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General discussion 
The rollout of combination antiretroviral therapy (ART) has led to markedly improved well-

being and increased life expectancy of people living with HIV (PLWH), globally and in sub-

Saharan Africa. However, with more people initiating life-long ART, new challenges have 

arisen: PLWH on ART remain at an increased risk of AIDS and non-AIDS related 

complications. Incomplete CD4+ T-cell recovery and persistent immune dysregulation during 

ART are among the main drivers of the increased risk of morbidity and mortality. 

In this thesis, we sought to explore the extent and consequences of poor CD4+ T-cell recovery 

and persistent chronic immune activation in PLWH on ART in sub-Saharan Africa. In this final 

chapter the key findings described in this thesis are discussed, with a specific focus on CD4+ 

T-cell recovery. The key findings will be placed in the context of current literature to further

dissect the possible underlying pathogenic mechanisms of poor CD4+ T-cell recovery. Finally,

future perspectives regarding long term clinical management of PLWH in sub-Saharan Africa

are discussed.

Role of CD4+ T-cells in the immune response 
CD4+ T-cells, also known as T-helper cells, are essential in mounting an effective humoral 

and cellular immune response. Activation of naïve CD4+ T-cells through antigen recognition 

by the T-cell receptor (TCR) primes the naïve CD4+ T-cell to proliferate and differentiate into 

effector cells [1]. In CD4+ T-cell activation three signals are crucial for an appropriate immune 

response against pathogens. The first signal is induced by the TCR when recognizing 

antigens presented by MHC-II molecules on antigen presenting cells (APCs), such as 

dendritic cells. Second, co-stimulation by receptors-ligand interactions on the CD4+ T-cell and 

APC is required to induce an immune response; absence of co-stimulation leads to an anergic 

and tolerogenic state. Lastly, cytokine production by the APC will provide a polarizing signal 
directing CD4+ T cell subset differentiation and function (Figure 1).  

The different CD4+ T-cell subsets can be identified by transcription factor expression, cytokine 

production and their function in the immune response: T-helper 1 (Th1)  are primarily induced 

in response to intracellular bacteria and viruses; Th2 in response to large extracellular 

parasites; Th17 in response to extracellular bacteria and fungi [2, 3]. Th9 and Th22 subsets 

are more prevalent during allergies and autoimmune diseases (Figure 1). The polarization of 

CD4+ T-cells involves the expression of homing receptors to facilitate the migration to the site 

of inflammation and the production of cytokines to aid in the clearance of the pathogen by 

recruiting myeloid cells (e.g. macrophages) and stimulate B-cells to produce antibodies. In 

addition, T follicular helper cells (Tfh) located in the B cell follicles in lymphoid tissues, are 
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involved in the humoral immune response. Regulatory T cells (Treg) are another subset of 

effector CD4+ T-cells and are induced during nearly all types of infection. They are essential 

in balancing and controlling the magnitude of the immune response through the induction of 

immune regulatory cytokines [4, 5].   

When a pathogen is cleared, inhibitory signals are required to terminate the immune response. 

The latter is regulated by immune checkpoint (IC) molecules such as programmed cell death-

1 (PD-1), cytotoxic T-lymphocyte antigen-4 (CTLA-4), and lymphocyte activation gene protein 

(LAG3), which are expressed on the cellular membrane and upregulated at the end of 

pathogen clearance [6]. In the absence of antigen, IC molecule expression is downregulated 

to achieve homeostasis and effector T-cells will undergo apoptosis while only a small fraction 

will survive and become memory  T-cells [7, 8] (Figure 2). 

