuur op verschillende manieren. De
nuttigste resultaten die wij hebben gevonden bieden een manier om een ingewikkeld
probleem op te delen in kleinere, minder ingewikkelde problemen. Als men meer
van deze kleinere problemen oplost, leidt dat tot een antwoord dat dichter bij het
exacte resultaat ligt. Hierdoor kan men de beoogde precisie behalen met simpelere
berekeningen zonder een ingewikkeld probleem in zijn totaliteit op te hoeven lossen.

Vervolgens pas ik deze berekeningen toe op natuurkundige vraagstukken. Hoofdstuk
3 behandelt zogenaamde toevalsbewegingen. Dit zijn de bewegingen van deeltjes die
willekeurige stappen zetten, waarbij in dit proefschrift gekeken wordt naar deeltjes
die ook over grote afstanden kunnen bewegen. Men kan zich dit soort systemen
voorstellen als een lange rij met doosjes waar men deeltjes in kan doen. De doosjes
zijn klein en kunnen daarom maar één deeltje bevatten. Deze deeltjes kunnen op
verschillende manieren over de doosjes verdeeld worden. Bij de studie naar dit
soort systemen probeert men hun gemiddelde gedrag te voorspellen. Men kan zich
bijvoorbeeld afvragen hoe groot de kans is dat een bepaalde deeltjesconfiguratie -
een verdeling van deeltjes over de doosjes - in een andere configuratie overgaat door
deeltjes willekeurige stappen te laten zetten.

Interessant genoeg kunnen dit soort deeltjesconfiguraties met de eerder genoemde
blokkentorens worden beschreven. Dit doen we door een lijn te volgen die langs de
rand van de blokkentoren loopt en daarbij een deeltje toe te kennen aan elke verticale
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zijde van de rand van de blokkentoren, terwijl er geen deeltjes op de horizontale zijdes
geplaatst worden. Ook op de verticale zijdes van de muur en de horizontale zijdes van
de vloer worden respectievelijk wél en géén deeltjes geplaatst. Als we doosjes met
deeltjes aanduiden met een zwarte stip en doosjes waar zich geen deeltjes bevinden
met een witte stip en we het resultaat 180 graden draaien, ziet het er bijvoorbeeld
uit zoals hieronder is weergegeven.

. . .

...

tt
t t t t

t t t t t t t t

d d d d d d d d

¨ ¨ ¨ t t t t t tt t t t t t t td d d d d d d d ¨ ¨ ¨

Als we de lijn aan de buitenkant van het diagram van linksonder naar rechtsboven
volgen, resulteert dit in de opeenvolging van witte en zwarte stippen die eronder is
weergegeven. Eerst komen we twee verticale zijdes met zwarte stippen tegen, dan
een horizontale zijde met een witte stip, dan een zwarte stip, etc. Door op deze
manier de configuratie en de blokkentoren met elkaar te vergelijken, ziet men dat
de reeksen zwarte en witte stippen met elkaar overeenkomen.

Ook kunnen blokkentorens gebruikt worden om het rondspringen van deeltjes tussen
de doosjes te beschrijven. Zo kan men zich afvragen hoeveel manieren er zijn om
een deeltje één, vier of negentien doosjes naar links of rechts te laten springen .
Dit soort processen wordt in de taal van diagrammen beschreven door blokken op
verschillende manieren op elkaar te stapelen of weg te halen. Eén van de centrale
en - voor zover wij weten - nieuwe observaties in dit proefschrift is het feit dat het
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verplaatsen van deeltjes over grotere afstanden overeenkomt met het toevoegen of
verwijderen van zogeheten border strips. Dit zijn reeksen blokken die als een slang
langs de rand van de blokkentoren kronkelen. Als we een border strip toevoegen aan
een blokkentoren, komt dat overeen met een deeltje een aantal stappen naar rechts
te verplaatsen. Als we echter een border strip verwijderen verplaatsen we een deeltje
naar links. De afstand waarover het deeltje verplaatst wordt komt overeen met het
aantal blokken in de border strip. Hieronder is een voorbeeld van een blokkentoren
met een border strip (in het rood weergegeven).

