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Workloads
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∗ University of Amsterdam, Amsterdam, The Netherlands

† European Organisation for Nuclear Research, Geneva, Switzerland
‡ University of Twente, Enschede, The Netherlands

Abstract—When designing algorithms for single-instruction
multiple-thread (SIMT) devices such as general purpose graphics
processing units (GPGPUs), thread imbalance is an important
performance consideration. Thread imbalance can emerge in
iterative applications where workloads are of variable length,
because threads processing larger amounts of work will cause
threads with less work to idle. This form of thread imbalance
influences the design space of algorithms—particularly in terms
of processing granularity—but we lack models to quantify its
impact on application performance. In this paper, we present
a statistical model for quantifying the performance loss due to
thread imbalance for iterative SIMT applications with stochastic,
variable-length workloads. Our model is designed to operate
with minimal knowledge of the implementation details of the
algorithm, relying solely on an understanding of the probability
distribution of the lengths of the workloads. We validate our
model against a synthetic benchmark based on a Monte Carlo
simulation of matrix exponentiation, and show that our model
achieves nearly perfect accuracy. Compared to empirical data
extracted from real hardware, our model maintains a high degree
of accuracy, predicting mean performance loss within a margin
of 2%.

Index Terms—SIMT, imbalance, performance modelling

I. INTRODUCTION

As the landscape of high-performance computing has

evolved over recent years, single-instruction multiple-thread

(SIMT) processors—usually in the form of general-purpose

graphics processing units (GPGPUs)—have become popular

for high-performance computation in many domains [1]. By

sacrificing the independence of individual processing cores,

SIMT processors are able to pack significantly more process-

ing cores, and thus provide much more raw processing power,

compared to their traditional multiple-instruction multiple-data

(MIMD) counterparts [2].

However, not every conceivable computational workload

can be efficiently handed off to an SIMT device. The increased

raw processing power of these devices comes at the cost of

reduced flexibility, and algorithms must be carefully designed

to run efficiently on SIMT devices, lest their computational

prowess goes to waste. One important consideration when

programming SIMT devices is the concept of thread di-
vergence. In an SIMT device, a group of threads can—by

definition—perform only a single, common instruction at a

time; colloquially, these threads run in lockstep. Thus, cases

where the execution paths of threads diverge will cause some

of the threads to be idle. If care is not taken to minimise thread

divergence in algorithms designed to run on SIMT devices, it

can severely degrade performance [3].

Thread divergence emerges not only in situations with

conditional branches in the common if-else sense, but it

can also arise in iterative processes in the form of thread
imbalance. When the number of iterations of a loop varies

between threads, the result is divergence: threads will be

idle until the thread with the largest amount of work has

performed the necessary number of iterations. Throughout this

paper, we refer to workloads where the number of iterations

is not fixed and may differ between threads as variable-length
workloads. When the number of iterations is described by

some probabilistic process, we refer to them as stochastic
workloads. While it is well understood that thread imbalance

in variable-length workloads is detrimental to the performance

of SIMT devices [3], [4], we are unaware of any quantitative

models that predict exactly how much performance is lost.

The question how we can model the impact of thread

imbalance in stochastic variable-length workloads is the core

focus of this paper. With this work, we are the first to design

and implement an accurate statistical model for the expected

performance loss of a given application, given only that it is

an iterative process, that it is executed on an SIMT device, and

that the number of iterations required to complete the process

follows a known (albeit arbitrarily complex) distribution. We

validate our model using empirical measurements gathered

using a dedicated benchmark running on an NVIDIA GPU.

The results of this validation show that our model agrees with

simulated data with a relative error of less than 0.1%, and that

it agrees with measurements taken on a real device within 2%.