Figure 3 CD4+ T-cell polarization. Polarization of naïve CD4+ T-cells to specific effector CD4+ T-cells is driven by 
the presence of various cytokines. Each effector subset has a unique function and produces cytokines that have an effect 
on various other immune cells. In general, Th1 cells induce IFN-γ and activate macrophages and CD8+ T-cells; Th2 
induce IL-4, IL-5, IL-13 and affect Eosinophils, Basophils and Mastcells; Th17 cells induce IL-17, IL-21, IL-22 and affect 
Neutrophils; Th9 cells induce IL-9 and affect mastcells and lymphocytes; Th22 cells induce IL-22 and affect epithelial 
cells; Tfh cells induce IL-21 and activate B cells; Treg induce TGF-β and IL-10 and suppress lymphocytes [9]. Created 
in Biorender. 
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CD4+ T-cell depletion and immune dysfunction during HIV infection 
During HIV infection massive CD4+ T-cell depletion occurs. Given the central function of CD4+ 

T-cells in the immune response, the loss of CD4+ T-cells explains why AIDS is characterized

by opportunistic infections and HIV-related neoplasms [10-14].

Upon infection, the majority of HIV infected CD4+ T-cells die which accounts in part for the 

loss of CD4+ T-cells. However, a small fraction of the HIV infected CD4+ T-cells survive and 

become the HIV reservoir [15]. The HIV reservoir is established early during infection and is 

continuously replenished, which is one of the reasons for HIV persistence [16]. Moreover, the 

immune system is unable to clear the infection due to the high HIV replication and mutation 

rate which facilitates escape from the adaptive immune response. The persistence of HIV 

results in ongoing activation of the immune system, and high turnover, and apoptosis of 

immune cells including CD4+ T cells. In addition, IC molecules which normally are down-

regulated upon terminating the immune response, remain highly expressed and block T-cell 
function [6, 17] (Figure 2). 

Besides the CD4 receptor, the chemokine co-receptor CCR5 or CXCR4 is required for viral 

entry and infection of the CD4+ T-cells [18].  R5-tropic viruses (using the CCR5 co-receptor) 

are mostly responsible for HIV-transmission [19-22] and therefore predominate during early 

infection. In up to half of PLWH evolution within the envelope protein of HIV may result in the 

ability of the virus to use the CXCR4 co-receptor (X4-tropic) [21, 23, 24]. Different CD4+ T-cell 

subsets have different expression levels of the chemokine co-receptors and are thus 

differently susceptible to HIV infection. Most CD4+ T cells, including naïve CD4+ T-cells, 

express CXCR4, while CCR5 is predominantly expressed on activated CD4+ T-cells. The 

ability of X4-tropic HIV to infect naïve and quiescent memory CD4+ T cells is thought to explain 

the more rapid CD4+ T-cell depletion and accelerated disease progression associated with 

the emergence of X4-tropic variants. CCR5 is highly expressed on activated Th1 and Th17 

CD4+ T-cell subsets, of which the Th17 cells in particular are highly susceptible to HIV infection 

[25, 26]. It is thought that this is due to the lower secretion of CCR5 ligands MIP-1α and MIP-

1β, which compete with HIV for binding to CCR5, by Th17 cells as compared to Th1 cells [26, 

27]. The CD4+ T-cell residing in the gut associated lymphoid tissues (GALT) are predominantly 

Th17 CD4+ T-cells, and therefore the gut is severely affected already during early HIV infection 

[28, 29]. The Th17 CD4+ T-cells play a sentinel role in the defense against bacterial/fungal 

pathogens. The depletion of CD4+ T-cells in the GALT causes weakening of the local immune 

system, allowing structural changes to the gut and microbial translocation, which contributes 

to systemic immune activation and CD4+ T-cell turnover (Figure 2). 
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Figure 2 T-cell (CD4+ and CD8+) differentiation during antigen exposure. A. Naïve T-cells that encounter 
and recognize an antigen, differentiate and proliferate into effector T-cells. After clearance of the pathogen, the short-
lived effector population will deflate through apoptosis and only a minor subset will survive and form a quiescent memory 
T-cell population. Upon repeated antigen encounters memory T-cells are rapidly reactivated to clear the pathogen.
During a lifetime people encounter many pathogens and with age T-cells become senescent and exhausted. B. HIV
infection is characterized by gradual loss of CD4+ T-cells: HIV infection and replication in CD4+ T-cells leads to excessive 
CD4+ T-cell loss due to apoptosis and recognition by the immune system. Persistent antigen exposure due to microbial 
translocation and residual viral replication leads to activation, exhaustion and senescence of T-cells which will undergo
apoptosis. Impaired naïve T-cell replenishment occurs due to thymic dysfunction. 

