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1 Introduction

Financial accounting is an important information source that helps stakeholders to decide

the extent to which they can conduct business within a firm. Researchers and practitioners

leverage their experience and domain expertise to analyze and investigate both structured

(example: accounting numbers) and unstructured data (example: business texts) to draw ac-

tionable inferences. However, such investigations are costly and require a significant amount

of time and effort [Van den Bogaerd and Aerts, 2011].

Advanced machine learning techniques can be trained to draw inferences akin to the hu-

man brain by processing data. Nonetheless, researchers argue that the financial accounting

domain is yet to leverage the advanced machine learning algorithms to their full potential

[Pratt, 2015, Lev and Gu, 2016, Bertomeu, 2020]. In this dissertation, I aim to create the

foundation of a strong relationship between the state-of-the-art applied machine learning

literature and the literature on financial accounting that produces actionable insights in a

both cost and time-efficient manner.

Because of its black-box nature, studies argue that practitioners should be careful about

the insights drawn from advanced machine learning algorithms [Dickey et al., 2019]. To

reduce the risk of finding inaccurate or illogical patterns, it is important to optimize human

participation in decision-making. Hence, I also focus to explore if, alongside the knowledge,

the domain expertise can also be employed to validate the model outputs. Overall, I propose

machine learning frameworks that are not only effective in capturing patterns but also more

efficient in drawing actionable insights. This also provides me with the opportunity to

explore state-of-the-art algorithms and introduce them into the accounting domain.

Accountants and auditors play pivotal roles in producing and verifying financial reports

that are used to evaluate the financial performance of companies. Shareholders and other

stakeholders rely on these financial reports produced by the companies to strategize their

investments. However, these financial reports are the aggregation of big transaction-level

data from day-to-day business. Hence, a small number of anomalous observations in such

big data can potentially cause inaccuracy in the financial reports. Auditors sift through

these data to find if there are anomalies present in data which takes significant effort and

time to scrutinize.

In chapter 2, co-authored with my supervisor Edo Roos Lindgreen, we propose a semi-

supervised machine learning framework that detects anomalies in such big data to help

produce more accurate financial reports [Bhattacharya and Lindgreen, 2020]. Our proposed

method combines both supervised and unsupervised frameworks. The unsupervised algo-

rithm, i.e. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is first
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applied to a representative subset of the data to generate a training set based on pseudo

labels of anomalies. Afterward, the training set is used to direct the supervised Gradient

boosting algorithm, i.e. LightGBM for anomaly detection in the remaining data. This

approach is applied to an insurance policy dataset consisting of approximately 32 million

records. Our proposed framework helps capture 90% and 96% of anomalous observations

by investigating 5% and 10% of the data respectively. Comprehensive details are provided

throughout chapter 2 to present the practical applicability and widespread potential of the

proposed semi-supervised approach for similar problem categories.

Although financial reports are heavily relied upon by the shareholders and stakeholders,

we have historically observed how some companies (Enron, WorldCom) delve into fraudulent

activities and therefore resulting in significant economic damage. To prevent such a scenario,

auditors and financial regulators investigate firms and their reports in-depth to detect such

fraudulent activities. These investigation exercises are not only very costly but also take a

significant amount of time (on average 2-3 years) to complete [Dyck et al., 2010, Karpoff

et al., 2017].

In chapter 3 which is co-authored with Ana Mickovic, we explore how textual contents

from financial reports help in detecting these accounting frauds. Pre-trained contextual

language learning models, such as BERT, have significantly advanced natural language pro-

cessing in recent years. We fine-tune the BERT model on Management Discussion and

Analysis (MD&A) sections of annual 10-K reports from the Securities and Exchange Com-

mission (SEC) database. Our final model outperforms the textual benchmark model [Brown

et al., 2020] and the quantitative benchmark model [Bao et al., 2020] from the previous lit-

erature by 15% and 12%, respectively. Furthermore, our model identifies five times more

fraudulent firms than the textual benchmark and three times as many as the quantitative

benchmark, despite investigating the same number of firms. Optimizing this investigation

process, where more fraudulent firms are detected in the same size of the investigation sam-

ple, would be of great economic significance for regulators, investors, financial analysts, and

auditors.

Apart from the existing information present in the financial reports, investors and share-

holders also tend to consider several other factors before strategizing their investments. One

such aspect is to attempt to foresee how companies are going to perform in the future. This

makes forecasting the earnings of companies for future years an essential subject to study.

Predicting the future earnings of firms can also help in effectively allocating resources to

society.

In chapter 4, co-authored with Sanjay Bissessur, we use machine learning techniques

12



based on stack ensemble to improve earnings forecasting, combining both hard information

from financial statements taken from the Compustat database as well as soft information

taken from the management discussion and analysis (MD&A) sections of 10-K filings with

the Securities and Exchange Commission. We find that our model outperforms the AR(1)

model significantly. Furthermore, this outperformance improves over time. Finally, we

introduce a scale-independent metric to evaluate forecasts and find that our models still

outperform AR(1). Our results hold for subsamples of losses and non-surviving firms. Taken

together, our results underscore the importance of incorporating the interaction between

hard information and soft information in forecasting.

All three chapters aim to create more effective and time-efficient solutions for practical

challenges in the financial accounting practice and reduce significant effort and time for the

real-world practitioner. The method developed in chapter 2 helps in creating a fast solu-

tion in an internal audit setting to produce more accurate financial reports by creating a

framework containing human in the loop. Chapter 3 introduces a model that helps finan-

cial investigators to prioritize their investigations in detecting financial accounting frauds.

Moreover, the method is shown to be economically significant as it captures more fraudulent

firms by investigating the same number of firms. The frameworks proposed in both chapters

2 and 3 contain human in the loop to validate the solution by the algorithms and if that

aligns with the business expertise. Chapter 4 introduces an architecture that is equivalent

to producing combined knowledge of human expertise from different industry domains to

produce more accurate future earnings forecasts.

While several pieces of research [Loughran and McDonald, 2016, Bertomeu, 2020] indicate

that advanced machine learning techniques are yet to be fully unleashed and explored in the

area of financial accounting, all three chapters in this dissertation aim to bridge that gap

by introducing the state-of-the-art machine learning algorithms and the best practices from

the literature. Considering the vast application that machine learning algorithms have to

offer, all three chapters lie in the intersection of both applied machine learning and financial

accounting literature to help researchers and practitioners from the accounting domain.

Overall these chapters not only elucidate on mimicking the human expertise in the financial

accounting domain but also explore to what extent humans can learn and benefit from these

proposed machine learning frameworks.
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2 A semi-supervised machine learning approach to de-

tect anomalies in big accounting data

2.1 Introduction

The Statement on Auditing Standards 99 (SAS 99, ISA 200) requires auditors to be assured

about financial statements being free of material misstatements. Auditors, therefore, need

to test the appropriateness of the data that is used in preparing financial statements. In

order to achieve this, anomaly detection in large accounting data has become relevant in the

audit practice. In the last few decades, advanced machine learning techniques have been

encouraged by the accounting professionals to detect anomalies in a large-scale accounting

dataset. Detected anomalous observations are investigated by the auditors to understand

their suspicious behavior. This helps improve the qualitative rigor of the financial statements

through a detailed investigation without having to manually sift through the data.

Although being quite successful, certain challenges in using the existing machine learning

methods to detect anomalies in accounting data remain prevalent. Optimizing unsupervised

techniques are computationally expensive due to large datasets [Kim, 2009] and the su-

pervised algorithms are incapable to investigate the unlabeled (absence of anomaly flag)

datasets often gathered in reality. Therefore, the primary goal of this study is to propose

a semi-supervised machine learning approach for anomaly detection in an unlabeled big

accounting dataset.

In this chapter, we discuss an innovative semi-supervised machine learning framework for

anomaly detection in an unlabeled big accounting data. Our framework is based on a novel

combination of DBSCAN [Ester et al., 1996] and LightGBM [Ke et al., 2017]. DBSCAN

is a density-based spatial clustering technique with the application of noise. DBSCAN is

designed in such a way that it can discover arbitrary shaped clusters in any data and at

the same time detect anomalies [Birant and Kut, 2007]. LightGBM is a gradient boosting

decision tree algorithm [Friedman, 2001] which has been lately implemented extensively in

several data mining applications [Wang et al., 2017, Sun et al., 2018].

We perform experiments on a real-life large dataset consisting of approximately 32 million

records, provided by a leading Dutch insurance company. First, a representative subset of

the entire dataset is sampled. Then, the DBSCAN algorithm is used on this subset data to

detect anomalies and generate pseudo labels. These anomalous observations are thoroughly

examined by the domain experts to validate their suspicious behavior. Then, flags are created

to identify the anomalous observations, detected by DBSCAN, which essentially becomes

the training data to predict anomalies in the remaining data. Then a LightGBM model
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training is accomplished based on the previous training dataset to recognize the patterns

for anomalous behavior. This distinctively enables us to predict the anomalies in the other

part of the data. In our experiment, our framework captures 90% and 96% anomalous

observations only by investigating 5% and 10% of the data respectively.

In this chapter, a novel semi-supervised machine learning framework based on DBSCAN

and LightGBM is proposed to detect anomalies in big accounting data. This study further

contributes to introducing pseudo-labeling in the audit practice. The anomaly detection

framework relies on choosing a small representative subset of entire data which makes the

architecture scalable in nature. Hence, it can be implemented computational cost-effectively

if required, so the domain experts can investigate the detected anomalies to understand their

nature. Moreover, the proposed framework is independent of accounting assumptions, hence,

it holds the potential of wide-spread applicability in detecting anomalies in any unlabeled

data.

The rest of the chapter is structured as follows: Section 2.2 describes the background

and related work, Section 2.3 presents the framework of the semi-supervised model, section

2.4 describes the experimental setup of this study, section 2.5 discusses the experimental

results, section 2.6 demonstrates the application of our proposed method beyond accounting

data and finally Section 2.7 describes the conclusion and future work.

2.2 Background and Related Work

The term Anomaly refers to “pattern in data that do not conform to a well-defined notion

of normal behavior” [Chandola et al., 2009]. Anomalies occur for several reasons such as

different classes of data, natural variation in data or measurement or possible collection

error [Tan, 2018]. These anomalous observations often deviate to a large extent indicating a

possibility of different mechanisms [Hawkins, 1980]. Although the anomalous observations

are not necessarily harmful [Agrawal and Agrawal, 2015], their detection is crucial and

detailed investigations are required to understand their nature. In the current literature, a

straightforward approach to detect anomalies is to define a region representing the normal

behavior of the data and then declare any observation to be the anomaly if it fails to fall

into the normal region [Chandola et al., 2009].

Anomaly detection has several applications in real life. It has been extensively used to

identify possible intrusion attempts by monitoring network traffics and server applications

[Portnoy, 2000, Garcia-Teodoro et al., 2009]. Anomaly detection as a form of financial fraud

detection [Bolton et al., 2001] is also very popular where it helps detect fraudulent accounts

by inspecting transaction data. Medical science has also adapted anomaly detection in
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several contexts, for example, it can be implemented in patient monitoring to detect acute

medical conditions [Lin et al., 2005]. Apart from these, anomaly detection has been used in

climate study [Çelik et al., 2011], geophysical signal processing [Chang and Chiang, 2002]

studies, etc. Anomaly detection techniques can be classified into three categories depending

on the presence of labels:

Supervised technique: This technique can only be used when historically labeled data is

available. A classifier [Duda et al., 2012] is first used to train a model on this historical data

in order to recognize the patterns in the data and that can then be used to predict anomalies

in the future dataset. However, the initial anomaly flags or labels in the historical data are

not always present in the practical settings. Although auditors can leverage their experience

to go through the observations one by one and flag them whether they are anomalous or

not; the datasets are often too large (compared to the number of anomalous observations)

and that therefore causes extreme difficulty in generating all the necessary labels. Moreover,

supervised algorithms are risky to implement for detecting anomalies as they assume that

the labels are correct in the data [Goldstein and Uchida, 2016].

Unsupervised technique: Unsupervised algorithms are adapted when historically labeled

data is unavailable and spatial groupings can be created in the dataset to detect anomalies.

Clustering [Jain and Dubes, 1988] is one of the famous unsupervised techniques where sim-

ilar observations belong to a single cluster and dissimilar observations belong to different

clusters. There are many clustering algorithms that do not force every observation into a

cluster, such as DBSCAN [Ester et al., 1996], ROCK [Guha et al., 2000], SNN clustering

[Ertoz et al., 2004]. The observations which do not fall under any cluster or which are far

away from the centers of the spatial clusters are usually identified as anomalies. However,

unsupervised clustering algorithms mostly deal with the distance between two observations

which leads to the problem of ”curse of dimensionality” [Bellman, 1966] in a big data setup.

Additionally, optimizing clustering algorithms being computationally expensive [Kim, 2009],

its implementation for a big accounting data becomes difficult.

Semi-supervised technique: Semi-supervised learning is an intermediate/hybrid tech-

nique, often used where the entire data consists of two parts: a labeled and a non-labeled

part [Chapelle et al., 2009]. As it is often very difficult to obtain labels in a large data

set, while unlabeled data are abundant, the semi-supervised machine learning technique

has proved to be an efficient solution with reduced human labor and improved accuracy

[Zhu, 2005]. Several authors have therefore proposed the semi-supervised learning methods

by training both the supervised and unsupervised modeling architectures simultaneously.

First, a trained unsupervised model is used on unlabeled data to identify the high probabil-
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ity observations of being anomalous and pseudo-label them as true labels. Then a supervised

model is developed to analyze the extended data based on the pseudo labels. This technique

of pseudo-labeling has shown significant potential to improve the prediction results [Lee,

2013].

Assuming that the normal observations lie close to the cluster centroid and anomalous

observations stay far away from their nearest cluster centroids [Tan, 2018], certain anomaly

detection techniques have been proposed earlier. Smith et al. [2002] studied Self-organized

maps, K-Means clustering, and Expectation Maximization to cluster training data and then

use the clusters to classify the test data in a semi-supervised fashion. Self-organized maps

[Kohonen, 1997] have also been widely used in semi-supervised techniques to detect anoma-

lies in several applications including fraud detection [Brockett et al., 1998], intrusion de-

tection [Ramadas et al., 2003] etc. Görnitz et al. [2013] suggested a new semi-supervised

framework by reshaping an unsupervised task for anomaly detection which allows the inclu-

sion of expert knowledge.

Detecting anomalies in accounting data has also been studied by several researchers in

the accounting domain [Amani and Fadlalla, 2017]. Bay et al. [2006] proposed a system

for identifying suspicious general ledger accounts using feature engineering based on the

Naive Bayes classifier. Khan et al. [2010] suggested an unsupervised graph-based approach

to create clusters concerning transaction profiles to detect suspicious user behavior. Their

experiment was based on data set with approximately 300,000 records. Jans et al. [2010] ex-

perimented with univariate and multivariate latent class clustering on approximately 34,000

purchase order transaction data. Transactions diverting away from clusters were flagged as

anomalous. Thiprungsri and Vasarhelyi [2011] used K-means clustering to detect anomalies

in accounting data with approximately 40,000 records. Argyrou [2012] used Self-organised

maps to detect anomalies in approximately 25,000 journal entries of a shipping company.

Recently an autoencoder based semi-supervised approach to detect anomalies in journal

entries was proposed by [Schreyer et al., 2017]. Their study was based on a dataset of

approximately 300,000 records.

According to the previous research studies, the limitations of the supervised modeling

technique seemed to be rather evident due to the absence of labels. The unsupervised

algorithms were also found to be insufficient to optimize and train on large data due to the

computational complexity. On the other hand, a semi-supervised modeling framework has

shown its potential in detecting anomalies in a large accounting data set which can help

the auditors in prioritizing their investigations on suspicious records in the accounting data

and help producing more accurate financial statements of the organization. The possible
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efficiency and accuracy offered by this technique thus provided the necessary motivation

behind this research.

2.3 Anomaly Detection Framework

In this section, the primary elements of the modeling architecture are discussed. The

task of anomaly detection in an unlabeled dataset Xm,r consisting of r numerical features

{v1, v2, . . . , vr} and m observations is considered.

2.3.1 Pseudo-Labeling using DBSCAN

A representative subset (X1) of p observations is sampled from the aforementioned dataset

X as: X1(p,r) ⊂ X and we define X2(m−p,r) as X2 = X \ X1, where p << m. In order to

achieve the representativeness, distributional similarity for each vi in X and X1 should be

tested. Performing Kolmogorov-Smirnov two-sample test [Smirnov, 1939] for each vi from

X and X1 must yield a p-value more than 0.1 for each i ∈ {1, . . . , r}.

Pseudo labels of anomalies on X1 are generated by applying the DBSCAN [Ester et al.,

1996] algorithm. DBSCAN is a density-based spatial clustering technique with the applica-

tion of noise. It forms clusters based on spatial density. Observations that are not part of

any cluster are defined as noise and we treat them as anomalies. DBSCAN has three param-

eters, epsilon (ϵ), MinPts (n) and distance metric. Two observations are called neighbors if

they are within ϵ distance of each other. A cluster is a collection of minimum n observations

where every observation has at least one neighbor. DBSCAN constructs clusters with ob-

servations delineating these two properties. Figure 2.1 demonstrates cases where DBSCAN

algorithm forms spatial clusters in a 2-dimensional space and helps to detect anomalies.

