
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Deformed mirror symmetry for punctured surfaces

van de Kreeke, J.D.C.

Publication date
2023
Document Version
Final published version

Link to publication

Citation for published version (APA):
van de Kreeke, J. D. C. (2023). Deformed mirror symmetry for punctured surfaces. [Thesis,
fully internal, Universiteit van Amsterdam].

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:28 Nov 2023

https://dare.uva.nl/personal/pure/en/publications/deformed-mirror-symmetry-for-punctured-surfaces(f157882a-f15e-4b7c-bf39-4d88cf23df69).html






Deformed Mirror Symmetry for Punctured Surfaces
 

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit

op vrijdag 27 oktober 2023, te 11.00 uur

door Jasper David Cornelis van de Kreeke

geboren te Berlin



Promotiecommissie

Promotor: prof. dr. E.M. Opdam Universiteit van Amsterdam
 

Copromotor: dr. R.R.J. Bocklandt Universiteit van Amsterdam
  

Overige leden: prof. dr. S. Shadrin Universiteit van Amsterdam
prof. dr. L.D.J. Taelman Universiteit van Amsterdam
dr. H.B. Posthuma Universiteit van Amsterdam
prof. dr. S. Schroll Universität zu Köln
prof. dr. L. Hille Universität Münster

Faculteit der Natuurwetenschappen, Wiskunde en Informatica 



1

Het hier beschreven onderzoek/de uitgave van dit proefschrift werd mede mogelijk gemaakt door steun
van de NWO TOP-grant “Algebraic methods and structures in the theory of Frobenius manifolds and
their applications” van Prof. Sergey Shadrin.



2 CONTENTS

Contents

Introduction 7

Paper I Deformations of Gentle A∞-Algebras 19
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Curved gentle algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Arc collections and gentle algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Orbigons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 A∞-structures on the gentle algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Hochschild Cohomology of Gentle A∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Reduction to the zeroth and first component . . . . . . . . . . . . . . . . . . . . . 31
3.3 A set of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Gerstenhaber structure product on Hochschild cohomology . . . . . . . . . . . . . 39
3.5 Classifying curved deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Paper II Relative Fukaya Categories via Gentle Algebras 43
4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5 Preliminaries on A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 The completed tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Deformations of A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Functors between A∞-deformations . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Twisted completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 The Hochschild DGLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.7 Gauge equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.8 L∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.9 Axioms on A∞-deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 Preliminaries on gentle algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1 Punctured surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Arc systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Gentle algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.5 The A∞-structure on GtlA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.6 The deformation Gtlq A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.7 Zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.8 Geometric consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.9 Terminology for arcs and angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7 Preliminaries of Fukaya categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1 The exact Fukaya pre-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 The exact Fukaya category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 The relative exact Fukaya pre-category . . . . . . . . . . . . . . . . . . . . . . . . 86
7.4 The relative exact Fukaya category . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5 Zigzag paths as Lagrangians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8 A deformed Kadeishvili theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.1 Homological splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.2 The classical Kadeishvili theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.3 Existence of minimal models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.4 Deformed differentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



CONTENTS 3

8.5 Optimizing curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
8.6 Auxiliary minimal model procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 100
8.7 The deformed Kadeishvili theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.8 The D = 0 case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9 Uncurving of strings and bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.1 The theory of uncurving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Strings and bands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.3 Complementary angle trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
9.4 The uncurvable objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

10 The category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.1 Category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
10.2 ABCD situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
10.3 Homological splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11 The deformed category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.1 Deformed zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
11.2 EFGH disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
11.3 Deformed differential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11.4 Deformed cohomology basis elements . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.5 Deformed codifferential and projection . . . . . . . . . . . . . . . . . . . . . . . . . 133

12 Result components of Kadeishvili trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12.1 Kadeishvili trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
12.2 Possible tree output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
12.3 Result components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.4 Classification of result components . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

13 From trees to disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
13.1 The subdisk protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
13.2 Shapeless disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
13.3 Constructing subdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
13.4 The four types of disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
13.5 The minimal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
13.6 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.1 ID disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2 CR disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

B Uncurving of band objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
B.1 Situations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.2 Uncurving protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.3 Flowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C Classification of result components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.1 Shape of result components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.2 The shape of subdisks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.3 Narrow locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
C.4 Narrow trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
C.5 Subresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
C.6 Verifying the inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.7 The case of ID, DS and DW disks . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
C.8 Signs and q-parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

D The case of punctured spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
D.1 Absence of consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
D.2 The sphere and its zigzag category . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
D.3 Homological splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
D.4 Deformed category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
D.5 Deformed decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
D.6 Result components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
D.7 Minimal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
D.8 The case of even M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

E Calculating the mirror objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
E.1 Mirror symmetry for punctured surfaces . . . . . . . . . . . . . . . . . . . . . . . . 208
E.2 The desired products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208



4 CONTENTS

E.3 Homological splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
E.4 Deformed decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
E.5 Result components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
E.6 The higher products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

F Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
F.1 Relation to the literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
F.2 Why should it work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
F.3 Why does it work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
F.4 Which calculations can be reused? . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

G Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

Paper III Deformed Mirror Symmetry for Punctured Surfaces 235
14 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
15 Preliminaries on A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

15.1 A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
15.2 Deformations of A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
15.3 Submodules of completed tensor products . . . . . . . . . . . . . . . . . . . . . . . 241
15.4 m-adically free modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
15.5 On the quasi-flatness condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

16 Preliminaries on Koszul duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
16.1 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
16.2 Koszul duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
16.3 Classical Koszual duals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
16.4 Calabi-Yau algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
16.5 Van den Bergh and Serre duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
16.6 Jacobi algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
16.7 Cyclic A∞-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
16.8 Cho-Hong-Lau roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

17 Preliminaries on mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
17.1 Gentle algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
17.2 Zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
17.3 Matrix factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
17.4 Jacobi algebras of dimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
17.5 Mirror symmetry for punctured surfaces . . . . . . . . . . . . . . . . . . . . . . . . 270

18 Preliminaries on the category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . 272
18.1 Category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
18.2 Deformed category of zigzag paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
18.3 Minimal model structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
18.4 Preparation for mirror objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

19 Flatness of superpotential deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
19.1 Flatness and quasi-flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
19.2 Berger-Ginzburg inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
19.3 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
19.4 Relations of bounded type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
19.5 Ideals tailored to boundedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
19.6 Bounded strong Berger-Ginzburg inclusion . . . . . . . . . . . . . . . . . . . . . . 291
19.7 Quasi-flatness in the completed path algebra . . . . . . . . . . . . . . . . . . . . . 293
19.8 Quasi-flatness in the path algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
19.9 Closedness results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
19.10 Dimers of bounded type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
19.11 Main theorems on flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

20 A deformed Cho-Hong-Lau construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
20.1 Perspective from Koszul duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
20.2 The Cho-Hong-Lau construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
20.3 Deformed Landau-Ginzburg model . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
20.4 Projectives of deformed algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
20.5 Deformed matrix factorizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
20.6 Deformed mirror functor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

21 Deformed mirror symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327



CONTENTS 5

21.1 Mirror symmetry by Cho-Hong-Lau . . . . . . . . . . . . . . . . . . . . . . . . . . 327
21.2 Midpoint polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
21.3 Cyclicity and slow growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
21.4 Deformed superpotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
21.5 Deformed potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
21.6 Deformed mirror objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
21.7 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

H Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
H.1 3-punctured sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
H.2 4-punctured torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Note IV Explicit Hochschild Classes for Gentle Algebras 355
22 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
23 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

23.1 A∞-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
23.2 The Hochschild DGLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
23.3 The gentle algebra and its deformation . . . . . . . . . . . . . . . . . . . . . . . . . 357

24 Previous calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
24.1 The generation criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
24.2 Odd Hochschild cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
24.3 Sporadic even cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

25 Even Hochschild cocycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
25.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
25.2 Cancellation on parking garage sequences . . . . . . . . . . . . . . . . . . . . . . . 364
25.3 Cancellation on other sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
25.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Bibliography 388



6 CONTENTS



7

Introduction

Mirror symmetry is a phenomenon observed in string theory and has been translated to mathematics by
Maxim Kontsevich in 1994. Homological mirror symmetry is broadly speaking the quest for equivalences
between Fukaya categories and categories of coherent sheaves. Typically, a symplectic manifold is tied to
a complex variety.

A-side B-side

Symplectic manifold X Complex variety X̌

Fukaya category FukX Derived category Coh X̌

Symplectic form ω Complex structure I

Deformations of ω Deformations of I

Mirror

Mirror

Mirror

Mirror

Noncommutative homological mirror symmetry specifically includes the option to make the complex
variety noncommutative. In this thesis, we consider the specific case of noncommutative mirror symmetry
for punctured surfaces. We deform the A-side and find the matching deformation on the B-side.

Results

As a starting point, we take mirror symmetry for punctured surfaces according to Bocklandt [18]. It
asserts an equivalence of A∞-categories:

GtlQ ∼= mf(Jac Q̌, ℓ).

A∞-categories are algebraic structures which can be deformed in a way similar to associative algebras or
commutative varieties. Equivalent A∞-categories have equal deformation theory. The main question in
this field is:

Given a deformation on one side, what is the corresponding deformation on the other side?

The Hochschild DGLA is a tool to capture the entire deformation theory of an A∞-category. If C is
an A∞-category, we denote its Hochschild DGLA by HC(C). An equivalence of A∞-categories C

∼
−→ D

induces a noncanonical L∞-equivalence of their Hochschild DGLAs. For instance, Bocklandt’s mirror
symmetry for punctured surfaces induces an L∞-equivalence

HC(GtlQ)
∼

−−−−−→ HC(mf(Jac Q̌, ℓ)).

It is of utmost importance to compute this map. In this thesis, we have succeeded in computing the
left-hand side (Paper I), picking a relatively general representative of the left-hand side and investigating
it in detail (Paper II), and pushing it to the right-hand side (Paper III).

Main result (Theorem 21.28) In this thesis, we prove deformed mirror symmetry for punctured
surfaces. As starting point, pick a dimer Q and its gentle algebra GtlQ. We define a specific A∞-
deformation Gtlq Q of GtlQ. Under technical conditions on the dimer Q and its dual dimer Q̌, we
construct a deformation mf(Jacq Q̌, ℓq) of mf(Jac Q̌, ℓ) together with an equivalence of deformed A∞-
categories

Fq : Gtlq Q
∼

−−−−−→ mf(Jacq Q̌, ℓq).
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We provide an explicit description of the deformed Landau-Ginzburg model (Jacq Q̌, ℓq) and the image
objects Fq(X) of the functor. During the course of this thesis, we also derive several results which are of
independent interest:

Hochschild cohomology (Theorem 3.22) We compute the A∞-Hochschild cohomology of the A∞-
gentle algebra GtlQ for an arbitrary punctured surface Q. We conduct this investigation in order to
get a first grasp on deformations of GtlQ. The strategy is to guess cocycles based on the idea of Seidel
[63] that deformations of the Fukaya category come from working relative to a divisor. The result is an
explicit description of the A∞-Hochschild cohomology including cocycle representatives. It agrees with
similar calculations done for more general Fukaya categories by Ganatra [32] and in the mirror model by
Wong [71].

Classification of deformations (Theorem 3.27) We classify formal deformations of gentle algebras
GtlQ. We conduct this investigation in order to get an overview of which deformations are to be
pushed from A-side to B-side. The strategy is to write down a large class of explicit deformations over
arbitrary Artin rings and use the computation of Hochschild cohomology to prove this class exhausts
all deformations. The result is an explicit enumeration of all formal deformations of GtlQ up to gauge
equivalence.

Formality of Hochschild DGLA (Corollary 3.26) We prove that the Hochschild DGLA of a
gentle algebra GtlQ is formal. It is part of our effort to understand the deformation theory of GtlQ. The
strategy is to inspect the minimal model of HC(GtlQ) through Kadeishvili’s theorem. Combining our
explicit knowledge of the Hochschild complex with a grading argument specifically tailored to punctured
surfaces, we conclude that the DGLA is formal.

Deformed Kadeishvili theorem (Theorem 8.34) We show how to compute minimal models of arbi-
trary deformations of A∞-categories, including those with (infinitesimal) curvature. From the perspective
of formal deformations, it is no surprise that these minimal models exist. From the perspective of curved
A∞-categories, the result is a rather stark surprise since (non-infinitesimally) curved A∞-categories ad-
mit no minimal models. The strategy is to maximally uncurve the category and then apply a classical
Kadeishvili construction by trees. The result is an explicit algorithm to compute minimal models for
arbitrary (curved, formal) A∞-deformations.

Uncurving of band objects (Theorem 9.20) We show that band objects in almost every deforma-
tion of GtlQ are generally uncurvable. This is part of our effort to compare the deformations of GtlQ
with relative Fukaya categories. The strategy is to infinitesimally gauge the band objects so that they
lose their curvature. Geometrically this makes the band an object of the relative Fukaya category and
confirms Seidel’s prediction [64].

Discrete relative Fukaya category (Theorem 13.31) We show that (part of) the relative Fukaya
category is equal to (part of) the derived category of a deformed gentle algebra. More precisely, we
compute the A∞-structure on the derived category HTwGtlq Q for a specific deformation Gtlq Q of
GtlQ. The computation essentially consists of a minimal model calculation, during which we build a
large web of data structures that capture output terms of deformed Kadeishvili trees. For every output
term appearing in this web, we offer a geometric interpretation. This shows that the A∞-structure agrees
with the A∞-structure of the relative Fukaya category.

Deformed Cho-Hong-Lau construction (Theorem 20.50) We build a deformed version of the
mirror functor construction of Cho, Hong and Lau [26]. The codomain of our functor Fq : Cq →
MF(Jac(QL,Wq), ℓq) consists of a category of deformed matrix factorizations, in which the product of the
factors is allowed to differ from the potential ℓq by an infinitesimal term. In contrast to the Cho-Hong-
Lau construction, this infinitesimal term serves as curvature and makes the typical image object Fq(X)
curved. Application of the deformed Cho-Hong-Lau construction to the case of Gtlq Q gives the desired

deformed mirror symmetry Gtlq Q
∼
−→ mf(Jacq Q̌, ℓq).
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Flatness of CY3 deformations (Theorem 19.76) We show that a deformation of a CY3 super-
potential induces an algebra deformation under a mild boundedness condition. The reason for this
investigation is that mf(Jacq Q̌, ℓq) only becomes a deformation of mf(Jac Q̌, ℓ) if Jacq Q̌ is a (flat) alge-
bra deformation of Jacq Q̌. Our flatness result is a culmination of a long sequence of improvements in the
literature. Our starting point is the work of Berger and Ginzburg [11] which requires, like all previous
results, that the superpotential W is homogeneous. We show that this condition is superfluous and can
be replaced by a mild boundedness condition. The result is a flatness result for formal deformations of
CY3 algebras with nonhomogeneous potential. In particular, it follows from this result that Jacq Q̌ is a
flat deformation of Jac Q̌ for almost all dimers Q̌.

Context

This thesis can be placed in the context of mirror symmetry, with ties to representation theory and
deformation theory. In what follows, we explain several lines of mathematical development in these three
areas. For each, we explain basic questions in the field and name results which have inspired this thesis.
It is possible to spell out a few results of this thesis on a more philosophical level. Each of the following
claims is explained below:

• “Deformed mirror symmetry is deformed Koszul duality” (Paper III),

• “Gradedness requirements can be replaced by boundedness requirements” (Paper III),

• “Hamiltonian deformations arise naturally from representation theory” (Paper II),

• “The curvature problem is not a problem in case of formal deformations” (Paper II).

Derived invariants Derived categories capture the true homological nature of categories. Whenever
one builds data from a category and the data only depends on the derived category, one speaks of a
derived invariant. By definition, derived equivalent categories have the same derived invariants. Given
an invariant and two derived equivalent categories C, D, it is an interesting task to compare how the
invariant plays out in C and in D.

The primary derived invariants we work with in this thesis concern the deformation theory of A∞-
categories. The two invariants we associate with an A∞-category are its Hochschild cohomology and
the set of its A∞-deformations up to gauge equivalence. When C and D are derived equivalent A∞-
categories, they have the same Hochschild cohomology and A∞-deformations up to gauge equivalence.
The interesting task is then to examine how a given Hochschild class or deformation of C plays out in the
category D.

Mirror symmetry Mirror symmetry originally envisions a correspondence between Calabi-Yau mani-
folds [38]. A Calabi-Yau manifold is a manifold which has both a symplectic and a complex structure. The
original mirror symmetry observation entails that for some Calabi-Yau manifolds X there are Calabi-Yau
manifolds X̌ such that symplectic invariants of X are related to complex invariants of X̌. The manifold
X with its symplectic invariants is also called the A-side and the manifold X̌ with its complex invariants
is called the B-side. Mirror symmetry envisions that the Hodge diamonds of X and X̌ are related by a
flip over the diagonal and the Gromov-Witten invariants of X are related to periods of X̌ [6]. Since the
numbers in the Hodge diamond characterize the dimensions of symplectic and complex deformations, the
gist is that the space of symplectic deformations of X should equal the space of symplectic deformations
of X̌.

Kontsevich proposed a categorification of mirror symmetry in 1994 [43]. In his vision, the Fukaya
category of the Calabi-Yau manifold X is derived equivalent to the category of coherent sheaves of X̌.
Kontsevich also expected the equivalence to hold on the level of A∞-categories. The Fukaya-category
FukX is already an A∞-category by nature. Its objects are the Lagrangian submanifolds of X, the hom
spaces are spanned by intersection points of Lagrangian submanifolds and the products are given by
counting pseudoholomorphic disks between intersection points. The category of coherent sheaves Coh X̌
can also be turned into an A∞-category. The procedure consists of replacing every coherent sheaf by
a projective resolution, defining a natural structure of dg category and taking the minimal A∞-model.
Kontsevich’s homological mirror symmetry asserts that the derived categories Db FukX and Db Coh X̌
are equivalent as A∞-categories.

Elliptic curves are Calabi-Yau manifolds of complex dimension 1 and form a simple instance of ho-
mological mirror symmetry. The A-side is the real torus X = R2/(Z⊕Z) with complexified Kähler form
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ω = b+ iω′ and the B-side is the elliptic curve X̌ = C/(Z+ τZ) with τ =
∫
X
ω. The mirror equivalence

Db FukX ∼= Db Coh X̌ was proven by Polishchuk and Zaslow [61].

Mirror symmetry asserts that the construction X 7→ X̌ of X̌ from X is an involution in the sense that
ˇ̌X = X. Therefore one typically has the following pair of equivalences:

Db FukX ∼= Db Coh X̌,

Db Fuk X̌ ∼= Db CohX.

Deformations versus stability conditions Hochschild cohomology and deformations of the A-side
and B-side of mirror symmetry have a long tradition in the literature. For instance, work of Ganatra [32]
interprets Hochschild cohomology of Fukaya categories in terms of symplectic cohomology of the given
symplectic manifold. Work of Seidel [64] shows how to deform Fukaya categories explicitly by working
relative to a divisor. Work of Wong [71] determines the compactly supported Hochschild cohomology of
the category of matrix factorizations MF(Jac Q̌, ℓ) when Q̌ is a torus dimer.

Stability conditions are another popular derived invariant, introduced by Bridgeland [22]. The idea is
to associate with a triangulated category a space of possible ways to declare certain objects “semistable”
and to assign “phases” to all objects in a way such that every object can be built from a sequence of
semistable objects with increasing phase and morphisms only exist between objects of increasing phase.
Possible intuition is that stability conditions capture all possible ways to immerse a category into the
real plane. For gentle algebras GtlQ, the spaces of stability conditions have been determined by Haiden,
Katzarkov and Kontsevich [35]. For matrix factorizations, there is work of Bocklandt [19]. The following
diagram is a non-exhaustive summary:

A-side B-side

Deformations Ganatra [32], Seidel [64] Wong [71]

Stability conditions Joyce [37], Haiden et al. [35] Bocklandt [19]

The relation between stability conditions on Db FukX and structures on X is mysterious. The un-
derstanding of the relation between deformations of Db CohX and complex structures on X is far from
complete as well. The holy grail is to identify the space of stability conditions on Db Coh X̌ = Db FukX as
“stringy Kähler moduli space” of X̌ and the space of deformations of Db CohX = Db Fuk X̌ as “extended
moduli space of complex structures” of X.

It is a folklore conjecture that deformations and stability conditions are connected via mirror sym-
metry [21]. The conjecture entails that stability conditions on Db FukX are deformations of Db CohX.
Alternatively, stability conditions on Db CohX are deformations of Db FukX. The two spaces are of
course not directly equal, instead one conjectures that suitable enlargements of both spaces agree.

Elliptic curves provide a simple illustration of the folklore conjecture. Let X = C/(Z + τZ) be an
elliptic curve. The space of stability conditions on Db CohX has been identified as the universal cover of
GL+(2,R) by Bridgeland [22]. It has two complex dimensions. The space of deformations of Db FukX
can be guessed from letting the symplectic structure of X run to the large volume limit, where X turns
into a 1-punctured torus. The space of deformations for the Fukaya category of the 1-punctured torus has
been determined to be two-dimensional as well by Lekili and Perutz [46]. The two dimension numbers
seemingly match, although this constitutes by no means an actual correspondence between individual
stability conditions and deformations.

Punctured surfaces provide a further illustration of the conjecture. Stability conditions on the Fukaya
category of a punctured surface X have been explicitly matched with flat structures on X by Haiden et
al. [35]. A flat structure on X is the datum of a complex structure together with a quadratic holomor-
phic differential. An expectation is that the space of complex structures is again part of the space of
deformations of Db CohX. This provides evidence for the folklore conjecture that the space of stability
conditions on Db FukX agrees with the space of deformations of Db CohX once the spaces are suitably
enlarged.

Any correct solution of the folklore conjecture will include constructing candidate maps between the
different moduli spaces. The candidate maps might be constructed directly on the level of moduli spaces
of stability conditions and deformations, or alternatively via the moduli spaces of symplectic or complex
deformations of X or X̌. Whichever way the candidate maps are constructed, a solution needs to match
deformations of Db FukX and Db Coh X̌. This is what we undertake in the present thesis in case X is a
punctured surface.
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Calabi-Yau algebras Calabi-Yau manifolds play a central role in mirror symmetry and Calabi-Yau
algebras have been introduced as their noncommutative analog by Ginzburg [34]. Modules over Calabi-
Yau algebras come with particularly simple Serre duality and the A∞-category of modules comes with a
cyclic structure. The cyclic structure is nowadays considered a “Calabi-Yau category” structure by itself.
There are generalizations available, notably the so-called pre-Calabi-Yau category structures [45].

Mirror symmetry has originally been a duality between Calabi-Yau manifolds. This is also reflected
in noncommutative mirror symmetry. In Bocklandt’s noncommutative mirror symmetry of punctured
surfaces, the B-side is built upon the Calabi-Yau algebra Jac Q̌ of dimension 3. The A-side is the gentle
algebra GtlQ, which is presumably a pre-Calabi-Yau category as well. The systematic construction of
mirror functors due to Cho, Hong and Lau [26] explains this connection on an abstract level.

A core feature of associative Calabi-Yau algebras of dimension 3 is that they can be typically captured
as a Jacobi algebra of a quiver with a superpotential. When we deform mirror symmetry, we have to deal
with deformations of this superpotential. It is a priori unclear that a deformation of the superpotential
provides a (flat) deformation of the Jacobi algebra.

Work of Berger, Ginzburg and Taillefer [11, 12] concerns this flatness problem in the context of PBW
deformations. Their result confirms that if the original superpotential is homogeneous, then a deformation
of the superpotential leads to a PBW deformation of the algebra. In the context of mirror symmetry, the
superpotential of Jac Q̌ is however not homogeneous and the result fails to apply.

In the present thesis, we show that the original argument of Berger and Ginzburg can be extended
beyond the homogeneous case by assuming a simple boundedness condition. The core observation is that
the homogeneity requirement only serves to finish an induction argument. Without the homogeneity
assumption, one is confronted with the task of getting an inductively defined sequence of paths in Q̌
under control. The boundedness assumption limits the possible growth of this sequence and therefore
allows us to finish the proof of flatness without homogeneity requirement. It seems that this boundedness
argument is rather versatile and should be applicable to other problems of algebra wherever homogeneity
is only required to finish induction arguments and limit term growth.

Frobenius manifolds The original working title of this thesis project concerned “Frobenius manifolds
and their relation to homological mirror symmetry”. In a very implicit way, we have made this proposal
true. The bridge between this thesis and Frobenius manifolds is best explained on the level of Hochschild
cohomology and moduli spaces of deformations. The starting point consists of the two A∞-categories
GtlQ and mf(Jac Q̌, ℓ) both of which enjoy Calabi-Yau-type structures. The philosophy is that the
Calabi-Yau structures turn their Hochschild cohomology into Frobenius algebras. More generally, one
is interested in forming actual moduli spaces of A∞-deformations, whose tangent spaces are Hochschild
cohomology. The philosophy is that the Calabi-Yau structures turn the moduli spaces of deformations
into Frobenius manifolds.

A-side B-side

Category GtlQ mf(Jac Q̌, ℓ)

Frobenius manifold M M′

Frobenius algebra HH(GtlQ) HH(mf(Jac Q̌, ℓ))

Koszul duality Mirror symmetry conjectures the existence of A∞-functors between seemingly unre-
lated geometric objects. One looks for an interpretation of how X and X̌ are related or can be constructed
from each other. Mirror symmetry also requires us to understand why two seemingly unrelated categories
can be equivalent. The quest of finding mirror pairs (X, X̌) has sparked the development of functor con-
structions. Popular slogans nowadays include that “Mirror symmetry is T-duality” [68] and “Mirror
symmetry is dimer duality” [18].

Koszul duality is a phenomenon which connects for instance A∞-categories and dg algebras. To an
A∞-algebra A with certain properties Koszul duality associates a dg algebra A!. This duality typically
satisfies (A!)! ∼= A and comes with a functor F : ModfdA → TwA! between the category of finite-
dimensional right A-modules and the twisted completion of A!. The work of Cho, Hong and Lau [26]
shows how to tweak Koszul duality in order to obtain the mirror symmetry for punctured surfaces
GtlQ → mf(Jac Q̌, ℓ). We can phrase the slogan of Cho, Hong and Lau as “Mirror symmetry is Koszul
duality”.

The construction of Cho, Hong and Lau explicitly builds a functor F : C → MF(Jac(QL,W ), ℓ) from
a given A∞-category C and a cyclic subcategory L ⊆ C. In this thesis, we provide a deformed Cho-
Hong-Lau construction which gives rise to functors Fq : Cq → MF(Jac(QL,Wq), ℓq). Behind the scenes,
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this construction is really a deformation of Koszul duality. We can phrase our interpretation of mirror
symmetry as “Deformed mirror symmetry is deformed Koszul duality”.

The curvature problem In A∞-deformation theory, one regards infinitesimal deformations of a given
A∞-structure such that the A∞ -relations are preserved. An issue is that only deforming the A∞-structure
does not give a notion of deformations that is invariant under quasi-equivalence. In order to obtain
a notion invariant under quasi-equivalence, one needs to permit the deformation to have curvature.
Dealing with curvature is however regarded as tedious, because the curvature prevents the differential
from squaring to zero. The presence of curvature is often referred to as the “curvature problem”. A main
question is how to gauge away the curvature or otherwise how to deal with the remaining curvature.
An instance of the uncurving problem has been studied by Lowen and Van den Bergh [50], on which we
comment in section F.1.3.

In the present thesis, we consider the derived category HTwGtlQ of a gentle algebra GtlQ. The
objects of the derived category HTwGtlQ have been classified up to isomorphism by Haiden, Katzarkov
and Kontsevich [35]. They fall into two classes, known as string objects and band objects. Geometrically,
a string corresponds to a curve γ : [0, 1]→ |Q| in the surface which starts and ends at punctures. A band
object corresponds to a closed curve γ : S1 → |Q| in the surface which does not hit any punctures.

Both string objects and band objects can be interpreted as twisted complexes lying in TwGtlQ.
They can also be interpreted as objects in the deformed twisted completion TwGtlq Q. The strings and
bands in TwGtlq Q are however curved objects. The curvature on TwGtlq Q is in principle regarded as
problematic and for instance an obstruction to forming the derived category. The “curvature problem”
in this situation asks how to deal with this situation.

The philosophy of Seidel [63] envisions that this curvature is non-essential for most band objects
and that it can be removed by means of a gauge functor. In the present thesis, we provide a trick
aimed at gauging the band objects in TwGtlq Q slightly such that the objects become curvature-free.
Geometrically this trick entails adding an infinitesimal copy of the curve which runs on the opposite side
of all the punctures that the band object lies close to. We check that the trick succeeds in removing
curvature from almost all band objects, verifying Seidel’s vision from the perspective of gentle algebras
and solving the “curvature problem” for TwGtlq Q.

Derived categories The derived category of an A∞-category is defined as the minimal model of its
twisted completion. If C is an A∞-category, then its twisted completion is denoted Tw C and the minimal
model is denoted H C. The derived category is then HTw C. Its degree zero part H0 Tw C is the analog
of the classical derived category in the abelian setting.

Part of the “curvature problem” is that curved A∞-categories do not have derived categories because
their differential already fails to square to zero. A particular instance appears in the present thesis where
we build a mirror functor by deforming the construction of Cho, Hong and Lau [26]. Since the classical
construction already works with the derived category HTwGtlQ, our deformed construction will need to
work with HTwGtlq Q. In particular, we are required to define and construct part of the derived category
HTwGtlq Q. We therefore set out to build a good theory of derived categories of A∞-deformations.

As a first cue towards derived categories for A∞-deformations, we take the observation that A∞-
deformation theory is a derived invariant. When C and D are A∞-categories and F : C → D is a quasi-
equivalence or derived equivalence, one can in principle push any deformation Cq of C to a deformation
Dq of D. This phenomenon can be explained on the abstract level of Hochschild DGLAs. The idea is that
the deformation Cq gives rise to a Maurer-Cartan element of the Hochschild DGLA HC(C) and the quasi-
equivalence F gives rise to a non-canonical pushforward L∞-quasi-isomorphism F∗ : HC(C) → HC(D).
Correspondingly, the deformation Cq can be pushed to a deformation Dq of D. This pushforward has
the property that there is still a functor Fq : Cq → Dq of A∞-deformations which is a deformation of the
functor F .

In the present thesis, we define twisted completions, minimal models and derived categories for A∞-
deformations. The idea is to take the twisted completion, minimal model or derived category without
deformation and induce the deformation only afterwards. Under the context of an A∞-category C, we
contend that the correct way to define the twisted completion Tw Cq is by taking Tw C and inducing the
deformation Cq onto Tw C via the embedding C → Tw C. Similarly, we contend that the correct way
to define the minimal model H Cq is by taking H C and inducing the deformation Cq onto H C via the
quasi-isomorphism π : C → H C. We define the derived category HTw Cq as the composition of these two
procedures. This way, every A∞-deformation has a derived category.

The definition of derived categories for A∞-deformations completely avoids the problems coming
from curvature. The downside is that inducing deformations afterwards makes actual computation of
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the derived category very difficult. Forming the twisted completion Tw Cq is not very problematic, but
inducing a deformation to H C is close to impossible.

We therefore offer a deformed Kadeishvili theorem which produces the minimal model H Cq directly.
In the world of A∞-categories without deformation, the Kadeishvili theorem is the classical way to build
the minimal model H C. It provides an explicit mains of computing the A∞-structure of H C, although it
depends on a lot of choices and actual calculations are often hard. In the world of A∞-deformations, we
devise a deformed Kadeishvili theorem which builds the minimal model H Cq explicitly. It comes with the
same downside of computational hardness, but has the feature that it applies to any A∞-deformation,
including those with curvature.

Minimal model calculations are scarce in the literature. The reason is that they are hard to conduct
and one can sometimes guess the result without performing the calculation until the end. In the present
thesis, we build deformed mirror symmetry by deforming the construction of Cho, Hong and Lau [26].
An essential requirement for this deformed construction is the knowledge of the A∞-structure on part
of the derived category HTwGtlq Q. We apply our deformed Kadeishvili theorem to this situation and
perform the minimal model calculation until the end. The difficulty lies in getting the large amount of
data under control which keep spinning out of the gentle algebra and its Kadeishvili construction.

Smooth versus discrete Smooth mathematical structures originate in an observation of the physical
world. Whether it concerns the classification of closed surfaces, existence of solutions to PDEs or detecting
geometry through curvature, one starts by studying differentiable properties and differential equations.
Discretization of mathematical structures aims at getting grip on the smooth structures when they seem
to slip away upon investigation. From Conway’s zip proof for the classification of closed surfaces to finite
elements serving as Galerkin schemes in the solution of PDEs to discrete differential geometry capturing
curvature, discretization helps to extract the core of a smooth mathematical concept and prove properties
which would otherwise have remained inaccessible.

Mirror symmetry is also subject to discretization. The problem in the field is that Fukaya categories
and categories of coherent sheaves are generally too large to describe them in one breath. From the
perspective of mirror symmetry, one aims at finding small models for Fukaya categories or categories
of coherent sheaves which make actual calculations more tractable. Still, one tries to retain essential
properties of the large geometric categories in the small discrete models in order to understand which
properties actually cause a given mirror equivalence.

Discretization of Fukaya categories aims at representing Fukaya categories through small models. In
contrast to the large geometric categories, the small models may also exhibit gluability properties which
means that one can build up a Fukaya category by gluing it from pieces. Unfortunately such procedure
is known not to work for Fukaya categories in general. Instances in which gluing via a discrete interface
is possible include gluing Fukaya categories from cosheaves [35] and Nadler’s arborealization program [4].

In the case of punctured surfaces, the gentle algebras GtlQ play the role of a discretized Fukaya cate-
gory thanks to [18]. The A∞-structure on these gentle algebras is rather easy to define, in contrast to the
extremely hard A∞-structure on smooth Fukaya categories. Gentle algebras do not contain information
on all objects of the Fukaya category directly, instead this information has to be obtained by passing to
the derived category HTwGtlQ of the gentle algebra. The drawback of gentle algebras is then that the
A∞-structure on the derived category is again hard to compute explicitly.

In the present thesis, we extend the discretization of Fukaya categories to the deformed setting. The
idea is to construct a deformation of the gentle algebra GtlQ that behaves in a way analogous to Seidel’s
relative Fukaya categories. We define the candidate deformation Gtlq Q directly in the hope that it
is the correct implementation of Seidel’s idea on the discrete side. We put our expectations on a test
and compute part of the derived category HTwGtlq Q. Limited to the subcategory of zigzag paths,
our calculation shows that HTwGtlq Q agrees with the relative Fukaya category. We therefore consider
Gtlq Q the correct transport of Seidel’s vision to gentle algebras and may think of it as a “discrete relative
Fukaya category”.

Deformed smooth
Relative Fukaya category relFukQ

Deformed discrete
Deformed gentle algebra Gtlq Q

Hamiltonian deformations Implementing Hamiltonian deformations is one of the difficulties one
encounters when defining smooth Fukaya categories. In the discrete world, one circumvents this problem
by choosing such a small set of generators that the Hamiltonian deformations can be chosen canonically
and disappear completely from the picture. When passing to the derived category HTwGtlQ, we however
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expect the full generality of the smooth Fukaya category to reappear. In particular, we expect to find
A∞-products on some non-transversal sequences and expect that we can explain these products as an
incarnation of Hamiltonian deformation.

In the present thesis, we compute the precise A∞-products on HL ⊆ HTwGtlQ and on the deformed
category HLq ⊆ HTwGtlq Q. As a starting point, we take the Kadeishvili theorem whose essential
ingredient is a choice of a so-called homological splitting for L. The Kadeishvili theorem then describes
the minimal model HLq in terms of sums over trees. One enters the calculation with the expectation that
HLq has the same A∞-products as the relative Fukaya category. We verify this expectation by matching
every individual “result component” of a Kadeishvili tree with an immersed disk.

out
h1

h2

h3

h4

h5

h6

h6 h5 h4 h3 h2 h1

hqµ
2
q

hqµ
2
q

hqµ
2
q

hqµ
2
q

πqµ
2
q

As expected, we can interpret even the products on non-transversal sequences geometrically by means
of Hamiltonian deformation. While Hamiltonian deformations are an ingredient which has to be incorpo-
rated into the definition of smooth Fukaya categories from the beginning, they appear naturally through
the Kadeishvili construction of the minimal model HLq.

The precise shape of the products of HLq depends on the choice of homological splitting for L.
Nevertheless, different homological splittings give quasi-equivalent minimal models HLq. We have selected
one specific splitting which makes it particularly easy to identify the minimal model as the relative
Fukaya category. When choosing a slightly different splitting, we still expect to obtain the same products
on transversal sequences, but the products on non-transversal sequences will typically change. These
changed products can be interpreted geometrically as products in the relative Fukaya category under
application of a different Hamiltonian deformation. While homological splittings for L are a discrete and
representation-theoretic notion, Hamiltonian deformations are a smooth and geometric notion. Highly
simplified, choices of homological splittings correspond to choices of Hamiltonian deformations:

Hamiltonian deformations
for zigzag Lagrangians

Homological splittings
for zigzag paths

Deformed mirror symmetry Mirror symmetry has been deformed in several cases before. As a
starting point, one takes a deformation of the Fukaya category FukX, for instance the relative Fukaya
category introduced by Seidel [64]. Deformed mirror symmetry then seeks to find a corresponding defor-
mation of X̌ such that the deformed Fukaya category of X is still equivalent to the deformed category of
coherent sheaves of X̌.

Lekili and Perutz [46] find a commutative mirror for the relative Fukaya category of the 1-punctured
torus, apparently the first use of a relative Fukaya category in mirror symmetry. Lekili and Polishchuk
[47] generalize this result to the case of the n-punctured torus. The strategy is to depart from a finite
collection of split-generators of the Fukaya category. Then one computes part of their deformed products
in the relative Fukaya category and guesses the corresponding deformation of the mirror.

Mirror symmetry in the original context of Calabi-Yau manifolds asserts that the construction X 7→ X̌
is an involution. The dimer duality Q 7→ Q̌ of Bocklandt is indeed an involution and therefore

GtlQ ∼= mf(Jac Q̌, ℓQ̌),

Gtl Q̌ ∼= mf(JacQ, ℓQ).

The clue is that the dual dimer Q̌ serves as starting point for a gentle algebra Gtl Q̌ again. In contrast,
in deformed mirror symmetry it is hard to continue the involution property when X gets deformed.
Specifically, in our deformed mirror symmetry Gtlq Q ∼= mf(Jacq Q̌, ℓq) it is unclear how to interpret the
deformed Jacobi algebra Jacq Q̌ as a starting point for a gentle algebra construction. A conjectural way
out consists of interpreting the deformation mf(Jacq Q̌, ℓq) as a stability condition on Gtl Q̌ instead.
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Assembly of the materials

We explain here the assembly of the main result and the distribution of the material into the four
constituent parts of this thesis. Our aim is to explain how one idea leads to the next and how the main
result evolves.

GtlQ
Paper I

Gtlq Q
Paper II

HLq
Paper II

Jacq Q̌
Paper III

Paper I This text deals with gentle algebras and their deformations. The starting point is an arc
system A on a punctured surface. The gentle algebra GtlA itself is defined by counting immersions of
polygons into the surface. The deformed gentle algebras we construct are defined by additionally counting
immersions of “orbigons”, weighted by the punctures that the orbigon covers. We also devote ourselves to
studying Hochschild cohomology and deformation theory of gentle algebras. We show that under certain
assumptions on A, the Hochschild DGLA is formal and that our explicit construction of deformed gentle
algebras captures all formal deformations of GtlA.

Paper II This text prepares us for applying the Cho-Hong-Lau construction to deformations of gentle
algebras. We focus on the case where the arc system is a geometrically consistent dimer Q. Out of
the whole range of deformations constructed in Paper I, we select one specific deformation Gtlq Q. As
preparation for applying the Cho-Hong-Lau construction to Gtlq Q, we construct the deformed category of
zigzag paths Lq ⊆ Tw′ Gtlq Q. The rest of the text is concerned with computing the minimal model HLq.
We achieve this by introducing a deformed Kadeishvili theorem and working through all the Kadeishvili
trees that appear. The result is an explicit description of the minimal model by means of what we call
CR, ID, DS and DW disks.

Paper III This text introduces a deformed Cho-Hong-Lau construction and applies it to Gtlq Q. The
essential input data for applying the construction are the A∞-structure on the minimal model HLq.
Fortunately, we have already described this structure in terms of CR, ID, DS and DW disks in Paper II.
We obtain a candidate functor Fq : Gtlq Q → mf(Jacq Q̌, ℓq). The rest of the text is concerned with
making the description of Jacq Q̌ as explicit as possible and checking that mf(Jacq Q̌, ℓq) is indeed a
deformation of mf(Jac Q̌, ℓ). This is the logical end of the thesis.

Note IV This text is a stand-alone appendix to Paper I. An issue observed in Paper I is that the implicit
construction of the even Hochschild classes from the odd Hochschild classes fails if the arc system has
only a single puncture. We solve this here by constructing the even Hochschild cocycles explicitly.

Fast track It is possible to understand this thesis without reading it in entirety. The fastest track
consists of reading only section 17, 18, 20 and 21.

A more thorough understanding of the technicalities can be achieved as follows: Start with the
definition of deformed gentle algebras in Paper I or section 6. Try to get an understanding of zigzag
paths in dimers via section 10.1. Digest the thought that zigzag paths become a curved subcategory
Lq ⊆ TwGtlq Q in section 11.1. Get a grasp of the deformed Kadeishvili theorem in section 8. Quickly
browse through section 11 till 13 to get an impression of the sheer amount of technicalities that go into
computation of the minimal model HLq. Let the pictures of section A sink in. Take as a milestone the
comparison of HLq with the relative Fukaya category in Theorem 13.26 or 13.31.

Then skip to Paper III and get an impression of how the Cho-Hong-Lau construction gives mirror
equivalences in section 20.2. Take for granted that this construction can be deformed easily and in
principle gives rise to a deformed mirror functor Gtlq Q→ mf(Jacq Q̌, ℓq). Get a taste of the boundedness

condition in section 19.4 which we use to show that the algebra Jacq Q̌ = CQ̌JQ0K/(∂aWq) is indeed a
deformation of Jac Q̌ = CQ̌/(∂aW ). Then skip to the main result section 21.7.

History of this thesis My PhD project was supervised by Raf Bocklandt. From the beginning, we put
a focus on mirror symmetry for punctured surfaces and the associated derived invariants. Raf Bocklandt
made me acquainted with the popular conjecture that deformations and stability conditions are related
through mirror symmetry. In an effort to turn this conjecture into a rigorous statement, I organized a
summer camp for PhD students and postdocs which became a unique event during the Covid summer of
2020.
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Severin Barmeier participated in this event and subsequently introduced me to formal deformation
theory through the lens of L∞-algebras. I realized that formal deformations are the right vehicle for
transferring deformations. It turned out Raf Bocklandt had many beautiful guesses about deformation
theory of gentle algebras. We decided I would work on transferring deformations via mirror symmetry
for a while. I then spent several months on combining theory learnt from Severin Barmeier with mirror
symmetric insight brought to me by Raf Bocklandt.

After developing a concrete strategy, one cornerstone of my implementation failed. I had to abandon
the approach and we decided I would follow Raf Bocklandt’s earlier suggestion of deforming mirror
symmetry by means of the Cho-Hong-Lau construction. This approach is rather straightforward, but it
has led to an enormous complexity of unavoidable calculations all of which are documented in the present
thesis.

Investigations into the relationship between deformations and stability conditions, classifications of
matrix factorizations, gluing of mirror symmetry and classifications of cohomological field theories were
started, but did not find their way into this thesis.
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Release

The thesis will be released in four pieces, some of which coauthored by Raf Bocklandt. The following list
documents the contributions of the individual authors:

• Deformations of Gentle A∞-Algebras (Paper I), by Raf Bocklandt and Jasper van de Kreeke.
This project was conducted in cooperation of both authors and the text was written jointly. The
construction of deformed gentle algebras falls rather under Raf Bocklandt’s regime. The Hochschild
cohomology computation falls rather under Jasper van de Kreeke’s regime. The formality and
classification result are the culmination of a long series of improvements from both authors.

• Relative Fukaya Categories via Gentle Algebras (Paper II), by Jasper van de Kreeke.
This project was proposed and supervised by Raf Bocklandt. The research was conducted and the
text written by Jasper van de Kreeke.

• Deformed Mirror Symmetry for Punctured Surfaces (Paper III), by Raf Bocklandt and
Jasper van de Kreeke.
This project was proposed and supervised by Raf Bocklandt. The research was conducted and the
text written by Jasper van de Kreeke.

• Explicit Hochschild classes for Gentle Algebras (Note IV), by Jasper van de Kreeke.
This note is a stand-alone appendix to Paper I. It was supervised by Raf Bocklandt and written
by Jasper van de Kreeke.
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Paper I

Deformations of Gentle A∞-Algebras

1 Introduction

To a collection of oriented arcs on a closed surface with marked points, one can associate an A∞-algebra
called the gentle A∞-algebra. These were introduced in [18, 35] to study wrapped Fukaya categories of
punctured surfaces [3], where the punctured surface is obtained by removing the marked points. These
algebras are also generalizations of well-known algebras that are studied in representation theory [5, 57,
48].

In this paper we study the deformation theory of these A∞-algebras in detail. The intuition from
mirror symmetry tells us that deforming these algebras as curved A∞-algebras should correspond to
filling in these punctures with normal points or orbifold points [65, 30].

We will work out this idea as follows. Starting from an arc collection on a closed surface with marked
points, we introduce the combinatorial notion of an orbigon and use it to define a family of higher
products that count these orbigons. We show that these structures satisfy the curved A∞-axioms and
indeed deform the gentle A∞-algebra coming from the arc collection.

To show that these deformations solve the deformation problem we look at the Hochschild cohomology.
We show that each element in the Hochschild cohomology is determined by its zeroth and first component;
in other words its nullary and unary product. In the case that the arc collection has no loops or two-cycles
we obtain an explicit basis for the Hochschild cohomology. This enables us to give a description of the
Gerstenhaber algebra structure on the Hochschild cohomology. These computations match work done by
Wong [71] on the Borel-Moore cohomology for matrix factorizations of dimer models (which is the B-side
analogon of our setting, from the perspective of mirror symmetry [18]). Furthermore we can show that
the bracket from the Gerstenhaber structure is formal. Finally, using this description we conclude that
each solution of the Maurer-Cartan equation for the Hochschild cohomology is gauge equivalent to one
of the curved A∞-structures we introduced.

2 Curved gentle algebras

In this section we will introduce curved gentle algebras. These are curved deformations of the gentle
A∞-algebras that were defined in [18] and [35].

2.1 Arc collections and gentle algebras.

Definition 2.1. A marked surface (S,M) is a pair consisting of a compact oriented surface without
boundary S and a finite subset of marked points M ⊂ S. We will denote the genus of the surface by g
and the number of marked points by n. Furthermore we will assume that 2 − 2g − n < 0, which means
that the surface with the marked points removed has a negative Euler characteristic.

An arc collection A is a set of oriented curves a : [0, 1] → S that meet M only at the end points
(a−1(M) = {0, 1}) and do not (self)-intersect internally. We say that an arc collection splits the surface
if the complement of the arcs is the disjoint union of discs. These disks are called the faces and we denote
the set of faces by F . Each face can be seen as a polygon bounded by arcs.

An arc collection that splits the surface satisfies

• the no monogons or digons condition [NMD], if no single arc or pair of arcs bounds a face.
In this case the surface is split in n-gons with n ≥ 3.
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• the no loops or two cycles condition [NL2] if every arc has two different end points and no
two arcs share more than one end point.

• the dimer condition, if the arcs around each disk form an oriented cycle. In case of a dimer, we
will call a face positive or negative depending on whether the cycle around it is anticlockwise or
clockwise. We can partition F accordingly: F = F+ ∪ F−.

From now on we will assume that [NMD] holds, but in later sections we will sometimes have to assume
the stronger [NL2] condition.

Recall that a quiver is a four-tuple Q = (Q0, Q1, h, t) representing an oriented graph with vertices
Q0, arrows Q1 and maps h, t : Q1 → Q0 that assign to each arrow its head and tail. A quiver is graded
by a group G if it comes with a map | · | : Q1 → G.

The path algebra CQ of a quiver Q is the complex vector space spanned by the paths with as
product concatenation of paths if possible and zero otherwise. We write the arrows as going from right
to left so αβ is a genuine path if t(α) = h(β). Every vertex of the quiver v ∈ Q0 gives rise to a path
of length zero, which is called the vertex idempotent ✶v. These span a semisimple subalgebra which we
will denote by ❦ ∼= CQ0 . If Q is G-graded then CQ is a graded ❦-algebra by assigning to each arrow its
G-degree and to each vertex idempotent degree 0.

It is tempting to consider the arc collection itself as a quiver, but we will not do this. Instead we will
consider a different quiver, which is obtained by putting a vertex in the middle of each arc.

Definition 2.2. Given an arc collection A that splits (S,M), we define a Z2-graded quiver QA as follows.

• The vertices of the quiver are the arcs: (QA)0 = A.

• For each angle of a face we define an arrow that corresponds to the internal anticlockwise angle
between consecutive arcs that meet in that corner.

• An arrow has degree zero if both arcs have the same direction at the marked point (both outwards
or both inwards), and degree one otherwise. Note that A is a dimer if and only if all arrows have
Z2-degree 1.

|α| = 0 |α| = 0 |α| = 1 |α| = 1

We will denote these ‘angle arrows’ by Greek letters and use h(α) and t(α) to denote the arcs (vertices)
that correspond to the head and tail of the arrows. Each angle arrow also turns around a unique marked
point and is contained in a unique face. We will denote these by m(α) and f(α). In this quiver two
consecutive arrows either are angles that turn around a common marked point or they correspond to
consecutive angles in a face.

t(α) = h(α) =⇒ m(α) = m(β) or f(α) = f(β)

Definition 2.3. The gentle algebra GtlA of an arc collection A is the path algebra of QA modulo the
ideal of relations spanned by the products of arrows that are consecutive angles in a face.

GtlA = CQA/〈αβ|t(α) = h(β) and f(α) = f(β)〉

The product rule in this algebra can be illustrated pictorially as follows.

αβ

αβ 6= 0

αβ

αβ = 0

Remark 2.4. The number of arrows is 2|A| because in each vertex precisely two arrows arrive and two
arrows leave. More precisely for every angle arrow α there are precisely two angle arrows β1 and β2 with
h(α) = t(βi). One will satisfy β1α = 0 and for the other one we have β2α 6= 0. Likewise there are two γi
with h(γi) = t(α), one with αγ1 = 0 and one with αγ2 6= 0. This notion of a gentle algebra refers to this
property and derives from representation theory [5]. The usual definition of a gentle algebra also entails
that the algebra is finite-dimensional but this is not the case for our algebras. It is possible to obtain
finite dimesnional algebras by looking at surfaces with marked points on the boundary [48, 57].
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Example 2.5. In the picture below on the left you see an arc collection on a torus with two marked
points. It has 4 arcs and two square faces. The quiver QA has 4 vertices and 8 angle arrows. The angle
arrows all have degree 1. The relations are generated by all paths αiβj and βiαj , whenever the arrows
are composable. This implies that every nonzero path in the gentle algebra is either a sequence of only
α′s or only β′s. The former turn arrow the first marked points, while the latter turn around the second
marked point.

a1

a3

a2

a4

• •

• •

•

α1

α3

α2α4

β1 β1

β3 β3

β4

β4

β2

β2

a1 a2

a3a4

•

•

• •

•

In general, the nonzero paths of a gentle algebra correspond to positive angles between arcs that share
a marked point. Every nonzero angle paths is uniquely determined by it sequence of angle arrows and
products of angles paths turning around different marked points are zero.

For each m ∈M we define
ℓm = α1 . . . αk + · · ·+ αk . . . α1

where α1, . . . , αk are the angle arrows around m ordered in anticlockwise direction. These elements
represent single loops around the marked points and the generate the center of the algebra.

Lemma 2.6.
Z(GtlA) = C[ℓm|m ∈M ]/(ℓiℓj |i 6= j).

Proof. One can easily check that the αℓm = ℓmα if m(α) = m and αℓm = ℓmα = 0 if m(α) 6= m. This
also implies that ℓuℓv = 0 if u 6= v.

Suppose z = cβ+ . . . is a nonzero central element containing the angle path β and let α be the angle
arrow that follows β in the cycle around m. Then we have that αβ 6= 0, so if αz = zα then αβ must end
in α and hence β must be a cycle that winds a number of full turns around m. Therefore z will contain
ℓrm and the ℓrm form a basis for the part of the center with path length > 0. The length 0 part of the
center is C because the quiver is connected.

Lemma 2.7. As a Z(GtlA)-module the outer (Z2-graded) ❦-derivations are generated by the Euler
derivations

Eα := α∂α.

Proof. Let α be an angle arrow. If d is a ❦-derivation then h(dα) = h(α) and t(dα) = t(α). If dα contains
a term γ that does not turn around the same marked point as α, let β be the angle such that γβ 6= 0 is
cyclic. We then have that αβ = 0 because they turn around different marked points. Therefore

0 = d(αβ) = γβ + · · · ± αdβ,

but this is impossible because these two components turn around different marked points and hence
cannot cancel each other.

So suppose dα turns around the same marked point m as α In that case there are the following
possibilities.

1. If a = h(α) = t(α) then either a forms a monogon (which is excluded by condition [NMD]) or
α = ℓm is a full turn around a marked point m with one arc a arriving.

•α • •α

β

In the latter case dα = g(α)✶a for some polynomial g. This polynomial cannot have a constant
term: let β be the arrow that follows α in the face f(α). Then α and β turn around different
marked points so

0 = d(βα) = (dβ)α± βf(α) = ±g0β.

So dα = (g(α)α−1)α = zEα(α) for z = g(ℓm)ℓ−1
m .
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2. If a = h(α) 6= t(α) and a is a loop then there is an angle path κ : a→ a following α that does not
form a full turn around m.

•κ

α

β

In that case dα can contain a term of the form κα. Let β be the angle arrow that directly follows
κ. Note that β 6= α otherwise the arc a forms a monogon. Because β and α are on different ends
of the arc a, we have that

d(βα) = β(cκα+ . . . )± (dβ)α = 0.

Therefore d(β) contains cβκ. The commutator [cκ,−] is only nonzero for the angle arrows α and
β. By substracting this from d we can make these terms disappear.

3. If a = t(α) 6= h(α) and a is a loop we can do a similar reasoning as above.

4. If a = t(α) 6= h(α) = b and a, b are both loops then dα can contain a term of the form κ1ακ2. If κ1
is not a full turn then let β be the angle arrow such that βκ1ακ2 6= 0. Because βα 6= 0 we get

d(βα) = β(cκ1ακ2 + . . . )± (dβ)α = 0.

So κ2 must end in α but then κ2 is a full turn, so κ1ακ2 = ℓrmκ1α, and we can make this term
disappear with [ℓrmκ1,−]. If κ1 is a full turn we can do the same.

5. If neither h(α) or t(α) are loops then d(α) then every path in d(α) is of the form ℓrmα.

From the discussion above we see that we can remove all terms that are not of the form ℓrmα by subtracting
commutators.

Remark 2.8. Lemma 2.6 holds more generally for marked surfaces with bouundary, but lemma 2.7 does
not hold in this generality (think of the cylinder with one marked point on each boundary circle, this has
an arc collection whose gentle algebra is the Kronecker quiver ◦ =⇒ ◦. However if we impose the [NL2]
condition the lemma still holds.

We end this section with a nice interpretation of Koszul duality in this setting. If A is an arc collection
on (S,M), choose a set of points F ⊂ S in the centers of the faces. For each arc a draw a perpendicular
arc a⊥ that connects the centers of the faces adjacent to a and points inside the left face. The dual arc
collection A⊥ = {a⊥ | a ∈ A} forms an arc collection for (S, F ).

Theorem 2.9. The Koszul dual of the gentle algebra is a gentle algebra of the dual arc collection:

(GtlA)
! ∼= GtlA⊥ .

Proof. From Bardzell [7] and [18] we know that A = GtlA has a bimodule resolution B• spanned by
A ⊗❦ b ⊗❦ A where b = βlβl−1 · · ·β1 ∈ CQA is a path of angle arrows such that all products βiβi−1 are
zero. In other words paths that turn around faces. The maps between the terms have the following form

1⊗ bk . . . b1 ⊗ 1 7→ bk ⊗ bk−1 . . . b1 ⊗ 1− (−1)k ⊗ bk . . . b2 ⊗ b1

Therefore the Koszul dual Ext•A(❦,❦) = HHom(B•, L❦ ⊗ ❦R) is spanned by the dual basis b∨. The
element b∨ corresponds to the (right) module extension

0←− C✶t(βl)
βl←− C✶h(βl) ←− · · · ←− C✶t(β1)

β1
←− C✶h(β1) ←− 0.

Note we use right modules because in that way α and α∨ run in opposite directions. Stitching together
two of these module extensions shows that the ext product matches the (reverse) concatenation of paths
if the paths turn around the same face. All other products are zero. In particular the ext algebra is
spanned by dual angle arrows and α∨β∨ = 0 if m(α) = m(β). Finally if α is an angle arrow then the
dual α∨ in the Koszul dual has degree 1− |α|. All this can be realised geometrically by considering the
dual angles as angles between perpendicular arcs.
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• α∨ •α

2.2 Orbigons

Now let R be a complete local commutative ring over C with maximal ideal R+ and residue field R/R+ =
C. For each element r ∈ Z(GtlA)⊗̂R

+ we will define a curved R-linear A∞-structure over GtlA ⊗̂R. When
tensored with R/R+ the result will be the gentle A∞-algebra as defined in [18, 35], so our construction
gives a family of deformations of the latter.

To describe these deformations, we need the notion of an orbigon. Morally this is a branched cover
from a disk to the surface such that the boundary is mapped to arcs and the branch points are mapped
to marked points. We can construct such branched covers by joining faces together. We will define this
concept combinatorially and inductively in two steps.

Definition 2.10. Tree-gons are certain sequences of angles up to cyclic permutation. The basic tree-
gon come from faces: (αk, . . . , α1) is a tree-gon if they form the consecutive angles of a face such that
h(αi) = t(αi+1).

If (αk, . . . , α1) and (βl, . . . , β1) are tree-gons such that α1βl 6= 0 and αkβ1 6= 0 in GtlA then we define
a new tree-gon

(β1αk, αk−1, . . . , α2, α1βl, . . . , β2)

Geometrically this operation stitches the two tree-gons together over the common arc h(βl) = t(α1).

β1
β2

β3

β4

β5
β6 α1

α2
α3

α4
α5

α6

Remark 2.11. From this definition one can deduce that tree-gons are sequences of internal angles of
faces stitched together in a tree-like way. This tree, whose nodes are the faces and whose edges are the
stitched arcs, can be reconstructed solely from the angle sequence.

Let (γu, . . . , γ1) be the sequence of all the indecomposable angle arrows in the tree-gon. Define
a permutation σ on {1, . . . , u} as follows: for every i there will be a unique shortest nontrivial path
γj . . . γi+1 with i+u ≤ j < i that lifts to a contractible loop in the universal cover of S \M . Set σ(i) = j
mod u. One can easily show that for a tree-gon we have that σ2 = Id and σ(i) = i if and only if h(γi) is
an arc on the boundary of the tree-gon. This means that the internal arcs are in 1–1 correspondence with
the 2-cycles in σ. The nodes of the tree on the other hand correspond to the orbits of the permutation
σ◦(u . . . 1). Indeed this permutation follows the angles and crosses over if the arc is internal, and therefore
it cycles around the faces. An edge and a node are incident if their orbits intersect.

Now we will allow to fold together two consecutive arcs on the boundary of a tree-gon that are
identical. The result is a disk-like shape with internal marked points, so some of the angles sit in the
interior of the disk. We will use square brackets to denote what is interior. In general we get sequences
of angles separated by square brackets and commas such as (α, β[γ[δ]ǫ]ζ[η]). The reduced sequence
cuts out anything that is between square brackets: e.g. (α, βγ). Again we work inductively.

Definition 2.12. An orbigon is a bracketed cyclic sequence of angles. The basic orbigons are tree-gons
without any brackets and if (. . . , U, . . . ) is an orbigon for which the reduced sequence of U is an angle
that turns r full turns around a marked point m then (. . . [U ] . . . ) is also an orbigon. The type of the
orbigon is a multiset containing all pairs p = (m, r) that were needed to introduce the brackets. Such a
pair is also called an orbifold point.

Different tree-gons can be folded together to form the same disk, therefore we also need to impose an
equivalence relation on the orbigons. Suppose (αk, . . . , α1) and (βl, . . . , β1) are tree-gons and

(β1αk| . . . |αj [αj−1| . . . |α1︸ ︷︷ ︸
U1

βl| . . . |βi+1︸ ︷︷ ︸
U2

]βi| . . . |β2)
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is an orbigon, where the |-separators can be commas or brackets. Then the shift rule shifts the position of
a piece between brackets and reverses the order of the two parts U1, U2 that are in thee different tree-gons
as follows

(β1[βl| . . . |βi+1︸ ︷︷ ︸
U2

αj−1| . . . |α1︸ ︷︷ ︸
U1

]αk| . . . |αjβi| . . . |β2)

where brackets in U1 that are paired up with a bracket U2 and vice versa are flipped, for the formula to
make sense.

αk

α1

β1

βl

β2

βi

αj

]

]

[ [ [ [

[ [

αk

α1

β1

βl

β2

βi

αj

] ]

] ] [ [

[ [

The shift rule generates an equivalence relation on the orbigons that preserves the type and the reduced
sequence.

Remark 2.13. Every tree-gon corresponds to a tree with nodes labeled by faces and edges labeled by
arcs. Each folding operation adds another edge to the graph corresponding to the arc a = h(U). In this
way we end up with a graph of which this tree is a spanning tree. The graph, which we will sometimes
refer to as the face graph, is planar. It divides the plane into regions which can be labeled by a pair
(m, r) from the type multiset. Clearly the equivalence relation changes the underlying spanning tree
while keeping the face graph the same. For the example above the face graph is a grid with 3× 3 nodes
and the spanning trees are indicated in bold.

The spanning tree of the face graph completely determines the unreduced sequences of the orbigon because
it is the sequence of angles that runs around the tree. It also determines the brackets: each time you
cross an edge of the face graph that is not in the spanning tree you open or close a bracket depending on
whether you crossed it the first or the second time.

Lemma 2.14. Two orbigons are equivalent if and only if their face graphs are equivalent as labeled
planar graphs.

Proof. By construction the shift rule does not change the underlying face graph. Now suppose that the
two orbigons have isomorphic face graphs, then we have to show that we can move from one spanning tree
T1 to another spanning tree T2 via the shift rules. If a is an edge (or dually an arc) in T1 not contained
in T2 then if we remove a, T1 will split in two parts (or dually tree-gons) denote the angles in the first
tree-gon by αk, . . . , α1 and those in the second tree-gon by βl, . . . , β1 such that a = t(β1) = h(αk).

Because T2 is connected it must contain an arc b that connects the two parts of T1 \ {a}. Now find
the indices i, j such that b = h(βi) = t(αj) and perform the corresponding shift rule. The result will be
an orbigon with a spanning tree equal to T1 \ {a} ∪ {b}, which is one edge closer to T2. Keep repeating
this procedure until the spanning tree is T2.

Remark 2.15. Note that we can also stitch orbigons together over a common arc in their reduced
sequences by stitching the underlying tree-gons and transferring the brackets to the stiched tree-gon.
The face graph of the new orbigon consists of the two graphs of the smaller orbigons joined together
by one edge labeled by the common arc. Moreover because the common arc must be contained in all
spanning trees, this implies that the small orbigons are uniquely determined by the big one.
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Lemma 2.16. If (αk, . . . , ξη, . . . α1) is the reduced sequence of an orbigon and ξ, η are nontrivial angle
paths then there are two possibilities:

A the orbigon is stitched together of two smaller orbigons with reduced sequences (βr, . . . , ξ) and
(γr, . . . , η) such that γrβr = αr for some r.

B the orbigon is folded together from an orbigon with reduced sequence (αk, . . . , ξ, ℓ
r
mh(η), η, . . . , α1)

in both cases these orbigons are unique.

Proof. Look at the face graph of the orbigon. The arc t(ξ) = h(η) will correspond to an edge in this
graph. If the graph remains connected after removing this edge then this new graph will be the graph of
an orbigon that can be folded to the old orbigon and we are in situation B. Otherwise the old orbigon is
stitched together from two smaller orbigons and we are in situation A.

Lemma 2.17. For a given type and reduced sequence there are at most a finite number of orbigons (up
to equivalence).

Proof. Each bracketing changes two commas in brackets and introduces an extra pair in the multiset of
the type. Therefore the length of the unreduced sequence (the number of commas and brackets) is 2
times the size of the multiset longer than the unreduced sequence (the number of commas).

Lemma 2.18. If the arc collection satisfies

• the no monogon or digon condition [NMD] then all tree-gons have length at least 3.

• the no loops or two-cycles condition [NL2] then all orbigons have reduced sequences of length at
least 3.

Proof. If [NMD] holds then all faces are at least 3-gons. Gluing an n-gon to an m-gon results in an
n+m−2-gon, and n+m−2 > 2 if n,m > 2. Furthermore, an orbigon with a reduced sequence of length
one or two would give rise to a loop or two-cycle of arcs.

2.3 A∞-structures on the gentle algebra.

Fix a commutative ring R. Recall that if A is a Z or Z/2Z-graded projective R-module then a curved
A∞-structure is a collection of R-linear maps

µk : A⊗Ri → A

of degree 2− k, satisfying the curved A∞-axioms:

∑

k≥l≥m≥0

(−1)‖xm‖+...+‖x1‖µ(xk, . . . , µ(xl, . . . , xm−1), xm, . . . , x1) = 0.

Here ‖x‖ is shorthand for the shifted degree: ‖x‖ = |x| − 1. If l = m then we interpret the middle
µ() as the element µ0 := µ0(1) ∈ A. This is called the curvature and if it is zero the structure is called
uncurved.

If A is an algebra, we say that µ is an extension of the product if a · b = (−1)deg bµ2(a, b). If
A = CQ/I ⊗ R comes from a path algebra of a quiver we will take tensor products over ❦ ⊗ R instead
of over R and we ask that the vertex idempotents ✶v are strict: all products µ 6=2 for which one of the
entries is such an idempotent are zero.

Now let R be a local nilpotent or complete ring over C with maximal ideal R+. Fix an element
r ∈ Z(GtlA)⊗̂R

+. We will write this element as

r0 +
∑

m

rm(ℓm)

where r0 ∈ R+, the rm(t) ∈ R+[t] are polynomials without a constant term. We will write the jth

coefficient of rm(t) as rp where p = (m, j) is viewed as an orbifold point. We will also write ℓp as
shorthand for ℓjm. We are now ready to define a family of extensions of the gentle algebra.

Definition 2.19. For any r ∈ Z(GtlA)⊗̂R
+ we define r

lµ.. • on GtlA ⊗̂R as follows

• For each orbifold point p = (m, j) we define a nullary product

r
lµ.. 0
p : ❦→ GtlA ⊗̂R

+ : 1 7→ rpℓ
j
m
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• For each orbigon ψ with reduced sequence (αk, . . . , α1) of length k we define a k-ary product rlµ.. ψ.
If β and γ are angles such that βαk+i 6= 0 and αiγ 6= 0 then we set

r
lµ.. ψ(βαk+i, . . . , αi) = rψβ and r

lµ.. ψ(αk+i, . . . , αiγ) = (−1)|γ|rψγ.

where rψ is the product of all rp with p running over the orbifold points in the type of ψ. If the
type is empty (i.e. ψ is a tree-gon) then we put rψ = 1. All other rlµ.. ψ(β1, . . . , βn) where the βi are
angles are zero.

The total product is the sum of all these products together with an overall curvature coming from r0:

r
lµ.. 0 = r0µ

0
✶
+
∑

p

r
lµ.. p

r
lµ.. 1 =

∑

|ψ|=1

r
lµ.. ψ

r
lµ.. 2 = r

lµ.. 2
ord +

∑

|ψ|=2

r
lµ.. ψ

r
lµ.. k =

∑

|ψ|=k

r
lµ.. ψ.

where µ0
✶

is the nullary product with µ0
✶
(1) = 1 and r

lµ.. 2
ord the R-linear extension of the ordinary product

in GtlA. This is well defined because by lemma 2.17 there are only a finite number of k-orbigons for each
type and R is nilpotent or complete.

Remark 2.20. The condition [NMD] implies that there are no tree-gons with length 1 or 2. This
means that rlµ.. 1 = 0 mod R+ and r

lµ.. 2 = µ2
GtlA

mod R+. The condition [NL2] implies that there are no

orbigons with length 1 or 2. This means that rlµ.. 1 = 0 and r
lµ.. 2 = r

lµ.. 2
ord.

Remark 2.21. If r = 0, the only r
lµ.. ψ that contribute are those coming from tree-gons and each con-

tributes with a factor rψ = 1. These are precisely those that correspond to immersed disks that do not
cover marked points with their interior. Therefore the definition is equivalent to the definition in [35] In
[18] the definition of the higher product is given inductively, with an induction step that is analogous to
the induction step we used to define a tree-gon. Hence the definition is also equivalent to the definition
in [18]. From both papers we can conclude that r

lµ.. is an uncurved A∞-structure if r = 0. If r 6= 0 then
r
lµ.. will be a curved deformation of this uncurved A∞-structure.