Our accurate model can help motivate more precisely the

design process of (future) SIMT applications—in particular in

terms of processing granularity—in domains where stochastic

iterative processes are common, such as machine learning [5],

cryptography [6], graph processing [7], and scientific comput-

ing [8]. The importance of thread imbalance and granularity is

further supported by our own results, which show (in Table I)

that thread imbalance in SIMT devices can lead to execution

that is nearly four times slower if thread granularity is not

chosen carefully.
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In short, our paper makes the following contributions:

• We provide a statistical framework for reasoning about

the performance loss due to thread imbalance in variable-

length workloads on SIMT processors (Section III);

• We assess the accuracy of our model using empirical

results gained from a custom synthetic benchmark for

this form of performance loss (Section IV);

II. BACKGROUND

A traditional multi-core CPU architecture consists of a

number of processing cores, each of which is equipped with

dedicated arithmetic and control hardware. Because all cores

in such an architecture possess their own control, they can

function largely independently of one another, executing mul-

tiple instructions on (potentially) different data. Thus, such

an architecture is classified as multiple-instruction multiple-
data (MIMD) [9]. In recent years, we observe a stark rise in

popularity of a different kind of architecture: single-instruction
multiple-thread (SIMT). SIMT architectures omit the control

flow from individual cores in favour of having a larger number

of (less flexible) cores and—as a result—more arithmetic

prowess compared to a similar MIMD device.

A. Thread Divergence and Imbalance

In an SIMT architecture, multiple threads—which we refer

to as a thread group—share the same control flow. As a result,

instructions on such architectures can only ever be issued to an

entire thread group at the same time, rather than to individual

threads like on an MIMD architecture. This behaviour is

referred to as lockstep execution. In this execution model,

conditional branches are challenging and are implemented

through a process known as masking: when a thread group en-

counters a conditional block, each thread determines whether

it should execute or ignore the corresponding instructions.

Threads not participating in conditional execution are unable to

perform other useful work during this time: they are idle, and

computing resources are wasted. As the number of conditional

paths—or the length of those paths—grows, more threads are

idle for longer periods of time, and we lose more performance.

We refer to this behaviour as thread divergence, and it can be

a significant source of performance degradation [3].

Thread divergence also arises in iterative structures such as

loops, which rely on conditional branches that jump back to

the start of the loop body. Thus, if one thread in an SIMT

processor has concluded the iterative process but another

thread has more iterations to perform, their execution paths

diverge: the first thread will need to idle until the second

completes the loop. We refer to this particular manifestation

of threads divergence as thread imbalance.

B. Reducing Thread Imbalance

The SIMT programmer’s toolbox provides at least two

strategies to ameliorate the effects of thread imbalance: chang-

ing the thread granularity, and load balancing. Thread granu-

larity refers to the way work is mapped onto the threads of the

processor. Most commonly, SIMT programmers map small,

independent parts of a workload onto individual threads, but it

is also possible to spread that work over multiple threads. This

effectively reduces the number of independent jobs executed

by the thread group, thereby reducing the degree of imbalance.

However, spreading work over multiple threads is often non-

trivial. We see increased support for programming at these lev-

els of granularity; NVIDIA, for example, implements so-called

cooperative groups in version 9.0 of its CUDA platform [10],

[11]. Similarly, SYCL features sub-groups [12]. Both of these

features allow programmers to tune their code to minimise the

impact of thread imbalance.

Load balancing, on the other hand, operates by pre-

processing the workload of the SIMT processor such that the

work performed by each thread group is more balanced [7].

For example, a programmer may choose to sort the work-

load before offloading it to the SIMT device, guaranteeing

that jobs of similar length will end up in the same thread

group. Of course, sorting a sufficiently large workload is in

itself a costly operation, and approximate solutions—which

nevertheless more balanced execution—may be used [13].

Choosing a suitable thread granularity or balancing loads

between SIMT threads requires an understanding of how much

performance we lose due to imbalance, but we do not currently

have quantitative models for this. Rather, these important (and

potentially time-consuming) optimisations are often processes

of trial and error. Our contribution, therefore, is to provide

a quantitative model for the impact of thread imbalance in

order to allow application developers to make more informed

decisions about the design of their applications.

III. MODELLING

Throughout this paper we assume that a workload is

comprised of an arbitrary number of units of work which

can be performed independently and in parallel. Each unit

is described by a natural number, indicating the number of

iterations required to complete it. For example, the workload

{5, 2, 3, 7} consists of four units of work, requiring 5, 2,

3, and 7 iterations to complete. Executing one iteration has

some application-specific computational cost T ; this might

represent, for example, a number of cycles or an amount of

wall-clock time. It follows that the computational cost of a

unit of work is given by the number of iterations required to

complete it multiplied by the iteration cost T .