Figure 2.1: DBSCAN (ϵ = 0.3, n=10) creates spatial clusters and detects anomalies using
Euclidean distance in the above three simulated data space with 750 observations. Black
points are considered as outliers as they are not part of any cluster. In the first example,
DBSCAN detects 2 clusters and 12 anomalies, in the second example, it detects 3 clusters
and 18 anomalies and in the last one, it detects 4 clusters and 47 anomalies.

It is essential to scale all the variables in X1 before applying DBSCAN [Goldstein and

Uchida, 2016]. Each of the r variables in X1 is scaled using min-max transformation. This

essentially put all the observations in an r- dimensional unit hypercube. The min-max
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transformation for variable vi ∈ X1 is defined by:

vi = (vi −min(vi))/(max(vi)−min(vi)) (1)

Parameter MinPts (n) is set to be 2r [Ester et al., 1996]. The optimal value of ϵ is ob-

tained by using k-nearest neighbor plot [Rahmah and Sitanggang, 2016]. Euclidean distance

is chosen as the distance metric for the task. For each of the m observations in X1, average

distance of n nearest observations is calculated and therefore m distance values are obtained

corresponding to m observations in X1. An ascending plot of these m distance values reveal

a sharp elbow shape. Optimal ϵ value is set to be the distance value which corresponds to

the point where the sharpness in the plot is observed.

DBSCAN with optimal parameters on X1 creates multiple clusters and identifies anoma-

lous observations that do not belong to any cluster. If cluster size is less than a pre-specified

threshold then the observations are considered as collective anomalies [Chandola et al., 2009].

Thereafter, pseudo-labeling is performed by creating a binary variable y of length m where

yi is defined as:

yi =


1, if ith observation is anomalous,

0, otherwise.

∀i ∈ {1, . . . ,m} (2)

Anomalous observations as detected by DBSCAN can, therefore, be thoroughly examined

by the domain experts to validate their suspicious behavior. The original values of X1 before

transforming using equation (1) is restored. Plugging in the y variable into X1, sets the

premise for supervised model to use {X1, y} as the training set.

2.3.2 LightGBM Model to predict anomalies

LightGBM is a popular gradient boosting decision tree algorithm which was proposed by

Ke et al. [2017]. In supervised training set {X1, y} = {(vj , y)}rj=1, LightGBM tries to find a

function f̂(v) which approximates f(v), where f(v) minimizes certain loss function [Breiman,

1997] L(y, f(v)) as follows:

f̂(v) = argmin
f(v)

Ey,vL(y, f(v)) (3)

LightGBM integrates T regression trees
T∑

t=1
ft(v) for approximation of the final model
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by:

fT (v) =

T∑
t=1

ft(v) (4)

LightGBM uses a histogram-based split algorithm to create discrete buckets for contin-

uous variables and grows the decision trees leaf-wise [Shi, 2007]. These help LightGBM in

faster convergence and gaining high accuracy. The main parameters of the LightGBM model

are:

• num leaves: The number of leaves per tree.

• learning rate: The learning rate of the algorithm.

• max depth: Maximum learning depth of the algorithm, when max depth ¡ 0 there is

no limit on the learning depth.

• min data in leaf: The minimum number of data in a leaf that can be used to control

the fitting phenomenon.

• feature fraction: The proportion of the selected feature to the total number of features,

ranging from 0 to 1. When feature fraction ¡ 0, the algorithm randomly selects partial

features at each iteration, and feature fraction is used to control the ratio of the total

number of characteristics. This parameter can be used in order to accelerate the

training speed and the control of over-fitting.

• bagging fraction: The ratio of the selected data to the total data, ranging from 0 to

1. It is like the feature fraction but is randomly and not repeatedly selected and must

be greater than 0. This parameter can be used to accelerate the training speed as

feature fraction parameter and the control over the fitting phenomenon.

• num trees: Number of boosting iterations or total number of trees to be formed.

To obtain the optimal parameters of LightGBM, out of fold cross validation [Kohavi

et al., 1995] technique is implemented. Training set X1 is split into 5 folds: {F1, F2,.., F5}

using stratification of the binary label y such that:

F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 = X1 and Fi ∩ Fj = ∅ ∀i ̸= j

ȳi = ȳj ∀i ̸= j where ȳi =
∑
yj∈Fi

yj/|Fi|

A list of potential values for each parameter is decided beforehand to obtain the opti-

mal combination of LightGBM parameters using grid search method [Snoek et al., 2012].
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ROC-AUC score is chosen for optimizing the LightGBM model. For each combination of

parameters, the LightGBM model is trained on each X1 \ Fi set, to get the prediction for

Fi for all i ∈ {1, 2, 3, 4, 5}. Therefore, we receive an out-of-fold prediction for the entire

set X1. ROC-AUC score is calculated using the predicted values and the original y values.

An optimal combination of LightGBM parameters is selected by comparing the ROC-AUC

scores for each combination.

LightGBM model with optimal parameters is trained on X1. The trained model is used

to predict the anomalies in the remaining set X2. For each observation in X2, the model

generates the anomaly score. ROC-AUC score being scale-independent, observations with

top anomaly scores become more investigation worthy. Model performance is validated by

checking the overlap of true anomalous observations in X1 with observations corresponding

to top-out-of-fold predictions. Figure 2.2 illustrates the proposed semi-supervised framework

for anomaly detection.

Entire Data Set (Xm,r)

Representative
X1(p,r) ⊂ X

X2 = X \X1

Get anomaly
labels

Train
LightGBM

Break into two parts Apply DBSCAN

Expert validation

Predict anomalies

Figure 2.2: Semi-supervised anomaly detection framework based on DBSCAN and Light-
GBM on an unlabeled big data setup

2.4 Experimental Setup

In this section, the background of our experiment is discussed. Our study is based on in-

surance data from a major Dutch insurance company. It contains policy-level information

for all the active policyholders. Particulars of this data are updated every month recording

both changes in existing policy contracts and the addition of new policies. This database

is used to prepare the financial statements of the company in every quarter. For our ex-

periment, data spanning for one quarter has been used. It contains 31,998,736 numbers of

records. After several meetings with the domain experts, nine financial variables and four

non-financial variables were short-listed for our study. The variables were carefully chosen

with the aim of identifying various anomalous patterns. For instance, extreme values in a
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variable or sensitive interactions within an observation can be easily detected, prompting

further investigation. Selected variables are as follows:

1. Cost Loading Ratio: (gross premium/net premium)-1 , where the gross premium is the

total premium amount (charged to the policyholder) including the cost of maintaining the

corresponding policy and net premium which is the total premium amount excluding the

cost of maintaining the corresponding policy.

2. Yearly Net Premium: Yearly net premium to be paid by the policyholder for the corre-

sponding policy.

3. Reserved Expense Cost: Amount of money company reserved for the expense of main-

taining the corresponding policy.

4. Reserved Administration Cost: Amount of money company reserved for the sake of

administration costs for the corresponding policy.

5. Reserved Sum Assured Policy: The reserved amount of money for paying the policyholder

during the event of an insurance claim for the corresponding policy.

6. Reserved Sum Assured: The reserved amount of money for paying the policyholder during

the event of an insurance claim for the corresponding policyholder.

7. Sum Assured: Total sum assured amount for the corresponding policy, where the sum

assured is the amount of money that the insurance company provides the policyholder for

the insured event.

8. Total Sum Assured: Total sum assured amount for the corresponding policyholder.

9. Annual Delta Sum Assured: Change in sum assured amount for the corresponding policy

from the current year to the previous year.

10. Age: Age of the corresponding policyholder.

11. Policy Age: Number of days since the policy started.

12. Coverage Age: Number of days since the policy coverage period started for the corre-

sponding policy.

13. Premium Age: Number of days since the first premium date after the latest adjustment

in the corresponding policy’s terms and conditions.

The first nine financial variables (1 to 9) are important to consider as anomalous obser-

vations driven by these variables can directly impact the financial statements. For example,

misreported extreme values in the variables - Reserved Sum Assured and Yearly Net Pre-

mium can result in inaccurate liability and income calculation respectively in the financial

statements. The last four non-financial variables (10 to 13) were also selected so that the

quality of the database can parallelly be tested. For example, maintaining an inactive policy

account in the database may produce unreliable financial statements.
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Anomalies, driven by these non-financial variables having the potential to concomitantly

impact the quality of the financial statements can be followed up at the source of recording

or collecting information about these instances. Moreover, with these selected variables,

we can also experiment if anomalies are triggered by some strange inequalities or sensitive

interactions. For instances, observations in which policy age exceeds the age of policyholders

cannot coexist, or observations in which Yearly Net Premium is significantly smaller than

Reserved Expense Cost can be identified and further investigated.

2.5 Experimental Results and Discussions

In this section, the results of our experiments are discussed in detail.

2.5.1 Framework Implementation

In our setup, the dataset (X) contains 31,998,736 (m) policy records with 13 (r) variables.

The representative subset X1 of 3,200,000 (p) observations from X, is sampled, which is

approximately 10% of the entire dataset. Results from two sample Kolmogorov Smirnov

test (see Table 2.1) established the representativeness of X1 with respect to X. All 13

considered variables in X1 and X had p-value more than 0.1 for the test.

Features K-S test statistic p-value
Cost Loading Ratio 0.00059 0.9999
Yearly Net Premium 0.00173 0.9458
Reserved Expense Cost 0.00103 0.9999
Reserved Administration Cost 0.00140 0.9941
Reserved Sum Assured Policy 0.00226 0.7404
Reserved Sum Assured 0.00226 0.7404
Sum Assured 0.00022 0.9999
Total Sum Assured 0.00238 0.6787
Annual Delta Sum Assured 0.00319 0.3105
Age 0.00224 0.7473
Policy Age 0.00226 0.7409
Coverage Age 0.00175 0.9417
Premium Age 0.00223 0.7537

Table 2.1: Variables in X1 and X have similar distributions as the p-values are higher than
0.1 for all the variables while tested by two-sample Kolmogorov-Smirnov test

For implementing DBSCAN, the scikit-learn library in Python [Pedregosa et al., 2011]

was used and optimized the DBSCAN algorithm was optimized on X1. All the variables in

X1 were scaled individually using min-max (1) transformation. MinPts (n) was set as 26

and Euclidean distance was used to calculate the distance between two points for DBSCAN.

Optimal ϵ value was chosen from the k-nearest neighbor distance plot (see Figure 2.3) which

revealed en elbow shape. The inflection point was observed at 0.095. Therefore, optimal
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Figure 2.3: The average distance of 26 nearest neighbors for each point are calculated and
their ascending plot reveals a sharp elbow shape at 0.095 which is chosen as the final ϵ
parameter for DBSCAN.

value of ϵ parameter was set to 0.095.

DBSCAN (n = 26, ϵ = 0.095, distance = Euclidean distance) was implemented on X1. It

identified twelve spatial clusters and 85,248 observations which do not belong to any cluster.

These observations were labeled as anomalies. Threshold for cluster size was set to 1,600,

which is 0.05% of the total number of observations in X1. Therefore, observations within

clusters with cluster size less than 1,600 were treated as collective anomalies. DBSCAN

found 5,964 collective anomalies in 11 such clusters. Altogether 91,212 observations were

pseudo-labeled as anomalies (see Table 2.2) in X1.

These detected anomalous observations must thoroughly be investigated by the auditors

for validation. In addition to these, a randomly selected 100,000 observations were selected

from cluster 1 to check their non-abnormality to reduce the true negative error. After

thorough investigations of the observations shared with the domain experts, some expected

typical instances of these anomalous observations were as follows:

• Anomalies with extreme values: After the investigations, a set of anomalous obser-

vations were found to have extreme values. For example, observations with negative

Cost Loading Ratio, observations with Cost Loading ratio as high as 179, observations
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Clusters No. of observations labeled as
Cluster 1 3108788 0
Cluster 2 1104 1
Cluster 3 1017 1
Cluster 4 975 1
Cluster 5 801 1
Cluster 6 642 1
Cluster 7 501 1
Cluster 8 402 1
Cluster 9 336 1
Cluster 10 108 1
Cluster 11 42 1
Cluster 12 36 1
Anomalies 85248 1

Table 2.2: Cluster sizes with their corresponding labels for observations.

with age more than 120 years, etc.

• Anomalies with strange inequality: We examined that the collective anomalies mostly

possess strange inequalities. For example, policies where Coverage Age is more than

Policy Age, Policy Age is more than the age of the policyholder, etc.

• Anomalies with sensitive interactions: Another typical type of anomalies in the data

could be observations with sensitive interactions. For example, observations with high

Annual Delta Sum Assured values and low Yearly Net Premium which is very unusual

to co-exist.

We created binary y variable in X1 based on equation (2) which gave us the training

set for LightGBM model. To optimize the LightGBM parameters, the following parameter

space was searched:

• num leaves: {15, 31}

• max depth: {-1, 5}

• min data in leaf: {40, 60, 80}

• feature fraction: {0.6 , 0.8}

• bagging fraction: {0.6, 0.8}

The learning rate was fixed as 0.1 for the entire experiment and the ROC-AUC score

was optimized by the model. Altogether 48 parameter combinations were searched using

out of fold validation score. The top 5 parameter combinations are presented in Table 2.3.

The final parameters for the LightGBM model were as follows:

• num leaves: 31
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• max depth: -1

• min data in leaf: 40

• feature fraction: 0.6

• bagging fraction: 0.6

• num trees: 100

LightGBM model with optimum parameters was trained on X1. The best combina-

tion of parameters produced a high ROC-AUC score of 0.9945 in the out-of-fold prediction.

Predicted anomaly scores for each record and their corresponding labels were compared. Pre-

dicted anomaly scores were split into 20 quantiles. The top quantile (95th - 100th) captured

83,114 anomalous observations, which is approximately 90% of all anomalous observations

in X1. Observations with top 10% anomaly scores (top 2 quantiles, that is 90th - 100)

captured 87,631 anomalous observations which are approximately 96% of all the anomalies.

The result shows that LightGBM with optimized parameters could mimic DBSCAN in X1.

The trained LightGBM model was used to predict the anomaly score for the rest of the data

(X2).

LightGBM having a tree-based architecture, we extracted the classifying rules of all the

trees in LightGBM which helped fast-tracking our investigations. The performance of the

framework was evaluated by investigating the 5% subset data of X2, corresponding to the

top 5% anomaly scores as predicted by LightGBM. Assuming the representativeness of X1

and X, we consider this performance as quite successful and value-adding.

2.6 Benchmark Evaluation

Our choice of selecting the LightGBM model was challenged by several classifiers. We

compared the performance of LightGBM with XGBoost [Chen and Guestrin, 2016], SVM

[Suykens and Vandewalle, 1999], Multilayer perceptron [Friedman et al., 2001] and Random

Forest [Breiman, 2001]. Our evaluation criteria was the out of fold ROC-AUC score. Pa-

rameters of all the models were tuned using 5 fold cross-validation setup using grid search.

From our experiment, we observed that LightGBM outperformed SVM, Multilayer percep-

tron and Random Forest. The performance of XGBoost was comparable to LightGBM.

However, LightGBM having better accuracy and faster training speed, it was chosen as the

final classifier. Our comparison is shared in Table 2.3.

The objective of this exercise is to develop a high-performance classifier that is also capa-

ble of producing results with explanation powers. Tree-based methods are often considered
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to be a good option in this regard, as they produce a set of rules that can easily identify any

sensitive interactions that drive anomaly detection. These rules can then be used to provide

clear explanations of the results obtained and further investigations can be carried out.

Models ROC-AUC
LightGBM 0.9945
XGBoost 0.9904
SVM 0.9861
MLP 0.9894
Random Forest 0.9833

Table 2.3: Comparison of LightGBM model with other classifiers. We compared the out-of-
fold ROC-AUC score for each model. For a fair comparison, the same subsets Fi were used
for this experiment.

2.7 An Excursion Beyond Accounting Data

Our anomaly detection framework is free of any accounting assumptions. Therefore, it can

be deployed in other anomaly detection tasks as well. In this section, we investigate the

performance of our framework on a famous publicly available credit card fraud detection

Kaggle data 1. The data contains credit card transaction amounts and 28 PCA compo-

nents as features along with the fraud/non-fraud flag. Although the data is labeled, we

deployed our framework as if this is unlabeled data and used the true labels to measure the

performance of our model.

We sampled our representative subset X1 using 10% observations from the data and

implemented DBSCAN with optimized parameters on X1. Thereafter, we generated the

pseudo labels based on anomalies detected by DBSCAN. This gave us the training data to

build our LightGBM model on labeled X1 data to predict anomalies in the rest of the data

(X2). With optimized LightGBM parameters, we received competitive ROC-AUC scores on

both X1 and X2. Our out-of-fold ROC-AUC score on X1 and final ROC-AUC score on X2

were 0.9626 and 0.9548 respectively. This performance strongly suggests that our anomaly

detection framework is more generally applicable.