Remark 2.22. Each higher product removes a sequence of angles that forms an orbigon. If the angle
that remains comes from the first entry, we will call that the front of the product, if it comes from the
last we call it the back of the product.

Proposition 2.23. If [NL2] holds then r
lµ.. is a well defined curved A∞-structure on GtlA ⊗̂R, which is

strict over ❦ = CA.

Proof. We need to check the curved A∞-axioms. The first two axioms

r
lµ.. 1(rlµ.. 0(1)) = 0, r

lµ.. 1(rlµ.. 1(α) + r
lµ.. 2(rlµ.. 0(1), α)− r

lµ.. 2(α, rlµ.. 0(1)) = 0

follow easily from the facts that rlµ.. 0(1) is a central element and r
lµ.. 1 = 0. The third axiom holds because

r
lµ.. ord is associative and there are no r

lµ.. 3(. . . ,
r
lµ.. 0(1), . . . ) terms as this would imply an orbigon with

reduced sequence (. . . [ℓkm] . . . ) of length 1. This contradicts lemma 2.18.
To show the higher axioms, first note that by construction all the rlµ.. are strict over ❦, so we only need

to check the axioms when all entries are nontrivial paths. Fix an angle sequence (γr, . . . , γ1) of length
≥ 4 and assume that there is a nonzero double product

r
lµ.. u(γs+t−1, . . . , γi+t,

r
lµ.. v(γi+t−1, . . . , γi), γi−1, . . . , γ1)

where r
lµ.. u can be a r

lµ.. ord (if s = 2) or a r
lµ.. ψ if s > 2, and r

lµ.. v can be a r
lµ.. p (if t = 0), a r

lµ.. ord (if t = 2)
or a r

lµ.. ψ (if t > 2). Such a product is uniquely characterized by the triple (u, v, i).
Each nonzero double product is a path multiplied with a factor ±rurv (where we use the convention

that rord = 1). We will show there is a unique other triple with a nonzero double product cancel that
cancels it.
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To do this, we will go through all possible triples (u, v, i) systematically, making a distinction between
whether i is 1, s or somewhere in the middle. For each case we draw a diagram of the possible situations
and every situation will occur exactly twice (see figure 2.1). Note that most diagrams have two versions
depending on whether the (only/outer) higher product has a front or a back. We will only consider the
latter cases. The diagrams are named after the operations of type A, B from lemma 2.16 that can be
performed on the orbigons to stitch or fold them together.

1. (ψ, p, i)

• If i = 1 then ℓp contains the back of rlµ.. ψ and we are in situation O1. We can compensate this
term with a term of a similar type but where ℓp contains the front:

r
lµ.. ψ(γs, . . . , γ1, rlµ.. p) cancels with r

lµ.. ψ(rlµ.. p, γs, . . . , γ1)
• If 1 < i < s then ψ has ℓp as one of its angles and we are in situation B1. We can fold the

orbigon together to form a new orbigon ψ′ with rψ′ = rψrp. The other term that cancels it is
of the form (ψ′, ord, i− 1).

• If i = s and ℓp comes before γs then either γs is shorter than the back of rlµ.. ψ or longer. If it
is shorter, we are in situation B2. If it is longer than the back, the arc t(γ1) will lie inside ψ.
In that case we distinguish type BA if t(γ1) cuts ψ in two pieces, or BB if it opens a second
fold at a marked point q. The former is compensated by a terms of type (ψ1, ψ2, i), while the
latter is compensated by a term (ψ1, q, i). In both cases ψ1 includes the orbifold point p and
has a front)

2. (ψ, ord, i)

• If 1 < i ≤ s then the inner product r
lµ.. 2(γi+1, γi) is an angle from the orbigon ψ then h(γi)

either opens a fold of ψ (B1) or it cuts the orbigon in two (A1L,A1R,A1M). The first is
compensated by a term of type (ψ′, p, i+1), while the latter three by a term of type (ψ1, ψ2, j).

• If i = 1 and γ1 is part of the back of rlµ.. ψ then h(γ1) will cut the back in two. This is situation
O2 and it is compensated by a term of the form (ord, ψ, 2).

If the back of rlµ.. ψ is part of γ1 then h(γ1) either opens a fold of ψ or it cuts the orbigon in
two. Just like when i 6= 1 above, we are in cases (B1, A1L,A1R,A1M) but now with γ1 equal
to the top of the hexagon instead of the bottom. They are also compensated by terms of type
(ψ′, p, i+ 1) and (ψ1, ψ2, j).

3. (ord, ψ, i)

• If i = 1 and r
lµ.. 2(γt+1,

r
lµ.. ψ(. . . , γ1)) puts something in front of the back of rlµ.. ψ, three things

can happen. If γt+1 is shorter than the first angle of ψ then h(γt+1) either cuts ψ in two (A2)
or opens a fold of ψ (B2). These cases are compensated by terms of the form (ψ1, ψ2, j) and
(ψ′, p, t).

If γt+1 is longer than the first angle we are in situation O3 and can compensate it with a term
of the same type but with a head

r
lµ.. 2(rlµ.. ψ(γt+1, . . . , γ2), γ1).

• If i = 2 then r
lµ.. 2(rlµ.. ψ(. . . , γ2), γ1) adds something to the back of rlµ.. ψ and we are in situation

O2.

4. (ψ1, ψ2, i)

• If i = 1 and r
lµ.. ψ2 has a back then we are in A1M . If rlµ.. ψ2 has a front we are in situation O4.

Then we can commute the order of ψ1 and ψ2, this gives two terms that cancel:

r
lµ.. ψ1

(γs+t−1, . . . ,
r
lµ.. ψ2

(. . . , γ1)) and r
lµ.. ψ2

(rlµ.. ψ1
(γs+t−1, . . . ), . . . , γ1).

• If 1 < i < s and r
lµ.. ψ2 has a back equal to an angle of ψ1 we are in situation A1L, while if it

has a front equal to an angle, we are in situation A1R.

• If i = s and r
lµ.. ψ2 has a front we are in A1R. If it has a back then it depends on the back of

r
lµ.. ψ1 . If it is at least as long as the last angle of ψ2 we are in situation A2. Otherwise t(γ1) will
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A1L

γ1

A1R

γ1

A1M

γ1

A2

γ1

B1

γ1

B2

γ1

γ1

AA AB

γ1

BA

γ1 γ1

BB

O1

rlµ.. p

O2 γ1 O3

γ1 γ1

O4

Figure 2.1: The possible diagrams that can occur in as double products

cut ψ2 in two pieces (situation AA) or it will open a fold (AB). The former is compensated by
a term of type (ψ′

1, ψ
′
2, j) while the latter is compensated by a term (ψ′

1, p, j). In both cases
the outer product now has a front. Note that type AB and BA only seem to occur once in the
list but this is because they are canceled by terms with a front and these are not in the list.

Remark 2.24. The proof is analogous to the one in [35], but because of the internal orbifold points
extra cases needed to be considered. These are all the cases with a B in their label. The proof can also
be extended to the case where [NL2] does not hold but this will include a lot more extra cases.

Remark 2.25. It is also possible to weight the faces in the orbigons using elements in R+. Choose an
element s(f,i) ∈ R

+ for each face f and i ∈ N. The weight of a tree-gon is then defined inductively by
giving (αik, . . . , α1) weight s(f,i) if the angle sequence turns i times around f (note that this definition
allows for orbifold faces as well). If you stitch two tree-gons together their weight is defined as the
product. The folding operation adds an additional factor r(m,j) in the same way as before.

This gives a family of products r,slµ.. • on GtlA ⊗̂R that depends on two parameters sets r :M×N→ R+

and s :M × N→ R+. Note that the curvature only depends on r not on s.
This same parameter set can be used for the Koszul dual GtlA⊥ but now the role of r and s are

reversed because for the Koszul dual the role of the marked points and the faces are swapped. In this
case s will give rise to curvature, while r only contributes to the higher products. Note however that

if s(f,j) is nonzero for an infinite number of (f, j) we should go to the completed version ĜtlA⊥ for the
curvature to make sense.

3 Hochschild Cohomology of Gentle A∞-algebras

3.1 Definitions

Definition 3.1. If (A,µ) is a Z- or Z2-graded A∞-algebra over a semisimple algebra ❦, we define the
A∞-Hochschild complex as

HC•(A) = Hom❦(
⊕

i≥0

A[1]⊗❦i, A[1])
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Every element ν ∈ HCj(A) can be seen as a collection of n-ary products νn of degree 1 + j − n, one for
each n ∈ Z≥0. We will call νn the nth component of ν.

Remark 3.2. Note that the grading on this space is not the classical grading on Hochschild cohomology
coming from the number of entries in the products, but the one coming from the degrees of the maps
A[1]⊗❦i → A[1]. For this grading the product µ can be seen as an element of HC1(A). To avoid confusion
we will call this degree the ∞-degree ‖ • ‖. If we work Z2-graded we will also refer to this grading as
the parity and denote the homogeneous parts as HCeven(A) and HCodd(A).

• On HC•(A) we have a bracket of degree 0:

[κ, ν](ar, . . . , a1) :=
∑

0≤i≤j≤r

(−1)(‖a1‖+...+‖ai‖)‖ν‖κ(ar, . . . , aj+1, ν(aj , . . . , ai+1), ai, . . . , a1)

− (−1)‖ν‖‖κ‖+(‖a1‖+...+‖ai‖)‖κ‖
∑

0≤i≤j≤r

ν(ar, . . . , aj+1, κ(aj , . . . , ai+1), ai, . . . , a1).

The A∞-axioms for the product µ, can be rephrased as [µ, µ] = 0, which also means that d = [µ,−]
is a differential of degree 1 and the triplet

(HC•(A), d, [, ])

is a differential graded Lie algebra (DGLA). The solutions to the Maurer-Cartan equation

dν +
1

2
[ν, ν] = 0

describe the deformations of µ as a curved A∞-structure.

• There is also a second product on HC•(A): the cup product.

(κ ⌣ ν)(ar, . . . a1) :=
∑

0≤i≤j≤u≤v≤r

(−1)zµ(ar, . . . , κ(av, . . . , au+1), . . . , ν(aj , . . . , ai+1), . . . , a1)

with z = (‖a1‖+ . . .+ ‖au‖)‖κ‖+ (‖a1‖+ . . .+ ‖ai‖)‖ν‖+ ‖ν‖+ 1. This product has degree 1
and together with d satisfies the it satisfies the graded Leibniz rule. Therefore

(HC•(A)[−1], d,⌣)

is a differential graded algebra DGA and if we go to homology the triplet

(HH•(A)[−1],⌣, [, ])

is a Gerstenhaber algebra.

Remark 3.3. These two classical structures on Hochschild cohomology of ordinary ungraded algebras
were analyzed first by Gerstenhaber [33]. Both definitions have been extended to A∞-algebras and are
well-known in the literature, see e.g. [56].

Mescher [56] uses a different sign convention for A∞-categories. This means his definition of the cup
product also has different signs. We have adapted the signs in order to suit the signs in our definition of
A∞-categories. In particular, the cup product as defined is graded symmetric, with respect to a degree
shift of 1 on the Hochschild cohomology:

ν ⌣ η = (−1)(‖ν‖−1)(‖η‖−1)η ⌣ ν. (3.1)

The unexpected shift by 1 in this sign rule is desired. In fact, this “shifted graded symmetry” renders the
cup product truly graded symmetric with respect to the “traditional” grading of the Hochschild complex,
which differs from the A∞-grading precisely by one. In other words, if one regards an ordinary ungraded
algebra and starts grading the Hochschild cohomology at zero (instead of minus one), the cup product
becomes graded symmetric.

We have tried to arrange the signs such that the cup product together with the Gerstenhaber bracket
turns HH(GtlA) into a Gerstenhaber algebra with correct signs. In order to be a Gerstenhaber algebra,
sign conventions of cup product and bracket need to be tuned to each other. The relevant compatiblity
condition is the signed Leibniz rule which reads

[ν, η ⌣ ω] = [ν, η]⌣ ω + (−1)‖ν‖(‖η‖−1)η[ν, ω].
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We have tried to arrange the signs with the Leibniz rule in mind, but we have not conducted the tedious
checks. We have however chosen the signs in analogy with [56]. In particular, the signs are such that
the cup product descends to Hochschild cohomology and is graded symmetric, the latter we did check by
hand.

Remark 3.4. If (A,µ) is a strictly unital A∞-algebra over ❦, i.e. µ(x1, . . . , xn) = 0 if n 6= 2 and at least
one of the xi ∈ ❦, one can construct the normalized Hochschild cochain complex HC•(A). This is
the subspace of all cochains that evaluate to zero if at least one of the entries is in ❦. This subspace is
closed under all the operations above the embedding is a quasi-isomorphism [39]. The Maurer-Cartan
equation for HC•(A) classifies deformations of µ for which ❦ remains strict.

We will now specialize to the case where A = GtlA is the gentle algebra of an arc collection A
equipped with µ = r

lµ.. for r = 0. We have seen that the GtlA has a natural Z2-grading, so the ∞-degree
is a Z2-degree, which we refer to as the parity. It is possible to lift this Z2-grading to a Z-grading. To
do this we assign to each angle α a degree degα ∈ Z with the same parity as |α|. In order to make this
degree compatible with µ we have to ensure that µ has ∞-degree 1. This happens only when the total
degree of the angles in a k-gon is k− 2. As every angle occurs only in one k-gon this can always be done
but not canonically.

The gentle A∞-algebra also has an extra grading coming from the relative first homology

G = H1(S \M,A,Z).

This group can be described in terms of the angles and faces

G =

⊕
α∈(QA)1

Zα

〈α1 + · · ·+ αk | (α1, . . . , αk) is a face〉
.

The group G comes with two natural maps

• π : G→ ZA : α 7→ h(α)− t(α)

• ι : ZM → G : m 7→
∑
α∈ℓm

α

We have π ◦ ι = 0. The image of the π has corank 1, while the kernel of ι is (1, . . . , 1). Therefore if
#M ≥ 2 the map ι is nonzero.

If we grade GtlA by giving each angle its corresponding degree in G, it is clear that all products µ
have degree 0 ∈ G. We can transfer the G-grading to the Hochschild complex and it is easy to see that
it contains only nonzero elements for degrees in Kerπ. Furthermore the natural operations [, ], ⌣ and d
all have G-degree 0.

Remark 3.5. It is also clear from this construction that if deg and deg′ are two different Z-lifts of the
Z2-grading then their difference factors through G because deg and deg′ assign the same degree to a face.
More precisely, the possible Z-gradings form a Hom(G, 2Z)-torsor.

Lemma 3.6. If deg is a Z-lift of the Z2-degree on GtlA then

∑

m∈M

deg ℓm = 4− 4g − 2#M = 2χ(S,M) < 0.

Here g is the genus of the marked surface (S,M) and χ(S,M) its Euler characteristic (which is negative
by assumption).

Proof.

∑

m∈M

deg ℓm =
∑

α∈(QA)1

degα =
∑

f∈F

deg f

=
∑

f∈F

(2−#{α ∈ f}) = 2#F − 2#A = 2(2− 2g)− 2#M.
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3.2 Reduction to the zeroth and first component

In this section we will show that the Hochschild cohomology class of a cocycle can be read off from the
0th and 1st component. In other words, if ν0 and ν1 are both zero then ν is a coboundary. Remark 3.4
allows us to restrict to cochains which belong to the normalized Hochschild cohomology. For such classes
we will construct an ǫ ∈ HC•(A) such that ν − dǫ evaluates zero on all sequences (βk, . . . , β1) where
the βi are nontrivial angle paths and t(βi) = h(βi+1). We will often refer to the procedure of adding a
coboundary as gauging.

Definition 3.7. Let β = (βk, . . . , β1) be a sequence of nontrivial angles with h(βi) = t(βi+1) for i < k
(we do not impose that it cycles so h(βi), t(β1 can be different).

• We call β elementary if all βi are indecomposable angles (angle arrows).

• An index i is called a contractible index if βi+1βi 6= 0.

• Denote the set of contractible indices by Contr(β) and if S ⊂ Contr(β) then the contracted
sequence βS will be the sequence where consecutive angles separated by a contractible index are
multiplied together.

• Every angle sequence is of the form βS where β is elementary and S a set of contractible indices.
Moreover β and S are uniquely determined. Two sequences are of the same type if they are
contractions of the same elementary sequence.

• The total length of a sequence will be the length of its underlying indecomposable sequence.

• For an elementary sequence we have that Contr(β) = {} if and only if it consists of consecutive
angles of a polygonal face. Therefore we will call such sequences polygon sequences.

Lemma 3.8. Let ν ∈ Ker(d) ⊂ HC•(GtlA) with (A) ν0,1 = 0. Then ν can be gauged to satisfy
additionally that (B) ν2(α, β) = 0 for all pairs of angle paths with αβ 6= 0. During the gauging procedure,
the value of ν does not change on polygon sequences.

Proof. We will construct an ε = ε1 such that ν2(α, β) = dε2(α, β) if αβ 6= 0. Set ε1(α) = 0 for every
indecomposable angle α. Now define inductively ε1 for decomposable angles (angle paths) by the rule

ε1(αβ) = ε1(α)β + αε1(β)− (−1)|β|ν2(α, β). (3.2)

Let us check that extending ε1 according to this rule is well-defined, that is, ε1((αβ)γ) = ε1(α(βγ)).
Indeed,

(
ε1(αβ)γ + αβε1(γ)− (−1)|γ|ν2(αβ, γ)

)
−
(
ε1(α)βγ + αε1(βγ)− (−1)|βγ|ν2(α, βγ)

)

= ε1(α)βγ + αε1(β)γ − (−1)|β|ν2(α, β)γ + αβε1(γ)− (−1)|γ|ν2(αβ, γ)

− ε1(α)βγ − αε1(β)γ − αβε1(γ) + (−1)|γ|αν2(β, γ) + (−1)|βγ|ν2(α, βγ)

= −(−1)|β|ν2(α, β)γ − (−1)|γ|ν2(αβ, γ) + (−1)|γ|αν2(β, γ) + (−1)|βγ|ν2(α, βγ)

= (−1)|β|(dν)(α, β, γ) = 0.

In the final row we have used that ν0 = ν1 = 0. We conclude that for angles α, β with αβ 6= 0 we have

(dε)(α, β) = (−1)|β|ε1(α)β + (−1)|β|αε1(β)− (−1)|β|ε1(αβ) = ν2(α, β)

as desired. Furthermore (dε)0 = (dε)1 = 0 and if (αk, . . . , α1) is a polygon sequence, then

(dε)(αk, . . . , α1) = ε(µ(αk, . . . , α1)) + µ(. . . , ε(αi), . . .) = 0.

because all αi are indecomposable so ε(αi) = 0.

Lemma 3.9. Let ν ∈ Ker(d) ⊂ HC•(GtlA) with (A) ν0,1 = 0 and (B) ν2(α, β) = 0 if αβ 6= 0. Then ν
can be gauged to (C) evaluate zero on polygonal sequences without affecting the conditions (A), (B).

Proof. We start off with a little remark that is important to follow the argument. Note that when going
around a polygon (αN , . . . , α1) the boundary arcs can be oriented clockwise or anticlockwise. If two
consecutive arcs ai = t(αi) and ai+1 = h(αi) have the same orientation then |αi| = 1 and ‖αi‖ = 0.

‖α‖ = 1 ‖α‖ = 1 ‖α‖ = 0 ‖α‖ = 0
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Therefore if we have a polygonal sequence (αi+k, . . . , αi+1) then the orientation of h(αi+k) and t(αi+1)
will be the same (different) if the total shifted degree ‖αi+k‖+ . . .+ ‖αi+1‖ is zero (one).

Working with the shifted degree is useful because the shifted degree of ‖ν(αi+k, . . . , αi+1)‖ is the total
shifted degree ‖αi+k‖+ . . .+ ‖αi+1‖ plus the parity of ν. With this in mind we will distinguish two cases
depending on the parity of ν.

• The parity of ν is odd. We proceed by induction. Regard an elementary polygon (αN , . . . , α1)
of length N and assume ν already vanishes on its polygon sequences of length ≤ k − 1. We will
simultaneously gauge away ν on the polygon sequences of length k of this polygon.

First note that an arc can occur at most twice on the boundary of a face and if it does it must be
oriented once clockwise and once anticlockwise around the face because the surface is orientable.
This implies that if ν(αi+k, . . . , αi+1) contains an identity, then k must be a multiple of N . Indeed,
if k < N and there is an identity ✶a in the result then t(αi+1) = h(αi+k) = a. Because the two
orientations of a around the face are different the shifted degree of (αi+k, . . . , αi+1) is odd. As ν is
odd, ν(αi+k, . . . , αi+1) will be even and hence it cannot contain ✶a (whose shifted degree is odd).

Let us now assume k is not a multiple of N . Then we can write ν(αi+k, . . . , αi+1) = αi+kδ
(i+k) +

γ(i+1)αi+1. Note that

0 =(dν)(αi+k+1, . . . , αi+1)

=(−1)‖αi+k‖+...+‖αi+1‖αi+k+1(αi+kδ
(i+k) + γ(i+1)αi+1)

+ (−1)‖αi+1‖+|αi+1|(αi+k+1δ
(i+k+1) − γ(i+2)αi+2)αi+1

=αi+k+1((−1)
‖αi+k‖+...+‖αi+1‖γ(i+1) − δ(i+k+1))αi+1.

In evaluating the first row we have used the induction hypothesis. Independent of arc directions,
the angles αi+k+1 and γ(i+1) are composable and δ(i+k+1) and αi+1 are composable. We deduce
δ(i+k+1) = (−1)‖αi+k‖+...+‖αi+1‖γ(i+1) for all i. Set ε(αi+k−1, . . . , αi+1) = (−1)‖αi+k−1‖+...+‖αi+1‖+1δ(i+k)

for all i. Then

(dε)(αi+k, . . . , αi+1) = αi+kδ
(i+k) + (−1)‖αi+k‖+...+‖αi+2‖+1+|αi+1|δ(i+k+1)αi+1

= αi+kδ
(i+k) + γ(i+1)αi+1 = ν(αi+k, . . . , αi+1).

We have (dε)0 = (dε)1 = 0. Let us now check that dε does not affect any other elementary polygon
sequences or the sequences in the same polygon with length l ≤ k− 1. Regarding shorter sequences
in the same polygon, we have

(dε)(αi+l, . . . , αi+1) = µ(. . . , ε, . . .) + ε(. . . , µ(αi+s+tN , . . . , αi+s+1), . . .)

where N is the length of the polygon. The first summand vanishes, since l ≤ k − 1. In the second
summand, the inner µ may only yield an identity and ε vanishes. For sequences in other polygons,
similar arguments apply. We have safeguarded that ν0,1 = 0 is preserved when gauging by ε. For
k > 2, also (dε)2 vanishes. In case k = 2 the (dǫ)2(α, β) may be nonzero in rare cases, but we fix
this by applying Lemma 3.8, without changing ν on polygon sequences.

Finally, let us treat the case where k is a multiple of the length N of the polygon. Apart from the
identities, we can gauge everything in ν(αi+k, . . . , αi+1) away as above. It remains to check out the
identities. Write ν(αi+k, . . . , αi+1) = ci✶ai . Note we have

0 = (dν)(αi+k+1, . . . , αi+1)

= αi+k+1ν(αi+k, . . . , αi+1)− ν(αi+k+1, . . . , αi+2)αi+1

= ciαi+k+1 − ci+1αi+1 = (ci − ci+1)αi+1.

Here we have used that ν already vanishes on sequences of the same polygon of length ≤ k− 1. We
obtain that all ci around the polygon are equal. Denote this value by c. Choose an angle α1 in the
polygon and define ε(αk−N+1, . . . , α1) := cα1. As desired,

(dε)(αi+k, . . . , αi+1) = µ(. . . , ε(αk+1, . . . , α1), . . .)

= cµ(αi+N , . . . , αi+1) = c✶ai .

In the first row we have used that the sequence α1, . . . , αk−N+1 of length k−N+1 appears precisely
once in the sequence αi+k, . . . , αi+1 and hence an inner ε can be applied precisely once. We see
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that (dε)0 = (dε)1 = 0. Let us check that dε vanishes on any polygon sequence β1, . . . , βl of length
l ≤ k − 1 in the same polygon. Indeed,

(dε)(βl, . . . , β1) = ε(. . . , µ(. . .), . . .) + µ2(. . . , ε(. . .), . . .) + µ≥3(. . . , ε(. . .), . . .).

The first summand vanishes, because the inner µ only gives identities. The second summand
vanishes, because the result of the inner ε is a multiple of the first, equivalently last input of its
input sequence, hence not composable with the input angle of the outer µ2. The third summand
vanishes, because ε consumes k −N + 1 inputs and the outer µ≥3 needs N − 1 more inputs, while
the sequence β1, . . . , βl has length only l ≤ k− 1. Similarly, one checks that dε vanishes entirely on
polygon sequences in other polygons. For k > N , we have (dε)2 = 0. For k = N , it may happen
that (dε)2 6= 0, but we fix this by applying Lemma 3.8.

In total, we have gauged ν infinitely many times during this proof. However, the ε gauges have
higher and higher input length. Moreover we only invoke Lemma 3.8 finitely many times, this
means that the total sum of the gauges is defined in Hom❦(

⊕
i≥0A[1]

⊗❦i, A[1]) and we conclude it
is a Hochschild cochain.

• The parity of ν is even. As in the odd case, we proceed again by induction over the length k of the
polygon sequence.

Let us first check for possible identities in ν(αi+k, . . . , αi+1). In case k is a multiple of N , the source
arc of αi+1 is equal to the target arc of αi+k, in particular ||ν(αi+k, . . . , αi+1)|| is even and does
not contain identities. In case k is not a multiple of N , we observe

(dν)(αi+k+1, αi+k, . . . , αi+1) = αi+k+1ν(αi+k, . . . , αi+1) + ν(αi+k+1, . . . , αi+2)αi+1.

Since k is not a multiple of N , we have αi+k+1 6= αi+1 and conclude that ν(αi+k, . . . , αi+1) contains
no identities.

We now proceed with gauging ν(αi+k, . . . , αi+1) to zero. By abuse of wording, let us say “head”
and “tail” of a polygon’s arc a to mean the vertex at the clockwise end and at the counterclockwise
end of a. For every i we write

ν(αi+k, . . . , αi+1) = κi + λi,

where κi contains the angle paths that starts at the “head” of ai+1 and λi starts at the “tail” of
ai+1 = t(αi+1).

• •
ai+1

κi λi

We show that λi necessarily vanishes. Regard the source arc ai+1 of αi+1 and target arc ai+k+1 of
αi+k. We have

0 = (dν)(αi+k+1, . . . , αi+1) = αi+k+1(κi + λi) + (κi+1 + λi+1)αi+1.

We know κi is odd or even, depending on whether ai+1 and ai+k+1 are equally oriented with respect
to the polygon or not. Since κi always starts at the “head” of ai+1, we deduce from its degree that
it always ends at the “tail” of ai+k+1. In particular αi+k+1κi = 0. Similarly, λi starts at the “tail”
of ai+1, hence ends at the “head” of ai+k+1, whether ai+1 and ai+k+1 are oriented equally or not.
In particular αi+k+1 and λi are composable. But αi+1 starts at the “head” of ai+1, while λi starts
at the “tail” of ai+1, hence the summands αi+k+1λi and (κi+1 + λi+1)αi+1 consist of disjoint sets
of angles. Since the whole sum is supposed to vanish, we conclude λi = 0.

Since κi starts at the side of αi+1 and ν(αi+k, . . . , αi+1) contains no identities, we can write κi =
γiαi+1. We aim at gauging ν(αi+k, . . . , αi+1) to zero. Let us first gauge away all terms except the
possible scalar multiple of αi+1, which comes from a possible identity in γi. Put ε(αi+k, . . . , αi+2) :=
γi. Then

(dε)(αi+k, . . . , αi+1) = γiαi+1 + αi+kγi−1.

Apart from identities in γi−1, the angles αi+k and γi−1 are not composable. To see this, consider
two cases. If ai and ai+k are oriented opposite, then ν(αi+k−1, . . . , αi) = κi−1 is even. Hence γi−1

enters ai+k at the opposite side of where αi+k leaves. If ai and ai+k are oriented equally, then κi−1

is odd and γi−1 enters ai+k still at the opposite side of where αi+k leaves. Either way, we have
αi+kγi−1 = 0 and γiαi+1 = κi remains as desired.
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Let us check that dε vanishes on polygon sequences in other polygons and on polygon sequences
shorter than k in the same polygon. Indeed,

(dε)(βl, . . . , β1) = ε(. . . , µ(. . .), . . .) + µ(. . . , ε(. . .), . . .).

In the first summand, the inner µ can only give identities, on which ε vanishes. In the second
summand, the input sequence of the inner ε must be from the same polygon as α1, . . . , αN and of
length precisely k − 1. Since the outer µ is µ≥2, this means that β1, . . . , βl has length at least k,
which was not to be assumed.

Finally, let us gauge away the remaining scalar multiples of αi+1 in ν(αi+k, . . . , αi+1). For i ∈ Z/NZ,
write ν(αi+k, . . . , αi+1) = ciαi+1. If ci 6= 0, we deduce that the target arc of αi+k is equal to the
target arc of αi+1, that is, ai+k+1 = ai+2. Moreover, ν is even and hence ai+k+1 and ai+2 are
oriented equally. In other words, ai+k+1 and ai+2 are equal as arcs and are oriented equally in the
polygon. As we remarked in the odd case, this is only possible if i + k + 1 = i + 2 in Z/NZ. We
conclude that if some ci does not vanish, then k = lN + 1 for some l ≥ 1.

Assuming k = lN + 1, let us show that the different ci along the polygon are related. Indeed,

0 = (dν)(α(l+1)N , . . . , α1) =

N∑

i=1

ci✶a1 + µ2(α(l+1)N , ν(. . .)) + µ2(ν(. . .), α1).

We have used that an inner ν can be placed in precisely N ways, replicating the corresponding angle
αi and forming a disk together with the remaining angles. Moreover, an inner µ is impossible, since
it only yields identities. An outer µ2 is possible, but gives non-empty angles only which can be
distinguished from the identities. We deduce that the sum of all ci vanishes. Put

ε(αi+lN , . . . , αi+1) := −



i−1∑

j=1

cj


✶ai+1

.

Then

(dε)(αi+lN+1, . . . , αi+1) = −
i−1∑

j=1

cjαi+lN+1 +
i∑

j=1

cjαi+1.

This definition makes sense for i ∈ Z/NZ, since the sum over ci vanishes. The sums cancel each
other because αi+lN+1 = αi+1, and ciαi+1 remains as desired. It is standard to check that dε does
not have values on shorter polygon sequences or other polygons.

Lemma 3.10. Let ν ∈ Ker(d) ⊂ HC•(GtlA with (A) ν0,1 = 0, (B) ν(α, β) = 0 if αβ 6= 0 and suppose
(C) ν vanishes on polygonal sequences. Then ν can be gauged to zero on all angle sequences.

Proof. We prove the statement by gauging ν to zero inductively on the total length of the angle sequences.
After each step of gauging, we prove that all additional assumptions (A-C) still hold.

We already know ν1 = 0 and if (α, β) is a sequence of length two then either αβ 6= 0 of (α, β) is a
polygon sequence, so by (B) and (C) we are done for total length at most 2.

Now let (αk, . . . , α1) be any sequence of k ≥ 3 angles αi : ai → ai+1. By induction, we assume that ν
already vanishes on all shorter sequences. Since ν already vanishes on polygon sequences, we can assume
(αk, . . . , α1) is not a polygon sequence.

We will gauge ν on (αk, . . . , α1) simultaneously with all other sequences of the same type and therefore
we will assume (αk, . . . , α1) is elementary. Now (αk, . . . , α1) consists of indecomposable angles of which
at least one pair is composable (otherwise it would be a polygon sequence). Orientations of arcs will play
no role in this proof, apart from determining the degrees of the angles. For simplicity, let us assume all
αi have odd degree. (This happens in case of a dimer.) Similarly, ν is either of odd or even parity, and
the signs we write are for the odd case.

Let Contr(β) be the set of all contractible indices and s = max(Contr(β)). We will now gauge all βS

for S ⊆ Contr(β) simultaneously. Put

ε(β{s}∪T ) = (−1)|T |ν(βT ), T ⊆ Contr(β) \ {s}.

We show that (dε)(βS) = ν(βS) for all S ⊆ Contr(β).
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• In case s /∈ S, we have
(dε)(βS) = ε(β{s}∪S) = (−1)|S|ν(βS).

by definition. Note that any ε(. . . , µ≥3, . . .) and µ(. . . , ε, . . .) vanish since their input sequence of ε
is shorter than (αk, . . . , α1).

• In case s ∈ S, first observe that for K ⊆ Contr(β) we have

∑

t/∈K

(−1)1+|K<t|ν(βK∪{t}) = (dν)(βK)∓ ν(. . . , µ≥3, . . .)∓ µ(. . . , ν, . . .) = 0.

Here |K<t| denotes the number of indices in K smaller than t. Indeed, the second and third
summands vanish because the input sequence of ν is shorter than β. Now using this observation
for K = S \ {s} we get

(dε)(βS) = −
∑

t/∈S

(−1)1+|S<t|ε(βS∪{t})

=
∑

t/∈S

(−1)|S\{s}∪{t}|+|S<t|ν(βS\{s}∪{t})

=
∑

t/∈S\{s}

(−1)|S|+1(−1)|(S\{s})<t|+1ν(βS\{s}∪{t})− (−1)|S|+1(−1)|S<s|+1ν(βS\{s}∪{s})

= 0 + ν(βS)

as desired. In the first row, we have used that all ε(. . . , µ≥3, . . .) and µ(. . . , ε, . . .) vanish since their
input sequence of ε is shorter than (αk, . . . , α1).

Finally, (dε)0 = (dε)1 = 0 and dε vanishes on polygon sequences γl, . . . , γ1. Indeed,

(dε)(γl, . . . , γ1) = ε(. . . , µ, . . .) + µ(. . . , ε, . . .). (3.3)

The first summand vanishes because the inner µ yields only vertex idempotents. The second summand
vanishes, since the input sequence of ε consists only of indecomposable angles, while a sequence β{s}∪T

on which ε is defined has at least one decomposable angle.
Next, note that dε vanishes if an input is a vertex idempotent. Now assume γl, . . . , γ1 is any sequence

of non-empty angles of total length less than or equal to that of αk, . . . , α1. Consider the sum (3.3) again.
The first summand vanishes in case of µ≥3 because then the input sequence of ε has less total length
than α1, . . . , αk. If the first summand does not vanish for some µ2, we conclude that the indecomposable
constituents of the sequence are equal to α1, . . . , αk. In other words, it is one of those sequences we have
just gauged correctly already. The second summand vanishes, since the input sequence of ε is shorter
than αk, . . . , α1.

Theorem 3.11. Let ν ∈ Ker(d) with ν0,1 = 0 then ν is zero in HH•(GtlA).

Proof. This is an immediate consequence of the previous lemmas.

This theorem implies that the cohomology class of the cocycles can be read off from its zeroth and
first components.

Lemma 3.12. If ν is a cocycle then

• ν0 is a central element,

• if ν0 = 0 then ν1 is a derivation.

Proof. We have that ν0(1) is a central element because

0 = (dν)1(α) = µ2(α, ν0(1)) + (−1)‖α‖µ2(ν0(1), α).

If ν0 = 0 then ν1 is a derivation because

0 = (−1)|β|(dν)(α, β) = ν1(α)β + αν1(β)− ν(αβ),

0 = ν1(✶a)✶a + ✶aν
1(✶a)− ν(✶a).
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Depending on the parity of the cocycle we can be even more precise: odd cocycles are determined by
ν0, which is a central element, while even cocycles are determined by ν1, viewed as an outer derivation
of GtlA.

Theorem 3.13. Let A be an arc collection.

1. The map

HHeven(GtlA)→ OutDer(GtlA) : ν 7→ ν1

is a well-defined embedding.

2. The map

HHodd(GtlA)→ Z(GtlA) : ν 7→ ν0(1)

is a well-defined embedding.

Proof. For the first statement note that the center only has cycles of even degree, which represent odd
maps A[1]⊗0 → A[1]. Therefore ν0 = 0 if the parity of ν is even and hence by the previous lemma ν1 is
indeed a derivation. The map is also well defined because

(dκ)1(α) = µ1(κ1(α)) + µ2(κ0, α)− µ2(α, κ0) = [κ0, α].

Furthermore if ν1 is inner and ν0 = 0 then we can find a κ such that (ν−dκ)1 = 0 zero. Because (ν−dκ)0

is zero for degree reasons we have by theorem 3.11 that ν = 0 in HHeven(GtlA). Therefore the map is an
embedding.

For the second statement, first note that this map is well-defined because (dκ)0 = µ1 ◦ κ0 = 0. Now
suppose that ν0(1) = 0, then we will construct an even ε such that (dε)1(α) = ν1(α) for all indecomposable
angles. Because ν0(1) = (dε)0 = 0 both (dε)1 and ν1 are derivations and therefore (dε)1 = ν1. This
means that (ν − dǫ)≤1 = 0 and hence ν = 0 in HHodd(GtlA). Therefore the map is an embedding.

To construct ǫ, let us first make sure that ν1(α) does not include the identity. Indeed let α : a → a
be an indecomposable angle. Since a is not contractible by assumption, α is not the only angle in the
polygon. In particular, α does not go from head to tail of a or from tail to head of a. We conclude α is
even and ν1(α) is odd, hence does not include an identity.

Regard the polygon that α sits in. By abuse of wording, let us say “head” and “tail” of a polygon’s
arc a to mean the vertex at the clockwise end and at the counterclockwise end of a. Independent of
arrow directions, ν1(α) can be decomposed into a part running from the tail of a to the tail of b and a
part running from the head of a to the head of b. Write this decomposition as ν1(α) = αδ(α) + γ(α)α.
Whether α is even or odd, δ(α) and γ(α) are always odd since ν1 is.

Now let a be an arc. Denote by α1, α2, α3, α4 the angles incident at a as in Figure 3.1a. We have

0 = (dν)(α2, α4) = (−1)‖α4‖µ2(ν1(α2), α4) + µ2(α2, ν
1(α4)) + ν1(µ2(α2, α4))

= −γ(α2)α2α4 − α2δ
(α2)α4 + (−1)‖α4‖α2γ

(α4)α4 + (−1)‖α4‖α2α4δ
(α4) + 0

= α2((−1)
‖α4‖γ(α4) − δ(α2))α4.

We conclude δ(α2) = (−1)‖α4‖γ(α4). Note that we have used that α2α4 = 0 and that γ(α4) and δ(α2) both
run from the tail of a to the head of a, and that α4 ends at the tail of a and α2 starts at the head of a.
Similarly,

0 = (dν)(α3, α1) = (−1)‖α1‖µ2(ν1(α3), α1) + µ2(α3, ν
1(α1)) + ν1(µ2(α3, α1))

= −α3δ
(α3)α1 − γ

(α3)α3α1 + (−1)‖α1‖α3α1δ
(α1) + (−1)‖α1‖α3γ

(α1)α1 + 0

= α3(−δ
(α3) + (−1)‖α1‖γ(α1))α1.

We conclude δ(α3) = (−1)‖α1‖γ(α1). Let us now put

ε0a := (−1)‖α4‖+1γ(α4) − δ(α3) = (−1)‖α1‖+1γ(α1) − δ(α2).

The expression can be read independent on the arrow direction of a: It stays invariant under rotating the
labels α1, α2, α3 and α4 by 180 degrees. In other words, ε0a can be seen either as the (signed) difference
of γ and δ of its incident angles at its head or at its tail. This makes it easy to check (dε)(α) = ν1(α) for
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Figure 3.1

any indecomposable angle α : a→ b. Denote by β1 and β2 its predecessor and successor indecomposable
angles around the same puncture as in Figure 3.1b. Then

(dε)(α) = (−1)|α|ε0bα− αε
0
a

= (−1)|α|((−1)‖α‖+1γ(α) − δ(β2))α− α((−1)‖β1‖+1γ(β1) − δ(α))

= γ(α)α+ (−1)‖α‖δ(β2)α+ (−1)‖β1‖αγ(β1) + αδ(α)

= γ(α)α+ αδ(α) = ν1(α).

In the penultimate equality, we have used that δ(β2) ends where α starts and is odd, therefore not
composable with α. Similarly αγ(β1) = 0. We conclude that (dε)1 = ν1 on indecomposable angles.

Remark 3.14. If ν is an even cocycle then ν0 is zero, but if ν has odd parity then ν1 need not to be
zero or not even a derivation. An example of this occurs when m is a marked point surrounded by a loop
arc. This loop gives rise to an orbigon of length 1, so the corresponding product A∞-deformation has a
nontrivial rlµ.. 1 if r(m,1) 6= 0 and therefore ν(m,1),o, as defined in definition 3.15, will be an odd cocycle

with nontrivial ν1.

3.3 A set of generators

In this section we will describe a special set of Hochschild classes that span the Hochschild cohomology.
The first class we need is the unit class ν✶, which corresponds to a single nullary product: ν0

✶
: ❦ →

A[1] : ✶a 7→ ✶a. Clearly this is a Hochschild cycle because the ✶a are strict idempotents. Its parity is
odd.

Definition 3.15. For each orbifold point p = (m, r) ∈M ×N we define its orbifold point homology class
as

νp,o =
1

~
(rlµ.. − µ) with r = ℓrm~ ∈ Z(A)⊗ C[~]/(~2).

Lemma 3.16. νp,o is a cocycle of odd parity.

Proof. These are clearly cocycles because r
lµ.. satisfies the Maurer-Cartan equation, which reduces to

d(rlµ.. ) = 0 in the first order.

A second set of cocycles are characterized as follows. Fix a map λ : (QA)1 → C. Define the first

component of νλ to be the derivation such that νλ(α) = λαα and set ν 6=1
λ = 0. The derivation condition

implies that for a path β = βk . . . β1 we have νλ(β) =
∑
i λβi

β, so it makes sense to define λβ :=
∑
i λβi

.

Lemma 3.17. νλ is a cocycle if and only if for every polygon (αN , . . . , α1) we have
∑
i λαi

= 0.

Proof. The condition that
∑
i λαi

= 0 for every polygon implies that
∑
αi
λαi

= 0 for every tree-gon
(αk, . . . , α1). Therefore

(dνλ)(α1, . . . , αkβ) = (
∑

λαi
+ λβ)µ(αk, . . . , α1β)− νλ(β) = 0.

On the other hand if ν 6=1 = 0 then we know from lemma 3.12 that ν must be a derivation, while for every
polygon d(νλ)(αN , . . . , α1) = 0 implies that

∑
i λαi

= 0.

The set of all νλ with these properties form a vector space S. If two elements in S differ by a
commutator with an element in ❦ they will represent the same homology class.
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Lemma 3.18. dimS/[❦,−] = 2g − 1 + |Q0|.

Proof. The dimension of S is 2#A−#{faces} because there are 2 angles arriving in each arc and every
face gives one linear condition. All these conditions are linearly independent because every angle occurs
only in one face. The kernel of the map ❦ → [❦,−] is C, so the image of [❦,−] in S is of dimension
#A− 1 and therefore

dimS/[❦,−] = 2#A−#{faces} −#A+ 1 = 2g − 2 + |Q0|+ 1.

It is easy to find a basis for S/[❦,−]. Look again at Figure 3.1a. For each arc a there are 4 angles:
two α2, α3 leaving a and two α1, α2 arriving in a. The angles α2 and α4 sit in the face on the right of a
and α1,α3 in the face on the left.

We define νa,L to be the derivation with

λ(α1) = 1, λ(α3) = −1

while all other entries of λ are zero. Similarly we define νa,R with

λ(α2) = 1, λ(α4) = −1.

Note that because [✶a,−] = νa,L − νa,R we have that up to homology νa,L = νa,R, so we will drop the
subscript R,L and set νa := νa,L.

Lemma 3.19. If T is a set of arcs that forms a spanning tree in the face graph then

{νa | a ∈ A \ T }

is a basis for S/[❦,−].

Proof. The sum of the νa where a runs over the arcs going around a given face is zero. Because T is a
spanning tree, the {νa | a ∈ A\ T} are independent. Moreover because a spanning tree has #{faces}− 1
arcs, the cardinality of this set is the dimension of S/[❦,−].

Remark 3.20. We will call the νa and more general the νλ, which are linear combinations of the νa,
arc classes.

Let p = (m, j) be an orbifold point and a be any arc arriving (or leaving) the marked point. We now
define

νp,e := νp,o ⌣ νa or −νa if a leaves m.

Note that if a is not a loop we have that νp,e is zero for every angle arrow except for α1 (or α3 in the
case a leaves m).

Lemma 3.21. If the arc collection A satisfies [NL2] then the homology class of νp,e does not depend on
the choice of a.

Proof. Let a and b be neighboring arcs incident at the same puncture, such that b comes after a in
clockwise order. Let ε = ε0 be the odd cochain given by ε0 = ℓjm✶a. For any angle α winding around
puncture m(α) we have

d(ε)(α) =





+ℓjmα t(α) = a and m(α) = m

−ℓjmα h(α) = a and m(α) = m

0 otherwise

Because a is not a loop, the two nonzero cases each happen for just one α1 and α3 angle. We conclude

[d(ε)]1 = [νp,e ⌣ νa − νp,e ⌣ νb]
1.

In other words the difference between νp,e ⌣ νa and νp,e ⌣ νb is homotopic to a cocycle κ with κ0, κ1 = 0.
In combination with theorem 3.11 this means that two consecutive arcs around m define the same νp,e-
class, and hence all arcs around m do.

Theorem 3.22. Let A be an arc collection and T a spanning tree in the face graph.

1. The cocycles ν✶, νp,o where p runs over all orbifold points form a basis for HHodd(GtlA).
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2. If A satisfies [NL2] then the cocycles νp,e, νa where p runs over all orbifold points and a ∈ A \ T
form a basis for HHeven(GtlA).

Proof. The zeroth components of ν✶, νp,o form a basis for Z(GtlA), so the embedding HHodd(GtlA) →
Z(GtlA) in lemma 3.13 is a bijection.

To show the second part, note that the fact that there are no loops or two-cycles implies that all
nonzero angle paths with the same head and tail as α turn around the same marked point as α and are
of the form ℓrmα.

If ν is G-homogeneous this means that there are two possibilities

• If the degree is 0 then ν must be a linear combination of the νa.

• ν(α) = λαℓ
j
mα with j > 0 then the only other β for which ν(β) 6= 0 must turn around m. Up to

an inner derivation this ν is determined by the sum
∑
λα where α runs over the indecomposables

turning around m.

3.4 Gerstenhaber structure product on Hochschild cohomology

In this section, we compute the Gerstenhaber algebra structure on HH(GtlA). In other words, we deter-
mine the bracket and the cup product on Hochschild cohomology. The bracket agrees with the compu-
tations by Wong for the Borel-Moore cohomology of matrix factorizations for dimer models [71], which
is conjecturally equivalent to HH(GtlA).

To describe the bracket and cup product, we use the basis for odd and even Hochschild cohomology
constructed earlier: the odd classes ν(m,j),o for a puncture m ∈ M and j ≥ 0, the even classes ν(m,j),e,
and the arc classes νλ with λ : (QA)1 → C.

We start with the cup-product

Proposition 3.23. Let m,n ∈ M be two marked points, let i, j ≥ 1 be two indices, and νλ, νκ two arc
classes. Then the cup product in cohomology reads as follows:

ν(m,i),o ⌣ ν(n,j),o = δmnν(m,i+j),o,

ν(m,i),o ⌣ ν(n,j),e = δmnν(m,i+j),e,

ν(m,i),o ⌣ νλ = λℓmν(m,i),e,

νκ ⌣ νλ = 0,

ν(p,i),e ⌣ νλ = 0.

Proof. We compute the cup products of the given Hochschild cocycles first on chain level. Then we
compute their projection to cohomology. In fact, for the odd products it suffices to compute the curvature
component (ν ⌣ η)0 and for the even products it suffices to compute the first component (ν ⌣ η)1. Also
recall that the parity of ⌣ itself is odd, so the product of two classes with the same (different) parity is
odd (even). We are now ready to start the calculations. For the first identity, regard

(ν(m,i),o ⌣ ν(n,j),o)
0 = µ2(ν0(m,i),o(1), ν

0
(n,j),o(1)) = δmnµ

2(ℓim, ℓ
j
n) = ℓi+jm .

This is precisely the curvature of the Hochschild cohomology class ν(m,i+j),o and hence projects to it. For
the second identity and third identity one can do a similar calculation but now one has to look a the first
component. Alternatively, we can use the definition of ν(p,i),e in combination with the associativity of ⌣
on the Hochschild cohomology.

For the last two identities we again have to look at the zeroth component and these are trivially zero
because both factors have trivial curvature.

Proposition 3.24. Let m,n ∈ M be two marked points, let i, j ≥ 1 be two indices, and νλ, νκ two arc
classes. Then the Gerstenhaber bracket in cohomology reads as follows:

[ν(m,i),o, ν(n,j),o] = 0,
[
ν(m,i),e, ν(n,j),o

]
= δmn · j · ν(m,i+j),o,[

ν(m,i),e, ν(n,j),e
]
= δmn · (j − i) · ν(m,i+j),e,[

νλ, ν(m,i),o
]
= iλℓm · ν(m,i),o,[

νλ, ν(m,i),e
]
= iλℓm · ν(m,i),e,

[νκ, νλ] = 0.
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Proof. The strategy for this calculation is the same as for the cup product. We calculate the zeroth or
first component of the bracket.

[ν, η]0 = ν1(η0)− (−1)‖ν‖‖η‖η1(ν0),

[ν, η]1(α) = ν1(η1(α)) + (−1)‖η‖‖α‖ν2(η0, α) + ν2(α, η0)

− (−1)‖ν‖‖η‖
(
η1(ν1(α)) + (−1)‖ν‖‖α‖η2(ν0, α) + η2(α, ν0)

)
.

The main difference is now that the bracket has even parity, so we need to check the zeroth component
whenever the two entries have different parity. In that case the result is the outer derivation of the even
class applied to the central element of the odd class. This takes care of the second and fourth identity.

The first component of the bracket of two even classes is the commutator of their outer derivations
because they have no ν0. This takes care of the third and the last two identities.

Finally the bracket of two odd classes is zero because they have no ν1, ν2 if [NL2] holds. If [NL2] fails
and α is an indecomposable angle then ν1(α) can only be nonzero if a = h(α) is a loop around a puncture
but then the arc collection does not split the surface. Secondly for our deformed products a term of the
form r

lµ.. 2(ℓp, α) is always cancelled by r
lµ.. 2(α, ℓp) and therefore the same holds for the odd classes. This

implies that [ν, η]1(α) is zero for all indecomposable α and because [ν, η]1 is a derivation it is identically
zero.

The Lie-bracket on HH•(GtlA) is part of an L∞-structure. This is a graded vector space L together
with brackets [, . . . , ]k : L⊗k → L of degree 2− k which satisfy the L∞-axioms [67].

If K•, d, [] is a DGLA then we can construct an L∞-structure [, ]• on the homology such that
HK•, 0, [, ]• is quasi-isomorphic to C•, d, [].

These products can be constructed using the homotopy transfer lemma (see e.g. [54]). The construc-
tion can be summarized as follows:

• Split K• as a direct sum of graded vector spaces

K• = H ⊕ I ⊕R

such that Imd = I and Ker d = H ⊕ I. In this way H ∼= HK• and d restricts to an isomorphism
dIR : R→ I.

• Let h be the map

h : H ⊕ I ⊕R→ H ⊕ I ⊕R : (u, v, w) 7→ (0, 0, d−1
R→I(v)).

In this way the projection onto H becomes π = ✶− dh− hd.

• for x1, . . . , xk ∈ H we define

[x1, . . . , xk]
k =

∑

t

ctπ[. . . , h[xi, xj ], . . . , ]

as a linear combination of all possible ways of fully bracketed expressions where each internal bracket
is composed with an h. (The precise coefficients ct will not matter in our discussion.)

In our case we will take K = HC(GtlA), H ∼= HH(GtlA) to be the span of the classes we constructed,
and we take I and R to be compatible with the G-grading.

Theorem 3.25. If A satisfies [NL2] then we can choose a split such that all higher brackets are zero.

Proof. First note that [ν✶,−] = 0 in HC(GtlA), so [ν✶,−, . . . ,−]
k will also be zero.

To show that the other brackets are zero, pick any Z-grading of the gentle algebra. Then we can assume
that that the bracket [, ]k has degree 2 − k for this grading and degree 0 for the G = H(S \M,A,Z)-
grading. As we assumed that A has no loops, there are at least two punctures so the G-degree of ℓm is
nontrivial for each marked point.

If all the entries of the bracket have G-degree 0 (which means that they are all arc classes, which have
Z-degree 0), then the homotopy transfer lemma tells us that the product must be zero because all pairs
[νλ, νκ] are already zero in HC(GtlA).

Suppose that there is at least one νp,e in one entry. We make the following distinctions:

• All the entries have G-degree a multiple of degG ℓm. In that case the G-degree of the result will be
r degG ℓm for some r ∈ N and therefore the Z-degree must be either r degZ ℓm if the result is even
or r degZ ℓm − 1 if the result is odd. The total Z-degree of the entries is at most r degZ ℓm and this
only happens if all entries are all even. Because the product has degree 2−k it can only be nonzero
for degree reasons if 2− k ≥ −1, or in other words if k = 2, 3.
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• Some entries have degrees that turn around different punctures. If the result has G-degree degG ℓ
j
m

then the G-degree of the entries must also be degG ℓ
j
m but if there are degrees for more than one

marked point all marked points must appear because the only relation between the degrees of the
ℓm is that

∑
m∈M degG ℓm = 0. On the other hand by lemma 3.6 we have that

∑
m degZ ℓm ≤ −1,

so the Z-degree of the result must be ≤ degZ ℓ
j
m + 2− k − 1. This is impossible if k ≥ 3.

From the discussions above we see that because of degree reasons the only nontrivial higher brackets
are of the form

[ν(m,i1),e, ν(m,i2),e, ν(m,i3),e] = λν(m,i1+i2+i3),o

or cases where one or more ν(m,ij),e are νλs. To show that these products are all zero, we have to look
at the homotopy transfer construction in detail. The triple product can be written down in terms of
expressions of the form

π[h[ν(m,i1),e, ν(m,i2),e], ν(m,i3),e]

where π is the projection onto homology. We will now argue why such terms are zero.
From our computation in 3.24 we know that

[ν(m,i1),e, ν(m,i2),e]
0 = 0

[ν(m,i1),e, ν(m,i2),e]
1 = ((i2 − i1)ν(m,i1+i1),e)

1

So [ν(m,i1),e, ν(m,i2),e] = (i2 − i1)ν(m,i1+i2),e + dκ with (dκ)≤1 = 0. From the construction in section 3.2,

we can choose κ such that κ0 = 0. For what follows, choose Rodd = R1 ⊕ R2 (in a G-graded way) such

that R 6=0
1 = R0

2 = 0 and R1∩Z(GtlA) = 0. With respect to the direct sum HCodd = Hodd⊕Iodd⊕R1⊕R2

write κ = h + i + r1 + r2. Then 0 = κ0 = h0 + r01, hence r1 = r01 = −h0 ∈ R1 ∩ Z(GtlA) = 0 and we
conclude κ = i+ r2. Simply subtracting i from κ keeps κ0 = 0 and brings κ into R2 ⊆ R. Finally

[h[ν(m,i1),e, ν(m,i2),e], ν(m,i3),e]
0 = [κ, ν(m,i3),e]

0 = ν(m,i3),e(κ
0)± κ1(ν0(m,i3),e) = 0

Therefore all contributions are zero.

Corollary 3.26. If A has no loops or two-cycles then HC(GtlA), d, [, ] is formal. In other words there is
an L∞-quasi-isomorphism between HC(GtlA), d, [, ] and HH(GtlA), 0, [, ].

3.5 Classifying curved deformations

As an application of our computations we will show that every curved deformation of GtlA is equivalent
to one of the r

lµ.. . Remember that if (A,µ) is an A∞-algebra over ❦ and R is a complete local Noetherian

unital commutative C-algebra with maximal ideal R+ and residue field R/R+ = C then a curved defor-

mation is odd an element ν ∈ Hom(
⊕

iA
⊗i
❦ , A)⊗̂R+ such that µ+ ν satisfies the curved A∞-axioms. As

we indicated before this equation is equivalent to the Maurer-Cartan equation for the Hochschild cochain
complex together with the Gerstenhaber bracket [44].

Theorem 3.27. If [NL2] holds, then every curved A∞-deformation of GtlA over R is equivalent to one
of the r

lµ.. .

Proof. We give a proof in terms of deformation functors, in the language of [52]. In short, we interpret
our explicit class of deformations r

lµ.. as a functor of Artin rings. Gauging by even elements acts on the
values of this functor and lands in Maurer-Cartan elements. The first part of the proof deals with the
case of R being Artinian. In the second part of the proof, we pass to the non-Artinian case.

Let Art denote the category of Artinian local Noetherian unital commutative rings over C with residue
field C, with morphisms being local (ϕ(R+) ⊆ S+) and unital (ϕ(1R) = 1S). We build three functors
G,F,MC : Art → Set. The functor G is the gauge group functor, F is the functor of our deformation
parameters r, and MC is the standard Maurer-Cartan functor. More precisely, define

G(R) := exp(HCeven(GtlA)⊗̂R
+),

F (R) := Z(GtlA)⊗̂R
+,

MC(R) := MC(HC(GtlA), R).

All three assignments come with natural restriction maps G(R) → G(S), F (R) → F (S) and MC(R) →
MC(S) for every morphism ϕ : R → S in Art. It is standard to check that all three are deformation
functors in the sense of [52, Definition 2.5]. In fact, G and F as well as their product functor G× F are
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smooth (unobstructed) in the sense of [52, Definition 2.8]. Regard now the morphism of functors given
by

Φ(R) : G(R)× F (R)→ MC(R), (g, r) 7→ g. rlµ.. .
Let us define obstruction theories OG×F and OMC for G × F and MC by defining both OG×F := 0 and
OMC := 0 to be trivial. We will now show that Φ is smooth by applying [52, Proposition 2.17]. In the
terminology of that paper, we have to check three items: (1) Φ(C[ε]) is surjective where C[ε] = C[X]/(X2)
is the ring of dual numbers, (2) the obstruction theory OG×F = 0 is complete, (3) the morphism between
obstruction theories OG×F → OMC is injective and compatible with Φ.

We check the three conditions. (1) Let εc ∈ MC(C[ε]). Then c is a Hochschild cocycle and can be
gauged by some g ∈ G(C[ε]) to be equal to an r

lµ.. for some r ∈ εZ(GtlA). In other words, we have
Φ(C[ε])(g, r) = εc. This proves Φ(C[ε]) surjective. Item (2) and item (3) are trivial because G × F is
smooth.

The standard smoothness criterion [52, Proposition 2.17] implies that Φ is smooth. Putting S = C in
the definition of smoothness implies that Φ(R) : G(R)× F (R)→ MC(R) is surjective for every R ∈ Art.
In other words, every deformation of GtlA over R ∈ Art is equivalent to an r

lµ.. by gauge equivalence.
In the second part of the proof, we generalize to the non-Artinian case. Let R be a complete local

Noetherian unital commutative C-algebra with residue field C . Let µ ∈ MC(HC(GtlA), R) be a defor-
mation over R, meaning a Maurer-Cartan element in the completed tensor product µ ∈ HC(GtlA)⊗̂R

+.
Our aim is to show that µ is gauge equivalent to some r

lµ.. with r ∈ Z(GtlA)⊗̂R
+.

Our strategy is to truncate µ to R/(R+)i for every i and use the first part of the proof to construct
an element ri and a gauge gi. We use smoothness of Φ to force both sequences (ri) and (gi) to converge.

Put µi := πi(µ) ∈ MC(R/(R+)i). We shall construct sequences ri ∈ F (R/(R
+)i) and gi ∈ G(R/(R

+)i)
such that (1) Φ(R/(R+)i)(gi, ri) = µi, (2) πi(ri+1) = ri and (3) πi(gi+1) = gi for all i ∈ N. For the
induction base i = 1, let g1 := 1 ∈ G(C) and r1 := 0 ∈ F (C). Since Φ(C)(g1, r1) = 0 = µ1 ∈ MC(C), the
three conditions are satisfied at i = 1.

For induction hypothesis, assume the sequences have already been constructed until index i. Since Φ
is smooth, we have a surjection

G(R/(R+)i+1)× F (R/(R+)i+1)։ (G(R/(R+)i)× F (R/(R+)i))×MC(R/(R+)i) MC(R/(R+)i+1).

Pick (gi, ri, µi+1) on the right hand side. Indeed, Φ(R/(R+)i)(gi, ri) = µi = πi(µi+1) by assumption and
construction. By surjectivity there is a lift (gi+1, ri+1) such that (1) Φ(R/(R+)i+1)(gi+1, ri+1) = µi+1

and (2) πi(ri+1) = ri and (3) πi(gi+1) = gi. This finishes the induction step.
Finally, we have constructed the desired sequences (ri) and (gi). Since πi(ri+1) = ri, the sequence

ri converges to some r ∈ Z(GtlA)⊗̂R
+ and gi converges to some g ∈ exp(HCeven(GtlA)⊗̂R

+). Within
MC(R/(R+)i) we have

πi(g.
r
lµ.. ) = Φ(R/(R+)i)(gi, ri) = µi = πi(µ), ∀i ∈ N.

Passing to the limit gives that g.rlµ.. = µ within MC(R). In other words, µ is gauge equivalent to r
lµ.. .

Remark 3.28. In remark 2.25 we extended the notion of orbigons to allow weights on the faces and the
marked points. This allows us to construct curved deformations r,s

lµ.. of the (completed) gentle algebra
without its A∞-structure coming from the Wrapped Fukaya category. It is also possible to show that
every deformation of the completed gentle algebra is equivalent to one of these forms. This nicely fits into
the framework of Koszul duality because Koszul dual A∞-algebras have the same deformation theory.
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Paper II

Relative Fukaya Categories via

Gentle Algebras

4 Introduction

Fukuya categories capture the global geometry of manifolds. They are complicated even to define and hard
to study. In the case of punctured surfaces, gentle algebras were introduced as a remedy by Bocklandt
[18]. They have become a successful discrete version of the Fukaya category, having already served as
A-side in mirror symmetry [18] and as standard model to study homological properties and stability
conditions [35].

Smooth
Fukaya category FukQ

←→
[18] Discrete

Gentle algebra GtlQ

On the smooth side, Seidel introduced in 2002 a procedure to deform Fukaya categories [63]. The result
is now known as the “relative Fukaya category” and has already been used e.g. as A-side in deformed
mirror symmetry for the n-punctured torus by Lekili-Perutz-Polishchuk [46, 47]. Surprisingly, a rigorous
construction of the relative Fukaya category was only finished in 2022 by Perutz and Sheridan [59].

On the discrete side, Bocklandt and the author recently proposed an analog of Seidel’s procedure in
Paper I. Our analog consists of an explicit deformation of the gentle algebra. Ultimately, these “deformed
gentle algebras” will serve as A-side in our proof of deformed mirror symmetry for arbitrary punctured
surfaces.

In this paper, we prove that the smooth and discrete deformations are equivalent. More precisely, we
show that on the subcategories of zigzag curves, the smooth and discrete deformations have the same
A∞-structure:

Deformed smooth
Relative Fukaya category relFukQ

←→ Deformed Discrete
Deformed gentle algebra Gtlq Q

Assembling deformed mirror symmetry

This paper is the second part in a series of three papers aimed at proving deformed noncommutative
mirror symmetry for punctured surfaces. The results of this paper seem to be interesting enough to stand
on their own, but their full value becomes visible when viewed in the context of the series. Here we recall
the overall aim of the series and the special relevance that this paper has to the workings of the series.

Mirror symmetry for punctured surfaces Original mirror symmetry of punctured surfaces due
to Bocklandt [18] considers as A-side the gentle algebra GtlQ of a dimer Q and as B-side a category of
matrix factorizations mf(Jac Q̌, ℓ) of the dual dimer Q̌. Under the assumption that Q̌ is zigzag consistent,
Bocklandt proves the existence of an A∞-quasi-isomorphism

GtlQ ∼= mf(Jac Q̌, ℓ).
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This is known as noncommutative mirror symmetry for punctured surfaces. A natural question is which
deformation GtlQ corresponds to which deformation of mf(Jac Q̌ℓ). We shall focus on the specific defor-
mation Gtlq Q we defined in Paper I and ask which deformation mfq(Jac Q̌, ℓ) of mf(Jac Q̌, ℓ) corresponds
to Gtlq Q such that there is still a quasi-isomorphism of deformed A∞-categories Gtlq Q ∼= mfq(Jac Q̌, ℓ).

The Cho-Hong-Lau construction Proving mirror symmetry is inherently difficult because two cat-
egories only vaguely resembling each other need to be matched. More precisely, there exists typically no
strict A∞-isomorphism between the categories involved. To construct a non-strict functor as in [18] re-
quires one to recognize that two given A∞-structures are equal up to a kind of homotopy. The analogous
question in case of deformations of A∞-categories is how to decide whether two given A∞-deformations
are gauge-equivalent. There are apparently very few tools available to decide this question.

The game changes as soon as we take the work of Cho, Hong and Lau [26] into account. They explain
how to construct a mirror equivalence for punctured surfaces by a version of Koszul duality. Their paper
shows how to systematically obtain both the dual dimer Q̌ and Bocklandt’s mirror equivalence from a
systematic construction:

L ⊆ C
A∞-category with subcategory

F : C → MF(Jac(QL,W ), ℓ)
mirror functor

The mirror category MF(Jac(QL,W ), ℓ) is a category of matrix factorizations. The Jacobi algebra
Jac(QL,W ) = CQL/(∂aW ) and the potential ℓ ∈ Jac(QL,W ) are determined by a kind of Koszul trans-
form of the A∞-structure on the subcategory L ⊆ C. Mirror symmetry of punctured surfaces is a special
case of the Cho-Hong-Lau construction: We set C = HTwGtlQ and let HL ⊆ HTwGtlQ be the sub-
category of zigzag paths ([26, Chapter 10]). This way, the Jacobi algebra Jac(QL,W ) becomes the Jacobi
algebra Jac Q̌ of the dual dimer and ℓ becomes the standard central element ℓ ∈ Jac Q̌. The mirror
functor F : GtlQ → MF(Jac Q̌, ℓ) one obtains this way is an explicit incarnation of Bocklandt’s mirror
symmetry for punctured surfaces.

A deformed Cho-Hong-Lau construction The aim of this series of three papers is to prove a broad
range of deformed mirror equivalences for punctured surfaces. We achieve this by constructing a deformed
Cho-Hong-Lau construction and applying it to HLq ⊆ HTwGtlq Q instead of HL ⊆ HTwGtlQ. The
result is a deformed mirror functor Fq : Gtlq Q → mf(Jacq Q̌, ℓq). Here Jacq Q̌ is a deformation of the
algebra Jac Q̌ and the central element ℓq is a deformation of ℓ.

HLq ⊆ HTwGtlq Q
Deformed category of zigzag paths

Fq : Gtlq Q→ mf(Jacq Q̌,Wq), ℓq)
Deformed mirror functor

The assembly of deformed mirror symmetry is divided into the three papers as follows: In Paper I,
we classify all deformations of GtlQ up to gauge equivalence. In the present second paper, we select
one certain broad deformation Gtlq Q of GtlQ. This deformation induces a deformation HTwGtlq Q of
the derived category HTwGtlQ. We calculate the deformed A∞-structure on the subcategory HLq ⊆
HTwGtlq Q given by zigzag paths. In the third paper, we prove a deformed version of the Cho-Hong-
Lau construction. Simply plugging in the description of HLq from the present paper gives the desired
mirror functor Fq : Gtlq Q → mf(Jacq Q̌, ℓq). This result amounts to a wide range of deformed mirror
equivalences for punctured surfaces.

Results

We present here the results of this paper in a non-technical manner. The precise statements can be found
in Theorem 8.34, 9.20, 13.26 and 13.31.

Deformed Kadeishvili theorem The classical Kadeishvili theorem states that every A∞-category
has a minimal model. By definition, a minimal model of an A∞-category C is any A∞-category D with
vanishing differential µ1

D such that C and D are quasi-isomorphic. When Cq is an (infinitesimally curved)
deformation of C, it is not clear a priori what a minimal model should be and whether it exists. In
the present paper, we fix a definition of minimal models for deformed A∞-categories and show that all
deformed A∞-categories have minimal models. In Theorem 8.34, we show that a minimal model for any
A∞-deformation Cq can be explicitly computed by the following Kadeishvili construction:
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1. Choose a homological splitting for C.

2. Perform an infinitesimal base change on the homological splitting in order to adapt it to µ1
q.

3. Gauge away part of the deformation’s curvature.

4. Repeat steps 2 and 3 indefinitely. Take the limit of this process.

5. Calculate the deformed codifferential hq and projection πq.

6. Define the structure of H Cq by sums over deformed Kadeishvili trees.

Uncurving of band objects The objects of the derived category HTwGtlQ have been classified up to
isomorphism in [35]. They fall into two classes: the string objects and the band objects. Geometrically,
a string corresponds to a curve γ : [0, 1] → |Q| which starts and ends at punctures. A band object
corresponds to a closed curve γ : S1 → |Q| which does not hit any punctures. Both string objects
and band objects can also be interpreted as objects in the deformed twisted completion TwGtlq Q. In
Theorem 9.20, we show that for the typical band object this curvature can be gauged away.