Dit verband, in combinatie met de eerdergenoemde wiskundige resultaten, leidt tot
nieuwe en verrassende voorspellingen over systemen van dit soort deeltjes die zich
over een rij doosjes kunnen verplaatsen. Dit wordt behandeld in hoofdstuk 3. Ook
in deze context leiden mijn resultaten tot effectievere manieren om het gedrag van
dit soort systemen te berekenen, waarbij wederom een ingewikkeld probleem wordt
opgedeeld in kleinere, minder ingewikkelde problemen. Mijn resultaten zijn in natu-
urkundig opzicht des te interessanter omdat dit soort systemen van rondspringende
deeltjes sinds een jaar of 15 in laboratoria gefabriceerd kunnen worden, met behulp
van zogenaamde trapped ions (gevangen ionen). Verder spelen deze systemen een
belangrijke rol bij tal van toepassingen, die nog altijd in aantal en verscheidenheid
toenemen. Mijn resultaten kunnen ook in (sommige van) deze contexten worden
toegepast en getest.

In hoofstuk 4 beschouw ik de toepassing van mijn wiskundige resultaten op bepaalde
matrixmodellen - zogeheten toevalsmatrices - en chaotische kwantumsystemen. Chao-
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tische systemen, zowel in de kwantummechanica als daarbuiten, zijn systemen waar-
van het gedrag sterk afhangt van de begincondities. Dit betekent dat een kleine ve-
randering in een eigenschap van een systeem (zoals de temperatuur, magnetisch veld
of de beweegrichting van bepaalde deeltjes) grote gevolgen heeft voor het gedrag van
het systeem op een later moment. De eerder genoemde matrixintegralen spelen een
belangrijke rol in de beschrijving van chaotische kwantumsystemen, waarin deeltjes
een bepaald golfachtig karakter krijgen en vice versa. Zoals eerder vermeld geven
deze integralen een bepaald gemiddelde van een wiskundige functie. Als we integr-
eren over unitaire matrices is dit gemiddelde te interpreteren als een gemiddelde over
alle mogelijke kwantumsystemen. Als men op die manier middelt over alle kwan-
tumsystemen, komt men verrassend genoeg uit op eigenschappen die karakteristiek
zijn voor chaotische kwantumsystemen. Simpel gezegd is de overgrote meerder-
heid van alle kwantumsystemen chaotisch, zodat een gemiddelde over alle mogelijke
systemen door chaotische gevallen wordt gedomineerd. Dit verband is een van de
centrale aspecten van de wiskundige beschrijving van chaotische kwantumsystemen.

In 1993 is tevens een matrixmodel geïntroduceerd om zogenaamde intermedaire sys-
temen te beschrijven, die het midden houden tussen geordend en chaotisch. Deze
intermediaire systemen worden minder goed begrepen dan chaotische of geordende
systemen. Hetzelfde matrixmodel wordt toegepast in een ander vakgebied: de
wiskundige studie van knopen. Dit is een inmiddels bijna 200 jaar oud, maar nog
steeds erg levendig vakgebied. Knopentheorie beschouwt de vraag welke knopen,
zoals zeilknopen of Keltische knopen, van elkaar verschillen. Knopen verschillen van
elkaar als de ene knoop niet door middel van een continue vervorming - dat wil zeggen
zonder het geknoopte touw door te knippen - in een andere knoop getransformeerd
kan worden.

De oorspronkelijke motivatie van mijn promotieonderzoek was het toepassen van
het eerdergenoemde matrixmodel op de beschrijving van intermediaire systemen.
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Daarbij vermoedden mijn begeleider en ik dat deze intermediaire systemen in ter-
men van knopen beschreven zouden kunnen worden. Tot onze verbazing leidden
mijn berekeningen in dit matrixmodel niet tot intermediair maar alleen tot chao-
tisch gedrag. Vele eerdere publicaties concludeerden dat dit model wel intermediar
gedrag vertoont, zij het met een andere benadering. Momenteel proberen wij met
een nieuwe samenwerking en met behulp van numerieke (computer-)berekeningen
opheldering te krijgen over deze schijnbare tegenspraak. Ondanks het uitblijven
van het verwachte intermediaire gedrag leidden mijn berekeningen in hoofdstuk 4
toch tot een aantal nieuwe resultaten. Mijn berekeningen resulteerden namelijk in
bepaalde knoopinvarianten, waarmee men knopen van elkaar kan onderscheiden. In
een bepaald geval nemen deze knoopinvarianten de vorm aan van een verzameling
van functies met bijzondere eigenschappen die - voor zover wij weten - nog niet
eerder in de wiskundige literatuur beschreven zijn.
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This lay summary provides a brief overview of the topics which are treated in this
thesis. The first topics are Young-diagrams and the role they play in the computation
of certain mathematical objects; so-called unitary matrix integrals. These objects
have various applications in physics of which we consider two instances, given by
long-range random walkers and chaotic quantum systems.