2.8 Conclusion and Future Work

In this study, a semi-supervised machine learning framework is presented to detect anomalies

in big accounting data. This framework is based on a novel combination of an unsupervised

model using DBSCAN and a supervised model using LightGBM. While auditing standards

1We took this data from the following source: https://www.kaggle.com/mlg-ulb/creditcardfraud. This
data has originally been collected during a research collaboration of Worldline and the Machine Learning
Group (http://mlg.ulb.ac.be) of ULB (Université Libre de Bruxelles) on big data mining and fraud detection.
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require quantitative investigations of data to identify the risk of material misstatements in

order to produce accurate financial reports, existing machine learning methods for anomaly

detection in big accounting data using supervised or unsupervised techniques were found

to be limited to implement in practice. Our proposed semi-supervised framework being

scalable in nature can help auditors to detect suspicious observations in big accounting data

for follow-up investigations.

Our study also contributes to introducing pseudo-labeling in accounting and audit prac-

tice. Pseudo labeling has lately received its popularity in computer vision and deep learning

research [Aroyehun and Gelbukh, 2018, Ding et al., 2019]. Most of the accounting data

being unlabeled, pseudo-labeling anomalies using an unsupervised anomaly detection algo-

rithm can be of great importance to reduce the human intervention. Pseudo-labeling is

introduced by implementing DBSCAN and then another state-of-the-art classifier that is

LightGBM is used for the final anomaly detection.

In our experiment, our proposed modeling architecture captures 90% and 96% of anoma-

lous observations only by investigating 5% and 10% data respectively. The classifying rules

generated by the LightGBM model then contributed to speeding up the in-depth investi-

gations of these anomalies by the auditors. While our framework enjoys a high anomaly

detection rate, feedbacks received from the auditors also reveal the qualitative integrity of

the architecture. Moreover, strictly from a design perspective, as our method is not confined

to accounting assumptions, it holds the potential of widespread applicability in detecting

anomalies in any unlabeled big data.

A limitation of this study lies in the inclusion of domain experts. Our method is de-

pendent on their rigorous validation of the anomalies generated by DBSCAN. Additionally,

a quid pro quo in our suggested method involves the subset size for DBSCAN to detect

anomalies. While a larger subset can promise more precise anomaly detection, it also brings

in more extensive manual labor to validate their surprising nature. Future research can

address this practical issue by optimizing our framework.
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3 Accounting fraud detection using contextual language

learning

3.1 Introduction

Accounting fraud affects the shareholders of the fraudulent firms, as well as other partici-

pants in the capital markets. It is a widespread problem that causes significant damage in

the economic market. However, detecting accounting fraud in a timely manner is extremely

difficult, because it requires significant effort of regulators, and this takes time and con-

siderable financial resources. Even when such fraud has been detected, that is often after

the damage has already been done, such as in well-known examples of firms as WorldCom

and Enron, which finally resulted in multi-billion losses for shareholders and many employ-

ees that lost their jobs. Therefore, detecting and preventing accounting fraud is a topic of

great importance to regulators, investors, financial analysts, and auditors. While extensive

research has been done to detect accounting fraud using quantitative information from the

financial statements [Bao et al., 2020, Cecchini et al., 2010a, Dechow et al., 2011, Perols

et al., 2017], recent studies based on textual analysis revealed that there are clues present

in financial reports that can be analyzed to predict the likelihood of fraud.

However, the literature on the use of textual information from financial reports in order

to detect accounting fraud is still scarce. Most of these studies focus on the investigation of

the communication style used in the financial texts by capturing the tone or sentiment of

the narratives [Goel et al., 2010, Purda and Skillicorn, 2015]. Recent studies also started to

investigate the underlying topics mentioned in the texts that would indicate the possibility

of misreporting [Brown et al., 2020, Minhas and Hussain, 2016].

While prior literature helps understand the facets of fraudulent texts, contemporary

research argues that commonly used linguistic measures cannot adequately capture the con-

text of management disclosures [Bushee et al., 2018, Loughran and McDonald, 2011, 2016],

thereby limiting the inferences drawn from these measures. For example, when using bag

of words methods such as LDA (Latent Dirichlet Allocation) for text analysis, the order of

words in the text is not taken into account, therefore making the performance of such meth-

ods invariant to word permutations within each document. In contrast to this, the contextual

analysis also encompasses the information on surrounding conditions and environment which

are improving the understanding of the context surrounding the text. Moreover, Loughran

and McDonald [2016] and Pratt [2015] called for research on the possibility of using deep

learning based methods, where machine learns from enormous cloud-based data sets in order

to capture the deeper meaning of the business text. However, the empirical research is still
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scarce. Therefore, we investigate whether a machine learning model that learns from the

contexts present in the financial reports improves accounting fraud detection beyond what

can be achieved by existing textual and quantitative models. Specifically, we address the

following research questions:

RQ1: Does contextual learning from financial reports improve accounting fraud detection,

relative to extant textual methods?

RQ2: How does contextual information supplement information obtained from existing

quantitative methods?

We use Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al.,

2018] in order to detect fraudulent firms. BERT is a neural network model that is designed

to learn the context of a language using textual inputs. It has been extensively employed in

language-specific studies, including automation of question answering [Alberti et al., 2019,

Yang et al., 2019] and language translation [Pires et al., 2019, Zhu et al., 2020]. In our study,

we implement the BERT model in order to learn and capture the underlying contexts in the

texts of financial reports. Finally, we train it to classify fraudulent firms’ disclosures.

Our data is based on texts from the Management Discussion and Analysis (MD&A) sec-

tion of annual 10-K reports from the Securities and Exchange Commission’s (SEC) database.

This section is commonly used by investors, and is recognized in the literature as an instru-

ment that signals financial distress to investors [Holder-Webb and Cohen, 2007]. To address

our research questions, we use two models from the previous literature as benchmark mod-

els, namely textual and quantitative benchmark model. We fine-tune the BERT model and

also construct the ensemble model based on quantitative data from financial statements,

along with textual data. We show that our final model outperforms the textual benchmark

model and the quantitative benchmark model from the previous literature by 15% and 12%,

respectively.

Since it is, because of time and financial constraints, unrealistic for regulators and cor-

porate monitors to investigate all publicly traded firms for accounting fraud, we measure

how many fraud samples are being captured in the top 1% predicted firms (highest like-

lihood of being fraudulent). Finally, our model identifies five times more fraudulent firms

than the textual benchmark and three times more than the quantitative benchmark upon

investigating the same number of firms. We, therefore, conclude that our model has a higher

economic significance than the models used in the previous literature. We also perform a

battery of robustness tests, to increase the confidence in our findings.

In summary, our main contributions are the following. First, we apply and fine-tune

the BERT model to the accounting field and employ it in order to detect accounting fraud
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in publicly traded U.S. firms. Second, we show that context in the financial texts contains

important information that helps detect accounting fraud. Our final model outperforms

the textual benchmark model and the quantitative benchmark model from the extant lit-

erature by 15% and 12%, respectively. Third, we detect how many fraudulent firms are in

the top 1%, and show that our model identifies five times more fraudulent firms than the

textual benchmark by investigating the same number of firms, and three times more than

the quantitative benchmark.

The rest of the chapter is organized as follows. In Section 3.2, we first introduce the

related work. Then, we discuss our data construction and present the experimental setup

in Sections 3.3 and 3.4. In Section 3.5, we present our results, and in Section 3.6 we show

supplementary analysis. Finally, we discuss future research and conclude the chapter in

Sections 3.7 and 3.8.

3.2 Related work

Over the last decade, researchers explored the predictive potential beyond the quantita-

tive information of financial statements to predict financial anomalies like misreporting and

bankruptcy. The main premise of this literature is to find patterns in the textual communica-

tion to describe managers’ deliberate attempts to manipulate reporting. Rogers et al. [2011]

examined the disclosure tone and shareholder litigation using firms’ earnings announcement.

[Larcker and Zakolyukina, 2012] developed a linguistic model to detect deceptions in earn-

ings conference calls. We review studies that focus on exploring the textual contents of

companies’ financial reports to investigate financial irregularities. Readers can also consult

[Loughran and McDonald, 2016] for an extensive literature review that covers advances of

textual methods in the accounting field until the year 2016.

One stream of research examines the ease of reading financial texts. Li [2008] imple-

mented the FOG index to measure the readability score of annual reports and found that

firms with higher readability scores have more persistent positive earnings. Goel and Gan-

golly [2012] argued that the likelihood of fraud increases with the increasing complexity of

sentences present in the financial reports. Goel et al. [2010] found that fraudulent annual

reports contain more passive-voice sentences and are more difficult to read than the non-

fraudulent annual reports. Similarly, Humpherys et al. [2011] investigated linguistic cues

from financial disclosures, discovering that fraudulent disclosures use various cues such as

activation language, imagery, and words, but less lexical diversity than the non-fraudulent

statements.

Further, studies focus on deriving numerical features from the textual contents of fi-
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nancial reports and use them in a classifier to train a fraud detection model. Goel et al.

[2010] extracted features from annual 10-K filings using the bag-of-words approach and im-

plemented an SVM (Support Vector Machine) model to detect fraudulent activities. They

also developed a list of detrimental words in the financial texts that help in separating fraud

from non-fraud firms. Cecchini et al. [2010b] used TF-IDF features from the MD&A sec-

tion of annual 10-K reports developing an SVM model for predicting financial frauds and

bankruptcy events. Purda and Skillicorn [2015] studied the temporal change of annual and

quarterly financial narratives using 200 most predictive words as features in an SVM model.

Minhas and Hussain [2016] compared several classification algorithms after extracting n-

gram features from narrative sections of annual 10-K reports. They also compared text

readability tools for potential feature extraction from the documents.

Some studies particularly focus on finding patterns in topics and word combinations

in order to investigate abnormal behavior. Moffit et al. [2010] derived the lexical bundles

that are most frequently present in the management discussion and analysis section of the

annual 10-K reports. Loughran and McDonald [2011] created a new financial dictionary and

found that negative language in financial reports is associated with accounting misconduct.

They developed a list of negative words that can be used to comprehend the tone and the

sentiment of the annual 10-K reports. Hoberg and Lewis [2017] deployed topic modeling

using LDA (Latent Dirichlet Allocation) to find that fraudulent managers use abnormal

verbal tone while writing financial disclosures. Brown et al. [2020] studied the incremental

contributions of thematic contents of financial narratives using topic modeling. Both Hoberg

and Lewis [2017] and Brown et al. [2020] composed extensive lists of topics that help in

detecting accounting frauds.

Recently, Craja et al. [2020] proposed a deep learning based approach to detect account-

ing frauds. Their study uses Hierarchical Attention Network (HAN) which utilizes structured

hierarchy of MD&A sections. The model also allows for the use of attention mechanisms

on both word and sentence levels, thereby providing indicators that could help stakeholders

identify whether further investigation is needed. We build on the previous literature, and

use a transformers based BERT model which is designed to capture contextual aspects from

the text. Additionally, our study aims to provide pragmatic contributions by evaluating the

model by practical measures such as Normalized Discounted cumulative gain (NDCG@k)

and comparing the economic significance of the predictions.

Despite the current improvements in the natural language processing that could help

understand the underlying communication style in financial statement texts, the majority of

previous studies leverage either word categorizations (or dictionaries) or the discrete topics
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in the texts. There have been few studies concerning understanding the deeper meaning

of the narratives and preserving the context of the writing. Our aim is to contribute to

the existing literature by applying a model that could capture the contexts in the financial

reports, and utilize this model in accounting fraud detection.
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Figure 3.1: Data collection process.

3.3 Data and Sampling Design

Our experiment is based on texts from annual 10-K reports issued by U.S. firms between

years 1994 and 2013. We retrieve texts from Item 7, namely the Management Discussion and

Analysis (MD&A) section of annual 10-K reports from the Securities and Exchange Com-

mission’s (SEC) EDGAR database and parse the information from Item 7 into a machine-

readable format. We use MD&A section to extract texts because analyzing the content of

this section is a common practice for investors seeking informational advantage [Bryan, 1997,

Durnev and Mangen, 2020, Loughran and McDonald, 2016, Muslu et al., 2015]. Holder-Webb

and Cohen [2007] indicate that the MD&A section of 10-K reports is officially recognized

as a source that contains valuable information which signals financial distress to investors.

Additionally, since the contents of the MD&A section is unregulated and unstructured, but

highly informative about the firm [Feldman et al., 2010], we develop a contextual machine

learning model that analyzes information content in the MD&A section.

The fraud indicators used in this chapter are derived from the detected material account-

ing misstatements disclosed in the SEC’s Accounting and Auditing Enforcement Releases

(AAERs) provided by the USC Marshall School of Business (previously Berkeley Center for

Financial Reporting and Management - CFRM) [Dechow et al., 2011]. Recent literature

identifies this as a leading database that contains a comprehensive list of accounting fraud
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cases [Karpoff et al., 2017]. Other terms such as earnings management, manipulation, and

misstatements, are often used interchangeably, even though the SEC often implies fraud in

their allegations. Some important misstatement indicators identified by the SEC include:

misstated revenue, misstatement of other expense/shareholder equity account, capitalized

costs as assets, misstated accounts receivable, misstated inventory, misstated cost of goods

sold, misstated reserve account, misstated liabilities, misstated marketable securities, mis-

stated allowance for bad debt, misstated payables.

Our accounting fraud detection study is based on publicly traded U.S. firms. We con-

struct two different datasets to address RQ1 and RQ2. To address RQ1, we construct the

first dataset (referred to as the text data) based on raw texts from Item 7 of Management’s

Discussion and Analysis (MD&A) section of annual 10-K reports collected from the SEC

EDGAR database. To address RQ2, we construct the second dataset (referred to as the

ensemble data) based on features extracted from the Compustat data from the year 1994 to

2013, in order to obtain the quantitative features. We further combine these quantitative

features with the text data mentioned above, and finally obtain ensemble data.

Our final datasets span from the year 1994 until the year 2013. We use 1994 as the

starting year since 10-K filings are available from that year on the SEC website. Although

the dataset contains all the AAERs issued concerning misreporting that happened before

the end of 2016, we use 2013 as the cutoff date, since it takes multiple years for the SEC

to investigate presumed accounting fraud cases [Karpoff et al., 2017]. Specifically, Dyck

et al. [2010] find that the average time gap between the misreporting and initial disclosure

of accounting fraud is two years. Hence, we find it necessary to limit our data until 2013.

In the next two Sections, we discuss the construction procedure of text data and ensemble

data.

3.3.1 Text Data Construction

The process of collecting the text data is presented in Figure 3.1. First, from the SEC

website we collect the list of all CIKs (Central Index Keys), which are unique for each

publicly traded U.S. firm. For each CIK, we collect annual 10-K reports filing dates for

20 years in total, spanning from the year 1994 until 2013, along with the corresponding

accession numbers (ani in Figure 3.1), which are unique for each 10-K report. For each

10-K filing, we create the URL using CIK and the accession number that leads to the

corresponding 10-K report. Following the method developed by Berns et al. [Berns et al.,

2021b], the text parsing algorithm searches for the term “Item 7. Management Discussion

and Analysis”, and any one of the phrases “the following discussion”, “this discussion and
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analysis”, “should be read in conjunction”, “should be read together with”, “the following

management’s discussion and analysis” in the following five sentences, in order to identify

the beginning of the MD&A section of 10-K reports. The end of the MD&A section is

determined by searching the variations of “Item8. Consolidated Financial Statements”.

Next, we find the list of fraudulent CIKs using the AAER data. We find altogether 289

fraud CIKs2, and create a binary fraud flag (fraud = 1 for fraudulent CIK, otherwise 0)

as an input for our classification algorithms. Our final text data contains 30,876 firm-year

observations with 289 fraudulent observations spanning between the years 1994 and 2013.

We find that the average MD&A section contains 8,619 words, 617 sentences, and 16 words

per sentence. Table 3.1 represents the yearly distribution of fraudulent observations in the

text data.

Year Total number of firms Number of fraud firms Percentage of fraud firms
1994 161 1 0.62%
1995 211 2 0.95%
1996 343 4 1.17%
1997 542 10 1.85%
1998 626 13 2.08%
1999 729 14 1.92%
2000 794 22 2.77%
2001 859 25 2.91%
2002 1,012 31 3.06%
2003 1,438 32 2.23%
2004 1,523 24 1.58%
2005 1,625 20 1.23%
2006 1,775 13 0.73%
2007 1,883 10 0.53%
2008 2,167 8 0.37%
2009 2,767 11 0.40%
2010 2,840 11 0.39%
2011 3,049 12 0.39%
2012 3,194 16 0.50%
2013 3,338 10 0.30%

Table 3.1: Yearly distribution of fraudulent firms in text data.