Minimal model of the deformed category of zigzag paths We explicitly describe the minimal
model HLq ⊆ HTwGtlq Q in terms of immersed disks. We find four types of immersed disks, the CR,
ID, DS and DW disks. The precise description is stated in Theorem 13.26. Once we restrict to the
transversal part of HLq, the description reduces to the smooth immersed disks used for the definition
of the relative Fukaya category. Explicitly, the transversal part of HLq agrees with the subcategory of
relFukpreQ given by zigzag curves.

The minimal model calculation

The main storyline of this paper is the calculation of the minimal model HLq by means of our deformed
Kadeishvili theorem. We describe here how every of the six steps in the calculation of HLq play out in
practice. This description covers the materials contained in section 10 till 13.

Step 1 For the first step of the Kadeishvili construction, we are supposed to choose a homological
splitting H ⊕ I ⊕ R for L. There are many possible homological splittings, but not all make sense from
a geometric point of view. In section 10, we choose one specific homological splitting. To define our
splitting, we have to choose an explicit basis for the cohomology of every hom spaces in L. Since we
expect to obtain the relative Fukaya category as minimal model, we choose cohomology basis elements
which are geometrically located as close as possible to the intersection points of the zigzag curves.

Step 1A Deviating slightly from the general procedure of the deformed Kadeishvili theorem, we already
here gauge away curvature from Lq. The gauge consists of applying our “complementary angle trick”
which we define and treat in the larger generality of band objects. The idea is that the twisted complexes
contained in Lq consist of sums of arcs, with twisted differential given by angles between those arcs.
Every angle comes with a certain complementary angle. Our “complementary angle trick” consists of
adding the complements of these angles, weighted by deformation parameters, to the twisted differential.
This trick succeeds at removing the curvature of Lq.

Step 2 For the second step of the Kadeishvili construction, we are supposed to calculate the infinitesimal
base change. It requires from us that we evaluate the deformed differential µ1

Lq
. In section 11, we execute

this by investigating all possible contributions to products µ1
Lq
(ε) = µ1

q(δ, . . . , ε, . . . , δ). We introduce the
notions of “E, F, G, H disks” and “tails” as bookkeeping tool to systematically construct the required
infinitesimal base change.

Step 3, 4 The third and fourth step are vacuous for Lq, since we have already gauged away all the
curvature in the beginning. Already at the present stage after the fourth step, we have a strong indication
that we will obtain the relative Fukaya category as result of the calculation. Take for granted that the
basis elements of H can be identified with intersection points of zigzag curves. The infinitesimal base
change of the second step adds infinitesimal amounts of R to the cohomology basis elements in H.
Visually, the interpretation is that the intersection points “grow tails” in all directions where they could
possibly bound disks. This is a strong indication that we will obtain the relative Fukaya category as a
result.
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Step 5 For the fifth step, we are supposed to calculate the deformed codifferential hq and deformed
projection πq. In section 11.5, we calculate the deformed codifferential hq(ε) and πq(ε) for the most
important morphisms ε between zigzag paths. This requires a detailed analysis of the surroundings of
ε, which we capture in terms of what we call situations of type A, B, C and D. It turns out also hq(ε)
comes with an infinitesimal “tail” pointing in all possible directions that can bound disks with ε. We end
up with expressions for the deformed codifferential of any morphism.

Very specifically, the reader will see recurrent use of the codifferential expression hq(βα) throughout
the paper. In this context, the morphism β always denotes a β-angle associated with a “type A situation”.
The analysis shows that β-angles act as extending link between multiple portions of a relative Fukaya
disk, which renders them the most powerful angles in this paper.

Step 6 For the sixth step, we have to evaluate deformed Kadeishvili trees. In section 12, we start
with a careful characterization of all results that can possibly come out of the Kadeishvili trees. The
simplest Kadeishvili trees can of course be translated into relative Fukaya disks directly. Results of all
other Kadeishvili trees are instead results of iterated applications of the deformed product µq of Gtlq.
We introduce “result components” as a bookkeeping tool for evaluating Kadeishvili trees and provide a
full characterization of how result components are derived from each other within a Kadeishvili tree.

Interpretation of the result In section 13, we show how to turn result components of Kadeishvili
trees into disks by an explicit method. Due to our characterization, every result component comes with a
history, a way in which it was derived from simpler result components. We devise an inductive procedure
to draw a disk from a result component. The type of the outcome is not exactly the same as a relative
Fukaya disk, but is what we call an SL disk (shapeless disk). The drawing procedure works as follows:
Departing from the leaves of the Kadeishvili tree, we start drawing a small portion of the SL disk. As
multiple result components are merged into one at any node in the tree, we glue together their small
portions. When we reach the root of the tree, we conclude the drawing by closing the SL disk with an
output mark. All in all, we have assigned this way an SL disk to a result component.

out
h1

h2

h3

h4

h5

h6 section 13

h6 h5 h4 h3 h2 h1

hqµ
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2
q
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2
q

hqµ
2
q

πqµ
2
q

As a final step, we classify all SL disks we have obtained this way. It turns out that the SL disks
obtained are of four types, which we call CR, ID, DS and DW disks. In other words, the higher products
on HLq are precisely computed by SL disks in the surface that belong to one of those four types. It is
useful to know in advance that many, but not all of these disks are transversal. In fact, the transversal
ones among them are all of CR type and match exactly the (transversal) relative Fukaya disks. This
finishes the computation of the minimal model HLq.

Context and philosophical highlights

The results of our paper are very specific. To get a sense of their general meaning, we put the results
into context. We comment on the following philosophical highlights:

• Derived categories of A∞-deformations exist.

• Constructions with infinitesimal curvature are performed by inducing the deformation afterwards.

• Computational techniques continue to apply with infinitesimal curvature.

• Minimal model calculations are possible if one is sensitive to the result.

• The deformed gentle algebra Gtlq Q is a relative wrapped Fukaya category.

• Hamiltonian deformations arise naturally from representation theory.
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The curvature problem In formal A∞-deformation theory, one regards infinitesimal deformations
of a given A∞-structure such that the A∞ -relations are preserved. An issue is that only deforming
the A∞-structure does not give a notion of deformations that is invariant under quasi-equivalence of
A∞-categories. In order to obtain a notion invariant under quasi-equivalence, one needs to permit the
deformation to have curvature. More precisely, the curvature must be infinitesimal in the sense that it
lies in a multiple of the maximal ideal of the local ring. Infinitesimal curvature is inevitable for a good
notion of A∞-deformations.

Dealing with curvature is however regarded as tedious, because the curvature prevents the differential
from squaring to zero. The presence of curvature is often referred to as the “curvature problem”. A main
question is how to gauge away the curvature or otherwise how to deal with the remaining curvature.
An instance of the uncurving problem has been studied by Lowen and Van den Bergh [50], on which we
comment in section F.1.3.

Derived categories of A∞-deformations Part of the “curvature problem” is that curved A∞-
categories do not have derived categories. In fact, their differential need not square to zero because
of the curvature. The game changes when the curvature is only infinitesimal. In the present paper, we
highlight that any construction available for A∞-categories can be performed with A∞-deformations as
well. The idea is to apply the construction to the non-deformed A∞-category and to induce the defor-
mation on the result afterwards. Regard for example the twisted completion construction or the minimal
model construction. Let C be an A∞-category and Cq an A∞-deformation, possibly with infinitesimal
curvature. While the category C has a twisted completion Tw C and a minimal model H C, what should
the twisted completion Tw Cq or the minimal model H Cq be? The mathematically correct answer is that
these categories should be deformations of Tw C and H C, with the deformation induced from Cq.

The correct way to define Tw Cq is by gathering the same objects as Tw C, namely those twisted
complexes satisfying the non-deformed Maurer-Cartan equation µ1(δ) + µ2(δ, δ) + . . . = 0. This is not
the same as gathering twisted complexes with twisted differential δ satisfying the deformed Maurer-
Cartan equation µ0

q + µ1
q(δ) + . . . = 0. In contrast to Tw C, the category Tw Cq inherits infinitesimal

curvature, stemming precisely from the infinitesimal failure of the twisted differentials to satisfy the
deformed Maurer-Cartan equation.

The correct way to define H Cq consists of taking any minimal model H C and inducing the deformation
Cq onto H C via any quasi-isomorphism π : C → H C. This abstract approach means that the “minimal
model” H Cq may have infinitesimal curvature as well as a residual infinitesimal differential. This is not the
same as taking cohomology of the hom complexes (HomCq

(X,Y ), µ1
q). In fact, the deformed differential

of an A∞-deformation need not even square to zero because of the curvature.
Minimal models of A∞-categories can classically be computed by means of homological splittings

and Kadeishvili trees. In our deformed Kadeishvili theorem, we show that this method carries over
to the deformed case. The starting point is an A∞-category together with an deformation Cq. The
difficulties encountered in constructing the minimal model are the presence of curvature µ0

q, the fact that
the deformed differential µ1

q does not square to zero and the fact that µ1
q is not compatible with the

homological splitting chosen for C. In section 8, we show how to adapt the Kadeishvili construction to
these special circumstances. We view our deformed Kadeishvili theorem as evidence that computational
techniques which apply to A∞-deformations can be tweaked in order to apply to A∞-deformations as
well.

Discrete relative Fukaya category Many different constructions of Fukaya categories are available
in the literature. The most general approach is the reference work of Seidel [64]. For relative Fukaya
categories, a new reference is the construction of Sheridan and Perutz [59]. For the case of punctured
surfaces, there are many further specific models available. One can distinguish whether they depart from
the discrete side of gentle algebras or from the smooth side of actual Fukaya categories, and whether they
consider the punctured surface alone or whether they consider Seidel’s deformation. The following is a
non-exhaustive overview:

starting point non-deformed deformed

geometric [18, Appendix B] [63], [46], [47]

discrete [18], [16], [35] this paper

The most important reference for us is the construction of the gentle algebras of [18]. In Paper I,
we proposed a candidate deformation Gtlq Q with the intention to provide a “relative wrapped Fukaya
category” for punctured surfaces. Verifying that the deformed gentle algebra Gtlq Q deserves this name
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would at least entail proving that the transversal part of its derived category is equivalent to the relative
Fukaya category, see section F.2.2. It is however quite difficult to actually compute the derived category,
as we witness in the present paper. If a “relative wrapped Fukaya category” existed already, this would
be greatly eased, see section F.2.3.

In the present paper, we succeed in showing that at least on the subcategory of zigzag paths, the
derived category HTwGtlq Q and the relative Fukaya category relFukQ agree. Although our calculation
is limited to zigzag paths, we consider our calculation strong evidence that HTwGtlq Q indeed contains
relFukQ. It is a crude verification that we have correctly transported Seidel’s vision to gentle algebras
and that Gtlq Q can be considered a relative wrapped Fukaya category.

Minimal model calculations A highlight in this paper is our explicit computation of an entire min-
imal model. Such computations are scarce in the A∞-literature and often considered tedious. Indeed,
minimal model calculations are hard because of the large amount of Kadeishvili trees involved. For some
calculations in the liturature, it is not necessary to perfom the calculation until the end. In the case of
[18] it suffices to calculate only part of the minimal model because the rest is determined up to homotopy.
In the case of Paper I, we also cut short the calculation of an L∞-minimal model by means of grading
arguments. In the present paper, we perform the minimal model calculation of Lq until the end.

Minimal model calculations are the core connecting bridge between the discrete and the smooth world.
They are regarded as tedious, but we contend that minimal model calculation need not hurt if one has
a clue regarding the outcome. The minimal model calculation in the present paper succeeds precisely
because we recognize in every step the inherent geometric meaning of the terms that appear. This
concerns both the choice of the homological splitting for L and the evaluation of the Kadeishvili trees.
In section F.3 and F.4.4, we offer further explanation on why our method of “result components” works
and how to apply it in other situations.

Hamiltonian deformations Implementing Hamiltonian deformations is one of the difficulties one
encounters when defining smooth Fukaya categories. In the discrete world, one circumvents this problem
by choosing such a small set of generators that the Hamiltonian deformations can be chosen canonically
and disappear completely from the picture. When passing to the derived category HTwGtlQ, we however
expect the full generality of the smooth Fukaya category to reappear. In particular, we expect to find
A∞-products on some non-transversal and expect that we can explain these products as an incarnation
of Hamiltonian deformation.

In the present paper, we compute the precise A∞-products on the deformed category HLq. The start-
ing point is our deformed Kadeishvili theorem, whose essential ingredient is a choice of homological split-
ting for L. As expected, the products of HLq agree with the products of the relative Fukaya category on
transversal sequences. We however also obtain an explicit description of the products on non-transversal
sequences. We show how to interpret even the products on non-transversal sequences geometrically as
disks being bounded by zigzag curves and their Hamiltonian deformations. While Hamiltonian deforma-
tions have to be incorporated as an ingredient into the definition of smooth Fukaya categories from the
beginning, they appear naturally through the Kadeishvili construction of the minimal model HLq.

The precise shape of the products of HLq depends on the choice of homological splitting for L.
Nevertheless, different homological splittings give quasi-equivalent minimal models HLq. We have selected
one specific splitting which makes it particularly easy to identify the minimal model as the relative Fukaya
category. When choosing a slightly different splitting, we still expect to obtain the same products on
transversal sequences, but the products on non-transversal sequences will typically change. These changed
products can be interpreted geometrically as products in the relative Fukaya category under application of
a different Hamiltonian deformation. While homological splittings for L are a discrete and representation-
theoretic notion, Hamiltonian deformations are a smooth and geometric notion. Highly simplified, we
may say that choices of homological splittings correspond to choices of Hamiltonian deformations. See
also section F.3.2.

Strings and bands Gentle algebras GtlQ were originally introduced in [18] to provide a combinatorial
description of the wrapped Fukaya category of the punctured surface |Q| \Q0. In contrast to the Fukaya
category of |Q| \Q0, the wrapped Fukaya category also includes curves which start and end at punctures.
Haiden, Katzarkov and Kontsevich [35] classified the objects of HTwGtlQ under the additional datum
of a Z-grading. Their classification indeed finds those types of curves expected from the wrapped Fukaya
category. Explictly, their classification divides the objects into two classes, known as string objects and
band objects. Roughly speaking, a string object is a non-closed curve running between two punctures of
Q and a band object is a closed curve that avoids the punctures of Q.
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A string object or band object given by a curve in |Q| can be explicitly realized as a twisted complex
in TwGtlQ. The procedure entails approximating the curve by arcs a1, . . . , ak of Q together with angles
αi between the arcs. One then forms a twisted complex (

⊕
i ai[si], δ =

∑
i αi) by summing up the arcs

and using the angles as twisted differential.
Seidel [63] describes which objects in the relative Fukaya category should have curvature according

to his vision. For the case of punctured surfaces, his criterion states that curves which bound a so-called
teardrop should have curvature. Also those curves which are contractible in the surface |Q| should have
curvature. All other objects in the relative Fukaya category should be curvature-free according to Seidel.

In the present paper, we approach Seidel’s vision from the starting point of the deformed gen-
tle algebras Gtlq Q instead of the relative Fukaya category. Translated to our setting, a band object
(
⊕

i ai[si], δ =
∑
i αi) should be uncurvable if its underlying curve in the closed surface |Q| is not con-

tractible and does not bound a teardrop. In order to make his vision true, we devise a trick to gauge
away the curvature of these band objects. Our “complementary angle trick” consists essentially of adding
infinitesimal multiples of the complementary angle of αi to δ for all i. In section 9, we verify that
our trick successfully uncurves all band objects whose underlying curve in the closed surface |Q| is not
contractible and does not bound a teardrop, making true Seidel’s vision.

Data structures

Most of our calculation does not go beyond simple inspection of arc systems and linear algebra. However,
organizing result components and matching them with disks requires us to devise a large amount of data
structures and fill them with data. For an overview, we depict in Figure 4.1 the essential data structures.
We shall here explain the purpose and development of these datastructures and which data flows from
which structure into which one.

The starting point is a dimer Q, which is a specific type of quiver embedded in a surface. It gives rise
to the discrete notion of zigzag paths and the smooth notion of zigzag curves. On the smooth side, the
zigzag curves give rise to the notion of intersection points and smooth immersed disks, the foundations
of Fukaya categories.

On the discrete side, we regard the category L of zigzag paths. A morphism ε : L1 → L2 between two
zigzag paths consists of an angle between arcs of L1 and L2. We determine a basis of cohomology elements
for L. We also define the category Lq of deformed zigzag paths. Examining the deformed differential
µ1
Lq

of this category gives rise to four types of disks which we call E, F, G, H disks. We introduce the
auxiliary notion of “tails”. The tail of an angle ε : L1 → L2 is a tree whose nodes are decorated with E,
F, G, H disks.

The deformed Kadeishvili theorem gives rise to notions of deformed cohomology basis elements, a
deformed projection πq and a deformed codifferential hq. We can describe them explicitly by means of
tails. According to the deformed Kadeishvili theorem, the product structure of the minimal model HLq
is described in terms of sums over trees. We define a notion of “result components” which serves to
systematically track the results of evaluations of trees. From a result component we build a “subdisk”
by drawing zigzag curve segments and intersection points. Subdisks of result components are immersed
disks and fall into four classes which we call the CR, DS, ID and DW disks.

From the perspective of data structures, this finishes the construction of the minimal model HLq.
Both HLq and the relative Fukaya category are described by immersed disks. Therefore the category Lq
of deformed zigzag paths is quasi-isomorphic to the subcategory of zigzag curves of the relative Fukaya
category. On the level of data structures, this finishes the main theorem.

Structure of the paper

In section 5 we recall A∞-categories and their deformations. In section 6, we recall gentle algebras
and deformed gentle algebras. In section 7, we recall basics of Fukaya categories and explain their
subcatgories of zigzag curves. In section 8, we build our deformed Kadeishvili theorem. In section 9 we
present the uncurving procedure for band objects. In section 10, we exhibit the category of zigzag paths L
together with a homological splitting. In section 11, we present the deformed version of this homological
splitting, together with reference material for the rest of the paper. In section 12, we introduce the
tool of result components to enumerate products in the minimal model HLq. In section 13, we devise a
simple drawing method to transform these result components into immersed disks. In Theorem 13.26, we
describe explicitly the structure of the minimal model HLq in terms of immersed disks. Our main result
Theorem 13.31 states that HLq has the same products on transversal sequences as the relative Fukaya
category.
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Figure 4.1: This graph depicts the essential data structures used in the paper. The left part of the graph
depicts data structures used for the computation of the minimal model HLq. The right part depicts the
construction of the Fukaya category. At the end of the paper, the minimal model HLq is described by
means of immersed disks. The relative Fukaya category is defined in terms of immersed disks as well.
Ultimately, we conclude that HLq is equivalent to the subcategory of the relative Fukaya category given
by zigzag curves.
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This paper contains several appendices which are devoted to technical proofs and additional expla-
nation. In section A, we provide examples of immersed disks together with their corresponding result
components. The aim is to facilitate understanding of how disks arise from the minimal model HLq. In
section B, we complete the proof of uncurvability of band objects. In section C, we finish the proof of
the main result by providing an explicit inverse construction which maps CR, DS, ID and DS disks to
their corresponding result components. In section D, we study the case of specific sphere dimers, among
which the pair of pants. These dimers are not geometrically consistent and fall outside of the scope of
the rest of the paper, but we have included their calculation due to their relevance in mirror symmetry.
In section E, we compute a small class of products in the category HTwGtlq Q which go beyond zigzag
paths. Specifically, this concerns products of morphisms between arcs and zigzag paths from which we
determine the mirror objects Fq(a) ∈ MF(Jacq Q̌, ℓq) in the third paper. In section F.1, we discuss the
relation with the literature in more detail. In section F.2, we explain why one is led to believe from an a
priori perspective that HLq agrees with the relative Fukaya category. In section F.3, we summarize from
an a posteriori perspective why the very technical calculation of HLq contained in this paper succeeds.
In section F.4, we share insight on how to reuse the constructions in this paper for other purposes. In
section G, we collect notation specific to this paper.

Conventions

During the course of the paper, we play in different contexts. The following are the overarching conven-
tions that are significant to the validity of the results:

• In section 9, we assume that A is an arc system which has no monogons or digons in the closed
surface. We summarize this in the [NMDC] condition.

• In section 10 till 13, we assume that Q is a geometrically consistent dimer. Every zigzag path is sup-
posed to come with a chosen spin structure and locations of identity and co-identity endomorphism.
We summarize this setup in Convention 10.10.

• For the purposes of section 5, 8.3 and 9, we have to assume axioms on the invariance of the
Hochschild DGLA under A∞-quasi-equivalences. We summarize these axioms in Convention 5.55.

5 Preliminaries on A∞-categories

In this section, we recollect material on A∞-categories and build theory for A∞-deformations. Theory
on A∞-deformations is scarce and implicit in the literature, so we provide a rigorous definition here that
includes the infinitesimally curved case. We explain why curvature is inevitable if one wants to obtain a
deformation theory invariant under quasi-equivalences.

In section 5.1, we recall A∞-categories. In section 5.2, we recall the completed tensor products of
the form B⊗̂X, where B is a local algebra. In section 5.3, we recall (curved) deformations of A∞-
categories. In section 5.4, we recall functors between A∞-categories and between deformations of A∞-
categories. In section 5.5, we recall the twisted completion construction for A∞-categories and define an
analogous construction for A∞-deformations. In section 5.6, we recall how to view A∞-deformations as
Maurer-Cartan elements via the so-called Hochschild DGLA. In section 5.7, we recall the notion of gauge
equivalence of Maurer-Cartan elements and explain its application in the specific case of A∞-deformations.
In section 5.8, we recall the generalization of DGLAs known as L∞-algebras. In section 5.9, we explain
how to push forward deformations between quasi-equivalent categories.

The interpretation of gauge equivalences and pushforwards of deformations in terms of L∞-theory is
very helpful, but we will not prove it here. Rather, we state in section 5.9 a collection of axioms on the
Hochschild DGLA which we will just assume in this paper. The construction of twisted completions of
A∞-deformations might differ slightly from what the reader expects.

The material in the entire section is not original: Seidel already mentioned curved A∞-deformations
in [63]. Lowen and Van den Bergh considered the “curvature problem” in [50]. The Hochschild DGLA is
classical at least in the case of ordinary algebras. Keller proved its invariance under quasi-equivalence in
the dg case in [40].

This section serves to support a very specific viewpoint onA∞-deformations. While there is widespread
belief that curvature is a hindrance, we want to demonstrate here that it is at least possible to live peace-
fully with infinitesimal curvature. Let us present which section supports which claim: From section 5.5
we learn that the twisted completion of an A∞-deformation can be formed even under the presence of
infinitesimal curvature. This construction is entirely natural in the sense that the deformed twisted com-
pletion is a deformation of the twisted completion of the non-deformed A∞-category. From section 5.6
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we learn that infinitesimal curvature is inevitable for a good notion of A∞-deformations. The core sum-
mary is that curvature does not hurt for constructions with A∞-categories because it enters the picture
automatically when a deformation is induced from one category to another.

In this section, we will be comparing different deformations with another. We should set some
terminology right before we get started. A “deformation base” B will be a complete local Noetherian
unital C-algebra with residue field B/m = C. Every deformation Cq over B can be interpreted as object
of two different universes: either as deformation of C, or as a deformation of any A∞-category. Let us
depict this pictorially:

deformations of C deformations of any category

C′qCq Cq C′q Dq

This perspective makes a difference: The correct notion for two deformations Cq, C
′
q to be similar on the

left side is to be gauge equivalent, while the correct notion for two deformations Cq and Dq to be similar
on the right side is to be quasi-equivalent. In the former case, the leading term of the functor connecting
the two is supposed to be the identity, in the latter case the leading term can be any quasi-equivalence
of A∞-categories.

To distinguish the two perspectives, we will often use the terminology A∞-deformation to refer to
the left side, and deformed A∞-category to refer to the right side.

5.1 A∞-categories

The notion of A∞-category is now widely used as a homological-algebraic tool to study symplectic and al-
gebraic geometry. Its relation to dg categories, triangulated categories and∞-categories can be described
as follows:

• DG categories are more rigid than A∞-categories. DG quasi-isomorphisms cannot be quasi-inverted
on the dg level, while they always have a quasi-inverse if one interprets the dg structures as A∞-
categories. In particular, zigzags of dg quasi-isomorphisms can be resolved into a single A∞-quasi-
isomorphism. DG structures are very easy to work with, for instance homotopy colimits are easy
to calculate due to the well-known Tabuada model structure [69, 41].

• Triangulated categories are weaker than A∞-categories. They do not remember any of the “higher
structure” that A∞-categories contain. The higher structure on an A∞-category makes the entire
category reconstructible from a subcategory of generators. There is an A∞ notion of derived
category D C := HTw C, whose “lower structure” (D C)0 is a triangulated category [43].

• Stable ∞-categories also remember the homotopy information, similar to A∞-categories. A priori
they lack the linearity over a base field, which can be added afterwards. In fact, there is a di-
rect correspondence between k-linear stable ∞-categories and A∞-categories over k, given in one
direction by taking the derived category [27, 31].

We work over an algebraically closed field of characteristic zero and always write C. Let us now recall
the definition of A∞-categories:

Definition 5.1. A (Z- or Z/2Z-graded, strictly unital) A∞-category C consists of a collection of
objects together with Z- or Z/2Z-graded hom spaces Hom(X,Y ), distinguished identity morphisms
idX ∈ Hom0(X,X) for all X ∈ C, together with multilinear higher products

µk : Hom(Xk, Xk+1)× . . .×Hom(X1, X2)→ Hom(X1, Xk+1), k ≥ 1

of degree 2−k such that the A∞-relations and strict unitality axioms hold: For all compatible morphisms
a1, . . . , ak we have

∑

0≤n<m≤k

(−1)‖an‖+...+‖a1‖µ(ak, . . . , µ(am, . . . , an+1), an, . . . , a1) = 0,

µ2(a, idX) = a, µ2(idY , a) = (−1)|a|a, µ≥3(. . . , idX , . . .) = 0.
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Remark 5.2. The first few A∞-relations read

µ1(µ1(a)) = 0,

(−1)‖b‖µ2(µ1(a), b) + µ2(a, µ1(b)) + µ1(µ2(a, b)) = 0,

(−1)‖c‖µ2(µ2(a, b), c) + µ2(a, µ2(b, c)) + µ1(µ3(a, b, c))

+(−1)‖b‖+‖c‖µ3(µ1(a), b, c) + (−1)‖c‖µ3(a, µ1(b), c) + µ3(a, b, µ1(c)) = 0.

In particular, if µ1 or µ3 vanishes, then µ2 is graded associative.

An A∞-category C is minimal if µ1
C = 0. Let C be a minimal A∞-category. Regard its degree-zero

part C0, given by the same objects as C but only including the degree-zero part of the hom spaces. Then
the product composition a ◦ b := (−1)|b|µ2(a, b) is associative on C0, rendering C0 an ordinary C-linear
category.

We recall minimal models in detail in section 8. A minimal model of an A∞-category C is any min-
imal A∞-category H C together with a quasi-isomorphism F : H C → C. We recall twisted completions
Tw C in detail in section 5.5.

There is a good notion of quasi-isomorphism for objects in an A∞-category:

Definition 5.3. Let C be an A∞-category and X,Y ∈ C. A morphism f ∈ Hom0(X,Y ) is a quasi-
isomorphism if there exist morphisms g ∈ Hom0(Y,X), hX ∈ Hom−1(X,X) and hY ∈ Hom−1(Y, Y )
such that µ1(f) = µ1(g) = 0 and µ2(f, g) = idY +µ1(hY ) and µ2(g, f) = idX +µ1(hX). Two objects X
and Y are quasi-isomorphic if there exists a quasi-isomorphism between them.

In other words, a morphism in C is a quasi-isomorphism if it is closed and descends to an isomorphism
in the minimal model H C. Two objects X and Y are quasi-isomorphic if they are isomorphic as objects
of the ordinary category H0 C. The notions of quasi-isomorphism and quasi-isomorphic objects are both
flexible and sufficient for studying isomorphisms within A∞-categories.

The notion of a curved A∞-category is a generalization of ordinary A∞-category. In contrast to an
ordinary A∞-category, a curved A∞-category also has an element µ0

X of degree 2 associated with every
object X ∈ C. The required curved A∞-relations are the same as those of an A∞-category, in particular
allowing µ0

X to appear as inner µ. The first two curved A∞-relations read

µ1(µ0) = 0, µ1(µ1(a)) + (−1)‖a‖µ2(µ0, a) + µ2(a, µ0) = 0.

Curved A∞-categories are however ill-behaved: They do not have a notion of derived category. One may
form the twisted completion, but if one enforces the Maurer-Cartan equation µ0 + µ1(δ) + . . . = 0, very
few objects remain and the construction is probably not functorial. If one instead discards the Maurer-
Cartan requirement for twisted complexes, one obtains a category Tw C with curvature, the curvature
given by the Maurer-Cartan formula µ0 + µ1(δ) + . . .. This category however has no minimal model
HTw C, because curvature prevents us from bringing µ1 to zero. In short, curved A∞-categories are not
useful, except for the purpose of matrix factorizations.

We would like to stress that infinitesimal curvature however does not hurt. In section 5.3, we recall
what infinitesimal curvature entails and we explain in section 5.5 and 8.3 that infinitesimally curved
A∞-categories do have derived categories.

5.2 The completed tensor product

In this section, we recall the completed tensor products of the form B⊗̂X, where B is a local algebra and
X is a vector space. This serves as a preparation for section 5.3 where we define A∞-deformations.

Throughout this paper, we deform over local rings like CJqK. There are a few more conditions we put
on the local ring: In order to work with the A∞-formalism we need the ring to be a C-algebra. In order
to speak of a special fiber, or algebraically of an m-adic leading term, we need to require that its residue
field is C itself. As is customary in deformation theory, we shall also require that the ring be complete
and Noetherian. We have decided to give the type of local rings a name in this paper:

Definition 5.4. A deformation base is a complete local Noetherian unital C-algebra B with residue
field B/m = C. The maximal ideal is always denoted m.

Remark 5.5. By the Cohen structure theorem, every deformation base is of the form CJx1, . . . , xnK/I
with I denoting some ideal.
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The idea behind formal A∞-deformations is to tensor the hom spaces with a deformation base. One
then looks at A∞-structures on the enlarged collection of hom spaces which reduce to the original A∞-
structure once the maximal ideal is divided out. The construction of these tensored hom spaces makes
use of the completed tensor product, which we now recall.

Definition 5.6. Let B be a deformation base and X a vector space. Then the completed tensor
product B⊗̂X is the B-module limit

B⊗̂X = lim(. . .→ B/m1 ⊗X → B/m0 ⊗X),

For simplicity, we write m
kX to denote the infinitesimal part m

kX = m
k⊗̂X ⊆ B⊗̂X.

Remark 5.7. In case B = CJqK, the completed tensor product B⊗̂X equals the even more well-known
space XJqK. The space XJqK consists of formal X-valued power series in one variable. This way XJqK
becomes naturally a CJqK-module. The space is different from CJqK ⊗X. In fact, elements of CJqK ⊗X
are only those power series which can be written as a finite sum of pure tensors a⊗ x. Simply speaking,
in CJqK⊗X, the power series entries are divided into finitely many partitions in which all coefficients are
interrelated. Meanwhile in XJqK any entries can be chosen at random. However if X is finite-dimensional,
then XJqK = CJqK⊗X.

There are two popular ways of defining formal deformations of an associative algebra A. The first
definition asks for a product µq : A ⊗ A → B⊗̂A and the second definition asks for a product µq :
(B⊗̂A)⊗ (B⊗̂A)→ B⊗̂A. The first definition immediately gives rise to a Maurer-Cartan element, while
in the second definition associativity is formulated more naturally. In what follows, we shall explain
briefly why both are equivalent.

Definition 5.8. Let B be a deformation base. Then the m-adic topology on B is the topology on B
generated by open neighborhoods x + m

k ⊆ B for x ∈ B and k ∈ N. The m-adic topology on B⊗̂X
is generated by the open neighborhoods x + m

k⊗̂X ⊆ B⊗̂X for every x ∈ B⊗̂X and k ∈ N . A map
ϕ : B⊗̂X → B⊗̂Y is continuous if it is continuous with respect to the m-adic topologies. A map
ϕ : (B⊗̂Xk)⊗ . . .⊗ (B⊗̂X1)→ B⊗̂Y is continuous if for every 1 ≤ i ≤ k and every sequence of elements
x1, . . . , x̂i, . . . , xk the map

µ(xk, . . . ,−, . . . , x1) : B⊗̂Xi → B⊗̂Y

is continuous.

Remark 5.9. It is well-known that the m-adic topology turns B⊗̂X into a sequential Hausdorff space. It
is also well-known that B⊗̂X can simultaneously be interpreted as limit and completion. More precisely,
B⊗̂X is the completion of B⊗X with respect to the so-called m-adic metric on B⊗X. For convenience,
we may from time to time use expressions like x = O(mk) to indicate x ∈ m

kX.

Remark 5.10. Every element in B⊗̂X can be written as a series
∑∞
i=0mixi. Here mi is a sequence of

elements mi ∈ m
→∞ and xi is a sequence of elements xi ∈ X. We have used the notation mi ∈ m

→∞ to
indicate that mi ∈ m

ki for some sequence (ki) ⊆ N with ki →∞.

Remark 5.11. Let ϕ : B⊗̂X → B⊗̂Y be a B-linear map. If ϕ(mkX) ⊆ m
kY , then ϕ is continuous.

Whenever X → B⊗̂Y is a linear map, we can extend it uniquely to a B-linear continuous map
B⊗̂X → B⊗̂Y . Conversely, we can restrict any B-linear map B⊗̂X → B⊗̂Y to a linear map X → B⊗̂Y .
Restriction and extension are in fact inverse to each other, providing a one-to-one correspondence:

Lemma 5.12. Let B be a deformation base and X,Y be vector spaces. Then a B-linear map B⊗̂X →
B⊗̂Y is automatically continuous. There is a one-to-one correspondence between:

• linear maps X → B⊗̂Y ,

• B-linear maps B⊗̂X → B⊗̂Y ,

• B -linear continuous maps B⊗̂X → B⊗̂Y .

Proof. The proof consists of three parts: First, we show that every B-linear map B⊗̂X → B⊗̂Y is
continuous. Second, we recall how to extend a map X → B⊗̂Y to B⊗̂X → B⊗̂Y . Third, we comment
on the one-to-one aspect of the claim.

For the first step, we show that any B-linear map ϕ : B⊗̂X → B⊗̂Y is continuous. Let k ∈ N.
We claim that ϕ(mkX) ⊆ m

kY . The idea is to exploit the Cohen structure theorem. Write B =
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CJq1, . . . , qnK/I, and regard the maximal ideal m = (q1, . . . , qn). With this in mind, we can write any
element x ∈ m

kX as a series

x =

∞∑

i=0

mim̃iyi.

Here mi is a monomial of degree k in the variables q1, . . . , qn, the letter m̃i denotes a sequence m̃i ∈ m
→∞,

and yi ∈ Y . We conclude

x =
∑

monomials M
of degree k

M
∑

i≥0
mi=M

m̃iyi.

The outer sum is finite. For every monomial M of degree k, the inner sum is an element xM ∈ B⊗̂X.
We get that

ϕ(x) =
∑

monomials M
of degree k

Mϕ(xM ).

We conclude that ϕ(x) ∈ m
kY . This shows ϕ(mkX) ⊆ m

kY . In particular, ϕ is continuous.
For the second step, denote by πi the projection maps πi : B⊗̂X → B/mi ⊗X or B⊗̂Y → B/mi ⊗ Y

and by πij the projection maps πij : B/m
i ⊗ Y → B/mj ⊗ Y for i > j. Note that (πij ⊗ IdY ) ◦ πi = πj

for i > j.
Let now F : X → B⊗̂Y be a linear map. In order to define a map F̂ : B⊗̂X → B⊗̂Y , we shall build

maps F̂i : B⊗̂X → B/mi ⊗ Y and then use the universal property to combine them into F̂ .
Let us now construct auxiliary maps Fi and the maps F̂i. Define Fi : B/m

i ⊗X → B/mi ⊗ Y as the
B/mi-linear extension of πiF : X → B/mi ⊗ Y . Then let F̂i : B⊗̂X → B/mi ⊗ Y be the composition
Fiπi. More directly, we could write F̂i(z) = F (πi(z)), where on the right-hand side F is interpreted
B/mi-linearly.

We claim that F̂j = (πij ⊗ IdY ) ◦ F̂i for i > j. Indeed,

πij(F̂i(z)) = (πij ⊗ IdY )(F (πi(z)) = F ((πij ⊗ IdX)(πi(z))) = F (πj(z)) = F̂j(z).

This proves that the family of maps {F̂i}i∈N is compatible with the projections πij⊗IdY . By the universal
property of B⊗̂Y , this family of maps factors through the limit B⊗̂Y , yielding a B-linear map

F̂ : B⊗̂X → B⊗̂Y, with πiF̂ = F̂i.

The map F̂ can also be written explicitly as follows: Let x =
∑∞
i=0mixi be an element of B⊗̂X, with

mi ∈ m
→∞ and xi ∈ X. Then F̂ (

∑
mixi) =

∑
miF (xi).

As third step of the proof, we comment on the one-to-one aspect in the claim. The only remaining
statement to explain is that for a given map F : X → B⊗̂Y , there is only one single B-linear continuous
extension to a map B⊗̂X → B⊗̂Y . But this is obvious, since B-linearity already determines the value
on B ⊗X and continuity then determines the value on all of B⊗̂X. This finishes the proof.

We shall provide a few more standard utilities. Recall that a map ϕ : X → Y of topological spaces
is an embedding if it is a homeomorphism onto its image, the image being equipped with subspace
topology. The leading term of a B-linear map ϕ : B⊗̂X → B⊗̂Y is the map ϕ0 : X → Y given by the
composition ϕ0 = πϕ|X , where π : B⊗̂Y → Y denotes the standard projection.

Lemma 5.13. Let X,Y be vector spaces and ϕ : B⊗̂X → B⊗̂Y be B-linear with injective leading
term. Then ϕ is an embedding and its image is closed. If the leading term is surjective, then ϕ is an
isomorphism.

Proof. Before we dive into the proof, we start with an observation regarding the leading term. Let
ϕ0 : X → Y be the leading term of ϕ and define for every i ∈ N the map

ϕi : m
i/mi+1 ⊗X → m

i/mi+1 ⊗ Y (5.1)

induced from ϕ. Our observation is that ϕi is in fact equal to id
m

i/mi+1 ⊗ϕ0.
We are now ready to start the proof. First we show that ϕ is injective. Second we show that

ϕ−1 : Im(ϕ)→ B⊗̂X is continuous. Third we show that Im(ϕ) is closed. Fourth we prove ϕ surjective if
ϕ0 is surjective.

For the first part of the proof, we show that ϕ injective. Let x ∈ B⊗̂X with ϕ(x) = 0. By induction,
we show that x ∈ m

iX for every i ∈ N. For i = 0 this is clear. As induction hypothesis, assume that
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x ∈ m
iX. Then ϕi([x]) = [ϕ(x)] = 0. Since ϕi is injective, we obtain x ∈ m

i+1X. This finishes the
induction. In consequence we have x ∈ m

iX for every i ∈ N and therefore x = 0. This proves ϕ injective.
For the second part of the proof, we show that ϕ−1 preserves the filtration by m. In other words, we

show that ϕ(x) ∈ m
iY implies x ∈ m

iX. We do this by induction over i ∈ N . For i = 0 this is clear.
Assume this statements holds for a certain i ∈ N. Now let ϕ(x) ∈ m

i+1Y . Then x ∈ m
iX by induction

hypothesis. We get ϕi([x]) = 0, since ϕ(x) ∈ m
i+1Y . Since ϕi is injective, we get x ∈ m

i+1X. This
finishes the induction. Finally, we have shown ϕ−1(miY ) ⊆ m

iX. This renders ϕ−1 : ϕ(B⊗̂X)→ B⊗̂X
continuous.

For the third part of the proof, we check that Im(ϕ) is closed. Since B⊗̂Y is a sequential space,
it suffices to check that any sequence ϕ(xn) ⊆ Im(ϕ) converging in B⊗̂Y converges in Im(ϕ). Pick a
sequence (xn) ⊆ B⊗̂X and assume ϕ(xn) → y ∈ B⊗̂Y . This makes ϕ(xn) − y ∈ m

→∞Y . We have
ϕ(xn)−ϕ(xm) ∈ m

→∞Y and by continuity of ϕ−1 we get xn−xm ∈ m
→∞. In particuar, xn is a Cauchy

sequence and converges to some x ∈ B⊗̂X. We get ϕ(x) = limϕ(xn) = y and therefore y ∈ Im(ϕ). This
proves Im(ϕ) closed.

For the fourth part of the proof, consider y ∈ B⊗̂Y . We construct inductively a sequence (xn) with
xn ∈ m

n⊗̂X such that ϕ(
∑n
i=0 xi) = πn(y). For i = 0, let x0 ∈ X be defined as x0 = ϕ−1

0 (π0(y)). Now
assume the sequence has been constructed for indices until n ∈ N. Put z := y − ϕ(

∑n
xi) ∈ m

nY . Since
ϕ0 is an isomorphism, the map ϕn from (5.1) is an isomorphism as well. Put

x′n+1 := ϕ−1
n+1(z) ∈ m

n+1/mn+2X.

Let xn+1 ∈ m
n+1X be any lift of x′n+1. Then we have

ϕ

(
n+1∑

i=0

xi

)
= y − z + ϕ(xn+1) = y +O(mn+2).

This finishes the inductive construction of the sequence (xi). Finally, the series x =
∑
xi converges and

ϕ(x) = y. This proves ϕ surjective.

The pathway to defining A∞-deformations is now clear: When C is an A∞ -category, a deformation
of C will always be modeled on the collection of enlarged hom spaces {B⊗̂HomC(X,Y )}X,Y ∈C . Any
B-multilinear product on these hom spaces is automatically continuous. Similarly, functors of A∞-
deformations will be defined as maps between tensor products of the enlarged hom spaces and will be
automatically continuous as well.

5.3 Deformations of A∞-categories

In this section, we give a quick definition of curved deformations of A∞-categories. We have already used
this notion in Paper I. The notion is not surprising and known to experts. Despite being uncomfortable
to work with, curvature comes naturally via the Hochschild complex and is necessary if one aims at
deformation theory invariant under quasi-equivalences. The curvature in A∞-deformations will always
be infinitesimal, which we consider harmless in contrast with the different notion of curved A∞-categories
[24].

Let us recall the setup of Hochschild cohomology in the classical case. Let A be an associative algebra.
As the reader probably knows, Hochschild cohomology HH2(A) captures the associative deformations of
the algebra over C[ε]/(ε2). More precisely, a 2-cochain ν ∈ HC2(A) is a cocycle if and only if µ + εν is
an associative product on A⊕ Aε (note ε2 = 0). Classical Hochschild cohomology in other degrees than
2 helps characterize the deformation problem, but provides no actual deformations.

Since Hochschild’s original definition in 1946, Hochschild cohomology has been generalized to A∞-
categories. The trick is to use the same formula for the differential, with two adaptations: include also
higher products µk instead of only µ2, and use grading induced from the shift C[1]. We will make this
precise in section 5.6.

What should an A∞-deformation be then? The naive answer would be to allow deformations of all
products µk. This is however too shortsighted: We contend that for a notion of A∞-deformations whose
infinitesimal deformations are classified by a cochain complex (or better a DGLA), the A∞-Hochschild
complex is the natural choice. Its Maurer-Cartan elements consist however not only of deformations to
the products µk with k ≥ 1, but also introduce curvature µ0.

We are now ready to define A∞-deformations precisely.

Definition 5.14. Let C be anA∞ category with products µ andB a deformation base. An (infinitesimally
curved) deformation Cq of C consists of
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• The same objects as C,

• Hom spaces HomCq
(X,Y ) = B⊗̂HomC(X,Y ) for X,Y ∈ C,

• B-multilinear products of degree 2− k

µkq : HomCq
(Xk, Xk+1)⊗ . . .⊗HomCq

(X1, X2)→ HomCq
(X1, Xk+1), k ≥ 1

• Curvature of degree 2 for every object X ∈ C

µ0
q,X ∈ mHomCq

(X,X),

such that µq reduces to µ once the maximal ideal m ⊆ R is divided out, and µq satisfies the curved A∞

(cA∞) relations ∑

k≥l≥m≥0

(−1)‖am‖+...+‖a1‖µq(ak, . . . , µq(al, . . .), am, . . . , a1) = 0.

The deformation is unital if the deformed higher products still satisfy the unitality axioms

µ2
q(a, idX) = a, µ2

q(idY , a) = (−1)|a|a, µ≥3
q (. . . , idX , . . .) = 0.

We use the terms A∞-deformation and deformation of an A∞-category interchangeably. Whenever
we speak of deformations of A∞-categories in this paper, they are allowed to be (infinitesimally) curved.

Remark 5.15. As explained in section 5.2, the product µkq is automatically m-adically continuous.

Spelling out this continuity requirement, the datum of the map µk is equivalent to the datum of merely
multilinear maps

µq : HomC(Xk, Xk+1)⊗ . . .⊗HomC(X1, X2) → B⊗̂HomC(X1, Xk+1).

There is a notion for two objects to be quasi-isomorphic in an A∞-deformation. We provide here
an ad-hoc definition which seems odd at first, but we will encounter evidence in section 8 and section 9
which supports correctness of the definition.

Definition 5.16. Let C be an A∞-category and Cq a deformation. Let X,Y ∈ Cq be two objects. Then
X and Y are quasi-isomorphic if they are quasi-isomorphic in C.

5.4 Functors between A∞-deformations

In this section, we define the notion of (infinitesimally curved) A∞-functors. These functors serve as a
framework for gauge equivalences, quasi-equivalences and pushforwards of A∞-deformations. This class
of functors is presumably known to experts. Our sign conventions are those of [35] and [16, Section
3.1.4/symplectic].

Recall that a functor F : C → D of A∞-categories is a map which intertwines the products of C and
D:

Definition 5.17. Let C and D be A∞-categories. A functor F : C → D consists of a map F : Ob(C)→
Ob(D) together with for every k ≥ 1 a degree 1− k multilinear map

F k : HomC(Xk, Xk+1)⊗ . . .⊗HomC(X1, X2)→ HomC(FX1, FXk+1)

such that the A∞-functor relations hold:

∑

0≤j<i≤k

(−1)‖aj‖+...+‖a1‖F (ak, . . . , ai+1, µ(ai, . . . , aj+1), aj , . . . , a1)

=
∑

l≥0
1=j1<...<jl≤k

µ(F (ak, . . . , ajl), . . . , F (. . . , aj2), F (. . . , aj1)).

When F : C → D and G : D → E are A∞-functors, then their composition GF is given on objects by
G ◦ F : Ob(C)→ Ob(E) and on morphisms by

(GF )(ak, . . . , a1) =
∑

G(F (ak, . . .), . . . , F (. . . , a1)).
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We are now ready to explain the natural extension of A∞-functors to the deformed case.

Definition 5.18. Let C,D be two A∞-categories and Cq,Dq deformations. A functor of deformed
A∞-categories consists of a map Fq : Ob(C) → Ob(D) together with for every k ≥ 1 a B-multilinear
degree 1− k map

F kq : HomCq
(Xk, Xk+1)⊗ . . .⊗HomCq

(X1, X2)→ HomDq
(FqX1, FqXk+1)

and infinitesimal curvature F 0
q,X ∈ mHom1

D(FqX,FqX) for every X ∈ C, such that the curved A∞-functor
relations hold:

∑

0≤j≤i≤k

(−1)‖aj‖+...+‖a1‖Fq(ak, . . . , ai+1, µq(ai, . . . , aj+1), aj , . . . , a1)

=
∑

l≥0
1=j1≤...≤jl≤k

µq(Fq(ak, . . . , ajl), . . . , Fq(. . . , aj2), Fq(. . . , aj1)).

Remark 5.19. A functor Fq of deformed A∞-categories consists of maps between hom spaces which are
allowed to have deformed (nonconstant) terms themselves. As we have seen in section 5.2, the maps F kq are

automatically continuous. Apart from the components F≥1
q , the functor is allowed to have infinitesimal

curvature F 0
q . This curvature is a feature of the deformed world where infinitesimal curvature is not only

welcome, but is necessary. The first two curved A∞-functor relations read

F 0
q + F 1

q (µ
0
Cq,X) = µ1

Dq
(F 0
q,X),

F 1
q (µ

1
Cq
(a)) + (−1)‖a‖F 2

q (µ
0
Cq,Y , a) + F 2

q (a, µ
0
Cq,X) = µ1

Dq
(F 1
q (a)) + µ2

Dq
(F 0
q,Y , F

1
q (a))

+ µ2
Dq

(F 1
q (a), F

0
q,X), ∀ a : X → Y.

We can interpret a functor Fq : Cq → Dq as an extension of an ordinary A∞-functor C → D.
Indeed, when forgetting the terms of F = {F kq }k≥0 in higher m-adic order, we get a collection of maps

F = {F k}k≥1. Since Fq satisfies the curved A∞-functor relations, its reduction F satisfies the ordinary
A∞-functor relations. We fix this terminology as follows:

Definition 5.20. Let Fq : Cq → Dq be a functor of deformed A∞-categories. Then its leading term is
the functor F : C → D obtained by dividing out the maximal ideal m.

There are several notions for functors between A∞-categories to be equivalences, which we recall as
follows:

Definition 5.21. Let C and D be two A∞-categories and F : C → D be a functor. Then F is

• an isomorphism if it is an isomorphism on object level and F 1 : Hom(X,Y )→ Hom(FX,FY ) is
an isomorphism for every X,Y ∈ C,

• a quasi-isomorphism if the induced functor HF : H C → HD is an isomorphism,

• a quasi-equivalence if (HF )1 : HomH C(X,Y ) → HomHD(FX,FY ) is an isomorphism for every
X,Y ∈ C and if HF reaches every object in D up to quasi-isomorphism,

• a derived equivalence if the induced functor HTwF : HTw C → HTwD is an equivalence.

There are several notions for A∞-categories to be equivalent, without explicit reference to a functor:

Definition 5.22. Let C and D be two A∞-categories. Then C and D are

• isomorphic if there exists an isomorphism F : C → D,

• quasi-isomorphic if there exists a quasi-isomorphism F : C → D,

• quasi-equivalent if there exists a quasi-equivalence F : C → D,

• derived equivalent if Tw C and TwD are quasi-equivalent.

Remark 5.23. No functor in either direction is required for two A∞-categories to be derived equivalent.
The contrast with quasi-isomorphisms is due to the lack of functors Tw C → C, in contrast to the existence
of natural functors H C → C and C → H C. There are many more equivalent and equally esthetic ways to
define every of the above notions, so we have only presented a selection.
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We now pull the notions of equivalences between A∞-categories over to the world of deformed A∞-
categories. The main idea is to declare a functor Fq : Cq → Dq an isomorphism if its leading term
F : C → D is an isomorphism. Note that this definition is not vacuous: It still requires the (curved)
A∞-relations for Fq, but displays the isomorphism property as a side issue which is dealt with on the
leading term part.

Definition 5.24. Let C,D be A∞-categories and Cq,Dq deformations. Let Fq : Cq → Dq be a functor of
deformed A∞-categories and denote by F : C → D its leading term. Then Fq is

• an isomorphism if F is an isomorphism,

• a quasi-isomorphism if F is a quasi-isomorphism,

• a quasi-equivalence if F is a quasi-equivalence,

• a derived equivalence if F is a derived equivalence.

Two deformed A∞-categories Cq and Dq are

• isomorphic if there is an isomorphism Fq : Cq → Dq,

• quasi-isomorphic if there is a quasi-isomorphism Fq : Cq → Dq,

• quasi-equivalent if there is a quasi-equivalence Fq : Cq → Dq,

• derived equivalent if Tw Cq and TwDq are quasi-equivalent.

We explain in Lemma 5.57 why relations such as quasi-equivalence and derived equivalence are equiv-
alence relations among deformed A∞-categories. Among the A∞-deformations of one single category C,
there is one further notion of equivalence, known as gauge equivalence:

Definition 5.25. Let C be an A∞-category and Cq, C
′
q be deformations. Then a gauge equivalence

between Cq and C′q is a functor Fq : Cq → C
′
q of deformed A∞-categories whose leading term F : C → C is

the identity.

We elaborate gauge equivalence further in the context of the Hochschild DGLA in section 5.7.

5.5 Twisted completion

In this section, we recall the twisted completion construction and extend it to A∞-deformations. The
ordinary case is standard, see for example [35], [16]. Our definition in the deformed case may differ from
what readers expect. We follow the sign convention of [35]. For the purposes of this section, we denote
by [1] the right-shift, as opposed to the more common interpretation as left-shift.

To get started, let us recall the definition of additive completion for ordinary A∞-categories. This
category consists of formal sums of shifted objects. The hom space between two objects consists of
matrices of morphisms between the summands:

Definition 5.26. Let C be an A∞ category with product µC . The additive completion Add C of C is
the category of formal sums of shifted objects of C:

A1[k1]⊕ . . .⊕An[kn].

The hom space between two such objects X =
⊕
Ai[ki] and Y =

⊕
Bi[mi] is

HomAdd C(X,Y ) =
⊕

i,j

HomC(Ai, Bj)[mj − ki].

Here [−] denotes the right-shift. The products on Add C are given by multilinear extensions of

µkAdd C(ak, . . . , a1) =
∑

(−1)
∑

j<i ‖ai‖ljµkC(ak, . . . , a1).

Here each ai lies in some Hom(Xi[ki], Xi+1[ki+1]). The integer li denotes the difference ki+1−ki between
the shifts and the degree ‖ai‖ is the degree of ai as element of HomC(Xi, Xi+1).

We now extend the notion of additive completion to the case of A∞-deformations. Let C be an A∞-
category and Cq a deformation. The aim is to define an additive completion Add Cq in such a way that
it is a deformation of Add C. This is straight-forward:
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Definition 5.27. Let C be an A∞-category and Cq a deformation. Then the additive completion
Add Cq is the deformation of Add C given by the following deformed product:

µkAdd Cq
(αk, . . . , α1) =

∑
(−1)

∑
j<i ‖αi‖ljµkCq

(αk, . . . , α1),

with the same sign convention as in the non-deformed case.

Remark 5.28. The only difference between µAdd C and µAdd Cq
lies in using the non-deformed product

µC for the former and the deformed product µCq
for the latter.

Let us now recall twisted completion for ordinary A∞-categories. The idea is to form virtual complexes
of objects of C:

Definition 5.29. Let C be an A∞-category. A twisted complex in C is an object X ∈ Add C together
with a morphism δ ∈ Hom1(X,X) of degree 1 such that δ is strictly upper triangular and satisfies the
Maurer-Cartan equation:

MC(δ) := µ1(δ) + µ2(δ, δ) + . . . = 0.

We frequently refer to the morphism δ as the twisted differential or δ-differential. The A∞-category
Tw C is the category whose objects are twisted complexes. Its hom spaces are the same as for the additive
completion:

HomTw C(X,Y ) = HomAdd C(X,Y ).

The products on Tw C of C are given by embracing with δ’s:

µkTw C(αk, . . . , α1) =
∑

n0,...,nk≥0

µAdd C(δ, . . . , δ︸ ︷︷ ︸
nk

, αk, . . . , α1, δ, . . . , δ︸ ︷︷ ︸
n0

).

Remark 5.30. Upper triangularity of δ ensures that the product µTw C is well-defined.

We now extend the twisted completion construction to the case of A∞-deformations. Let C be an
A∞-category and Cq a deformation. The aim is to define a twisted completion Tw Cq in such a way that
it is a deformation of Tw C. In particular, the category Tw Cq should have the same objects as Tw C.
With this in mind, we define:

Definition 5.31. Let C be an A∞ category with products µC and Cq a deformation with products µCq
.

Then the twisted completion Tw Cq is the (possibly curved) deformation of Tw C given by the deformed
products

µkTw Cq
(αk, . . . , α1) =

∑

n0,...,nk≥0

µAdd Cq
(δ, . . . , δ︸ ︷︷ ︸

nk

, αk, . . . , α1, δ, . . . , δ︸ ︷︷ ︸
n0

).

Remark 5.32. As one may have expected, the product µTw Cq
now simply uses µCq

instead of µC . The
set of objects of Tw Cq may however be surprising: The objects of Tw Cq are not formed with twisted
differentials δ ∈ Hom1

Cq
(X,X). Instead, the objects of Tw Cq are twisted complexes (X, δ) ∈ Tw C, in

other words, their δ-differential must lie in Hom1
C(X,X). It is easily checked that µTw Cq

satisfies the
(curved) A∞-axioms, rendering Tw Cq a genuine A∞-deformation of Tw C.

Remark 5.33. Denoting the twisted completion of Cq by Tw Cq constitutes a slight abuse of notation:
“Tw Cq” suggests that twisted complexes are to be taken with the δ-differential formed from values in Cq,
which is not the case. A more proper notation for the twisted completion of Cq would have been (Tw C)q,
which we however found too complicated.

Remark 5.34. Typical objects in Tw Cq have curvature. Indeed, according to Definition 5.31, an object
(X, δ) ∈ Tw Cq has curvature

µ0
(X,δ) = µ0

X,Add Cq
+ µ1

Add Cq
(δ) + µ2

Add Cq
(δ, δ) + . . . .

The curvature µ0
X,Add Cq

can be spelled out more concretely as the sum of the curvatures of all constituents

Ai of X. The differential µ1
Add Cq

(δ) is concretely the sum of the deformed differentials µ1
Cq

applied to

each entry of δ as a matrix. Whatever the value of µ0
(X,δ) adds up to, the reader can see that it does

typically not vanish because the twisted differential δ ∈ Hom1(X,X) only satisfies the Maurer-Cartan
equation with respect to the non-deformed differential µ1

C .
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Remark 5.35. A popular way to form twisted completions of curved categories is to pick only curvature-
free twisted complexes. This might be the way to luck in case of curved A∞-categories, because a curved
twisted completion cannot be passed to the minimal model. In contrast, for A∞-deformations, curvature
on Tw Cq is not problematic at all. Picking all twisted complexes of C is in fact necessary in order to
render Tw Cq a deformation of Tw C.

Twisted completion in the case of deformed A∞-categories offers properties familiar from the twisted
completion of ordinary A∞-categories, for instance:

Lemma 5.36. The inclusion Cq ⊆ Tw Cq is a derived equivalence of deformed A∞-categories.

Proof. Due to our definition of quasi-equivalences of deformed A∞-categories, this statement is trivial.
Indeed, regard the inclusion functor Fq : Cq → Tw Cq. This is by definition a functor of deformed A∞-
categories. Its leading term is the standard inclusion F : C → Tw C. Ultimately, the functor F is a
derived equivalence and we conclude that Fq is a derived equivalence according to Definition 5.24.

Remark 5.37. It is possible to define a variant Tw′ Cq of the twisted completion of A∞-deformations by
allowing additional infinitesimal entries anywhere in the δ-matrix. Let us describe this version in detail:
The objects of Tw′ Cq shall be pairs

(X, δ = δ0 + δ′), X ∈ Add C, δ0 ∈ Hom1
C(X,X), δ′ ∈ mHom1

C(X,X).

Here we require only the leading part δ0 to be upper triangular and satisfy the Maurer-Cartan equation
with respect to µC . The infinitesimal part δ′ can also lie below the diagonal.

The hom spaces and higher products of Tw′ Cq shall be defined by embracing with δ as in Defini-
tion 5.31. Let us check that products of this deformed A∞-category Tw′ Cq are still well-defined: Regard
a sequence of k compatible entries of δ. Then at least k − d of them are infinitesimal, where d is the
dimension of the δ-matrix. We conclude that a term

µq( δ, . . . , δ︸ ︷︷ ︸
kn+1 times

, an, δ, . . . , δ︸ ︷︷ ︸
kn times

, . . . , a1, δ, . . . , δ︸ ︷︷ ︸
k1 times

)

lies in the K := (k1 + . . . + kn+1 − (n + 1)d)-th power of the maximal ideal m. When the number
k1 + . . .+ kn+1 of total δ insertions goes to infinity, this exponent K tends towards infinity as well. This
renders all products in Tw′ Cq well-defined.

The category Tw′ Cq is clearly a deformed A∞-category. When dividing out the maximal ideal we do
not exactly reach Tw C though, but a version of Tw C with lots of isomorphic objects: one copy for every
choice of infinitesimal terms being added in the δ matrix.

Lemma 5.38. Let C be an A∞-category and Cq a deformation. Then Tw Cq and Tw′ Cq are quasi-
equivalent as deformed A∞-categories. Moreover, let S := {(Xi, δi)}i=1,...,n be a collection of objects in
Tw Cq and δ′i ∈ mEnd1(Xi) be infinitesimal terms. Then the category

S′ = {(Xi, δi + δ′i)}i=1,...,n ⊆ Tw′ Cq

is gauge equivalent to S.

Proof. For the first part, regard the inclusion Tw Cq ⊆ Tw′ Cq. Upon dividing out the maximal ideal m,
this inclusion reduces to the inclusion of Tw C into a version of Tw C with lots of copies of objects. We
conclude that the inclusion Tw Cq ⊆ Tw′ Cq is a quasi-equivalence of deformed A∞-categories.

For the second part, build the functor

Fq : S
′ → S, F 0

q,(Xi,δi+δ′i)
= δ′i, F 1

q = Id, F≥2
q = 0.

This functor is the identity on objects and indeed satisfies the curved A∞-functor relations:
∑

µS(F
0
q , . . . , F

0
q︸ ︷︷ ︸

≥0 times

, F 1
q (ak), F

0
q , . . . , F

0
q︸ ︷︷ ︸

≥0 times

, . . . , F 1(a1), F
0
q , . . . , F

0
q︸ ︷︷ ︸

≥0 times

)

=
∑

µAdd Cq
(δi, δ

′
i, . . .︸ ︷︷ ︸

any mix

, ak, . . . , a1, δi, δ
′
i, . . .︸ ︷︷ ︸

any mix

)

=
∑

µAdd Cq
(δ, . . . , δ︸ ︷︷ ︸
≥0 times

, ak, δ, . . . , δ︸ ︷︷ ︸
≥0 times

, . . . , a1, δ, . . . , δ︸ ︷︷ ︸
≥0 times

)

= F 1
q (µS′(ak, . . . , a1).

This shows that Fq is a gauge-equivalence S′ → S.
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5.6 The Hochschild DGLA

In this section, we recall how to view A∞-deformations from the DGLA point of view. The material is
all known to experts and nicely shows how curvature enters the picture. Useful references include [53,
Chapter V] and [72].

Before we recall the concept of DGLA and Maurer-Cartan elements, let us summarize the philosophy:
The aim is to capture every deformation problem by a DGLA. The solutions of the deformation problem
should then correspond to Maurer-Cartan elements of the DGLA. This empowers the mathematician
to use the force of DGLA theory. Standard questions in DGLAs include: to find a quasi-isomorphism
F : L→ L′ between two DGLAs, or to classify all Maurer-Cartan elements of L up to gauge equivalence.

deformation problem DGLA
1. reformulation

2. algebraic power

3. harvest

We are now ready to recall the notion of DGLAs and Maurer-Cartan elements.

Definition 5.39. A DG Lie algebra (DGLA) is a Z- or Z/2Z-graded vector space L together with

• a differential d : Li → Li+1,

• a bracket [−,−] : L× L→ L of degree zero,

satisfying skew-symmetry, Leibniz rule and Jacobi identity:

[a, b] = (−1)|a||b|+1[b, a],

d([a, b]) = [da, b] + (−1)|a|[a, db],

(−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0.

For example, the bracket [−,−] is commutative on odd elements. With this consideration, we recall
the definition of Maurer-Cartan elements:

Definition 5.40. Let L be a DGLA and B a deformation base. Regard the tensored DGLA B⊗̂L with
differential d and bracket [−,−] simply extended continuously. A Maurer-Cartan element of L over
B is an element ν ∈ B⊗̂L1 which satisfies the Maurer-Cartan equation

dν +
1

2
[ν, ν] = 0.

The set of Maurer-Cartan elements of L over B is denoted MC(L,B). In case the DGLA L is Z/2Z-
graded, a Maurer-Cartan element is supposed to lie in B⊗̂Lodd.

In the rest of this section, we will make sense of these definitions in the case of the so-called Hochschild
DGLA:

Definition 5.41. Let C be a Z- or Z/2Z-graded A∞-category. Then its Hochschild complex HC(C) is
the graded vector space

HC(C) =
∏

X1,...,Xk+1∈C
k≥0

Hom
(
HomC(Xk, Xk+1)[1]⊗ . . .⊗HomC(X1, X2)[1], HomC(X1, Xk+1)[1]

)
.

Here [1] denotes the left-shift and ‖a‖ = |a|−1 denotes the reduced degree of a morphism a ∈ HomC(X,Y ).
The grading ‖ · ‖ on HC(C) is the one induced from the shifted degrees of the hom spaces of C. In other
words, we have

‖η(ak, . . . , a1)‖ = ‖η‖+ ‖ak‖+ . . .+ ‖a1‖, η ∈ HC(C).

For η, ω ∈ HC(C), the Gerstenhaber product µ · ω ∈ HC(C) is defined as

(η · ω)(ak, . . . , a1) =
∑

(−1)(‖al‖+...+‖a1‖)‖ω‖η(ak, . . . , ω(. . .), al, . . . , a1).

The Hochschild DGLA is the following Z- or Z/2Z-graded DGLA structure on HC(C): The bracket
on HC(C) is the Gerstenhaber bracket

[η, ω] = η · ω − (−1)‖ω‖‖η‖ω · η.

The differential on HC(C) consists of commuting with the product µC ∈ HC1(C):

dν = [µC , ν].
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Remark 5.42. It is not hard to check that HC(C) is indeed a DGLA. The reader who wishes to perform
the computation is advised to write all double brackets in terms of Gerstenhaber products and use the
associator relation

(a · b) · c− a · (b · c)

=
∑

(−1)‖b‖(‖a1‖+...+‖ai‖)+‖c‖(‖a1‖+...+‖aj‖)+‖b‖‖c‖a(. . . , b(. . .), ai, . . . , c(. . .), aj , . . .)

+
∑

(−1)‖b‖(‖a1‖+...+‖aj‖)+‖c‖(‖a1‖+...+‖ai‖)a(. . . , c(. . .), ai, . . . , b(. . .), aj , . . .)).

The sum in these formulas runs over all ways to insert b and c into a. Despite the way the formulas are
written, it is not necessary that any elements ai or aj actually lie in between or behind b and c. This
is merely an artifact needed to define the sign right: the sign shall be the total reduced degree of all
elements coming after b or after c, respectively.

Remark 5.43. In the terminology of the Hochschild DGLA HC(C), we can interpret A∞-deformations
of C precisely as Maurer-Cartan elements of HC(C). We start by observing that the A∞-product µC

amounts to an element µC ∈ HC1(C) and the A∞-relations translate to µC · µC = 0.
Now let Cq be a deformation of C. Then the curved A∞-relations for µCq

translate to µCq
· µCq

= 0.

Decompose µCq
= µC+ν as non-deformed part µC plus deformation ν ∈ mHC1(C). Given that µC already

satisfies the A∞-relation µC · µC = 0, the element ν itself satisfies the Maurer-Cartan equation

0 = (µC + ν) · (µC + ν) = dν + [ν, ν]/2.

Conversely, pick a Maurer-Cartan element ν ∈ MC(HC(C), B). According to Lemma 5.12, the element
µC + ν extends in a multilinear and m-adically continuous way to a collection of mappings

µk≥0
Cq

: (B⊗̂HomC(Xk, Xk+1))⊗ . . .⊗ (B⊗̂HomC(X1, X2))→ B⊗̂HomC(X1, Xk+1).

The Maurer-Cartan identity for ν makes that µCq
satisfies the curved A∞-relations.

Remark 5.44. In case L is a Z/2Z-graded DGLA, then Maurer-Cartan elements of L are by defini-
tion odd elements ν ∈ mLodd with dν + [ν, ν]/2 = 0. For example, our deformation Gtlq Q is only a
Z/2Z-graded deformation of GtlQ. In the context of deformations, we have to view both GtlQ and its
Hochschild DGLA HC(GtlQ) as Z/2Z-graded.

Remark 5.45. For ordinary algebras, which are concentrated in degree zero and have vanishing higher
products, the Hochschild cohomology is typically defined without the shifts. This results in a grading
difference of 1 from what we present here. For example, the center of the algebra is the classical zeroth
Hochschild cohomology. In our A∞-setting, this cohomology will rather be found in degree −1.

5.7 Gauge equivalence

In this section, we recall the notion of gauge equivalence. By virtue of algebraic deformation theory, we
have two ways of defining this equivalence: via an explicit definition and via the Hochschild DGLA. Both
notions are defined here in parallel. Useful references are [53] and [72].

Gauge equivalence
by functor F : Cq → C

′
q

Gauge equivalence
as MC elements µCq

∼ µC′
q

Recall from Definition 5.25 that a gauge equivalence between two deformations Cq, C
′
q of an A∞-

category C consists of a functor F : Cq → C
′
q whose leading term is the identity.

Remark 5.46. The idea behind Definition 5.25 is that the set of automorphisms Cq → C
′
q as deformed

A∞-categories is rather large. The leading term of an automorphism can be any automorphism of C,
which is not interesting from the perspective of deformation theory. Therefore one restricts to those
functors whose leading term is the identity on C.