As workloads can be arbitrarily large and hardware is

inherently limited in its ability to execute processes in parallel,

the workload is naturally partitioned into work groups. On an

SIMT device with two lanes, our previous workload might

be partitioned into two work groups: {{5, 2}, {3, 7}}. Work

groups are analogous to thread groups in the same way that

data is analogous to hardware; work groups are mapped onto

thread groups for processing, and a single thread group may

process many work groups throughout the running time of

a program. The mapping of individual units of work onto

individual threads is determined by the thread granularity.

The manner in which the work groups within a workload are

mapped onto thread groups depends on the hardware, and has
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t0 t1 t2 t3 t4 t5 t6 t7

(a) The SIMT device runs in lock-
step, leading to periods of idle-
ness (straight grey arrows). The
cost, including idle time, is 56 for
w and 40 for w′.

t0 t1 t2 t3 t4 t5 t6 t7

(b) The MIMD device incurs no
performance loss due to lockstep
execution (amortised over con-
tinuous execution, wavy arrows).
The cost is 33 units for w, and 32
for w′.

Fig. 1: An example of 8-way SIMT and MIMD execu-

tion of two work groups from a larger workload: w =
{4, 2, 7, 1, 6, 4, 3, 6} and w′ = {4, 3, 4, 5, 4, 5, 3, 4}. The per-

formance loss due to imbalance is H(w) = 56/33 = 1.70 and

H(w′) = 40/32 = 1.25.

no bearing on the rest of our model: on a strict SIMT device,

work groups might be executed sequentially by a single thread

group, while on an NVIDIA GPU the work groups might

be executed in parallel across multiple independent streaming

multiprocessors.

Importantly, the idea of imbalance exists only within work

groups, and there is (by definition) no dependency between

different work groups. This allows us, without loss of gener-

ality, to study work groups individually. As such, we denote

work groups using the symbol w, and we use |w| to denote

the size of work group w. Finally, wi shall denote the number

of iterations required to complete the ith unit of work in w.

We define performance loss due to SIMT execution as

the computational cost of executing a work group w on a

SIMT device, CSIMT(w), divided by the cost of executing the

same work group on an idealised MIMD device, CMIMD(w).
This idealised device has equivalent computational power to

the SIMT device, but does not run in lockstep and as such,

its performance does not degrade due to thread imbalance.

Figure 1 illustrates the execution of a workload on these two

devices. Formally, the performance loss of executing a work

group w on the SIMT device, H(w), is defined as:

H(w) =
CSIMT(w)

CMIMD(w)
(1)

From our assumptions made about the devices, it follows

that H(w) ∈ [1,∞); indeed, since the MIMD device has

the same computational power, but is not affected by thread

imbalance, it should always perform as well as or better than

the SIMT device. In this framework, H(w) = 1 implies that

the computational cost of running the work group on the

SIMT device is the same as the cost of running it on the

MIMD device, and indicates that the work group incurs no

performance loss at all. Intuitively, as |w| becomes larger (in

other words, as we process more work in parallel), we expect

the performance loss to grow accordingly. Finally, |w| = 1
implies H(w) = 1, as there is no possibility for a single unit

of work to be imbalanced.

A. Modelling SIMT and MIMD Devices

In order to model the computational cost of executing a

work group on our SIMT device we must consider the fact

that, in lockstep execution, a thread cannot proceed until all

threads in its group have completed their required number of

iterations. Thus, the threads need to wait for the thread with the

largest number of iterations: the depth of the work group [14].

Because all threads in the group are occupied (albeit possibly

idle) throughout the entire process, the total computational cost

for the work group w, CSIMT(w), is given by the following

expression, where T represents the computational cost of

executing a single iteration:

CSIMT(w) = |w| |w|
max
i=1

Twi = T |w| |w|
max
i=1

wi (2)

Next, we model the computational cost of executing the

same work group on our idealised MIMD device. This device

executes the units of work in parallel, but can immediately

perform meaningful work when previous work is completed

such that threads do not incur additional cost by idling.