Suboptimal CD4+ T-cell recovery during antiretroviral therapy 

ART suppresses HIV replication and allows for immune recovery as defined by the gain of 

CD4+ T-cells. However, CD4+ T-cell recovery is variable and PLWH, and especially those who 

experience limited CD4+ T-cell recovery, remain at increased risk of morbidity and mortality 

(Chapter 2 and 3) [30]. In participants of the PASER cohort in sub-Saharan Africa who had 

predominantly severe CD4+ T-cell depletion prior to ART initiation, we demonstrate that the 
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majority did not experience restoration of CD4+ T-cells to levels observed in HIV-uninfected 

individuals (Chapter 2 and 3). These findings concur with other cohort studies in sub-Saharan 

Africa that demonstrated that 30-60% of PLWH on ART had incomplete CD4+ T-cell recovery 

[31, 32]. Further understanding of characteristics and the underlying mechanisms of poor 

immune recovery may provide insight for therapeutic interventions and identifying PLWH at 

risk of complications. 

 In line with previous evidence, we demonstrated in the PASER cohort that pre-ART CD4+ T-

cell count and older age were associated with suboptimal CD4+ T-cell recovery [31-37] 
(Chapter 3). The analysis of the differentiation state and functionality of CD4+ T-cells, may 

provide insight in underlying mechanisms of suboptimal CD4+ T-cell recovery, and why those 

of older age and those with low nadir CD4+ T-cell counts are at particular risk of suboptimal 

CD4+ T-cell recovery [38]. It has been reported that PLWH had lower naïve CD4+ T-cells 

compared to uninfected individuals despite successful ART [39-43]. The lower number of 

naïve CD4+ T-cells was mostly found in those who initiate ART at low CD4+ T-cell counts [40]. 

Furthermore in PLWH of especially older age, recovery of naïve CD4+ T-cells that recently 

emigrated from the thymus is impaired [33, 44], indicating that age-related thymus functionality 

play a role in CD4+ T-cell recovery. In addition, PLWH on ART have impaired T-cell 

proliferation compared to uninfected individuals [45-47], which indicates that homeostatic 

proliferation capacity may also affect CD4+ T cell recovery. Indeed, studies in African 

populations have shown that PLWH with suboptimal CD4+ T-cell count recovery have 

impaired proliferation responses [48, 49]. Moreover, residual CD4+ T-cell activation [41, 50-

52], higher expression levels of exhaustion and senescence markers (e.g. PD-1, TIGIT, CD57) 

[53-55] and  higher Treg frequencies [56] have been associated with suboptimal CD4+ T-cell 

recovery. This indicates that the overall immune status as reflected by ongoing immune 

activation, dysfunction and imbalance prior and during ART is an important factor for CD4+ T-

cell recovery of PLWH, especially for those of older age and those who initiate ART at low 

nadir CD4+ T-cell counts.  

In African populations, the higher life-time pathogen exposure may influence CD4+ T-cell 

differentiation and functionality and thus immune recovery. Studies have shown that helminth 

infections influence CD4+ T-cell count and activation prior to HIV and may also impact the 

recovery capacity in PLWH during ART [57-61]. Helminth infections skew the immune 
response profile towards a Th2 profile (Figure 1). Intracellular pathogens such as HIV and 

Mycobacterium tuberculosis (TB), require a Th1 response (Figure 1) [62], therefore Th2 

skewing by helminth infections may attenuate Th1 responses against intracellular pathogens 

[63]. Indeed, it has been shown that deworming of individuals with HIV and helminth co-
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infection leads to reduced HIV viral loads and increased CD4+ T-cell recovery [64, 65]. This 

suggest that treatment of helminth infections may contribute to better immunological 

responses in PLWH. In the PASER-cohort we did not measure helminth infections, however 

given the endemicity of helminth infections in the African continent [66, 67] it is likely that 

helminth infections are highly prevalent in our cohort. 