After the success of the notion of gauge equivalence throughout mathematics and physics, a definition
has also been captured in the abstract DGLA approach. The idea here is that the gauging functor Fq
can be viewed as an element of a “gauge group”. The infinitesimal action of this gauge group can be
described purely in terms of the DGLA:
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Definition 5.47. Let L be a DGLA and B a deformation base. Then there is a group action by exp(mL0)
on B⊗̂L1 with infinitesimal generator

ϕ.ν = dϕ+ [ν, ϕ] ∈ B⊗̂L1, ν ∈ mL0.

The group action preserves the set of Maurer-Cartan elements MC(L;B). Two Maurer-Cartan elements
ν, ν′ ∈ MC(L;B) are gauge-equivalent if they lie in the same orbit. The set of Maurer-Cartan elements
up to gauge-equivalence is denoted MC(L;B).

Remark 5.48. In case L is a Z/2Z-graded DGLA, then the gauge group is exp(mLeven). This group acts
on Maurer-Cartan elements of L, which are by definition odd elements ν ∈ mLodd with dν + [ν, ν]/2 = 0.

Let us compare the infinitesimal generators of the action, at the non-deformed product µC : An
“infinitesimal functor” Id+εF pushes the non-deformed product µC to some µ′ such that (Id+εF ) ·µC =
µ′ ◦ (Id+εF ). Here ◦ denotes functor composition, in contrast to the Gerstenhaber product “·”. Setting
ε2 = 0, we read off

µ′ = µC + ε[µC , F ].

Meanwhile, the trivial deformation µC corresponds to the zero Maurer-Cartan element in MC(HC(C)).
Gauging it by εF under ε2 = 0 gives the element

(εF ).0 = 0 + d(εF ) + [0, εF ] = ε[µC , F ].

This element corresponds to the deformation µC + ε[µC , F ]. We see that gauging a deformation by a
gauge functor Id+εF is the same as gauging its corresponding Maurer-Cartan element in the Hochschild
DGLA:

Infinitesimal functor Id+εF Infinitesimal DGLA gauge εF

µ′ = µC + ε[µC , F ]. µ′ = µC + (d(εF ) + [0, εF ]).

More precisely, two deformations are gauge equivalent in the sense of Definition 5.25 if and only if their
corresponding Maurer-Cartan elements are gauge equivalent in the sense of Definition 5.47.

Remark 5.49. A∞-Hochschild cohomology of C is defined as the cohomology of HC(C), merely regarded
as a cochain complex instead of DGLA. This way, Hochschild cohomology is the linear approximation of
Maurer-Cartan elements up to gauge equivalence.

5.8 L∞-algebras

In this section we recall the formalism of L∞-algebras. In our context of A∞-categories, we namely
want to transport deformations from one category to another, so that one needs morphisms between
their Hochschild DGLAs. The world of DGLAs and their morphisms is quite restrictive, but there is a
more flexible version of DGLAs known as L∞-algebras. We finish this section with a definition and brief
discussion of the L∞-theory. We follow version 3 of [8]. The reader be cautioned that version 4 of that
paper has changed signs.

Definition 5.50. An L∞-algebra is a graded vector space L together with multilinear maps

lk : L× . . .× L︸ ︷︷ ︸
k times

→ L

of degree 2− k which are graded skew-symmetric and satisfy the higher Jacobi identities:

lk(xs(1), . . . , xs(k)) = χ(s)lk(x1, . . . , xk),∑

i+j=k+1
i,j≥1

∑

s∈Si,k−i

(−1)i(n−i)χ(s)lj(li(xs(1), . . . , xs(i)), xs(i+1), . . . , xs(k)) = 0.

Here Si,k−i denotes the set of shuffles, i.e. s ∈ Sk with s(1) < . . . < s(i) and s(i + 1) < . . . < s(k). The
sign χ(s) is the product of the signum of s and the Koszul sign of s. The Koszul sign of a transposition
(i j) is (−1)|xi||xj |, and this rule is extended multiplicatively to arbitrary permutations.

With this sign convention, a DGLA as in Definition 5.39 is simply an L∞-algebra without higher
products. In particular, the Hochschild DGLA can automatically be regarded as an L∞-algebra.

Morphisms between L∞-algebras are indeed more flexible than between DGLAs: L∞-morphisms are
allowed to have higher components, just like A∞-functors allow for higher components.



5.9. Axioms on A∞-deformations 65

Definition 5.51. A morphism of L∞-algebras ϕ : L→ L′ is given by multilinear maps

ϕk : L× . . .× L→ L

of degree 1− k for all k ≥ 1 such that ϕ(xs(1), . . . , xs(k)) = χ(s)ϕ(x1, . . . , xk) for any s ∈ Sk and

∑

i+j=k+1
i,j≥1

∑

s∈Si,n−i

(−1)i(k−i)χ(s)ϕ(l(xs(1), . . . , xs(i)), xs(i+1), . . . , xs(k))

=
∑

1≤r≤k
i1+...+ir=k

∑

t

(−1)uχ(t)l′r(ϕ(xt(1), . . . , xt(i1)), . . . , ϕ(xt(i1+...+ir−1+1), . . . , xt(k))),

where t runs over all (i1, . . . , ir)-shuffles for which

t(i1 + . . .+ il−1 + 1) < t(i1 + . . .+ il + 1).

and u = (r − 1)(i1 − 1) + . . . + 2(ir−2 − 1) + (ir−1 − 1). A morphism ϕ : L → L′ of L∞-algebras is a
quasi-isomorphism if ϕ1 is a quasi-isomorphism of complexes.

Definition 5.52. Let L be an L∞-algebra and B a deformation base. Then a Maurer-Cartan element
is an element x ∈ m⊗̂L1 satisfying the Maurer-Cartan equation

∑

k≥1

lk(x, . . . , x)

k!
= 0.

We write MC(L,B) for the set of Maurer-Cartan elements of L over B.

In contrast to the DGLA case, there is no gauge group acting on the Maurer-Cartan elements. Instead,
one should regard an equivalence relation of “homotopy”. All we should assume here is that the notion
of homotopy exists and gives rise to a quotient set MC(L,B), just as in the DGLA case.

5.9 Axioms on A∞-deformations

There is a slight gap in our treatment of A∞-deformations: We cannot prove invariance of the Hochschild
DGLA under quasi-equivalences. While derived invariance is known in the dg case due to [40], according
to private communication with Keller there is no literature available for the A∞-case. We do not fill the
gap here. Instead, we state a small set of axioms in this section which we will simply assume for the
purpose of section 9 and section 8.3.

The motivation for our axioms is that we need to be able to push deformations from one category
to another. Assume two A∞-categories C and D are quasi-equivalent by means of a quasi-equivalence
F : C → D. Intuition says that a deformation Cq of C can be “pushed” via F to a deformation Dq = F∗(Cq)
of D such that Cq and Dq still quasi-equivalent to each other by a deformation of the functor F . We
formalize this notion as follows:

Definition 5.53. Let C be an A∞-category and Cq be a deformation. Let F : C → D be a quasi-
equivalence. Then we call any deformation Dq of D a naive pushforward of the deformation Cq along
F if there exists a functor Fq : Cq → Dq with leading term F .

Remark 5.54. If forming Hochschild DGLAs were functorial, pushforwards would be easy. Indeed, a
quasi-equivalence C → D would ideally induce a quasi-isomorphism of L∞-algebras HC(C)→ HC(D) and
therefore a bijection MC(C, B) → MC(D, B) of Maurer-Cartan elements. The naive pushforward of Cq
would then simply be obtained as the image under this map of the Maurer-Cartan elemement defined
by Cq. It is an awkward fact of algebra that however neither the Hochschild DGLA nor Hochschild
cohomology is functorial. For instance, even the center HH0(A) = Z(A) of an algebra A is not functorial
a property. Two quasi-equivalent A∞-categories however have quasi-isomorphic Hochschild DGLAs. At
least, this is a folklore statement, with actual proof only available by Keller [40] in the dg case. See also
the discussion in section F.1.1.

This definition of naive pushforwards raises many detail questions. For instance, let G : D → E be yet
another quasi-equivalence. Then we are interested in the question whether the double pushforward of Cq
along F and G is gauge-equivalent to the single pushforward of Cq along GF . We shall provide answer
to this question in the form of axioms:
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Convention 5.55. We assume the following axioms regarding the Hochschild DGLA: Let B be a fixed
deformation base. Then:

(A1) Two A∞-deformations Cq, C
′
q over B are gauge equivalent if and only if they are gauge equivalent

as Maurer-Cartan elements of HC(C).

(A2) Let F : C → D be a quasi-equivalence of A∞-categories. Then there exists a quasi-isomorphism of
L∞-algebras F∗ : HC(C)→ HC(D).

(A3) We call F∗ the pushforward of F . The pushforward is noncanonical. However its induced map
(F∗)

MC : MC(HC(C), B) → MC(HC(D), B) has the following property: Dq is a naive pushforward
of Cq along F if and only if µDq

= FMC
∗ (µCq

).

(A4) Let C ⊆ D be a subcategory such that the inclusion i : C → D is a quasi-equivalence. Then
iMC
∗ (µDq

|C) = µDq
.

(A5) Push-forward is functorial on Maurer-Cartan elements: (GF )MC
∗ (µCq

) = GMC
∗ (FMC

∗ (µCq
).

Remark 5.56. There is a slight abuse of the notation in Convention 5.55. Where we have written
FMC
∗ (µCq

), we actually mean the Maurer-Cartan element µCq
− µC instead of µCq

. In fact, the element

µCq
∈ B⊗̂HC1(C) is not a Maurer-Cartan element itself. In similar abuse of notation, we may occasionally

write FMC
∗ (Cq) instead of FMC

∗ (µCq
).

As an application of Convention 5.55, we show here that quasi-equivalence of deformed A∞-categories
is an equivalence relation. By quasi-equivalence of two deformed A∞-categories, we refer to the relation
defined in Definition 5.24. A proof without assuming the axioms would either need to deal with compli-
cated explicit constructions, or make use of an ∞-categorical level. In other words, assuming the axioms
seems to be a healthy midway for the scope of the paper.

Lemma 5.57. Quasi-equivalence of deformed A∞-categories is an equivalence relation. Even stronger,
for every quasi-equivalence F : C → D there exists a quasi-equivalence G : D → C such that G∗F∗ = id.
Derived equivalence is an equivalence relation as well.

Proof. We need to prove reflexivity, transitivity and symmetry of the quasi-equivalence relation. The first
two properties are easy: The identity functor obviously provides a quasi-equivalence from any deformation
Cq to itself. And if Fq : Cq → Dq and Gq : Dq → Eq are quasi-equivalences, then the composition
GqFg : Cq → Eq is a quasi-equivalence as well. We conclude that only symmetry remains to be proven.

The proof of symmetry consists of five steps: First, we define a set of “good” quasi-equivalences F for
which there exists a quasi-equivalence G with G∗F∗ = id. The second, third and fourth step establish
basic properties of this “good” set. In the fifth step, we show that those properties already make every
quasi-equivalence lie in F .

As step 1, let us recall our context. We are interested in the set of quasi-equivalences F : C → D such
that there exists a quasi-equivalence G : D → C with G∗F∗ = id. Denote this set by F :

F := {F : C → D q.e. | ∃G : D → C q.e. : G∗F∗ = id}.

Our aim is to show that any quasi-equivalence lies in F . Steps 2, 3, 4 are devoted to proving several
properties of F .

As step 2, we prove the property

F ∈ F with G q.e. such that G∗F∗ = id =⇒ F∗G∗ = id and G ∈ F .

Indeed, pick F as on the left-hand side. Since both F and G are quasi-equivalences, both pushforwards
F∗ and G∗ are bijections. Together with G∗F∗ = id, we conclude that G∗ and F∗ are simply inverses to
each other. In other words, F∗G∗ = id holds as well. We conclude that G ∈ F .

As step 3, we prove for composable quasi-equivalences F,G the property

F,G ∈ F ⇐⇒ GF ∈ F .

One should think of this as a strong version of the two-out-of-three property. To prove it, pick F,G ∈ F
with F ′

∗F∗ = id and G′
∗G∗ = id. We get (F ′G′)∗(GF )∗ = F ′

∗F∗ = id, which renders GF ∈ F . Conversely
assume GF ∈ F with H∗(GF )∗ = id. Then (HG)∗F∗ = id, hence F ∈ F . Step 2 implies F∗(HG)∗ = id.
In other words (FH)∗G∗ = id, hence G ∈ F . We conclude that both F and G lie in F , as desired.
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As step 4, we show that the following lie in F :

quasi-equivalences with a one-sided inverse,

inclusions of skeletal subcategories,

inclusion i : H C → C and projection π : C → H C.

To this end, assume F and G are quasi-equivalences with FG = Id. Combining Id ∈ F with step 3, we
deduce F,G ∈ F . In particular, isomorphisms fall under this regime. Inclusions of skeletal subcategories
also fall under this regime, since a skeletal subcategory S ⊆ C produces a quasi-equivalence C → S which
reduces to the identity on S. Now regard a category C and its minimal model H C. The minimal model
is not unique, but every minimal model comes with quasi-isomorphisms i : H C → C and π : C → H C.
Regard the map πi : H C → H C. Since both i and π are quasi-isomorphisms, πi is a quasi-isomorphism
as well. Moreover, H C is already a minimal category, hence πi is an isomorphism. We conclude that
πi ∈ F . By step 3, we deduce that both π and i lie in F . This finishes step 4.

As final step 5, we prove that any quasi-equivalence lies in F . To this end, let F : C → D be any
quasi-equivalence. Our strategy is to build a diagram to whose arrows we can apply step 3 and 4 to
deduce that F also lies in F . In order to write down the diagram, pick minimal models H C and HD,
together with inclusion map iC : H C → C and projection πD : D → HD. Define F ′ := πDFiC . This gives
a diagram, commutative by definition,

C D

H C HD

F

iC πD

F ′

Choose a skeletal subcategory SC ⊆ H C and set SD := F ′(SC). Then SD ⊆ HD is a skeletal subcategory
as well: Any object X ∈ HD is isomorphic to some F ′(Y ), and Y in turn is isomorphic to some Z ∈ SC ,
hence X ∼= F ′(Z) ∈ SD. Moreover if Y, Z ∈ SC and F ′(Y ) ∼= F ′(Z), then Y ∼= Z. This implies Y = Z
because SC is a skeleton. In total, we conclude that SD ⊆ HD is a skeletal subcategory, and we obtain
a restricted quasi-equivalence F ′′ : SC → SD. Putting everything together, we have the commutative
diagram

C D

H C HD

S S′

F

iC πD

F ′

I J

F ′′

Here we denoted by I and J the inclusion of the full subcategories S and S′ into H C resp. HD. The top
and bottom square are strictly commutative by definition of F ′ and F ′′.

We now count everything together: F ′′ is an isomorphism and J is an inclusion of a skeletal sub-
category. By step 4, we get J, F ′′ ∈ F . By step 3, we get JF ′′ ∈ F . By commutativity of the bottom
of the diagram we have F ′I = JF ′′. By step 3, this implies F ′ ∈ F . By commutativity of the top of
the diagram we have πDFiC = F ′ ∈ F . A double application of step 3 renders F ∈ F . Since F was
arbitrary, this shows that all quasi-equivalences lie in F . In other words, for every F : C → D there exists
a G : D → C such that G∗F∗ = id. In particular, this shows quasi-equivalence is an equivalence relation.

Let us now explain why derived equivalence is an equivalence relation as well. Indeed, Cq and Dq
derived equivalent according to Definition 5.24 if Tw Cq and TwDq are quasi-equivalent. Since we have
just shown that quasi-equivalence is an equivalence relation, we conclude that derived equivalence is an
equivalence relation. This finishes the proof.

Remark 5.58. Pushing deformations from one category to another is not only possible via quasi-
equivalences. We can also push forward deformations from one category to a derived equivalent category.
Namely, let F : Tw C → TwD be a quasi-equivalence and let Cq be a deformation of C. Then the twisted
completion Tw Cq from Definition 5.31 is canonically a deformation of Tw C. The pushforward FMC

∗ on
Maurer-Cartan elements now transports this deformation Tw Cq to a deformation FMC

∗ (µTw Cq
) of TwD.
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Figure 6.1: The three-punctured sphere, the four-punctured sphere and the one-punctured torus

Restricting this deformation to D ⊆ TwD gives a deformation of D. Via the route of twisted completion,
pushforward and restriction, the deformation Dq corresponds to the deformation Cq. We may equally call
Dq the pushforward of Cq along F .

6 Preliminaries on gentle algebras

In this section, we concisely recapitulate background on gentle algebras in order to bring the reader
into touch with the relevant tools of this paper. We provide definitions of all preliminaries and explain
alternative points of view on them. In particular, we will explain how every definition is used in the
paper. We follow mostly [18] and Paper I.

6.1 Punctured surfaces

Punctured surfaces belong to the family of two-dimensional oriented manifolds, while at the same time
facilitating singular behavior at the punctures.

Definition 6.1. A punctured surface is a closed oriented surface S with a finite set of punctures
M ⊆ S. We assume that |M | ≥ 1, or |M | ≥ 3 if S is a sphere.

A selection of popular punctured surfaces are depicted in Figure 6.1. The condition |M | ≥ 1 and
|M | ≥ 3 are merely cosmetic and will be explained in section 6.2.

Remark 6.2. A punctured surface can alternatively be interpreted as a surface with S1 boundaries:
Let (S,M) be a punctured surface and regard one puncture q ∈ M . The surface around q looks like
a punctured disk. Now interpret the punctured disk as an infinitely long cylinder, glued to the rest of
the surface. Cut off the cylinder at some distance. We obtain a surface with S1 boundaries, which we
interpret as markings. In other words, we have a marked surface with only S1 boundaries in the sense
of [35]. For instance, cutting away disks around the punctures in the three-punctured sphere, we obtain
the popular pair of pants surface.

6.2 Arc systems

In this section, we recall the notion of arcs and arc systems on punctured surfaces. We recall what it
means for an arc system to be full, and explain how it cuts the surface into polygons. We fix some
terminology regarding polygons, in particular the notion of a polygon’s interior angles.

Definition 6.3. Let (S,M) be a punctured surface. An arc in S is a not necessarily closed curve
γ : [0, 1]→ S running from one puncture to another. An arc system A on a punctured surface is a finite
collection of arcs which meet only at the set M of punctures. Intersections and self-intersections are not
allowed. The arc system satisfies the no monogons or digons condition [NMD] if

• No arc is a contractible loop in S \M .

• No pair of distinct arcs is homotopic in S \M .

The arc system satisfies the no monogons or digons in the closed surface condition [NMDC] if

• No arc is a contractible loop in S.

• No pair of distinct arcs is homotopic in S.

Example 6.4. In Figure 6.2, we have depicted a few arbitrary arc systems on the three- and four-
punctured sphere and one-punctured torus. The drawn three-punctured sphere has the north and south
pole marked, as well as a point on the equator lying on the front half of the sphere. The four-punctured
sphere has the north and south pole, as well as a point in the far east and far west marked.
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(a) Three-punctured sphere (b) Four-punctured sphere

a

b

a

b

(c) One-punctured torus (d) Not [NMD]

(e) Not [NMD] (f) Not [NMDC] (g) Not [NMDC] (h) Allowed for [NMDC]

Figure 6.2: Arc systems and their properties

Example 6.5. The arc system of Figure 6.2a consists of two half meridians lying in the frontal hemi-
sphere. The arc system of Figure 6.2b consists of the frontal half of the equator and a northern half of
a meridian. The one-punctured torus Figure 6.2c is drawn as a gluing diagram. The arc system consists
of the two standard generators of the torus.

Remark 6.6. The configurations banned by [NMD] are depicted in Figure 6.2d and 6.2e. The reason to
ban these is that the definition of the A∞-structure on the gentle algebras becomes a lot easier, avoiding
a so-called monogon or digon rule. This makes checking the A∞-axioms also more tractable. With the
[NMDC] condition, we go a step further and ban also monogons and digons in the closed surface S.
More concretely, we ban loops which become contractible when the punctures are filled. Such a banned
configuration is depicted in Figure 6.2f. Similarly, we ban pairs of homotopic arcs, the homotopy being
allowed to cross punctures. Such a banned configuration is depicted in Figure 6.2g. The purpose of the
[NMDC] condition is to avoid the monogon and digon rule also for the deformed gentle algebras.

Definition 6.7. An arc system is full if it cuts the surface into contractible pieces. These pieces are the
faces or polygons of the arc system.

In other words, an arc system is full if its complement consists of a disjoint union of topological disks.
We usually refer to these pieces as polygons to highlight that they are bounded by arcs of the arc system.

Example 6.8. Of the three arc systems presented in Figure 6.2, only 6.2a and 6.2c are full. Arc system
6.2b is not full, because the complement of the arcs is a topological disk with a puncture in its interior,
the south pole. Removing any arc from 6.2a or 6.2c also leads to a non-full arc system. Additional arcs
may however be added to make or keep the arc system full. For example, in 6.2a one may add the full
equator as arc and in 6.2c one may add any diagonal as arc, but not both. All possible types of arc
systems with [NMDC] on the three-punctured sphere are depicted in Figure 6.4. In these figures, the
directions of the arcs is arbitrary. Only the arc systems in the third and fourth picture are full.

The reason we demand arc systems on spheres to have |M | ≥ 3 punctures becomes apparent: The
[NMD] condition excludes the case of digons bounded by two different arcs, but we also desire to exclude
the case where a digon is bounded by twice the same arc, depicted in Figure 6.3b. The only arc system
with a digon bounded by twice the same arc is however the two-punctured sphere, depicted in Figure 6.3c.
This is the reason we require |M | ≥ 3.

Definition 6.9. The interior angles of a polygon are the angles in the corners of the polygon. By
angle, we refer to the abstract entity (an interval starting at one arc and ending at the other, winding
around their common endpoint) instead of the angle value.

Since the punctured surface comes with an orientation, the interior angles of every polygon come with
a natural cyclic (clockwise) order, see Figure 6.3a. Working with arc systems often requires arguing with
properties of the polygons and their angles. Some configurations of arcs and angles are allowed under
the [NMDC] condition, others not.

Remark 6.10. In a [NMD] arc system, every polygon is bounded by a sequence of arcs with at least
three interior angles in between. Indeed, zero angles bounding a polygon would mean the polygon is



70 6. Preliminaries on gentle algebras
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(a) Order of angles

aa

(b) Twice the same arc (c) Two-punctured sphere

Figure 6.3: Illustrations of arcs and polygons

Figure 6.4: Arc systems on the three-punctured sphere
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(b) Torus (c) Not [NMDC]

Figure 6.5: Standard dimer models and the [NMDC] condition

bounded by a single puncture. The punctured surface would necessarily be a one-punctured sphere,
which we banned. A single angle bounding a polygon would mean that the polygon is bounded by a loop
contractible in S \M , which we banned. Two angles bounding a polygon would mean they are equal, or
distinct and homotopic in S \M . Both options are banned. In summary, every polygon in a [NMD] arc
system is bounded by a sequence of arcs with at least three interior angles in between.

6.3 Dimers

Dimer models, also referred to as brane tilings, originate in physicists’ description of mirror symmetry.
The idea is to describe arrangements of branes on the A-side of mirror symmetry in a surface graph. In
a dimer model, adjacent nodes have opposite color. Dimer models can be seen as specific instances of
punctured surfaces. A comprehensive reference is [15].

Definition 6.11. A dimer Q is a full arc system on a punctured surface such that

• every polygon is bounded by at least three arcs,

• the arcs along the boundary of a polygon are all oriented in the same direction.

The letter Q also denotes the quiver, obtained from the arc system: Its vertex set Q0 is the set of
punctures and its arrow set Q1 is the set of arcs. The underlying closed surface is denoted |Q|.

All polygons in a dimer are bounded either entirely clockwise or entirely anticlockwise. Neighboring
polygons are bounded opposite: A polygon next to a clockwise polygon is anticlockwise, and a polygon
next to an anticlockwise polygon is clockwise. The standard notation for a dimer is the letter Q, minding
the fact that the punctures together with the arcs can also be interpreted as a quiver embedded in a
surface.

Remark 6.12. Every punctured surface has an arc system that is a dimer. Standard dimer models for
the n-punctured sphere (n ≥ 3) and n-punctured torus (n ≥ 1) are depicted in Figure 6.5a and 6.5b. A
dimer automatically satisfies the [NMD] condition. There are however dimers which violate the [NMDC]
condition, an example is depicted in Figure 6.5c.
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6.4 Gentle algebras

In this section, we recall gentle algebras associated with arc systems. We use a specific definition of
gentle algebras, due to Bocklandt [18]. The reason they appear in this paper is that they form discrete
models for Fukaya categories of punctured surfaces. In the present section, we describe only the algebra
structure. The A∞-structure will be added in section 6.5.

As their name suggests, gentle algebras are originally a type of finite-dimensional algebras. In [5], it
was shown that so-called “unpunctured marked surface triangulations” naturally give rise to such gentle
algebras. For readers familiar with Haiden-Katzarkov-Kontsevich’s work [35], these are marked surfaces
where all S1 boundary components have at least one marking. The construction of gentle algebras from
surfaces was subsequently carried over by Bocklandt [18] to the case of marked surfaces with full arc
systems, as defined in section 6.2. The definition is essential for this paper:

Definition 6.13. Let A be a full arc system on a punctured surface. Then the gentle algebra (as
ordinary algebra) GtlA = CRA/I is the quiver algebra with relations, where:

• The vertices of RA are given by the arc midpoints of the arc system.

• The arrows of RA are given by the interior angles of the polygons.

• The relations in I are given by all products of two consecutive interior angles of a polygon.

The quiver RA has as many vertices as the arc system has arcs, as many arrows as the arc system
has interior angles, and every polygon gives rise to as many relations as it has interior angles. The quiver
RA is called the rectified quiver in [18]. Figure 6.6 depicts some arc systems together with their rectified
quivers. The left part of each graphic is the arc system itself, with arcs drawn thick. The interior angles
are drawn as thin arrows; in the three- and four-punctured sphere, the dashed arrows mean the interior
angles at the rear, invisible side of the sphere. The right part of each graphic depicts the rectified quiver
together with its relations.

A vector space basis for the gentle algebra GtlA consists of all angles around punctures. The basis
includes an identity ida for every arc a ∈ A, which we may also view as an empty angle. The gentle
algebra GtlA of an arc system is not finite-dimensional.

Remark 6.14. By nature, the algebra GtlA = CRA/I can be viewed as a C-linear category with
objects being the arcs of the arc system. The hom spaces are spanned freely by the angles winding
around punctures, starting at one arc and ending at another arc. In [18], this interpretation of GtlA is
also called the “gentle category”. We will consistently use the term gentle algebra instead, despite the
slight inaccuracy.

Remark 6.15. In the work of Haiden, Katzarkov and Kontsevich [35], gentle algebras were developed
further under the name of “topological Fukaya categories“. This includes a generalization regarding
the type of boundary allowed. The version of gentle algebra we defined above is called a surface with
fully marked boundaries of S1 type in [35]. If one changes the boundary type to have at least one
so-called “boundary arc” on every boundary component, the topological Fukaya category becomes finite-
dimensional. The gentle algebras GtlA studied in the present paper are however infinite-dimensional
by nature: One can keep winding around the punctures as often as one wants, obtaining morphisms of
higher and higher length.

It might be worthwhile comparing to the original definition due to [5]: A finite-dimensional algebra
presented as CQ/I is gentle if

• At each vertex there start at most two arrows and there end at most two arrows.

• The ideal I is generated by paths of length 2.

• For every arrow β, there is at most one arrow α such that αβ ∈ I, and at most one arrow γ such
that βγ ∈ I.

• For every arrow β, there is at most one arrow α such that αβ /∈ I, and at most one arrow γ such
that βγ /∈ I.

The same paper [5] showed how surface triangulations naturally give rise to gentle algebras.

6.5 The A∞-structure on GtlA

In this section, we recall the A∞-structure on GtlA. The starting point is the description of GtlA as
ordinary algebra in section 6.4. The idea is to add A∞-structure which captures the topology of the
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Figure 6.6: Standard arc systems and their rectified quivers
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punctured surface. This A∞-structure was introduced by Bocklandt [18] in order to define a discrete
version of the wrapped Fukaya category. In the present section, we recall the A∞-structure briefly and
refer to [16, Section 9.1] and [35] and for more insight.

We start with a full arc system A with [NMD]. The first step towards the A∞-structure is the grading.
It is possible to put a Z-grading on GtlA by viewing arcs and angles relative to a vector field on the
surface, see section 9.2. The deformations of GtlA that we are interested in exist however only in the
Z/2Z-graded world. Consequentially, we define GtlA as a Z/2Z-graded A∞-category from the very
beginning. The definition of degrees is depicted in Figure 6.7 and reads as follows:

Definition 6.16. The degree |α| of an angle α : a→ b is odd if one of the arcs a, b points towards the
puncture, and one points away from the puncture. The degree of an angle is even if both arcs point away
or both point towards the puncture.

The second step in the definition of the A∞-structure is the definition of the differential µ1 and the
product µ2. The differential µ1 is plainly set to zero. We keep the notation αβ for the concatenation of
angles, and define the product µ2 as its signed version:

µ1 := 0, µ2(α, β) := (−1)|β|αβ.

Remark 6.17. The reason we assume the [NMD] condition is that it simplifies the definition of µ1 and
µ2. Indeed, can also define the A∞-structure for arc systems without [NMD]. However, the definition of
µ1 and µ2 then needs to be tweaked in order to capture the monogons and digons.

The third step is to define the higher products µ≥3 of GtlA. They capture the topology of the arcs
and angles. Roughly speaking, a higher product of a sequence of angles is nonzero if the sequence bounds
a disk. Such a disk is given by an immersion of the standard polygon Pk into the surface S, known as
immersed disk. The domain of the immersion mapping is a standard polygon Pk, depicted in Figure 6.8a.
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Figure 6.9: Stitching together polygons yields immersed disks

To distinguish this type of immersed disks from the type used for the Fukaya category, we shall refer to
these disks as discrete immersed disks. The precise definition reads as follows:

Definition 6.18. Let A be a full arc system with [NMD]. A discrete immersed disk in A consists of
an oriented immersion D : Pk → S of a standard polygon Pk into the surface, such that

• The edges of the polygon are mapped to a sequence of arcs.

• The immersion does not cover any punctures.

The immersion mapping D itself is only taken up to reparametrization. The sequence of interior angles
of D is the sequence of angles in A given as images of the interior angles of Pk under the map D. An
angle sequence α1, . . . , αk is a disk sequence if it is the sequence of interior angles of some discrete
immersed disk.

To explain the definition in other words, the image of the interior of the polygon Pk consists only of
polygon interiors of A and arcs between punctures, but not punctures themselves. The boundary of Pk
is mapped to a sequence of arcs, and the corners inside Pk are mapped to an angle sequence in the arc
system.

Example 6.19. The interior angles of a polygon, when written in clockwise order, are a disk sequence.
In particular, if the arc system A has a triangle polygon in it, then there exists an disk sequence in A of
just 3 angles. In every case, by the ban on loops and homotopic arcs, an disk sequence α1, . . . , αk consists
of at least three angles, i.e. k ≥ 3. In Figure 6.8a, we have depicted the schematic of a standard polygon.
In Figure 6.8b, we have depicted a discrete immersed disk together with its sequence of interior angles.
By definition, this sequence is a disk sequence. In Figure 6.8c, we have depicted an angle sequence which
is not a disk sequence. The reason it is not a disk sequence is that there is a polygon immersion bounded
by the drawn angles, but it covers the puncture at the center of the hexagon. Later on, we will however
allow polygon immersions which cover punctures as part of the deformation Gtlq A.

Disk sequences α1, . . . , αk can also be described combinatorically: They are either a polygon in A,
or stitched together from multiple polygons along arcs. Figure 6.9 depicts two examples of stitching
polygons together to form disk sequences. In every example, multiple triangles are stitched together to
form a polygon. Thick connectors between two triangles indicate that these triangles are going to be
stitched together along their shared edge. The first example is visually easy to grasp, since the three
triangles are disjoint. In the second example, seven triangles are stitched together, with one triangle
appearing twice. The result is a disk sequence of nine angles α1, . . . , α9, of which one is longer than a
full turn. The sketch on the right of the “=” sign provides a visualization of this discrete immersed disk
by thinking a third dimension into the picture. In that 3-dimensional sketch, the angle longer than a full
turn is drawn dashed, the other angles are omitted and the outer boundary of the hexagon is depicted
as a spiral instead of separate arcs.
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Remark 6.20. In section 6.6, we change the terminology. From there on, discrete immersed disks are
allowed to cover punctures.

We are now ready to give the definition of the higher products µ≥3. Since these products are supposed
to be multilinear, it suffices to define them on the basis of GtlA given by angles winding around punctures.

Definition 6.21. Let A be an full arc system with [NMD]. Then GtlA is the A∞-category with objects
being the arcs a ∈ A, hom spaces spanned by angles, and A∞-product µ defined by µ1 = 0 and µ2(α, β) =
(−1)|β|αβ. To define µk≥3, let α1, . . . , αk be any disk sequence, let β be an angle composable with α1,
i.e. βα1 6= 0, and let γ be an angle post-composable with αk, i.e. αkγ 6= 0. Then

µk(βαk, . . . , α1) := β, µk(αk, . . . , α1γ) := (−1)|γ|γ.

The higher products vanish on all angle sequences other than these.

Example 6.22. Let us go through a few examples. Regard the one-punctured torus of Figure 6.6b. The
angles α and γ are odd, and β and δ are even. Angle degrees add up, for instance βγδ is odd and γδα is
even. The product µ2 has

µ2(δ, γ) = −δγ, µ2(αβγδα, βγδ) = −αβγδαβγδ = −(αβγδ)2 and µ2(β, α) = 0.

The higher product µ3 vanishes because there are no triangles. From µ4 onwards, we have higher products,
for instance

µ4(δ, γ, β, α) = idb and µ6(γ, βγ, β, α, δα, δ) = ida .

A little less obvious is the A∞-product

µ12(α, δ, γδ, γ, βγ, β, αβ, α, δα, δ, γ, βγδαβ) = ida,

which is “winds” one and a quarter times around the puncture, without covering the puncture itself
though. The second disk sequence in Figure 6.9 is very similar and also yields an identity.

After defining this structure, Bocklandt [18] proved that with this grading and products GtlA is
indeed an A∞-category.

Theorem 6.23 ([18]). Let A be a full arc system with [NMD]. Then GtlA is an A∞-category.

Remark 6.24. In [18], the signs in the definition of the higher products µk on GtlA differ from the
signs presented here. We follow the sign convention of [35].

Remark 6.25. Every angle sequence α1, . . . , αk either bounds a unique discrete immersed disk or no
disk at all. If it bounds a disk, then the products µ(αk, . . . , α1γ) and µ(βαk, . . . , α1) are nonzero. If it
bounds no disk, then the products vanish.

Remark 6.26. Let us explain that that the degrees match. The A∞-product µk is required to be of
parity 2− k. If α1, . . . , αk is any disk sequence, then the total reduced degree

‖α1‖+ . . .+ ‖αk‖ ∈ Z/2Z

measures how often the boundary of the discrete immersed disk changes orientation when traversing it
clockwise. Since a disk sequence traverses the boundary one full time, it ends up with the same orientation
as it started. In other words, the total reduced degree of a disk sequence vanishes. This means that µk

has the right parity.

Remark 6.27. The interior angles of a discrete immersed disk are enumerated clockwise as α1, . . . , αk,
while the higher product consumes them only in the order αk, . . . , α1. This seemingly unusual order of
the factors α1, . . . , βαk is due to the convention on A∞-categories.

Remark 6.28. It is not possible to write a given angle sequence γk, . . . , γ1 as βαk, . . . , α1 or αk, . . . , α1γ
in two different ways. In fact, the immersion of the polygon is already determined by all angles but one,
and an angle sequence of the form βαk, . . . , α1 cannot be written as α′

k, . . . , α
′
1γ with both α1, . . . , αk

and α′
1, . . . , α

′
k being disk sequences. This is explained e.g. in [35]. We conclude that any angle sequence

can be written in at most one way as βαk, . . . , α1 or αk, . . . , α1γ with α1, . . . , αk a disk sequence. This
makes the product µk(γk, . . . , γ1) well-defined for every angle sequence γ1, . . . , γk.
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6.6 The deformation GtlqA

In this section we define the deformation Gtlq A of a gentle algebra GtlA. It is a specific instance of
the deformations constructed in Paper I and lies at the heart of the present paper. We give an explicit
definition in order to provide a feel for this category. We provide a first glance concerning the use of
Gtlq A in the later sections.

This paper is the second in a series of three, and the first paper Paper I was concerned with classifying
the A∞-deformations of GtlA. A conclusion from that paper is that all deformations of GtlA up to gauge
equivalence can be written down explicitly. In this paper, we select one of these deformations, which we
call the deformed gentle algebra and denote by Gtlq A. Other deformations of GtlA play no role anymore.

The deformation Gtlq A is very broad in the sense that it has a lot of deformation parameters, in fact
one for each puncture. Any reader who wishes to work with the calculations of this paper can therefore
freely set some of these deformation parameters to zero and still have an interesting deformation at hand.
Conversely, the deformation Gtlq A is so broad that the reader who is interested in deformations not
“covered” by Gtlq A can still derive qualitative expectations on the behavior of the other deformations.

Remark 6.29. Arguably, one would like to conduct the study of the present paper also for all the other
deformations given in Paper I. The idea would be to use multiple parameters per puncture, so as to
include deformations in Gtlq A that measure orbigons around punctures (see Paper I). One reason we
restrict to the single deformation Gtlq A is that “orbigon deformations” are more difficult to handle than
“disk deformations”. Another reason is that the relative Fukaya category relFuk(S,M) also has only
“disk deformations” as well, so a candidate for a small model of relFuk(S,M) should only have “disk
deformations” at all. This is why we only regard the deformation Gtlq A, which has one parameter per
puncture.

The deformation base of Gtlq A is B = CJMK. This is the commutative local ring of power series
in |M | variables, one for each puncture. In fact, to capture the punctures covered by an immersion of
a standard polygon, every puncture should have one deformation parameter. For this reason we use
B = CJMK. Every puncture q ∈M gives rise to one deformation parameter, which is also denoted q and
lies in the ring CJMK as one of the generators.

Remark 6.30. We use the letter “q” as in three different meanings in this paper, depending on the
context: First, the notation Gtlq A is fixed and the letter q does not have any meaning there. Second,
whenever a specific puncture is considered, it is typically named q. Third, whenever q is used multiplica-
tively in formulas, then it denotes the infinitesimal parameter q ∈ CJMK. For example, if p, q ∈ M are
punctures, then pq simply means the product pq ∈ CJMK.

As a warm-up for the definition of Gtlq A, recall that the angle sequence α1, . . . , α6 of Figure 6.10c
is not a disk sequence. This means that µ6(α6, . . . , α1) = 0 in GtlA. The deformation Gtlq A precisely
changes this and similar higher products, while keeping the A∞-relations intact. In short, the deformed
higher products of Gtlq A precisely capture which and how often punctures are covered by an immersion
of a standard polygon. From here on, we drop the requirement that a discrete immersed disk does not
cover punctures:

Definition 6.31. Let A be a full arc system with [NMDC]. A discrete immersed disk in A is an
oriented immersion of a standard polygon Pk into S up to reparametrization such that the edges of the
polygon are mapped to a sequence of arcs. A disk sequence is an angle sequence together with a choice
of discrete immersed disk of which it is the sequence of interior angles. We denote by M(α1, . . . , αk) the
set of discrete immersed disks D with interior angles α1, . . . , αk. For D ∈ M(α1, . . . , αk), we denote by
qD ∈ CJMK the product of the punctures covered by D.

Remark 6.32. In contrast to section 6.5, for a given angle sequence α1, . . . , αk there might be multiple
discrete immersed disks which have the same interior angle sequence α1, . . . , αk. To see this, regard
Bennequin’s curve in Figure 6.10a. This smooth curve bounds five immersed disks which are not related
by reparametrization. If we draw a fine enough grid in the surface and approximate the curve by arcs in
the grid, then we obtain an angle sequence which bounds multiple distinct discrete immersed disks.

The deformation Gtlq A has infinitesimal curvature, and there are three ways to describe the curvature:
Each puncture q ∈M contributes curvature qℓq ∈ (M)⊗̂GtlA to Gtlq A. Here (M) ⊆ CJMK denotes the
maximal ideal of CJMK and ℓq denotes the sum of all full turns around q, summed over all arc incidences
at q. In other words, the total curvature µ0

q of Gtlq A is the sum over all puncture contributions:

µ0
q :=

∑

q∈M

qℓq.
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Figure 6.10: Illustration of the deformation Gtlq A

In yet other words, we can describe the individual curvature of an arc a ∈ A. It carries curvature
µ0
q,a given as the sum of the two turns around its endpoints, multiplied by the deformation parameters
h(a), t(a) ∈ CJMK associated with the arc’s endpoints.

In order to define the products on Gtlq A, it suffices to describe them on basis elements of GtlA. The
continuous CJMK-multilinear extension is then automatic, according to section 5.2. We are now ready to
state the definition of Gtlq A:

Definition 6.33. Let A be a full arc system with [NMDC]. The deformed gentle algebra Gtlq A is
the deformation of GtlA over CJMK given by:

• curvature µ0
q =

∑
q∈M qℓq,

• differential µ1
q = 0 still vanishing,

• product µ2
q = µ2 is not deformed,

• higher products µ≥3
q as follows: Let α1, . . . , αk be an angle sequence and let β, γ be angles such

that βα1 6= 0 and αkγ 6= 0. Then set

µkq (βαk, . . . , α1) =
∑

D∈M(α1,...,αk)

qDβ,

µkq (αk, . . . , α1γ) =
∑

D∈M(α1,...,αk)

(−1)|γ|qDγ.

Example 6.34. For reference, let us go through a few example evaluations: The torus of Figure 6.6b
has one puncture, two arcs and four interior angles. The gentle algebra GtlA therefore has two objects
and four generators of the morphism spaces. The figure also includes a list of basis elements for GtlA.
What is the deformation Gtlq A here? Since there is just one puncture q ∈ M = {q}, the deformation
base for Gtlq A is B = CJqK. The arcs a and b get curvature

µ0
a = qαβγδ + qγδαβ and µ0

b = qβγδα+ qδαβγ.

The product µ2 remains non-deformed, for example we still have µ2
q(δ, γ) = −δγ and µ2

q(β, α) = 0 as in
the non-deformed case, but we can now also insert parameters as in µ2

q(qδ, q
2γ) = −q3δγ. The higher

product µ3 remains zero, because there are no triangles. The higher product µ4(δ, γ, β, α) = idb has still
the non-deformed value, and µ6(γ, βγ, β, α, δα, δ) = ida. Deformed products appear for example in

µ8
q(δ, γδ, γ, βγ, β, αβ, α, δα) = q idb,

the sequence is inscribed in a 2-by-2 rectangle covering the puncture once. More generally, we have the
(m− 1)-by-(n− 1) rectangles covering the puncture q precisely (m− 1)(n− 1) times:

µ2m+2n
q (δ, γδ, . . . , γδ︸ ︷︷ ︸

m−1

, γ, βγ, . . . , βγ︸ ︷︷ ︸
n−1

, β, αβ, . . . , αβ︸ ︷︷ ︸
m−1

, α, δα, . . . , δα︸ ︷︷ ︸
n−1

) = q(m−1)(n−1).

Remark 6.35. We view GtlA as a Z/2Z-graded A∞-category and Gtlq A as a Z/2Z-graded deformation.
Let us explain why the deformed products µkq satisfy the requirement to be of degree 2 − k. First, the
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Figure 6.11: A zigzag path L

curvature µ0
q,a on every arc a ∈ A consists of a full turn and is automatically even. Second, regard e.g. the

deformed higher product
µkq (βαk, . . . , α1) = q1 . . . qmβ.

Here the angles α1, . . . , αk are a disk sequence possibly covering the punctures q1, . . . , qm. In fact, the
disk sequence ends at the opposite side of the arc as it started, so the total reduced degree

‖α1‖+ . . .+ ‖αk‖

is still even, which means that β has the same parity as α1, . . . , βαk plus 2 − k. This affirms that the
products of Gtlq A have the right degree.

Remark 6.36. In the Z-graded world, the deformation Gtlq A does not exist. Indeed, the curvature
µ0
q,a of an arc a ∈ A is a full turn and its degree depends on the vector field used for the Z-grading. It is

still possible in the Z-grading to define a deformation Gtlq A which only includes those punctures where
the full turn has degree 2. This would then also give the deformed higher products the right degree. But
such a deformation has far fewer deformation parameters and is less interesting than the Z/2Z-graded
version.

In Paper I, we have already defined Gtlq A from a slightly more general starting point. In fact, the
starting point of Paper I is a deformation base B and a deformation parameter r ∈ mZ(GtlA), where
Z(GtlA) denotes the center of GtlA as an ordinary algebra. To the datum of r, the construction in
Paper I associates a deformed A∞-structure lµ.. r. In order to obtain the specific case of µq from this
construction, we have to put B = CJMK and r =

∑
q∈M qℓq. We have checked in Paper I that GtlrA

satisfies the curved A∞-relations. In particular, this holds for the special case Gtlq A:

Theorem 6.37 (Paper I). Let A be a full arc system with [NMDC]. Then Gtlq A is an A∞-deformation
of GtlA.

6.7 Zigzag paths

In this section, we recall the notion of zigzag paths. These are combinatorical tools defined specifically
for dimers. The idea is to follow the arrows of a dimer by alternatingly turning left and right. In the
presentation of zigzag paths, we mostly follow [18] and [23].

Zigzag paths appear in this paper for two reasons: First, one uses them to define whether a dimer
Q is zigzag consistent or not. Second, zigzag paths themselves can be realized as twisted complexes in
TwGtlq Q, and the aim of this paper is to compute the minimal model of this category. Of course, it is
not a coincidence that zigzag paths appear twice: The zigzag consistency of Q will help us perform the
minimal model calculations of zigzag paths by ruling out lots of difficult cases. We recall zigzag paths as
follows:

Definition 6.38. Let Q be a dimer. A zigzag path L is an infinite path . . . a2a1a0a−1a−2 . . . of arcs in
Q together with an alternating choice of “left” or “right” for every i ∈ N such that

• ai+1ai lies in a clockwise polygon if i is assigned “right”,

• ai+1ai lies in a counterclockwise polygon if i is assigned “left”.

We also say that L turns left at ai if i is assigned “left” and turns right if ai is assigned “right”. Two
zigzag paths are identified if their paths including left/right indications differ only by integer shift.

Since Q is finite, every zigzag path is periodic and has a shortest period i0 ∈ N, which is defined as
the smallest integer such that the zigzag path is invariant under shift by i0. The period is not necessarily
reached when an arc reappears in the zigzag path. The path may namely continue in a different way
beyond that arc. In general, the period need not even be reached when a whole sequence of arcs reappears
in the zigzag path. An example is depicted in Figure 6.12.

Definition 6.39. The length of a zigzag path is the shortest period i0 ∈ N.
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Figure 6.12: Despite sharing multiple arcs, the two strands continue differently and do not finish a period.
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Figure 6.13: On consistency

Slightly simplified, a zigzag path L is a path in Q that turns alternatingly maximally right and
maximally left in Q. The typical shape of a zigzag path is drawn in Figure 6.11. If every puncture of Q
has valence at least 4, then a path of length two cannot simultaneously lie in the boundary of a clockwise
and a counterclockwise polygon. In this case, the left/right indication for zigzag paths is a superfluous
part of the datum of a zigzag path. For other dimers Q, the left/right indication is very important. An
example is the n-punctured sphere Qn of Figure 6.5a. If n is odd, then Qn has only one zigzag path, its
length is 2n. If n is even, then Qn has two zigzag paths each of length n. This way, we deviate slightly
from the definition of [18].

6.8 Geometric consistency

In this section, we recall what it means for a dimer to be geometrically consistent. This notion is
important for the paper, because we will permanently work with a fixed geometrically consistent dimer,
see Convention 10.10. Geometric consistency is a specific instance of various consistency conditions which
can be imposed on dimers. A summary can be found in [17], which we also follow here. In this section,
we recall universal covers and zigzag rays and then define geometric consistency.

As first step, we recall the universal cover of Q. Recall that Q itself consists of a closed surface |Q|
together with an arc system that satisfies the dimer property. Regard the universal cover |Q̃| of the closed
surface |Q|. We can construct an arc system on |Q̃| by lifting all punctures and arcs to the universal
cover, in all possible ways. This gives an (infinite) arc system on |Q̃| which also has the dimer property.
The universal cover together with its lifted arc system is simply denoted Q̃.

As second step, we recall the notion of zigzag rays. In contrast to zigzag paths, zigzag rays only run
in one direction, starting from a given arc. Since we only need zigzag rays in the context of the universal
cover, let us directly formulate their definition in Q̃. The four zigzag rays starting at an arc a ∈ Q̃1 are
depicted in Figure 6.13a.

Definition 6.40. Let Q be a dimer, Q̃ its universal cover and a ∈ Q̃1 an arc. Then the four zigzag
rays starting at a are the sequences of arcs (a1i )i≥0, (a2i )i≥0, (a3i )i≥0 and (a4i )i≥0 in Q̃ determined by
a10 = a20 = a30 = a40 = a and the following properties:

• The sequences (a1i ) and (a2i ) satisfy h(a
1/2
i ) = t(a

1/2
i+1).

• The sequences (a3i ) and (a4i ) satisfy t(a
3/4
i ) = h(a

3/4
i+1).

• The path a
1/2
i+1a

1/2
i lies in the boundary of a counterclockwise polygon when i is odd/even, and

clockwise when i is even/odd.

• The path a
3/4
i a

3/4
i+1 lies in the boundary of a counterclockwise polygon when i is odd/even, and

clockwise when i is even/odd.

A dimer is geometrically consistent if the zigzag rays starting with an arc a in the universal cover
intersect nowhere, except at a itself. The precise definition reads as follows:
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. . .

Figure 6.14: A puncture with four arc incidences

Definition 6.41. Let Q be a dimer. Then Q is geometrically consistent if for every a ∈ Q̃1 the four
zigzag rays (a1i ), (a

2
i ), (a

3
i ) and (a4i ) satisfy the following property: Whenever aki = alj , then i = j and

k = l, or i = j = 0.

Example 6.42. A dimer Q on a sphere is never geometrically consistent, because Q̃ = Q and therefore
any zigzag rays in Q̃ intersect after a while. There are plenty of geometrically consistent dimers on sur-
faces of genus g ≥ 1 though. For example, the n-punctured torus dimer of Figure 6.5b is geometrically
consistent. Indeed, the universal cover of the torus is the real plane, and the torus dimer lifts to horizon-
tally and vertically repeated copies of Figure 6.5b. The zigzag rays then run away in different directions
in the plane without ever coming closer to each other again. This geometry is a typical example of the
toric zigzag fan, see for example [71].

Remark 6.43. If Q is geometrically consistent, then a zigzag path L on Q may return to an arc
twice, however the segment of L between both occurrences is not allowed to be contractible. If it were
contractible, then this segment would constitute a zigzag ray cutting itself (the case i = j and k = l),
contradicting geometric consistency.

Remark 6.44. A geometrically consistent dimer automatically satisfies the [NMDC] condition.

Geometric consistency is the strongest consistency condition one can require, apart from R-charge con-
sistency. Indeed, geometric consistency is by definition a stronger version of so-called zigzag consistency,
which in turn is known to be stronger than cancellation consistency, see [17]:

geometric consistency zigzag consistency cancellation consistency=⇒ =⇒

R-charge consistency

g = 1

6.9 Terminology for arcs and angles

In this section, we introduce technical terminology that we will use throughout the paper. This terminol-
ogy is important to describe exactly what happens where in a dimer. It bears no mathematical creativity
but is unavoidable for the sake of concise language.

The first notion is that of an arc incidence. This is comparable to half-edges in a ribbon graph.
Half-edges are not only a useful tool to describe graphs where one end of some edges is missing, but
half-edges are also handy to describe incidences in a graph. Whenever we would like to sum over all
edges incident at a given node, letting every loop contribute two (distinct) terms, the right entity to sum
over is the set of half-edges incident at the node. Similarly in a dimer Q, we would typically like to have
a set of all incidences of arcs, where loops contribute both their “head part” and their “tail part”. With
the terminology of head parts and tail parts, we can also talk about whether an angle starts at the head
part or tail part of an arrow. This piece of terminology is depicted in Figure 6.15.

Definition 6.45. An arc incidence at a puncture q ∈ Q0 is either an incident head part or an incident
tail part of some arc.

For instance, a loop a ∈ Q1 with h(a) = t(a) = q has two arc incidences at the puncture h(a) =
t(a). The sample puncture in Figure 6.14 has four arc incidences. Correspondingly, there are four
indecomposable angles around the puncture. In that figure, the loop is intended to be topologically
nontrivial, indicated by the dots “. . .”.

Let us now introduce some terminology for angles in Q. Angles always have both an algebraic
interpretation as basis morphisms for GtlQ and a geometric interpretation as winding around punctures
in the surface Q. We will therefore use double terminology from time to time: In algebraic contexts, we
say an angle is an identity if it is the identity ida of some arc a ∈ Q1. In geometric context, we call
such an angle empty and all other angles non-empty. For instance, a typical usage in a geometric context
would be to say that a certain angle α is non-empty and smaller than a full turn.
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(a) tail/head
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(b) head/tail
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(c) tail/tail
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(d) head/head

Figure 6.15: The angle α starts/ends at . . .

Figure 6.16: A decomposable and an indecomposable angle
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(a) Arc appearing twice in L with different index

segment

(b) An indexed segment

Figure 6.17: Terminology in a zigzag path

Definition 6.46. Let α be an angle in Q. Then α is an empty angle if it is the identity of some arc.
Otherwise α is a non-empty angle.

Given an angle α, we would like to distinguish whether it is composed of multiple smaller angles or
not. By definition of the angles in Q, the smallest units are the interior angles of polygons. This already
gives us terminology for a geometric context: We can simply ask whether a given angle α is the interior
angle of some polygon or not. We however also need terminology for the algebraic context. Examples
are depicted in Figure 6.16. We fix terminology as follows:

Definition 6.47. An angle is decomposable if it is the composition of two non-empty angles. An angle
is indecomposable if it is non-empty and not decomposable.

Remark 6.48. An non-empty angle is indecomposable if it is an interior angle of some polygon, and
indecomposable otherwise. We regard empty angles as neither decomposable nor indecomposable.

Let us introduce terminology for locations on zigzag paths. Loosely speaking, we want to define an
“indexed arc” as an arc a ∈ Q1 lying on L, but remember whether L turns left or right after a. For
example, let 2k be the length of L, then L has precisely 2k indexed arcs. Figure 6.17a features a visual
explanation: Some arc a3 = a42 appears twice while traversing L, one time at index 3 and one time at
index 42. The arc itself is the same in Q, but different as indexed arcs of L. This amount of precision
gives rise to further names for relative positions on L. For instance, we can regard indexed segments,
depicted in Figure 6.17b. We fix terminology as follows:

Definition 6.49. Let L be a zigzag path, given by an infinite path . . . a1a0a−1 . . . together with left/right
indications.

• An indexed arc on L is a tuple (ai, i) consisting of one of the arcs on L together with its index
modulo the period length of the zigzag path.

• The next arc after (ai, i) is the indexed arc (ai+1, i+ 1).

• The previous arc before (ai, i) is the indexed arc (ai−1, i− 1).
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• Two consecutive indexed arcs are two indexed arcs on L which can be written in the form (ai+1, i+
1) and (ai, i) or the other way around.

• An indexed segment of length k on L is the datum of a tuple (ai, . . . , ai+k−1, i) of arcs on L,
remembering the index i modulo the period length of L.

Let us introduce terminology for angle sequences. We already have the very fortunate notion of
disk sequences available, but in order to analyze products in TwGtlQ we need flexible terminology
to distinguish between the two rules that define higher products in GtlQ. Let α1, . . . , αk be a disk
sequence. Recall that the discrete immersed disk contained in the data of the disk sequence contributes
to the product µkGtlq Q

(αk, . . . , α1). Now if β is an angle such that βαk 6= 0 and γ is an angle such

that α1γ 6= 0, then the discrete immersed disk also contributes to the products µkGtlq Q
(βαk, . . . , α1)

and µkGtlq Q
(αk, . . . , α1γ). We want to call these contributions final-out and first-out, respectively. This

terminology is depicted in Figure 6.18. A more formal definition reads as follows:

Definition 6.50. Let Q be a dimer. Let α1, . . . , αk be a disk sequence in Q with discrete immersed disk
D. Let β, γ be non-empty angles such that βαk 6= 0 and α1γ 6= 0. Then:

• The sequence α1, . . . , βαk together with D is a final-out disk. We call β the outside morphism and
αk the inside morphism. We call t(α1) the first arc and t(αk) the final arc.

• The sequence α1γ, . . . , αk together with D is a first-out disk. We call γ the outside morphism and
α1 the inside morphism. We call h(α1) the first arc and h(αk) the final arc.

• The sequence α1, . . . , αk together with D is an all-in disk. We call the arc t(α1) = h(αk) the first,
equivalently final arc.

We may call an angle sequence together with a discrete immersed disk a some-out disk if it is first-out
or final-out. In the case of a some-out disk, the first and final arc share an endpoint, the concluding
puncture of the disk. In the case of an all-in disk, the first and final arc coincide, which is the concluding
arc of the disk.

Loosely speaking, all contributions to µ≥3
Gtlq Q

come from first-out, final-out or all-in disks. Some-out

means first-out or final-out. For a some-out disk, the concluding puncture is the one around which the
first or final angle winds and it is very important. The first and final arcs are those arcs that neighbor
the concluding puncture. For an all-in disk, the first and final arcs are the same and this single arc is
very important. Whenever we refer to first-out, final-out or all-in disks, we typicall pass the datum of
the discrete immersed disk implicitly. In Figure 6.18, the first and final arc are drawn thick and the
concluding puncture is marked with a dot. We may use wording like “towards the concluding puncture”
when referring to the behavior of a sequence of arcs, viewed in the direction of the concluding puncture.

Last but not least, we shall give some means to measure how large the inside angle is by counting
the “slots” inside and outside the disk. The terminology is included in Figure 6.18. We formalize this as
follows:

Definition 6.51. Let Q be a dimer. Let α1, . . . , αk be a some-out disk and γ be its inside morphism.
Write ℓ for one full turn around the concluding puncture, starting at the final arc of the disk. Write
γ = γ′ℓn for some n such that γ′ is strictly smaller than one full turn. Take the complementary angle
(γ′)c such that (γ′)cγ′ = ℓ.

• The number of slots inside the disk is the number of indecomposable angles that γ′ consists of.

• The number of slots outside the disk is the number of indecomposable angles that (γ′)c consists
of.

7 Preliminaries of Fukaya categories

In this section, we recall basics of Fukaya categories. One after another, we recall the construction of the
Fukaya pre-category, Fukaya category, relative Fukaya pre-category and relative Fukaya category. The
core aim of the paper is to define the category Lq and interpret its minimal model HLq as a part of the
relative Fukaya category. The present section aims to facilitate this understanding by preparing the view
from the side of Fukaya categories. We have therefore included a dedicated description of the subcategory
of the relative Fukaya category given by so-called zigzag curves in section 7.5. Our main references are
[1, 26]. We comment on results of Efimov, Sheridan and Perutz.
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Figure 6.18: Illustration of final-out, all-in and first-out disks

7.1 The exact Fukaya pre-category

In this section, we review exact Fukaya pre-categories. They are not an immediate necessity for this
paper, since we only work with the discrete model Gtlq Q. The main result however ties HTwGtlq Q to
the relative Fukaya category, so we will benefit from a review. We follow a combination of the highly
recommendable sources [1], [29] and [16, Chapter 6].

In symplectic geometry, one aims at defining a fully-fledged A∞-category FukX from a symplectic
manifold X. A Fukaya category is supposed to have closed Lagrangians as objects and intersection
points as basis elements for the hom spaces. The products µ≥2 are supposed to be formed from immersed
disks between Lagrangians. For Lagrangians lying in general position, this construction works well. It is
however not clear what the endomorphism space of a single Lagrangian L should be. We would expect
it to be a finite-dimensional vector space, and it should be equal for all small Hamiltonian deformations
of L. This makes the full set of hom spaces and A∞ products of a Fukaya category very hard to define.

The difficulty in defining a fully-fledged Fukaya category FukX has led to the introduction of pre-
categories as partial remedy: Products need not be defined on all sequences of morphisms, only on a
choice of transversal sequences.

Definition 7.1. An A∞-pre-category C consists of the following data:

1. a set of objects Ob C,

2. for every N ≥ 1 a set (C)Ntr ⊆ (Ob C)N of transversal sequences, with (C)1tr = Ob C,

3. for every (X,Y ) ∈ (C)2tr a graded hom space Hom(X,Y ),

4. for every transversal sequence X1, . . . , XN+1 with N ≥ 1 a degree 2−N product map

µN : Hom(XN , XN+1)⊗ . . .⊗Hom(X1, X2)→ Hom(X1, XN+1),

such that each subsequence (Xi1 , . . . , Xil) with 1 ≤ i1 < . . . < il ≤ n of a transversal sequence X1, . . . , Xn

is transversal as well, and the A∞-relation holds for Hom(XN , XN+1) ⊗ . . . ⊗ Hom(X1, X2) whenever
X1, . . . , XN+1 is a transversal sequence.

Remark 7.2. Staring at the definition seems to imply that the condition on transversal sequences is
arbitrarily weak: Setting (C)Ntr = ∅ for all N ≥ 2 is possible, and yields a completely vacuous notion of
pre-category. The point of [29] is that if one strengthens the conditions suitably, then giving a pre-A∞-
category is the same as giving a full A∞-category. We will comment on this later on. In particular, we
will ensure that our definition of transversal sequences is such that it satisfies the condition in [29].

Abouzaid’s exposition [1] exhibits the Fukaya pre-category of a surface with boundary. In particu-
lar, we get from his paper a direct construction of the Fukaya pre-category of a punctured surface, by
interpreting the punctures as boundary circles. We deviate from Abouzaid’s definition by only including
exact Lagrangians in the category. This makes it possible to dispose of the Novikov ring and work over
C instead. We are now ready for the first definitions.

Our aim here is to write down the definition of the exact Fukaya pre-category of a punctured surface,
such that it is a pre-category in the sense of Definition 7.1. Before we give the definition, we have to
recall several concepts from [1]: teardrops, spin structures, unobstructed curves, exact curves, transversal
sequences of unobstructed curves, degrees of intersection points, immersed disks between unobstructed
curves, and the Abouzaid sign rule. We recall these terminologies one by one.
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(a) Teardrop

Figure 7.1: Terminology for unobstructed curves
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Figure 7.2: Transversality

Definition 7.3. A teardrop of a curve X : S1 → S \M is an immersion of the monogon P1 into S \M
which is bounded by a segment of X, such that the corner coming from P1 is convex.

A teardrop is depicted in Figure 7.1a. In contrast, an interval winding around a puncture does not
constitute a teardrop. A curve has a teardrop if and only if it contains an interval that is contractible in
S \M .

Definition 7.4. A spin structure on a curve consists of putting an arbitrary number of “stars” on
distinct points of the curve. We also call these stars the # signs on a curve.

We regard the stars as # signs when we think of them as a negative sign −1. The number of # signs
on a curve is arbitrary, but the resulting isomorphism class of the curve will in fact only depend on the
parity of this number. In other words, zero or one # sign suffice in practice.

Definition 7.5. An unobstructed curve in S \M is a smooth closed immersed curve X : S1 → S \M
with a choice of spin structure, such that X is not contractible and does not bound a teardrop.

Let us now recall the notion of exact curves, a subset of the unobstructed curves. Exact curves serve
as objects of the Fukaya (pre-)category. To introduce the notion, put an exact symplectic form ω = dθ
on S \M . The 1-form θ is then also referred to as the Liouville form.

Definition 7.6. An unobstructed curve X : S1 → S \M is exact if X∗θ is an exact 1-form, in other
words if

∃f : S1 → R : X∗θ = df, or

∫

X

θ = 0.

These two conditions are equivalent because
∫
X
θ =

∫
S1 X

∗θ. The latter integral vanishes if and only
if X∗θ ∈ Ω1(S1) has a primitive f .

Definition 7.7. A sequence (X1, . . . , XN ) of unobstructed curves is transversal if

• For i < j the curves Xi and Xj have only transversal intersection points.

• For i < j < k the curves Xi, Xj , Xk have no triple intersection: Xi ∩Xj ∩Xk = ∅.

According to the definition, an unobstructed curve is allowed to intersect itself, just as a self-
intersection of one unobstructed curve Xi is allowed to further intersect with a second unobstructed
curve Xj .

Next, let us recall the degree assigned to an intersection point p ∈ X1 ∩ X2. The idea is that the
intersection p ∈ X1 ∩X2 serve as generators of Hom(X1, X2), so we have to assign a degree. Since the
surface S and the curves X1, X2 are oriented, we can distinguish the direction of X1 and X2 relative
to each other at p. The degree we assign is depicted in Figure 7.3. In that figure, the shaded area has
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Figure 7.3: Intersection degree
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Figure 7.4: Immersed disks

no meaning in this definition, but indicates for the convenience of the reader how we are going to use
such intersection points as corners of immersed disks. Note that p can be interpreted both as element of
Hom(X1, X2) and Hom(X2, X1). In fact, it has opposite parity in both hom spaces.

Definition 7.8. Let p be a transversal intersection point of X1 and X2. Then p as morphism from X1

to X2 is denoted p : X1 → X2. The morphism p : X1 → X2 is odd if a neighborhood of p ∈ S can be
identified in an oriented way with a neighborhood of the origin in R2, mapping X1 to the oriented x-axis
and X2 to the oriented y-axis. Otherwise p is even.

Let us recall the notion of smooth immersed disks between unobstructed curves. Despite their name,
the disks have corners and are therefore actually polygons. We stick to the classical terminology however.
Recall that PN+1 denotes the standard oriented polygon in R2, with indexed N + 1 clocNwise indexed
edges and N + 1 indexed corners. The i-th corner lies between the i-th and (i+ 1)-th edge.

Definition 7.9. Let X1, . . . , XN+1 be a transversal sequence of N + 1 ≥ 2 unobstructed curves. Let
p1, . . . , pN be a sequence of intersection points pi : Xi → Xi+1 and let p ∈ X1 → XN+1 be another
intersection point. A smooth immersed disk with inputs p1, . . . , pN and output p consists of an
orientation-preserving polygon immersion D : PN+1 → S \M up to reparametrization, such that

• the corners of D are all convex,

• the i-th edge of PN+1 lands on Xi for 1 ≤ i ≤ N + 1,

• the i-th corner of PN+1 lands on pi.

We denote by M(p1, . . . , pN , p) the set of smooth immersed disks with inputs p1, . . . , pN and output p.

By convexity of the corners, we mean that the image of any interior angle of the polygon is strictly
smaller than half a full turn. Here, an interior angle of the polygon is interpreted as a very small curve
near any corner of PN+1, and a half turn is the natural half turn given by the two sides of the tangent
line of Xi at pi ∈ S. All this is depicted in Figure 7.4.

Remark 7.10. Regarding the numbering of the disk inputs, we deviate from the Fukaya-theoretic liter-
ature. More precisely, the standard convention [1] is to number the disk inputs in counterclockwise order.
Instead, we number the disk inputs in clockwise order. The difference is necessary in order to match with
the convention for gentle algebras [18].

The orientation of a curve Xi involved in a smooth immersed disk D need not agree with the orien-
tation of ∂PN+1. We can give the boundary ∂PN+1 the orientation pointing in clockwise direction and
distinguish whether Xi agrees with this orientation or not:

Definition 7.11. Let D ∈M(p1, . . . , pN , p) be a smooth immersed disk, with pi ∈ Xi ∩Xi+1. Then:

• Xi is oriented clockwise with D if the orientation of Xi agrees with clockwise orientation of
∂PN+1,
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Figure 7.5: Non-exact curves on a torus have endless disks

• Xi is oriented counterclockwise with D if the orientation of Xi is opposite to the clockwise
orientation of ∂PN+1.

The differences in orientation give rise to what we call the Abouzaid sign of the disk. This sign is
taken from [1] and is the surface world incarnation of a sign rule in higher dimensions.

Definition 7.12. Let D ∈M(p1, . . . , pN , p) be a smooth immersed disk with inputs pi : Xi → Xi+1 and
output p : X1 → XN+1. Then the Abouzaid sign Abou(D) ∈ Z/2Z is the number of indices i such
that pi is odd and Xi+1 is oriented counterclockwise with D, plus one if p is odd and XN+1 is oriented
counterclockwise with D, plus the number of # signs from the spin structure on the boundary of the
disk.

With all devices ready, we can recall the construction of the Fukaya pre-category.

Definition 7.13. Let (S,M) be a punctured surface, with exact symplectic form ω = dθ. Then the
exact Fukaya pre-category Fukpre(S,M) is defined as follows:

• The objects are the exact unobstructed curves in S \M with chosen spin structures.

• The set CNtr consists of the tranversal sequences according to Definition 7.7.

• For transversal X,Y , the hom space Hom(X,Y ) is freely spanned over C by the intersection points
p ∈ X ∩ Y :

Hom(X,Y ) =
⊕

p∈X∩Y

Cp.

• For any sequence p1, . . . , pN of intersection points pi : Xi → Xi+1 and p : X1 → XN+1, the higher
product is defined as

µN (pN , . . . , p1) =
∑

p∈X1∩XN+1

∑

D∈M(p1,...,pN ,p)

(−1)Abou(D)p.