Therefore, the computational cost of executing the work group

on our MIMD device is equal to the sum of the costs of

the individual units. This gives us the following definition of

CMIMD(w), where the cost T to perform one iteration is the

same as for the SIMT device:

CMIMD(w) =

|w|∑
i=1

Twi = T

|w|∑
i=1

wi (3)

We can substitute Equations 2 and 3 into Equation 1 to

obtain the following expression for the loss of performance:

H(w) =
T |w|max

|w|
i=1 wi

T
∑|w|

i=1 wi

= |w|max
|w|
i=1 wi∑|w|

i=1 wi

(4)

It is worth noting that, in Equation 4, the constant cost factor

T is eliminated, which imparts a powerful property on our

model: it is wholly independent of the implementation details

of the iterative code, as well as the hardware on which it will

run. This means that no knowledge about the implementation

is required to construct a model of this type. Rather, we only

need to know how the number of iterations for each work unit

is distributed.

B. Modelling Stochastic Work Groups

From this point forward, we treat our work groups as ran-

dom samples, which necessitates some change in notation. In a

stochastic framework, our work group w becomes a realisation

of an independently and identically distributed sample of size

n = |w| drawn from a discrete distribution W , such that w =
{W1,W2, . . . ,Wn} and W1,W2, . . . ,Wn ∼ W . Thereby,
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H(w) necessarily becomes a random variable, which we shall

denote XW (n), such that XW (n) ∼ H({W1,W2, . . . ,Wn}).
This gives the following rephrasing of Equation 4 in terms of

random variables:

XW (n) = n
maxni=1 Wi∑n

i=1 Wi
(5)

The idea that iteration counts are drawn from or described

by a statistical distribution arises naturally in many kinds of

computation. Programs which model or process data from real-

world processes might be described—with sufficient domain

knowledge—by one of many well-known parametric distribu-

tions, such as the Poisson distribution. In many other cases

where a closed-form distribution is not available, we can still

describe the iteration-counts distribution through simulation.

This stochastic framework also elucidates some of the po-

tential use cases for our model. Indeed, the idea of configuring

the thread granularity of a program corresponds directly to

changing the size n of the random sample of work lengths, and

load balancing corresponds to changing the underlying distri-

bution W ; balancing the load of a SIMT program amounts

to partitioning it into multiple smaller loads, each of which

has a more narrow distribution and—as a result—loses less

performance due to imbalance. Because our model captures

these effects so directly, we believe it to be a useful tool in

reasoning about these kinds of optimisations.

Given that the distribution of our work unit lengths, W ,

is discrete, we could—in theory—find the distribution of

the performance loss XW (n) by enumerating all possible

values of W1,W2, . . . ,Wn. However, this solution runs in

O(|supp(W )|n) time and is not generally computationally

tractable: a distribution supported by only ten possible out-

comes would lead to 1032 possible combinations in a model

for thirty-two parallel units of work.

We proceed by creating an equivalent model that is more

computationally efficient. In order to do so, we first re-write

the numerator in Equation 5 using order statistics: given that

W1,W2, . . . ,Wn are random variables drawn from W , we

can sort these values in ascending order such that the ith
order statistic, denoted W(i:n), is the kth smallest value. Thus,

W(1:n) represents the smallest value in the sample, W(2:n)

represents the second-smallest value, and so forth. Given that

there are n values in total, W(n:n) naturally represents the

largest value in the sample—the maximum. Next, we reduce

the denominator of the fraction to a single random variable.

This new random variable, denoted ZW (n, a), represents the

distribution of the sum of n random variables drawn from W ,

given the fact that the maximum of that sample is known to

be a. Since the maximum value is know from the numerator,

we set a = W(n:n) and obtain the following equation:

XW (n) = n
a

ZW (n, a)
where a ∼ W(n:n) (6)

The number of random variables required to compute the

performance loss XW (n) in Equation 6 is now only two

(as opposed to the n random variables required to compute

Equation 5): W(n:n) and ZW (n,W(n:n)). This greatly reduces

the combinatorics required to enumerate all possible outcomes

of this division; indeed, we find that the number of out-

comes is now bound by O(n|supp(W )|2). We proceed by

computing the distribution of the sample maximum W(n:n) in

Section III-B1, and the distribution of the sum of a sample

given its maximum, ZW (n, a), in Section III-B2. Finally, we

calculate the ratio distribution XW (n) in Section III-C.