3.3.2 Ensemble Data Construction

Our ensemble dataset is based on quantitative data from the Compustat database, along with

text data described in the previous section. Following earlier literature, we use a list of 28

raw financial features, as adopted in the previous research [Bao et al., 2020]. Using readily

available information from financial statements helps with the simplification of the fraud

detection process, since it avoids calculations of more complex accounting ratios. The 28

2The parsing algorithm captures MD&A text for 219 fraudulent observations. We encounter some anoma-
lous 10-K reports where the parsing algorithm does not work, for example, Item 8 is not found in the 10-K
reports, the MD&A section is wrongly listed under Item 6, etc. In order to maximize the number of fraud
samples in our data, we manually capture the remaining 70 MD&A sections from 10-K reports of fraudulent
companies.
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financial features can be divided into four groups, based on the source of information. Those

are the items that originate from balance sheets, income statements, cash flow statements,

and market value items.3

To implement the quantitative model, we collect 28 raw financial features mentioned

above, along with their corresponding CIKs, between the years 1994 and 2013. In order to

test our second research question, we merge the Compustat data with the text data from

Section 3.1 to obtain the ensemble data. This means that the firm-year observations in

ensemble data are essentially a subset of the observations in text data4. Our final ensemble

data contains 25,853 firm-year observations with 283 fraudulent observations. Table 3.2

presents the yearly distribution of fraudulent companies in the ensemble data.

Year Total number of firms Number of fraud firms Percentage of fraud firms
1994 147 1 0.68%
1995 194 2 1.03%
1996 301 4 1.33%
1997 486 10 2.06%
1998 552 13 2.36%
1999 642 14 2.18%
2000 706 22 3.12%
2001 768 25 3.26%
2002 905 31 3.43%
2003 1,282 32 2.50%
2004 1,374 24 1.75%
2005 1,468 20 1.36%
2006 1,592 13 0.82%
2007 1,685 9 0.53%
2008 1,798 7 0.39%
2009 1,905 9 0.47%
2010 1,952 11 0.56%
2011 2,084 12 0.58%
2012 2,161 16 0.74%
2013 2,282 8 0.35%

Table 3.2: Yearly distribution of fraudulent firms in ensemble data.

3The information from balance sheets includes 17 variables: Current assets, Property, plant, and equip-
ment, Accounts payable, Cash and short-term investment, Related earnings, Inventories, Common/ordinary
equity, Debt in current liabilities, Receivables, Assets, Long-term debt, Current liabilities, Income taxes
payable, Investment and advances, Liabilities, Short-term investments, Preferred/preference stock (capital),
from income statement 7 variables: Cost of goods sold, Income before extraordinary items, Depreciation
and amortization, Interest and related expense, Income taxes, Sales/turnover (net), Net income (loss), from
cash flow statement 2 variables: Sale of common and preferred stock, Long-term debt issuance, and from
market-value 2 items: Common shares outstanding, Price close.

4We merge the Compustat data and text data using CIK and year as merging keys. This results in a loss
of 6 fraudulent observations in ensemble data than the text data.
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3.4 Experimental Setup

3.4.1 Method

We use the BERT-Base model (uncased)5 from TensorFlow Hub [Abadi et al., 2015] which

has been pre-trained for the English language using Wikipedia and BookCorpus. Further-

more, we use the WordPiece tokenizer that creates tokens, elementary lexical components,

by splitting the text into words on punctuation and white spaces, and further tokenizing

words into word pieces.

Following Devlin et al. [2019], we also use a special classification token [CLS] in the

beginning and a separation token [SEP] at the end of every input text sample sequence.

The BERT-Base model uses 12 hidden layers of transformer blocks with hidden dimension

of 768 and 12 attention heads. For each BERT-Base model, we use the maximum sequence

length of 512 tokens of texts including the [CLS] and [SEP] tokens. We add an output

sigmoid layer at the end of last layer of the BERT-Base model in order to establish the

rank of predictions indicating the likelihood of fraud. Our search space to find optimal

hyperparameters are also based on Devlin et al. [2019]’s fine-tuning strategy. While we use

a fixed learning rate of 1e-5 and adam optimizer, our optimal batch size and number of

epochs are found from searching within the set {1,2,..,8}.

MD&A 
text

First 512

Last 512

BERTfirst

BERTlast

predfirst

predlast

BERTfinal

(Rank Average)

predfinal

Figure 3.2: Model training from input text.

Our final model BERTfinal is the rank average of predictions from two separate fine-

tuned BERT models: BERTfirst and BERTlast, where BERTfirst is trained on the first

512 tokens of each text samples and BERTlast is trained on the last 512 tokens of each text

sample. The process of training this model from two sources is illustrated in Figure 3.2. The

choice of including the first and last tokens from each document is further supported by Sun

et al. [2019], who show that including both the beginning and the end of an article results in

5https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
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lower error rates. Whereas initial tokens in the MD&A reports usually contain introductory

comments, the final tokens contain concluding remarks of the MD&A section and mostly

provide company’s vision for the future and next steps. Since those two sources provide

fundamentally different information, both of which are equally important, we ensemble

predictions of these two models.

For prediction, we use rank average of predictions from BERTfirst and

BERTlast as described in Figure 3.2. For each of the 10-K reports in the set

{Report1, Report2, . . . , Reportn}, we first extract MD&A section. Then we use first 512 and

last 512 tokens of MD&A sections as inputs to train BERTfirst and BERTlast respectively.

We obtain the predfirst as output prediction from the sigmoid output layer of BERTfirst

and obtain predlast from BERTlast. Our final prediction of BERTfinal is finally the rank av-

erage of predfirst and predlast, that is predfinal = 0.5∗rank(predfirst)+0.5∗rank(predlast).

3.4.2 Validation Strategy

We use rolling windows of consecutive 5 years to train our models, and the immediate

following year as the test set, in order to evaluate the performance of the models. We use

the period between the year 1994 and 1999 as our validation set. Specifically, to optimize

parameters in the models, we initially train our models on the years between 1994 and

1998, to predict on the year 1999. Each model is trained with a different combination

of parameters. After that, with the final set of parameters that produces the optimum

prediction on 1999, we train our models on every 5-years data and predict accounting fraud

on the immediate next year. This procedure is presented in Figure 3.3. From the Figure,

it is visible that our first training period is the interval between the years 1995 and 1999,

and the corresponding test set is for the year 2000. Similarly, our second training period is

the interval between 1996 and 2000, and the corresponding test set is the year 2001. This

procedure continues until the end of our sample, which results in 14 years of test period

between the years 2000 and 2013. Importantly, this strategy is also in line with the previous

research [Brown et al., 2020], which allows us to compare our model against the benchmarks

established in the literature.

3.4.3 Evaluation Metrics

We use the area under the ROC curve (AUC) as our primary evaluation metric. Fraud

detection models suffer from class imbalance problems, which makes AUC a reasonable

metric choice, as it presents the probability that a randomly selected fraud sample would

be ranked higher than a randomly selected non-fraud sample.
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Figure 3.3: Validation strategy of our model.

As our second evaluation metric, we use Normalized Discounted Cumulative Gain at the

position k (NDCG@k). Since the task of fraud prediction can also be postulated as a ranking

problem, the NDCG@k provides insight into the structure of top k observations that have

the highest probability of being fraudulent and that are in agreement with the original fraud

samples. NDCG@k represents the ratio where a higher value represents better performance,

and the measure ranges from 0 to 1. While the NDCG@k value of 1 represents that the

first k observations with the highest prediction scores of being fraudulent are all true fraud

samples, the NDCG@k value of 0 would indicate that none of the first k observations with

the highest prediction scores of being fraudulent are true fraud samples. Throughout our

study, we use 1% of firms in each test year to report the NDCG@k scores.

Because of time and financial constraints, it is unrealistic for regulators and corporate

monitors to investigate all publicly traded firms for accounting fraud, we also measure in

absolute terms how many fraud samples are being captured in the top 1% predicted firms

(highest likelihood of being fraudulent). This metric, along with the NDCG@k measure,

helps us evaluate the economic significance of the models, identifying if more fraudulent

firms could be captured by investigating the same number of firms. We refer to this measure

as Capture in Tables 3.3 and 3.4, where we present the performance results of our models.

Recent accounting fraud detection research [Bao et al., 2020, Brown et al., 2020] use

AUC and NDCG@k in their studies. Hence, using those metrics as reference points provides

a valid comparison of the models.

3.5 Results

To address our research questions and to provide support for our analysis, we use two models

from the previous literature as benchmark models. We, therefore, compare the performance

of our final models against the existing benchmark models. We use the Latent Dirichlet
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Allocation (LDA) model as our textual benchmark model and the RUSBoost model as

our quantitative benchmark model for accounting fraud prediction. We use LDA as our

textual benchmark model since recent studies [Brown et al., 2020, Hoberg and Lewis, 2017]

demonstrate that the LDA model outperforms the commonly used approach using textual

style features to detect accounting frauds. On the other hand, we use the RUSBoost model as

our quantitative benchmark model, since Bao et al. [2020] shows that the RUSBoost model

outperforms commonly used logistic regression used by Dechow et al. [2011] and support

vector machine from Cecchini et al. [2010a] to detect accounting frauds.

3.5.1 Addressing RQ1

To examine whether contextual learning from financial reports improves accounting fraud

detection relative to the extant textual method, we compare our BERT models and the LDA

benchmark model using the text data. The results of the calculations are presented in the

Table 3.3.

First, we discuss the performance of the LDA model. Similar to Brown et al. [2020] and

Hoberg and Lewis [2017], we adopted disintegrated topic features as vectors to use them in

a logistic regression model as shown in Equation 1. We used Genism library [Řeh̊uřek and

Sojka, 2010] for LDA topic extraction.

log(
fraudi

1− fraudi
) = α+

∑
j

βjtopici,j (5)

In contrast to the BERT model, where we use the first and last 512 tokens of the MD&A text,

for the LDA model we use the entire MD&A text. Before implementing the LDA model, we

pre-processed the texts by performing lemmatization and removing stopwords. We optimize

the number of topics parameter for the LDA model using the validation set. Hoberg and

Lewis [2017] found 71 as the optimum number and Brown et al. [2020] found 31 as the

optimum number of topics in their accounting fraud detection study. To accommodate

these numbers, we searched within an interval of 10 and 150 topics and found that the

optimum number of topics in our setting that maximizes the validation AUC is 78. We

implement the LDA model with 78 topics and find that for the interval between the years

2000 and 2013, the average AUC is 0.720 and the average NDCG@k is 0.127. LDA model

captures altogether 20 fraud samples in its top 1% predictions in 14 test years.

Next, we discuss the performance of the BERT model based on text data. We use

NVIDIA TESLA P100 GPU6 for fine-tuning the BERT models. As discussed in subsection

6We are thankful to the Kaggle community for providing free access to GPU. Details can be found under
the following link: https://www.kaggle.com/docs/efficient-gpu-usage
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Figure 3.4: ROC curves of LDA and BERT model predictions (example year 2003). AUC -
area under the ROC curve, BERT - Bidirectional Encoder Representations from Transform-
ers, LDA - Latent Dirichlet Allocation.

3.4.1, we optimize batch size and the number of epochs using the validation set. Due to

the computational constraints, we limit our search space for both the number of epochs and
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Figure 3.5: NDCG@K as a function of deciles for LDA and BERT model predictions from
year 1999-2013. BERT - Bidirectional Encoder Representations from Transformers, LDA -
Latent Dirichlet Allocation.

batch size within the set {1,2,..,8}. We find that a batch size of 8 and 3 epochs maximizes

the validation AUC for BERTfinal. In our validation set, we find that while predfirst and
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predlast produce AUC values of 0.85 and 0.831 respectively, their rank average predfinal

produces an AUC value of 0.875. Moreover, we find that the rank correlation between

predfirst and predlast in the validation set is as low as 0.191 which indicates the degree of

information diversity obtained by learning from these two models. This also supports our

claim in the previous section, where we conclude that the first and last parts of the MD&A

section contain different information, and should therefore both be included.

We fine-tune both BERTfirst and BERTlast with 3 epochs and a batch size of 8 to obtain

predictions for each of our test years. We present the comparison of ROC curves for BERT

and LDA models in the Figure 3.4, as well as comparison of NDCG as a function of deciles(k)

in the Figure 3.5, which shows that LDA model does not catch up with BERT models.

Generally, we find that NDCG scores for LDA model at different deciles are significantly

smaller than those of BERT models. For example, from Table 3.1 for year 2002, we notice

that all three BERT models capture 11 fraudulent firms (1% of total firms in the year 2002,

see Table 3.1) within their first 11 highest predicted scores for the test year 2002, thus

achieving an NDCG@k score of 1. On the other hand, the LDA model cannot capture any

fraudulent firm in the same top 11 predictions, thereby obtaining an NDCG@k score of 0.

Table 3.3 contains the results on the yearly performance of both models on the textual data.

We find that the average AUC is the highest for BERTfinal, and also 15% higher than the

average AUC of the LDA model. BERTfinal also achieves an average NDCG@k score of

0.675 which is 5.3 times more than that of LDA. While BERTfirst and BERTlast captured

altogether 100 and 97 fraudulent firms, respectively, within their top 1% predictions in the

14 test years, BERTfinal captured 107 fraudulent firms, which is 5.3 times more than that of

LDA model, thus providing evidence of the economic significance of our model over textual

benchmark model from the literature.

Table 3.3 also shows the yearly performance of LDA, BERTfirst, BERTlast and

BERTfinal model. We observe that the LDA model is significantly under-performing

across all test years with respect to other models. Interestingly, we find that in some years

BERTfirst or BERTlast have higher AUC scores than BERTfinal, such as in the year 2002,

despite the improvement in the validation year 1999. However, we notice that for 11 out of

14 test years, BERTfinal produces higher NDCG@k scores and for 10 out of 14 test years it

captures a higher number of fraudulent firms in the top 1% prediction. Hence, we proceed

with BERTfinal as it generalizes more across the years.

To statistically test whether the differences in the average performance of other models

compared to BERTfinal, we conduct an analysis of variance. The test yields a p-value of

less than 0.001, thereby also confirming the superiority of BERTfinal model in relation to
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other models.

3.5.2 Addressing RQ2

To examine how contextual information supplements the information obtained from existing

quantitative methods, we first compare predictions of BERTfinal and RUSBoost model

using the ensemble data. Then, we construct the Ensemble model of their predictions using

rank average to understand the degree of complementarity.

Following Bao et al. [2020], we implement RUSBoost model from the imbalance-learn

library [Lemâıtre et al., 2017] using 28 raw features as our independent variables. For the

RUSBoost model, we optimize the number of trees using the validation set and find the

following set of parameters that maximizes the RUSBoost AUC in the validation set. The

final number of trees is set to be 2,500, the learning rate is 0.1, and we sample the same

number of fraudulent and non-fraudulent observations during each iteration of the model.

With this optimized set of parameters, we train the models using the same procedure as

previously described in BERTfinal model using ensemble data to obtain predictions for 14

test years.

Finally, to produce the Ensemble model, we investigate the degree of complementarity

that BERTfinal and the RUSBoost model share. We combine the predictions of those two

models and check for overall improvement. We take the weighted rank average of these two

models’ prediction values for each year to obtain the Ensemble prediction. Ensemblepred =

w ∗ rank(predfinal)+ (1−w) ∗ rank(predRUSBoost). Searching from the set {0.1,0.2,...,0.9},

we find 0.5 to be the optimum value of w using the validation set that produces maximum

AUC on 1999 based on Ensemblepred. Implementing such rank average of these two models

results in the Ensemble model.

We present the results on the yearly performance of RUSBoost, BERTfinal and the

Ensemble model on the ensemble data in Table 3.4. RUSBoost model obtained an average

AUC of 0.760 and an average NDCG@k score of 0.279 in the 14 test years. It captured

in total 32 fraud samples in the top 1% predictions. The average AUC and NDCG@k of

BERTfinal model in the ensemble data is 0.852 and 0.684 respectively, and it captures

96 fraud samples in the top 1% predictions altogether in 14 test years. This shows that

the BERTfinal model outperforms the RUSBoost model by 12% when observing the AUC

and captures three times more fraud samples in the top 1% predictions. BERTfinal also

obtains 2.4 times more NDCG@k score than the RUSBoost model. The Ensemble model

obtains an average AUC of 0.847 and an average NDCG@k of 0.550 and it captured 75

fraud samples in the top 1% predictions. We present the comparison of ROC curves for
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Figure 3.6: ROC curves of LDA and BERT model predictions (example year 2013). AUC -
area under the ROC curve, BERT - Bidirectional Encoder Representations from Transform-
ers, Ensemble - ensemble model based on both quantitative and textual data.

BERTfinal, RUSBoost, and Ensemble models in the Figure 3.6, as well as comparison of

NDCG as a function of deciles in the Figure 3.7, which shows that the RUSBoost model does
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Figure 3.7: NDCG@K as a function of deciles for BERT, RUSBoost, and Ensemble model
predictions from year 1999-2013. BERT - Bidirectional Encoder Representations from Trans-
formers, Ensemble - ensemble model based on both quantitative and textual data.

not catch up with BERTfinal model. Generally, we find that NDCG scores for RUSBoost

model at different deciles are significantly smaller than those of BERTfinal model.
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Similarly, as in RQ1, we statistically test the differences in average performance of other

models compared to Ensemble model by conducting an analysis of variance. The test yields

a p-value of less than 0.001, thereby also confirming the superiority of the Ensemble model

in relation to other models.