Theorem 7.14 ([1]). Fukpre(S,M) is an A∞-pre-category.

Remark 7.15. Spin structures determine the signs in the higher products of the Fukaya category. A spin
structure on a Lagrangian X can however also be seen as a special case of local system on X: One bakes
the spin structure into the local system on X. Upon passing to a version of Fukaya category where each
Lagrangian comes with a local system of any dimension assigned, the Fukaya category roughly becomes
closed under taking cones. In fact, taking a cone amounts to adding up the local systems.

Remark 7.16. There are two reasons we only include exact Lagrangians in the Fukaya pre-category.
First, we do not need non-exact curves in this paper at all, since the zigzag curves are already ex-
act. The second reason is due to the Novikov field. Indeed, including non-exact curves allows the set
M(p1, . . . , pN , p) of immersed disks to be infinite which requires the technical insertion of the Novikov
field. The higher product coming from an immersed disk D then gets multiplied by the formal power
tω(D), where ω(D) denotes the symplectic area of D. This renders the Fukaya pre-category an A∞-pre-
category over the Novikov field. Since the aim of this paper is to compare the relative Fukaya category to
the gentle algebra defined over C, we have decided to avoid the Novikov field early on. It is an interesting
question what a discrete model would look like for non-exact parts of the relative Fukaya category that
can only be defined with the Novikov field. The discrete model would then need to be defined over the
Novikov field instead of C and its higher products would need to be defined upon a notion of (algebraic)
symplectic area.

7.2 The exact Fukaya category

In this section, we recall the notion of Fukaya category. We explain how one passes from the pre-category
of the previous section to an actual category. In particular, we intend to make the reader acquainted with
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Figure 7.6: A Lagrangian and its Hamiltonian deformation

the endomorphism spaces in the Fukaya category and how to extend the A∞-products from transversal
sequences to all sequences of morphisms.

The characteristic property of the Fukaya category is that its transversal part is precisely the Fukaya
pre-category. By transversal parts we mean the following:

Definition 7.17. Let C be an A∞-pre-category and D an A∞-category. Assume Ob C = ObD. Then
the transversal part of D (with respect to C) is the A∞-pre-category (D)tr defined by

(
(D)tr

)N
tr

= (C)Ntr ,

µN(D)tr
= µND |(C)N+1

tr
.

The category D agrees on the transversal part with C if C = (D)tr.

We provide an ad-hoc definition of the Fukaya category as follows:

Definition 7.18. Let (S,M) be a punctured surface. Then the exact Fukaya category Fuk(S,M) is
any A∞-category which agrees with Fukpre(S,M) on the transversal part.

Explicit construction of the Fukaya category exist. The standard reference is Seidel’s work [64]. The
idea is to apply Hamiltonian deformations to make nontransversal pairs of Lagrangians transversal. Most
importantly, hom spaces are then also defined for non-transversal pairs. For example, the endomorphism
space End(L) of a Lagrangian L contains an identity and a co-identity element, which we may in the
Fukaya category context denote id and id∗. The philosophy is that Hamiltonian deformation of L yields
a transversal version of L, intersecting precisely twice with L. This is depicted in Figure 7.6.

Remark 7.19. There exist approaches of constructing the Fukaya category from the Fukaya pre-category
by purely categorical methods. In [29], Efimov proved the conjecture attributed to Kontsevich-Soibelman
that every A∞-pre-category is quasi-equivalent to an A∞-category as A∞ -pre-categories. The quasi-
equivalence relation for A∞-pre-categories is defined in [29, Definition 2.18/2.19]. For ordinary A∞-
categories, this notion coincides with the ordinary notion of quasi-equivalence.

Efimov’s theorem implies there is an A∞-category quasi-equivalent to Fukpre(S,M). This A∞ -
category in almost but not quite (a model for) the Fukaya pre-category in the sense of Definition 7.18,
since it may have larger hom spaces than the Fukaya pre-category even on the transversal sequences.

The higher products of non-transversal sequences become very difficult to grasp, since multiple Hamil-
tonian deformations may need to be performed on the same Lagrangian in order to make all intersections
transversal. This results in ambiguities, resolved by providing additional deformation data. In summary,
the higher products cannot be determined by simply staring at them. In contrast, our paper provides an
explicit realization also of these higher products on non-transversal sequence, at least on zigzag paths.
For more on exact Fukaya categories, we refer to [16] and [64].

7.3 The relative exact Fukaya pre-category

In this section, we recall the relative exact Fukaya pre-category for punctured surfaces. The starting
point of the relative exact Fukaya pre-category is the exact Fukaya pre-category. The idea is to deform
the products by allowing the disk to cover punctures. The resulting object is what we will call an
A∞-pre-category deformation.

The history of the subject can be traced back fairly accurately: In [63], Seidel introduced the idea of
deforming the Fukaya category by working relative to a divisor. Twenty years later, the relative Fukaya
category was finally constructed in [59]. Its versality as a deformation of the ordinary Fukaya category
was investigated in [66]. Lekili, Perutz and Polishchuk [46, 47] proved deformed mirror symmetry for the
n-punctured torus, apparently the first use of the relative Fukaya category in mirror symmetry.

Definition 7.20. Let C be an A∞-pre-category and B a deformation base, e.g. B = CJqK. Then an
A∞-pre-category deformation Cq of C is an (infinitesimally curved) and B-linear A∞-pre-category
structure on B⊗̂C. More precisely, this means that Cq has:
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• the same objects as C,

• hom spaces HomCq
(X,Y ) = B⊗̂HomC(X,Y ) for X,Y ∈ C2tr,

• B-multilinear products of degree 2−N

µNq : HomCq
(XN , XN+1)⊗ . . .⊗HomCq

(X1, X2)→ HomCq
(X1, XN+1), N ≥ 1

for all transversal sequences X1, . . . , XN+1,

• curvature of degree 2 for every object X ∈ C with (X,X) ∈ C2tr:

µ0
q,X ∈ mHomCq

(X,X),

such that µq reduces to µ once the maximal ideal m ⊆ B is divided out, and µq satisfies the curved A∞

relations on transversal sequences.

With this definition in mind, we would like to define the relative version of the Fukaya pre-category.
The idea is to define the higher products by counting smooth immersed disks, which are now also allowed
to cover punctures. By abuse of terminology, we shall keep using the terminology of “smooth immersed
disks” even for those smooth immersed disks which cover punctures:

Definition 7.21. Let X1, . . . , XN+1 be a transversal sequence of N + 1 ≥ 2 unobstructed curves. Let
p1, . . . , pN be a sequence of intersection points pi : Xi → Xi+1 and let p ∈ X1 → XN+1 be another
intersection point. A smooth immersed disk with inputs p1, . . . , pN and output p consists of an
orientation-preserving polygon immersion D : PN+1 → S up to reparametrization, such that

• the corners of D are all convex,

• the i-th edge of PN+1 lands on Xi for 1 ≤ i ≤ N + 1,

• the i-th corner of PN+1 lands on pi.

We denote by Mq(p1, . . . , pN , p) the set of smooth immersed disks with inputs p1, . . . , pN and output p.

The deformation base of the relative exact Fukaya pre-category is B = CJMK. This is the power series
ring with one variable for each puncturem ∈M . Correspondingly, every puncture q ∈M given an element
q ∈ CJMK. Multiple punctures q1, . . . , qs ∈M can be multiplied to form the element q1 . . . qs ∈ CJMK.

Definition 7.22. Let D ∈ Mq(p1, . . . , pN , p). Then the Abouzaid sign Abou(D) is defined precisely
as in Definition 7.12. The q-parameter Punc(D) ∈ CJMK is defined as the product of all the punctures
reached by the interior of PN+1 under D, counting multiplicities.

The parameter Punc(D) is very similar to the deformation parameter in the higher products of Gtlq Q
in section 6.6.

Definition 7.23. The relative exact Fukaya pre-category relFukpre(S,M) is the A∞-pre-category
deformation of Fukpre(S,M) overB = CJMK given by the deformedA∞-products on transversal sequences

µNq (pN , . . . , p1) =
∑

p:X1→XN+1

∑

D∈Mq(p1,...,pN ,p)

(−1)Abou(D) Punc(D)p.

Checking that relFukpre(S,M) is really an A∞-pre-category deformation involves two parts. The first
part consists of checking that the higher products µNq are well-defined. Indeed, exactness guarantees
that the set of disks not covering any puncture is finite, but the case of disks covering some punctures
is non-trivial. A likely successful procedure is as follows: For each monomial q = q1 . . . qs ∈ CJMK, use
exactness of the curves to bound the maximum size of disks that cover precisely the punctures q1, . . . , qs.
A standard argument is then that the Gromov compactness theorem implies the number of disks is finite.
See e.g. [18, Section 6.2.3].

The second check consists of evaluating the A∞-relations on the transversal sequences. This boils down
to re-doing the work of Abouzaid [1], now allowing the disks to cover punctures. The procedure should
be straightforward and conclude that the A∞-relations still hold. In total, this renders relFukpre(S,M)
an A∞-pre-category deformation of Fukpre(S,M).
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7.4 The relative exact Fukaya category

In this section, we recall the notion of relative exact Fukaya category. The starting point is the rel-
ative exact Fukaya pre-category which we sketched in section 7.3. It is an A∞-pre-category deforma-
tion of Fukpre(S,M). In section 7.2, we have seen that the category Fukpre(S,M) has a lift to an
actual A∞-category Fuk(S,M). The question we discuss in this section is what a lift of the deforma-
tion relFukpre(S,M) to a deformation relFuk(S,M) of Fuk(S,M) should look like. Our desired lifting
procedure is best captured graphically as follows:

Fuk

relFukpre Fukpre
defo

 

relFuk Fuk

relFukpre Fukpre
defo

defo

Definition 7.24. Let C be an A∞-pre-category and Cq an A∞-pre-category deformation. Let D be an
A∞ -category and Dq an A∞-deformation. Assume Ob C = ObD. Then the transversal part of Dq
(with respect to Cq) is the A∞-pre-category deformation (Dq)tr of (D)tr defined by

µN(Dq)tr
= µNDq

|(C)N+1
tr

.

We may say that the deformation Dq agrees on the transversal part with Cq if Cq = (Dq)tr. For
sake of explicitness in section 13.6, we provide the following terminology:

Definition 7.25. Let C and D be A∞-pre-categories and Cq and Dq be A∞-pre-category deformations.
Then a strict isomorphism Fq : Cq → Dq of A∞-pre-category deformations consists of

• a bijection Fq : Ob C → ObD such that

∀N ≥ 1 : (D)Ntr = {(FqX1, . . . , FqXN ) | (X1, . . . , XN ) ∈ (C)Ntr },

• for every X,Y ∈ (C)2tr a B-linear isomorphism F 1 : HomCq
(X,Y )→ HomDq

(FqX,FqY ) of degree 0
such that

∀N ≥ 1, (X1, . . . , XN+1) ∈ (C)N+1
tr , ai ∈ HomC(Xi, Xi+1) :

F 1
q (µCq

(aN , . . . , a1)) = µDq
(F 1
q (aN ), . . . , F 1

q (a1)).

We provide an ad-hoc definition of the relative Fukaya category as follows:

Definition 7.26. Let (S,M) be a punctured surface. Then the relative Fukaya category relFuk(S,M)
is any A∞-deformation of Fuk(S,M) such that relFuk(S,M)tr = relFukpre(S,M).

Remark 7.27. Sheridan and Perutz [59] provide explicit constructions of relative Fukaya categories.

Remark 7.28. All concrete models of the Fukaya category give rise to a priori different notions of
relative Fukaya category. It should be possible to show that these are in fact all isomorphic.

7.5 Zigzag paths as Lagrangians

In the present section, we show how to interpret zigzag paths as objects in Fukaya categories. The starting
point is a dimer Q. It gives rise to a collection of zigzag paths and we show how to turn them into curves
in |Q| which we call “zigzag curves”. We recall how to make these curves objects of the relative Fukaya
pre-category and look at their hom spaces and higher products. The material can also be found in [26,
Chapter 10].

The Fukaya category of a dimer is simply defined as the Fukaya category of its underlying punctured
surface. More precisely, let Q be a dimer. Then Q includes the datum of a punctured surface (|Q|, Q0)
and we write

FukpreQ = Fukpre(|Q|, Q0), FukQ = Fuk(|Q|, Q0),

relFukpreQ = relFukpre(|Q|, Q0), relFukQ = Fuk(|Q|, Q0).

The first step in this section is to turn zigzag paths into curves. Let L be a zigzag path in Q.
Then L consists by definition of a path . . . a1a0a−1 . . . of composable arcs in Q, together with left/right
indications. The idea to produce a curve L̃ ⊆ |Q| \Q0 from L is to stitch together the arcs ai in sequence,
minding the left/right indication. The precise definition reads as follows:
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zigzag path

←→
zigzag curve

Figure 7.7: Zigzag path and zigzag curve

Definition 7.29. Let Q be a dimer and L a zigzag path in Q. Then the associated zigzag curve
L̃ : S1 → S \M is defined by connecting the midpoints of the arcs . . . , a−1, a0, a1, . . . by means of the
angle cutting procedure:

• If L turns left at index i, then the midpoint of ai is connected to the midpoint of ai+1 by turning
clockwise around the puncture h(ai) = t(ai+1).

• If L turns right at index i, then the midpoint of ai is connected to the midpoint of ai+1 by turning
counterclockwise around the puncture h(ai) = t(ai+1).

The connecting arc between the midpoints of ai and ai+1 is to be chosen close enough to the puncture
that it does not intersect with the zigzag curves associated with the other zigzag paths.

In Figure 7.7, we have depicted a zigzag path together with its associated zigzag curve. By definition
of L̃, we have the freedom to deform L̃ a bit near the punctures. We quote the following lemma from
[26] which claims that a small deformation can be chosen in such a way that that L̃ becomes an exact
Lagrangian. The condition is that the Liouville form α near the punctures takes the shape α = dθ/r
where r is the distance from the puncture and θ the polar angle.

Lemma 7.30 ([26, Lemma 10.6]). Let Q be a dimer. Pick a symplectic form ω = dα on |Q| \ Q0 such
that α = dθ/r near the punctures. Then the curve L̃ : S1 → |Q| \Q0 can be constructed in such a way
that it is exact with respect to ω.

Zigzag curves in a general dimer are not contractible and do not bound teardrops in |Q| \ Q0. If
Q is geometrically consistent, then even in the closed surface |Q| a zigzag curve is not contractible and
does not bound a teardrop. Upon specification of spin structures and a symplectic form, the zigzag
curves L̃ define object of the exact Fukaya category FukQ. In analogy to the “category of zigzag paths”
constructed combinatorially via Gtlq Q in section 11, we may give the subcategory of relFukQ consisting
of these objects a name:

Definition 7.31. Let Q be a geometrically consistent dimer. Pick a choice of spin structure for every
zigzag curve in Q. Then we denote by

FukpreQ|ObL, FukQ|ObL, relFukpreQ|ObL, relFukQ|ObL

the subcategories of the (relative) Fukaya (pre-)categories given by the zigzag curves with chosen spin
structure.

An intersection between two zigzag paths shall be defined as a shared arc of the two zigzag paths.
More precisely, we use the following terminology:

Definition 7.32. Let Q be a dimer and L1, L2 be two zigzag paths. An (indexed) intersection
between L1 and L2 is a pair (ai, bj) such that

• ai is an indexed arc of L1,

• bj is an indexed arc of L2,

• ai = bj as arcs in Q,

• L1 turns left at ai and L2 turns right at bj , or the other way around.

Remark 7.33. The cautious wording of Definition 7.32 is necessary in order to make a transversal
self-intersection count double.

In Lemma 7.34, we explain that intersections between two distinct zigzag curves L̃1 and L̃2 are
precisely the same as (indexed) intersections between L1 and L2. This is depicted in Figure 7.8. In
particular, the hom spaces of FukpreQ|ObL can be identified with spans of (indexed) intersections of
zigzag paths. To make this work also in case L1 = L2, we have to use a model for the Fukaya category as
discussed in section 7.2, in which also the endomorphism spaces are spanned by transversal intersections,
plus an identity and a co-identity morphism.
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L̃2L̃1

p

(a) p : L̃1 → L̃2 is odd

L̃1L̃2

p

(b) p : L̃2 → L̃1 is even

Figure 7.8: Shared arcs between L1 and L2 correspond to intersections p ∈ L̃1 ∩ L̃2

Lemma 7.34. Let Q be a dimer and L1, L2 be two zigzag paths. Then transversal intersections points
of L̃1 and L̃2, counting transversal self-intersections double if L1 = L2, are in one-to-one correspondence
with indexed intersections between L1 and L2. Therefore:

HomFukQ(L̃1, L̃2) = spanC{intersections (a, b) of L1, L2} [⊕C id⊕Cid∗ if L1 = L2]. (7.1)

Proof. The one-to-one correspondence is a simple inspection. It is worth noting that a transversal self-
intersection gives rise to two intersection points between L̃1 and L̃2, according to the double counting,
and two indexed intersections between L1 and L2.

The description of the hom space (7.1) for L1 6= L2 follows from the definition of FukpreQ and the
requirement that (FukQ)tr = FukpreQ. For L1 = L2, (7.1) follows from our choice for FukQ, which
describes endomorphism spaces as spans of transversal intersection points plus identity and co-identity.
This finishes the proof.

The zigzag curves automatically become objects in the relative Fukaya pre-category and the relative
Fukaya category, by virtue of Definition 7.18 and 7.26. If we choose FukQ such that the endomorphism
spaces are spanned by transversal intersections plus identity and co-identity, then we know the hom
spaces of relFukQ:

Lemma 7.35. Let Q be a dimer. Then relFukQ is an A∞-deformation of FukQ. Let L1, L2 be two
zigzag paths. Then

HomrelFukQ(L̃1, L̃2) = B⊗̂ span{intersections (a, b) of L1, L2} [⊕B id⊕Bid∗ if L1 = L2].

Proof. By virtue of Definition 7.26, relFukQ is an A∞-deformation of FukQ. In particular, its hom
spaces are given by

HomrelFukQ(L̃1, L̃2) = B⊗̂HomFukQ(L̃1, L̃2).

Using the combinatorical description of HomFukQ(L1, L2) from Lemma 7.34 finishes the proof.

Among zigzag curves, it is easy to describe the transversal sequences:

Lemma 7.36. Let Q be a dimer and L1, . . . , LN+1 be a sequence of N +1 ≥ 1 zigzag paths in Q. Then
the sequence of zigzag curves (L̃1, . . . , L̃N+1) is transversal if and only if the zigzag paths Li are pairwise
distinct.

Proof. Assume (L̃1, . . . , L̃N+1) is a transversal sequence. By definition, L̃i and L̃j for i < j only have

transversal intersection points. Then in particular L̃i 6= L̃j , hence Li 6= Lj as zigzag paths. Conversely,

assume all zigzag paths are pairwise distinct. Then for i < j the zigzag curves L̃i and L̃j have only

transversal intersection points. Moreover, for i < j < k the zigzag curves L̃i, L̃j and L̃k have no common
intersection point at all, since an intersection point of zigzag curves is shared between at most two zigzag
curves. This shows that (L̃1, . . . , L̃N+1) is a transversal sequence according to Definition 7.7 and finishes
the proof.
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(a) 16-punctured torus (b) All zigzag curves
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p3

p

L̃1
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L̃4

(c) Smooth immersed disk

Figure 7.9: Illustration of zigzag curves

We can compute some A∞ -products in the category of zigzag curves relFukQ|ObL ⊆ relFukQ. Let
p1, . . . , pN be intersection points with pi : L̃i → L̃i+1. If (L̃1, . . . , L̃N+1) is a transversal sequence, then
the product µrelFukQ(pN , . . . , p1) agrees with the product of the relative Fukaya pre-category, which
is by definition enumerated by smooth immersed disks with inputs p1, . . . , pN and arbitrary output
p : L̃1 → L̃N+1.

Example 7.37. In Figure 7.9a, we have depicted a 16-punctured torus dimer. There are 8 zigzag paths
and zigzag curves, depicted in Figure 7.9b. A sample smooth immersed disk bounded by four zigzag
curves is depicted in Figure 7.9c. In the figure, we have denoted the four involved zigzag curves by L̃1,
L̃2, L̃3, L̃4. The disk has

inputs p1 : L̃1 → L̃2, p2 : L̃2 → L̃3, p3 : L̃3 → L̃4, output p : L̃1 → L̃4.

The inputs p1 is odd, and the inputs p2, p3 are even. The output p is even. It covers six punctures which
we denote by q1, . . . , q6. The contribution of this smooth immersed disk to µ3(p3, p2, p1) is then

±q1q2q3q4q5q6 p.

Remark 7.38. When p1, . . . , pN are morphisms pi ∈ HomFukQ(L̃i, L̃i+1) and the sequence (L̃1, . . . , L̃N+1)
is not transversal, then the product µrelFukQ(pN , . . . , p1) is unpredictable. In the present paper, we define
a category HLq ⊆ HTwGtlq Q which has the property that its transversal part agrees with relFukpre |ObL.
The products of HLq are explicitly constructed in section 13. They provide a candidate for describing
the products among non-transversal sequences in relFukQ|ObL.

It seems likely that HLq is (gauge equivalent to) relFukQ|ObL (for any model of relFukQ). Our main
result is however no guarantee for this, since relFukQ is defined as a lift of the entire relative pre-category
and taking subcategories and lifting pre-categories to categories need not commute: Every subcategory
of a lift is a lift of the subcategory, but not the other way around.

Combining Definition 7.23, Definition 7.26, Lemma 7.34 and Lemma 7.36, we summarize our findings
as follows:

Corollary 7.39. Let Q be a dimer. Then the A∞-pre-category FukpreQ|ObL and its A∞-pre-category
deformation relFukpreQ|ObL are described as follows:

• The objects are the zigzag curves L̃ for all zigzag paths L, with chosen spin structure.

• The set of transversal sequences is

(FukpreQ|ObL)
N
tr = {(L̃1, . . . , L̃N ) | ∀i < j : Li 6= Lj}.

• For L̃1, L̃2 with L1 6= L2, the hom space is

HomFukpreQ|Ob L
(L̃1, L̃2) = span{p ∈ L̃1 ∩ L̃2},

• For (L̃1, . . . , L̃N+1) ∈ (FukpreQ|ObL)
N+1
tr and pi ∈ L̃i ∩ L̃i+1 we have

µNFukpreQ|Ob L
(pN , . . . , p1) =

∑

p∈L̃1∩L̃N+1

∑

D∈M(p1,...,pN ,p)

(−1)Abou(D)p.
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• For (L̃1, . . . , L̃N+1) ∈ (FukpreQ|ObL)
N+1
tr and pi ∈ L̃i ∩ L̃i+1 we have

µNrelFukpreQ|Ob L
(pN , . . . , p1) =

∑

p∈L̃1∩L̃N+1

∑

D∈Mq(p1,...,pN ,p)

(−1)Abou(D) Punc(D)p.

8 A deformed Kadeishvili theorem

The aim of this section is to prove a deformed Kadeishvili theorem. The classical Kadeishvili theorem
states that every A∞-category has a minimal model, and the minimal model can be computed by a
construction with trees. The starting point for the present section is an arbitrary deformed A∞-category.
In particular, it may contain curvature and its differential need not square to zero. We nevertheless
introduce a notion of minimal model for arbitrary deformed A∞-categories and explain why every de-
formed A∞-category has a minimal model. In order to find an explicit description, we take the approach
of constructing a minimal model via trees. The bottleneck in comparison with the classical case is the
curvature and the failure of the differential to square to zero. We are therefore forced to analyze the
shape of the differential in detail and build methods that are robust enough to work with less premises
than the classical Kadeishvili theorem.

Classical Kadeishvili: A∞-category C Minimal model H C

Deformed Kadeishvili: A∞-deformation Cq Minimal model H Cq

In section 8.1, we recall homological splittings, a classical basic notion in the construction of minimal
models. In section 8.2, we review the classical Kadeishvili theorem and the description of the higher
products by trees. In section 8.3, we define the notion of minimal models for deformed A∞-categories
and explain why every deformed A∞-category has a minimal model. In section 8.4, we analyze differentials
of A∞-deformations in detail. In section 8.5, we provide a procedure to optimize the curvature of A∞-
deformations. In section 8.6, we provide an auxiliary minimal model construction for deformed A∞-
categories which already have optimal curvature. In section 8.7, we compile all the constructions into a
single theorem. Our deformed Kadeishvili theorem Theorem 8.34 states that a minimal model for every
deformed A∞-category can be described explicitly, by means of applying the optimization procedure
followed by a construction with trees. In section 8.8 we study a special case of the deformed Kadeishvili
theorem and relate it back to the classical Kadeishvili theorem.

8.1 Homological splittings

In this section we recall the notion of homological splittings. The idea is to split a cochain complex into
three direct summands in terms of which the differential becomes easy to describe. This is a classical
notion, often just referred to as a “split” [18]. Instead of defining the notion for any cochain complex, we
will directly set off in the context of an A∞-category.

Definition 8.1. Let C be an A∞-category. Then a homological splitting of C consists of a direct sum
decomposition

HomC(X,Y ) = H(X,Y )⊕ I(X,Y )⊕R(X,Y ), ∀X,Y ∈ C

for all its hom spaces, such that

I(X,Y ) = Im(µ1), Ker(µ1) = H(X,Y )⊕ I(X,Y ), ∀X,Y ∈ C.

We frequently denote a homological splitting of C simply by the letters H ⊕ I ⊕ R, the dependence on
X,Y ∈ C understood implicitly.

Given a category C, one obtains a homological splitting by choosing H as a space of cocycles that
represents the cohomology of the hom complexes. One then chooses R as a complement to H in Ker(µ1).
The notation I is simply a shorthand for the image of the differential.

Remark 8.2. Almost everywhere in this section 8, we leave out the letters X and Y . All definitions,
equations and expressions referring to elements ofH, I and R are to be interpreted as being quantified over
X,Y ∈ C. The quantification is understood implicitly. We will even write for instance HomC = H⊕I⊕R,
meaning HomC(X,Y ) = H(X,Y )⊕ I(X,Y )⊕R(X,Y ) for every X,Y ∈ C.
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Figure 8.1: The differential µ1 in terms of a homological splitting

In the remainder of this section, we record a few consequences of the choice of homological splitting.
To start with, in terms of the direct sum decomposition HomC = H ⊕ I ⊕R, the differential reads

µ1 =



0 0 0

0 0 µ1

0 0 0


 . (8.1)

Indeed, the spaces H and I are mapped entirely to zero through µ1. The only space not being sent to
zero is R. This gives the claimed matrix shape (8.1). The action of µ1 on the three summands H⊕ I⊕R
is depicted visually in Figure 8.1.

A second observation is that µ1|R : R → I is a linear isomorphism and provides an identification
between R and I. In fact, the map is injective because the kernel of µ1 equals H ⊕ I which has vanishing
intersection with R. Moreover, the map is surjective because µ1 already reaches its entire image on R.
As a consequence, we can identify R and I by means of µ1. Note that both differ by a shift of 1. Upon
this identification, the remaining µ1 entry in the matrix presentation (8.1) becomes the identity IdR.

Remark 8.3. In the context of homological splittings, we may use tuple notation to indicate an element
of the direct sum. Moreover, we may write elements of Im(µ1) explicitly as µ1(r′) where r′ ∈ R. In total,
we may write an element of HomC as

x = (h, µ1(r′), r), with h ∈ H, r′ ∈ R, r ∈ R.

Let us set up two more pieces of terminology. The first is the codifferential h, which is a zero extension
of the inverse of the bijection µ1|R : R→ I. The second is the projection to H.

Definition 8.4. Let H ⊕ I ⊕R be a homological splitting for C. Then the codifferential is the map

h : HomC → R,

(h, µ1(r′), r) 7→ r′, h ∈ H, r′ ∈ R, r ∈ R.

The projection to cohomology is the map

π : HomC = H ⊕ I ⊕R։ H.

A small abuse of notation consists in the fact that we typically denote elements of the space H by the
letter h. Typically, there seems to be little chance of confusion.

8.2 The classical Kadeishvili theorem

In this section we recall the classical Kadeishvili theorem. This serves as a preparation for our deformed
Kadeishvili theorem and fixes pieces of notation. We follow the construction by means of trees, as given
in [44, Chapter 6, 3.3.2]. A good reference is also [16, Section 3.2].

To start with, we recall the standard notion of minimal A∞-categories and minimal models:

Definition 8.5. An A∞-category is minimal if its differential vanishes. Let C and D be an A∞-
categories. Then D is a minimal model for C if C and D are quasi-isomorphic and D is minimal.

The intention of the Kadeishvili construction is to construct minimal models explicitly. The start-
ing point for the construction is a homological splitting H ⊕ I ⊕ R. The result of the construction
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(a) Tree shapes
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(b) Decorating tree shapes

Figure 8.2: Illustration of Kadeishvili tree shapes and Kadeishvili π-trees

is an A∞-structure on H = {H(X,Y )}X,Y ∈C which can also be interpreted as an A∞-structure on
HHomC = {HHomC(X,Y )}X,Y ∈C , since H and HHomC are isomorphic as graded vector spaces through
the composition H →֒ Ker(µ1)։ HHomC . Specifically, the A∞-structure on H is defined via trees. We
fix terminology as follows:

Definition 8.6. A Kadeishvili tree shape T is a rooted planar tree with n ≥ 2 leaves whose non-leaf
nodes all have at least 2 children. A node in T is internal if it is not a leaf and not the root. The
number of internal nodes in T is denoted NT . We denote by Tn the set of all Kadeishvili tree shapes with
n leaves.

A Kadeishvili π-tree (T, h1, . . . , hn) is a Kadeishvili tree shape T ∈ Tn with n ≥ 2 leaves, together
with a sequence h1, . . . , hn of cohomology elements hi ∈ H(Xi, Xi+1). Decorate the leaves by h1, . . . , hn
in sequence. Decorate every non-root node with the operation hµ and the root with the operation πµ.
Then the result Res(T, h1, . . . , hn) ∈ H(X1, Xn+1) of the Kadeishvili π-tree is the result obtained by
evaluating the tree from leaves to the root, according to the decorations.

In other words, to evaluate a π-tree one inserts the inputs at the leaves, applies hµ at every internal
node and πµ at the root. In every evaluation step, the map µ is some k-ary product of C and yields an
output in some hom space HomC(Xi, Xj). The subsequent application of h refers to the codifferential of
that hom space HomC(Xi, Xj).

Example 8.7. Figure 8.2a depicts all tree shapes with n = 2 and n = 3 leaves, as well as a sample tree
shape for n = 4. Figure 8.2b shows how the sample tree shapes of Figure 8.2a together with the input
sequences h1, h2 or h1, h2, h3 or h1, . . . , h4 get decorated. Explicitly, the results of the first three π-trees
read πµ2(h2, h1), πµ

3(h3, h2, h1), πµ
2(hµ2(h3, h2), h1).

Remark 8.8. We have two conventions regarding the order of inputs. Indeed, we sometimes order the
elements as h1, . . . , hn and sometimes as hn, . . . , h1. The convention is that morphisms h1, . . . , hn indexed
by a set of numbers are always compatible in ascending order: h1 is a morphism X1 → X2, while h2 is a
morphism X2 → X3 etc. In particular, due to our “Polish notation” convention of writing A∞-products,
the product of the sequence h1, . . . , hn is written in opposite order as µn(hn, . . . , h1). The way we draw
trees, for example in Figure 8.2b, is also in opposite order. In contrast, wherever we refer to the sequence
as a whole and evaluation is not immediate, we write the sequence in natural order. An example of
natural order is the expression Res(T, h1, . . . , hn).

The construction of the A∞-product µH on H = H C can be summarized as follows: Let h1, . . . , hn
be cohomology elements with hi ∈ H(Xi, Xi+1). Then their higher product is defined as

µH C(hn, . . . , h1) =
∑

T∈Tn

(−1)NT Res(T, h1, . . . , hn) ∈ H(X1, Xn+1).

Example 8.9. The first higher products of H C read as follows:

µ1
H C = 0,

µ2
H C(h2, h1) = πµ2(h2, h1),

µ3
H C(h3, h2, h1) = πµ3(h3, h2, h1)− πµ

2(hµ2(h3, h2), h1)− πµ
2(h3, hµ

2(h2, h1)).
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The Kadeishvili theorem claims that H C together with the product µH C is a minimal model for C.
The specific version of the theorem is taken from [44, Chapter 6, 3.3.2, 3.3.3]. This source does not
provide any sign rule, but we have verified the correctness of the signs (−1)NT in Lemma 8.31.

Theorem 8.10 (Kadeishvili). Let C be an A∞-category. Then the products µkH C form a minimal A∞-
structure on H C. There is a quasi-isomorphism F : H C → C which can be constructed by trees as well.
Its 1-ary component F 1 is the standard inclusion H C = H →֒ C.

8.3 Existence of minimal models

In this section we define a notion of minimal model for deformed A∞-categories. The definition might
differ from the reader’s expectation. Indeed, in our notion a minimal model need not have vanishing
differential. We finish the section by explaining why every A∞-deformation has a minimal model.

In Definition 8.11, we define the notion of minimal model for A∞-deformations. The aim is to
have a definition which is compatible with the classical notion and make minimal models exist for any
deformation.

Definition 8.11. Let C and D be A∞-categories and Cq and Dq deformations. Then Dq is a minimal
model for Cq if D is a minimal category and there is a functor of deformed A∞-categories

Fq : Cq → Dq

whose leading term is a quasi-isomorphism F : C → D.

Let us discuss Definition 8.11. Classical minimal models of A∞-categories have vanishing curvature
µ0 and differential µ1 by definition. This is not the case anymore for minimal models of deformations.
Instead, we require that D itself is minimal, while Dq is allowed to have both curvature and nonvanishing
differential. Of course, the curvature and differential of Dq are both infinitesimal, sinceDq is a deformation
of the minimal A∞-category D:

µ0
Dq,X ∈ mHomD(X,X), ∀X ∈ D,

µ1
Dq

(x) ∈ mHomD(X,Y ), ∀X,Y ∈ D, x ∈ HomD(X,Y ).

Remark 8.12. An alternative definition is obtained by requiring that the map C → D induced by F
be only a quasi-equivalence. The difference in the two notions is merely cosmetic. While in the version
of Definition 8.11 the objects of C and D are required to match, a definition requiring quasi-equivalence
allows for additional bloat: One may add any amount of quasi-isomorphic objects to both C and D.

There are several equivalent ways of characterizing minimal models. Recall the notion of quasi-
isomorphism from Definition 5.24.

Lemma 8.13. Let C,D be A∞-categories and Cq,Dq deformations. The following statements are equiv-
alent:

1. Dq is a minimal model for Cq.

2. Cq and Dq are quasi-isomorphic, and D is minimal.

3. Cq and Dq are quasi-isomorphic, and D is a minimal model for C.

4. There is a quasi-isomorphism F : C → D such that FMC
∗ (µCq

) = µDq
and D is minimal.

Here FMC
∗ : MC(HC(C), B)→ MC(HC(D), B) denotes the push-forward map of Maurer-Cartan elements

along F .

Proof. This is a simple consequence of the axioms stated in Convention 5.55.

A consequence of Lemma 8.13 is that minimal models always exist:

Corollary 8.14. Let C be an A∞-category. Then any deformation Cq has a minimal model. We may
denote the minimal model by H Cq.

Proof. Pick any (classical) minimal model D for C. Then D is a minimal category and there is an
A∞-quasi-isomorphism F : C → D. Now pick the push-forward

µDq
:= F∗(µCq

) ∈ MC(HC(D), B).

This Maurer-Cartan element defines a deformation Dq of D. This satisfies statement 4 of Lemma 8.13.



96 8. A deformed Kadeishvili theorem

8.4 Deformed differentials

In this section, we analyze differentials of deformed A∞-categories in detail. The starting point is a
deformed A∞-category Cq together with a homological splitting of C. The homological splitting of C is
naturally not a homological splitting for Cq. However, one may try find a decomposition of the hom
spaces of Cq with properties that at least resemble those of a homological splitting. The idea is to deform
the spaces involved in the homological splitting in order to account for the deformed differential. In the
present section, we construct these deformed decompositions and state all properties.

Homological splitting
HomC = H ⊕ I ⊕R

Deformed decomposition
HomCq

= Hq ⊕ µ
1
q(B⊗̂R)⊕ (B⊗̂R)

upon deformation

The direct approach of section 8.2 fails in the deformed context. In fact, one of the reasons the
construction with trees works well in the classical case is that we have µ1(H) = 0. However, it need not
be the case that µ1

q(H) = 0. This makes the direct description of the minimal model by Kadeishvili trees
fail in the deformed context.

The present section provides a workaround. A glance at [44, Chapter 6, 3.3] shows that it suffices to
require µ1

q(H) ⊆ H instead of µ1
q(H) = 0. Even better, we may try in the deformed context to find an

infinitesimal deformation Hq of H with µ1
q(Hq) ⊆ Hq. Exploiting this observation is the strategy of our

deformed Kadeishvili theorem. The present section is devoted to finding this deformation Hq.
A point of attention is the requirement of a minimal model of Cq to be a deformation of H C. This

entails that the hom spaces be identified as B⊗̂HomH C and that the leading term of the products is the
product µC . The present section has been purpose-built to keep track of the identification of Hq and
B⊗̂H.

In order to find Hq, we have to analyze the precise shape of the differential µ1
q. In section 8.1, we

have seen that a differential on an ordinary A∞-category can be written in matrix form. Most matrix
entries vanish because of the A∞-relations. For deformed A∞-categories, we can still write down µ1

q in
matrix form with respect to H ⊕ I ⊕ R, although no entries vanish by default. A first step is to change
I to µ1

q(B⊗̂R), which already renders two matrix entries zero:

Lemma 8.15. Let C be an A∞-category and Cq a deformation. Let H⊕ I⊕R be a homological splitting
of C. Then the differential µ1

q restricted to B⊗̂R is injective:

µ1
q : B⊗̂R

∼
−→ µ1

q(B⊗̂R), (8.2)

and we have a direct sum decomposition of B-modules

B⊗̂HomC = (B⊗̂H)⊕ µ1
q(B⊗̂R)⊕ (B⊗̂R). (8.3)

With respect to this decomposition, µ1
q takes the shape

µ1
q =




D ∗ 0

µ1
qE ∗ ∗

F ∗ 0


 (8.4)

for some operators

D : B⊗̂H → B⊗̂H,

E : B⊗̂H → B⊗̂R,

F : B⊗̂H → B⊗̂R.

Proof. First of all, regard the map
µ1
q : B⊗̂R→ B⊗̂HomC .

It is B-linear and has leading term the injective map µ1
C |R. By Lemma 5.13, it is an embedding. This

establishes the first claim.
Second, let us prove the direct sum decomposition. Intuitively, changing the summand µ1(B⊗̂R) to

µ1
q(B⊗̂R) constitutes only an infinitesimal change and should leave the decomposition intact. Formally,

define the map

ψ : HomCq
→ B⊗̂H + µ1

q(B⊗̂R) +B⊗̂R →֒ HomCq
,

(h, µ1(r), r′) 7→ h+ µ1
q(r) + r′, for h ∈ B⊗̂H, r ∈ B⊗̂R, r′ ∈ B⊗̂R.
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The map ψ has leading term the identity. By Lemma 5.12, it is an isomorphism onto HomCq
. In

particular, this already establishes that (8.3) is a sum decomosition, not necessarily direct. To prove the
sum decomposition direct, let h ∈ B⊗̂H, µ1

q(r) ∈ µ
1
q(B⊗̂R) and r′ ∈ B⊗̂R with h + µ1

q(r) + r′ = 0 in
HomCq

. This implies ψ(h, µ1
q(r), r

′) = 0 and finally h = r = r′ = 0 since ψ is an isomorphism and µ1
q|B⊗̂R

is injective. We conclude that (8.3) is a direct sum decomposition.
To obtain the claimed matrix presentation of µ1

q, simply define D and F as µ1
B⊗̂H

followed by the

projections to B⊗̂H and B⊗̂R, respectively. Define E as µ1
B⊗̂H

followed by projection to µ1
q(B⊗̂R) and

the inverse of µ1
q : B⊗̂R

∼
−→ µ1

q(B⊗̂R). The vanishing of the two indicated matrix entries is immediate,

since µ1
q sends B⊗̂R to µ1

q(B⊗̂R) by definition. This settles all claims.

We are now ready to define Hq.

Lemma 8.16. Let C be an A∞-category and Cq a deformation. Assume H ⊕ I ⊕ R is a homological
splitting for C. Let D,E, F denote the operators from Lemma 8.15. Put

Hq := {h− Eh | h ∈ B⊗̂H}.

Then we have a direct sum decomposition

B⊗̂HomC = Hq ⊕ µ
1
q(B⊗̂R)⊕ (B⊗̂R). (8.5)

It holds that µ1
q(Hq) ⊆ Hq ⊕B⊗̂R. With respect to this decomposition, µ1

q has the shape

µ1
q =



∗ ∗ 0

∗ ∗ ∗

0 ∗ 0


 .

Proof. The decomposition is achieved easily as in the proof of Lemma 8.15. Namely, Hq and B⊗̂H only
differ by R-terms. To show µ1

q(Hq) ⊆ Hq ⊕B⊗̂R, we calculate

µ1
q(h− Eh) = Dh+ µ1

qE(h) + Fh− µ1
q(Eh) = Dh+ Fh ∈ B⊗̂H ⊕B⊗̂R = Hq ⊕B⊗̂R.

This finishes the proof.

The decomposition (8.5) plays a crucial role throughout this paper. It is not a homological splitting of
Cq in any sense, since for example µ1

q need not vanish on Hq. The decomposition is however an important
prerequisite for our deformed Kadeishvili theorem. In particular, whenever computing minimal models
of deformed A∞-categories, this decomposition needs to be calculated first.

There is a natural identification between B⊗̂H and Hq. The identification associated an element
h ∈ B⊗̂H with h − Eh ∈ Hq. Since Eh ∈ B⊗̂R, we can recover h from h − Eh by stripping off the R
component. This identification plays an important role in this paper. Another important role is played
by the map µ1

q : B⊗̂R → µ1
q(B⊗̂R). We call the inverse of this map the deformed codifferential. Let us

fix all important notions in the following definition.

Definition 8.17. Let C be an A∞-category and H⊕I⊕R a homological splitting. Let Cq be a deformation
of C. The deformed decomposition of Cq is the collection of direct sum decompositions (8.5) of all
hom spaces in Cq. The deformed counterpart of an element h ∈ B⊗̂H is the element h − Eh ∈ Hq.
The correspondence between Hq and B⊗̂H is denoted

ϕ : Hq
∼

−−−−−→ B⊗̂H,

h− Eh 7−−−−−→ h.

The deformed codifferential of Cq is the R-linear map

hq = (µ1
q|B⊗̂R)

−1 : µ1
q(B⊗̂R) −−−−−→ B⊗̂R.

The deformed projection of Cq is the R-linear map

πq : Hq ⊕ µ
1
q(B⊗̂R)⊕ (B⊗̂R)→ Hq.
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8.5 Optimizing curvature

In this section, we show how to optimize curvature of an A∞-category. In general, it is not possible to
remove curvature from an A∞-deformation entirely. For the purposes of our Kadeishvili theorem, it is
however important to tame the curvature as much as possible. In this section, we show that the curvature
of any deformation can be reduced sufficiently for our purpose of constructing a deformed Kadeishvili
theorem.

Deformation Cq Deformation Coptq with optimal curvature

Let us start by fixing our terminology:

Definition 8.18. Let C be an A∞-category and Cq a deformation. Let H ⊕ I ⊕ R be a homological
splitting for C and Hq ⊕ µ

1
q(B⊗̂R) ⊕ (B⊗̂R) be the associated deformed decomposition of Cq. Then Cq

has optimal curvature if µ0
q ∈ Hq.

In the remainder of the section, we show how to gauge an arbitrary deformed A∞-category such that
its curvature becomes optimal. We also explain why optimal curvature is the best we can expect. The
idea to optimize the curvature is to apply successive gauges. All gauges will be gauge functors F of the
form F 1 = Id and F 0 = r and have no higher components. We may also call such functors “uncurving
gauges” because they are strong at reducing curvature. The following definition settles our terminology.

Definition 8.19. Let C be an A∞-category and Cq a deformation. Let r = {rX}X∈C be an element
consisting of rX ∈ mEnd1C(X) for every X ∈ C. Then the uncurving of Cq by r is the category C′q
obtained from adding rX as twisted differential to every X ∈ Cq:

C′q := {(X, rX) | X ∈ C} ⊆ Tw′ Cq.

The notation Tw′ Cq is taken from Remark 5.37.

Remark 8.20. Let C′q be the uncurving of Cq by r. Then the curvature of C′q is

µ0
C′
q
= µ0

Cq
+ µ1

Cq
(r) + µ2

Cq
(r, r) + . . . .

The uncurving C′q is naturally a deformation of C and comes with a gauge equivalence

F : C′q
∼
−→ Cq, given by F 0 := r, F 1 := Id, F≥2 := 0.

The category C′q can also be defined by forcing this particular map F to be a functor of deformations.
More on uncurving can be found in section 9.1, which focuses on cases where uncurving removes the
curvature entirely.

Remark 8.21. The name “uncurving” for the gauge in Definition 8.19 is a slight abuse of terminology:
The curvature µ0

C′
q

will not vanish, but has the chance to be less than µ0
Cq

. The term uncurving generally

refer to any procedure of reducing curvature, while Definition 8.19 restricts usage of the term to a
particular class of functors. According to the explanation in section 9.1, this particular class of functors is
however the only one that essentially changes curvature, therefore we have adopted the name “uncurving”.

Remark 8.22. We can now explain the name “optimal curvature”. In fact, any other deformation gauge
equivalent to a deformation with optimal curvature will generally have more curvature. To see this,
regard a deformation Cq with optimal curvature. Its curvature already lies in Hq. If we apply uncurving
by an element r, the new curvature is µ0

q + µ1
q(r) + . . .. If we choose r ∈ B⊗̂R, then µ1

q(r) naturally

lies in µ1
q(B⊗̂R) which already downgrades the curvature. If we choose r ∈ µ1

q(B⊗̂R) or r ∈ Hq, then

µ1
q(r) typically contains components from R or µ1

q(B⊗̂R) as well. The additional summands µ2
q(r, r) even

worsen the situation. We see that µ0
q ∈ Hq is generally the best achievable.

In the remainder of this section, we prove that any deformed A∞-category Cq has an uncurving with
optimal curvature. The idea is to apply repeated uncurving by elements s which lie in increasingly high
order of m. We take our clue from inspecting the curvature µ0

C′
q
= µ0

Cq
+ µ1

Cq
(s) + . . .. To get µ0

C′
q

as close

to zero as possible, write µ0
Cq

= h+ µ1
Cq
(r) + r′ in terms of the deformed decomposition of Cq and choose

s = −r. The curvature of C′q then reads

µ0
C′
q
= h+ µ1

Cq
(r) + r′ + µ1

Cq
(−r) + µ2

Cq
(−r,−r) + . . . = h+ r′ +O(m2).
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This is very productive strategy, since the new curvature has lost its µ1
q(R) component in lowest order.

Our idea is to repeat this procedure to eliminate also the higher order terms. A repeated approach is
indeed necessary because newly arising curvature terms like µ2

Cq
(r, r) may behave unpredictably.

Definition 8.23. Let C be an A∞-category with deformation Cq. Let H ⊕ I ⊕ R be a homological
splitting for C. The curvature optimization procedure is the following inductive procedure, starting

with i = 0 and C
(0)
q := Cq.

1. Form the deformed decomposition H
(i)
q ⊕ µ1

C
(i)
q

(B⊗̂R)⊕B⊗̂R of C
(i)
q .

2. Write the curvature as µ0

C
(i)
q

= h(i) + µ1

C
(i)
q

(r(i)) + r(i)′ in terms of the decomposition.

3. Define C
(i+1)
q to be the uncurving of C

(i)
q by −r(i).

4. Repeat.

Remark 8.24. The definition of r(i) in terms of Cq
(i) can also be written elegantly as r(i) = hq

(i)(µ0
Cq

(i)),

where hq
(i) is the deformed codifferential of Cq

(i). The letters h(i), r(i) and r(i)′ are actually families
parametrized by objects X ∈ C. In the statement of Lemma 8.25, we combine this shorthand with

the shorthand notation EndC = {EndC(X)}X∈C . For instance, r(i) ∈ m
2i EndC is to be understood as

r
(i)
X ∈ m

2i EndC(X) for every X ∈ C.

After running the curvature optimization procedure, we expect the gauges r(i) to combine together
to one large gauge. We expect the categories Cq

(i) to converge to a limit category Coptq . We also expect

the curvature of Cq
(i) to converge to the curvature of Coptq and the deformed decompositions of C

(i)
q to

converge to the deformed decomposition of Coptq :

lim
i→∞

C(i)q = Coptq ,

lim
i→∞

µ0

C
(i)
q

= µ0
Copt
q
,

lim
i→∞

(
H(i)
q , µ1

C
(i)
q

(B⊗̂R), (B⊗̂R)
)
=
(
Hopt
q , µ1

Copt
q

(B⊗̂R), (B⊗̂R)
)
.

Ultimately, we hope to find µ0
Copt
q
∈ Hopt

q ⊕ (B⊗̂R). The next lemma makes this precise, and also shows

that we have in fact reached µ0
Copt
q
∈ Hopt

q as desired.

Lemma 8.25. Let C be an A∞-category and Cq a deformation. Let H⊕ I⊕R be a homological splitting
for C. Let r(i) be the sequence obtained from applying the curvature optimization procedure to Cq. Then

it holds that r(i) ∈ m
2i EndC . Set r =

∑
i∈N r

(i) ∈ mEndC and define Coptq as the uncurving of Cq by −r.
Then Coptq has optimal curvature and comes with an gauge equivalence

F : Coptq → Cq, given by F 0 = −r, F 1 = Id, F≥2 = 0.

Proof. We divide the proof into three parts. In the first part of the proof we show r(i) ∈ O(m2i). Denote
by Hopt

q ⊕ µ1
Copt
q

(B⊗̂R) ⊕ (B⊗̂R) the deformed decomposition of Coptq . In the second part of the proof,

we show that the curvature µ0
Copt
q

lies in Hopt
q ⊕ B⊗̂R. In the third part of the proof we conclude that

the curvature actually lies in Hopt
q .

For the first part, let us show r(i) ∈ m
2i EndC by induction. For i = 0, the statement holds. Assume

it holds for some i ∈ N. Recall that C
(i+1)
q is the uncurving of C

(i)
q by −r(i). Its curvature is

µ0

C
(i+1)
q

= µ0

C
(i)
q

+ µ1

C
(i)
q

(−r(i)) + µ2

C
(i)
q

(−r(i),−r(i)) + . . .

= h(i) + µ1

C
(i)
q

(r(i)) + r(i)′ − µ1

C
(i)
q

(r(i)) +O(m2i+1

)

= h(i) + r(i)′ +O(m2i+1

).

To make statements on r(i+1), write h
(i+1)
q for the deformed codifferential of C

(i+1)
q . Then

r(i+1) = h(i+1)
q (µ0

C
(i+1)
q

)

= h(i+1)
q

(
h(i) + r(i)′ +O(m2i+1

)
)

= 0 + 0 +O(m2i+1

).
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In the last row, we have used that

h(i), r(i)′ ∈ H(i)
q ⊕ (B⊗̂R) = (B⊗̂H)⊕ (B⊗̂R) = H(i+1)

q ⊕ (B⊗̂R).

We have also used that h
(i+1)
q : B⊗̂HomC → B⊗̂R preserves the m-adic filtration. The reason is

that h
(i+1)
q is B-linear and automatically continuous according to Lemma 5.12. In total, we arrive at

r(i+1) ∈ m
2i+1

R as claimed. This finishes the induction.
For the second part of the proof, we show that µ0

Copt
q

lies in Hopt
q ⊕ (B⊗̂R). For every i ∈ N, regard

µ0

C
(i)
q

= h(i) + µ1

C
(i)
q

(r(i)) + r(i)′.

The left-hand side converges to µ0
Copt
q

. The third term on the right-hand side converges to zero. Together

this means
(B⊗̂H)⊕ (B⊗̂R) ∋ h(i) + µ1

C
(i)
q

(r(i))
i→∞
−−−→ µ0

Copt
q
.

We conclude
µ0
Copt
q
∈ (B⊗̂H)⊕ (B⊗̂R) = Hopt

q ⊕B⊗̂R.

This finishes the second part of the proof.
For the third part of the proof, we show that µ0

Copt
q
∈ Hopt

q . The idea is to show that the R component

of µ0
Copt
q

vanishes. In fact, this is an easy a posteriori observation: Write this curvature as h + r with

h ∈ Hopt
q and r ∈ B⊗̂R. Then

0 = µ1
Copt
q

(µ0
Copt
q

) = µ1
Copt
q

(h) + µ1
Copt
q

(r).

On the right hand side, the first summand lies in Hopt
q ⊕ B⊗̂R and the second summand lies in

µ1
Copt
q

(B⊗̂R). Correspondingly, both summands vanish. While for h this is a weak statement, we

immediately derive r = 0 since µ1
Copt
q

is injective on B⊗̂R. This shows µ0
Copt
q
∈ Hopt

q and finishes the

proof.

8.6 Auxiliary minimal model procedure

In this section, we construct auxiliary minimal models for deformedA∞-categories with optimal curvature.
The idea is to perform a construction with trees as in the classical case. For a given catgeory Cq with
optimal curvature, the first step in this section is to provide an explicit description of the auxiliary A∞-
structure on Hq and a functor Fq : Hq → Cq. We then check that the auxiliary minimal model satisfies
the curved A∞-axioms and that Fq satisfies the curved A∞-functor axioms.

Deformation Cq with optimal curvature
Auxiliary deformation Hq

Auxiliary functor Fq : Hq → Cq

Remark 8.26. The material in this section is considered auxiliary because we only construct an A∞-
structure on Hq and not on B⊗̂H. The A∞-structure on B⊗̂H is obtained in section 8.7 simply by
transfer via ϕ : Hq → B⊗̂H.

To define the auxiliary A∞-structures, we have to set up some context. Let C be an A∞ -category
and H ⊕ I ⊕ R a homological splitting. Let Cq be a deformation with optimal curvature. Denote by
Hq ⊕ µ

1
Cq
(B⊗̂R)⊕ (B⊗̂R) the deformed decomposition of Cq. We use the following notation:

Definition 8.27. Consider a sequence h1, . . . , hn of n ≥ 2 morphisms with hi ∈ Hq(Xi, Xi+1). Let
T ∈ Tn be a Kadeishvili tree shape with n leaves, as in section 8.2. Define

Resq(T, h1, . . . , hn) ∈ Hq(X1, Xn+1)

to be the evaluation of T by decorating the leaves with the inputs h1, . . . , hn, the internal nodes by hqµq
and the root by πqµq. Define

Reshq (T, h1, . . . , hn) ∈ B⊗̂R(X1, Xn+1)

to be the evaluation of T by decorating the leaves with the inputs h1, . . . , hn and all other nodes by hqµq,
including the root.
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h2 h1

πqµq

h3 h2 h1

πqµq

h3 h2 h1

hqµq

πqµq

h3 h2 h1

hqµq

πqµq

h4 h3 h2 h1

hqµq

πqµq

Figure 8.3: Decorating Kadeishvili π-trees for µHq

Example 8.28. A few sample decorated trees for the definition of Resq(T, h1, . . . , hn) are depicted in Fig-
ure 8.3. For instance, the first three trees give results πqµ

2
q(h2, h1), πqµ

3
q(h3, h2, h1), πqµ

2
q(hqµ

2
q(h3, h2), h1).

We temporarily by i the inclusion map of Hq(X1, X2) into HomCq
(X1, X2). With these preparations,

we are ready to define auxiliary product structure on the collection of spaces Hq = {Hq(X,Y )}X,Y ∈Cq

and an auxiliary mapping Fq : Hq → Cq:

Definition 8.29. The auxiliary product structure on Hq is defined as follows:

µ0
Hq

= µ0
Cq
,

µ1
Hq

= πqµ
1
q|Hq

,

µn≥2
Hq

(hn, . . . , h1) =
∑

T∈Tn

(−1)NT Resq(T, h1, . . . , hn).

The candidate functor Fq : Hq → Cq is defined by

F 0
q = 0,

F 1
q = i,

Fn≥2
q (hn, . . . , h1) =

∑

T∈Tn

(−1)NT+1 Reshq (T, h1, . . . , hn).

In words, µ0
Hq

is defined as µ0
Cq

which already lies in Hq since Cq has optimal curvature. The differential

µ1
Hq

is defined by projecting µ1
Cq

down to Hq. All higher products are given by trees. The functor

component F 0
q is set to zero, the component F 1

q is the natural embedding of Hq(X1, X2) into the hom
space HomCq

(X1, X2) and the higher components of Fq are given by trees.
Checking the functor relations for Fq entails switching around projections πq and codifferentials hq.

We need to prepare for this with a simple lemma:

Lemma 8.30. Let Cq be a deformed A∞-category with optimal curvature. Then the projections to B⊗̂R
and µ1

Cq
(B⊗̂R) with respect to the deformed decomposition can be written as

πµ1
q(B⊗̂R) = µ1

qhq,

πB⊗̂R = hqµ
1
q − hqµ

1
qµ

1
qhq.

Proof. Every hom space in Cq is the direct sum of the three components Hq, µ
1
q(B⊗̂R) and B⊗̂R.

Therefore it suffices to check the identities on these three spaces individually.
On Hq, both sides of the first formula evaluate to zero by definition. In the second formula, the right

hand side evalualates to zero as well, because µ1
q(Hq) ⊆ Hq ⊕ µ

1
q(B⊗̂R).

On B⊗̂R, both sides of the first formula evaluate to zero by definition. In the second formula, the
first term evaluates indeed to the identity and the second term vanishes.

On µ1
q(B⊗̂R), both sides of the first formula evaluate to the identity. To check the second formula,

regard an arbitrary element µ1
q(r) with r ∈ B⊗̂R. Then

hqµ
1
q(µ

1
q(r))− hqµ

1
qµ

1
qhq(µ

1
q(r)) = hqµ

1
qµ

1
q(r)− hqµ

1
qµ

1
q(r) = 0.

We conclude that the claimed identities hold on all three direct summand spaces, finishing the proof.

In Lemma 8.31, we prove the desired A∞-relations for Hq and Fq : Hq → Cq. Strictly speaking, Hq

itself is not a deformation of any A∞-category. However, it makes perfect sense to check the curved
A∞-relations for the structure µHq

defined on Hq. The product structure µHq
is merely an auxiliary tool

and will disappear again in section 8.7.
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Lemma 8.31. Let C be an A∞-category and Cq a deformation. Assume Cq has optimal curvature. Then
µHq

satisfies the curved A∞-relations and Fq : Hq → Cq satisfies the curved A∞-functor relations.

Proof. We prove the statements in reverse order: First we show that Fq satisfies the curved A∞-functor
relations. Second we conclude that µHq

satisfies the curved A∞-relations.
For the first part, regard the curved A∞-functor relations for Fq:
∑

(−1)‖a1‖+...+‖aj‖Fq(ak, . . . , µHq
(ai, . . . , aj+1), . . . , a1) =

∑
µCq

(Fq(ak, . . .), . . . , Fq(. . . , a1)). (8.6)

We shall first prove these relations separately for k = 0 and k = 1 and then for general k ≥ 2. For k = 0,
the relation reads F 1

q (µ
0
Hq

) = µ0
Hq

since F 0
q = 0. This relation holds true by definition of F 1

q and µ0
Hq

.
For k = 1, we calculate

F 1
q (µ

1
Hq

(a)) + F 2
q (a, µ

0
Hq

) + (−1)‖a‖F 2
q (µ

0
Hq
, a) = πq(µq(a))− hqµ

2
q(a, µ

0
q)− (−1)‖a‖hqµ

2
q(µ

0
q, a)

= πq(µq(a)) + hq(µq(µq(a)))

= µq(a) = µCq
(F 1
q (a)).

In the second equality, we have used the curved A∞-relations of Cq. In the third equality, we have used
the property of the deformed decomposition that µq(Hq) ⊆ Hq ⊕ (B⊗̂R). This settles the cases k = 0, 1.

Let us now prove (8.6) in case k ≥ 2 by projecting both sides ontoHq, µ
1
q(B⊗̂R) and B⊗̂R individually.

First, regard the projection on Hq. Since F≥2
q has image in B⊗̂R, we have

πHq
(LHS) = F 1

q (µHq
(ak, . . . , a1)) = µHq

(ak, . . . , a1) =
∑

πqµq(Fq(. . .), . . . , Fq(. . .)) = πHq
(RHS).

We have used nothing but the definition of µHq
and Fq. Now regard the projection on µ1

Cq
(B⊗̂R). We

have

πµ1
Cq

(B⊗̂R)(RHS) = µ1
qhqµ

≥2
q (Fq(. . .), . . . , Fq(. . .)) + µ1

qhqµ
1
qFq(. . .)

= −µ1
qFq(. . .) + µ1

qFq(. . .) = 0

= πµ1
Cq

(B⊗̂R)(LHS).

Lastly, regard the projection to B⊗̂R. We have

πB⊗̂R(LHS) = (−1)‖a1‖+...+‖ai‖F≥2
q (. . . , µ≥0

Hq
(. . .), ai, . . .)

= (−1)‖a1‖+...+‖ai‖+1hqµ
≥2
q (Fq, . . . , Fq(. . . , µ

≥0
Hq
, ai, . . .), Fq(aj , . . .), . . . , Fq)

= (−1)‖a1‖+...+‖aj‖+1hqµ
≥2
q (Fq, . . . , µ

≥0
q (Fq, . . . , Fq), Fq(aj , . . .), . . . , Fq)

= (−1)1+1hqµ
1
qµ

≥2
q (Fq, . . . , Fq) + (−1)1+1hqµ

1
qµ

1
qFq(. . .)

= +hqµ
1
qµ

≥2
q (Fq, . . . , Fq)− hqµ

1
qµ

1
qhqµ

≥2
q (Fq, . . . , Fq)

= πB⊗̂R(µ
≥2
q (Fq, . . . , Fq))

= πB⊗̂R(RHS).

In the second equality, we have unraveled the definition of Fq. In the third equality, we have assumed
towards induction that (8.6) already holds for a shorter sequence of inputs. In the fourth equality, we
have used the (curved) A∞-relation for Cq. In the fifth equality, we have unraveled the definition of Fq
again. In the sixth equality, we have used the expression for the projection according to Lemma 8.30.
Finally, we conclude that (8.6) holds on the entire hom spaces of Cq. In other words, Fq satisfies the
(curved) A∞-functor relations.

For the second part of the proof, we show that µHq
satisfies the curved A∞-relations. The trick is to

apply F 1
q to the A∞-relations for µHq

and pull terms from inside to outside using the just proven fact
that Fq satisfies the (curved) A∞-functor relations. We calculate

F 1
q (µHq

(ak, . . . , µ
≥0
Hq

(. . .), . . . , a1))

= F≥2
q (ak, . . . , µ

≥1
Hq

(. . . , µ≥0
Hq

(. . .), . . .), . . . , a1) + F≥2
q (ak, . . . , µ

≥0
Hq

(. . .), . . . , µ≥0
Hq

(. . .), . . .)

+ µ≥1
q (Fq(. . .), . . . , Fq(. . . , µ

≥0
Hq

(. . .), . . .), . . . , Fq(. . .))

= F≥2
q (ak, . . . , 0, . . . , a1) + 0 + µ≥1

q (Fq(. . .), . . . , µ
≥1
q (Fq(. . .), . . . , Fq(. . .)), . . . , Fq(. . .))

= 0 + 0 + 0.
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In the first equality, we have used that Fq satisfies the (curved) A∞ -functor relation on the sequence

a1, . . . , µ
≥0
Hq

(. . .), . . . , ak. The two terms on the second row come from the A∞-functor relation, and are

distinguished by the choice whether the inner µ≥0
Hq

(. . .) is inserted into the new product µ≥0
Hq

or not. The

terms of the type Fq(µHq
, µHq

) however appear pairwise and cancel each other. In the second equality,
we have used the assumption that µHq

already satisfies the A∞-relations on shorter sequences.
Finally, we note that F 1

q is injective on Hq and therefore µHq
satisfies the A∞-relations on the sequence

a1, . . . , ak. In total, we conclude that µHq
satisfies the curved A∞-relations.

8.7 The deformed Kadeishvili theorem

In this section, we provide our most general Kadeishvili theorem for deformed A∞-categories. The
starting point is an arbitrary deformed A∞-category Cq and the goal is to find a minimal model for Cq in
the sense of Definition 8.11. The idea is to apply the curvature optimization procedure to Cq, then take
the auxiliary minimal model in the sense of section 8.6 and to pull back the structure in order to form a
deformation of H C.

Deformed A∞-category Cq Minimal model H Cq

Definition 8.32. Let C be an A∞-category and Cq a deformation. Let H ⊕ I ⊕ R be a homological
splitting for C. Apply the curvature optimization procedure to Cq. Let Coptq be the result and r be

the gauge used. Denote by Hopt
q ⊕ µ1

Copt
q

(B⊗̂R) ⊕ (B⊗̂R) the deformed decomposition of Coptq and by

ϕ : Hopt
q → B⊗̂H the associated isomorphism. Apply the auxiliary minimal model procedure to Coptq .

Let µHopt
q

be the resulting auxiliary A∞-structure and F opt
q : Hopt

q → Coptq be the auxiliary functor.

Then we define the A∞-structure µH Cq
on B⊗̂H and the functor Fq : H Cq → Cq by

µH Cq
= ϕ ◦ µHopt

q
◦ ϕ−1,

Fq = (Id−r) ◦ F opt
q ◦ ϕ−1.

(8.7)

Remark 8.33. In (8.7), the circle symbol denotes composition of curved A∞-functors. By abuse of
notation, we have denoted the gauge functor from the curvature optimization procedure by Id−r, standing
for the functor with 0-ary component −r and 1-ary component Id and vanishing higher components.
Furthermore, we have interpreted ϕ as an A∞-functor Hopt

q → B⊗̂H with only a 1-ary component.
More explicitly, the definition for µH Cq

reads

µn≥0
H Cq

(hn, . . . , h1) := ϕµn
Hopt

q
(ϕ−1(hn), . . . , ϕ

−1(h1)).

Theorem 8.34. Let C be an A∞-category. Let H ⊕ I ⊕ R be a homological splitting for C and let
H C be the minimal model obtained from this splitting. Then H Cq is an A∞-deformation of H C and
Fq : H Cq → Cq is a quasi-isomorphism of deformed A∞-categories. In particular, H Cq is a minimal model
for Cq.

Proof. It is our task to unwrap all definitions and to apply Lemma 8.31. The application of the curvature
optimization procedure has made Coptq a category related to Cq by the gauge equivalence Id−r : Coptq → Cq.
Subsequent application of the auxiliary minimal model procedure has given Hopt

q an A∞-structure with
a functor F opt

q : Hopt
q → Coptq . Pulling back has given a product structure on H Cq.

A first observation is that H Cq satisfies the curved A∞-axioms. Indeed, it was merely pulled back
form Hopt

q and the product structure on Hopt
q in turn satisfies the A∞-axioms due to Lemma 8.31. The

leading term of µH Cq
is easily seen to be µH C and hence H Cq is a deformation of H C.

A second observation is that with respect to the three curved A∞-structures on H Cq, H
opt
q , Coptq , Cq,

the following three mappings mappings define curved A∞-functors:

ϕ : Hopt
q → H Cq, F opt

q : Hopt
q → Coptq , Id−r : Coptq → Cq.

For ϕ and Id−r, this is the case by definition of pullback/uncurving. For F opt
q , this is the statement of

Lemma 8.31. In summary, Fq is merely a composition of these three functors:

Fq : H Cq
ϕ−1

−−→ Hopt
q

Fopt
q
−−−→ Coptq

Id−r
−−−→ Cq.

We conclude that Fq itself is a curved A∞-functor. Its leading term is the functor F : H C → C obtained
from the Kadeishvili construction for the non-deformed category C. Since F is a quasi-isomorphism, we
conclude that Fq is a quasi-isomorphism in the sense of Definition 5.24. This settles all claims and proves
that H Cq is a minimal model for Cq in the sense of Definition 8.11.
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8.8 The D = 0 case

In this section, we examine the deformed Kadeishvili construction in a special case. The starting point is
a curvature-free deformed A∞-category Cq where the deformed differential satisfies µ1

q(H) ⊆ µ1
q(B⊗̂R).

It turns out that in this case, the differential µ1
H Cq

on the minimal model vanishes. We re-interpret this
case as an instance of the Kadeishvili theorem over base rings.

As we explain in Lemma 8.35, there are multiple ways of saying µ1
Cq
(H) ⊆ µ1

Cq
(B⊗̂R). One of them

is requiring the operator D appearing in the description Lemma 8.15 to vanish. We may therefore also
call the present assumption the “D = 0 case”.

Lemma 8.35. Let C be an A∞-category and Cq a deformation. Let H⊕ I⊕R be a homological splitting
of C. Denote by D,E, F the operators from Lemma 8.15. If Cq is curvature-free, then we have D2 = 0
and F = −ED and the following statements are equivalent:

1. For every h ∈ B⊗̂H there exists an ε ∈ B⊗̂R such that µ1
q(h) = µ1

q(ε).

2. We have µ1
q(H) ⊆ µ1

q(B⊗̂R).

3. We have D = F = 0.

4. We have D = 0.

In the first statement, the element ε is necessarily infinitesimal: ε ∈ mR. Similarly, the right hand side
of the inclusion in µ1

q(H) ⊆ µ1
q(B⊗̂R) can be replaced by µ1

q(mR).