We and others found that PLWH with CD4+ T-cell counts <200 cells/µL have a higher 

incidence rate of opportunistic infections like TB compared to those with higher CD4+ T-cell 

counts [68, 69] (Chapter 3). However, low CD4+ T-cell counts have also been described in 

patients with tuberculosis not infected with HIV [70-72], and anti-tubercular treatment has 

been shown to reverse this reduction [73]. This suggests that TB by itself influences CD4+ T-

cell homeostasis. During TB-HIV co-infection, depletion and suboptimal restoration of CD4+ 

T-cells during ART may therefore be exacerbated. In our analysis, we did not find that TB

diagnosis at ART initiation was associated with suboptimal CD4+ T-cell recovery during
suppressive ART (Chapter 3). In contrast, incident TB during ART has been associated with

impaired CD4+ T-cell recovery [74]. It is noteworthy that participants within the PASER-cohort

had regular routine clinical monitoring and received TB treatment upon TB diagnosis, which

may have mitigated negative effects on CD4+ T-cell recovery.

Immune activation and inflammation are also believed to be among the principal correlates of 

poor CD4+ T-cell recovery [52]. In the PASER-cohort, biomarkers of immune activation and 

inflammation, namely; interleukin (IL)-6, C-reactive protein (CRP), C-X-C chemokine ligand 

10 (CXCL10), soluble CD14 (sCD14), soluble CD163 (sCD163), CXCL9, chemokine (C-C 

motif) ligand 2 (CCL2) and lipopolysaccharide binding protein (LBP), were elevated in PLWH 

prior to ART. During effective ART, levels of CXCL10, LBP, CRP, sCD163, and sCD14 

remained elevated compared to uninfected controls, which is in line with various other reports 

[75-78]. Strong associations were found between the pre-ART biomarker levels and the on-

ART biomarker level. This indicates that the magnitude of pre-ART immune activation is highly 
predictive of immune activation during effective ART (Chapter 4). 

Immune activation during ART is driven largely by microbial translocation. One of the most 

common measured translocated microbial products is lipopolysaccharide (LPS; a gram-

negative bacterial cell wall component) [79]. In PLWH LPS has been directly associated with 

activation of cytotoxic T-lymphocytes (CD8+ T-cells) and monocytes, residual viremia, and 

proinflammatory cytokines such as IFN-α, IL-6, and TNFα [79-84]. In Chapter 4 we described 

the dynamics of two markers, sCD14 and LBP, before and during ART which are directly 

associated with LPS. LBP interacts with LPS and supports binding of LPS to its receptor 

CD14, expressed on monocytes, which is subsequently released as sCD14. We observed 
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that plasma levels of both sCD14 and LBP remained elevated in PLWH despite effective ART 

compared to HIV-negative controls, indicating that microbial translocation contributes to 

immune activation during ART. As helminths can cause significant damage to the intestine 

[85], microbial translocation may even be further exacerbated in PLWH from the African 

region. 

We observed that higher levels of sCD14 during effective ART were associated with 
subsequent suboptimal CD4+ T-cell recovery (Chapter 5), which is in line with findings from 

other studies [86-88]. Besides LPS, also other bacterial components can induce the release 

of sCD14 upon activation of monocytes by pro-inflammatory cytokines (e.g. IL-6 and IL-1β) 

[89]. These findings could suggest a link between microbial translocation and CD4+ T-cell 

recovery, but may also suggest the presence of other microbial and/or viral antigens. We also 

found that TB co-infection was associated with the pre-ART sCD14 level, but not the on-ART 

sCD14 level (Chapter 4). Similarly, a study conducted in South Africa found higher levels of 

sCD14 in PLWH with active TB, but not latent TB infection, compared to PLWH without TB 

[90]. It has been reported that replicating Mycobacterium tuberculosis induce IL-1β, which can 

induce the release of sCD14 [91]. 