It is visible from the results that the Ensemble model obtains competitive AUC scores

with respect to BERTfinal, however, the economic significance of BERTfinal is higher than

the significance of the Ensemble model. This shows that combining BERTfinal and RUS-

Boost improves the AUC score of the standalone RUSBoost model by 11%, NDCG@k score

by 2 times, and captures 2.34 times more fraudulent samples in the top 1% prediction.

Interestingly, the Ensemble model could not outperform the BERTfinal’s performance. Al-

though the Ensemble model achieves competitive AUC to that of BERTfinal, it captures

22% less fraudulent firms and achieves a 24% lower NDCG@k score. Even though the com-

bination of contextual and quantitative learning results in incremental improvements over

the quantitative model alone, we finally conclude that the performance of the standalone

contextual learning model is nevertheless higher.

3.6 Practical insights for financial investigators

In this section, we aim to provide further insights into how financial investigators can support

their decisions based on the predictions obtained from BERTfinal model.

3.6.1 Insights using text data

We find that the MD&A writing style and the choice of words change dynamically over

time. Furthermore, we find evidence that fraudulent firms tend to use more positive words

and refrain from using negative words, possibly to disguise fraud. We further analyze the

relative frequency of selection of positive and negative words from Loughran and McDonald’s

dictionary [Loughran and McDonald, 2011] in the MD&A reports separately for fraudulent

and non-fraudulent firms across our training periods, and show that the use of positive words

such as gain, advances, and improvement significantly increased over the years among the

fraudulent firms, whereas the use of negative words such as delays, excluding, and adverse

decreased over the years (Figure 3.8 and 3.9).

Additionally, we investigate how the BERTfinal model, developed on validation data,

performs also on later test years in order to show whether the writing style evolved.7 We find

that performance decreased significantly over the years which indicates that the fraudulent

firms adapt their writing style with time to produce misleading reports.

7BERTfinal model is developed on the period from 1994-1998, and the AUC for the test year 2000 is
0.738, for 2005 is 0.630, for 2010 is 0.609, and for 2013 is 0.522.
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Figure 3.8: Relative frequency of selection of positive words from Loughran and McDonald’s
dictionary for fraudulent and non-fraudulent firms across our training periods.
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Figure 3.9: Relative frequency of selection of negative words from Loughran and McDonald’s
dictionary for fraudulent and non-fraudulent firms across our training periods.
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This highlights the need for financial investigators to thoroughly scrutinize the signals

that the model is picking to support their final decisions in prioritizing investigations. For

that purpose, a model like LIME [Ribeiro et al., 2016] can be used, which can help the

auditors to identify and visually present which words are playing a pivotal role for obtaining

the final prediction. We present such a model on one fraudulent example in the Figure 3.10.

company

company

company

Figure 3.10: Example of implementation of LIME model on one fraudulent MD&A report.
This model can help the auditors to identify and visually present words that are important
for the final prediction: blue words signal less riskiness, and red signal more riskiness. The
name of the company is replaced by the word company.

3.6.2 Insights from financial data

In order to provide insights from financial data that can be used by financial investigators,

we conduct two analyses. First, we analyse which firms are easy and difficult to identify

for our BERTfinal model by uncovering the factors that are driving the probability of

(mis)classifications. We consider the fraudulent firms which are correctly identified as within

the top 1% predictions of the model and the non-fraudulent firms which are not in the top

1% predictions to be easy to identify. Reversely, the fraudulent firms that are not in the top

1% prediction and the non-fraudulent firms which are in the top 1% predictions, we consider

to be difficult to identify. In our sample, we found altogether 21,691 firms that are easy to

identify and 271 firms that are difficult to identify. Next, we use a decision tree classifier,

along with the financial features from the ensemble data, to extract the rules that help to
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improve the understanding when a firm is difficult for BERTfinal to identify. We find that

firms with higher inventories and higher annual sales are difficult for our model to identify,

as well as the firms with higher inventories, lower annual sales, and lower interest related

expenses.

In the second analysis, we examine what factors drive a fraudulent firm to be erroneously

identified by the BERTfinal model as a non-fraudulent firm and vice versa by performing a

similar analysis on the set of firms that are difficult to identify. For that purpose, we consider

firms which are erroneously identified by the model as fraudulent firms (firms identified by

the BERTfinal model as belonging to top 1% predictions, but are in reality non-fraudulent),

and the firms which are erroneously identified by the model as non-fraudulent (not in the top

1% prediction, but in reality fraudulent). We concatenate these two subsets for all 14 years

of the test period and produce the data that have been difficult to identify by BERTfinal

model. Set of all difficult firm-year observations produces altogether 143 fraud samples and

128 non-fraud samples. Next, we use a decision tree classifier and the financial features

in order to understand what factors influence the erroneous classifications. We identify

that fraudulent firms with higher annual sales, lower net income, and higher annual close

price have erroneously been identified by BERTfinal model as not fraudulent, whereas non-

fraudulent firms with low sales have been wrongly identified by the model as high-risk firms.

These inferences can be further applied in making decisions by the financial investigators to

prioritize their investigations. Investigators can use the first analysis to understand which

firms could be difficult for the model to identify, and then on that set that is difficult to

identify, the second analysis can be performed to better understand how to prioritize the

investigations. Both analyses described above are presented in Figure 3.11.

3.6.3 Attention mechanism

Recent literature has started to explore how attention mechanisms can be presented visually

and interpreted in NLP tasks. For that purpose, a model like BertViz [Vig, 2019] can be used,

which visualizes attention weights and the color of the connection represents a stronger or

weaker focus on the relevant words. One important aspect of attention is that every time the

model tries to predict a missing word in a sentence, it focuses attention to some specific words

which are contextually relevant in that sentence rather than concentrating on the entire

sentence. In Figure 3.12, we present a practical example from our 10-K sample in order to

demonstrate how BERT operates in financial text and where it directs its attention. We use

BertViz [Vig, 2019] to present the attention visualization, where darker connections express

a stronger focus on the relevant words. In the first sentence of the sample, we observe that in
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Figure 3.11: Two analyses that are providing insights from financial data. First, we analyze
which firms are difficult to identify for our BERT model. Next, we examine what drives
fraudulent firms to be erroneously identified by the BERT model as non-fraudulent firms
and vice-versa by a similar analysis on the set of difficult firms.

the case of the word “we” the model focuses attention mostly to the word “have”, the word

“significant” attends to words “incurred” and “losses”, and “since” attends to “inception”.

Besides providing insight into specific patterns of attention, we also observe that the model

is able to capture linguistic notions, such as adjectives attending to corresponding nouns,

and prepositions attending to their objects.
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Figure 3.12: Attention example.

3.7 Supplementary Analysis

To further increase the confidence in our findings, we conduct the following supplementary

analysis.8

3.7.1 Tackling Class Imbalance

The accounting fraud detection problem suffers from class imbalance since the average per-

centage of fraudulent firms in our text data is only 1.30%. Therefore, we consider whether

accounting for class imbalance would help in improving the baseline BERTfinal model. We

attempt to tackle class imbalance by specifying class weights in our fine-tuning procedure

using validation set, which would cause the model to pay more attention to the fraud sam-

ples. We observe that assigning class weights by obtaining them from the training set does

not improve predictions on the validation set. We use different combinations of batch size

and number of epochs from the set {1,2,...,8} and specify class weights of fraud and no-fraud

samples in the validation set. We find that the BERTfinal model obtains the highest val-

idation AUC of 0.856 with 4 epochs and batch size 4 after specifying class weights. This

score is higher without accounting for class imbalance (0.875), as described in Section 3.5.1.

3.7.2 Robustness Check

We perform an additional robustness check following research conducted by Siano and

Wysocki [2021]. For every test year, we first identify the 30 most frequent words in the

corresponding training set and replace these words from the test set with a random word

8Detailed results available upon request.
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wxyz in our text data. We find that replacing these words does not affect the model exten-

sively as it produces an average AUC of 0.824, is able to produce an average NDCG@k score

of 0.637, and captures 94 fraud samples altogether in the 14 test years. This is lower than

the values obtained with BERTfinal model, where AUC is 0.826, NDCG@k score is 0.675,

and it captures 107 fraud samples. It shows that our model is not extensively dependent on

the most frequent words and even after replacing them with a random word, it can retain

its contextual learning from the texts.

3.7.3 Excluding Serial Frauds

In some firms serial fraudulent behavior is detected, where fraud spans over multiple consec-

utive years. On the other hand, it is also likely that the same professional body is responsible

for filling the 10-K reports. Therefore, it is important to investigate whether our model is

gaining knowledge about fraudulent behavior, or merely learning the writing pattern from

serial fraud firms. For each test year, we first identify fraudulent firms in the training set

which are appearing multiple times. Next, we keep only one fraudulent observation of such

a serial fraud firm and remove other observations. Specifically, we keep the first fraudulent

year’s observation and remove the consecutive fraudulent observations.9

This results in a drop of 51% of total fraud observations. However, even after such a

significant drop of total fraudulent observations in the training set, retraining the BERTfinal

upon excluding serial fraud did not reduce its performance significantly. The retrained model

finally produces an average AUC of 0.763 (compared to 0.826 for BERTfinal), captures 72

fraud samples altogether in the 14 test years (compared to 107 for BERTfinal), and an

average NDCG@k of 0.508 (comparing to 0.675 for BERTfinal). The drop in performance

can be accounted for by the considerable drop in fraudulent observations in the training

data. This analysis shows that the model is in general learning about the inherent nature

of fraud and not only picking up the style and language of serial fraud firms, which also

demonstrates the possibility of generalizing the approach to a broader population.

3.7.4 Ensembling All Models

We investigate whether ensembling BERTfinal, LDA, and the RUSBoost model would result

in further improvement. For this experiment, we first compute weighted average of predic-

tions from these 3 models as Ensembleall = w1 ∗ rank(predfinal) + w2 ∗ rank(predLDA) +

(1− w1 − w2) ∗ rank(predRUSBoost), where w1, w2 ∈ (0, 1). We search the optimum values

9For example, for a specific firm and for test year t, if fraud is detected in three years in the training
period (t − 4, t − 3, and t − 2). We then keep only the first fraudulent observation (in t − 4), and exclude
the following fraudulent observations (in years t− 3 and t− 2).
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of w1 and w2 using validation set from the search space of {0.1,0.2,...,0.9}, and find that

(w1, w2) = (0.3, 0.4) maximizes the validation AUC on the year 1999. With these values of

w1 and w2, we compute the Ensembleall for all the 14 years using ensemble data. We find

that Ensembleall produces an average AUC of 0.836, an average NDCG@K score of 0.502,

and it captures altogether 69 fraudulent firms in the 14 test years. Although we show that

ensembling all three models with a simple weighted average does not seem to improve the

performance of the model, future research could use more sophisticated methods such as

bagging and boosting that could potentially further improve performance.

3.8 Discussion and Future Research

Because of the progress in the natural language processing models in the past years, the

simple financial information extracted from the balance sheets is no longer enough to sup-

plement the textual models. This is also visible from our results, presented in Table 3.4,

where the performance of the final BERT model is similar to the performance of the En-

semble model, and even outperforms it in terms of economic significance. Instead of using

raw financial information, more complex financial measures could be used to improve the

prediction.

In the overview tables of our sample, namely Tables 3.1 and 3.2, it is visible that the

percentage of detected fraudulent firms is declining over time. This potentially indicates

that an increasing number of fraudulent companies are being undetected. Incidentally,

SEC indicated that their focus shifted during the financial crisis in 2008, focusing more on

the collateralized debt obligation (CDOs), residential mortgage-backed securities (RMBS),

and Ponzi schemes [Ceresney, 2013]. The change of focus could also explain the declining

number of detected fraudulent firms in our sample. Moreover, some studies suggest that

the number of fraudulent firms is significantly higher than what is actually detected, some

citing as much as 11% of the large U.S. public corporations allegedly committing fraud [Dyck

et al., 2013]. Working with regulators and incorporating state-of-the-art tools from natural

language processing could help detect more fraudulent companies, beyond the currently

detected ones.

We believe that the potential of contextual language learning in detecting accounting

frauds is vast and that a lot of facets are still left unexplored. In the following, we provide

some ideas for future research. For example, future research can be carried out to explore

if extracting a deeper sense of the business text (from financial reports, conference calls,

or corporate social responsibility reports) can help in forecasting companies’ earnings or in

predicting audit quality. Another interesting direction for future research could be contextual
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learning based on academic and professional publications, such as earnings announcements,

earnings call transcripts, analysts’ reports, and journals. Similar to SciBERT [Beltagy et al.,

2019], BioBERT [Lee et al., 2020], researchers can develop an accounting BERT model by

pre-training on publications from accounting literature and further directing it in order to

tackle domain-specific tasks. Finally, the research has demonstrated that BERT performs

well in different languages. It would be interesting to explore how the contextual complexity

and topics in accounting reports vary in different languages or in different geographical

locations.

3.9 Conclusion

The problem of accounting fraud detection sparks interest among auditors, investors, and

researchers. However, solving this problem is not easy, and detecting fraud is neither easy

nor free. Previous literature mostly explored the potential of using different quantitative

features (such as information from financial statements or the stock market) to detect the

likelihood of fraud, and recent literature started investigating the use of textual analysis

to detect fraud. We build on this research and show how including context from financial

reports helps in detecting accounting fraud. We apply the BERT model to the accounting

field to learn the contexts of the MD&A section of annual 10-K reports and further direct

that contextual knowledge to detect accounting fraud. We find that the BERT model

significantly outperforms previously used textual and quantitative models. Moreover, we find

that our final model identifies five times more fraudulent firms than the textual benchmark

by investigating the same number of firms, and three times more than the quantitative

benchmark.
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4 What Makes Earnings Predictable?

4.1 Introduction

In this chapter, we theorize and empirically identify what makes earnings predictable. Fore-

casting firms’ future earnings is essential for maintaining an efficient capital market and

accurate earnings forecasts are essential for making informed investment decisions [Clement

and Tse, 2003, Hope, 2003, Barron et al., 2009]. Hence an effective and accurate earn-

ings forecasting model has been of great interest to investors, shareholders, and corporate

regulators.

Given its importance, a large body of research has been dedicated to developing a robust

forecasting model. However, the majority of earnings forecasting research has relied on a

restricted design, such as the linear regression framework (OLS), and most models have

displayed very little outperformance compared a simple random walk model [Hou et al.,

2012, So, 2013, Li and Mohanram, 2014]. One potential reason for this result may be due

to the limitations of OLS regressions, which make earnings forecasting models in the extant

literature over-restrictive. Moreover, the forecasting models suffer from different biases gen-

erated from design choices, such as bias generated from model selection and training data

[Hyndman and Athanasopoulos, 2018, Petropoulos et al., 2020]. Because of such restric-

tions, observations at the time (t+1) may become no longer predictable by a model using

observations from {t, t−1, t−2, ...}. Statistical restrictions and research design biases impair

the development of a comprehensive forecasting model that is robust.

To obtain better forecasting performance from any model, recent advances in machine

learning have been adopted to reduce the biases that are generated from design choices,

producing models that outperform traditional OLS models [Binz et al., 2020, Cao and You,

2020, Easton et al., 2020b, Hendriock, 2021]. As Monahan [2018, p. 166] argues, statistical

learning allows the researcher to “let the data speak”, without the need for an explicit theory

regarding for instance the functional form and the selection of explanatory variables. At

the same time, the lack of theoretical foundation may also be detrimental to forecasting, as

there is a substantial risk of overfitting the data. In addition, theory informs the research

design toward optimization in a machine learning environment.

Our theoretical framework is based on the premise that accounting data is multidi-

mensional, consisting of hard information, that is subject to verification of consistency

with mandatory generally accepted accounting principles, and soft information, which is

the unaudited and unregulated disclosure of information through for instance press releases,

conference calls and the management discussion and analysis (MD&A) [Bertomeu and Mari-
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novic, 2016, Bertomeu et al., 2019, 2021, Versano, 2021]. Both hard information and soft

information are subject to managerial discretion with regard to the production of this infor-

mation. The production of any earnings forecast is determined by the probability density

function of information at time t, subject to the interaction of hard and soft information

at time t, and the probability density function of information at time t+n, subject to the

interaction of hard and soft information at time t+n. In our setting, earnings are considered

more predictable when the distribution of forecast earnings t+1 resembles the distribution

of current earnings t more.

Next, we explore our theoretical framework empirically by examining whether combining

multiple and diverse machine learning models makes earnings more predictable. We argue

that strong generalization in an unobserved framework is possible if we diversify our design

choices and combine them into a single framework [Wolpert, 1992, Rogova, 1994, Sharkey,

1996]. Finally, we apply our theory on particular sets of firms that are hard-to-predict, more

specifically, loss firms and non-surviving firms.