Proof. Thanks to curvature-freeness, the differential µ1
q squares to zero. The identities D2 = 0 and

F = −ED now follow from evaluating (µ1
q)

2 = 0 with respect to the matrix presentation (8.4). The
four enumerated statements are all different ways of stating the condition D = F = 0. The only
nontrivial observation is that D = 0 already implies F = 0 since F = −ED. For the final infinitesimality
observations, note that µ1

q(h) is necessarily infinitesimal, since µ1(H) = 0 and µ1
q is only an infinitesimal

deformation of µ1.

The deformed decomposition of Cq has very favorable properties if Cq is curvature-free and satisfies
D = 0:

Lemma 8.36. Let C be an A∞-category and Cq a deformation. Let H⊕ I⊕R be a homological splitting
of C. Assume Cq is curvature-free and D = 0. With respect to the deformed decomposition of Cq, the
differential µ1

q takes the shape

µ1
q =



0 0 0

0 0 ∗

0 0 0


 .

Proof. For the third column, note that µ1
q by definition sends B⊗̂R to µ1

q(B⊗̂R). For the second column,

note that µ1
q squares to zero. For the first column, pick an element h−Eh ∈ Hq with h ∈ B⊗̂H. Then by

the first column of (8.4) we have µ1
q(h) = µ1

qEh and hence µ1
q(h− Eh) = 0. This finishes the proof.

According to Lemma 8.36, the deformed decomposition in case D = 0 has many properties which we
expect from a homological splitting. For this reason, we establish the following terminology alias:

Definition 8.37. Let C be an A∞-category and Cq a deformation. Let H ⊕ I ⊕ R be a homological
splitting of C. Assume Cq is curvature-free and D = 0. Then the deformed homological splitting of
Cq is the deformed decomposition Hq ⊕ µ

1
q(B⊗̂R)⊕ (B⊗̂R).

The minimal model H Cq has favorable properties in case Cq is curvature-free and D = 0. In fact,
both curvature µ0

H Cq
and differential µ1

H Cq
vanish by construction. The higher products are computed by

Kadeishvili trees, putting ϕ−1 on every leaf, hqµ
Cq on every internal node and ϕπqµ

Cq on the root. The
entire procedure can be summarized as follows:

Corollary 8.38. Let C be an A∞-category and H⊕I⊕R a homological splitting. Let Cq be a curvature-
free deformation of C with D = 0. Then a minimal model H Cq is determined by the following procedure:

1. For every h ∈ H, let εh ∈ B⊗̂R such that µ1
Cq
(h) = µ1

Cq
(εh).

2. Define Hq = {h− εh | h ∈ H}.

3. Define ϕ : Hq → B⊗̂H by h− εh 7→ h.
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4. Calculate the deformed codifferential hq : Hq ⊕ µ
1
Cq
(B⊗̂R)⊕ (B⊗̂R)→ B⊗̂R.

5. Calculate the deformed projection πq : Hq ⊕ µ
1
Cq
(B⊗̂R)⊕ (B⊗̂R)→ Hq.

6. Set µ1
H Cq

= µ0
H Cq

= 0.

7. Regard arbitrary Kadeishvili tree shapes T .

8. Decorate T with ϕ−1 at the leaves, hqµCq
at the internal nodes and πqµCq

at the root.

9. Define µ≥2
H Cq

(hk, . . . , h1) as sum over the result of these trees, with sign (−1)NT .

We would like to provide an aftermath to this corollary. More precisely, we will offer an independent
explanation of the condition D = 0. There is namely a classical Kadeishvili theorem that works for
A∞-categories defined over rings: Let S be a ring and C an S-linear A∞-algebra. If the cohomology
H(A) is a projective S-module, then the projection Ker(µ1

A) ։ H(A) has a lift H(A) → A which is an
S-linear quasi-isomorphism of complexes. The original construction of Kadeishvili builds noncanonically
a minimal A∞-structure on H(A) together with an A∞-quasi-isomorphism H(A) → A. This version of
the Kadeishvili theorem can be found for instance in [60].

It is natural to apply this Kadeishvili theorem to curvature-free deformed A∞-categories. In fact, if Cq
is a curvature-free deformed A∞-category, then the classical Kadeishvili theorem gives a minimal model
under the condition that HHomCq

(X,Y ) are projective B-modules for every X,Y ∈ C:

µ0
Cq

= 0 and

HHomCq
(X,Y ) projective B-modules

=⇒ Classical Kadeishvili
applies to Cq

In Lemma 8.39 we show that curvature-freeness together with D = 0 implies the projectivity condition.
In particular, we recover Corollary 8.38 as a consequence of the classical Kadeishvili theorem, under the
technical assumption that HHomC(X,Y ) is finite-dimensional for all X,Y ∈ C. We have opted for hiding
the quantification by X,Y ∈ C in some cases and making it explicit in other cases.

Lemma 8.39. Let C be an A∞-category and Cq a curvature-free deformation. Choose a homological
splitting H ⊕ I ⊕ R. Denote by D,E, F the operators from Lemma 8.15. Then we have a natural
quasi-isomorphism of B-modules

H
(
HomCq

, µ1
q

)
∼= H

(
B⊗̂H,D

)
. (8.8)

In particular if D = 0 and H(X,Y ) is finite-dimensional, then H(HomCq
(X,Y ), µ1

Cq
) is a projective

B-module.

Proof. To equate the two cohomology modules, we provide explicit morphisms ϕ,ψ of chain complexes in
both directions. Next, we check that the maps actually commute with the differential. We finally show
that in cohomology, both compositions ϕψ and ψϕ descend to the identity.

Our first step is to give explicit morphisms of chain complexes. In terms of the decomposition (8.3)
of HomCq

into B⊗̂H ⊕ µ1
q(B⊗̂R)⊕B⊗̂R, put

ϕ : (HomCq
, µ1
q) −→ (B⊗̂H,D),

(h, µ1
q(r

′), r) 7−→ h, for h ∈ B⊗̂H, r, r′ ∈ B⊗̂R,

ψ : (B⊗̂H,D) −→ (HomCq
, µ1
q),

h 7−→ (h, 0,−Eh), for h ∈ B⊗̂H.

We are now ready to check that both ϕ and ψ are chain maps. Indeed, we have

ϕ(µ1
q(h, µ

1
q(r

′), r)) = ϕ(Dh, µ1
q(Eh) + µ1

q(r), Fh) = Dh = Dϕ(h, µ1
q(r

′), r)

and
ψ(Dh) = (Dh, 0,−EDh) = (Dh, 0, Fh) = µ1

q(h, 0,−Eh) = µ1
q(ψ(h)).

In the above calculations, we have written elements of the direct sum B⊗̂H⊕µ1
q(B⊗̂R)⊕B⊗̂R as tuples

instead of sums.
The next step is to calculate ϕψ and ψϕ and verify that they descend to the identity on cohomology.

For ϕψ, this is trivial since ϕψ = id. For the other composition ψϕ, we pick an element x ∈ Ker(µ1
q)
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and check whether ψ(ϕ(x))− x lies in the image of µ1
q. First of all, write x = (h, µ1

q(r
′), r) and note that

x ∈ Ker(µ1
q) implies Dh = 0, r + Eh = 0 and Fh = 0. We obtain

ψ(ϕ(x))− x = ψ(h, µ1
q(r

′), r)− (h, µ1
q(r

′), r) = (h, 0,−Eh)− (h, µ1
q(r

′), r) = (0, µ1
q(r

′), 0).

The expression on the right is simply the image µ1
q(0, 0, r

′). We conclude that ϕ and ψ are quasi-inverse
to each other. This establishes the desired quasi-isomorphism (8.8). In case D = 0 and H(X,Y ) is finite-
dimensional, the cohomology is simply B ⊗H(X,Y ) which is projective. This finishes the proof.

With the help of Lemma 8.39, we can also reformulate the condition D = 0 to a more intuitive
statement. Let us distinguish between true and actual cohomology. By true cohomology of Cq, we
mean the flat tensor products B⊗̂HHomC(X,Y ). It only depends on the non-deformed category itself.
By actual cohomology, we mean the directly observed cohomology H(HomCq

, µ1
Cq
). The two cohomologies

typically differ:

C
0
→ C

original differential

cohomology: C[0]⊕ C[1]

CJqK
q
→ CJqK

deformed differential

actual cohomology: 0[0]⊕ CJqK
(q) [1]

true cohomology: CJqK[0]⊕ CJqK[1]

Lemma 8.39 quantifies the difference between true and actual cohomology. True and actual cohomol-
ogy of Cq are equal if D = 0 and fail to be canonically equal if D 6= 0. Among curvature-free deformations,
we can summarize our observations without any claim to rigor very roughly as follows:

Classical Kadeishvili applies to Cq ⇐⇒ HHomCq
(X,Y ) projective B-modules

⇐⇒ true cohomology = actual cohomology ⇐⇒ D = 0 ⇐⇒ µ1
H Cq

= 0.

9 Uncurving of strings and bands

In this section, we show how to remove curvature of band objects in derived deformed gentle algebras.
First, we set up general theory for removing curvature of objects in deformd A∞-categories. Then we
recall how objects of TwGtlA can be classified geometrically as strings and bands, due to [35]. All
objects of TwGtlA can naturally be interpreted as objects in TwGtlq A. However, they do not satisfy
the Maurer-Cartan equation of TwGtlq A itself and become curved objects. In the present section, we
introduce a method to reduce curvature of these curved objects, which we call the “complementary angle
trick”.

Band object
(X, δ) ∈ TwGtlA

Curved object
(X, δ) ∈ TwGtlq A

Uncurved object
(X, δq) ∈ Tw′ Gtlq A

upon deformation uncurving

We show that the complementary angle trick succeeds in removing curvature from band objects which
satisfy a technical condition. Subsequently, we show how to drop this condition. While not an ideal term,
we will constantly refer to removing curvature as “uncurving”. The starting point is a full arc system
with [NMDC]. We find that uncurvability differs between band objects and string objects and depends
also on the topology of the objects. Our findings can be summarized as follows:

• Uncurvability of band objects: Our main criterion states that a band object can be uncurved in case
the underlying curve, regarded as a curve in S, is not contractible and does not include a teardrop.

• Uncurvability of string objects: The general rule is that string objects cannot be uncurved. There
are exceptions, for example a string where both ends touch each other may be uncurvable if the
deformation parameter lies in m

2.
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9.1 The theory of uncurving

In this section, we recollect uncurving theory for A∞-deformations. The starting point is an arbitrary
deformed A∞-category with curvature. We are interested in the question which objects become curvature-
free once we apply a gauge functor to the category. In the present section, we explain this question and
define terminology. We prove elementary properties. Uncurving has been studied in the literature, for
instance under the name of the “curvature problem” in [50].

It is our aim to explain in how far a gauge equivalence can change the curvature of a deformation. As
a starting point, let C be an A∞ category. Let Cq and C′q be two deformations of C connected by a gauge
equivalence F : Cq → C

′
q. The curvature of Cq and C′q are related by the zeroth (curved) A∞-functor

relation:

F 1(µ0
Cq
) = µ0

C′
q
+ µ1(F 0) + µ2(F 0, F 0) + . . . .

The map F 1 has leading term the identity and is then a linear isomorphism by Lemma 5.13. This means
that the curvature µ0

Cq
depends only on F 0 and F 1, and not on the higher components F≥2. If we

approximate F 1 as the identity, we conclude that uncurving essentially depends only on the choice of F 0.
This gives rise to the following definition:

Definition 9.1. Let C be an A∞ category and Cq a deformation. Let X ∈ C. Then X is uncurvable if
there exists an S ∈ mEnd1(X) such that

µ0
X + µ1

Cq
(S) + µ2

Cq
(S, S) + . . . = 0.

We will now prove several basic properties regarding uncurvable objects.

Lemma 9.2. Let F : Cq → Dq be a functor of deformed A∞-categories. If X ∈ Cq is uncurvable, then
so is F (X).

Proof. Let S ∈ mEnd1(X) be the uncurving morphism, that is

µ0
X + µ1(S) + µ2(S, S) + . . . = 0.

Now set

T := F 0
X + F 1(S) + F 2(S, S) + . . . ∈ mEnd1(F (X)).

We claim that T is an uncurving morphism for F (X). Indeed,

µ0
F (X) + µ1(T ) + µ2(T, T ) + . . . =

(
µ0
F (X) + µ1(F 0

X) + µ2(F 0
X , F

0
X) + . . .

)

+
(
µ1(F 1(S)) + µ2(F 1(S), F 0

X) + µ2(F 0
X , F

1(S)) + . . .
)

+
(
µ1(F 2(S, S)) + µ2(F 1(S), F 1(S)) + µ2(F 2(S, S), F 0

X) + . . .
)
+ . . .

We apply the curved A∞ rule to these terms and continue

= F 1
(
µ0
X + µ1(S) + µ2(S, S) + . . .

)
+ F 2

(
µ0
X + µ1(S) + µ2(S, S) + . . . , S

)

+ F 2
(
S, µ0

X + µ1(S) + µ2(S, S) + . . .
)
+ . . .

= F 1(0) + F 2(0, S) + F 2(S, 0) + F 3(0, S, S) + . . . = 0.

This shows that T is an uncurving morphism for F (X).

Lemma 9.3. Let C be an A∞ category and Cq a deformation. Assume C is minimal, X ∼= Y in C and X
is uncurvable. Then so is Y .

Proof. Regard the embedding

{Y }q → {X,Y }q,

where both sides are defined as full subcategories of Cq. The embedding is an equivalence, since it reduces
to the inclusion {Y } → {X,Y } which is essentially surjective in cohomology. By Lemma 5.57, there is a
quasi-equivalence in opposite direction

{X,Y }q → {Y }q.

In particular, it maps X to Y . Since X is uncurvable, an application of Lemma 9.2 shows that Y is
uncurvable.
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The next lemma concerns uncurving of objects in minimal models. The notation H Cq denotes any
minimal model of H Cq according to Definition 8.11. A minimal model comes with a choice of quasi-
isomorphism Fq : Cq → H Cq. Correspondingly, the objects of Cq and H Cq are identified via Fq.

Lemma 9.4. Let C be an A∞ category and Cq a deformation. Then an object X is uncurvable in Cq if
and only if it is uncurvable in H Cq.

Proof. Let Fq : Cq → H Cq be a quasi-isomorphism and let X ∈ Cq. We need to show that X is uncurvable
if and only if Fq(X) is uncurvable. By Lemma 9.2, Fq(X) is clearly uncurvable if X is uncurvable. For
the other direction, regard the restriction Fq|{X} : {X}q → {Fq(X)}q. It is a quasi-isomorphism and by
Lemma 5.57 there exists a quasi-isomorphism {Fq(X)}q → {X}q in opposite direction. Now if Fq(X) is
uncurvable, then by Lemma 9.2 also X is uncurvable. This finishes the proof.

Corollary 9.5. Let C be an A∞ category and Cq a deformation. If X and Y are quasi-isomorphic in C,
then X is uncurvable if and only if Y is uncurvable.

Proof. Pick a minimal model H Cq. The objects X and Y are isomorphic in H C. Combining Lemma 9.3
and 9.4, we conclude

X ∈ Cq uncurvable ⇔ X ∈ H Cq uncurvable ⇔ Y ∈ H Cq uncurvable ⇔ Y ∈ Cq uncurvable.

This chain of equivalences proves the claim.

Corollary 9.5 might be slightly surprising. It is entirely irrelevant for uncurvability how X and Y
get deformed themselves, the only relevant measure is whether they are quasi-equivalent in C. This
supports Definition 5.16 where we defined two objects X,Y ∈ Cq to be quasi-isomorphic already if they
are quasi-isomorphic in C.

The next basic property deals with twisted complexes. It is a useful preparation for section 9.4.
Recall that cones in A∞-categories are merely specific twisted complexes, more precisely the cone over
f ∈ Hom0(X,Y ) is defined as

cone(f) =

(
Y [1]⊕X,

(
0 f

0 0

))
.

Corollary 9.6. Let C be an A∞-category and Cq a deformation. If X,Y ∈ Cq are uncurvable, then so
is every cone(f) for f ∈ Hom0

C(X,Y ). More generally, let X1, . . . , Xk be uncurvable. Then any twisted
complex (X1[s1]⊕ . . .⊕Xk[sk], δ) ∈ Tw Cq is uncurvable.

Proof. Although a direct proof should be possible, combining the uncurving elements S for each of the
objects involved with the δ matrix, we give an abstract proof using Lemma 9.2. The idea is to uncurve
the objects involved first, and then form twisted complex anew so that it automatically becomes an object
without curvature.

Regard the full subcategory D := {X1, . . . , Xk} ⊆ C, together with its deformation Dq. All objects in
Dq are uncurvable, which provides an isomorphism

F : Dq
∼
−→ Eq

to a curvature-free deformation Eq of D. This induces an isomorphism

F̃ : TwDq
∼
−→ Tw Eq.

This isomorphism maps the twisted complex C := (
⊕
Xi[si], δ) to some object F̃ (C) without curvature.

The inverse functor F̃−1 maps F̃ (C) back to C. According to Lemma 9.2, the object C is then uncurvable
in TwDq and therefore also in Tw Cq.

9.2 Strings and bands

In this section, we recall the classification of objects in HTwGtlA. This classification is due to Haiden,
Katzarkov and Kontsevich and categorizes the objects into two classes, the so-called string and band
objects. Roughly speaking, a string object is a non-closed curve running between two punctures of A
and a band object is a closed curve that avoids the punctures of A. In the present section, we recall the
precise classification and how to realize string and band objects explicitly as twisted complexes.

Originally, the gentle algebra GtlA was introduced in [18] to provide a combinatorial description of
the wrapped Fukaya category of S \M . It was shown in that paper’s appendix that GtlA indeed embeds
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Figure 9.1: A string object and a band object on the 4-punctured sphere

(a) Approximation by arcs

=

=

=

(b) Which angle to choose

Figure 9.2: Smooth versus discrete

into wFuk(S \M). The question arose whether this embedding is essentially surjective, upon passing to
the derived category HTwGtlA. If one puts suitable restrictions on the geometry of the objects allowed
in wFuk(S \M) and works with a Z-grading, the embedding is indeed essentially surjective. The fact
that an arc system suffices to generate the wrapped Fukaya category has apparently been folklore for
longer, and was affirmed by Haiden, Katzarkov and Kontsevich [35].

Until now, we have defined GtlA as a Z/2Z-graded A∞-category. In order to state and discuss the
classification of objects, we need to recall Z-gradings GtlZA on GtlA. The procedure to upgrade GtlA
to a Z-graded A∞-category GtlZA is as follows: Choose a line field on the surface S, with singularities
allowed at the punctures. Choose a grading of the arcs a ∈ A relative to the line field. Define the degree
of an angle α : a→ b as the rounding off of the amount it turns relative to the grading of a and b.

A precise description of this procedure, including definitions of the notions of line field, arc grading,
degree of an angle can be found in [35]. With this in mind, we are ready to recall the classification of
objects.

Theorem 9.7 ([35]). Let A be a full arc system with [NMD]. Up to isomorphism, the objects of
HTwGtlZA can be classified as direct sums of the following:

• String objects: graded curves in S, starting and ending at two punctures, but otherwise avoiding
punctures and not bounding a teardrop in S \M . The curve is to be considered up to homotopy,
keeping endpoints fixed.

• Band objects: closed graded curves in S with indecomposable local system, avoiding punctures
and not bounding a teardrop in S \M . The curve is to be considered up to homotopy and the local
system up to isomorphism.

An example string and band object are depicted in Figure 9.1. Actual representatives of string and
band objects as twisted complexes in HTwGtlZA can be provided by an explicit construction, which we
now describe in some detail. The input datum of both constructions is a graded curve of one of the two
types above.

A string object can be constructed by approximating the curve by a sequence of arcs a1, . . . , ak, and
adding up these arcs to form a twisted complex

(a1[s1]⊕ . . .⊕ ak[sk], δ) ∈ TwGtlZA.

The shifts si ∈ Z are defined such that the degree of ai[si] with respect to the line field equals the inherent
grading of the curve. Let us explain how δ is found: At every endpoint between two consecutive arcs
ai, ai+1 of the sequence, determine whether the curve runs to the left or to the right of the puncture.
The curve either follows an angle ai → ai+1 or an angle ai+1 → ai. Insert this angle into the δ matrix.
Possibly, the order of the arcs as summands of the twisted complex needs to be reordered to make δ
upper triangular. In summary, the δ matrix indicates how the arcs a1, . . . , ak are stitched together. The
procedure is depicted in Figure 9.2.
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Remark 9.8. Let us record the following properties: The twisted differential δ automatically becomes
homogeneous of degree 1 due to the chosen shifts si. Identity angles αi are not allowed, and can in
fact be avoided when choosing the approximation by arcs. Two consecutive angles αi, αi+1 are never
composable because they turn around the opposite ends of their common arc. One might wonder about
composability in case this arc is a loop. Indeed the two consecutive angles may be composable in GtlA,
but are not composable in the order enforced by the ordering on the angles in the twisted complex.

Band objects can be constructed in a fashion similar to strings. In contrast to strings, their ends are
however also stitched together by an angle, and the local system is manifested in the δ matrix. Let us
explain these steps in more detail.

• Insert not only the angles between two consecutive arcs ai and ai+1, but also the angle between
the last arc ak and the first arc a1 into the δ matrix. Reorder the arcs to make δ upper triangular.
In contrast to the case of strings, such a reordering need not exist. This happens if all arcs are
connected entirely cyclically. Abort in this case, and approximate the curve by a different sequence
of arcs. It is shown below that this is possible, without inserting identities into δ.

• The shifts are chosen such that δ has degree 1. In contrast to strings which have an entry less in
their δ matrix, it requires a check that this can be done in a consist manner. After walking around
the curve one full cycle, do we end up with the same degree shift as we started with? The answer
is yes, and the reason is that the curve was required to be graded with respect to the line field.

• If the local system is of dimension d > 1, duplicate all arcs in the twisted complex so that each arc
appears d times. Also duplicate the angles so each angle appears d times, running between the i-th
copy of some arc and the i-th copy of the next (without running from one copy to the other).

• If the local system is non-trivial, represent it as a matrix M = (mpq) ∈ Cd×d and insert it into the
δ matrix as follows: Choose two consecutive arcs ai, ai+1 in the representation of the curve by arcs.
Then change the δ entry running from the q-th copy of ai to the p-th copy of ai+1 to mpq. For
instance in case d = 2, the part of δ matrix between ai and ai+1 shall look like




m11αi m12αi

m21αi m22αi


 .

This overwrites the default identity matrix at those entries written to δ in step (2). In case the
angle between ai an ai+1 runs from ai+1 to ai instead, use the inverse of M instead of M itself. It
does not matter which pair of consecutive arcs is chosen. In fact, M could be arbitrarily factorized
into matrices, one for each pair of consecutive arcs, and the values could be written to δ per pair.
It does not matter which factorization we choose: The isomorphism class of the resulting object in
HTwGtlZA only depends on the product of the factors.

Lemma 9.9. Let A be a full arc system with [NMD]. Then every string and band has an approximation
by arcs where no angle is an identity and all arcs can be ordered such that δ is upper triangular.

Proof. First, choose some arbitrary approximation of the curve such that no connecting angle is the
identity. This is always possible. The rest of the proof consists of tweaking this approximation such that
δ becomes upper triangular.

For strings, there is always an ordering of the arcs in which δ is upper triangular, and we are done.
For bands however, such an ordering need not exist. That is, the arcs might be connected cyclically. The
remaining task in this proof is to break the cyclicity in the band case by tweaking the arc collection.

We may assume that one of the angles αi consists of at least three indecomposable components.
Otherwise, choose a different approximation by arcs where one angle winds a little more around some
puncture.

Regard such an angle αi that consists of at least three indecomposable components, and split it into
a product αi = α3

iα
2
iα

1
i of three non-empty angles such that α2

i is indecomposable. In particular, α2
i is

an interior angle of some polygon. We now modify the angle sequence α1, . . . , αk by flipping αi over to
the opposite side of this polygon, see Figure 9.3. This tweak yields a non-cyclic approximation where all
angles are still non-empty.

Let us discuss this classification in the context of the grading question. What are the objects up to
isomorphism of HTwGtlA? Here GtlA and its twisted completion are taken as usual with Z/2Z-grading.
The answer is, there are both more and less objects. For example, twisted complexes differing only by
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Figure 9.3: Removing cyclicity

Z-graded GtlZA

 

Z-graded HTwGtlZA
classification: strings and bands

Z/2Z-graded GtlA

 

Z/2Z-graded HTwGtlA
classification unknown

Strings and bands can also be
constructed Z/2Z-graded

Figure 9.4: Overview on objects of Z-vs. Z/2Z-graded gentle algebras

even shifts are unequal in the Z-grading, but are identified in the Z/2Z-grading. On the other hand,
some twisted complexes that can be made with respect to the Z/2Z-grading cannot be constructed in
the Z-grading. One might say, the Z/2Z-graded HTwGtlA category contains all objects of HTwGtlZA
for every possible Z-grading, plus additional objects that cannot be obtained from a Z-graded version,
modulo identifying objects differing by shifts. This is depicted in the overview Figure 9.4. We are however
not aware of a concise classification of the objects of HTwGtlA.

A broad class of objects in HTwGtlA can however be constructed by forming Z/2Z-graded strings
and bands, corresponding to curves on S without grading requirements. Let us define what we mean by
this:

• Z/2Z-graded string objects: Stitch arcs together as in the Z-graded case, and shift arcs with
si ∈ Z/2Z such that the degree of δ is odd.

• Z/2Z-graded band objects: Stitch arcs together as in the Z-graded case, shift arcs with si ∈ Z/2Z
such that the degree of δ is odd. The shifts are consistent: After cycling around the curve once, we
end up with the same shift because the curve is orientable.

9.3 Complementary angle trick

In this section, we introduce a method to uncurve objects of TwGtlq A. The starting point is the
classification of objects in TwGtlA recalled in section 9.2. The idea to uncurve these objects is to
infinitesimally deform their δ-matrix by inserting infinitesimal multiples of the complements of the angles
already present in the δ-matrix. We therefore call this method the “complementary angle trick”. In the
present section, we show that this trick successfully uncurves Z/2Z-graded band objects under certain
conditions.

We will start the setup in a slightly more general approach: We take A to denote a full arc system
with [NMDC] and we take the category GtlrA to be the associated deformed gentle algebra constructed
in Paper I. This deformed gentle algebra depends on a parameter

r = r01 +
∑

q∈M
n≥1

rq,nℓ
n
q ∈ mZ(GtlA).

Here B is a chosen deformation base with maximal ideal m. We say that r is without 1-component if
r0 = 0. For simplicity, we write µq for the product of GtlrA.

Example 9.10. The category GtlrA may simply be the standard deformation GtlrA = Gtlq A over
B = CJMK, detailed in section 6.6. It is determined by the specific parameter

r =
∑

q∈M

qℓq ∈ (M)Z(GtlA).

This parameter is without 1-component.
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Recall the notion of uncurvability: Let C be an A∞-category and Cq a deformation of C. Then an
object X ∈ Cq is uncurvable if there is an odd S ∈ mEndC(X) such that µ0

q,X+µ1
q(S)+µ

2
q(S, S)+ . . . = 0.

For twisted complexes X = (
∑
Xi[si], δ), this means to find an infinitesimal deformation δq of δ such

that the curvature of the twisted complex becomes zero:

µ0
q,X + µ1

AddGtlr A(δq) + µ2
AddGtlr A(δq, δq) + . . . = 0.

The infinitesimal part of δq is allowed to lie anywhere in the matrix, not restricted to the upper-triangular
part.

Let us now describe our “complementary angle trick”. Regard a band object X = (a1[s1]⊕ . . . , δ). To
simplify the discussion, we assume its local system is one-dimensional with transition value simply equal
to 1. In the twisted complex X, every arc then only appears once (apart from arcs appearing multiple
times in the approximation), and every angle αi appearing in δ appears with a coefficient of +1.

The curvature µ0
q,X of X consists by definition of the sum of the curvatures µ0

ai of the constituent arcs
of X. Since we are regarding a standard deformation GtlrA of GtlA, we know this curvature explicitly:
Every arc carries an infinitesimal amount of turns around both of its endpoints as curvature. Since X is
a band object, both endpoints of every arc ai are connected to the predecessor or successor arc ai−1 and
ai by angles αi.

The trick to uncurving is to add the complements α′
i of these angles to the δ matrix, depicted in

Figure 9.5c. Generically denote by ℓ a full turn around any puncture. We denote by rℓ−1α′
i the element

of B⊗̂GtlA obtained from r by extracting the part that winds around the same puncture as α′
i, shortening

all angles by one full turn, and multiplying by α′
i. Naturally, the element rℓ−1α′

i can be interpreted as
an odd morphism lying in HomAddGtlr A(X,X).

Definition 9.11. Let A be a full arc system with [NMDC], B a deformation base and r ∈ mZ(GtlA) a
parameter without 1-component. Regard a band object X = (a1[s1] ⊕ . . . , δ) with trivial 1-dimensional
local system. Assume its δ-angles α1, . . . , αk are all shorter than a full turn and not identities. Then the
complementary angle trick associates to X the twisted complex (a1[s1]⊕ . . . , δq) ∈ Tw′ Gtlq A with
δq given by

δq := δ + δ′ =
k∑

i=1

αi + rℓ−1α′
i.

Example 9.12. Regard the deformation GtlrA with parameter r = qℓp over B = CJqK, with ℓp denoting
the central element consisting of single turns around the puncture p. Then the deformation entry added
to the δ matrix is simply rℓ−1α′

i = qα′
i for every αi which winds around p.

Remark 9.13. The deformation of δ to δq happens precisely on the opposite side of the diagonal of the
matrix: If αi is in the δ matrix as angle from ai to ai+1, then the angle rℓ−1α′

i is inserted within the
δ matrix as morphism from ai+1 to αi. If αi was an angle from ai+1 to ai, then rℓ−1α′

i is inserted as
morphism from ai to ai+1. This way we obtain a matrix δq with an infinitesimal lower-triangular part.

Remark 9.14. The complementary angle trick also works when the local system is higher-dimensional
and non-trivial. Recall that the δ matrix encodes the transition matrix M of a higher-dimensional local
system by carrying its entries mpq in front of the αi morphism from the q-th copy of ai to the p-th copy
of ai+1. In case the angle runs in the opposite direction, the δ matrix encodes M by carrying the entries
mpq := (M−1)pq of the inverse matrix.

In order to uncurve this band object, we include the inverse matrix M−1 in the uncurving deformation
of δ, or M in case the angle runs in opposite direction. For instance if d = 2 and αi runs from ai to ai+1,
the part of the δq matrix between ai and ai+1 shall read

part of δq =




m11αi m12αi

m21αi m22αi

m11rℓ−1α′
i m12rℓ−1α′

i

m21rℓ−1α′
i m22rℓ−1α′

i



.

We are now ready to check that the complementary angle trick succeeds in uncurving band objects.
The trick however comes with strict conditions. We use the following terminology:

Definition 9.15. An indexed arc on X is one of the arcs ai of X, remembering the index i. An
segment of indexed arcs on X is a sequence of consecutive arcs ai, ai+1, . . . , ai+j , remembering the
indices. An indexed segment is contractible in S if it returns to the same puncture as it started from
and the loop defined this way is contractible in the closed surface S.
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(a) Teardrop (b) No teardrop

αi αi+1

α′
i α′

i+1

(c) Complementary angle trick (d) Contractible segment

Figure 9.5: Illustration of the complementary angle tick and its technicalities

Remark 9.16. A band object which bounds a teardrop in S is depicted in Figure 9.5a. Meanwhile, the
shape depicted in Figure 9.5b does not constitute a teardrop. A contractible segment of indexed arcs is
depicted in Figure 9.5d. The existence of a contractible segment of arcs on X does not imply that the
underlying curve of X has a teardrop.

As we shall see in Lemma 9.17, the complementary angle trick succeeds in uncurving X ∈ TwGtlrA
when we assume the following three conditions on X:

• The underlying curve of X, regarded as a curve in the closed surface S, is not contractible and does
not bound a teardrop.

• All angles αi in the δ matrix are non-identities and strictly smaller than a full turn.

• No segment of indexed arcs of X is contractible.

In section B, we explain how to abandon the condition that segments of indexed arcs are not con-
tractible. Without the condition, one has to add further angles to δq for every location where X comes
close to itself, other than only the complementary angles α′

i. It is interesting to note that geometrically
these additional angles can be interpreted as “complementary to segments of indexed arcs” of X.

Lemma 9.17. Let A be a full arc system with [NMDC]. Regard a standard deformation GtlrA of GtlA
by some r ∈ mZ(GtlA) without 1-component. Let X ∈ TwGtlA be a Z/2Z-graded band object whose
underlying curve in S is not contractible and does not bound a teardrop. Assume that all angles in X
are non-identities and shorter than full turns. Then X ∈ TwGtlrA is uncurvable.

Proof. Without loss of generality, we assume that X has one-dimensional local system and all transition
values in δ are 1. The case with contractible segments is dealt with in section B. We shall therefore
assume that X has no contractible segments of indexed arcs.

Now let us prove that the complementary angle trick successfully uncurves X. This entails checking
that the curvature of (⊕ai[si], δq) ∈ Tw′ GtlrA vanishes. Explicitly, the curvature is

∑

k≥0

µkAddGtlr A(δq, . . . , δk).

The summand at k = 0 is the curvature µ0
X,q, explicitly the sum of the curvatures of the individual arcs.

Note that µ1
q vanishes due to [NMDC]. In the first step of the proof, we show that µ0

X,q precisely cancels

µ2
AddGtlr A(δq, δq). In the second step of the proof, we show that all the higher terms µ≥3

q (δq, . . .) vanish.
Let us analyze µ2

q(δq, δq). Since δq = δ + δ′ is the sum of the original δ and the modification δ′ due
to the complementary angle trick, we need to check the original part µ2

q(δ, δ) and the new components
µ2
q(δ, δ

′), µq(δ
′, δ) and µ2

q(δ
′, δ′). Recall also that the product µ2

q is not deformed: It is merely the B-linear
extension of the original µ2 by assumption of [NMDC]. As observed in Remark 9.8, we have µ2

q(δ, δ) = 0.
Similarly, there are no products of complementary angles possible, so µ2

q(δ
′, δ′) = 0.

Meanwhile, we have

µ2
AddGtlr A(δ, δ

′) =
k∑

i=1

−αirℓ
−1α′

i = −r ∈ mZ(GtlA),

where r on the right-hand side is interpreted as linear combination of powers of full turns starting at
those arc ends of the arc approximation where the angles αi enter. The minus sign comes from the sign
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Figure 9.6: The horizontal band in the 1-punctured torus. This band only has a suitable twisted complex
representation when the 4-gon is divided into triangles.

convention for AddGtlrA. Similarly,

µ2
AddGtlr A(δ, δ

′) =
k∑

i=1

−rℓ−1α′
iαi = −r ∈ mZ(GtlA),

where r on the right-hand side is interpreted as linear combination of powers of full turns starting at
those arc ends of the arc approximation where the angles αi leave.

We have used that all angles in the twisted differential of X are non-identities and shorter than
full turns: Identities would give extra terms in the products µ2(δ, δ′) and µ2(δ′, δ). Moreover, taking
complementary angles is only possible if all angles in X are at most full turns. A precise full turn would
in turn give an identity in δ′, hence an undesired contribution to e.g. µ2(δ′, δ). In short, we assumed just
the right condition so that nothing but the right terms appears in µ2(δq, δq). We conclude

µ0
X,q + µ2

AddGtlr A(δq, δq) = 0.

For the second step of the proof, we show that µk≥3
q (δq, . . . , δq) = 0. Assume D is an orbigon contributing

to this product. Then the boundary of D is a contractible indexed segment of X, in contradiction to
the assumption that there are no contractible indexed segments. This shows that µk≥3

q (δq, . . . , δq) = 0.
Finally, we conclude that the curvature of the deformed twisted complex Xq = (⊕ai[si], δq) vanishes.
This finishes the proof.

9.4 The uncurvable objects

In this section, we show that most band objects in TwGtlq A are uncurvable. The starting point is
the classification of band objects recalled in section 9.2 and the complementary angle trick defined in
section 9.3. The goal is to show that a band object is uncurvable if its underlying curve in S is topologically
nontrivial and does not bound a teardrop. We have already shown in Lemma 9.17 that the complementary
angle trick succeeds in uncurving these objects under the technical condition that all angles in the δ-matrix
of X are non-identities and shorter than full turns. In the present section, we show how to abandon this
technical condition.

Our starting point is again a full arc system A with [NMDC] and a deformation GtlrA with r ∈
mZ(GtlA) a deformation parameter without 1-component. It is our wish to apply the complementary
angle trick to every band object whose underlying curve in S is topologically nontrivial and does not
bound a teardrop. Combining Corollary 9.5 and Lemma 9.17, we would be done if every such band
object has a twisted complex representation where all angles are non-identities and shorter than full
turns. This is however not the case:

Remark 9.18. There are arc systems in which some bands fail to have representatives which satisfy
the requirements of Lemma 9.17. For example, regard the 1-punctured torus with two arcs depicted in
Figure 9.6. Its horizontal, or vertical, band cannot be represented as a twisted complex with all angles
non-identities and shorter than a full turn. As soon as we divide the 4-gon into two triangles, the band
suddenly has a desired representation.

There are however arc systems which guarantee the existence of representatives suitable for Lemma 9.17
for every band object whose underlying curve in S is topologically nontrivial and does not bound a
teardrop. Following Remark 9.18, the idea is to simply require that the arc system contains only of
triangles:

Lemma 9.19. Let A be a full arc system with [NMDC] and assume all polygons in A are triangles. Let
X ∈ HTwGtlA be a string or band object whose underlying curve in S is nontrivial and does not bound
a teardrop. Then X has a twisted complex representation in which all angles αi are non-identities and
shorter than a full turn.
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Figure 9.7: Removing cyclicity in the proof of Lemma 9.19

Proof. We proceed as in the proof of Lemma 9.9, and go a little further. Let us repeat the steps: Choose
an initial approximation of X by arcs ai such all angles αi are non-identities and strictly shorter than
a full turn. The rest of the proof is concerned with tweaking the approximation so as to make δ upper
triangular. In case of a string object, we are done. Let us inspect the given arc collection α1, . . . , αk with
its connecting angles α1, . . . , αk. By assumption, all angles αi go from arc ai to ai+1, or all the other
way around. Let us assume the former is the case: that αi runs from ai to ai+1. Moreover, any pair of
consecutive arcs αi, αi+1 runs at opposite ends of the arc ai+1, and all are non-identities.

Our strategy to break cyclicity is to pull some consecutive arcs with their angles following the interior
of a polygon to the opposite side of the polygon. Let us make this concrete and distinguish the following
hierarchy of cases: (a) there is an angle αi with at least three indecomposable components, (b) k = 1,
(c) there are two consecutive decomposable angles, (d) k = 2, (e) one angle αi is indecomposable. By
this hierarchy of cases, we mean that case (b) shall include that (a) does not hold; (c) shall include that
(a) and (b) do not hold, etc. Samples for all cases are depicted in Figure 9.7.

Regard case (a). Then we can flip a part of αi to the other side of a triangle.
Regard case (b). If α1 has just one indecomposable component, we have an immediate contradiction.

If α1 has two indecomposable components, then the arc in the middle of α1 appears twice in the triangle,
with equal orientation. This is also a contradiction, since the triangle is then not embedded anymore: In
Figure 9.7, the two dots inside the triangle would need to be equal, rendering the triangle non-embedded.

Regard case (c). Regard two consecutive decomposable angles αi and αi+1. Then the last indecom-
posable part of αi and the first indecomposable part of αi+1 are interior angles of a triangle. We can now
flip these parts of the angles to the opposite side of the triangle. As depicted in the figure, this suffices
to break cyclicity.

Regard case (d). It is impossible that both α1 and α2 are indecomposable. Indeed, this would mean
that the curve partially winds around the interior of a triangle. Since we are excluding case (c), we can
assume that α1 is indecomposable and α2 consists of two indecomposable parts. Then α2 crosses both
the head and the tail side of some arc, which is impossible.

Regard case (e). Let αi be the indecomposable angle and regard αi−1 as well as αi+1. Since the curve
does not bound a teardrop, the angle αi−1 enters the polygon from outside and αi+1 leaves the triangle.
In other words, both are longer than the preceding and succeeding interior angles of the triangle. The
tweak we apply to the angle sequence is to cut away the parts of αi−1 and αi+1 lying inside the triangle
and deleting αi. A shorter sequence remains to be dealt with.

In every step, the angles that are already present become only shorter. Moreover, all angles that are
inserted new in a step are interior angles of a polygon by choice. Since all polygons in A are triangles
and all arcs in A are non-contractible in S, all interior angles are shorter than a full turn. In total, we
end up with an approximation where all angles are non-identities and shorter than full turns, as well as
δ being upper triangular.

Theorem 9.20. Let A be a full arc system with [NMDC]. Let r ∈ mZ(GtlA) be a deformation parameter
without 1-component. Then all Z/2Z-graded band objects whose underlying curves in S are topologically
nontrivial and do not bound a teardrop are uncurvable.

Proof. The proof consists of two steps. The first is to observe that we have already proven the case when
all polygons in A are triangles. The second is to extend to the general case.

For the first step, let us assume that all polygons in A are triangles. Then by Lemma 9.19, the band
object X has a twisted complex representation where all angles are non-identities and shorter than full
turns. By Lemma 9.17, the complementary angle trick now successfully removes the curvature of X.
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For the second step, cut all polygons that are not triangles yet into pieces by adding arcs. Let us
denote the resulting marked surface with arc system by A′. We have an embedding GtlA ⊆ GtlA′, and
correspondingly

i : TwGtlA ⊆ TwGtlA′.

It is well-known that this map is actually a quasi-equivalence, see [18]. The reason is that all additional
arcs of A′ can be built up to quasi-isomorphism as twisted complexes of arcs in A. Correspondingly, we
also have a quasi-isomorphism

π : TwGtlA′ → TwGtlA

that sends an object i(X) to some object π(i(X)) quasi-isomorphic to X. Now choose X to be a band
object as in the hypothesis, i.e. topologically nontrivial in S and not bounding a teardrop. Then i(X) ∈
TwGtlA′ is uncurvable by the first step of the proof. According to Lemma 9.2, also π(i(X)) is uncurvable.
Since X itself is quasi-isomorphic to π(i(X)), it is uncurvable as well by Corollary 9.5. This finishes the
proof.

Remark 9.21. Let us get back to the 1-punctured torus with two arcs of Remark 9.18. We have seen
that the horizontal band has no twisted complex representation that is suitable for the uncurving trick.
According to Theorem 9.20, it can be uncurved nevertheless and by Corollary 9.5 this must in fact be
possible for every chosen twisted complex representation.

Denote the angles in the 1-punctured torus by α, β, γ, δ as in Figure 9.6. Pick the twisted complex
representation

X =


b⊕ a⊕ b[1],



0 γ id

0 0 δ

0 0 0





 .

By experimenting, we have found the uncurved twisted complex

Xq =


b⊕ a⊕ b[1],




0 γ id

−qβαδ qβα δ

−qαδγβ qγβα 0





 .

In other words, apart from the expected complementary angles qβαδ, qγβα and qαδγβ, we also have to
insert qβα. This difficulty is the reason we restricted the complementary angle trick to the case where
all polygons are triangles.

Remark 9.22. There are bands objects which are uncurvable but do not fall under the requirements of
Theorem 9.20. Deriving finer criteria is however increasingly difficult. For instance, uncurvability of band
objects representing curves with a teardrop depends on whether the deformation parameter includes ℓs

for low s.
For string objects, the situation is complicated as well. Most string objects cannot be uncurved,

but there are exceptions. The underlying curve of a string object can typically be interpreted as an
arc candidate for some full arc system if it has no self-intersections. In this case, it is not uncurvable
for general deformation parameter r. A string object whose underlying curve is a loop may however be
uncurvable if r ∈ m

2Z(GtlA).

10 The category of zigzag paths

In this section, we define the category L and construct for it an explicit homological splitting. This
category L is a new, discrete analog of the smooth zigzag category studied by Cho, Hong and Lau [26].
We follow their idea of including all zigzag curves with chosen spin structure into a category, except
that we realize the curves as twisted complexes over the gentle algebra instead of objects in the Fukaya
category.

After defining this category L, the second step in this section is to analyze the morphisms between
the objects. We introduce terminology to handle locations where two zigzag paths come close to each
other: situations of type A, B, C and D. We show that every morphism between two zigzag paths can be
written as a linear combination of angles, and that each angle comes from a unique A, B, C or D type
situation.

Finally, we use this classification of morphisms to provide an explicit homological splitting for the cat-
egory L. This entails identifying a cohomology space H for every hom space, and finding complementary
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(a) Arcs and angles in a zigzag path
(b) A small angle and its zigzag path

Figure 10.1: Illustration of zigzag paths and small angles

spaces R for every pair of zigzag paths. The splitting of individual morphisms into H, I and R parts is
collected in Table 10.5, which will be referred to throughout the paper.

10.1 Category of zigzag paths

In this section, we define the category L of zigzag paths. The idea is to turn zigzag paths in Q into
twisted complexes in TwGtlQ. The construction of the twisted complexes requires the additional input
data of a spin structure for every zigzag path. We fix terminology and notation for these spin structures.
The result of the construction is the subcategory L ⊆ TwGtlQ.

Zigzag paths in Q Category of zigzag paths L ⊆ TwGtlQ

Generally, arcs as objects in GtlQ can be stitched together to form twisted complexes which model
curves in the Fukaya category. This is a well-known method, explicit in [16, Section 9.2] and implicit in
[35]. We have detailed it in section 9.2 and shall now apply it specifically to zigzag paths. Recall that a
zigzag path has necessarily even length, because it alternates between turning left and right.

Given a zigzag path L, we sometimes need to refer to specific angles surrounding L. We set up this
terminology as follows: Assume the consecutive arcs of the zigzag path are a1, a2, . . .. Let us assume Q
is geometrically consistent, so that every puncture in Q has valency at least four. Thus, the mere data
of the arc sequence a1, a2, . . . already determines for every i ∈ N whether L turns left or right at (the
head or tail of) ai. For those i ∈ N where L turns left at ai, denote by αi the angle that winds around
the common puncture h(ai) = t(ai+1), is shorter than a full turn, starts at the head of ai and ends at
the tail of ai+1. For those i ∈ N where L turns right at ai, denote by αi the angle that winds around the
common puncture h(ai) = t(ai+1), is shorter than a full turn, starts at the tail of ai+1 and ending at the
head of ai. The notation is depicted in Figure 10.1a. We also call αi the small angle in L between ai
and ai+1.

Remark 10.1. Every (indexed) arc ai either has precisely two small angles leaving it and no small angle
ending at it, or two small angles ending at it and no small angles leaving it. In fact, the arcs of those
types alternate along L. The reader can easily convince himself of this fact by regarding Figure 10.1a.

Turning a zigzag path into a twisted complex requires the datum of a spin structure. For our purposes,
this simply entails choosing a sign (−1)#αi for every small angle αi in the zigzag path. Writing the sign
additively, we fix the terminology as follows:

Definition 10.2. A spin structure on a zigzag path L is a choice of signs #αi ∈ Z/2Z for each of its
small angles αi.

The notation #αi makes sense: If the small angle between ai and ai+1 is equal to the small angle
between aj and aj+1, then i and j differ precisely by a period of L. In short, every small angle of L
appears only once as small angle of L and therefore the notation #αi makes sense for the scope of a
single zigzag path.

Giving a spin structure simultaneously for all zigzag paths of Q is equivalent to giving a sign #α ∈
Z/2Z for all indecomposable angles α in Q. Indeed, if two zigzag paths L1 and L2 share a small angle,
then L1 and L2 are actually equal. This fact is depicted in Figure 10.1b. In that figure, the dashed arcs
indicate that the drawn angle shall be an interior angle of a polygon. In summary, giving a collection of
spin structures for all zigzag paths is equivalent to choosing a sign #α ∈ Z/2Z for every indecomposable
angle α in Q.

Definition 10.3. Let Q be a geometrically consistent dimer and L a zigzag path with spin structure.
Write the arcs of L as a1, . . . , a2k, chosen such that L turns left from a1 to a2. Let α1, α2, . . . be the small
angles in L between a1 and a2, etc. Then the twisted complex associated with L is given by

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ)



118 10. The category of zigzag paths

with twisting differential

δ =




0

(−1)#α1α1 0 . . . 0 (−1)#α2kα2k

(−1)#α2α2 (−1)#α3α3 . . . 0 0

0 (−1)#α4α4 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (−1)#α2k−3α2k−3 0

0 0 . . . (−1)#α2k−2α2k−2 (−1)#α2k−1α2k−1

0 0




.

In Definition 10.3, we have introduced abuse of notation twice: Using the letter “L” both for a zigzag
path and its twisted complex, and simply calling both uses a “zigzag path”. The intention behind this
abuse is to switch seamlessly between between both uses. A typical sentence in this paper will be: “Regard
the endomorphisms of some zigzag path L.” In that sentence, it is clear that L shall be a zigzag path
and we regard the endomorphisms of its associated twisted complex.

The twisted complex defined in Definition 10.3 is indeed a well-defined object of TwGtlQ, i.e. δ
satisfies the Maurer-Cartan equation:

Lemma 10.4. Let L be a zigzag path with spin structure. Then its twisting differential δ satisfies the
Maurer-Cartan equation, so that L indeed lies in TwGtlQ.

Proof. The Maurer-Cartan equation reads

µ1
AddGtlQ(δ) + µ2

AddGtlQ(δ, δ) + µ3
AddGtlQ(δ, δ, δ) + . . . = 0.

Proving the Maurer-Cartan equation therefore boils down to showing that for any sequence of compatible
angles α1, . . . , αk appearing in the δ matrix of L we have

µkGtlQ(αk, . . . , α1) = 0.

Let us check all such terms. Since the differential µ1
GtlQ vanishes, we can assume k ≥ 2. Assume a1

starts at arc a1 and ends at a2. In order to have any nonzero contribution µkGtlQ(. . . , α1), there would
need to be a small angle starting at a2. According to Remark 10.1, every arc however admits either only
incoming or only outgoing small angles. Since α1 is already an incoming angle for a2, we conclude that a2
has no outgoing angles. Therefore the product µkGtlQ(. . . , α1) vanishes. The reader can convince themself
of this visually by drawing a zigzag path together with its small angles and trying to draw an immersed
disk bounded solely by small angles. We conclude that δ satisfies the Maurer-Cartan equation.

Definition 10.5. Choose a spin structure for all zigzag paths L1, . . . , LN in Q. Then the category of
zigzag paths L ⊆ TwGtlQ is the (full) subcategory L = {L1, . . . , LN} of TwGtlQ consisting of all
zigzag paths with their single chosen spin structure.

Every zigzag path only appears once in L. We do not allow the same zigzag path multiple times in
L with different spin structures, since this is not the goal of this paper and it would make calculations
more complicated. Since L depends on Q and the choice of spin structures, denoting this category by the
letter L denotes a slight abuse of notation.

10.2 ABCD situations

In this section, we provide a basis for the hom spaces between zigzag paths. We depart from two zigzag
paths L1 and L2 and analyze their hom space in the category L. The first step is to introduce a notion
of elementary morphisms from L1 to L2. This way, every morphism from L1 to L2 can be written as
a linear combination of elementary morphisms. We then classify elementary morphisms according to
the geometry of L1 and L2 in the surroundings of the morphisms. This gives rise to a classification
into four types A, B, C, D. Elementary morphisms associated with these four types provide a basis for
HomL(L1, L2). Ultimately, the A, B, C, D types will accompany us during our entire journey to the
minimal model.

Regard two zigzag paths L1 and L2. It is our aim to provide a basis for Hom(L1, L2). Recall from
section 6.9 that an indexed arc of a zigzag path consists of an arc lying on the zigzag path, together
with the datum of whether the zigzag path turns left or right at the head (equivalently tail) of the arc.
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Figure 10.2: All elementary morphisms ε : L1 → L2 are contained in one of these situations.

Recall from Definition 10.3 that every zigzag path comes with an associated twisted complex over GtlQ.
Therefore any morphism ε ∈ HomL(L1, L2) can be uniquely written as a linear combination of angles
from indexed arcs of L1 to indexed arcs of L2. In other words, every angle from an indexed arc of L1 to
an indexed arc of L2 gives rise to a morphism ε ∈ HomL(L1, L2), and all morphisms can be obtained as
sums of such “elementary morphisms”. Let us make this precise:

Definition 10.6. An elementary morphism ε : L1 → L2 is an angle from an indexed arc of L1 to an
indexed arc in L2, interpreted as morphism between twisted complexes.

We now move on to defining A, B, C and D situations. As a preparation, regard two consecutive arcs
a, b in an elementary polygon of Q. This pair defines a zigzag path L, namely the one starting with a and
turning then to b. This way, a and b become indexed arcs of L. Indeed, the zigzag path never traverses
a followed by b again, except after cycling once fully through L.

Definition 10.7. Let Q be a geometrically consistent dimer and L1 and L2 be zigzag paths.
An A situation from L1 to L2 consists of two consecutive indexed arcs of L1 and two consecutive

indexed arcs of L2 such that both midpoints (head of the first arc, equally tail of the second arc) are
equal and all four arcs provide distinct incidences at this point. As in Figure 10.2a, the two arcs of L1 are
cyclically denoted 1, 2. The two arcs of L2 are cyclically denoted 3, 4. The angles involved are denoted
α, β, γ and β′. An elementary angle of this A situation is a product of such angles running from
1/2 to 3/4. Concretely, these are the angles in the A section of Table 10.5.

A B (resp. C) situation from L1 to L2 consists of an indexed arc 2 of L1 and an indexed arc 5 of
L2 such that 2 = 5 as arcs in Q, L1 turns left (resp. right) at the head and tail of 2, and L2 turns right
(resp. left) at the head and tail of 2. As in Figure 10.2b (resp. 10.2c), the neighboring indexed arcs are
denoted 1, 3, 4, 6. An elementary angle of this B (resp. C) situation is a composition of angles
in the figure, including id2→5, that runs from 1/2/3 to 4/5/6. Concretely, these are the angles in the B
(resp. C) section of Table 10.5.

If L1 = L2, then a D situation from L1 = L2 to itself consists of a single indexed arc of L1 = L2. If
L1 = L2 turns right at the head of the arc, this arc is denoted 1 and the next indexed arc is denoted 2.
If L1 = L2 turns left, the arc is denoted 2 and the next indexed arc is denoted 1. The angles are named
as in Figure 10.2d. An elementary angle of this D situation is a composition of angles in the figure
that runs from the first arc to itself or to the second, from the second to the first, or from the second to
itself by at least one full turn.

An elementary morphism may be annotated with its type of situation to enhance clarity: β (A), α3

(B), id (C), id (D), etc.

Remark 10.8. Any arcs involved in a situation are allowed to be equal. The distinction and ordering
of arcs only concerns the local behavior of the arc ends at the common punctures.

We show that the A, B, C and D situations classify elementary morphisms uniquely. One may think
that, for example, an elementary morphism α3α4 of a B situation equals an elementary morphism β′α2

of a C situation, or even α2α1 of the same B situation. We now explain that this is not the case.

Proposition 10.9. Let Q be a geometrically consistent dimer and let L1, L2 be zigzag paths in Q. Then
any elementary morphism ε : L1 → L2 is an elementary morphism of precisely one A, B, C or D situation.
Moreover, it is assigned only once as an elementary morphism of that situation.
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Figure 10.3: Examining case-by-case which situation ε belongs to. Here ε : L1 → L2 is an elementary
morphism strictly shorter than a full turn. Each of the cases corresponds to the option whether L1 and
L2 turns left or right at ε and how many indecomposable angles ε consists of. In the figures, the latter
number is indicated below the target arc. The number above the target arc indicates the number of
indecomposable angles in the complement of ε. Due to zigzag consistency, the sum of the two numbers
is at least 4.

Proof. We show that any elementary morphism ε : L1 → L2 appears in an A, B, C or D situation. In
case ε is strictly shorter than a full turn, a case-by-case study is performed in Figure 10.3. Now if ε is a
full turn or longer, write ε = ε′ℓn, where ℓn denotes a number of full turns. Then ε′ itself is shorter than
a full turn and hence is an elementary morphism of an A, B, C or D situation. Then by definition also ε
is an elementary morphism of the same situation. Note this also applies in case ε′ is id (B), id (C) or id
(D), since the turns (α1β

′α2)
i (B), (α4βα3)

i (B), (α1β
′α2)

i (C), (α4βα3)
i (C), αα′ (D) and α′α (D) are

also elementary morphisms of B, C and D situations.
For uniqueness, realize that for any elementary morphism, as distinguished in Figure 10.3, we can

read off the entire situation and which of its elementary morphisms it concerns by inspecting which arc
ends coincide, where the zigzag path turns at ε and in which directions the arrows point.

Classifying elementary morphisms into A, B, C, D situations is extremely handy. During this paper,
we often need to indicate generic morphisms of these four types. For instance, we may say that a certain
morphism is an “α3 morphism”. By this we mean that it is an α3 morphism of one certain B situation.

10.3 Homological splitting

In this section, we introduce a homological splitting for the category L of zigzag paths. The starting point
is the category L together with the description of its hom spaces according to section 10.2. The first step
in this section is to fix once and for all the requirements on Q and additional data we assume for the rest
of the paper. The second step to define the splitting H ⊕ I⊕R by giving an explicit basis in terms of the
A, B, C, D situations in Q. The idea is to reflect the geometry of the associated zigzag curves as far as
possible. It is worth memorizing some basis elements, for instance β (A) morphisms always belong to R.

Let us fix once and for all the requirements on Q and the description of additional data we require.
Apart from assuming that Q is a fixed geometrically consistent dimer with spin structures chosen for
every of its zigzag paths, we also require the data of what we call idenity and co-identity locations. The
idea is that the choice of homological splitting in this paper is not entirely canonical, but depends on
these two kinds of choices. The datum of an identity location on a zigzag path L entails the choice of an
indexed arc a0 on L. The midpoint of a0 is to be thought of as location of the identity intersection point
between the associated zigzag curve L̃ and its Hamiltonian deformation. The datum of a co-identity
location on a zigzag path L entails the choice of a small angle α0 on L. The midpoint of this angle is to
be thought of as the location of the co-identity intersection point between the associated zigzag curve L̃
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and its Hamiltonian deformation. For the visual meaning of identity and co-identity locations, we refer
to Figure 7.6 and 13.3. With these use cases in mind, we can state our convention as follows:

Convention 10.10. Q is a geometrically consistent dimer equipped with a choice of spin structure,
identity location a0 and co-identity location α0 on every zigzag path. The category L contains every zigzag
path once, with the chosen spin structure. The co-identity α0 shall be chosen to lie in a counterclockwise
polygon.

We assume Convention 10.10 throughout section 11, 12 and 13 without further notice. Only in the
statement of the main theorems will we mention again that the convention is assumed. In section C, the
convention is assumed as well, while section D specifically deals with the sphere case where we abandon
the convention. The requirement that α0 shall lie in a counterclockwise polygon is required to make
certain calculations work. For more details, we refer to the discussion in section F.3.

We are now ready to define the homological splitting. For H, the idea is to reflect the intersection
geometry of the associated zigzag curves as far as possible. The basis elements for H defined in this
section will be used throughout the paper and we refer to them as cohomology basis elements. For R, we
have to make slightly arbitrary choices of basis elements.

Definition 10.11. Let L1 and L2 be two zigzag paths. Denote by H ⊆ HomL(L1, L2) the subspace
spanned by the cohomology basis morphisms

• for every B situation, (−1)#α3+1α3 + (−1)#α4α4,

• for every C situation, id2→5,

• if L1 = L2, then (−1)#α0+1α0 and
∑
a ida.

Denote by R ⊆ HomL(L1, L2) the subspace spanned by the following elements, collected from all
situations from L1 to L2:

• γβ(αβ′γβ)i (A), β(αβ′γβ)i (A),

• (α4βα3)
i, i ≥ 1 (B), (α1β

′α2)
i, i ≥ 1 (B), id2→5 (B), α3(α4βα3)

i (B), α1(β
′α2α1)

i (B),

• β′(α2α1β
′)i (C), β(α3α4β)

i (C), α1β
′(α2α1β

′)i (C), βα3(α4βα3)
i (C),

• ida, a 6= a0 (D), α′(αα′)i (D), (α′α)i, i ≥ 1 (D).

Denote by I the image of the twisted differential µ1
L : HomL(L1, L2)→ HomL(L1, L2). Then R, I and

H form the (standard) splitting of HomL(L1, L2).

The cohomology basis elements are to be interpreted as follows: The odd element (−1)#α3+1α3 +
(−1)#α4α4 corresponds to the odd intersection between L̃1 and L̃2 at the midpoint of the arc 2 = 5. In
contrast, the even element id2→5 corresponds to the even intersection between L̃1 and L̃2 at the midpoint
of the arc 2 = 5. The odd element (−1)#α0+1α0 corresponds to the co-identity element of the zigzag
curve L̃1. The even element

∑
a ida corresponds to the identity element of the zigzag curve L̃1. Two of

the geometric interpretations are depicted in Figure 10.4.
The splitting is not that hard to find and has at least been anticipated in [16, Section 9.2]. For more

information we refer to the discussion in section F.1. Our next step is to show that the standard splitting
indeed provides a homological splitting of L.

Lemma 10.12. Let L1 and L2 be zigzag paths. Then HomL(L1, L2) = H + I +R.

Proof. Any morphism L1 → L2 is a sum of elementary morphisms. By Proposition 10.9, any elementary
morphisms belongs to an A, B, C or D situation. Given this case distinction, Table 10.5 shows that any
such morphism can be written as a sum of elements in R, I and H.

It is worth commenting on the fact that the equations in Table 10.5 actually hold true. This is due
to diligent evaluation of the twisted differential

µ1
L(ε) = µ1(ε) + µ2(δ, ε) + µ2(ε, δ) + . . . .

Let us examine the possible µ≥3 terms appear. For any elementary morphism ε : L1 → L2, at most one
δ can be inserted upfront and at the back. Hence only µ3 disks can appear. Inspecting the direction of
δ morphisms, we conclude that the only possible disks appear in the case of µ1

L(β) of situation A and
µ1
L(β) and µ1

L(β
′) of situation C.
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Situation A 1→3 βα(β′γβα)i = µ1
L((−1)

#α+1β(αβ′γβ)i) + (−1)#α+#γ+‖β‖γβ(αβ′γβ)i without
triangle degeneration

1→3 βα = µ1
L((−1)

#α+1β)+ (−1)#α+#γ+‖β‖γβ+(−1)#α+#γ1+#γ2 idL1→L2
in case

of triangle degeneration

1→4 γβα(β′γβα)i = µ1
L((−1)

#α+1γβ(αβ′γβ)i)

2→3 β(αβ′γβ)i ∈ R

2→4 γβ(αβ′γβ)i ∈ R

Situation B 1→5 α1(β
′α2α1)

i ∈ R

1→6 α2α1(β
′α2α1)

i = µ1
L((−1)

#α2+1α1(β
′α2α1)

i)

2→4 α3(α4βα3)
i ∈ R

2→5 (α1β
′α2)

i ∈ R, i ≥ 1

2→5 (α4βα3)
i ∈ R, i ≥ 1

2→5 id2→5 ∈ R

2→6 α2(α1β
′α2)

i = µ1
L((−1)

#α2(α1β
′α2)

i) + (−1)#α1+#α2α1(β
′α2α1)

i, i ≥ 1

2→6 α2 = (−1)#α2((−1)#α3+1α3 + (−1)#α4α4) + µ1
L((−1)

#α2 id2→5) +
(−1)#α1+#α2α1

3→4 α3α4(βα3α4)
i = µ1

L((−1)
#α4+1α3(α4βα3)

i)

3→5 α4(βα3α4)
i = µ1

L((−1)
#α4+1(α4βα3)

i)− α3(α4βα3)
i, i ≥ 1,

3→5 α4 = (−1)#α4((−1)#α3+1α3 + (−1)#α4α4) + (−1)#α3+#α4α3

Situation C 1→5 α1β
′(α2α1β

′)i ∈ R

1→6 β′(α2α1β
′)i ∈ R

2→4 βα3(α4βα3)
i ∈ R

2→5 (α1β
′α2)

i = µ1
L((−1)

#α2+1α1β
′(α2α1β

′)i−1), i ≥ 1

2→5 (α4βα3)
i = µ1

L((−1)
#α4+1βα3(α4βα3)

i−1), i ≥ 1

2→5 id2→5 ∈ H,

2→6 β′α2(α1β
′α2)

i = µ1
L((−1)

#α2+1β′(α2α1β
′)i) + (−1)#α1+#α2α1β

′(α2α1β
′)i

3→4 β(α3α4β)
i ∈ R

3→5 α4β(α3α4β)
i = µ1

L((−1)
#α4β(α3α4β)

i) + (−1)#α3+α4βα3(α4βα3)
i

Situation D 1→1 id1→1 ∈ R if 1 6= a0

1→1 id1→1 =
∑

ida−
∑
a 6=a0

ida if 1 = a0

1→1 (α′α)i ∈ R, i ≥ 1

1→2 α = α0 ∈ H if α = α0

1→2 α = (−1)#α+#α0+1α0 + µ1
L((−1)

#α+1(ida1 + . . . + idak)) if α 6= α0 in case 1
with k odd

1→2 α = (−1)#α+#α0α0 + µ1
L((−1)

#α+1(ida1 + . . .+ idak)) if α 6= α0 in case 1 with
k even

1→2 α = (−1)#α+#α0+1α0 + µ1
L((−1)

#α(ida1 + . . .+ idak)) if α 6= α0 in case 2 with
k odd

1→2 α = (−1)#α+#α0α0 + µ1
L((−1)

#α+1(ida1 + . . .+ idak)) if α 6= α0 in case 2 with
k odd

1→2 α(α′α)i = µ1
L((−1)

#α(α′α)i), i ≥ 1

2→1 α′(αα′)i ∈ R

2→2 id2→2 ∈ R if 2 6= a0

2→2 id2→2 =
∑

ida−
∑
a 6=a0

ida if 2 = a0

2→2 (αα′)i = µ1
L((−1)

#α+1α′(αα′)i−1)− (α′α)i, i ≥ 1

Table 10.5: Verification of the homological splitting
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L2L1

(a) Situation B intersection

L1L2

(b) Situation C intersection

Figure 10.4: The cohomology elements (−1)#α3α3 + (−1)#α4+1α4 (B) and id (C) are the odd resp. even
generators of Floer cohomology.

First, let us examine the case of µ1
L(β) in situation A. Denote the corresponding δ-angles by γ1 and

γ2, and the next arcs of L1 and L2 by 5 and 6. Then traversing 6, γ1, 2, β, 3, γ2, 5 must bound a disk
and hence 5 and 6 are equal arcs and the disk is a simple polygon. Then indeed µ1

L(β) includes an id5→6

morphism. See Figure 10.6.
Next, we rule out the possibility that µ1

L(β) or µ1
L(β

′) of situation C has a disk contribution. Carry
out the same analysis as in situation A and find that β or β′ is an elementary polygon angle, respectively.
Together with the fact that the neighboring angles α3 and α4 are also elementary polygon angles com-
prising a full turn around puncture t(2), this contradicts the fact that Q is a dimer. We conclude that
the differential µ1

L(β) in situation A remains as the only one that may include non-obvious terms.
Let us explain the meaning of case 1 and 2 in Table 10.5. This case distinction appears when we try

to write an α angle with α 6= α0 in terms of H, I and R. Obviously, precisely one of the following two is
the case:

1. The segment of L1 starting with the target 2 of α and continuing in the direction of α first hits the
source or target of α0 before hitting a0.

2. The segment of L1 starting with the source 1 of α and continuing in the opposite direction of α
first hits the source or target of α0 before hitting a0.

The two cases are depicted in Figure 10.7.
In case 1, put a1 = 2, the indexed target of α. Denote by a1, . . . , ak the segment of L until ak is either

the indexed source or target of α0, whichever comes first. In case 2, put a1 = 1, the indexed source of
α. Denote by a1, . . . , ak the segment of L until ak is either the indexed source or target of α0, whichever
comes first.

In both cases, let αi be the angle from ai−1 to ai if i is odd, or from ai to ai−1 if i is even. In
particular, put α1 = α and αk+1 = α0.

In case 1, we have

µ1
L(idai) = (−1)#αi+1αi + (−1)#αi+1+1αi+1, if i odd,

µ1
L(idai) = (−1)#αiαi + (−1)#αi+1αi+1, if i even.

Adding these up, we obtain

µ1
L(ida1 + . . .+ idak) = (−1)#α+1α+ (−1)#α0+1α0, if k odd,

µ1
L(ida1 + . . .+ idak) = (−1)#α+1α+ (−1)#α0α0, if k even.

In case 2, we similarly get

µ1
L(ida1 + . . .+ idak) = (−1)#αα+ (−1)#α0α0, if k odd,

µ1
L(ida1 + . . .+ idak) = (−1)#αα+ (−1)#α0+1α0, if k even.

This precisely verifies the equations in Table 10.5 concerning α (D).
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L1

2

1

L2

3

4

α γ
β′

β

γ1 γ2

Figure 10.6: Triangle degeneration in situation A

a0α

α0

(a) Case 1: When following L in the direction of α, the
co-identity α0 is hit before a0.

a0

α

α0

(b) Case 2: When following L in the direction against
α, the co-identity α0 is hit before a0.

Figure 10.7: Position of an angle α between α0 and a0.