1) Distribution of the Sample Maximum: In order to find

an analytical solution for the distribution of the maximum of

a series of i.i.d. random variables W1,W2, . . . ,Wn ∼ W , we

note that this maximum is equal to the n-th order statistic

of that sample, denoted W(n:n). The distribution of order

statistics for discrete distributions is well understood [15],

and the distribution of W(n:n) is described by the following

probability mass function:

fW(n:n)
(x) = P (W ≤ x)n − P (W < x)n

= FW (x)n − (FW (x)− fW (x))
n

(7)

It is worth noting that the distribution of the maximum value

preserves the support of the original distribution; intuitively,

if one were to roll a six-sided die ten times and select the

maximum roll, that outcome would never be more than six,

nor would it ever be lower than one.

2) Distribution of the Sample Sum: In Equation 6,

ZW (n, a) denotes the distribution of the sum of an i.i.d.

sample W1,W2, . . . ,Wn ∼ W given a priori knowledge that

the maximum value in that sample is equal to a, thus:

fZW (n,a)(x) = P

(
x =

n∑
i=1

Wi

∣∣∣∣∣ W(n:n) = a

)
(8)

In order to derive this distribution we construct a paramet-

ric, non-normalized function gW (x; i,m), which denotes the

probability of the sum of i values drawn from W , each of

which is no greater than m, being equal to x. This function is

defined inductively from a degenerate distribution supported at

zero (capturing the idea that additive processes start at zero)

as follows:

gW (x; i,m) =

⎧⎨
⎩
[x = 0] if i = 0
m∑
j=0

gW (x− j; i− 1,m)fW (j) otherwise

(9)

By its definition, gW (x;n, a) nearly models the target

distribution but it crucially fails to model that, in for the

maximum of a sample to equal a, the sample must contain a
at least once. In order to resolve this, we subtract the function

gW (x;n, a − 1), which intuitively models the probability of

never drawing a, point-wise. Then, we only need to normalize

the resulting probabilities to find an expression for the distri-

bution of the sample sum given its maximum:
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fZW (n,a)(x) =
gW (x;n, a)− gW (x;n, a− 1)∑na

j=a (gW (j;n, a)− gW (j;n, a− 1))
(10)

C. Modelling Performance Loss

In order to find the distribution of the loss of performance in

our model, we calculate the ratio distribution between W(n:n)

and ZW (n,W(n:n)). This process does not generally permit

a closed form solution, but this distribution can be calculated

through a brute-force approach. Indeed, since all distributions

involved in the process are discrete and because their supports

are subsets of the integers, our ratio distribution is supported

by a subset of Q which must be countable. The probability

of each supported outcome is then given by summing up

the probabilities of all outcomes which map to the same

irreducible fraction:

fXW (n)(x) =
∑

a,b∈N, n a
b =x

fW(n:n)
(a)fZW (n,a)

(b) (11)

It should be noted that, for this process to be tractable, the

support of the underlying distribution W must be finite. If the

support of W is infinite, then the support of W(n:n) is infinite

and, consequently, the support of XW (n) is also infinite; as

such, we would not be able to meaningfully enumerate the

possible outcomes. We can resolve this issue by approximating

W using a finite truncated distribution.

The enumeration of the possible outcomes, and the compu-

tation of their probabilities, marks the end of the construction

of our model. This model gives us insight into the distribution

of the loss of performance for a randomly drawn work group.

For example, E(XW (n)) gives the expected loss of perfor-

mance for a work group. Because most real-world workloads

will have many thousands of work groups, the performance

loss of such workloads will naturally tend towards the expected

value as a consequence of the law of large numbers.

IV. EVALUATION

In order to evaluate the predictive power of our model, we

construct a benchmark based on a simple iterative process:

matrix exponentiation. Our validation process has two stages.

First, we simulate a synthetic workload—with exponents

drawn from a given distribution—using a Monte Carlo method.

This process allows us to compute the loss of performance

as given by Equation 4 exactly, and we will refer to this as

the simulated loss of performance. Second, we execute the

matrix exponentiation kernel—with the iteration counts given

by our earlier simulation—on a real-world SIMT device; by

measuring the execution time of each of the work groups, we

can determine the measured loss of performance. Both of these

metrics can then be compared to each other, as well as to the

modelled loss of performance, to confirm whether they are in

agreement.