We also found an association between on-ART CRP levels and subsequent suboptimal CD4+ 
T-cell recovery (Chapter 5). CRP is mainly secreted by hepatocytes in the liver in response

to the pro-inflammatory cytokines IL-6 and IL-1β. CRP has been associated with adverse

outcomes during HIV in many other studies [92, 93]. CRP is also highly associated with

infections and the height of the CRP level is indicative of viral or bacterial infections [94]. The

detected association between CRP and subsequent suboptimal CD4+ T-cell recovery may

therefore be reflective of underlying pathogenic burden, including co-infections and residual

viral replication.

In the PASER cohort elevated levels of CXCL10 during ART were predictive of subsequent 

viral rebound despite ART. In addition, CXCL10 levels during ART were associated with CD4+ 
T-cell recovery in participants with sustained viral suppression during ART (chapter 5).

CXCL10 has been shown to be strongly associated with HIV infection and viral load [95, 96]

and CXCL10 levels can distinguish between PLWH on ART with and without a detectable viral 

load [97]. There is also evidence that CXCL10 is correlated with CD4+ T-cell count [98, 99].

Monocytes are the main source of CXCL10, but it can also be secreted by various other cell

types, such as T-cells, NK cells and endothelial cells [100]. CXCL10 secretion is induced by

a variety of cytokines [101, 102], but predominantly by Interferon-gamma (IFN-γ) [103].

Studies have indicated that high levels of CXCL10 can suppress immune function, through

suppression of T-cell responses to the HIV gag protein, and impairment of  T-cell proliferation
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capacity [104]. Therefore, high CXCL10 levels in PLWH pre- and on ART may be indicative 

of overall immunological damage caused pre-ART and residual immune dysfunction during 

ART.  

We also observed that PLWH with a limited decline of sCD163 from pre-ART to 12 months on 

ART had an increased risk of subsequent viral rebound during ART (Chapter 5). Several 

reports have shown that sCD163 is a marker of poor outcomes during HIV infection [105, 106]. 

It has been shown that sCD163 levels in plasma reach levels comparable to uninfected people 

when ART is started during early ART, but not during chronic HIV infection [107]. CD163 is 

expressed by monocytes and macrophages and upon cleavage induced by proinflammatory 

stimuli is released as sCD163 [108, 109]. Persistent elevated levels of sCD163 are thought to 

be reflective of chronic macrophage activation [107]. Moreover, coinfection with hepatitis C 

virus attenuates sCD163 reduction during ART [110]. These findings reflect the importance of 

underlying inflammation as well as coinfections on immune recovery in PLWH on ART. 

Drug toxicity is also among the contributors of immune activation. In the PASER-cohort, the 

first-line ART regimen were non-nucleoside reverse transcription inhibitor (NNRTI) based. 

Currently more treatment options are available and many countries, including in sub-Saharan 

Africa, are adopting the use of integrase inhibitor (INSTI) based regimen as the preferred first-

line treatment option. The use of INSTIs has several benefits compared to NNRTIs, e.g. higher 

resistance barrier and less side effects [111, 112]. In addition, the roll-out of INSTIs in the 

African continent is also associated with better outcomes in terms of retention to care and viral 

suppression [113]. Similarly, at the time of enrollment the use of stavudine, a nucleoside 

reverse transcriptase inhibitor which is highly effective for the treatment of HIV but is 

associated with very severe side effects [114-117], was still among standard treatment 

options. Although shortly after the enrollment of participants in the PASER-cohort most 

countries started to phase-out stavudine [118, 119], a substantial proportion (~25%) of 

participants in the PASER-cohort initiated an ART regimen which contained stavudine [120]. 

The current improved treatment options may therefore also influence CD4+ T-cell recovery 

and immune activations in PLWH in sub-Saharan Africa. 