Proposition 10.13. Let L1 and L2 be zigzag paths. Then the standard splitting H, I, R defines a
homological splitting of HomL(L1, L2).

Proof. We need to check that I is the image of µ1
L, that H+I is the kernel of µ1

L and that HomL(L1, L2) =
H ⊕ I ⊕R. First, note that I is the image of µ1

L by definition. Next let us check that µ1
L(H) = 0. In our

situational formalism, this is a simple calculation:

µ1
L((−1)

#α3+1α3 + (−1)#α4α4) = µ2((−1)#α3+1α3, (−1)
#α4α4) + µ2((−1)#α3α3, (−1)

#α4α4) + µ≥3(. . .)

= (−1)#α3+#α4α3α4 + (−1)#α3+#α4+1α3α4 = 0,

µ1
L(id (C)) = µ≥3(. . . , id, . . .) = 0,

µ1
L(
∑

ida) = µ2(
∑

ida, δ) + µ2(δ,
∑

ida) + µ≥3(. . . , id, . . .) = −δ + δ = 0,

µ1
L((−1)

#α0+1α0) = (−1)#α0+1µ≥3(. . . , α0, . . .) = 0.

Indeed, both id (C) and α0 (D) have no δ morphisms that can be multiplied upfront or at the back, and
correspondingly also produce no µ≥3 disks. Since I ⊆ Ker(µ1

L), we conclude H + I ⊆ Ker(µ1
L).

Next, recall from Lemma 10.12 that we have HomL(L1, L2) = H + I +R. Let us verify by dimension
counting that this sum is direct. For N ∈ N, denote by EN ⊆ E := HomL(L1, L2) the subspace spanned
by elementary angles of at most N full turns. This is a finite dimensional space.

Table 10.5 implies that any element of EN can be written as a sum of elements of H ∩ EN , I ∩ EN
and R ∩ EN if N ≥ 1. The sum of these three spaces is direct, since the sum of their dimensions is less
than or equal to the dimension of EN :

dim(H ∩ EN )
+

= #B +#C [+2 if L1 = L2],

dim(I ∩ EN )
+

≤ 2N#A+ (4N − 1)#B + 4N#C [+2N#D − 1 if L1 = L2],

dim(R ∩ EN )≤ = 2N#A+ (4N + 1)#B + 4N#C [+(2N + 1)#D − 1 if L1 = L2],

dimEN = 4N#A+ (8N + 1)#B + (8N + 1)#C [+(4N + 1)#D if L1 = L2].

Here #A, #B, #C and #D denote the number of situations of type A, B, C and D that appear from
L1 to L2.

The filtration of E by EN is exhaustive. If the zero element of E is a nontrivial sum of elements of
H, I and R, then by picking the maximum number of turns N involved, we obtain a contradiction to
EN being the direct sum of H ∩ EN , I ∩ EN and R ∩ EN . We conclude that E = H ⊕ I ⊕R.

Finally, let us argue that Ker(µ1
L) = H ⊕ I. Indeed, the equivalent statement that µ1

L : R → I is
injective can be checked by an elementary situational calculation. Note that if ε is from a certain situation,
then µ1

L(ε) is from the same situation, apart from triangle degenerations and situation D morphisms.
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Alternatively, note the cohomology of the complex HomL(L1, L2) is precisely Floer cohomology: The
category HTwGtlQ is nothing else than the wrapped Fukaya category of Q. Now Floer cohomology has
a basis element for every intersection of L1 and L2, plus an identity and a co-identity if L1 = L2. We
conclude

dim(Ker(µ1
L)/I) = #B +#C [+2 if L1 = L2] = dimH.

This implies Ker(µ1
L) = H ⊕ I and finishes the proof.

11 The deformed category of zigzag paths

In this section, we define and study the deformed category Lq of zigzag paths. This category is the
deformed version of L. Its deformation comes from the deformation Gtlq Q of the gentle algebra. Already
in the definition of Lq, we apply the complementary angle trick from section 9.4 in order to remove the
curvature. We then analyze the differential µ1

Lq
, in fact investigate how µ1

Lq
interacts with the homological

splitting of L from section 10.3. We show that Lq falls under the regime of the simplified deformed
Kadeishvili construction from section 8.8. We provide explicit formulas for the deformed codifferential
hq and deformed projection πq in terms of “tails” of the morphisms involved.

Category L

of zigzag paths
section 10.1

Homological
splitting for L

section 10.3

Category Lq
of deformed zigzag paths

EFGH disks

Description of µ1
Lq

in terms of tails

Deformed
codifferential hq

and projection πq

These “tails” arise from applying the general Kadeishvili construction to the specific case of Lq.
According to the general deformed Kadeishvili theorem, we need to find for every cohomology basis
element h ∈ H a certain deformed version ϕ−1(h) such that ϕ−1(h) and h only differ by R terms. In case
of Lq, we can explicitly describe ϕ−1(h) for each of the cohomology basis elements in H. The explicit
description forces us to define and make us of what we call the tails of morphisms. Tails work as follows:
Let ε : L1 → L2 be an elementary morphism. Look at all locations where L1 and L2 come close to each
other and bound a discrete immersed disk together with ε. It turns out that these locations of closeness
have a hierarchical structure, which we organize in a tree. This tree is the tail of ε and carries the data
of many secondary A, B, C or D situations which lie far away from ε. We use the angles contained in
this tail to construct explicitly the deformed cohomology basis elements ϕ−1. In other words, tails are
the right tool to convert the rather algebraic requirement of the deformed Kadeishvili theorem into a
geometric interpretation in the specific case of Lq.

Remark 11.1. From this section onwards, we typically write µ or µq for the product of AddGtlq Q:

µq := µ := µAddGtlq Q.

The reason for this notation is that we frequently expand products of the twisted completion TwGtlq Q
in terms of the products of the additive completion. This shorthand is meant to facilitate this expansion
and mixes well with writing µ or µq for the product of Gtlq Q. The product of GtlQ is irrelevant and is
never meant. We keep the shorthand µq until section 13.

11.1 Deformed zigzag paths

In this section, we define the category Lq of deformed zigzag paths. The starting point is the non-deformed
category L of zigzag paths. Taking the same twisted complexes gives a subcategory of TwGtlq Q. The
aim of the entire paper is to compute a minimal model for this subcategory. According to the deformed
Kadeishvili theorem, the first step is to gauge away as much curvature as possible. The aim of the present
section is to conduct this uncurving procedure, and to define Lq to be the resulting uncurved category.
The essential tool for uncurving is the complementary angle trick of section 9.4.



126 11. The deformed category of zigzag paths

Figure 11.1: Fictitious discrete immersed disks bounded by segments of zigzag paths

Zigzag paths
L ⊆ TwGtlQ

Deformation Gtlq Q

Zigzag paths
in TwGtlq Q

Deformed zigzag paths
Lq ⊆ Tw′ Gtlq Q

uncurving

Recall that the zigzag paths are objects in TwGtlQ. They can also be interpreted as objects in
TwGtlq Q by definition of the deformed twisted completion. As an object of TwGtlq Q, every zigzag
path has curvature. Our approach is to uncurve every zigzag path by means of the complementary angle
trick of section 9.4. For every zigzag path, the trick gives rise to a twisted complex with also infinitesimal
below-diagonal entries. By definition, this is an element of the category Tw′ Gtlq Q, see section 5.5.
We shall call this object a deformed zigzag path because its δ-matrix has been deformed. The precise
definition for deformed zigzag paths reads as follows:

Definition 11.2. Let L be a zigzag path of Q, with twisted complex

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ)

as in Definition 10.3. Then the corresponding deformed zigzag path is the following object of Tw′ Gtlq,
also denoted L:

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ) ,

δ =




0 ditto

(−1)#α1q1α
′
1 (−1)#α2q2α

′
2 0 . . . 0

0 (−1)#α3q3α
′
3 (−1)#α4q4α

′
4 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . (−1)#α2k−2q2k−2α
′
2k−2

(−1)#α2kq2kα
′
2k 0 0 . . . (−1)#α2k−1q2k−1α

′
2k−1

0




.

Here “ditto” denotes the same matrix entries as in Definition 10.3. The letter qi denotes the puncture
around which αi winds.

The deformed zigzag paths are objects of Tw′ Gtlq Q. The entries of their δ-matrix are angles αi and
α′
i, which we call the inner respectively outer δ-angles of L. The main interest of the present paper is

in the subcategory of all deformed zigzag paths, each with their associated choice of spin structure. We
give the category consisting of these objects a name:

Definition 11.3. The category of deformed zigzag paths is the full subcategory Lq ⊆ Tw′ Gtlq Q
consisting of the deformed zigzag paths.

The category Lq is a deformation of L, as we have explained in Lemma 5.38. It is completely acceptable
that we have inserted below-diagonal entries into the twisted complex. In what follows, we explain why
Lq is indeed curvature-free. It is in fact a consequence of the more general property of the complementary
angle trick Lemma 9.17, but we provide here a direct proof as well. The direct proof builds on the fact
that segments of zigzag paths in geometrically consistent dimers cannot bound discrete immersed disks.
In Figure 11.1 we have depicted a fictitious discrete immersed disk bounded by a zigzag path and we
shall prove that this situation is indeed impossible:

Lemma 11.4. Let Q be a zigzag consistent dimer and L a zigzag path. Then a segment of L cannot
bound a discrete immersed disk.
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Proof. Assume towards contradiction that D : Pk → |Q| is a discrete immersed disk bounded by a
segment of L. Then at least one of the consecutive interior angles of the discrete immersed disk must be
an outer δ-angle α′ and hence consist of at least two indecomposable angles. The rest of the argument is
a standard contradiction from geometric consistency theory: Construct a zigzag path L′ at α′ that points
inside the discrete immersed disk. Follow L′ until it leaves the discrete immersed disk. To be precise,
“leaving” refers not to the leaving an area in |Q|, but to touching the boundary ∂Pk in the domain of
the underlying polygon immersion D : Pk → |Q|. Either way, the final arc a before definitely leaving
the discrete immersed disk lies on the boundary of the disk due to the zigzag nature of L. The L and
L′ segments from α′ until a are homotopic, since both lie in the discrete immersed disk. We obtain a
contradiction with geometric consistency. This shows that L cannot bound a discrete immersed disk.

Lemma 11.5. Every deformed zigzag path L is curvature-free.

Proof. The curvature of L as object in TwGtlq Q is

µ0
AddGtlq Q,L + µ1

AddGtlq Q(δ) + µ2
AddGtlq Q(δ, δ) + . . .

It is our task to prove that this curvature vanishes. A first observation is that the two terms µ0
AddGtlq Q,L

and µ2
AddGtlq Q

(δ, δ) precisely cancel each other and we have µ1
AddGtlq Q

= 0. By Lemma 11.4, a segment

of L cannot bound a discrete immersed disk and we conclude that µ≥3
AddGtlq Q

(δ, . . .) = 0. Adding up all

4 terms, we see that the curvature of the deformed zigzag path vanishes. This finishes the proof.

11.2 EFGH disks

In this section, we develop elementary understanding of the differential µ1
Lq

. The starting point is the

description of the category Lq by explicit twisted complexes. The differential µ1
Lq

does not vanish, but
counts those discrete immersed disks where apart from one single angle all interior angles stem from the
δ-matrix of the twisted complex. In this section, we classify these disks into four types which we call E,
F, G and H disks. The goal is to be able to say:

Terms occurring in µ1
Lq
(ε) E, F, G, H disks of ε.

We start with a basic analysis of µ1
Lq

. Recall we write µq for µAddGtlq Q. Let ε : L1 → L2 be an
elementary morphism. Then we have

µ1
Lq
(ε) =

∑

k,l≥0

µq(δ, . . . , δ︸ ︷︷ ︸
k

, ε, δ, . . . , δ︸ ︷︷ ︸
l

).

Here each δ insertion stands for the δ-matrix of L1 or L2, depending on whether δ stands right or left
of ε . The individual summands µ1

q(δ, . . . , ε, . . . , δ) can again be expanded by writing the δ-matrix as the
sum of its entries, the δ-angles. The elegant way to capture all the terms arising this way is as follows: We
say a disk made of µq(δ, . . . , ε, . . . , δ) is a final-out, first-out or all-in disk with angle sequence consisting
of ε, preceded and succeeded by an arbitrary number of δ-angles. This way, we have enumerated all terms
contributing to µ1

Lq
(ε).

In Definition 11.6, we categorize the disks made of µq(δ, . . . , ε, . . . , δ) into four types. As a starting
point, every disk made of µq(δ, . . . , ε, . . . , δ) is by definition a discrete immersed disk, together with
possibly an outside morphism β or γ in the terminology of Definition 6.50. In the categorization and its
proof, we make heavy use of the slots, concluding puncture and concluding arc terminology introduced in
section 6.9. For instance, we may say that L1 “turns right towards the concluding puncture of the disk”.
As an example, in Figure 11.2a the zigzag path L1 turns right towards the concluding puncture and L2

turns left towards the concluding puncture. The categorization is obtained by a case distinction based
on the behavior of L1 and L2 towards the concluding puncture.

Definition 11.6. Let ε : L1 → L2 be an elementary morphism. Then a disk that can be made of
µq(δ, . . . , ε, . . . , δ) is of

• type E if it is some-out, L1 turns right towards the concluding puncture, L2 turn left towards the
concluding puncture, and there are at least 3 slots outside the disk,

• type F if it is some-out, there are at least two slots both inside and outside the disk, and L1 turns
left and L2 right towards the concluding puncture, or the other way around,
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L1 L2

β
γ

β′

ε

(a) Type E disk

ε

β
γβ′

(b) Type F disk

L1 L2

α1 α2

β

ε

(c) Type G disk

ε

α3β β′α1

(d) Type H disk

Figure 11.2: Illustration of type E, F, G, H disks. The type F disk is depicted in case L1 turns outside
and L2 turns inside the discrete immersed disk at the concluding puncture. For the type G disk, the
naming of α1 and α2 is in case the arc outside the disk points upwards (type G1). For the type H disk,
the naming of α1 and α3 are in case the concluding arc points to the right.

• type G if it is some-out, L1 turns right towards the concluding puncture and L2 turns left towards
to concluding puncture and there are 2 slots outside the disk,

• type H if it is all-in; or if it is first-out, L2 turns right towards the concluding puncture and there
is only 1 slot inside the disk; or if it is final-out, L1 turns left towards the concluding puncture and
there is only 1 slot inside the disk.

A disk of type G is of type G1 if the first, shared, arc of L1 and L2 at the concluding puncture, outside
the disk, is oriented towards the concluding puncture, and of type G2 if the arc is oriented away from
the puncture.

The terminology is depicted in Figure 11.2. We now show that the types E, F, G, H indeed provide
an exhaustive classification of disks that can be made of µq(δ, . . . , ε, . . . , δ). During the proof, we will
frequently use slots terminology from section 6.9. We also show that some of the disk types come in pairs
or triples. For instance, type E disks come in pairs. By this, we mean that every type E disk comes
naturally with a distinct partner also of type E.

Lemma 11.7. Let ε : L1 → L2 be an elementary morphism. Then type E, F, G, H provide an exhaustive
classification of disks that can be made from µq(δ, . . . , ε, . . . , δ). Type E disks come naturally in pairs,
type F disks come alone, type G disks come in pairs and type H disks come in triples.

Proof. We first prove that every disk that can be made of µq(δ, . . . , ε, . . . , δ) falls under one of the four
types and then comment on the pairs and triples.

Let D be a disk that can be made of µq(δ, . . . , ε, . . . , δ). Then D is either first-out, final-out or all-in.
We shall in all three cases that D falls under our classification. The simplest way to understand the proof
is by trying to recognize the properties we derive about D in Figure 11.2.

Assume D is first-out. Then the first morphism must be a δ insertion and not ε, otherwise L2

would bound a discrete immersed disk, in conflict with geometric consistency. The δ-insertion necessarily
concerns an outer δ-angle, as opposed to an inner δ-angle, and we conclude that L1 turns right at the
concluding puncture. There are at least two slots outside of D at the concluding puncture. If L2 turns
left at the concluding puncture, then D is of type E or G, depending on the number of slots outside D.
If L2 turns right at the concluding puncture, then D is of type F or H, depending on the number of slots
inside D.

A similar classification holds if D is final-out. Finally assume D is all-in. Then the concluding arc
belongs to both L1 and L2. Including the concluding arc, the L1 and L2 segments bounding the disk
are at least 2 arcs long, since otherwise the L2 or L1 segment would bound a discrete immersed disk in
conflict with geometric consistency. Let us analyze how L1 and L2 continue beyond the concluding arc
of D, away from their segments that bound D. Imagine that L1 turns left at the head (and tail) of the
concluding arc. Then L1 enters the interior of D, in conflict with geometric consistency, or lands on the
arc of L2 before the concluding arc, which would render L1 = L2 and mean that L1 bounds a discrete
immersed disk. We conclude that L1 turns right and L2 turns left at the concluding arc. In particular,
there are at least two slots on the outside of the disk. This constitutes a type H disk. We have finished
the first part of the proof.
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ε

or L1

L2

ε or

L1

L2ε

Figure 11.3: If L1 and L2 intersect above or at ε, then ε has only type E disks.

For the second part of the proof, let us comment on the pairs and triples. We shall here restrict to
the case of type E disks, since the other cases are similar. To show that type E disks come in pairs,
the idea is to simply match two type E disks with each other by swapping the δ insertions: Regard a
first-out type E disk. Then its first angle is a δ insertion. Remove this δ insertion and instead append
a δ insertion as final angle. The result is a final-out disk, the desired partner disk. The partner disk is
also of type E. The first angle of the first-out disk and the final angle of its final-out partner disk are
depicted in Figure 11.2a as well. Both disks have the same underlying discrete immersed disk, up to
cyclically permuting the inputs and the output by one. The other types F, G, H are similar, and the
relevant first/final angles are depicted in Figure 11.2 as well. This finishes the proof.

11.3 Deformed differential

In this section, we investigate the precise shape of the differential µ1
Lq

. The starting point is the description

of possible output of µ1
Lq

in terms of E, F, G, H disks, according to section 11.2. For the purposes of the
deformed Kadeishvili theorem, this description would not be sufficient. We therefore trace the shape of
µ1
Lq

even further. As announced, this leads to the data structure which we call the tail of an elementary
morphism.

Let ε : L1 → L2 be an elementary morphism. We have seen that the disks that can be made of
µq(δ, . . . , ε, . . . , δ) are of type E, F, G, H and come in groups, which we call the disk shapes of ε. In
order to describe µ1

Lq
, we need to capture the situation near the concluding puncture or arc of the disk

shapes. For instance for a type E disk shape D, we shall assign to D the A situation at the concluding
puncture of D. An A situation is already given by specifying the its angles α, β, γ and β′ as in Figure 10.2.
In generality, we fix the following notation:

Definition 11.8. Let ε : L1 → L2 be an elementary morphism.

• For each type E disk shape D of ε, denote by (αD, βD, γD, β′D) the A situation at the concluding
puncture. Let sD ∈ Z be the sum of the total # signs of all δ insertions along the disk, including
both #αD and #γD.

• For each type F disk shape D of ε, denote by (αD, βD, γD, β′D) the A situation at the concluding
puncture. Let sD ∈ Z be the sum of the total # signs of all δ insertions along the disk, including
#αD if D is first-out and including #γD if D is final-out.

• For each type G disk shape D of ε, denote by (αD1 , α
D
2 , α

D
3 , α

D
4 , β

D, β′D) the B situation at the
concluding puncture. Let sD ∈ Z be the sum of the total # signs of all δ insertions along the disk,
including both #α1 and #α2 or #α3 and #α4, depending on the orientation of the arc 2D = 5D.

• For each type H disk shape D of ε, denote by (αD1 , α
D
2 , α

D
3 , α

D
4 , β

D, β′D) the C situation at the
concluding puncture. Let sD ∈ Z be the sum of the total # signs of all δ insertions along the disk,
including #α1 and #α3 or #α2 and #α4, depending on the orientation of the concluding arc.

In all cases, the element qD ∈ CJQ0K is the product of all punctures covered by the discrete immersed
disk, including those punctures on the boundary whose δ insertion is an outer δ angle, and including the
concluding puncture or both endpoints of the concluding arc.

In Definition 11.9, we define tails of elementary morphisms. The motivation is as follows: To apply
the deformed Kadeishvili theorem to Lq, we need to provide the deformed counterparts of the cohomology
basis elements from section 10.3. For instance, for a given situation B cohomology basis element h =
(−1)#α3+1α3 + (−1)#α4α4 ∈ H we need to find a deformed counterpart ϕ−1(h) such that ϕ−1(h) and
h only differ by infinitesimal R terms and µ1

Lq
(ϕ−1(h)) = 0. The first step is to note that µ1

Lq
(h) is

described, among others, by the type E disks which can be made of its two components α3 and α4. Every
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(a) Tail in general
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(b) An elementary morphism and its tail

Figure 11.4: Illustration of tails

type E disk shape D of α3 gives a contribution to µ1
Lq
(α3) of

(−1)s
D+#γD+|γDβD|qDγDβD + (−1)s

D+#αD

qDβDαD. (11.1)

Similarly, every type E disk of α4 gives a contribution to µ1
Lq
(α4). Counting these contributions together,

we see that µ1
Lq
(h) already contains two terms for every type E disk shape of α3 plus two terms for every

type E disk shape of α4. We see that µ1
Lq
(h) is far from zero. The deformed counterpart ϕ−1(h) is given

by adding R terms to h such that µ1
Lq

eventually becomes zero. We observe that adding a multiple of

βD for every disk shape D of α3 or α4 does the trick in that it kills the two terms in (11.1). However,
µ1
Lq
(βD) does not equate only to the two terms in (11.1), but also to terms coming from the E, F, G, H

disks which can be made of βD itself. In turn, we have to kill these terms by adding yet more R terms,
and every time we add R terms we obtain new R terms which we kill again. This gives rise to a recursive
terms killing process which we can fortunately organize in a hierarchical structure, the tail of α3 and α4.
The precise definition for general elementary morphisms reads as follows:

Definition 11.9. Let ε : L1 → L2 be an elementary morphism. Then its tail is the tree T defined as
follows. Insert ε as root. For each disk shape D of ε, attach D as a child, annotated additionally with
the type of D. Continue inductively: For each leaf D ∈ T of type E, attach all disk shapes of βD as
children, annotated with their types.

Let D ∈ T be a node of type E. Denote by D0 = ε, . . . , Dn = D be the sequence of nodes from the
root till D. Set

SD =

n∑

i=1

sDi , QD =

n∏

i=1

qDi .

The morphism ε is E-preserving if its tail T only consists of type E disks, apart from ε itself.

The schematic of tails is depicted in Figure 11.4a. Roughly speaking, a tail collects sequences of type
E disks where every βD morphism serves as ε for the next item in the sequence. The tail also collects
type F, G or H disks but does not trace them any further. A sample elementary morphism together with
its tail is depicted in Figure 11.4. In drawing the elementary morphism and its disks, we have neglected
the zigzag nature of the zigzag paths. In drawing the tail, we have only depicted the tree structure and
the type indication on all nodes and ignored the discrete immersed disk and situation data.

The typical tail is best imagined as a linear chain of type E disks with possibly an F, G or H disk at
the end. Theoretically, nonlinear tails exist, but they require an angle sequence which bounds more than
a single discrete immersed disks. Such angle sequences exist, but are very large, see also Remark 6.32.

Depending on the further knowledge of an elementary morphism ε, we can say a more about the
structure of its tail. In fact, every morphism from a B or C situation is E-preserving by virtue of
geometric consistency. The following lemma makes this precise. Its premise is depicted in Figure 11.3.

Lemma 11.10. Let ε : L1 → L2 be an elementary morphism. Suppose that above ε the zigzag paths
L1 and L2 intersect and their segments from ε until the intersection are homotopic. Or suppose that
at ε, the zigzag path L1 turns to the the target arc of ε or L2 turns to the source arc of ε. Then ε is
E-preserving. In particular, this applies if ε is a morphism from a B or C situation.



11.3. Deformed differential 131

Proof. The first observation is that ε cannot have disk shapes of type G or H, since these would create a
digon with the intersection above ε. We argue that ε can also not have type F disk shapes. Indeed, the
ray of L1 or L2 that turns into the interior of a discrete immersed disk would leave the disk at some point,
creating a contractible self-intersection of L1 or L2 or a digon with the intersection above ε. We conclude
that ε has only disks of type E. The same argument can now be applied inductively to all children of ε.
Ultimately, the entire tail of ε consists only of type E disk shapes and we conclude ε is E-preserving.

Elementary morphisms of a B or C situation automatically satisfy the premises of the lemma, simply
because the involved zigzag paths intersect at the arc which we called 2 = 5 in Figure 10.2. This finishes
the proof.

As we will see, tails are indeed the right tool to describe the deformed counterparts of cohomology
basis elements. In Lemma 11.11, we prepare for this by explicitly decomposing µ1

Lq
with respect to the

decomposition
HomLq

(L1, L2) = (CJQ0K⊗̂H)⊕ µ1
Lq
(CJQ0K⊗̂R)⊕ (CJQ0K⊗̂R).

Here H and R refer to the standard splitting for L defined in section 10.3.

Lemma 11.11. Let ε : L1 → L2 be an elementary morphism. Then modulo R we have

µ1
Lq
(ε) = µ2(ε, δ) + µ2(δ, ε)

+ µ1
Lq




∑

D∈T
of type E
D 6=ε

(−1)S
D+1QDβD +

∑

D∈T
of type G1

(−1)S
D+1QD id2D→5D




+
∑

D∈T
of type G1

(−1)S
D+1QD

(
(−1)#α

D
3 +1αD3 + (−1)#α

D
4 αD4

)

+
∑

D∈T
of type G2

(−1)S
D

QD
(
(−1)#α

D
3 +1αD3 + (−1)#α

D
4 αD4

)

+
∑

D∈T
of type H

(−1)S
D

QD id2D→5D .

(11.2)

Proof. Let us evaluate the right-hand side. We have

µ1
Lq




∑

D∈T
of type G1

(−1)S
D+1QD id2D→5D




=
∑

D∈T
of type G1

(−1)S
D+1QD

(
(−1)#α

D
1 +1αD1 + (−1)#α

D
2 αD2 + (−1)#α

D
3 αD3 + (−1)#α

D
4 +1αD4

)
.

Further for D ∈ T \ {ε} of type E, we have modulo R that

µ1
Lq
((−1)S

D+1QDβD) = (−1)S
D+#γD+|βD|+1QDγDβD + (−1)S

D+#αD

QDβDαD

+
∑

E∈CT (D)
of type E

(−1)S
D+1QD

(
(−1)s

E+#γE+|βE |+1qEγEβE + (−1)s
E+#αE

qEβEαE
)

+
∑

E∈CT (D)
of type G1

(−1)S
D+1QD

(
(−1)s

E+#αE
2 +1qEαE2 + (−1)s

E+#αE
1 qEαE1

)

+
∑

E∈CT (D)
of type G2

(−1)S
D+1QD

(
(−1)s

E+#αE
3 +1qEαE3 + (−1)s

E+#αE
4 qEαE4

)

+
∑

E∈CT (D)
of type H

(−1)S
D+1QD(−1)s

E

qE id2E→5E .
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Here, we have stripped off type F disks and the two first- and final-out type H disks. Both yield multiples
of β (A), β (C) and β′ (C), which lie in R. Let us now add up the right-hand side of (11.2). This becomes
a telescopic sum: The E, G2 and H terms cancel pairwise and the G2 terms cancel in triples. Only terms
coming directly from the root remain. Modulo R, the right-hand side of (11.2) now reads

µ2
q(ε, δ) + µ2

q(δ, ε)

+
∑

D∈CT (ε)
of type E

(−1)S
D+#γD+|βD|+1QDγDβD + (−1)S

D+#αD

QDβDαD

+
∑

D∈CT (ε)
of type G1

(−1)S
D+#αD

2 +1QDαD2 + (−1)S
D+#αD

1 QDαD1

+
∑

D∈CT (ε)
of type G2

(−1)S
D+#αD

3 +1QDαD3 + (−1)S
D+#αD

4 QDαD4

+
∑

D∈CT (ε)
of type H

(−1)S
D

QD id2D→5D .

Modulo R, this is precisely µ1
Lq
(ε). Indeed, the terms missing for µ1

Lq
(ε) are type F disks and the two

first- and final-out type H disks, which again lie in R. This finishes the proof.

11.4 Deformed cohomology basis elements

In this section, we compute the deformed cohomology basis elements of Lq. The starting point is the
homological splitting H⊕I⊕R for L from section 10.3. This splitting itself is not a homological splitting
for the deformed category Lq. Rather, we show that Lq together with H ⊕ I ⊕R falls under the “D = 0”
case of our deformed Kadeishvili theorem studied in section 8.8. Accordingly, the category Lq comes with
an associated homological splitting, including a list of deformed counterparts ϕ−1(h) of the cohomology
basis elements h ∈ H. In the present section, we compute all these deformed cohomology basis elements.

Proposition 11.12. For the category Lq ⊆ TwGtlq we have

µ1
Lq
(H) ⊆ µ1

Lq
(CJQ0K⊗̂R).

Hence the deformed Kadeishvili construction of section 8.8 applies to Lq. It produces a deformed homo-
logical splitting

Lq = Hq ⊕ µ
1
Lq
(CJQ0K⊗̂R)⊕ (CJQ0K⊗̂R)

and a minimal model HLq. For each cohomology basis element h ∈ H, we obtain a deformed counterpart
ϕ−1(h), explicitly given as follows:

• The deformed counterpart of (−1)#α3+1α3 + (−1)#α4α4 (B) is

(−1)#α3+1α3 +
∑

D∈T (α3)\{α3}

(−1)#α3+S
D+1QDβD

+(−1)#α4α4 +
∑

D∈T (α4)\{α4}

(−1)#α4+S
D

QDβD.
(11.3)

• The deformed counterpart of id2→5 (C) is

id2→5 + (−1)#α1+#α2q1


β′ +

∑

D∈T (β′)\{β′}

(−1)S
D

QDβD




+ (−1)#α3+#α4q2


β +

∑

D∈T (β)\{β}

(−1)S
D

QDβD


 .

(11.4)

• The deformed counterpart of
∑
a ida (D) is

∑
ida .
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• The deformed counterpart of (−1)#α0+1α0 (D) is

(−1)#α0+1α0 + (−1)#α0qα′
0.

In the case of id2→5, the punctures q1, q2 ∈ Q0 are the head and tail of arc 2. In the case of (−1)#α0+1α0,
the puncture q is the one around which α0 turns. The codifferential is denoted hq and the projection
onto Hq is denoted πq.

Proof. All the β (A) and α′
0 (D) morphisms added in the claimed deformed cohomology basis elements lie

in CJQ0K⊗̂R. In order to show µ1
Lq
(H) ⊆ µ1

Lq
(CJQ0K⊗̂R), it therefore suffices to show that µ1

Lq
vanishes

on all the four types of claimed deformed cohomology basis elements. We check this for all four types
individually.

For the situation B type the vanishing amounts to applying Lemma 11.11 to α3 and α4, and adding
the results. Since α3 and α4 are E-preserving, the complicated sums over type G and H disks vanish.

For the situation C type, note that β (C) and β′ (C) are E-preserving. Therefore two applications
of Lemma 11.11 and a direct computation give the following results, whose sum renders the desired
differential indeed zero:

µ1
Lq


β′ +

∑

D∈T (β′)\{β′}

(−1)S
D

QDβD


 = (−1)#α1α1β

′ + (−1)#α2+1β′α2,

µ1
Lq


β +

∑

D∈T (β)\{β}

(−1)S
D

QDβD


 = (−1)#α4α4β + (−1)#α3+1βα3,

µ1
Lq
(id2→5) = (−1)#α2+1q1α1β

′ + (−1)#α1q1β
′α2

+ (−1)#α3+1q2α4β + (−1)#α4q2βα3,

For the situation D identity
∑
a ida (D), note that no disk sequences can be made with an identity. The

ordinary product of ida with a neighboring α′
i each appears twice in µ1

Lq
and they cancel each other:

µ1
Lq

(∑
ida

)
= 0,

For the situation D co-identity (−1)#α0+1α0 (D), note that no disks can be made of µq(δ, . . . , α
′
0, . . . , δ)

due to consistency. We get

µ1
Lq
((−1)#α0+1α0 + (−1)#α0qα′

0) = −(−qα0α
′
0 − qα

′
0α0 + qα0α

′
0 + qα′

0α0) = 0.

This finishes the proof.

11.5 Deformed codifferential and projection

In this section, we compute part of the deformed codifferential and deformed projection for Lq. The
starting point is the homological splitting H ⊕ I ⊕ R for L. In section 11.4, we have verified that Lq
satisfies the requirements of the deformed Kadeishvili construction of section 8.8 so that we obtain a
deformed homological splitting Hq⊕µ

1
Lq
(CJQ0K⊗̂R)⊕ (CJQ0K⊗̂R). According to Definition 8.17, there is

an associated deformed codifferential hq given by projecting morphisms onto µ1
Lq
(CJQ0K⊗̂R) and finding

the R preimage element under µ1
Lq

. In the present section, we examine this procedure for the morphisms
βα and β of A situations and indicate how one proceeds for other types of morphisms.

Let us recall how the (non-deformed) codifferential for L works. Regard an A situation, given by
angles (α, β, γ, β′). Then β lies in R, while βα lies in I + R. According to Table 10.5, we have h(βα) =
(−1)#α+1β. For the deformed codifferential, we however have to add terms. It is namely not true that
µ1
Lq
((−1)#α+1β) = βα+(−1)#α+#γ+‖β‖+1γβ. Rather, the differential µ1

Lq
(β) is computed by the formula

(11.2). The formula implies we have to subtract terms from the expression (−1)#α+1β in order to make
its µ1

Lq
image up to R-terms equal to βα. In the following proposition, we compute these terms.
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Proposition 11.13. Let (β, α, γ, β′) denote an A situation L1 → L2. Denote by T (β) the tail of β.
Then we have

hq(βα) = (−1)#α+1β +
∑

D∈T (β)\{β}
of type E

(−1)S
D+#α+1QDβD +

∑

D∈T (β)
of type G1

(−1)S
D+#α+1QD id2D→5D ,

ϕπq(βα) =
∑

D∈T (β)
of type G1

(−1)S
D+#α+1QD

(
(−1)#α

D
3 +1αD3 + (−1)#α

D
4 αD4

)

+
∑

D∈T (β)
of type G2

(−1)S
D+#αQD

(
(−1)#α

D
3 +1αD3 + (−1)#α

D
4 αD4

)

+
∑

D∈T (β)
of type H

(−1)S
D+#αQD id2D→5D .

Proof. Apply hq and ϕπq on both sides of Lemma 11.11 with ε = β.

Remark 11.14. The morphisms of type βα (A) are the most important morphisms to which we would
like to apply the deformed codifferential hq. There are only very few cases where we need to apply hq to
other morphisms. In fact, hq vanishes by definition on all deformed cohomology basis elements and all
elements of R. The only interesting elementary morphisms which do not lie in Hq ⊕ (CJQ0K⊗̂R) are α4β
(C), β′α2 (C) and α3α4 (B). For these three types of morphisms, one obtains formulas for their hq and πq
values by applying (11.2) to ε = β (C) or ε = β′ (C) or ε = α3 (B). The results are formulas very similar
to Proposition 11.13. In contrast to β (A), these three morphisms have the benefit of being E-preserving.
Therefore all complicated G and H terms on the right-hand side of (11.2) do not even appear and only
µ2(δ, ε) + µ2(ε, δ) and the sum over type E nodes remain.

12 Result components of Kadeishvili trees

In this section, we develop a first glance at the minimal model HLq. The starting point is the knowledge of
Lq established in section 11 and the deformed Kadeishvili construction established in section 8. According
to the deformed Kadeishvili construction, the deformed A∞-structure on the minimal model HLq is
determined by Kadeishvili trees. The outstanding task is therefore to enumerate and analyze all results
from all possible Kadeishvili trees.

In section 12.1, we explain which products are to be computed and set up notation. In section 12.2,
we list possible types of morphisms resulting from Kadeishvili trees. In section 12.3, we introduce a
notion of “result components” which allows us to systematically track terms arising from Kadeishvili
trees. In section 12.4, we conclude the section with a semi-explicit, inductive characterization of result
components:

Individual output terms
of µHLq

(hk, . . . , h1)
Result components
classified by Table 12.5

12.1 Kadeishvili trees

This section explains how our minimal model theorem applies to Lq specifically. We explain which trees
need to be investigated, and which not. We also set up specific terminology. Note that we keep writing
µ := µq := µAddGtlq Q, see Remark 11.1.

The deformed Kadeishvili construction instructs us to start with the hom spaces. If L1 and L2 are
zigzag paths, then HomHLq

(L1, L2) = CJQ0K⊗̂H, where H denotes the cohomology in the standard
splitting of TwGtlQ. The higher products on HLq are obtained as outputs of Kadeishvili trees, with
ϕ−1 : CJQ0K⊗̂H → Hq applied at all leaves, hqµLq

applied at all non-leaf nodes, and ϕπqµLq
applied at

the root.
We do not need to calculate all trees. In fact, we observe directly from the Kadeishvili construction

that µHLq
is strictly unital, with the same unit morphisms as Lq. More precisely, we already know that

for every zigzag path L and compatible morphism h we have

µ1
HLq

= 0, µ2
HLq

(h, idL) = h

µ≥3
HLq

(. . . , idL, . . .) = 0, µ2
HLq

(idL, h) = (−1)|h|h.
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It therefore suffices to regard Kadeishvili trees whose inputs are all non-identity cohomology basis ele-
ments. At this point, it is clever to have terminology available to study not only entire Kadeishvili trees,
but also their subtrees. We fix the following terminology:

Definition 12.1. An h-tree is an ordered tree T where each non-leaf node has at least two children,
together with non-identity deformed basis cohomology elements h1, . . . , hN on the leaves from right to
left, with hi : Li → Li+1.

A π-tree is an ordered tree T with at least three nodes where each non-leaf node has at least two
children, together with non-identity deformed basis cohomology elements h1, . . . , hN on the leaves from
right to left, with hi : Li → Li+1.

Both h-trees and π-trees can be evaluated. They have results or outputs. When evaluating an
h-tree, we put hqµ on every non-leaf node. When evaluating a π-tree, we put hqµ on every non-leaf
non-root node, and ϕπqµ on the root.

Remark 12.2. Often we will make statements about “products”. The datum of a “product” shall then
typically include all of its inputs. For example “a product µ≥3(. . .)” refers to a choice of arity k ≥ 3, a
collection of compatible morphisms a1, . . . , ak and the result of the product itself.

Remark 12.3. Since we abbreviate µ = µq = µAddGtlq Q, a product µ2(a, b) stands simply for the
product of angles and does not include discrete immersed disk terms like µ3(δ, a, b) stemming from
twisted completion. Similarly, a product µ≥3 always stands for a single discrete immersed disk, and
following the rule explained in Remark 12.2 it includes the datum of input morphisms some of which may
be δ-morphisms. Note that δ-morphisms are always spelt out as α (D) or α′ (D).

Remark 12.4. We occasionally group β (C) and β′ (C) as β/β′ (C) due to their similar nature. We ignore
signs and deformation parameters q ∈ CJQ0K in this section. For example, we may say that a product
like µ≥3(α, α′, α3, . . .) is id (D), meaning that it is equal to some arc identity, possibly multiplied by a
sign and deformation parameters. We abbreviate a situation B cohomology basis element (−1)#α3+1α3+
(−1)#α4α4 simply as α3 + α4.

12.2 Possible tree output

In this section, we analyze the possible types of output of Kadeishvili trees. The starting point is the
observation that the result of a Kadeishvili tree is a linear combination of elementary morphism, but
not every elementary morphism can actually appear. In the present section, we compose a tight list of
possible elementary morphisms that can result from Kadeishvili trees.

By nature, a π-tree can only have a linear combination of cohomology basis elements as output.
Similarly, an h-tree can only have a linear combination of R basis morphims as output. Every node of an
h- or π-tree carries an evaluation result itself. To further narrow down on the possible output of the tree,
we have to investigate what happens at every node in the tree. For instance, we claim that angle length
cannot grow to infinity as we go from leaves to root. In fact, we claim there is a list S of morphisms
which is stable under evaluations, in the sense that any hqµ applied to a sequence of morphisms from S
yields a morphism from S again. The explicit list reads as follows:

S := β (A), id (B), α3 (B), α4 (B), id (C), β (C), β′ (C), id (D), α0 (D) and α′
0 (D).

We claim that this list S is preserved under evaluations hqµ. Before we prove this, let us prepare
reasoning. For all three cases of hqµ

2, first-out hqµ
≥3 and final-out hqµ

≥3 evaluation, we have set up
product schemes which indicate the type of output from in principle any kind of evaluations with arbitrary
inputs from S.

These product schemes are found in Table 12.1, Figure 12.2 and 12.3. They are generally structured
by the three keys µ, hq and ϕπq. The schemes should universally be read as follows: A product of
morphisms of given types may yield only the types of morphisms indicated in the µ row. Application of
the codifferential yields the morphism indicated in the hq row. Of course, vanishing products are also
possible. For later use, the possible results of ϕπqµ have been collected in the ϕπq row. With these
product schemes in mind, we are ready to prove that the list S is preserved:

Lemma 12.5. Let T be an h-tree. Then its output contains only β (A), id (B), α3 (B), α4 (B), id (C),
β (C), β′ (C), id (D), α0 (D) and α′

0 (D) terms.
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m2\m1 β(A) α4(B) α3(B) β/β′(C) α0(D) α′
0(D)

β µ2 = imp imp β(A)/β′(C) imp βα(A) imp

hq = 0 0 0 0 β(A)+E/G 0

ϕπq = 0 0 0 0 G/H 0

α4 µ2 = β′(C)/β(A) imp imp α′(D) imp imp

hq = 0 0 0 0 0 0

ϕπq = 0 0 0 0 0 0

α3 µ2 = imp imp imp imp imp imp

hq = 0 0 0 0 0 0

ϕπq = 0 0 0 0 0 0

β/β′ µ2 = imp imp α′ imp βα3/imp imp

hq = 0 0 0 0 0 0

ϕπq = 0 0 0 0 0 0

α0 µ2 = γβ α3α4 imp imp/α1β
′ imp α0α

′
0

hq = 0 α3+E 0 0 0 α′
0

ϕπq = 0 0 0 0 0 0

α′
0 µ2 = imp imp α4βα3 imp α′

0α0 imp

hq = 0 0 0 0 0 0

ϕπq = 0 0 0 0 0 0

id(B) µ2 = imp imp β(A) imp α1 imp

hq = 0 0 0 0 0 0

ϕπq = 0 0 0 0 0 0

id(C) µ2 = γβ/α2/α3 α(D) imp γβ imp α4β

hq = id(B) id(D) 0 0 0 β(C)+E

ϕπq = 0/α3 + α4 α0 0 0 0 0

id(D) µ2 = β(A) α4(B) α3(B) β/β′(C) α0(D) α′
0(D)

hq = 0 0 0 0 0 0

ϕπq = 0 α3 + α4 0 0 α0(D) 0

Table 12.1: Multiplication scheme

Proof. Let S be the set of all elementary morphisms of these types. We prove the claim by induction on
the tree size. For an h-tree with just one node, leaf and root at the same time, there is nothing to show,
since the result of this tree is the deformed basis cohomology element itself which only contains terms
from S.

Now for any arbitrarily large tree, output components are of the form

hq(µ
≥3(mk, . . . ,m1)) and hq(µ

2(m2,m1)), (12.1)

where by induction hypothesis each mi is from S, or may in case of µ≥3 also be a δ insertion. We will
now check all possible terms that can occur in (12.1).

In the case of a discrete immersed disk µ≥3(mk, . . . ,m1), assume the disk is all-in. Then the µ≥3

result is an identity from situation B, C or D. Its image under hq vanishes in all three cases.
Assume now the disk is first-out. Then the first morphism is by assumption one in S. In particular, it

is strictly smaller than one full turn. Since the disk is first-out, the first morphism m1 consists of at least
two indecomposable angles. We can now compute the µ≥3 result on a case-by-case basis, distinguishing
after the type of m1. The results are shown in Figure 12.2. The figures omit the case of α′

0 which is
similar to that of an outer δ insertion. Hatching indicates the interior of the disk. Similarly, the results
for final-out disks are shown in Figure 12.3.

We conclude that for any discrete immersed disk, the output hq(µ
≥3(mk, . . . ,m1)) consists only of

terms lying in S. Next, we check the terms occurring in a simple composition µ2(m2,m1)). Table 12.1
contains the results of such multiplications, “imp” denoting an impossible combination, hence vanishing
product. The table also lists their images under hq, abbreviating tail terms β (A) as +E and tail terms
id (B) as +G. We conclude that as long as factors lie in S, their image under hqµ

2 also has components
only in S.

In the product tables, the expression +G/H appears under the ϕπq key. We have used this abbreviation
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m2\m1 id (B) id (C) id (D)

β (A) µ2 = imp βα/α1/α4 β (A)

hq = 0 β(A)+E/G 0

ϕπq = 0 G/H/α3 + α4 0

α4 µ2 = β (A) imp α4

hq = 0 0 0

ϕπq = 0 0 α3 + α4

α3 µ2 = imp α (D) α3

hq = 0 id (D) 0

ϕπq = 0 α0 0

β/β′ (C) µ2 = imp βα β/β′ (C)

hq = 0 β(A)+E/G 0

ϕπq = 0 G/H 0

α0 µ2 = α3 imp α0

hq = 0 0 0

ϕπq = 0 0 α0

α′
0 µ2 = imp β′α2 α′

0

hq = 0 β′(C)+E 0

ϕπq = 0 0 0

id(B) µ2 = imp id (D) id (B)

hq = 0 0 0

ϕπq = 0 1 if a = a0 0

id(C) µ2 = id (D) imp id (C)

hq = 0 0 0

ϕπq = 1 if a = a0 0 id (C)

id(D) µ2 = id (B) id (C) id (D)

hq = 0 0 0

ϕπq = 0 id (C) 1 if a = a0

Table 12.1: Multiplication scheme (continued)

+G/H to denote the terms of πq(βα) according to Proposition 11.13. In other words, +G/H simply
denotes tail terms of the form α3 + α4 (B) and id (C).

12.3 Result components

In this section, we introduce our notion of “result components”. The reason for this notion is that any
evaluation hqµ in a Kadeishvili tree may in principle yield a large number of terms. Any single of
these terms may yield multiple terms again upon the next evaluation in the tree. The notion of result
components serves to get grip on these terms. After the definition, we provide some terminology and a
few examples.

Before we state the precise definition, let us illustrate the idea: Regard an evaluation task like com-
puting (3x + 5y)(2x + 3y) or even (3x + 5y)(2x + 3y)(x − y). These evaluations can be represented by
the trees

3x+ 5y 2x+ 3y

6x2 + 19xy + 15y2

3x+ 5y 2x+ 3y x− y

6x2 + 19xy + 15y2

6x3 + 13x2y − 4xy2 − 15y3.

The result expression 6x2 + 19xy + 15y2 is concise, but does not include information on how it was
derived from the individual factors. The idea behind result components is to retain this information
instead. For example, the left tree should have four result components:



138 12. Result components of Kadeishvili trees

(a) δ insertion
µ = γβ
hq = 0
ϕπq = 0

(b) δ insertion
µ = α2 or α3 (B)
hq = id (B) or 0
ϕπq = α3 + α4

(c) δ insertion
µ = β (A)
hq = 0
ϕπq = 0

(d) δ insertion
µ = β or β′ (C)
hq = 0
ϕπq = 0

(e) β or β′ (C)
µ = γβ
hq = 0
ϕπq = 0

(f) β or β′ (C)
µ = α2 or α3

hq = id (B) or 0
ϕπq = α3 + α4

(g) β or β′ (C)
µ = β (A)
hq = 0
ϕπq = 0

(h) β or β′ (C)
µ = β (A)
hq = 0
ϕπq = 0

(i) β (A)
µ = γβ
hq = 0
ϕπq = 0

(j) β (A)
µ = α2 or α3

hq = id (B) or 0
ϕπq = α3 + α4

(k) β (A)
µ = β (A)
hq = 0
ϕπq = 0

(l) β (A)
µ = β (A)
hq = 0
ϕπq = 0

Figure 12.2: Possible result components of first-out disks in Kadeishvili trees

6x2 derived from multiplying 3x and 2x, 9xy derived from multiplying 3x and 3y,

10xy derived from multiplying 5y and 2x, 15y2 derived from multiplying 5y and 3y.

In other words, the left tree has four distinct result components, even though the result can be abbreviated
to only three terms. The tree on the right has just four result terms, while there are eight distinct result
components. For example, one of these eight result components consists of the choice of 3x on the leftmost
leaf, 2x on the middle leaf and −y on the rightmost leaf.

Let us prepare for result components of Kadeishvili trees: In contrast to the simple multiplication
trees above, the leaves of a Kadeishvili tree are labeled by deformed cohomology basis elements. These
elements consist of a finite or infinite amount of additive components. For example, let α3+α4 denote
a certain cohomology basis element and assume both α3 and α4 have a tail each consisting of one type
E disk with β morphisms denoted β1 and β2 respectively. Then the deformed cohomology basis element
reads α3+α4+β1+β2 and is defined to have four distinct additive components, even though technically
it may be possible that β1 = β2.

Similarly, node evaluations in Kadeisvhili trees may yield a large amount of additive components.
For example, an evaluation hq(βα) may yield an expression like β + β1 + β2 + id (B) according to Propo-
sition 11.13. This evaluation is defined to have four distinct additive components. In other words, an
additive component always refers to one of the main terms or a choice of one of the tail terms. We are
finally ready to define result components of Kadeishvili trees:

Definition 12.6. The restriction of an h-tree or π-tree (T, h1, . . . , hN ) at a non-root node P ∈ T is
the h-tree from P up to all leaves, together with the corresponding subset of (h1, . . . , hN ). A result
component of an h-tree or π-tree is defined inductively as follows:

• A result component of an h-tree with only one node consists of an additive component appearing
in the corresponding h1.
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(a) δ insertion
µ = βα
hq = β (A) + E tail
ϕπq = G/H

(b) δ insertion
µ = α1 or α4

hq = 0
ϕπq = 0 or α3 + α4

(c) δ insertion
µ = β (A)
hq = 0
ϕπq = 0

(d) δ insertion
µ = β/β′ (C)
hq = 0
ϕπq = 0

(e) β/β′ (C)
µ = βα
hq = β (A) + E tail
ϕπq = G/H

(f) β/β′ (C)
µ = α1 or α4

hq = 0
ϕπq = 0 or α3 + α4

(g) β/β′ (C)
µ = β (A)
hq = 0
ϕπq = 0

(h) β/β′ (C)
µ = β (A)
hq = 0
ϕπq = 0

(i) β (A)
µ = βα
hq = β (A) + E tail
ϕπq = G/H

(j) β (A)
µ = α1 or α4

hq = 0
ϕπq = 0 or α3 + α4

(k) β (A)
µ = β (A)
hq = 0
ϕπq = 0

(l) β (A)
µ = β (A)
hq = 0
ϕπq = 0

Figure 12.3: Possible result components of final-out disks in Kadeishvili trees

• A result component of an h-tree with at least three nodes consists of result components r1, . . . , rk
of the restrictions at the ordered children of the root, together with choices n0, . . . , nk ≥ 0 of δ
insertions, and an additive component appearing in

hqµq(δ, . . . , δ︸ ︷︷ ︸
nk

, rk, . . . , r1, δ, . . . , δ︸ ︷︷ ︸
n0

).

• A result component of a π-tree consists of result components r1, . . . , rk of the restrictions at the
ordered children of the root, together with choices n0, . . . , nk ≥ 0 of δ insertions, and an additive
component appearing in

ϕπqµq(δ, . . . , δ︸ ︷︷ ︸
nk

, rk, . . . , r1, δ, . . . , δ︸ ︷︷ ︸
n0

).

• For π-trees, the result components (−1)#α3α3 and (−1)#α4+1α4 shall be grouped together as one
result component. Also, the result components id (D) shall be grouped together as one result
component.

• Additive components arising from different tail nodes in the evaluation of hq or ϕπq shall be kept
distinct as result components.

A direct morphism is a result component of a one-node h-tree. A result component derives from
the result components r1, . . . , rk, and from all the result components they derive from themselves. A
direct morphism derives from nothing. A tail result component is one that comes from a tail additive
component of the final hq or ϕπq evaluation. Tail additive components of direct morphisms are also
counted as tail result components. Any other result component is a main result component. The
class of all result components of π-trees is denoted Resultπ.
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α4 β(A) α4 α4

ϕπqµ
9 = id (D)

β

α4

α4

α4

L

Figure 12.4: A π-tree with a concrete result component

α0 α4

hqµ
2 = α3 α0 α4

(a) Tree with α3 as result component

α0 . . . α0 α′
0

hqµ
2 = α′

0

≥ 0

α′
0

(b) Trees with α′
0 as result component

id (C) α0 . . . α0 α′
0

hqµ
2

hqµ
2

hqµ
2 = β (C)

≥ 0

β (C)

(c) Trees with β (C) as result component.

α0 . . . α0 α′
0 id (C)

hqµ
2

hqµ
2

hqµ
2 = β′ (C)

≥ 0

β′ (C)

(d) Trees with β′ (C) as result component

Figure 12.6: Classification of α3, α′
0, β (C) and β′ (C) result components

Example 12.7. Regard an evaluation hq(βα). Its result consists of a tower of β (A) morphisms. They
need not be distinct as morphisms, but shall be treated as distinct result components. The β (A) with
the lowest q power is the main result component, all others are tail result components.

Example 12.8. A sample π-tree with a concrete result component is depicted in Figure 12.4. The inputs
of this π-tree are four β3+β4 morphisms, corresponding to the four intersection points between the zigzag
curves. One of the zigzag paths is denoted L. The first input morphism departs from L and the fourth
ends on L. The angles depicted are the main α4 components of the first, third and fourth input, as well
as the first tail component of the second input. The double stroke on the rightmost arrow indicated the
separation between the first and the fourth morphisms of the sequence. In case the rightmost arc is the
identity location of the first/final zigzag path, then the output of the π-tree is the identity. Otherwise the
output vanishes. This identity result component is derived from the main components of the first, the
first tail component of the second, and the main components of the third and fourth input morphisms,
with n1 = 3 many δ’s after the first morphism and n2 = 2 many δ’s after the second morphism. This
example illustrates a nontrivial result component of a π-tree and shows how tail components lead to
results. In contrast, no single result component of this π-tree derives from the main components of all
four input morphisms.

12.4 Classification of result components

In this section, we provide a semi-explicit, inductive characterization of result components of Kadeishvili
trees. To understand what this means, recall from section 12.2 that only certain types of morphisms can
appear as result components. For each of these types, we will describe all possible in which it is derived
from simpler result components. This description is recursive, and has to remain so until we match result
components with pieces of smooth immersed disks later on.

For example, regard a result component α3 of an h-tree. We are interested in how this α3 can possibly
have been derived. A glance at the multiplication and disk tables 12.1 and 12.2, 12.3 reveals that it must
be a product hqµ

2(α0, α4). In turn, we are interested in how α0 and α4 could have been derived. Another
glance at the multiplication and disk tables reveals that both are necessarily direct. We conclude that
any result component α3 of an h-tree is necessarily the result component of the tree hqµ

2(α0, α3 + α4)
with leaves α0 and α3 + α4.
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id (C) α0 . . . α0 α′
0 id (C) . . . α0 . . . id (C) . . .

α′
0

α′
0

β (C)

β (A)

β (A)

hqµ
2 = β (A)

≥ 0

α0 . . . α0 α′
0 id (C) id (C) . . . α0 . . . id (C) . . .

α′
0

α′
0

β′ (C)

β (A)

β (A)

hqµ
2 = β (A)

≥ 0

. . . . . .

β (A) . . . id (C) . . . α0 . . .

β (A)

β (A)

hqµ
2 = β (A)

≥ 1

. . .

. . .

Figure 12.7: Trees with β (A) as result component. In the first and second tree, the framed part is
essential and further id (C) and α0 inputs are optional. In the third tree, at least one id (C) or α0 is
required and further ones are optional. The β (A) on the left is supposed to be a direct, hqµ

≥3 or tail
hqµ

2 result component.

. . .

β (A) id (C)

ϕπqµ
2 = α3 + α4 . . . . . .

out

. . .

β (A)id (C)

ϕπqµ
2 = α3 + α4 . . . . . .

out

Figure 12.8: Trees with α3 + α4 as main result component of πqµ
2

id (C) β (A)

hqµ
2 = id (B) (main)

β (A) id (C)

hqµ
2 = id (B) (tail)

β/β′ id (C)

hqµ
2 = id (B) (tail)

β (A) α0

hqµ
2 = id (B) (tail)

Figure 12.9: Trees with id (B) as result component. No subdisk is assigned, but the trees are used for
trees of id (D).
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. . .

id (B) id (C)

ϕπqµ
2 = id (D) . . .

. . .

. . .

. . .

out
id (C)

. . .

. . .
out

id (C)

. . . . . .

out
id (C)

(a) This tree makes use of an id (B) result component. In the subdisks depicted here, the id (B) component
comes from a first-out disk or hqµ

2(id (C), β(A)) or hqµ
2(β(A), id (C)). Other options are impossible.

. . .

id (B)id (C)

ϕπqµ
2 = id (D) . . .

. . .

. . .

. . .

id (C) out

. . . . . .

outid (C)

(b) The same tree as in Figure 12.10a, but with id (C) at
the end. The subdisk is depicted in case id (B) comes from
a first-out disk or a product hqµ

2(β(A), id (C)).

. . . . . .

ϕπqµ
≥3

all-in disk

. . .

. . .

out
. . .

. . .

out

(c) An all-in disk produces an id (D) morphism if
its concluding arc is a0. The subdisk is obtained by
tying all handles together along the disk and insert-
ing a short segment with an output mark between
beginning and end. The two pictures show how we
insert this segment, depending on whether the zigzag
path turns left or right at the concluding arc. For
orientation, the first and final interior angles of the
disk are drawn. Note that due to Remark 13.4, their
handles approach the concluding arc indeed in the
way drawn, and the subdisk becomes smooth.

Figure 12.10: Trees with id (D) as result component

α3 id (C) α4

id (D)

ϕπqµ
2 = α3 + α4

id (C) α3 id (C)

id (D)

ϕπqµ
2 = id (C)

a0
(out)

(out)

α0

a0
(out)

(out)

α0

(a) Two trees with very similar subdisks: the first tree has the upper output mark, the second tree has the lower
output mark. The subdisk itself is a strip between a zigzag curve and its Hamiltonian deformation. The position
of its left and right boundary depend on the id (D) component chosen as result component in µ2(α3, id (C)). A
long version, where the left and right boundary are maximally distant from each other, is depicted in the upper
image, and a short version in the lower.

id (C) α4 α4

id (D)

ϕπqµ
2 = α3 + α4

id (C) id (C) α4

id (D)

ϕπqµ
2 = id (C)

a0
(out)

(out)

α0

a0
(out)

(out)

α0

(b) The first tree has the upper output mark, the second tree has the lower output mark. A long and a short
version are depicted.

α4 α3 id (C)

id (D)

ϕπqµ
2 = α3 + α4

α4 id (C) α4

id (D)

ϕπqµ
2 = α3 + α4

α3 id (C) id (C)

id (D)

ϕπqµ
2 = id (C)

id (C) α4 id (C)

id (D)

ϕπqµ
2 = id (C)

Figure 12.11: A group of 8 trees with α3 + α4 and id (C) as result components that produce degenerate
subdisks. The subdisks are depicted for the first four trees. Subdisks of the other four trees are similar.
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Type Cue Possible ways of derivation

α0 h direct

id (C) h direct

α4 h direct

α3 h direct or Figure 12.6a

α′
0 h direct or Figure 12.6b

β/β′ (C) h direct or Figure 12.6c or 12.6d

β (A) direct tail of some α3, α4, β (C) or β′ (C)

β (A) main hqµ
≥3 final-out disk, with final morphism an outer δ inser-

tion, β (A), β/β′ (C) or α′
0

β (A) tail hqµ comes with corresponding main result component β
(A), β/β′ (C) or α3, example see Figure 13.6b

β (A) main hqµ
2 Figure 12.7

id (D) h Figure 13.7a or 13.7b

id (B) h Figure 12.2 or 12.9

α3 + α4 main ϕπqµ
≥3 Figure 12.2 or 12.3

α3 + α4 main ϕπqµ
2 Figure 12.8 or 12.11

α3 + α4 tail ϕπqµ tail of a certain ϕπq(βα), with βα itself being a µ2

product or a disk of Figure 12.3

id (C) main ϕπqµ
2 Figure 12.11

id (C) main ϕπqµ
≥3 all-in disk of type H, whose inner morphisms may be

δ insertions, β (A), α3 (B), α4 (B), β/β′ (C), α0 (D),
α′
0 (D), example see Figure 13.6e

id (C) tail ϕπqµ tail of a certain ϕπq(βα) evaluation

id (D) π Figure 12.10

α0 π Figure 12.12

Table 12.5: Classification of result components

We have conducted this investigation for all types of morphisms, resulting in the classification of
Table 12.5. Let us explain here how to read this table: The first and second column specify a type of
result component. More precisely, the first column fixes the type of morphism. The second column sets
further conditions on the type of result component. For example, the second column may indicate that
only result components of h-trees shall be considered, or only tail result components of ϕπqµ

≥3. The
third column then provides a list of ways in which a result component of the specified type can be derived.

For example, we have seen before that an α3 result component of an h-tree is necessarily direct or
derived from the tree in Figure 12.6a. This is reflected in the fourth row of the classification table. As
another example, we read off from the table that an id (C) main result component of ϕπqµ

2 is necessarily
a result component of one of the four id (C) trees in Figure 12.11.

As a final example, our classification of β (A) tail result components of h-trees is relatively implicit:
These result components come from an evaluation hq(βα), hq(α4β), hq(β

′α2) or hq(α3α4). These evalu-
ations produce a β (A), β (C), β′ (C) or α3 (B) main result component. The tail β (A) result component
then sits at the tail of these morphisms. In other words, whenever we encounter a tail β (A) result
component of an h-tree, we will make reference to its associated main result components for further
inspection.

Remark 12.9. Let us comment on two specific cases of Table 12.5: Both id (C) and α3 + α4 tail result
component of ϕπqµ necessarily come from a certain ϕπq(βα) evaluation. The result component βα itself
produces also main and tail result components from hq(βα). We will use this observation later as a tool
to abbreviate the construction of subdisks.

Remark 12.10. The figures referenced in Table 12.5 show more than only trees: They depict trees and
subdisks side-by-side. At present, the subdisks may simply be ignored and only trees count. We have
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α3 id (C) α0

id (D)

ϕπqµ
2 = α0

id (C) α4 α0

id (D)

ϕπqµ
2 = α0

out

α0

a0

(a) The inputs of these two trees consists α3 (B) and id (C) lying on the same arc, and the co-identity. The
evaluation of hq in the tree gives a sum of identities id (D) ranging over all arcs lying between the arc and the
co-identity. The subdisk is depicted for the second tree. It is a wedge lying between the zigzag curve and its
Hamiltonian deformation. Since α0 is the first input, the wedge lies on the side of α0 where α0 points to. In the
case of the figure it lies to the right of α0.

α0 α3 id (C)

id (D)

ϕπqµ
2 = α0

α0 id (C) α4

id (D)

ϕπqµ
2 = α0

a0

α0

(b) The subdisk of the first tree is depicted. Since α0 is the last input, the wedge lies on the opposite side of
where α0 points to. In the case of the figure it lies to the left of α0.

id (C) α4

ϕπqµ
2 = α0

α3 id (C)

ϕπqµ
2 = α0

a0
α0

(c) These two trees have only two inputs and yield the co-identity directly. The subdisk is depicted for the second
tree and features a sample case where the two inputs and the output lie maximally far apart, namely at the
identity and at the co-identity.

α0 α4 id (C)

α3

ϕπqµ
2 = α0 α0

(d) This tree has the special feature that all its angles neighbor one single arc. The subdisk is tiny and concentrated
around the midpoint of this arc.

Figure 12.12: Trees with α0 as result component

chosen this way of presentation to facilitate retrospection during the reading of section 13.

Lemma 12.11. The result components classification of Table 12.5 is complete: The named types of
result components can only be derived in the given way.

Proof. The checks are detailed in section C.1.

13 From trees to disks

In this section, we show how to transform a result component of a π-tree into a kind of smooth immersed
disk. Simply speaking, we draw all intersection points and connect them in a way dictated by the result
component. The result is a matching between result components and certain types of smooth immersed
disks. It leads to our main theorem which is a precise characterization of the minimal model HLq in
terms of smooth immersed disks.

Result components
with inputs h1, . . . , hN

CR, ID, DS, DW disks
with inputs h1, . . . , hN

Subdisk mapping D

Our bijection between result components of π-trees and smooth immersed disks is denoted D. The
domain of the mapping D is the set Resultπ of result components of π-trees. The precise terminology is
that D sends a result component r ∈ Resultπ to its associated “subdisk” D(r). We define the mapping D

inductively over tree size, by also defining subdisks for result components of h-trees: If a result component
r derives from certain result components r1, . . . , rN closer to the leaves, then the subdisk of r is defined
by gluing the subdisks of r1, . . . , rN .
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In section 13.1, we introduce a protocol which lays down how subdisks may be glued together along
handles. This way, subdisks of π-trees are closed disks, while subdisks of h-trees rather look like half
a disk. In section 13.2, we introduce a precise container class DiskSL meant to capture the shape of
subdisks of π-trees. In section 13.3, we show explicitly how to draw the subdisk associated with a result
component. In section 13.4, we define the subdisk mapping D : Resultπ → DiskSL and classify its image.
The class of disks reached by D decomposes into four visually distinguished types: CR, ID, DS and DW. In
section 13.5, we finish our computational journey and state our precise description of the minimal model
HLq. In section 13.6, we state our main theorem. The proofs of intermediate classification results and
sign computations have been placed in section C. We continue using the shorthand µ := µq := µAddGtlq Q,
see Remark 11.1.

13.1 The subdisk protocol

In this section, we introduce our protocol for subdisk handles. The purpose of this protocol is to give an
accurate description of the handles with which we will glue subdisks together. Recall from section 7.5
that every zigzag path L comes with an associated zigzag curve L̃. The subdisk of a result component of
an h-tree should consist of a sequence of intersection points and segments of the zigzag curves involved,
filled with half a disk. While the intersection points and zigzag segments can be located anywhere on the
dimer, both endpoints of the sequence should be located near the value of the result component itself.
For a given type of result component, we wish that the endpoints follow a predictable pattern to facilitate
gluing of subdisks. The protocol presented here is meant to define this local pattern, although we will
give no precise definition what kind of object a subdisk of an h-tree is from a global view.

Remark 13.1. The subdisk protocol enjoys the following characteristics:

• The protocol applies to every type of morphism that can appear as result component of h-trees,
namely α3, α4, β/β′ (C), α0, α′

0 and β (A).

• For each morphism ε : L1 → L2 of these types, the protocol defines a germ (small interval) of the
zigzag curves L̃1 and L̃2.

• Every germ comes with a handle. A handle is an indication which endpoint is its gluable outside,
and an indication which surface side is regarded as disk inside and which as disk outside.

With these characteristics in mind, the protocol is defined in Figure 13.1. The germ intervals are
drawn thickly, the gluable endpoints are drawn by dots and the disk inside is drawn hatched. Only β
(A) comes in two variants: a short and a long version. We use the short version for tail components of
hqµ

2 and all components of hqµ
≥3, and the long version for direct morphisms and inputs of hqµ

≥3. We
will explain the reason of this distinction in Remark 13.2.

Remark 13.2. The distinction between short and long version of β (A) protocol is due to a general phe-
nomenon of subdisks. Namely, we will glue subdisks together by prolonging and subsequently connecting
their handles. Sometimes, morphisms lie so close to each other that their handles connect without need
for prolongation. In fact, if we drew every β (A) result component as the long version, it would strictly
speaking not be possible to draw the right subdisks in some cases.

The best example is Figure 12.7: The co-identities can be drawn one after another next to the
connector of the β (A) input. With a long version, we would have to shorten the connector before
drawing the co-identities. In convening a short and long version, we prioritized the convention that
handles can always be prolonged and never shortened.

Remark 13.3. The most easily imaginable result components come from discrete immersed disks hqµ
≥3.

In these disks, some angles may be result components, while some are δ-morphisms. By the subdisk
protocol, the result components have handles assigned. These handles do not immediately connect to
each other. Instead, the result components lie apart by as many arcs as the number ni of δ-morphisms
between them. To facilitate smooth connections, we need to connect the handles by means of the angle
cutting procedure laid out in Definition 7.29.

We are now ready to use the protocol for the first time:

Lemma 13.4. Let r1, . . . , rN be a sequence of result components ri : Li → Li+1. Assume the values of
these result components are the consecutive angles of a discrete immersed disk when complemented with
δ-morphisms. Then their subdisk handles and the cuttings of the δ-angles connect smoothly. Here, all
short β (A) handles shall be extended to long ones first.
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α3

α4

β/β′ α0

α′
0

β

short

β

long

Figure 13.1: Subdisk protocol

Proof. The sequence of angles of the discrete immersed disk is a mix of result components and δ-
morphisms. To check that everything connects smoothly, it suffices to check two neighbors at a time.
These may be either two δ-morphisms, two result components, or one δ-morphism to the left or right of
a result component. The first case of two δ-morphisms is trivial.

The second case of two result components is checked in Figure 13.2. In this figure, all possible pairs
of consecutive disk angles are checked for smoothness.