We introduce a hybrid machine learning framework that is Stacking [LeDell, 2015,

Michailidis, 2017] that can accommodate multiple and typically diverse machine learning

models into a single structure to forecast earnings. Within the stacking framework, we

incorporate three diverse models. First, we use a linear first-order Auto-Regressive (AR)

model that is a generalized random-walk model which is the most comprehensively used

model in earnings forecasting literature. Second, we use the non-linear LightGBM model

[Ke et al., 2017] that uses Compustat features. Third, we use a state-of-the-art textual deep

learning model RoBERTa [Liu et al., 2019] that uses forward-looking MD&A texts from

the annual 10-K reports collected from the Securities and Exchange Commission’s (SEC)

EDGAR database. We investigate if the stacking framework with these three diverse models

helps in earnings forecasting.

Additionally, unlike other domains of forecasting (weather, population, etc.) it is still

unclear if earnings forecasting errors are unbiased with scale, or biased with scale due to man-

agerial discretion [Cheong and Thomas, 2011, 2018]. We exploit this empirical observation

to determine if a certain model’s performance deterioration is attributable to unforeseen nat-

ural volatility or to intrinsic flaws in the model design or due to managerial discretion. Since

commonly used metrics (such as Mean Absolute Error MAE) to measure forecast accuracy

are scale-dependent, we address this by introducing a new scale-independent metric. Follow-

ing [Hyndman and Koehler, 2006], we propose a scale-independent metric Scale-independent

Absolute Forecast Error (SAFE) to determine model performance. Being scale-independent,

this metric can be used to compare the performance (forecasting accuracy) across models
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or across different time frames.

We find that our final model based on stacking outperforms the AR model by 8.12% on

average. Moreover, we find that while our proposed model is 8.24% better than the AR

model in the first ten years (1994-2003) of the test data, it becomes stronger with time and

outperforms the AR model by 11.78% in the final ten years (2010-2019) of the test set.

The restrictions of traditional statistical forecasting are particularly challenging in a

volatile environment. For instance, loss firms have proven to cause difficulties in forecasting

earnings [Hwang et al., 1996, Brown, 2001, Kothari et al., 2009]. While Li [2011] has im-

proved forecasting models by incorporating losses in a non-linear OLS model, improvements

in forecasting using traditional models have been minimal.

We, therefore, test if our empirical approach also makes future earnings predictable in

a particular set of firms that are considered “hard to predict”. We find that the average

performance of our final model is 12.11% better for than the AR model loss-making firms,

and 7.62% for non-surviving firms.

Our study joins a growing body of earnings forecasting literature. While the majority of

extant earnings forecasting models relied on simple linear regression, we introduce a novel

method to forecast earnings by combining three diverse machine learning models. Our study

further contributes to introducing a new scale-independent metric to measure forecasting

errors in the literature so that we can have a fair comparison of models’ performance across

time. We find that our final model not only significantly outperforms the benchmark model,

it also improves the forecasting in a “hard to predict” sets of firms previously identified in

the literature. Finally, our study is the first study that uses a textual model to forecast

earnings.

4.2 Background and Prior literature

Over the last six decades, forecasting future earnings has been of great interest to researchers,

investors, and analysts. While analysts’ forecasting has been studied extensively (see the

comprehensive reviews in Ramnath et al. [2008], Givoly and Biddle [2018]), we review studies

that are based on statistical methods developed on publicly available data. We do not include

the analysts’ forecasting literature in our review because of two reasons. First, analysts’

forecasting is applicable only for a specific set of firms. Second, the forecasting methods are

not publicly available for investors and the researchers to replicate. The set of studies that

focus on statistical approaches to forecast future earnings can be divided into three sets.

The first set of studies is based on a simple random walk model, where we assume the

expected value of earnings at time t + 1 is only dependent on earnings at time t, More
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specifically, E(Et+1) = α + Et. Researchers [Ball and Watts, 1972, Albrecht et al., 1977,

Watts and Leftwich, 1977] have developed the foundation of earnings forecasting models

based on this fundamental random walk property. Few studies also established that simple

random walk models are also better than advanced ARIMA models [Brown, 1993, Kothari,

2001]. However, simple random walk models are too restrictive and it does not exploit other

predictors in forecasting.

The second set of studies is based on simple linear time series regression using cross-

sectional data to explore the predictive potential of other historical accounting variables.

Hou et al. [2012] investigated whether current assets, dividends, and accruals can help

forecast earnings. So [2013] studied the predictive potential of book-to-market ratio and

stock price for forecasting earnings per share. Li and Mohanram [2014] used book value of

equity and total accruals as predictors to develop two separate models for loss firms and

profitable firms. This set of models allows for selection bias in their design choice as they

assume that the future earnings are linearly dependent on the time series property of current

earnings and other specific historical accounting predictors.

The third set of studies includes the recent machine learning models that explore the

non-linear relationship between future earnings and other historical accounting numbers.

Easton et al. [2020b] used k-nearest neighbor regression for forecasting earnings. Cao and

You [2020] and Binz et al. [2020] compared several machine learning algorithms for earnings

forecasting using historical numbers. Hendriock [2021] used probability density functions to

forecast earnings.

4.3 Theoretical Framework

Despite the recent developments in the literature, recent studies still find that a simple

random-walk-based model is more effective than other models [Monahan, 2018, Easton et al.,

2020a]. We theorize three potential issues that explain why the existing extant models are

underperforming.

4.3.1 Problem 1: Selection Bias and Design Bias

While extant literature helps us understand the useful determinants of statistical earnings

forecasting models, all these approaches potentially suffer from selection bias due to design

choice. Either the model assumes too restrictive assumptions such as linear dependency,

or it uses only a set of historical accounting numbers. Moreover, the historical accounting

numbers are backward-looking, which also restricts the forecasting ability.

When we aim to estimate the expected future earnings for year t + 1, using a model f
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and set of predictors Xt which are observed till the year t, that is E(Et+1) = f(Xt), we

assume that the distribution of Xt would be perpetual over time t. Such strong assumption

leads to selection bias. For example, studies find how distributions of accruals relative to

cash flows [Bushman et al., 2016, Green et al., 2021], revenues relative to expenses [Dichev

and Tang, 2008, Srivastava, 2014] or accounting losses [Givoly and Hayn, 2000, Klein and

Marquardt, 2006] change over time. Additionally, such historical accounting variables are

not forward-looking. Hence forecasting models that use these variables as predictors would

be inefficient to forecast future earnings and the models become ineffective in subsets where

distributions of predictors alter. In other words, assume E(E∗
t+1) = f∗(Xt) after changes in

the distribution of accounting data. A linear forecasting models is then biased as f(Xt) ̸=

f∗(Xt).

Moreover, there is no general framework to develop a robust forecasting model. Rather,

the majority of earnings forecasting research has relied on a rather general method that is

simple linear regression. Due to such a restricted general approach, earnings forecasting

models in the extant literature are over-restrictive and therefore suffer from design bias.

Such models almost always have limitations arising out of sets of firms which are “hard

to predict”. For instance, loss firms and firms with poor performance cause difficulties in

forecasting earnings [e.g. Li, 2011].

4.3.2 Problem 2: The interaction between hard and soft accounting data

Accounting data is multidimensional. On the one hand, there is hard accounting data, such

as reported earnings, of which the production is governed by regulation (e.g. US GAAP or

IFRS), and which is subject to mandatory audit. On the other hand, firms also produce soft

information. This data is often voluntary (e.g. NON-GAAP information and management

forecasts), unregulated (e.g. conference calls), or unaudited (e.g.the management discussion

and analysis (MD&A)).

Hard accounting data is limited in its ability to provide information on future earnings

due to accounting principles such as the revenue recognition principle and the matching

principle, as well as the conservatism principle. To the extent that managers are lim-

ited in their ability to provide forward-looking information in hard data, they may pro-

vide forward-looking information in soft data, either as a supplement or as a substitute

[Bertomeu et al., 2021]. For instance, managers may provide NON-GAAP information to

help investors predict future cash flows for loss firms [e.g. Leung and Veenman, 2018]. How-

ever, both hard information and soft information are subject to managerial discretion [e.g.

Versano, 2021]. Discretion is necessary to optimize the quality of the information signals
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[Bertomeu et al., 2019]. This discretion may be used informatively or opportunistically. For

instance, Bertomeu and Marinovic [2016] suggests that misreporting is more likely when soft

information is issued jointly with hard information. Linear prediction models are biased to

the extent that they are not able to model the interaction between hard information and

soft information. In other words, the dynamic interaction between hard and soft accounting

information may cause f(Xt) ̸= f∗(Xt).

4.3.3 Problem 3: Scale-dependent empirical evaluation

Extant models in forecasting literature relied on evaluation metrics such as Mean absolute

error (MAE) or Root Mean Squared Error (RMSE), which are scale-dependent. However,

previous research identified that it is not obvious whether earnings forecasting errors are

biased with scale [Cheong and Thomas, 2011, 2018]. That makes it difficult for models to be

compared with time. We illustrate this by the following two examples, where scale factors

are obvious.

Example A: Let’s say that the daily temperatures of city A and city B at a certain point of

time are T and 5T . Then, a temperature forecasting model would predict the temperatures

between (T − ϵ, T + ϵ) and (5T − ϵ, 5T + ϵ) for city A and city B respectively. 10 Example

B: Let’s say that the population for city A and city B are P and 5P respectively. Then,

a population forecasting model would predict the populations between (P − ϵ, P + ϵ) and

(5P − 5ϵ, 5P + 5ϵ) for city A and city B respectively. So, we observe how forecasting error

is scale-independent in example A and scale-dependent in example B. While the behavior of

forecasting error concerning scale is obvious in some other domains, earnings forecasting is

an exception. Therefore, if earnings at year t and t + 1 are respectively E and 5E, we can

not determine if a good forecasting model should produce forecasts between (5E− ϵ, 5E+ ϵ)

or (5E − 5ϵ, 5E + 5ϵ) for the year t+ 1.

4.4 Method

One theoretical approach to reduce the bias generated from design choice is to create multiple

subsamples (Fi) of the entire data (X) such that X =
⋃

Fi. Next, employ the characteristics

of each domain (Fi) as it pertains to forecasting optimization to forecast earnings. However,

this is difficult to implement as finding such optimum and diverse mutually exclusive and

exhaustive Fi is impractical. Moreover, it is also important to optimize the interaction

between soft and hard information for each Fi.

10This example based on differences in temperature as it relates to scale is taken from Cheong and Thomas
[2011]
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In this study, we put forward a machine learning framework that prunes the partialities

originating from model design choice. Our framework effectively combines three diverse

machine learning models and explores beyond the hard information that is historical ac-

counting numbers. We also let our framework learn from forward-looking soft information

that is MD&A texts from the annual 10-K reports through a textual model. With each

model, we split the data randomly and expect the model to perform well in one subset and

let the other models generalize the bias created by the previous model in other subsets.

Finally, we investigate if our proposed model outperforms a generalized random-walk model

that is AR(1).

In this section, we describe how we design the stacking framework combining three

diverse models to forecast future earnings. We consider the following time series data

{(X1, E1), (X2, E2), · · · , (Xt, Et), (Xt+1, Et+1)}, where Ei’s are the future earnings at year

i and Xi’s are the predictors observed till year i. We use training set Xtrain =

{(X1, E1), (X2, E2), · · · , (Xt, Et)} and test set Xtest = (Xt+1, Et+1). Our final objective

is to train a forecasting model M based on Xtrain and predict future earnings at year t+1,

Êt+1 = M(Xt+1).

Our final model M is based on three diverse models {M1,M2,M3}. For each Mj , we split

Xtrain into 5 random disjoint folds: {F1, F2, · · · , F5}. We train Mj five times (leaving one

fold out) onXtrain\Fi and predict on Fi andXt+1 to obtain the out of fold predictions oofi,j

and predictions Êt+1,i,j . Our final out of fold predictions from model Mj corresponding to

Xtrain is defined as oofj =
5⋃

i=1

{oofi,j}. Final test prediction from model Mj is defined as

Êt+1,j =
5∑

i=1

Êt+1,i,j/5.

Our final model M combining {M1,M2,M3} is developed by training a linear regression

model. We train a linear regression model using oofj as our independent variable and yt+1

as our dependent variable. Finally, our stacking prediction is based on the linear regression

model applied on Êt+1,js. Hence the final prediction is defined as Êt+1 = α0 +
3∑

j=1

Êt+1,j .

Next, we discuss the three diverse models that we combine in our stacking framework.

4.4.1 AR Model

The first order auto regressive model or the AR(1) model assumes that the earnings at time

t+ 1 can be linearly explained by the earnings at time t. Hence, Êt+1 = α+ βEt

4.4.2 LightGBM Model

LightGBM is a gradient boosting decision tree algorithm developed by Ke et al. [2017]. In the

gradient boosting decision tree algorithm, a sequence of small decision trees (weak regressors)
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are developed iteratively. The decision tree at every iteration tries to minimize the error

produced by the decision trees in the previous iterations. Finally, a strong regressor is

developed by computing the weighted average of these weak decision tree regressors. Unlike

other gradient boosting decision tree algorithms, LightGBM grows decision trees leaf-wise

instead of depth-wise. Table 4.1 presents the main parameters of the LightGBM regressor.

We have used LGBMRegressor from Python’s LightGBM library.

LightGBM Parameters Description
num leaves Maximum number of leaves in a tree in each iteration
learning rate Step parameter that manages the speed of model training
max depth Maximum depth of tree in each iteration (<0 means no limit)
colsample bytree Fraction of features to be used in each iteration
subsample Fraction of observations to be used in each iteration
n estimators Number of trees/iterations

Table 4.1: Main parameters of LightGBM and their descriptions

4.4.3 RoBERTa Model

Robustly Optimised BERT Pre-training Approach (RoBERTa) is a deep neural network-

based semi-supervised model that improves on the Bidirectional Encoder Representations

from Transformers (BERT) model [Devlin et al., 2018]. Similar to BERT, RoBERTa is also

trained to learn the deeper sense of language contexts present in text data. Application of

BERT is processed through transfer learning. 11 This essentially comprises of two primary

steps: (1) pre-training and (2) fine-tuning. In our study, we use a pre-trained BERT model

(RoBERTa base, uncased12) developed by Liu et al. [2019]. Following [Sun et al., 2019], We

further pre-train and fine-tune it on MD&A texts in order to predict the future earnings.

4.5 Performance Evaluation

To discuss how we evaluate the models’ performance, we first discuss the opted validation

strategy, and then we introduce a new evaluation metric.

4.5.1 Validation Strategy

We use rolling windows of consecutive five years to train our models and the immediate next

year to test the performance of our model. We use 1994-1999 as our validation set to obtain

the optimized set of models’ parameters. We train our final models on every 5 years of data

to forecast earnings for the next year. We use 1999-2003 as our first training set and 2004

11Transfer Learning: Transfer learning is a method of training a deep neural network on a large dataset
and use it to accomplish related work by transferring the knowledge gained in the former training, see
[Bozinovski, 2020] for more details on Transfer Learning.

12uncased model does not differentiate between lower case and upper case characters.
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as our first test set, 2000-2004 as our second training set and 2005 as our second test set,

and so on. This procedure produces 16 test years ranging from 2004-2019 [Figure 4.1].

Figure 4.1: Validation strategy of our model

4.5.2 Evaluation Metric

We introduce a new performance evaluation metric for forecasting earnings, referred to as

Scale-independent Absolute Forecast Error (SAFE), based on Mean Absolute Scaled Error

(MASE) from Hyndman and Koehler [2006]. Commonly used metrics in earnings forecasting

literature such as MAE, RMSE, etc. may lead to spurious results in the context of empirical

comparisons since it is still unclear if firms’ earnings are unbiased with scale Cheong and

Thomas [2011, 2018].

While absolute measures do not remove the scale of the data, SAFE is based on rela-

tive error and focused on removing the scale factor of the observations by comparing the

predictions obtained from a naive forecasting method. To evaluate the performance of the

forecasting model at year t + 1, we use the mean value of firms’ earnings (Ēt) from the

previous year (t) as the naive forecast of earning estimate of the current year (t + 1). We

scale the Mean absolute error (MAE) of Et+1 and Êt+1 by MAE of Et+1 and Ēt to obtain

the SAFE scores.

SAFE =
MAE(Et+1, Êt+1)

MAE(Et+1, Ēt)
=

Nt+1∑
j=1

|et+1,j − êt+1,j |

Nt+1∑
j=1

|et+1,j − Ēt|

where Nt and et,j and denotes the total number of firms and earnings of firm j in the year

t respectively. From the definition itself, SAFE is a scale-independent metric. If SAFE is

more than 1, that would indicate that the predictions for the current year (t + 1) are even

under-performing than the naive estimate using average earnings from the previous year (t).

Hence, a good forecasting model must produce an SAFE value of less than 1. The lower the

value of SAFE, the better the performance of the model.
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4.6 Data and Sampling Design

Our study is based on the earnings of publicly traded U.S. firms and our data ranges from

1994 to 2019. We use 1994 as the starting year as 10-K reports are available from that year

on the SEC website. We use 1994-2003 to fine-tune models’ parameters and 2004-2019 (16

years) as our test set. We adopt AR(1) model as our benchmark model because AR(1) is

a generalized random walk model and extant literature strongly argues that random walk

is still the most effective earnings forecasting model so far [Monahan, 2018, Easton et al.,

2020a].