In Chapter 6, we compared plasma microRNA levels in PLWH who experienced poor and 

good subsequent CD4+ T-cell recovery. MicroRNAs play an important role in many cellular 

processes including the immune response and inflammation [121]. microRNA dysregulation 

has been observed in many diseases including HIV infection and therefore changes in 

circulating microRNAs may provide insight in the underlying mechanism of suboptimal CD4+ 

T-cell recovery and immune dysregulation in PLWH on ART.
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The pre-ART plasma levels of miR-199a-3p and miR-200c-3p were higher in PLWH with poor 

compared to those with good CD4+ T-cell recovery (Chapter 6). In addition, we found that the 

levels of miR-17-5p and miR-501-3p were higher in plasma during ART in participants with 

poor CD4+ T-cell recovery compared with good CD4+ T-cell recovery. Two recent studies 

conducted in China found associations between microRNA miR-580, miR-627, miR-138-5p, 

miR-16-5p, and miR-323-3p, and let-7d-5p in the plasma of participants with poor CD4+ T-cell 

recovery compared to those with good CD4+ T-cell recovery [122, 123]. Another study in elite 

controllers and viremic PLWH from North America found correlations between CD4+ T-cell 

counts and the expression levels of miR-150-5p, miR-29a-3p, miR-31-3p, miR-31-5p and miR-

181b-5p in PBMCs [124]. Overall, these studies show no overlap in the identified microRNAs, 

which is likely due to differences between study populations of PLWH from different regions 

across the world, and highlights the effect of host genetics, differential pathogen exposure, 

and other environmental factors or exposures. These data do strongly indicate that no single 

microRNA can uniformly identify PLWH at risk of poor CD4+ T-cell recovery. 

Nonetheless, our analysis of microRNAs may provide relevant insights in immunopathology 

in PLWH. MicroRNAs have been shown to be involved in Th polarization. The miR-17-92 

cluster is a cluster of microRNAs (MiR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-

92a-1),  that are located in the same open reading frame on chromosome 13 and has been 

intensely investigated [125-127]. It has been reported that this cluster regulates the generation 

of both Th1 and Treg cells [128]. Deficiency in the expression of this microRNA cluster leads 

to reduced expression of T-bet (a transcription factor for Th1 polarization) and IFN-γ (see 

Figure 1), and thus promotes polarization to Tregs rather than Th1 CD4+ T-cells. In particular 

miR-17 have been shown to account for the pro-Th1 influence through targeting the TGF-β 

receptor II (TGFβII), and cAMP-responsive element binding protein 1 (CREB1), which are 

essential in Treg generation [128]. 

Also miR-200c-3p seems to play a role in the immune response. ZEB1, a target of miR-200c-

3p, is required for anti-viral memory CD8+ survival and maintenance [129]. In addition, ZEB1 

has been implicated to promote Th1 and Th17 polarization at the expense of transcription 

factors which guide cells to a Th2 phenotype, and thus is essential in creating a balance 

between the Th subsets [130]. Whether the elevated plasma levels of miR-200c-3p at ART 

initiation and miR-17-5p during ART in the PASER-cohort who have poor CD4+ T-cell 

recovery, is reflective of the CD4+ T-cell subsets or viral immune response through CD8+ T-

cells is unknown. However modulation of the survival and maintenance of CD8 + T-cells, and 

skewing of Th subsets may attenuate immune responses against pathogens, including HIV 

and thus influence the disease course during ART. 
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Conclusion
Despite effective ART, suboptimal CD4+ T-cell recovery is frequently observed in PLWH in 

sub-Saharan Africa. PLWH who have an incomplete CD4+ T-cell recovery remain at increased 

risk of (non)-AIDS related complications and mortality. PLWH who are older or those who start 

ART late, when CD4+ T-cells have been severely depleted are particularly at increased risk of 

incomplete CD4+ T-cell recovery. Current guidelines on providing ART upon diagnosis (Test 

and Treat) should aid, at least in part, in overcoming the serious effects of severe CD4+ T-cell 

depletion and suboptimal immune recovery in newly diagnosed PLWH. Nonetheless, a 

substantial fraction of PLWH still presents late in HIV care in many settings in sub-Saharan 

Africa [131-133].  