Data: Source distribution W , number of trials r, work group
size n

Result: Simulated results x0, . . . , xr and measured results
y0, . . . , yr

for i← 0 to r do
for j ← 0 to n do

pi,j ←W ;
Mi,j ← random matrix;

end
end
for i← 0 to r do

CSIMT ← 0;
CMIMD ← 0;
parallel for j ← 0 to n do

M ′
i,j ← I;

cj ← clock();
for k ← 0 to pi,j do

M ′
i,j ←M ′

i,jMi,j ;
cMIMD,j ← clock();

end
cSIMT,j ← clock();
CSIMT ← CSIMT + cSIMT,j − cj ;
CMIMD ← CMIMD + cMIMD,j − cj ;

end
xi ← n

maxnj=0 pi,j
∑n

j=0 pi,j
;

yi ← CSIMT
CMIMD

;

end

Algorithm 1: Benchmark of the loss of performance when run-

ning work units drawn from a given distribution. We assume

execution on an SIMT machine—thus, the parallel block is

executed in lockstep—to determine CSIMT, and emulate the

equivalent MIMD execution to calculate CMIMD.

A. Benchmark Design

Our benchmark operates by computing powers of square

dense matrices Mp (with p ∈ N) through repeated multiplica-

tion1. This problem matches the class of algorithms targeted

by our model very well: each work unit iteratively executes

matrix multiplication operations, and the number of iterations

is equal to the exponent p. In addition, the cost of each iteration

is fixed: for our benchmark, we operate on 16×16 matrices. As

discussed in Section III, the execution time of each individual

step is irrelevant to the outcome of our model, and as such

the size of the matrices should not matter. However, we find

that if the run-time of each individual step is very small (as

it is for, say, 3 × 3 matrices), we incur additional noise in

our measurements. Pseudo-code for our benchmark is given

in Algorithm 1.

Note that our validation strategy relies on an emulation

of MIMD behaviour on the SIMT device. To this end, we

measure the cost of performing a computation in accordance

with the SIMT model as the time between the start of the

computation and the time at which all threads are done. In

contrast, we emulate the behaviour of an MIMD device by

1The astute reader may have noticed that, because square matrices under
multiplication form a monoid, this operation can be performed more efficiently
in O(log2 p) time. However, this defeats the purpose of our benchmark, and
is therefore not implemented.
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TABLE I: Descriptive statistics of the probability distributions

used to validate our model, comparing modelled, simulated,

and measured distributions.

Modelled Simulated Measured

Dist. n μA ηS,A μS ηM,S μM ηA,M

B(40, 0.5) 2 1.090 0.01% 1.090 0.86% 1.099 0.86%
4 1.163 0.00% 1.163 0.83% 1.173 0.84%
8 1.225 0.02% 1.225 0.85% 1.236 0.88%

16 1.278 0.01% 1.278 0.75% 1.287 0.74%
32 1.325 0.01% 1.325 0.11% 1.326 0.12%

Geo(0.05) 2 1.476 0.05% 1.477 1.36% 1.497 1.43%
4 2.047 0.03% 2.047 0.91% 2.065 0.89%
8 2.668 0.01% 2.668 0.77% 2.689 0.77%

16 3.317 0.02% 3.317 0.12% 3.321 0.14%
32 3.979 0.02% 3.979 1.64% 3.915 1.59%

Pois(30) 2 1.104 0.00% 1.104 0.57% 1.110 0.58%
4 1.191 0.00% 1.191 0.55% 1.198 0.55%
8 1.268 0.01% 1.268 0.57% 1.275 0.57%

16 1.335 0.00% 1.335 0.44% 1.341 0.45%
32 1.397 0.00% 1.397 0.26% 1.393 0.25%

U(20, 40) 2 1.118 0.00% 1.118 0.57% 1.124 0.58%
4 1.213 0.01% 1.213 0.55% 1.220 0.54%
8 1.275 0.01% 1.275 0.58% 1.282 0.59%

16 1.309 0.01% 1.309 0.53% 1.316 0.54%
32 1.326 0.00% 1.326 0.16% 1.328 0.16%

NB(5, 0.3) 2 1.301 0.02% 1.301 1.64% 1.323 1.68%
4 1.587 0.06% 1.586 1.38% 1.608 1.34%
8 1.860 0.04% 1.860 1.32% 1.885 1.30%

16 2.123 0.06% 2.124 0.84% 2.142 0.90%
32 2.375 0.01% 2.375 0.72% 2.358 0.70%

μA denotes the expected performance loss as derived analytically using
our model, μS denotes the mean performance loss derived from our
simulation, and μM denotes the mean of the measured data. ηa,b denotes
the relative error between the means μa and μb: ηa,b = |(μa−μb)/μa|.

calculating the time at which each thread is ready to proceed

with further useful work, without being constrained by the

lockstep execution model.