To remove the data selection bias, we consider two different sources of data to develop

our final modeling architecture so that we capture the interaction between hard and soft

information. First, we use numerical features based on accounting numbers and second we

extract raw text from annual 10-K reports. We merge the numerical data set and the text

data set to obtain our final data set that contains altogether 103,006 firm-year observations.

Table 4.2 shows the year-wise distribution of the number of firm-year observations. In the

next two sections, we discuss the details of preparing the numerical data set and the text

data set.

Year No. of firms Year No. of firms
1994 98 2007 1095
1995 133 2008 1104
1996 201 2009 1238
1997 324 2010 1281
1998 361 2011 1329
1999 404 2012 1378
2000 432 2013 1471
2001 512 2014 1913
2002 587 2015 1939
2003 856 2016 1933
2004 922 2017 1979
2005 971 2018 1928
2006 1036 2019 1897

Table 4.2: Distribution of the year-wise number of firms

4.6.1 Text Data Construction

We extract texts from Item 7, which is the Management Discussion and Analysis (MD&A)

section of annual 10-K reports from the Securities and Exchange Commission’s (SEC)

EDGAR database. Since the MD&A section contains forward-looking information Muslu

et al. [2015] and also investors use the MD&A section for strategic investments Bryan [1997],

Durnev and Mangen [2020], we use texts from the MD&A section to develop our textual

model in the forecasting framework.
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We use Python to extract potential MD&A sections from 10-K reports by following Berns

et al. [2021a]. We collect the list of all CIKs (central index key: unique for each publicly

traded U.S. firm) from the SEC’s website. Thereafter, for each unique CIK, we collect

year-wise annual 10-K report filing dates from 1994 to 2019 and the corresponding accession

numbers (accession numbers are unique for each 10-K report). For each 10-K filings, we

create the URL using CIK and the accession number that lands to the corresponding 10-

K reports. Following Berns et al. [2021a], the text parsing algorithm searches “Item 7.

Management Discussion and Analysis” and any one of the phrases “the following discussion”,

“this discussion and analysis”, “should be read in conjunction”, “should be read together

with”, “the following management’s discussion and analysis” in the following 5 sentences to

identify the beginning of the MD&A section of 10-K reports. The end of the MD&A section

is determined by searching the variations of “Item8. Consolidated Financial Statements”.

Variables Sources
Accounts Payable - Trade Chen et al. [2015], Cao and You [2020]
Accruals HVZ 2012 Cao and You [2020]
Negative Accruals per share, and zero otherwise So [2013], Cao and You [2020]
Positive Accruals per share, and zero otherwise So [2013], Cao and You [2020]
Advertising Expense Chen et al. [2015], Cao and You [2020]
Assets - Total Hou et al. [2012], Chen et al. [2015], Cao and You [2020]
Book-to-market ratio So [2013], Cao and You [2020]
Cash and Short-Term Investments Chen et al. [2015], Cao and You [2020]
Cash flow from operating activities Chen et al. [2015], Cao and You [2020]
Common Shares Outstanding
Common/Ordinary Equity - Total Li and Mohanram [2014], Chen et al. [2015], Cao and You [2020]
Cost of Goods Sold Chen et al. [2015], Cao and You [2020]
Current Assets - Total Chen et al. [2015], Cao and You [2020]
Current Liabilities - Total Chen et al. [2015], Cao and You [2020]
Debt in Current Liabilities - Total Chen et al. [2015], Cao and You [2020]
Depreciation and Amortization Chen et al. [2015], Cao and You [2020]
Dividends Common/Ordinary Hou et al. [2012], Chen et al. [2015], Cao and You [2020]
Dividends per Share - Ex-Date - Fiscal So [2013], Cao and You [2020]
Dummy variable indiacating divident payers Hou et al. [2012], Cao and You [2020]
Dummy variable indicating negative earnings Hou et al. [2012], So [2013], Li and Mohanram [2014], Cao and You [2020]
Dummy variable indicating zero dividend per share So [2013], Cao and You [2020]
Earnings at year t Hou et al. [2012], Li and Mohanram [2014], Chen et al. [2015], Cao and You [2020]
Positive Earnings per share, and zero otherwise So [2013], Cao and You [2020]
Extraordinary Items and Discontinued Operations Chen et al. [2015], Cao and You [2020]
Income Before Extraordinary Items
Income Taxes - Total Chen et al. [2015], Cao and You [2020]
Income Taxes Payable Chen et al. [2015], Cao and You [2020]
Intangible Assets - Total Chen et al. [2015], Cao and You [2020]
Interest and Related Expense - Total Chen et al. [2015], Cao and You [2020]
Inventories - Total Chen et al. [2015], Cao and You [2020]
Investment and Advances Other Chen et al. [2015], Cao and You [2020]
Liabilities - Total Chen et al. [2015], Cao and You [2020]
Long-Term Debt - Total Chen et al. [2015], Cao and You [2020]
Nonoperating Income (Expense) Other Chen et al. [2015], Cao and You [2020]
percentage change in total assets Chen et al. [2015], Cao and You [2020]
Close - Annual - Fiscal So [2013], Cao and You [2020]
Property, Plant and Equipment - Total (Net) Chen et al. [2015], Cao and You [2020]
Receivables Total Chen et al. [2015], Cao and You [2020]
Research and Development Expense Chen et al. [2015], Cao and You [2020]
Sales/Turnover (Net) Chen et al. [2015], Cao and You [2020]
Selling, General and Administrative Expense Chen et al. [2015], Cao and You [2020]
Special Items
Total accruals defined in Richardson et al. (2005) Li and Mohanram [2014], Cao and You [2020]

Table 4.3: Features used for LightGBM model and their sources in extant literature

4.6.2 Compustat Data Construction

Our numerical dataset is obtained from the fundamental annual data from the merged

database of CRSP and Compustat. We select a comprehensive list of 48 variables from the
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extant literature [Table 4.3] and their one-year lag variables to prepare the final numerical

data. We define earnings as Income Before extraordinary Items less the Special Items).

We use five exclusion criteria to obtain the final numerical data. First, we remove firm-

year observations that have missing values in any of the following variables: total assets,

sales revenue, income before extraordinary items, and common shares outstanding. Second,

we removed firms whose stocks are not ordinary common shares listed on the NYSE, AMEX,

or NASDAQ. Third, we remove firms that are in the financial or regulated industry (SIC:

6000-6999 and SIC: 4900-4999). Fourth, we remove firms with annual fiscal prices is more

than 1 USD. Finally, we remove firm-year observations whose earnings or future earnings

are missing.

We scale all the predictors and the Earnings by common shares outstanding for each

year to ensure our evaluation measure SAFE is not dominated by a small amount of firms

with outlier earnings values. Next, we compute the lag variables of the selected 48 variables.

Finally, we impute the other missing values by the corresponding mean value of the variables.

4.7 Results and Discussion

First, we discuss the performance of three meta-models that is AR(1), LightGBM and

RoBERTa individually, next we discuss the performance of stacking.

First, we use the validation year 1999 to train AR(1) model from 1994-1998. oofAR(1)

produces an MAE of 0.663 on 1994-1998 and the final prediction on the validation year

1999 obtains a SAFE score of 0.547. Next, we train AR(1) on every consecutive 5 years

rolling window keeping 2004 as the first test year as discussed in section 4.5.1. We find

that the AR(1) model finally obtains an average SAFE score of 0.530 in the 16 years of test

data [Table 4.5]. We also report the performance of the AR(1) model using the traditional

evaluation metric MAE [Table 4.6]. We find the average MAE of AR(1) over the test period

is 1.045.

Second, we discuss the LightGBM model. We optimize the LightGBM parameters using

the validation set as described in section 4.5.1. Our search space included {0.3, 0.5, 0.7}

to find the optimum values for colsample bytree and subsample. We use default values for

other parameters, that are: num leaves = 31, learning rate = 0.1, max depth = -1 and we

use the optimum n estimators found from the early stopping from training phase. The final

set of parameters that minimizes the validation SAFE score in the year 1999 by oofLightGBM

is {colsample bytree, subsample} = {0.7, 0.7} and it obtains a SAFE of 0.539. Next, we

train the LightGBM model with the optimized set of parameters and it obtains an average

SAFE of 0.502 in the 16 years of test data [Table 4.5]. We also report the performance of
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the LightGBM model using the traditional evaluation metric MAE [Table 4.6]. We find the

average MAE of LightGBM over the test period is 0.991.

Next, we discuss the third meta-model. RoBERTa. We first pre-train and fine-tune

the RoBERTa model on 1994-1998 and then we forecast earnings on 1999. Pre-training

RoBERTa on the validation set produces a perplexity score of 3.428 after 5 epochs.

oofRoBERTa obtains a SAFE score of 0.628 in the year 1999. To forecast earnings ev-

ery year, we pre-train the RoBERTa model using the MD&A text from the year 1994 to the

last year of the training sample. For example, to predict future earnings for the test year

2014, we pre-train RoBERTa using the MD&A text from the year 1994 to 2013 and so on

for 5 epochs. We observe that pre-training RoBERTa improves the perplexity score over

time and that indicates that the model improves with more data [Table 4.4]. For each test

year, we fine-tune the pre-trained RoBERTa model with optimized parameters. On average

RoBERTa obtains an average SAFE score of 0.664 over 16 test years [Table 4.5]. We also

report the performance of the RoBERTa model using the traditional evaluation metric MAE

[Table 4.6]. We find the average MAE of RoBERTa over the test period is 1.311.

Before combining the models, we compare the performance of the RoBERTa model

against two other textual benchmark models using the bag of words method. The first model

uses the top thirty most frequently used positive and negative words from Loughran and

McDonald [2011]’s dictionary. The second model uses the forward-looking words proposed

by Muslu et al. [2015]13. For both models, we count the term frequency of words in the

MD&As and use them as features of the regression model to predict future earnings. The

Loughran & McDonald model produces an average MAE of 1.782 and a SAFE score of 0.899.

The Forward-Looking model produces an average MAE of 1.896 and a SAFE score of 0.954.

This indicates that RoBERTa significantly outperforms these benchmark models.

Next, we combine all three metamodels with a linear regression stack. We use oofAR,

oofLightGBM , and oofRoBERTa as a linear regressor to predict future earnings on the training

set. Finally, we use the linear regression model on predAR, predLightGBM and predRoBERTa

13Thirty most frequent positive words from Loughran and McDonald [2011]’s dictionary are: [’gain’,
’gains’, ’able’, ’advances’, ’improvements’, ’best’, ’successful’, ’opportunities’, ’good’, ’favorable’, ’exclusive’,
’achieve’, ’profitability’, ’successfully’, ’success’, ’improved’, ’opportunity’, ’satisfy’, ’improve’, ’improve-
ment’, ’positive’, ’strong’, ’profitable’, ’progress’, ’achieved’, ’satisfaction’, ’enable’, ’beneficially’, ’better’,
’leading’].

The thirty most frequent negative words are: [’loss’, ’losses’, ’against’, ’impairment’, ’disclosed’, ’deficit’,
’termination’, ’adversely’, ’adverse’, ’litigation’, ’restated’, ’discontinued’, ’default’, ’concern’, ’restructuring’,
’failure’, ’decline’, ’deficiencies’, ’weaknesses’, ’fraud’, ’misleading’, ’unable’, ’omit’, ’defaults’, ’bankruptcy’,
’damages’, ’terminated’, ’liquidation’, ’omitted’, ’negative’].

Forward looking words from Muslu et al. [2015] are: [”will”, ”future”, ”next fiscal”, ”next month”, ”next
period”, ”next quarter”, ”next year”, ”incoming”, ”coming fiscal”, ”coming month”, ”coming period”,
”coming quarter”, ”coming year”, ”upcoming fiscal”, ”upcoming month”, ”upcoming period”, ”upcoming
quarter”, ”upcoming year”, ”subsequent fiscal”, ”subsequent month”, ”subsequent period”, ”subsequent
quarter”, ”subsequent year”, ”following fiscal”, ”following month”, ”following period”, ”following quarter”,
”following year”, ”aim”, ”anticipate”, ”assume”, ”commit”, ”estimate”, ”expect”, ”forecast”, ”foresee”,
”hope”, ”intend”, ”plan”, ”project”, ”seek”, ”target”
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to forecast the future earnings on every test set. We find that the stack ensemble model

obtains an average SAFE score of 0.495 over 16 test years. This results in an 8.12% im-

provement over the benchmark AR(1) model. Moreover, we find that the improvement of

the Stack ensemble model is more evident with the recent times’ data. While the stack

ensemble model is 8.24% better than the AR(1) model for the first 10 years of test data

(2004-2013), it is 11.78% better for the last 10 years of test data (2010-2019). However,

we find that the improvement of the Stack model over AR(1) is not statistically significant

in the first 10 years of test data (2004-2013). An analysis of the variance test produces a

p-value of 0.118 for the first 10 years of test data. However, we find the improvement of

Stack is statistically significant in the last 10 years of test data (2010-2019). Analysis of

variance yields a p-value of 0.04 in the last 10 years of test data. This shows that the model

learns better with more data and promises to perform better in future tests.

Test Year AR(1) LightGBM RoBERTa Stack
2004 0.434 0.539 0.761 0.439
2005 0.526 0.523 0.691 0.545
2006 0.578 0.600 0.688 0.586
2007 0.548 0.577 0.705 0.528
2008 0.737 0.633 0.774 0.754
2009 0.612 0.587 0.706 0.577
2010 0.582 0.487 0.654 0.475
2011 0.539 0.457 0.636 0.431
2012 0.492 0.396 0.574 0.379
2013 0.467 0.415 0.597 0.398
2014 0.519 0.483 0.669 0.474
2015 0.451 0.401 0.612 0.399
2016 0.526 0.503 0.640 0.505
2017 0.498 0.447 0.622 0.448
2018 0.367 0.389 0.584 0.362
2019 0.611 0.601 0.705 0.614
Average 0.530 0.502 0.664 0.495

Table 4.5: Master Table showing SAFE performance comparison
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Test Year AR(1) LightGBM RoBERTa Stack
2004 0.646 0.801 1.132 0.653
2005 0.762 0.758 1.000 0.79
2006 0.852 0.885 1.015 0.864
2007 0.912 0.959 1.172 0.879
2008 1.098 0.943 1.153 1.123
2009 0.89 0.54 1.026 0.839
2010 0.959 0.803 1.077 0.782
2011 0.942 0.8 1.113 0.754
2012 0.892 0.717 1.04 0.686
2013 0.898 0.798 1.148 0.766
2014 1.11 1.033 1.43 1.014
2015 0.937 0.834 1.273 0.83
2016 1.24 1.186 1.508 1.192
2017 1.316 1.182 1.644 1.185
2018 1.06 1.125 1.689 1.047
2019 2.211 2.177 2.551 2.223
Average 1.045 0.991 1.311 0.977

Table 4.6: Master Table showing performance comparison using MAE

We present the time trends of our models in Figure A.5 and Figure A.6. We find the

superiority of the RoBERTa model among the other textual benchmarks. However, stand

alone textual models are not as predictive as the models developed from the financial fea-

tures. However, upon combining the RoBERTa within the stack framework improves the

prediction with time. We also present the pairwise comparison of our models comparing

both MAE and SAFE [Table A.3 - A.32].

4.8 Supplementary Analysis

We investigate the difference of predictive potentials of all the models in different deciles of

current earnings. We split the earnings into ten deciles for the entire data and find that the

models find it difficult to predict the future earnings for firms with earnings at the first and

tenth deciles. We find that the stack ensemble model performs best out of all the models

even in these two deciles [Figure A.3 and Figure A.4] and that indicates the usefulness of the

stack ensemble model for “hard to predict” firms. In these next two sections, we discuss the

performance of our stack ensemble model on different subsets of firms that prior literature

identifies as “hard to predict” firms.

4.8.1 Surviving and Non-surviving firms

We split our entire sample into two subsets. One is with the set of surviving firms that

stayed throughout the entire test sample period of 16 years and two is the set of firms that

are not present throughout the entire time frame of our test period. We found altogether

381 surviving firms in our sample. We find that for the set of non-surviving firms, the
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benchmark AR(1) model produces an average SAFE score of 0.556, and or stack ensemble

model produces an average SAFE of 0.513 which is 7.62% [Table A.40]. We find that the

out-performance in the stack over AR(1) is also statistically significant in the last 10 years

of test data for non-surviving firms. On the other set with surviving firms, AR(1) model

produces an average SAFE score of 0.499 and the stack ensemble model obtains an average

SAFE score of 0.479 which results in a 4.01% improvement [Table A.39]. However, analysis

of variance test indicates that this improvement of the stack over AR(1) is not statistically

significant. This shows that the surviving firms are not hard to predict and due to their

steady growth, AR(1) is sufficient for their earnings forecasting.