This thesis, in a broad sense, consider random processes, like the throwing of a coin
or a die. The type of object considered here, however, are not coins or dice, but
so-called Young diagrams. These objects are similar to kids’ block towers, of which
there is an example on the next page. Imagine that a child is trying to build a block
tower in a room where the floor is at an angle, so that the only way to prevent the
blocks from sliding off each other is to build the block tower with one side against
the left wall of the room. This means that the block tower is built from bottom to
top (as is usually the case) and from left to right, so that blocks which are added
at a later stage are positioned to the right and/or above blocks that were placed
before. For example, this could lead to the block tower indicated on the next page.
There are numbers written in the blocks of this block tower. Strictly speaking, the
above object is called a Young tableau rather than a Young diagram, but this is not
important here. One can imagine that the block with the number 1 was placed first,
the block with the number 2 was placed second, etc. The number of ways of ways
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to build a block tower then equals the number of ways to inscribe the blocks with
the numbers 1, 2, . . . which increase from left to right and down to up. That is, the
number in a block is greater than the numbers in blocks beneath or to the left of
the first block. This requirement ensures that the block tower is indeed built from
the floor and the left wall of the room.

8

5 13

4 6 9 12

1 2 3 7 10 11

It is understandable if one starts to wonder at this point why mathematicians and
physicists busy themselves with the building of block towers. However, these struc-
tures play a central role in various applications, some of which are considered in this
thesis. Further, many questions in mathematics and physics are of a ‘combinatorial’
nature, such as the one above. This means these problems are essentially concerned
with the different ways to construct a certain object, such as a block tower.

In this thesis, the properties of these block towers are applied to so-called integrals
over unitary matrices. Among other things, unitary matrices describe how quan-
tum mechanical systems undergo change, for example as a result of time evolution.
Integrals are mathematical objects which, simply put, calculate a certain average of
a mathematical function. In the cases considered in this thesis, these functions are
characterized by block towers, which is to say that for every block tower there exists
a function with certain unique properties. The matrix integrals over these functions
have important applications to the aforementioned random processes, as well as the
study of prime number, curved spaces, and certain types of particle physics. Chap-
ter 1 treats the necessary background information on Young diagrams and related
objects, the role these diagrams play in the computation of matrix integrals, as well
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as their applications to problems in physics.

Chapter 2 presents my mathematical results, which provide new ways to compute
this type of complicated integral. These results generalize previously found expres-
sions in various ways. The most useful results I found provide a way to split a
complicated problem into various, less complicated problems. Solving more of these
less complicated problems leads to an answer that is closer to the exact result. This
allows one to attain the desired precision with simple calculations without having
to solve a difficult problem in its entirety.

I then apply these calculations to questions in physics. Chapter 3 treats so-called
random walks. These are the trajectories of particles which take random steps,
where this thesis considers particles which can also move over large distances. One
may imagine this type of system as a long row of boxes which may contain a particle.
These boxes are small and can therefore contain only a single particle. The particles
can be distributed across the boxes in different ways. The study of these types of
systems attempts to predict their average behavior. For example, one may wonder
what is the probability that a certain particle configuration - a distribution of par-
ticles across the boxes - transitions into another configuration by letting particles
take random steps.