We evaluate the accuracy of our model using the following

five underlying probability distributions for work unit lengths:

• B(40, 0.5) Binomial with n = 40 and p = 0.5.

• Geo(0.05) Geometric with p = 0.05.

• Pois(30) Poisson with λ = 30.

• U(20, 40) Uniform with a = 20 and b = 40.

• NB(5, 0.3) Negative binomial with r = 5 and p = 0.3.

These distributions have been selected for evaluation be-

cause they: (1) occur naturally and commonly in real-world

processes; (2) they have a wide range of supports (including

infinite ones); and (3) they have a wide variety of shapes (in-

cluding fat-tailed and thin-tailed). Please note that our model

is not limited to such well-behaved distributions; instead,

the model works for arbitrary discrete distributions. Even a

categorical distribution assigning an arbitrary probability mass

to each of a set of natural numbers can be used with our

modelling strategy.

B. Experimental Setup

We have implemented our benchmark in C++; the Monte

Carlo simulation of work items follows the MT19937 pseudo-

random number generator provided by the C++ standard

library [16]. The code for the SIMT device was written in

CUDA [11], and it was compiled and executed on the CUDA

11.5 platform. The compiler was configured to emit code for

Compute Capability and PTX version 8.0 (the most recent

version supported by our target GPU). The host code was

compiled using gcc version 9.4.0. Our results were generated

on a node of the DAS-6 cluster [17] using an NVIDIA A100

PCI-e GPU with 40GB of HBM2 memory based on the

Ampere microarchitecture [18]. The kernels were launched

with 256 threads per block. For each experiment, we used

218 work groups to ensure the availability of sufficient device

memory to store the input matrices.

As our GPU is of a post-Volta architecture, it is equipped

with Independent Thread Scheduling which implies that it is

not strictly an SIMT device [19]. In order to more accurately

simulate true SIMT behaviour, explicit thread group-level

synchronisation2 was added to the kernel. This also allows

us to evaluate the effects of Independent Thread Scheduling

by disabling this synchronisation, as explored in Section IV-D.

As discussed in Section III-C, some of our underlying

distributions had to be truncated to ensure finite support; in

these cases, the acceptable loss of precision was set to a

threshold of ε = 10−6.

C. Validation Results

In order to evaluate the quality of our model, we calculate

the expected and mean performance loss for our modelled,

simulated, and measured results. The nature of our problem

makes it difficult to apply many of the usual goodness-of-

fit tests; some of the probabilities we model are extremely

small, leading to very small numbers of expected observations,

which invalidates the use of Pearson’s χ2 and similar tests.

Because our data is discrete, the Kolmogorov-Smirnov test

(and other statistical tests for continuous distributions) are not

applicable. This need not be a problem, however: as discussed

in Section III-C, we posit that the mean is one of the most

meaningful statistics for our model, as it allows us to estimate

the performance loss for entire workloads.

The results of our analysis are shown in Table I. These

results indicate that our model manages to predict the mean

performance loss of both the Monte Carlo simulation and the

measurements on the GPU with a high level of accuracy:

the relative error between our model and the Monte Carlo

simulation never exceeds 0.1% in our validation, and the

relative error between our model and the timing results from

the GPU—a noisy environment—never exceeds 2%. A visual

comparison between the modelled, simulated, and measured

results for a subset of distributions3 is shown in Figure 2.

These figures confirm—on a visual level—our previous find-

ings that the model agrees well with simulated and measured

data.

We observe that finitely-supported distributions (namely,

the binomial and uniform distributions) are modelled more

accurately, due to the fact that they do not require truncation;

the truncation required to make our model work with infinite

distributions (in this case, the geometric, Poisson, and negative

2In CUDA terminology, this is referred to as warp-level synchronisation.
3The remaining distributions exhibit similar levels of agreement, but were

not included due to space limitations.
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(a) B(40, 0.5) with 16 parallel units of work.
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(b) Geo(0.05) with 8 parallel units of work.
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(c) Pois(30) with 32 parallel units of work.
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(d) U(20, 40) with 2 parallel units of work.
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(e) NB(5, 0.3) with 4 parallel units of work.