4.8.2 Loss and profit firms

We also test our models’ performance with the set of loss firms that is whose earnings are

negative in the corresponding fiscal year. We find that with these loss firms, our stack

ensemble model outperforms the AR(1) model by 12.11%. While the AR(1) model produces

an average SAFE score of 0.836, the stack ensemble model obtains an average SAFE score

of 0.735 across 16 test years [Table A.33]. An analysis of the variance test also confirms that

the out-performance of the stack model is statistically significant over AR(1) model. We

also test our model with the set of profit firms that is the set of firms with positive earnings

in the corresponding fiscal year. We find that for-profit firms, the AR(1) model and stack

ensemble model obtains average SAFE of 0.533 and 0.502 respectively resulting in a 5.78%

better performance [Table A.34]. However, we find that the improvement of the stack model

over AR(1) is not statistically significant for profit firms. However, the improvement for

profit firms is statistically significant over the last 10 years of test data.

Next, we also explore how our stack model captures the interaction between soft and

hard information by evaluating the performance in the following 2X2 settings of loss firms

and Non-GAAP firms. We use 4 subsets: 1. loss and Non-GAAP firms, 2. Loss and no

Non-GAAP firms, 3. Profit and Non-GAAP firms, 4. profit and no Non-GAAP firms. We

find a statistically significant performance improvement of 9.48% and 12.58% of the stack

model over AR(1) model in the set 1 and set 2 respectively [table A.35, A.36]. For set

3, the stack model outperforms the AR(1) model by 6.78% and the improvement is also

statistically significant in the last 10 years of test data [table A.37]. However, for set 4,

we find that although the stack model is out-performing the AR(1) model by 4.10% the

improvement is not statistically significant [Table A.38].
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4.9 Conclusion

Predicting future earnings has always been of great interest to investors, shareholders, and

researchers. However, statistical time-series forecasting suffers from different biases gen-

erated from modeling design choices. In this study, we examine how to combine several

machine learning models so that the modeling design itself reduces partialities to produce

more accurate earnings forecasts.

In this study, we introduce a stacked ensemble modeling framework that combines three

machine learning models: AR(1), LightGBM, and RoBERTa. We also introduce a new

metric to the literature that can be used to compare forecasting accuracy across models

in different time frames. We find that our model significantly outperforms the benchmark

model from the extant literature. We also demonstrate our models’ superiority on different

sets of “hard to predict” firms that the literature previously identified.
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5 General Discussion and Future Perspectives

5.1 General Discussion

Financial accounting helps assess the business performance and guides investors to set goals,

thereby maintaining a healthy economic state of affairs. Shareholders and other stakeholders

rely on financial reports to evaluate organizations’ financial health. Financial accounting is

the instrument to collate the day-to-day transaction level data to produce these financial

reports and beyond.

Because of its large-scale economic dependencies, the existing methods in the financial

accounting literature and practice are unsurprisingly conservative in nature. Practitioners

such as auditors analyze big accounting data to find patterns to investigate the reliability

of financial reports. These methods tend to involve extensive human interventions, which

renders the process error-prone and time consuming.

There has been a huge technological shift in the last few decades. Specifically, the ma-

chine learning literature introduced state-of-the-art algorithms which shifted the paradigm

of data analysis and pattern recognition. Researchers from the financial accounting domain

have also started implementing these machine learning algorithms to solve practical prob-

lems [Loughran and McDonald, 2016, Bertomeu, 2020, Liu, 2022]. However, because of the

generally conservative approach, researchers also argue that machine learning is yet to be

fully unleashed to its full potential in the financial accounting domain [Lev and Gu, 2016,

Dickey et al., 2019, Bertomeu, 2020].

Moreover, the state-of-the-art algorithms are black boxes in nature i.e. they lack ex-

plainability. Therefore, it is difficult to deploy these models at the production level to draw

inferences. Additionally, it is also convoluted how to combine the machine learning algo-

rithms optimally with financial accounting to solve real-world problems. Hence, we have to

delicately ensemble these two literatures to find working solutions.

In this thesis, I put forward three chapters that lie in the intersection of both ma-

chine learning literature and financial accounting literature. I introduce advanced machine

learning frameworks and methods that can be implemented in an optimized way to solve

real-world problems in the financial accounting domain.

The methods and the frameworks are heavily dependent on current accounting practices

as the input features were collected from the extant literature. These methods are also

designed and motivated to mimic how practitioners deal with these real-world problems in

a more efficient way.

In the next sections, we discuss the contributions of the research following the limitations
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and the directions to future research.

5.2 Contribution to Research and Practice

In order to assess if the financial reports are free from material misstatements, domain

experts investigate the accounting data that is used to prepare the reports. Such accounting

data consists of day-to-day transactions and hence they are found to be substantially large

in volume. Therefore, it becomes impossible to sift through the data to find anomalous

observations. Moreover, a small number of anomalous observations in the accounting data

can result in inaccurate financial reports. Auditors generally work with a small sample of

the data to investigate if anomalies are present.

In chapter 2, a semi-supervised framework has been proposed which is motivated by

such sampling design. Our framework first produces a representative sample of the entire

big data and then detects anomalies in that sample using an unsupervised method. Next, the

anomalies are thoroughly checked by the auditors and domain experts. Next, a supervised

algorithm is deployed to produce the anomalies in the entire sample using the sampled data

as the training set. This method ensures that the learning from the representative sample

can be transferred to the big data. In our experiment, we use data with 32 million records

and the proposed framework could capture 90% and 96% anomalies upon investigating only

5% and 10% of the entire data.

Our study also introduces pseudo-labeling in the accounting practice. Since big account-

ing data are generally unlabelled, pseudo-labeling can help in producing data that can be

used to train supervised models. While pseudo-labeling is also manually possible i.e. by

sifting through the data and identifying the anomaly labels, we employ an unsupervised

method to obtain these pseudo-labels.

Upon detecting anomalies by the unsupervised method in a small representative subset

of the data, the overall framework becomes scalable. Training an unsupervised algorithm on

large data can be computationally expensive hence depending on the memory capacity, it is

possible to opt for an adequate sample size to implement the unsupervised algorithm. The

proposed framework also goes through expert validation after producing the anomalies in

the small sample. Moreover, the classification rules can be further examined by experts to

understand the nature of the anomalies. Our anomaly detection framework is independent

of any accounting assumptions and hence can also be generalized in detecting anomalies in

any big data.

Although financial reports are vastly relied upon by investors to make investment deci-

sions, fraudulent firms tend to misreport to hide their deceptive activities. Managers of the
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fraudulent firms deliberately misguide the investors, which can potentially cause significant

disruption to the stock market and the economy. Therefore accounting fraud detection has

become an important subject to study in the last few decades.

While extensive research has been already done using financial numbers [Dechow et al.,

2011, Perols et al., 2017, Bao et al., 2020], recent studies found clues in the business text

from financial reports to detect accounting fraud [Loughran and McDonald, 2016, Bushee

et al., 2018, Brown et al., 2020]. However, most of these studies are based on the bag-of-

words method which is finding features from discrete words present in the text to detect

fraud. In chapter 3, we put forward a textual model that captures the context from the

business texts of financial reports to detect accounting fraud.

We apply and fine-tune the BERT model [Devlin et al., 2019] using texts from the annual

financial reports of publicly traded U.S. firms to detect accounting frauds. The proposed

method in chapter 2 is compared to two benchmark models, which are both textual [Brown

et al., 2020] and financial [Bao et al., 2020] based approaches. Our model outperforms these

benchmark models by 15% and 12% respectively.

Financial investigators investigate publicly traded U.S. firms to detect fraudulent activ-

ities. The investigation process is not only expensive but also takes a significant amount of

time. Previous research found that the average time gap between the misreporting and the

initial declaration of fraud is around two years. While it is practically impossible for the

regulators to investigate all the publicly traded firms, SEC also indicated that the focus on

detecting accounting fraud has been diluted because of prioritizing the focus on investigating

Residential mortgage-backed securities, Collateralized debt obligations, and Ponzi schemes

[Ceresney, 2013].

Our proposed fraud detection model finds five times more fraudulent firms and three

times more fraudulent firms than the textual benchmark and the quantitative benchmark

respectively upon investigating only 1% of the firms. In other words, we believe that our

model can help in identifying the same number of frauds upon investigating less number of

firms. Therefore, the adoption of the model can be economically significant for regulators,

auditors, and financial investigators.

Investors tend to forecast how a company is going to perform in the future to decide its

investment strategies. Forecasting future earnings helps in maintaining an efficient capital

market. Given the importance of earnings forecasting, a large body of literature has de-

veloped in the last five-six decades. However, the majority of this literature has relied on

restricted designs such as OLS regression. Although there is a vast literature, the models

still find it difficult to forecast future earnings of loss firms or non-surviving firms [Hwang
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et al., 1996, Brown, 2001, Kothari et al., 2009].

In chapter 4, we theorize and empirically identify what makes earnings predictable. The

majority of the proposed models rely on over-restrictive assumptions thereby suffering from

selection and design bias. For example, models assume that the set of predictors would be

perpetual. On the other side, the extant methods are also based on historical accounting

numbers which are not forward-looking in nature. We theorize that earnings predictability

can be improved by designing a framework that can combine several independent frameworks

thereby achieving more generalization. Such a framework would also result in reducing the

selection and design bias and therefore being more robust. Since accounting information is

multi-dimensional, we combine both hard information such as historical accounting numbers,

and soft information such as raw business text from the annual financial reports to design

our framework.

We introduce a novel hybrid method to forecast future earnings using stacking [LeDell,

2015, Michailidis, 2017] that can accommodate several and typically diverse machine learning

models. We combine one Auto Regressive model, one LightGBM model [Ke et al., 2017],

and one RoBERTa [Liu et al., 2019] model into one framework. We use an exhaustive set of

predictors provided by the extant literature to train the LightGBM model and use MD&A

sections from annual 10-K reports to train the RoBERTa model. Ours is also the first

method to adopt a textual model to forecast future earnings.

Moreover, the majority of the extant literature uses a scale-dependent metric to evaluate

the forecasting models while it is still not clear if forecasting errors are biased with scale

[Cheong and Thomas, 2011, 2018]. We put forward a new scale-independent evaluation

metric (SAFE) to evaluate the model. We find that our stack ensemble model significantly

outperforms the benchmark auto-regressive model. Our proposed method is found to be

significantly outperforming the benchmark model, particularly for the hard to predict firms

such as loss firms and non-surviving firms. Our proposed framework is also scalable in nature

as it can accommodate other forecasting models.

5.3 Limitations

In this section, we discuss the limitations of my thesis work. In chapter 2, we discuss

how a semi-supervised machine learning framework can be used to detect anomalies in

big accounting data. One limitation of our proposed method is the inclusion of domain

experts. The performance of the supervised method is conditional on how domain experts

are validating the anomalies detected by the unsupervised method. The business validation

is also tricky because we should also find a set of non-anomalous observations to reduce the

82



true negative errors.

The proposed framework in chapter 2 also involves the decision of selecting the subset

size to employ the unsupervised algorithm. While the size of the subset should be optimized

according to the hardware availability, it also would affect the validation work of the domain

experts. A bigger subset size can produce more accurate anomaly detection but would also

require more extensive manual labor and vice-versa.

We use publicly available data in chapter 3 and chapter 4 for accounting fraud detection

and earnings forecasting respectively. Our experiment in these two chapters is limited by

the set of publicly traded U.S. firms. We find empirical evidence that our proposed method

is superior for these firms. However, we believe that it can potentially be generalized to

other geographies as well.

Generally, when a machine learning framework is developed an enormous set of important

steps are taken, such as which data to use, how to create a validation method, which models

to try, how to optimize parameters, and how to evaluate the performance, etc. However,

once a framework is finalized and found to be working after several validation tests and

robustness checks, it is important to also create a deployment framework for the finalized

method. Another limitation of my thesis is that we do not include the deployment pipeline

for our proposed methods.

5.4 Directions to future research

Due to its extensive reliance, methods in financial accounting literature are overly conser-

vative. Although machine learning literature has grown significantly, the application of

advanced machine learning algorithms in accounting literature is still growing. This dis-

sertation is joining that growing body of literature that introduces state-of-the-art machine

learning algorithms in financial accounting practice.

In chapter 2, we implemented pseudo-labeling which gained popularity in the computer

vision and deep learning literature [Aroyehun and Gelbukh, 2018, Ding et al., 2019]. Creating

synthetic labels where the labels are difficult to obtain can be very useful. For instance,

fraud detection or bankruptcy detection deals with highly imbalanced classes. Moreover,

the investigation of bankruptcy or accounting fraud can take several years and that restricts

us to obtain the true label of these firms in the recent data. Pseudo-labeling in these data

can be very useful to obtain a working training sample.

In Chapters 3 and 4, we use deep neural networks-based advanced architectures to find

contextual patterns in business texts to detect accounting frauds and forecast earnings.

While we use MD&A texts from the annual 10-K reports, other text sources can be explored
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to extract the deeper meaning of business texts. Researchers found clues in the conference

calls, and corporate social responsibility reports and extracted patterns from that [Bowen

et al., 2002, Brown et al., 2004, Larcker and Zakolyukina, 2012]. Deep neural network-

based models can also be employed on these different sources of data to improve the extant

methods in practice. These models can further be employed to develop methods related to

audit quality prediction, bankruptcy prediction, etc.

Similar to BioBERT [Lee et al., 2020] and SciBERT [Beltagy et al., 2019], future research

can also be carried out to produce AuditBERT or AccountingBERT which can be fine-tuned

to carry out a lot of accounting research, for instance, question answering related to the

Audit industry, etc. With the advancement of machine learning, it is also possible to find

patterns beyond quantitative and text data. Future research can be carried out to find

patterns in audio or video data. For example, conference, and audio calls can be used to

find earnings forecasts of publicly traded companies. Since a lot of quantitative accounting

research depends on interview and survey data, advanced machine learning models can be

employed to find patterns in such data.

At the same time, future research should be carried out regarding the deployment of

machine learning models at the production level. Once a model is found to be empirically

successful on the data, it is important to understand how these models can be deployed

at the organizations. This can include guidelines concerning how to implement the model,

what specific hardware is required to store the model, how to monitor the performance of the

model, how to retrain these models, etc. Future research related to the productionalization

of these advanced models would be of huge importance to the accounting practice.

84



A Appendices
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Figure A.1: Box Plots of Mean Absolute Error (MAE) per model
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Figure A.2: Box Plots of Scale-Independent Absolute Forecast Error (SAFE) per model
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English Summary

Auditing standards require quantitative investigations of data to identify the risk of material

misstatements to produce accurate financial reports. Chapter 2 introduces a novel method

that detects anomalous observations in large-scale accounting data and helps auditors to

detect suspicious observations in big accounting data for follow-up investigations. On the

other hand, we have also found how companies and large institutions delve into fraudulent

activities by deliberately misguiding the shareholders. Chapter 3 introduces an economically

significant method that contextually learns from the business texts to infer the likelihood of

accounting fraud. Shareholders and other stakeholders tend to analyze the financial reports

to estimate how a company is going to perform in the future and that makes forecasting the

earnings of these companies an important subject to study. Chapter 4 introduces a method

that combines both structured and unstructured data to produce more accurate earnings

forecasting and improve the prediction for firms that are essentially hard to predict.

In this thesis, I introduce state-of-the-art machine learning algorithms into the accounting

field to produce cost and time-effective solutions for practical problems. All three chapters

explore the optimization of combining the domain expertise from the accounting field and the

best practices from the machine learning literature. I use both structured and unstructured

data to obtain the findings and Python as the programming language to obtain the results.
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Dutch Summary

Controlestandaarden vereisen kwantitatief onderzoek van gegevens om het risico van ma-

teriële afwijkingen te identificeren om nauwkeurige financiële rapporten te produceren.

Hoofdstuk 2 introduceert een nieuwe methode die afwijkende waarnemingen in grootschalige

boekhoudgegevens detecteert en auditors helpt om verdachte waarnemingen in grote

boekhoudgegevens te detecteren voor vervolgonderzoeken. Aan de andere kant hebben we

ook ontdekt hoe bedrijven en grote instellingen frauduleuze activiteiten ontduiken door

de aandeelhouders bewust op het verkeerde been te zetten. Hoofdstuk 3 introduceert

een economisch significante methode die contextueel leert van de zakelijke teksten om

de waarschijnlijkheid van boekhoudfraude af te leiden. Aandeelhouders en andere be-

langhebbenden hebben de neiging om de financiële rapporten te analyseren om in te schat-

ten hoe een bedrijf in de toekomst gaat presteren en dat maakt het voorspellen van de

winst van deze bedrijven een belangrijk onderwerp om te bestuderen. Hoofdstuk 4 intro-

duceert een methode die zowel gestructureerde als ongestructureerde gegevens combineert

om nauwkeurigere winstprognoses te produceren en de voorspelling te verbeteren voor bedri-

jven die in wezen moeilijk te voorspellen zijn.

In dit proefschrift introduceer ik state-of-the-art algoritmen voor machine learning in

het boekhoudveld om kosten- en tijdbesparende oplossingen voor praktische problemen te

produceren. Alle drie de hoofdstukken onderzoeken de optimalisatie van het combineren

van de domeinexpertise uit het accountingveld en de best practices uit de machine learning-

literatuur. Ik gebruik zowel gestructureerde als ongestructureerde data om de bevindingen

te verkrijgen en Python als programmeertaal om de resultaten te verkrijgen.
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