Furthermore, we demonstrate that immune activation and inflammation persists in many 

African PLWH despite effective ART. Pre-ART immune activation and inflammation was highly 

associated with on-ART immune activation and inflammation. This further emphasizes the 

need for early HIV diagnosis and treatment. In our research we identified relevant biomarkers 

(sCD14, CRP, and CXCL10) that may aid in identifying PLWH at risk of poor treatment 

outcomes, such as treatment failure, poor CD4+ T-cell recovery or co-infections. Further 

evaluation studies are needed to assess the clinical utility of these biomarkers in predicting 

adverse outcomes.  

Future perspectives and recommendations 
It is clear that initiating ART as early as possible is essential to avoid immune dysregulation, 

including inflammation and poor CD4+ T-cell recovery, and promote healthy aging with HIV. 

During recent years, test and treat strategies have been widely promoted. However barriers 

to get tested remain. Therefore strategies to reduce barriers to get tested (e.g. stigma and 

reachability of clinics) are needed to reduce the burden of late HIV diagnosis [131, 134]. 

However, the majority of PLWH today started treatment when CD4+ T-cell counts had already 

been depleted and immune activation and inflammation was prevailing. These people could 

benefit from therapeutic interventions mitigating the pathological effects of persistent immune 

activation and inflammation. Several anti-inflammatory agents (such as statins and anti-

coagulents) have been evaluated, but none of such approaches to date has been proven to 

be beneficial [135, 136]. Targeting underlying mechanisms of immune activation may result in 

a more constructive solution. Specifically of importance for African populations is treating 

coinfections such as TB, viral infections and helminths. Reducing pathogen burden could aid 

in restoring immune function and attenuating immune activation and inflammation. In addition, 

restoring the intestinal barrier function could aid in reducing microbial translocation, and thus 
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reduce systemic immune activation and inflammation. Studies have shown that the use of 

probiotics can reduce microbial translocation and immune activation, these results are 

promising especially because most probiotics are generally well tolerated and inexpensive 

[137-141]. In addition, therapies targeting HIV persistence in the gut may aid in restoring the 

barrier function [142]. Finally, studies focusing on reducing the HIV reservoir, may contribute 

in reducing the burden of persistent residual viral replication. There are many ongoing studies, 

e.g using latency reversal agents, CRISPR-cas, or small interfering RNAs (siRNA), which aim

to target the HIV reservoir. However, the successfulness up until now is limited and mostly

pre-clinical [143-147]. Nonetheless, methods to detect and target the HIV reservoir needs to

be adapted to comprise the different HIV subtypes and vast host genetic diversity in the

African continent [148].

Screening of biomarkers of immune activation may also be useful in low-resource settings and 

could potentially aid in identifying PLWH at risk of poor outcomes. Development of point-of-

care test (POC) for biomarkers, such as CRP, CXCL10 and sCD14, could provide an easy 

accessible tool in resource limited and rural settings. CRP POC tests have shown promising 

results in screening for TB in PLWH [149].  CXCL10 POC test has shown to be a low-cost and 

effective triage test to identify PLWH who experience viral failure [150]. POC diagnostic tests 

could be used by community health workers to monitor patients on ART. Positive results on 

the point-of-care test may aid in the decision to plan a clinic visit for further clinical 

examination, a viral load test and possibly therapeutic interventions, such as treatment 

switches, treatment of co-infections and prophylactic cotrimoxazole. In addition, other 

screening methods suitable for low resource settings could be explored to further investigate 

the extent of immune dysfunction in PLWH in low-resource settings. A common test currently 

used, predominantly in screening for immune deficiencies in infants, is the quantification of T-

cell receptor excision circle (TREC) in DNA extracted from dried blood spot (DBS) [151]. This 

measurement allows for the quantification of naïve T-cells, and may be more practical and 

feasible than other methods using flow cytometry, in low-resource settings. In addition, DNA 

extraction from DBS could be used to measure telomere lengths to quantify the senescence 

status of T-cells [152]. These measurements could be specifically of interest for PLWH, since 

those with few naïve T-cells and those with senescent T-cells are at increased risk of poor 

outcomes. 
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