Fig. 2: Comparison between the modelled, simulated, and

empirically measured performance loss distributions for a

subset of distributions and degrees of parallelism.

binomial distributions) discards a small but non-zero amount

of information.

D. Effects of Independent Thread Scheduling

Due to the Independent Thread Scheduling architectural

feature, the A100 GPU used in our validation is not a

true SIMT device, as thread group-level synchronicity is not

guaranteed by the hardware. As discussed in Section IV-B, we

use explicit thread group synchronisation to more accurately

emulate SIMT behaviour, but it remains prudent to investigate

the effect of this non-SIMT architecture on our model. To

this end, we have performed all our measurements with the

explicit thread group synchronisation disabled and computed

the difference in performance loss between the two sets of

results. These differences are shown in Figure 3.

We observe that, in all of our benchmarks, the relative

error between the experiments with and without explicit thread

group-level synchronisation is less than 1%. We conclude

that the presence of Independent Thread Scheduling has little

impact on the accuracy of our model and, therefore, our

0.00%
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1.00%
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Fig. 3: Relative error of measured performance loss with ex-

plicit thread group-level synchronisation enabled and disabled,

demonstrating the impact of Independent Thread Scheduling.

model remains adequate even for future devices which may

not follow the SIMT execution model in the strictest sense.

It is worth noting that these results are consistent with the

notion that Independent Thread Scheduling primarily serves

to guarantee forward progress in parallel algorithms, rather

than to provide significant gains in performance [20]. While

we are not aware of any existing studies examining the effects

of this microarchitectural feature in and of itself, our results

are consistent with studies which—in passing—examine its

impact on the performance of other applications [6], [21].

E. Limitations

The main limitation of our model is that the MIMD device

which underpins it is inherently theoretical; however, we are

not aware of any real-world pair of SIMT-MIMD processing

devices with exactly equivalent computational power. This has

consequences for the predictive power of our model, as we

cannot use it to make concrete predictions about program run-

time; instead, our model can be used—for example—to rank

different implementations, as they are compared against the

same theoretical optimum.

V. RELATED WORK

Performance models for SIMT devices—GPUs in

particular—have been widely studied. A survey of existing

modelling techniques, as well as a framework for classifying

models, is given by Madougou, Varbanescu, Laat, et
al. [22]. Within their framework, the model presented in

this paper could be classified as a model for optimisation

space exploration at a coarse abstraction level requiring zero

knowledge about the hardware. While Madougou, Varbanescu,

Laat, et al. specify a class of modelling techniques described

as statistical, this class does not accurately describes our

model: rather than extracting the impact of the design space

from a posteriori knowledge of execution time through

data-centric, machine-learning based methods, we use

statistical methods to make a priori predictions of a program’s

performance, which fits in the category of analytical models.

This categorisation would imply that the closest existing

models to ours are models such as Eiger [23], Stargazer [24],

and the model by Zhang, Hu, Li, et al. [25]. However, all

these models require knowledge about the implementation of

the SIMT program, which our model does not; therefore, we
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believe that our model can be applied much earlier in the

application development process.

VI. CONCLUSION

In this paper, we have presented a model that gives insight

into the performance of iterative applications with stochastic

variable-length workloads on SIMT architectures such as

GPUs; using our model, we can estimate the performance

loss that such applications incur due to thread imbalance.

Our model is designed specifically to require as little a priori

knowledge as possible, relying solely on an understanding of

the statistical distribution of the amount of work that is to be

processed by each thread. This information can be extracted

from domain knowledge or from simulation through an ex-

isting implementation, thus requiring little to no information

about the details of an SIMT implementation of the program,

and allowing our model to be used in the early stages of

application development.

Our model is shown to be accurate within a relative error

of 0.1% compared to a Monte Carlo simulation, and within

2% when compared to measurements on a real device. We

believe our model can be used to quantitatively motivate and

guide important optimisations of SIMT programs, in particular

thread coarsening and load balancing. We aim to apply our

model to real-world applications in domain science in the near

future. In addition, we aim to investigate how our model can

be used in the exploration and (automated) tuning of the design

space of SIMT applications.
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