Interestingly, these types of particle configurations can be described by block towers
such as the example given on the first page of this summary. One may do so by
following a line which runs along the edge of the block tower and assigning a particle
to each vertical side of this edge but no particle to each horizontal side. We also place
particles on the (vertical) wall whilst not putting any particles on the (horizontal)
floor. If we indicate boxes containing a particle with a black dot, boxes without a
particle with a white dot, and we rotate the result by 180 degrees, it may look as
the example given on the following page.
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If we follow the line along the edge of the diagram from the bottom left to the top
right, this results in the sequence of white and black dots given below it. We first
encounter two vertical sides with black dots, then a horizontal side with a white dot,
then a black dot, etc. By comparing the configuration with the block tower, one
may see that the sequences of black and white dots match.

Block towers may also be used to describe particles jumping in between boxes. One
may wonder how many ways there are to take a particle and move it one, four, or
nineteen boxes to the left or right. These types of processes are described in the
language of diagrams by stacking or removing boxes in different ways. One of the
central and - as far as we know - new observations in this thesis is the fact that
moving particles of greater distances corresponds to the addition or removal of so-
called border strips. These are sequences of blocks which twist along the side of a
block tower like a snake. If we add a border strip to a block tower, this corresponds
to moving a particle a number of steps to the right. On the other hand, removing a
border strip corresponds to moving a particle to the left. The distance over which
we move the particle equals the number of boxes in the border strip. An example of
a block tower with a border strip (indicated in red) is given on the following page.
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This relation, in combination with the aforementioned mathematical results, leads to
novel and surprising predictions for systems of particles which can move along a row
of boxes. This is treated in chapter 3. In this context, too, my results lead to more
effective ways to compute the behaviour of these types of systems, as they allow one
to split up a complicated problem into smaller, less complicated ones. My results
are all the more interesting from a physical point of view because these types of
systems of particles hopping around a row of boxes can be fabricated in laboratories
since roughly 15 years, using so-called trapped ions. Further, these systems play a
role in various applications, which continue to increase increasing in number and
variety. My results may also be checked and applied in (some of) these contexts.

Chapter 4 considers the applications of my mathematical results to certain matrix
models - so-called random matrices - and chaotic quantum systems. Chaotic sys-
tems, whether quantum-mechanical or not, are systems whose behaviour strongly
depends on initial conditions. This means that a small change in a property of a
system (such as its temperature, magnetic field, or the direction of motion of cer-
tain particles) has a large impact for the behaviour of the system at a later time.
The aforementioned matrix integrals play an important role in the description of
chaotic quantum systems, where particles acquire a wave-like character and vice
versa. As mentioned before, the integrals considered here compute a certain aver-
age of a mathematical function. If we integrate over unitary matrices, this average
can be interpreted as an average over all possible quantum systems. Surprisingly,
averaging over all quantum systems in this way leads to properties which are char-
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acteristic of chaotic quantum systems. Simply put, the overwhelming majority of
all quantum systems of chaotic, so that an average over all systems is dominated
by chaotic ones. This relation is one of the central aspects of the mathematical
description of chaotic quantum systems.

Almost 30 years ago, a matrix model was introduced to describe so-called interme-
diate systems, which lie somewhere in between regular (non-chaotic) and chaotic
systems. These intermeidate systems are less well understood than chaotic or reg-
ular systems. The same matrix model is also applied to the mathematical study
of knots, which is a by now more than 200 years old but still very active field of
research. This field concerns itself with the question which knots, such as sailor’s
knots or Celtic knots, differ from each other. Knots differ from each other if one
knot cannot be transformed into another one through a continuous deformation,
that is, without cutting the knotted rope.

The original motivation of my doctoral research was the study of intermediate sys-
tems. My supervisor and I suspected that these intermediate systems could be
described in term of knots. To our surprise, my calculations on this matrix model
did not lead to intermediate, but only to chaotic behavior. Many previous publica-
tions did conclude that this model exhibits intermediate behaviour, albeit with the
use of a different approach. We are currently engaged with a new cooperation in
an attempt to resolve this apparent contradiction. In spite of the absence of inter-
mediate behaviour, my calculations in chapter 4 did lead to some new results. The
result of my calculations are certain knot invariants, which are used to distinguish
knots from each other. In a certain limit, these knot invariants take the form of a
collection of functions with remarkable properties which - as far as we are aware -
have not been described in the mathematical literature before.
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