The third case of one result component and one δ-morphism is an automatic feature of the subdisk
protocol. The example case of α3 is depicted by dotted lines in Figure 13.1.

13.2 Shapeless disks

In this section, we introduce shapeless disks as a container type for subdisks of π-trees. Recall that we
intend to define a mapping between result components of π-trees and certain types of smooth immersed
disks. In the present section, we define a suitable codomain for this map. Our solution is a broad
container format, which we call shapeless disks. A shapeless disk consists of intersection points of zigzag
curves with curve segments in between, filled by a disk immersion up to reparametrization. The specialty
of shapeless disks is that intersection points may occur multiple times, with zero distance between each
other. The set DiskSL of all shapeless disks will serve as codomain of the map D : Resultπ → DiskSL.

Remark 13.5. In the definition of SL disks, it is essential that all cohomology basis elements are
understood as intersection points between the associated zigzag curves. This correspondence is defined in
section 7.5. In particular, an identity idL is viewed as the even intersection point of L̃ and its Hamiltonian
deformation L̃′, located at the midpoint of the identity location arc a0 of L. The co-identity α0 is viewed
as the odd intersection point between L̃ and L̃′, located at the midpoint of the chosen co-identity angle
α0. The Hamiltonian deformation L̃′ goes right of L̃ at α0 and left of L̃ at a0, see Figure 13.3.

We are now ready to define shapeless disks.

Definition 13.6. Let N ≥ 0 and let L1, . . . , LN+1 be a sequence of zigzag paths. Let hi : Li → Li+1 be
cohomology basis elements. An SL disk (shapeless disk) consists of

• an output cohomology basis element t : LN+1 → L1,

• a possibly empty L̃1 segment from t to h1,

• for every i = 1, . . . , N a possibly empty L̃i+1 segment from hi to hi+1,

• a possibly empty L̃N+1 segment from hN to t,

• an oriented polygon immersion D : PN+1 → |Q| up to reparametrization,

such that D has convex corners and traces the segments of L̃1, . . . , L̃N+1 one after another. More precisely,
D shall map the i-th corner to hi, the N + 1-th corner to t, the edge between i-th and i+ 1-th corner to
the L̃i+1 segment and the edge between N + 1-th and 1st corner to the L̃1 segment, lying on the right
side of this chain of segments. The mapping D need not be an immersion on the boundary. The disk
may have infinitesimally small area. The class of SL disks is denoted DiskSL.

Remark 13.7. The notion of SL disks is depicted in Figure 13.4. We may refer to an empty segment
also as a segment of infinitesimally small length and say that the two endpoints of the segment are
infinitesimally close.
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δ

δ

(a) Outer δ and inner
δ

δ

δ

(b) Inner δ and outer δ

. . . . . .
β

δ

(c) Inner δ and β (A)

δ

α3

(d) Inner δ and α3

δα4

(e) Outer δ and α4

δβ/β′

(f) Inner δ and β/β′

(C)

δ

α0

(g) Outer δ and α0

α′
0

δ

(h) Inner δ and α′
0

. . .. . .
β

δ

(i) β (A) and inner δ
. . .. . .

α4
β

(j) β (A) and α4

β
. . .

α0

. . .

(k) β (A) and α0

δ α3

(l) α3 and outer δ

β α3
. . .. . .

(m) α3 and β (A)

α3

α3

(n) α3 and α3

α3
β/β′

(o) α3 and β/β′ (C)

α4

δ

(p) α4 and inner δ

α4

α4

(q) α4 and α4

δ β/β′

(r) β/β′ (C) and inner
δ

α4
β′

(s) β′ (C) and α4

α0 β

(t) β (C) and α0

δ

α0

(u) α0 and outer δ

β
α0

. . .. . .

(v) α0 and β (A)

α0

α3

(w) α0 and α3

α0
β/β′

(x) α0 and β/β′ (C)

α′
0

δ

(y) α′
0 and inner δ

α′
0α4

(z) α′
0 and α4

Figure 13.2: Two subdisks along an immersed disk are connected by tying their handles together as
shown. Instead of only handles, we have drawn for α3, α4, β/β′, α0 and α′

0 their entire subdisks as if
they were direct morphisms, for sake of legibility. In the first two pictures, hatching indicates the disk
interior. For all other pictures, there should be no ambiguity about inside and outside.

α0 α0 α0

a0

α0

Figure 13.3: A co-identity of L in a subdisk is drawn as a switch from L to its Hamiltonian deformation.
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t

L̃1

D

(a) N = 0

t h1

L̃1

L̃2

(b) N = 1

h1h2

h3

h4

h5 h6

tL̃1L̃2

L̃3

L̃4

L̃5

L̃6

L̃7D

(c) N = 6

Figure 13.4: These figures illustrate SL disks with a given number of N = 0, 1, 6 inputs. In the SL disk
with six inputs, the two zigzag paths L1 and L2 are supposed to be equal and the input h1 is supposed
to be the co-identity of L1. The three inputs h2, h3, h4 lie infinitesimally close to each other. The way
we have portrayed them is meant to imply L2 = L4 and L3 = L5. The morphisms h2, h3, h4 change back
and forth from L2 to L5. Allowing this distinctive behavior is the reason for our definition of SL disks.

α3 α4

β/β′
α0

α′
0 . . .. . .

β

Figure 13.5: Subdisks of direct morphisms

Remark 13.8. The definition of an SL disk entails the option of infinitesimally small area and empty
zigzag curve segments. It is impossible to draw these accurately, so we have opted to visually inflate every
infinitesimally small area and empty segments and draw them as substantial area and short but visible
segments in all drawings. While the definition of SL disks does technically not involve any Hamiltonian
deformations, we always draw co-identity and identity as switches from L̃ to Hamiltonian deformation, see
Figure 13.3. We draw stacked co-identities as repeated switches from L̃ to L̃′ to L̃′′ etc. with infinitesimally
small distance in between, in line with the Fukaya-theoretic viewpoint.

Remark 13.9. An SL disk is in principle allowed to have as few as zero or one inputs. An SL disk
without inputs is a monogon, an SL disk with a single input is a digon. Under the present assumption
that Q is geometrically consistent, an SL disk automatically has a minimum of two inputs. There are a
few exceptions: The monogon with infinitesimally small area, located at an arbitrary intersection point,
constitutes an SL disk without inputs. The digon bounded by two infinitesimally small segments of two
intersecting zigzag curves, located at a single intersection, constitutes an SL disk with a single input. The
digon bounded by a zigzag path and itself with input the identity and output the co-identity constitutes
an SL disk with a single input. For geometrically consistent Q, all SL disks with less than two inputs
have infinitesimal area. They are an artifact of the definition and will not be used.

13.3 Constructing subdisks

In this section, we define subdisks for most Kadeishvili trees. As announced, the procedure is an inductive
drawing construction, taking into account the way a given result component was derived. The reader
has encountered many subdisk drawings already, spread out over figures from section 12. Here we will
explain these drawings and add more.

Definition 13.10. Regard a β (A), α3 (B), β/β′ (C) or α′
0 (D) result component of an h-tree or an

α3 + α4 (B), id (C),
∑

ida (D) or α0 (D) result component of a π-tree. Then its subdisk is defined
inductively by the catalog presented in the rest of this section.
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β

β

δ

. . .

. . .

α4δ

α0

α3

. . . . . .

β

(a) Tying a subdisk for β (A) as main result
component of hqµ

≥3

β(C)

β(A)

. . . . . .

(b) Tying a subdisk for β (A) as tail result
component of hqµ

2 or hqµ
≥3. The main result

component in this example is β (C).

. . .

. . .

out

(c) Tying a subdisk for α3 +
α4 as main result component
of ϕπqµ

≥3.

. . .

. . .

(d) Tying a subdisk for α3+
α4 as tail result component
of ϕπqµ

≥3

. . . . . .

out

α0

β(C)

(e) Tying a subdisk for id
(C) as main result compo-
nent of ϕπqµ

≥3.

Figure 13.6: Further examples of how to tie subdisks

Any α3, α4, β/β′ (C), α0, α′
0 result component. Depending on whether direct or not, their subdisks

are given in Figure 13.5, 12.6a, 12.6c, 12.6d and 12.6b.

Direct β (A). Note it is necessarily part of a tail of some morphism ε, which is either α3, α4 or β/β′

(C). The subdisk of β (A) is now obtained by taking the subdisk of ε and connecting it all the way around
the tail disks by cutting the δ angles, continuing up until the given β (A) component. Finish with the
short subdisk version of β (A).

A β (A) main result component of hqµ2. Its subdisk is shown in Figure 12.7.

A β (A) main result component of hqµ≥3. The given discrete immersed disk is necessarily final-
out, with final morphism an outer δ insertion, β (A) or β/β′ (C). The result components that may be
used in this higher product are δ insertions, β (A), β/β′ (C), α3 (B), α4 (B), α0 (D), α′

0 (D). All of
them have subdisk handles assigned. Close all β (A) handles. Connect the handles of all morphisms
around the discrete immersed disk in clockwise order, following the δ insertions. Note that this produces
a smooth curve according to Lemma 13.4. Finish with the short version of β (A). An example is shown
in Figure 13.6a.

A β (A) tail result component of hqµ2 or hqµ≥3. The corresponding main result component is a
β (A), β/β′ (C) or α3. Now the subdisk of the β (A) tail result component is obtained by taking the
subdisk of the main result component, closing it if it is a β (A), and connecting it all the way around the
tail disk by cutting the δ angles, continuing up until the given β (A) tail result component. Finish with
the short subdisk version. An example is shown in Figure 13.6b.

An α3 + α4 main result component of ϕπqµ≥3. The disk is then one of Figure 12.2 or 12.3. In all
cases, connect the handles all around the disk as in the β (A) case. If the disk is first-out, cut the δ angle
at the beginning of the disk. If the disk is final-out, cut the δ angle at the end of the disk. Finally, close
the disk with an output mark. An example is shown in Figure 13.6c.
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id (C) α4

hqµ
2 = id (D)

(a) We do not assign a sub-
disk to this tree.

α3 id (C)

hqµ
2 = id (D)

(b) We do not assign a sub-
disk to this tree.

. . . . . .

id (D) id (D)

ϕπqµ
2

(c) Close inspection shows
this tree evaluates to zero.

Figure 13.7: Miscellaneous trees.

β/β′ id(C) id(C)

βα

hqµ
2 . . . . . .

out
id (C)

β(A) α0 id(C)

βα

hqµ
2 . . .

. . .

out
id (C)

Figure 13.8: In Figure 12.10a, the id (B) component can impossibly come from µ2(β/β′(C), id (C)) or
µ2(β(A), α0), because the arrow directions along the disk mismatch resp. because the arrow direction of
α0 contradicts Convention 10.10. The four resulting trees have no id (D) result components. Of the four
trees, the two with id (C) right after the output mark are depicted here.

An α3 + α4 main result component of ϕπqµ2. The entire tree is then one of those in Figure 12.8,
where the subdisks are also depicted.

An α3 + α4 tail result component of ϕπqµ≥3 or ϕπqµ
2. It comes from a type G disk in a certain

ϕπq(βα) evaluation of a product µ2 or one of the disks µ≥3 of Figure 12.3. Note that this very same β
(A) appears as main result component of the hq(βα) evaluation and we have already assigned a subdisk
with short β (A) version to it. Now obtain the subdisk of α3 + α4 from the subdisk of β (A) by closing
the subdisk and connecting it all the way up around the disk by cutting the δ angles, and finally finishing
with an output mark at the 2/5 arc of the G situation. An example for ϕπqµ

≥3 is shown in Figure 13.6d.

An id (C) main result component of ϕπqµ2. Its subdisk is depicted in Figure 12.11.

An id (C) main result component of ϕπqµ≥3. The disk is then all-in and of type H. Its inner
morphisms may be δ insertions, β (A), α3 (B), α4 (B), β/β′ (C), α0 (D), α′

0 (D). Connect them all and
finish with an output mark on the concluding 2/5 arc of the disk. An example is shown in Figure 13.6e.

An id (C) tail result component of ϕπqµ2 or ϕπqµ
≥3. It comes from a type H disk in a certain

ϕπq(βα) evaluation. Note that this β (A) already appears as a main result component and has a subdisk
assigned. Now obtain the subdisk of id (C) from closing the subdisk of β (A) and connecting it all the
way up until the 2/5 concluding arc of the type H disk. Finish with an output mark.

An id (D) result component. Its subdisk is depicted in Figure 12.10.

An α0 result component of ϕπqµ2 or ϕπqµ≥3. Its subdisk is depicted in Figure 12.12.

Remark 13.11. We have associated subdisks to all result components of all π-trees. Because they are
difficult to draw consistently, we do not assign subdisks to id (B) result components and id (D) result
components of h-trees.

The reader who has read the catalog of subdisk definitions may feel unsure what these subdisks
actually are. To ease his pain, we remind him that subdisks are specific collections of data defined in
section 13.1 and section 13.2. Let us explain and record that the subdisks defined in the catalog actually
satisfy these conditions:

Lemma 13.12. Subdisks are well-defined. Subdisks of h-trees respect the subdisk protocol. Subdisks of
π-trees are SL disks, providing a map D : Resultπ → DiskSL.
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Proof. This is easy and follows from induction on tree size. We shall not check all cases, but explain
the line of argument. The base case of induction are the subdisks of the direct morphisms, which are
depicted in Figure 13.5 and indeed respect the subdisk protocol.

As induction hypothesis, assume the subdisk of any result component of an h-tree with less than N
inputs already respects the subdisk protocol. Regard a result component r of an h- or π-tree with N
inputs. Assume r is derived from result components r1, . . . , rk. Each of these result components ri has
less than N inputs and hence their subdisks respects the subdisk protocol.

According to the catalog, the subdisk of r is constructed by gluing or extending the subdisks of
r1, . . . , rk. At these points, the catalog typically invokes Lemma 13.4. This invokation is indeed possible
since r1, . . . , rk all respect the subdisk protocol. The final step of the catalog entry is to finish the drawing
somewhere near r itself. This step is indicated in individual pictures, from which it is evident that the
finish respects the subdisk protocol respectively is an SL disk. This completes the induction.

13.4 The four types of disks

In this section, we exhibit the image of D : Resultπ → DiskSL. More precisely, we group result components
of π-trees into four different types, according to the shape of their subdisk. These four types of result
components go by the name CR, ID, DS and DW result components. We will also define four types of
shapeless disks, which are meant to coincide with the image of these types of result components under
D:

Geometry Result component Shapeless disk

Degenerate strip DS result component DS disk

Degenerate wedge DW result component DW disk

Identity degenerate ID result component ID disk

Co-identity rule CR result component CR disk

Recall from section 13.3 that every result component of a π-tree comes with a subdisk assigned. All of
these subdisks are SL disks, but some are more special than others. For example, the subdisks depicted
in Figure 12.11 are all degenerate: There are two zigzag curve segments with infinitesimally small length.
In contrast, all segments in the subdisk in Figure 13.6e are nonempty. We exploit these differences in
subdisks to define four classes of result components:

Definition 13.13. A result component r ∈ Resultπ is a

• DS result component if it is the result component of one of the 8 trees of Figure 12.11.

• DW result component if it is the result component of one of the 7 trees of Figure 12.12.

• ID result component if it is a result component of one of the trees in Figure 12.10a or 12.10b,
or a result component of Figure 12.10c where the first angle of the discrete immersed disk is an α3

or the final angle of the disk is an α4.

• CR result component otherwise.

The classes of DS, DW, ID and CR result components are denoted ResultDS,ResultDW,ResultID,ResultCR ⊆
Resultπ respectively.

Remark 13.14. We have chosen the acronyms to reflect the amount of degeneracy allowed in the
subdisks: Subdisks of DS result components are “degenerate strips”. Subdisks of DW result components
are “degenerate wedges”. Subdisks of ID result components are “identity degenerate”, having an identity
output and one of the inputs lying infinitesimally close to it. CR are mostly regular and satisfy the
“co-identity rule”.

The remainder of this section is devoted to defining the notions of CR, ID, DS and DW disks. These
four classes are subsets of DiskSL and meant to be explicitly constructible: For every imaginable SL disk,
the reader should be able to determine whether it concerns a CR, ID, DS or DW disk or non of those.
Ultimately, we will prove that these very explicit classes of disks are precisely the images of ResultCR,
ResultID, ResultDS and ResultDW under D.

Definition 13.15. A CR disk is an SL disk all of whose segments are nonempty, with the exception
that multiple stacked co-identity inputs connected by infinitesimally short L̃i segments are allowed, as
long as their zigzag curve is oriented clockwise with the disk. The class of CR disks is denoted DiskCR.
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out

co-identities

co-identities

Figure 13.9: This picture depicts the schematic of CR disks. The specific CR disk depicted here has
twelve inputs, of which four are of type B or C and eight are co-identities. The eight co-identities come
in two stacks, each consisting of four co-identities lying infinitesimally close to each other.

out

co-identities

(a) Clockwise B input

out

co-identities

(b) Counterclockwise B input

out

co-identities

(c) C input

Figure 13.10: This picture depicts the schematic of ID disks, categorized according to whether the
degenerate input is of type B or C. Each of the specific ID disks depicted here has nine inputs, of which
five are of type B or C and four consist of a stack of co-identities. The degenerate input is the one
at the top corner. For the case of degenerate B input, we have depicted both the clockwise and the
counterclockwise case. For the case of degenerate C input, we have depicted only the case where the
degenerate input precedes the output mark.

Remark 13.16. The behavior of CR disks is depicted in Figure 13.9. We remark that in any CR disk,
whenever a co-identity appears in the angle cut just before or after an intersection of type B, it appears
only once due to arrow directions.

Definition 13.17. An ID disk is an SL disk satisfying the following conditions:

• The output is the identity of a zigzag path,

• Precisely one input, the degenerate input, is infinitesimally close to the output,

• The degenerate input is of type B or C,

• The disk becomes CR upon excision of the output and substitution of the output mark by the
degenerate input,

• In case of a degenerate B input, it precedes respectively succeeds the output mark if L1 is oriented
clockwise respectively counterclockwise with the disk,

• In case of a degenerate C input, the source zigzag path of the degenerate input is counterclockwise
and the target zigzag path is clockwise.

The class of ID disks is denoted DiskID.

Remark 13.18. The two conditions of Definition 13.17 specific to the B and C case can be formulated
in more relaxed terms. In case of a degenerate B input, the three zigzag paths given by the source and
target of the degenerate input and the output all have the same orientation. We can make the precedence
of degenerate input and output therefore dependent on any of the three, instead of L1. In case of a
degenerate C input, the requirement regarding orientations equivalently requires that the source and
target zigzag path of the degenerate input are always oriented “towards” the disk, instead of “away from”
the disk. This is visually depicted in Figure 13.10.

Definition 13.19. A DS disk is an immersed strip fitting into one of the two digons bounded by a
zigzag curve L̃ and its Hamiltonian deformation L̃′. More precisely, the strip is a 4-gon bounded by L̃,
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L̃′ and two (indexed) arcs a and b lying on L. The arc b is the one lying closer to the co-identity. Two
inputs lie on the midpoint of the arc a and one input on the midpoint of the arc b. The output mark lies
on the midpoint of the arc b. There are corner cases in which additional conditions apply:

• If a = a0, then L is oriented away from the co-identity.

• If a = b, then either (a) L is oriented away from the co-identity and turns left at a = b, and the
input at the b side is odd/final, or (b) L is oriented towards the co-identity and turns right at a = b,
or (c) L is oriented towards the co-identity and turns left at a = b, and the b side input is odd/final.

• If a = b = a0, then both conditions must be met: L is oriented away from the co-identity, turns left
at a = b and the input at the b side is odd/final.

The class of DS disks is denoted DiskDS.

The behavior of DS disks is best observed in Figure 12.11. In the definition of DS disks, we have used
terminology that L̃ may be oriented towards or away from the co-identity. Indeed, a strip lies in the digon
between identity and co-identity. This brings a distinction whether L̃ is oriented towards the co-identity
and away from the identity, or away from the co-identity and towards the identity. Of course, the whole
definition with its corner cases is designed to capture precisely the result components of Figure 12.11.

Definition 13.20. A DW disk is one of the following:

• A 3-gon sitting between a zigzag curve L̃ and its Hamiltonian deformation, bounded on one side by
an arc a of L and on the other side by the co-identity. The output mark is placed at the co-identity.
It is allowed that a = a0 if L is oriented away from the co-identity.

• A 4-gon, obtained from the first option by inserting an additional co-identity input infinitesimally
preceding the output. The condition is that L is oriented away from the co-identity and that
a 6= t(α0).

• A 4-gon, obtained from the first option by inserting an additional co-identity input infinitesimally
succeeding the output. The condition is that L is oriented towards the co-identity.

The set of DW disks is denoted by DiskDW.

The behavior of DW disks is best observed in Figure 12.12. The definition distinguishes three types
of DW disks. To be more precise with the conditions, observe that a DW disk the second type is allowed
to have a = a0 while a DW disk of the third type is required to have a 6= a0. In the second type, the
arc a is supposed to be not the tail arc t(α0) of the co-identity angle α0. In the third type, the assertion
a 6= t(α0) holds automatically, since the co-identity angle α0 is located in a counterclockwise polygon of
Q and L is supposed to be oriented towards the co-identity. All DW disks have infinitesimal area, but
precisely two nonempty zigzag segments. In fact, the distance between the midpoint of the arc a and the
midpoint of the co-identity angle α0 is at least half an angle in size.

We have constructed the definitions of CR, ID, DS and DW disks such that the subdisk of a CR result
component is a CR disk, and so on:

Lemma 13.21. The subdisk of a CR, ID, DS or DW result component is a CR, ID, DS or DW disk,
respectively.

Proof. The inspection is performed in section C.2.

In fact, we will prove and discuss later that our definition of CR, ID, DS and DW disks is also sharp:
Every CR, ID, DS and DW disk is actually reached as a subdisk of some result component.

Remark 13.22. It is very pleasant that most subdisks are rather regular in the sense that their zigzag
curve segments are non-empty. The only irregularities are found in stacked co-identities of CR and ID
disks, the degenerate output of ID disks, and the two irregular types of DS and DW disks. Viewed
geometrically, this is not really a surprise: In Figure 13.11 we argue that smooth immersed disks with
non-transversal intersections lying infinitesimally close to each other are very thin. The conclusion is
that within the Fukaya category, one expects only very few irregular disks between zigzag curves. The
DS and DW disks provide the exact representation-theoretic witness of this phenomenon.
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h2
h1

Figure 13.11: This picture explains that one expects only very few non-transversal disks among zigzag
curves in the Fukaya category. We depict a smooth immersed disk bounded by zigzag curves and assume
it has two transversal intersections h1, h2 on the boundary which lie infinitesimally close to each other.
Due to the zigzag nature and transversality, h1 and h2 must be the even and odd intersection points
located at the midpoint of one single arc of Q. This means that the source zigzag path of h1 is the target
zigzag path of h2 and the entire disk is then very thin.

13.5 The minimal model

In this section, we tie together the computation of HLq: Its A∞-structure is defined in terms of π-trees.
All the result components of a π-tree can again be matched with CR, ID, DS and DW disks:

HLq
Minimal model

Kadeishvili
Resultπ

Result components
D

CR, ID, DS, DW
Immersed disks

This correspondence allows us to express the minimal model HLq in terms of disks. The present
section is meant to spell out the details and provide intuition.

Our first step is to get more grip on the subdisk mapping D : Resultπ → DiskSL. We have already
seen in section 13.4 that D sends CR result components to CR disks, and so on. In the following lemma,
we affirm that all CR, ID, DS and DW disks are actually reached by D.

Lemma 13.23. The classes of CR, ID, DS and DW result components are disjoint, as are the classes of
CR, ID, DS and DW disks. The subdisk mapping D bijectively sends each of the four result component
classes to its disk counterpart:

ResultCR ∪̇ ResultID ∪̇ ResultDS ∪̇ ResultDW

DiskCR ∪̇ DiskID ∪̇ DiskDS ∪̇ DiskDW

D ∼ D ∼ D ∼ D ∼

Resultπ =

DiskSL⊆

Proof. The inclusions are checked and an explicit inverse map is constructed in section C.

At this point, we can already describe the minimal model HLq in a rigged way by means of disks:
Let r be a result component of a π-tree. Then its subdisk D(r) comes with a designated output mark, in
particular we can read off its output morphism t(D(r)). In fact, the value of r is equal to t(D(r)), at least
when sign and q-parameters are stripped off. For example, a subdisk of an α3 +α4 result component has
output mark at this very same α3 + α4 morphism, by construction. Even though we currently have to
recover signs and q-parameters from result component instead of disk, this enables us to largely describe
the product in terms of disks:

µN (hN , . . . , h1) =
∑

r∈Resultπ
r has inputs h1,...,hN

r

=
∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

D−1(D)

=
∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)sgn(D
−1(D)) qparam(D−1(D)) t(D).

(13.1)

Here t(D) denotes the output morphism of the disk D, and sgn(r) and qparam(r) temporarily denote the

sign and q-parameter of a result component. As announced, the sign (−1)sgn(D
−1(D)) and q-parameter

qparam(D−1(D)) in this formula are only recovered from the result component D−1(D) instead of D
itself.

Our next step is to write signs and q-parameters in terms of D instead of recovering them from
D−1(D). In fact, Lemma 13.25 will show that the sign is precisely the Abouzaid sign of D, which the
reader may recall from the context of Fukaya categories in section 7.1. Moreover, the q-parameter is
precisely the product of all punctures covered by D, counted with multiplicities. Before we make these
statements, let us fix the Abouzaid sign terminology in our present context:
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Definition 13.24. Let D be an SL disk. Then its Abouzaid sign Abou(D) ∈ Z/2Z is the sum of all #
signs around D, plus the number of odd inputs hi : Li → Li+1 where Li+1 is oriented counterclockwise
with D, plus one if its output t : L1 → LN+1 is odd and LN+1 is oriented counterclockwise. The q-
parameter Punc(D) ∈ CJQ0K of D is defined as the product of all punctures covered by D, counted
with multiplicities.

Lemma 13.25. Let r ∈ Resultπ be the result component of a π-tree. Then its sign is equal to the
Abouzaid sign of its subdisk D(r) and its q-parameter ∈ CJQ0K is equal to the product of all punctures
covered by D(r), counted with multiplicities:

In terms of r In terms of D

Sign sgn(r) ∈ Z/2Z Sign Abou(D) ∈ Z/2Z

q-parameter qparam(r) ∈ CJQ0K q-parameter Punc(D) ∈ CJQ0K

=

=

Proof. Both checks can be performed in an inductive fashion. The signs checks are detailed in section C.8.
The checks for q-parameters are easier and left to the reader.

With the help of this lemma, we are ready to translate the rigged formula (13.1) into the soothing
description of the minimal model purely in terms of disks. For simplicity we denote the identity element
of a zigzag path L by idL =

∑
a ida.

Theorem 13.26. Let Q be a geometrically consistent dimer. Regard the category Lq ⊆ Tw′ Gtlq Q
of deformed zigzag paths according to Convention 10.10. Then the A∞-structure of the minimal model
HLq is described as follows:

• The curvature and differential vanish:

µ0
HLq

= µ1
HLq

= 0.

• The minimal model is unital: For every cohomology basis element h : L1 → L2 we have

µ≥3
HLq

(. . . , idL1 , . . .) = 0,

µ2
HLq

(h, idL1
) = (−1)|h|µ2

HLq
(idL2

, h) = h.

• The products are given by CR, ID, DS and DW disks: Let N ≥ 2 and let h1, . . . , hN be a sequence
of non-identity cohomology basis morphisms with hi : Li → Li+1. Then their product is given by

µN (hN , . . . , h1) =
∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D).

Proof. This is a summary of our journey. As we have observed earlier, the minimal model HLq has
vanishing differential and curvature. It is also unital with the same identities as L. When h1, . . . , hN are
cohomology basis elements, the rigged formula (13.1) gives

µN (hN , . . . , h1) =
∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)sgn(D
−1(D)) qparam(D−1(D)) t(D)

=
∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D).

In the second row, we have inserted Lemma 13.25. This finishes the proof.

13.6 Main result

In this section, we present our main result. It ties together the “discrete relative Fukaya category” HLq
and the “smooth relative Fukaya category” relFukQ:

Discrete relative
(HLq)tr

Smooth relative
relFukpreQ|ObL



156 13. From trees to disks

The starting point on the discrete side is the explicit description of the minimal model HLq due
to Theorem 13.26. The starting point on the smooth side is the explicit description of the subcategory
relFukpreQ|ObL from Corollary 7.39. The main result entails a strict isomorphism between the transversal
part (HLq)tr on one side and relFukpreQ|ObL on the other side. In what follows, we recall a few specific
properties of relFukpre |ObL and a few similarities with HLq.

Remark 13.27. In section 7 we have elaborated on the construction of Fukaya categories. More specifi-
cally, we have defined the categories FukpreQ, FukQ, relFukpreQ, relFukQ and their subcategories given
by zigzag curves. Most importanty, recall from Definition 7.23 that relFukpreQ denotes the relative
Fukaya pre-category of Q. In section 7.5, we have provided an extensive elaboration on how zigzag paths
can be interpreted as objects in relFukpreQ. In particular, a zigzag path L ∈ HLq corresponds to a zigzag

curve L̃ ∈ relFukpreQ. Recall from Definition 7.31 that relFukpreQ|ObL is the A∞-pre-category defined
as the subcategory of relFukpreQ given by zigzag curves L̃, together with the spin structure dictated
by L ∈ L. As we have seen in Lemma 7.36, a sequence of zigzag curves (L̃1, . . . , L̃N+1) is transver-
sal in relFukpreQ|ObL if and only if the zigzag paths Li are pairwise distinct. We have described the
subcategory relFukpreQ|ObL more explicitly in Corollary 7.39.

Remark 13.28. In Lemma 7.34, we have identified basis elements for the hom spaces HomFukQ(L̃1, L̃2)

with intersection points of L̃1 and L̃2. In case L̃1 = L̃2, the intersection points only refer to the transversal
self-intersections, plus the identity and co-identity self-intersections. In section 10.3, we have seen that
basis elements for HomHL(L1, L2) are identified with intersection points between L̃1 and L̃2 as well. In
case L1 = L2, the intersection points only refer to the transversal self-intersections, plus identity and
co-identity self-intersections:

Category of zigzag paths Geometry Fukaya category

Zigzag path Zigzag curve Zigzag curve

L L̃ L̃

Cohomology basis element Intersection point Basis element

h : L1 → L2 p ∈ L̃1 ∩ L̃2 p : L̃1 → L̃2

Remark 13.29. As laid out in Lemma 7.35, the relative Fukaya category relFukQ is a deformation of
FukQ. As such, its hom spaces are the B-enlargement of the hom spaces of FukQ, see also Lemma 7.35:

HomrelFukQ(L̃1, L̃2) = B⊗̂HomFukQ(L̃1, L̃2).

Similarly, HLq is a deformation of HL by construction. Its hom spaces are the B-enlargement of the
hom spaces of HL:

HomHLq
(L1, L2) = B⊗̂HomHL(L1, L2).

The identification of the basis elements of HomFukQ(L̃1, L̃2) and HomHLq
(L1, L2) provides an explicit

B-linear identification of the hom spaces HomrelFukQ(L̃1, L̃2) and HomHLq
(L1, L2).

In Lemma 13.30, we examine CR, DS, ID and DS disks in the case that the sequence of input zigzag
paths is transversal. The notable outcome is that only CR disks remain, which can in turn be interpreted
directly as smooth immersed disks. This establishes the desired link between the minimal model HLq
and relFukpreQ|ObL which we will expand in Theorem 13.31.

Lemma 13.30. Let L1, . . . , LN+1 be a sequence of zigzag paths in Q such that L̃1, . . . , L̃N+1 is a
transversal sequence. Let hi : Li → Li+1 for 1 ≤ i ≤ N and h : L1 → LN+1 be cohomology basis
elements in HL. Denote by pi : L̃i → L̃i+1 and p : L̃1 → L̃N+1 the corresponding basis elements in
FukQ|ObL. Then:

1. There are no ID, DS and DW disks with inputs h1, . . . , hN .

2. There is a bijection

Φ :
{

CR disks
with inputs h1,...,hN

and output h

}
∼

−−−−−→
{

Smooth immersed disks
with inputs p1,...,pN

and output p

}
.

3. The Abouzaid signs agree: Abou(D) = Abou(Φ(D)).

4. The q-paramaters agree: Punc(D) = Punc(Φ(D)).
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Proof. We explain the four statements one after another. For the first statement, let D be an ID, DS
or DW disk with inputs h1, . . . , hN . Then necessarily at least two of the zigzag curves L1, . . . , LN+1

are equal. Therefore (L̃1, . . . , L̃N+1) is not a transversal sequence, in contradiction with the assumption.
This shows that there are no ID, DS or DW disks with input h1, . . . , hN . In other words, there can only
be CR disks with inputs h1, . . . , hN among the four types of disks.

For the second statement, pick a CR disk with inputs h1, . . . , hN and output h. Since all zigzag paths
L1, . . . , LN+1 are pairwise distinct, the sequence h1, . . . , hN does not contain any co-identities. Therefore
all zigzag curve segments involved in the CR disk D are non-empty. This way D immediately constitutes
a smooth immersed disk in the sense of Definition 7.21. We denote this smooth immersed disk by Φ(D).
The smooth immersed disk Φ(D) has inputs p1, . . . , pN and output p, precisely as desired. This sets up
the desired mapping Φ. The map Φ is clearly injective, since a CR disk contains as much information
about the polygon immersion D : PN+1 → |Q| as does a smooth immersed disk. For instance, the two
notions of CR disks and smooth immersed disks both identify immersions related by reparametrization.
The map Φ is also surjective, since a smooth immersed disk with inputs p1, . . . , pN and output p can
immediately be interpreted as a CR disk. This shows that Φ is a bijection.

For the third statement, let D be a CR disk with inputs h1, . . . , hN and output h. According to
Definition 13.24, the Abouzaid sign Abou(D) ∈ Z/2Z is the sum of all # signs on the boundary of D,
plus the number of odd inputs hi where Li+1 is oriented counterclockwise with D, plus one if the output
h : L1 → LN+1 is odd and LN+1 is oriented counterclockwise. This is exactly the same as the definition
of the Abouzaid sign of Φ(D), see Definition 7.22 and 7.12. This shows Abou(D) = Abou(Φ(D)).

For the fourth statement, let D be a CR disk with inputs h1, . . . , hN and output h. According
to Definition 13.24, the q-parameter Punc(D) ∈ CJQ0K is the product of all punctures covered by D,
counting punctures multiple times if they are covered multiple times. This is exactly the same as the
definition of the q-parameter of Φ(D), see Definition 7.22. This finishes the proof.

Our main theorem shows that the transversal part of HLq agrees with the subcategory relFukpreQ|ObL

of the relative Fukaya pre-category. For sake of logical independence, we repeat the setup here: The
starting point is a geometrically consistent dimer Q. We assume Convention 10.10. We denote by
Lq ⊆ Tw′ Gtlq Q the category of deformed zigzag paths according to Definition 11.3. We denote by
HLq the minimal model of Lq, described explicitly in Theorem 13.26. We denote by relFukpreQ|ObL the
subcategory of the relative Fukaya pre-category of Q, described explicitly in Corollary 7.39. We denote
by (HLq)tr the transversal part of HLq with respect to relFukpreQ|ObL, as defined in Definition 7.24.
The notion of strict isomorphism of deformed A∞-pre-categories is provided in Definition 7.25. Under
this terminology, we state our main theorem as follows:

Theorem 13.31. Let Q be a geometrically consistent dimer and assume Convention 10.10. Then there
is a strict isomorphism of deformed A∞-pre-categories

Fq : (HLq)tr
∼

−−−−−→ relFukpreQ|ObL.

The functor Fq sends a zigzag path L ∈ HLq to the associated zigzag curve L̃ and a cohomology basis

element h : L1 → L2 to the associated intersection point p : L̃1 → L̃2.

Proof. This follows directly from Theorem 13.26, but we state the details. The starting point is the
description of the A∞-deformation HLq of HL from Theorem 13.26 and the description of the A∞-
pre-category deformation relFukpreQ|ObL of FukpreQ|ObL from Corollary 7.39. We have detailed the
definition of the transversal part (HLq)tr with respect to FukpreQ|ObL in Definition 7.24.

To construct the functor Fq according to Definition 7.25, we have to execute four steps: (1) to set
up a bijection between the objects of HL and FukpreQ|ObL, (2) to show that the transversal sequences
of (HL)tr and FukpreQ|ObL agree under the bijection on objects, (3) to set up a CJQ0K-linear degree
0 isomorphism between the hom spaces of (HLq)tr and relFukpreQ|ObL, (4) to show that the higher
products of (HLq)tr and relFukpreQ|ObL agree under the identification of hom spaces.

For step (1), the bijection between objects of HL and FukpreQ|ObL consists simply of mapping a
zigzag path L ∈ HL to its associated zigzag curve L̃ ∈ FukpreQ|ObL:

Fq : Ob(HL)
∼

−−−−−→ Ob(FukpreQ|ObL)

L 7−−−−−→ L̃.

For step (2), we have to explain that the transversal sequences of (HL)tr are precisely the transversal
sequences of FukpreQ|ObL under the identification of L with L̃. In fact, this is immediate from the
definition of (HLq)tr as transversal part of HLq with respect to relFukpreQ|ObL under the identification
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of L with L̃. Explicitly, a sequence (L1, . . . , LN ) in (HL)tr is by definition transversal if and only if
(L̃1, . . . , L̃N ) is transversal.

For step (3), we have to set up a CJQ0K-linear identification between the hom spaces of (HLq)tr and
relFukpreQ|ObL. In order to define this identification, let (L1, L2) ∈ (HL)2tr. Then we have L1 6= L2.
We now set up the identification by sending a cohomology basis element h : L1 → L2 to its associated
intersection point p : L̃1 → L̃2, as described in Remark 13.29:

F 1
q : Hom(HLq)tr(L1, L2)

∼
−−−−−→ HomrelFukpreQ|Ob L

(L̃1, L̃2)

h 7−−−−−→ p.

For step (4), we have to show that Fq preserves the products of (HLq)tr and relFukpreQ|ObL. Pick
N ≥ 1 and let (L1, . . . , LN+1) ∈ (HL)N+1

tr . Pick basis elements hi ∈ HomHL(Li, Li+1) and let pi ∈
HomFukpreQ|Ob L

(L̃i, L̃i+1) be the associated intersection points. We get

F 1
q (µ(HLq)tr(hN , . . . , h1)) = F 1

q

( ∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D)

)

=
∑

D∈DiskCR
D has inputs h1,...,hN

(−1)Abou(D) Punc(D)F 1
q (t(D))

=
∑

h:L1→LN+1

∑

D∈DiskCR
D has inputs h1,...,hN

and output h

(−1)Abou(D) Punc(D)F 1
q (h)

=
∑

p∈L̃1∩L̃N+1

∑

D∈Mq(p1,...,pN ,p)

(−1)Abou(Φ−1(D)) Punc(Φ−1(D))p

=
∑

p∈L̃1∩L̃N+1

∑

D∈Mq(p1,...,pN ,p)

(−1)Abou(D) Punc(D)p

= µrelFukpreQ|Ob L
(pN , . . . , p1).

In the first row, we have inserted the description of µHLq
from Theorem 13.26. In the second row, we have

pulled F 1
q into the sum and used that there are no ID, DS and DW disks with inputs h1, . . . , hN according

to Lemma 13.30. In the third row, we have turned the sum into a double sum ranging over the possible
output basis elements h. The notation h : L1 → LN+1 used is a slight abuse: The sum is intendend
to run over the basis elements h ∈ HomHL(L1, LN+1). In the fourth row, we have re-enumerated the
summands as smooth immersed disks instead of CR disks. This enumeration uses the bijection Φ set up
in Lemma 13.30. In the fifth row, we have used that Φ−1(D) and D have the same Abouzaid sign and
q-parameter, according to Lemma 13.30. In the sixth row, we have inserted the definition of the products
of relFukpreQ|ObL, according to Corollary 7.39.

This proves step (4) and finishes the construction of the strict isomorphism Fq between (HLq)tr and

relFukpreQ|ObL. By construction, Fq sends L to L̃ and a cohomology basis element h : L1 → L2 to the

associated intersection point p : L̃1 → L̃2. This finishes the proof.

Remark 13.32. The main result shows that HTwGtlq Q is a candidate for a relative wrapped Fukaya
category. Also, the subcategory of HTwGtlq Q given by Z/2Z-graded band objects is a candidate model
for relFukQ in the sense of Definition 7.26.

It seems likely that HLq is (gauge equivalent to) the subcategory of zigzag paths in (any model for)
relFukQ. Our main result is however no guarantee for this, since taking subcategories and lifting pre-
categories to categories need not commute: Every subcategory of a lift is a lift of the subcategory, but
not the other way around. For further discussion we refer to section F.2.2.

A Examples

We provide here an example of a CR and an ID disk together with their matching result components.
The aim is to demonstrate in practice how one finds the preimage of a given CR or ID disk under the
subdisk mapping. The examples illustrate the strong geometric aspect of the subdisk construction and its
inverse construction. On the other hand, the examples demonstrate the sheer amount of case distinctions
and precision work required for reconstructing the result component from a given CR or ID disk.
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Figure A.1: The immersed disk: a hexagon
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Figure A.2: The Kadeishvili tree, with result components depicted at each node

A.1 ID disk

We present here an example pair of an ID disk and its matching result component. We depart from the
view of the ID disk and construct by inspection the corresponding Kadeishvili tree and result component.
The ID disk we present is very small. The reader can use this example to get a feeling how the presence
of the degenerate input and the small size of the disk are translated into the Kadeishvili tree.

The example ID disk is presented in Figure A.1. It is situated at a puncture with six incident arcs
and six incident polygons. Every pair of two neighboring incident arcs makes for a zigzag path, and the
smoothed zigzag curves L̃1, . . . , L̃6 have six intersections around the puncture. These intersections alone
bound a hexagon.

Recall that every zigzag curve is supposed to have locations assigned of identity and co-identity
morphisms. In our example, the identity morphism of the sixth curve is supposed to lie on the curve’s
second arc when reading clockwise around the puncture. The disk we present makes use of this feature
in order to be a disk of ID type with six inputs and an identity output.

Let us explain precisely the data of this disk: The disk’s inputs are the six intersection points h1, . . . , h6
of L̃1, . . . , L̃6 around the puncture, and the output is the identity of L̃6. The identity output lies infinites-
imally close to the first input. More precisely, the first input is the degenerate input of this ID disk and
succeeds the output mark. The arcs are oriented so that L̃1 is oriented clockwise and L̃6 is counterclock-
wise with the disk. This turns the disk into an ID disk according to definition.
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To interpret the meaning of this disk, we have to understand its features: First, the disk is very
small. The difficulty for us lies instead in the fact that the disk has no direct discrete analog: There is
no space between the arcs to form a higher product of Gtlq Q. The disk is however an ID disk and as
such has a nonzero value in our explicit model HLq. Second, the disk is unpredictable in the relative

Fukaya category. Indeed, the sequence L̃1, . . . , L̃6, L̃1 is not transversal. The disk even has an input
lying infinitesimally close to the output. All this means the higher product in the relative Fukaya is
unpredictable. The smallness and unpredictability features are nicely illustrated by the fact that the
simplest possible Kadeishvili tree ϕπqµ(h6, . . . , h1) simply gives a zero result.

There exists is a single Kadeishvili π-tree that yields a nonzero output for the input sequence
h1, . . . , h6. In fact, there is only a single result component, depicted in Figure A.2. We explain here
the precise data of this result component and why it is the only result component.

Step 1: Combining h5 and h4: The deformed cohomology basis element h5 is the sum of an arc iden-
tity and a β′ (C) morphism. The deformed cohomology basis element h4 is the sum of an arc
identity and a β (C) morphism. Combining both into the product µ2

q(h5, h4) gives the sum of two
terms, the first of which comes from the arc identity of h5 and the β (C) morphism of h4, the second
comes from the β′ (C) morphism of h5 and the arc identity of h4. The product morphisms are both
situation A morphisms, the first is of type γβ (A) and the second of type βα (A). Applying the
codifferential hq to the first gives zero, since γβ (A) lies in the R-part of HomLq

(L3, L5). Applying
of the codifferential hq to the second product gives a certain angle β45, depicted explicitly in the
figure. In summary, only the second term survives and is used for the result component.

Step 2: Combining with h3: The deformed cohomology basis element h3 consists of an arc identity
and a β′ (C) morphism. Combining with β45 gives the product µ2

q(β45, id (C)) which is a situation A
morphism of type βα (A). Applying the codifferential hq gives a certain angle β345 ∈ HomLq

(L2, L5),
depicted explicitly in the figure.

Step 3: Combining with h2: Analogous to the previous step, gives angle β2345 ∈ HomLq
(L1, L5).

Step 4: Combining with h6: The deformed cohomology basis element h6 consists of an arc identity
and a β (C) morphism. Combining with β2345 gives the product µ2

q(id (C), β2345) which is a situation
B morphism of type α2 (B). Application of the codifferential hq gives the identity angle id (B) ∈
HomLq

(L1, L6).

Step 5: Combining with h1: The deformed cohomology basis element h1 consists of an arc identity
id (C) and a β′ (C) morphism. Combining with id (B) gives the product µ2

q(id (B), id (C)) which
is the arc identity on the second arc of L6 read in clockwise direction. By assumption, this second
arc is the identity location of L6. Application of the projection πq gives the identity morphism
idL6

∈ HomLq
(L6, L6). This is the final result component of the Kadeishvili π-tree.

q-parameters: In the past five steps, we have ignored signs and q-parameters in the result component.
The q-parameter in fact consists of the single puncture located at the center of the hexagon. This
parameter enters the result component in Step 1 by means of the β′ (C) morphism of h5.

The result component described above and depicted in Figure A.2 is the only result component of
the sequence h1, . . . , h6, at least as far as displayed in the figure. For the specific π-tree, the single result
component is the only result component. Indeed we have exhausted in every step all possible products
µ2
q or µ≥3

q and all terms in their codifferential, apart from possible tail terms which lie far away and
are not visible in the figure. Other π-trees with the same input sequence h1, . . . , h6 do not yield any
result components. Indeed, one might for instance try to combine β2345 with h1 before combining with
h6. However, the product µ2

q(β2345, id (C)) gives a situation B morphism α1 (B) whose codifferential
vanishes. This explains how the result component depicted in Figure A.2 is the only result component
and illustrates the delicate nature of matching disks with result components.

A.2 CR disk

We present here an example of a CR disk together with its Kadeishvili tree and result component.
The CR disk we present is depicted in Figure A.3. Its data has the following properties: There are

eleven input morphisms. The first is an odd morphism (type B), the second and fifth are even (type C),
the third and fourth are stacked co-identities, the sixth and seventh are odd (type B), the eighth is a
co-identity, the ninth is even (type C), the tenth and eleventh are stacked co-identities. The output is
an odd morphism (type B). In total, the boundary of the CR disk includes seven (in principle) distinct
zigzag curves.
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Figure A.3: A large CR disk with 11 inputs
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Figure A.4: Narrow tree of the CR disk

The CR disk consists visually of three connected arms. It has a total of five indecomposable narrow
locations A, B, C, D, E. The narrow locations A, B lie on the first arm, the narrow locations C, D lie on
the second arm, the narrow location E lies on the third arm. The narrow tree is depicted in Figure A.4.
In the terminology of the narrow tree, the morphism h1 lies below A and B. The morphisms h2, h3, h4,
h5 lie below C and D. The morphism h6, h7, h8 lie below E. The morphisms h9, h10, h11 lie left-within
E. The narrow locations C and E are (direct) siblings in the narrow tree, indicated in the figure by a
dotted line.

The figure does not depict the entire dimer. In fact, the zigzag segments and narrow locations have
been depicted accurately, but the drawing misses some arcs. For instance, regard the puncture q which
is the connecting puncture of the narrow locations C and E. Simply put, q is the puncture just to the
right of h9, h10. The figure suggests there are seven incident polygons, preventing Q from being a dimer.
This explains that the visible arcs are not sufficient for the CR disk to exist and further arcs need to be
added in the interior of the CR disk.

According to Lemma 13.23, proved in section C.6, the CR disk is the subdisk of a single CR result
component. The construction of this result component is depicted in Figure A.5 till A.9. We explain the
construction as follows:
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id(C) α0
α′
0 id(C)

α′
0

β(C)

β(A)

5 4 3 2

Figure A.5: Combining 5, 4, 3, 2

Step 1: Combining h5, h4, h3, h2: This step is depicted in Figure A.5. The morphisms h4 and h3
are identical, namely a co-identity. Both consist of an α0 and an α′

0 term. Take the product
µ2
q(α0, α

′
0). Applying the codifferential hq gives α′

0. The morphism h5 consists of an id (C) and a β
(C) term. Take the product µ2

q(id (C), α′
0). Applying the codifferential hq gives a β (C) morphism.

The morphism h2 consists of an id (C) and a β (C) term. Take the product µ2
q(β(C), id (C)). This

gives a result of type βα (A). Applying the codifferential hq gives a β (A) main result component,
depicted without label in the figure. The codifferential also yields a β (A) tail result component,
labeled as such in the figure. The codifferential yields one further tail result component visible in
the figure, but we do not use it.

Step 2: Combining h8 and h7: This step is depicted in Figure A.6. The morphism h8 is a co-identity
and comes with terms α0 and α′

0. The morphism h7 is an type B morphism and comes with terms
α3 and α4. Take the product µ2

q(α0, α4). Applying the codifferential hq gives an α3 (B) main result
component.

Step 3: Combining h11, h10, h9: This step is depicted in Figure A.7. The morphisms h11 and h10 are
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Figure A.7: Combining 11, 10, 9
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β(C)

α3 α4

β(A)

β(A)

β(A)

11+10+9 8+7 6 5+4+3+2

Figure A.8: Combining 11+10+9, 8+7, 6 and 5+4+3+2

identical co-identities. Both consist of terms α0 and α′
0. Take the product µ2

q(α0, α
′
0). Applying

the codifferential hq gives an α′
0 term. The morphism h9 is a type C morphism and among others

consists of an id (C) term. Take the product µ2
q(α

′
0, id (C)). Applying the codifferential hq gives a

β (C) result component.

Step 4: Assembly, part I: This step is depicted in Figure A.8. In this step, we combine the second
and third arm of the CR disk. On morphism level, we combine the result components obtained in
step 1, 2 and 3. We start as follows: Pick the result component β (C) from step 3 and the result
component α3 (B) from step 2. Take the product µ8

q(β(C), δ, δ, α3, α4, δ, δ, δ). Here the letter δ
denotes inner and outer δ insertions. The result is a situation A morphism βα (A). Applying the
codifferential gives a term β (A). Now pick the β (A) result component stemming from step 1 and
take the product µ8

q(β(A), δ, δ, δ, β(A), δ, δ, δ) of both. The result is a situation A βα (A) morphism.
Applying the codifferential hq gives a β (A) result component.

Step 5: Assembly, part II: This step is depicted in Figure A.9. In this step, we combine the second
and third with the first arm of the CR disk. On morphism level, we combine the morphism h1 with
the result component of h2, . . . , h11 obtained in step 4. The morphism h1 is a type B morphism
and consists of α3 and α4 terms, but also includes two β (A) tail result components. Of these two
tail result components, take the higher-order one and combine with the other result component β
(A) from step 4 to obtain the product

µ16
q (δ, δ, δ, δ, β(A), δ, δ, δ, δ, δ, β(A), δ, δ, δ, δ, δ).

The discrete immersed disk which computes this product is final-out. Its result includes an α3 term.
Applying the projection πq gives the final α3 + α4 result component of the tree.
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β(A)

β(A)

α3

(11+10+9)+(8+7)+6+(5+4+3+2) 1

Figure A.9: Combining (11+10+9)+(8+7)+6+(5+4+3+2) and 1

B Uncurving of band objects

In this section, we prove Lemma 9.17, which concerns uncurvability of band objects. It is our task to
explicitly construct a deformed twisted complex such that a given band object becomes curvature-free.
More precisely, the starting point consists of:

• a punctured surface (S,M),

• a full arc system A with [NMDC],

• a standard deformation GtlrA where r ∈ mZ(GtlA) is without 1-component,

• a band object organized in a twisted complex X = (⊕ai[si], δ),

such that the underlying curve of X in the closed surface S is not contractible and does not bound a
teardrop, and every connecting angle αi in δ is longer than an identity and shorter than a full turn. It is
our aim to construct a deformation δq ∈ Hom1

AddGtlr A(X,X) such that Xq = (⊕ai[si], δq) has vanishing
curvature.

The present section is logically independent of the computation of the minimal model HLq. However,
it builds directly on its methods in three ways: First, we introduce a notion of situations to characterize
types of angles between arcs of X, similar to the notion of situations for morphisms between zigzag paths.
Second, we build a protocol which describes what kind of angles we may encounter while gathering the
complementary angles, similar to the E, F, G, H disks or the subdisk protocol for zigzag paths. Third,
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Figure B.1: An example which requires four additional complementary angles

we build up the list of complementary angles in a recursive way, a bit similar to the way we work with
tails of morphims or subdisks for zigzag paths.

The idea to construct δq is to add not only complementary angles for all connecting angles αi of X,
but also complementary angles at locations where the strands of X come close to each other. An example
for X is depicted in Figure B.1. Apart from the complementary angles for the connecting angles αi,
this example requires four additional angles to be added to δq. In terms of the situational formalism of
section B.1, the four angles are of type id (A’), β (A’), β (A) and β(A).

In section B.1, we inspect the possible configurations of arcs and angles around X and introduce
notions of situations. In section B.2, we define a temporary type of possible angles we may add in order
to produce δq, and investigate their possible products. In section B.3, we construct δq in a recursive way
and show that the curvature of Xq = (⊕ai[si], δq) vanishes.

B.1 Situations

In this section, we examine the possible configurations of arcs and angles along X. We capture these
types configurations in the notion of A, A’, A”, ID and D situations. The main difference with the notion
of situations for zigzag paths is that two different indexed arcs which are equal as arcs of A need not
determine an intersection of the underlying curve. For this reason, we obtain a slightly larger amount of
different situations.

Definition B.1. Regard the band object X = (⊕ai[si], δ). An indexed arc on X is a choice of arc ai,
remembering the index i. If ai is an indexed arc of X, then the strand of X at ai refers to the portion of
X given by the neighboring indexed arcs . . . , ai−1, ai, ai+1, . . .. An elementary morphism ε : ai → aj
on X is a single angle between two indexed arcs ai, aj on X, interpreted as ε ∈ HomAddGtlA(X,X).
The source strand or target strand of an elementary morphism ε : ai → aj is the strand of X at ai
or aj , respectively.

Two angles in A which wind around a common puncture have an overlap if they contain a shared
indecomposable angle. Otherwise, the two angles are disjoint. For every indexed arc ai, the object X
contains a distinction whether X turns left or right towards a given endpoint of ai.

Recall that an arc incidence at a puncture is slightly different from an arc incident at a puncture:
An arc incidence includes the datum whether it concerns the head or tail of the arc. A loop incident at
a puncture gives rise to two arc incidences. We generically denote a full turn by ℓ. We may call the αi
angles of X also the turning angles.

Definition B.2. We define the following types of situations on X:

• A type A situation consists of a puncture together with incidences of two indexed arc ai and aj
such that (a) X turns left at ai towards the puncture, and (b) X turns right at aj towards the
puncture, and (c) the turning angles do not overlap. The associated angles of the situation are
denoted α, β, γ and β′, as in Figure B.2b.

• A type A’ situation consists of a puncture q together with incidences of two distinct indexed
arcs ai and aj which are equal as arc of A, such that the strand of ai turns right at ai towards q
and the strand of aj turns left towards q. The associated angles are denoted α, β, γ and id, as in
Figure B.2c.

• A type A” situation consists of a puncture q together with incidences of two distinct indexed
arcs ai and aj which are equal as arcs of A, such that the strand of ai turns left at ai towards q
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Figure B.2: Illustration of A, A’, A”, ID and D situations

and the strand of aj turns right towards q. The associated angles are denoted α, id, γ, β′, as in
Figure B.2d.

• A type ID situation consists of a puncture q together with incidences of two distinct indexed arcs
ai and aj which are equal as arcs of A, such that (a) the strand of ai turns left at ai towards q,
and (b) the strand of aj turns right towards q, and (c) the turning angles together form a full turn.
The associated angles are denoted α, id and γ, as in Figure B.2e.

• A type D situation consists of a pair of consecutive arcs of X. It gives rise to α and α′ angles:
A type α angle of X is one of the αi angles of X. A type α′ angle is one of the α′

i angles of X, see
Figure B.2f.

Remark B.3. When an angle comes from a situation of a certain type, we typically indicate the type
in brackets for clarity. For instance, a certain angle may qualify as a “β (A) angle”. When working
with situations, we may from time to time indicate the situations by its associated angles, for instance
referring to a “type A situation (αR, βR, γr, β

′
R)”.

The difference with zigzag paths is that the arcs of X are not oriented in the same direction, and the
α (D) angles are not necessarily indecomposable. Another important difference is that a zigzag segment
is never contractible, while a segment of X may be contractible. In our uncurving construction, we form
δq by inserting angles whenever a contractible segment lies “above” the angle. In order to make this
precise, we use the following terminology:

Definition B.4. For an A/A’/A”/ID situation, above refers to tracing X in the opposite direction of
α and in the direction of γ.

The direction “above” in the situation figures Figure B.2b till B.2e is the natural upwards direction
on paper.

B.2 Uncurving protocol

In this section, we examine possible products which can be made from angles of A, A’, A”, ID and D
situations. The core tool is a notion of angles with balloons. The datum of balloons makes it possible
to safely examine possible products µ2 and µ≥3

r between angles. All of the angles we later insert into
δq are of this type, but come with additional data which is irrelevant and not accessible at the current
stage of the construction. This way, angles with balloons serve as a “protocol” which greatly facilitates
the construction of δq.

The aim of the examination is to draw maximally strong conclusions on the configurations of arcs and
angles from the fact that the underlying curve of X is not contractible and does not bound a teardrop.



168 B. Uncurving of band objects

β

contractible
segment

(a) β (A) with balloon

β

contractible
segment

(b) β (A’) with balloon

contractible
segment

(c) id (A”) with balloon

ai aj

contractible
segment

(d) id (ID) with balloon

Figure B.3: Illustration of angles with balloons
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Figure B.4: Illustration of orbigons made of angles with balloons

The notion of angles with balloons is the cheapest way to incorporate this property of X into individual
angles. Angles with balloons are elementary angles whose X strand lying above the angle is contractible:

Definition B.5. An angle with balloon on X is a βℓm (A/A’) or id ℓm (ID/A”) angle whose X
segment above β or id is contractible. We also count α (D) and α′ℓm (D) as angles with balloons.

Angles with balloons are depicted in Figure B.3. The balloons facilitate a lot of tricks and desirable
properties. With the above/below terminology from Definition B.4, we can say that the balloon always
lies above the angle. Moreover, an id angle with balloon directly determines the turning directions of its
source and target strands:

Lemma B.6. Let id (ID/A”) be an identity angle with balloon. Then above, its source strand turns
left and its target strand turns right. Similarly below, its source strand turns right and its target strand
turns left.

Proof. In both ID and A” situations, the turning on the above side is predetermined. For the below side,
note that turning in the opposite direction would immediately constitute a teardrop in the underlying
curve of X, contradicting the assumption that there are no teardrops. This finishes the proof.

We now examine products and higher products of angles with balloons. When h1, . . . , hk are elemen-
tary angles, then an (additive) contribution to a product µk≥2

r (hk, . . . , h1) is simply the product itself
in case k = 2, or an orbigon contributing to the product in case k ≥ 3. As a first step, we can show that
when a higher product of angles with balloons are taken, no contribution to the higher product is all-in:

Lemma B.7. Let h1, . . . , hk be a sequence of k ≥ 3 angles with balloons. Then any contribution to
µkr (hk, . . . , h1) is first-out or final-out. At the concluding puncture, the first and final strands of X both
turn outside the disk and their turning angles are disjoint.

Proof. Regard a given contribution, denoted D. It is our task to show that D is not all-in. We have
depicted a fictitious all-in contribution in Figure B.4a. With this figure, the reason that D cannot be
all-in is immediate: All interior angles of the orbigon are angles with balloons. Correspondingly, the
k-many X segments above the interior angles are all contractible. Since the orbigon itself is contractible,
we conclude that the curve underlying X is contractible, in contradiction with our assumption.

We conclude that every contribution is first-out or final-out. It is our task to show that the first and
final strands of the orbigon both outside the disk at the concluding puncture, instead of inside. This is
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Figure B.5: Possible configurations of products

a standard argument concerning contractibility. We have depicted the desired situation in Figure B.4b.
Towards a contradiction, assume that one of the strands turns inside the disk. View the orbigon as a
bracketed discrete immersed disk. Denote the polygon immersion of the discrete disk by D : Pk → S.
Then at the concluding puncture, the strand of X turns inside the interior of Pk. Tracing the strand
further, at some point it necessarily intersects itself or leaves Pk. This constitutes a teardrop for the
underlying curve of X, in contradiction with the assumption that X has no teardrop. This shows that
both strands turns outwards.

Finally, let us explain why the two turning angles outside the disk are disjoint. Indeed, if the two
turning angles outside the disk are not disjoint, the orbigon with its interior angles constitutes a teardrop
for the underlying curve of X, in contradiction with the assumption. This finishes the proof.

According to Lemma B.7, the situation around the concluding puncture of an orbigon gives rise
to an A/A” situation, which we call the concluding situation of the contribution. Thanks to this
characterization, we can inspect the contributions to µ≥2

r (hk, . . . , h1) in more detail, depending on the
type of the angles h1, . . . , hk. We have expressed this inspection in Lemma B.8. There, we have detailed
only the statement of the first item, because the others statements are analogous and can be interpreted
from the figures.
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Lemma B.8. Let h1, . . . , hk be a sequence of angles with balloons. LetD be a contribution to the product
µ≥2
r (hk, . . . , h1). Then D can impossibly concern a product of the type µ2(βℓm, βℓn), µ2(βℓm, α′ℓn),
µ2(α′ℓm, βℓn) or µ2(id ℓm, id ℓn). Instead, it falls under one of the following cases, and we make the
following refining statements:

• If D concerns a product µ≥3
r (βℓm(A), . . .) with βℓm final-out: Let (α1, β1, γ1) be the angles associ-

ated with the situation of β . The concluding situation (α2, β2, γ2) of D is necessarily of type A.
The angles β1α1 and α2 are disjoint. Depending on the size of the angle between β1 and α2, we
obtain a well-defined A situation (αR, βR, γR) or an A” situation (αR, γR, β

′
R) (Figure B.5a).

• If D concerns a product µ≥3
r (βℓm(A’), . . .) with βℓm final-out: The concluding situation of D is

of type A and we obtain a well-defined A situation (αR, βR, γR) or an A” situation (αR, γR, β
′
R)

(Figure B.5b).

• If D concerns a product µ≥3
r (. . . , βℓm(A)) with βℓm first-out: The concluding situation of D is of

type A and we obtain a well-defined A situation (αR, βR, γR) or A” situation (αR, γR, β
′
R) (Fig-

ure B.5c).

• If D concerns a product µ≥3
r (. . . , βℓm(A’)) with βℓm first-out: The concluding situation of D

is of type A and we obtain a well-defined A situation (αR, βR, γR) or A” situation (αR, γR, β
′
R)

(Figure B.5d).

• If D concerns a product µ≥3
r (α′ℓm, . . .) with α′ℓm (D) final-out: We obtain a well-defined A or A”

situation (Figure B.5e).

• If D concerns a product µ≥3
r (. . . , α′ℓm) with α′ℓm (D) final-out: We obtain a well-defined A or A”

situation (Figure B.5f).

• If D concerns a product µ2(id ℓm(ID/A”), βℓn(A)): We obtain a well-defined A situation or A”
situation (Figure B.5g).

• If D concerns a product µ2(id ℓm(ID/A”), βℓn(A’)): We obtain a well-defined A situation or A”
situation (Figure B.5h).

• If D concerns a product µ2(βℓm(A), id ℓn(ID/A”)): We obtain a well-defined A situation or A”
situation (Figure B.5i).

• If D concerns a product µ2(βℓm(A’), id ℓn(ID/A”)): We obtain a well-defined A situation or A”
situation (Figure B.5j).

• D may also concern a product of one of the types

µ2(α, α′ℓm), µ2(α′ℓm, α), µ2(α, id ℓm(ID/A”)), µ2(id ℓm(ID/A”), α),

µ2(α′ℓm, id ℓn(ID/A”)), µ2(id ℓm(ID/A”), α′ℓn), µ2(βℓm(A/A’), α) or µ2(α, βℓm(A/A’)).

In all cases, the β angle of the resulting A or A” situation comes again with a balloon.

Proof. Our first task is to show that there are no products of the type µ2(βℓm, βℓn). But this is obvious
from the definition and exactly the same as in the case of zigzag paths: The two β angles would need to
wind around the same puncture q. In order to have the product µ2(βℓm, βℓn), X necessarily turns right
at q when viewed from βℓm, but needs to turn left when viewed from βℓn . This shows there is no product
µ2(βℓm, βℓn). Similarly, there are no products µ2(α′ℓm, βℓn) and µ2(βℓm, α′ℓn). It is also easy to see
that there is no product of type µ2(id ℓm, id ℓn). Indeed, from Lemma B.6 we obtain two contradicting
statements regarding the turning of the target strand of the first, equivalently source strand of the second
identity.

Let us now filter out a few possible contributions to higher products. Thanks to Lemma B.7, we
already know that there are no all-in contributions. Furthermore, the two strands both turn outside the
disk, so there are no options to form a µ≥3

r (α, . . .) or µ≥3
r (. . . , α) product.

We now dedicate ourselves to working through the list of viable products and verifying their properties.
We highly recommend taking the figures as a visual aid for the arguments.

We start by regarding a result D of a product µ≥3
r (βℓm(A/A’), . . .) with βℓm final-out. The strand of

the first arc of the orbigon turns right at the concluding puncture. Its turning angle is clearly at most as
long as the remaining part of β, because otherwise the orbigon D and the balloon of β would constitute a
teardrop. We obtain a well-defined child: If the turning angle is strictly shorter, we obtain an A situation.
If the turning angle is equally long, we obtain instead an A” situation. In both cases, the resulting βR
or idR comes with a balloon, obtained as the joining of the balloon of β and the orbigon D. The case of
µ≥3
r (. . . , β) with β first-out is very similar to the case of µ≥3

r (β, . . .).
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Regard now a result D of a product µ≥3
r (α′ℓm, . . .) with α′ℓm final-out or µ≥3

r (. . . , α′ℓm) with α′ℓm

first-out. The either case, we obtain an A or A” situation at the concluding puncture by Lemma B.7. In
case of final-out α′ℓm, the result D is of the form βRαRℓ

m (A) or αRℓ
m (A”). In case of first-out α′ℓm,

the result D is of the form γRβRℓ
m (A) or γRℓ

m (A”). In either case, the βR or idR angle of the resulting
situation comes with a balloon.

Now regard a product µ2(βℓm(A/A’), id ℓn). By definition, the identity comes with a balloon. The
β angle does not wind around the above end of id, but around the below end of id, because the target
strand of id turns right at the above puncture, rendering a composition with β impossible. Next, we
note that the target strand of the identity turns right at the below side of the source strand and the
turning angle is at most β, for otherwise the combination of the balloons of the identity and β would
constitute a teardrop. As a result, space remains for defining a type A situation (αR, βR, γR) or type A”
situation (αR, idR, γR, β

′
R). Its βR or idR angle comes with a balloon again, namely the combination of

the balloons of β and id. The case of µ2(id ℓm, βℓn(A/A’)) is similar.

For the products µ2(α, α′ℓm) and µ2(α′ℓm, α), we are not supposed to define anything. Note that it
is clear that for this product to exist, α and α′ need to be precisely complementary angles. For a product
µ2(βℓm(A/A’), α) or µ2(α, βℓm(A/A’)), it is interesting to note that α must be the α or γ angle from
the same situation as β . This finishes the proof.

B.3 Flowers

In this section, we construct the deformed twisted differential δq which uncurves X. We start by intro-
ducing flowers, a combinatorical gadget that recursively keeps track of all contractible segments of X.
Such a flower includes by construction all the terms we need to insert into δq. More precisely, we define
δq as the sum over the values of all flowers of X and show that Xq = (⊕ai[si], δq) is indeed curvature-free.

Flowers of X Terms for δq

The core idea of our construction is best explained as follows. We start with δq containing only the
angles αi and their complements rℓ−1α′

i. This already makes µ0
X and µ2(δq, δq) cancel, however we get

a potentially unlimited amount of orbigon contributions from µk≥3
r (δq, . . . , δq). For each of these terms,

we need to insert an additional term into δq in order to make it cancel out. The new terms inserted into
δq however can give rise to further disturbing terms in µk≥3

r (δq, . . . , δq) and we need to iteratively repeat
this process.

In every step of the process, we should remember the entire history of how a given term was formed,
much like the notion of tails or result components for zigzag paths. The tool of flowers which we define
here systematically keeps track of the appearing terms. Since a term typically appears recursively for
every orbigon that can be formed from already existing terms, the orbigons get stitched together much
like a flower. All the terms we insert into δq come from orbigons, in particular we can ensure inductively
that they come naturally with balloons. This way Lemma B.8 applies and facilitates the friction-free
definition of flowers.

Not only orbigons need to be taken into account. It is possible that at the concluding puncture of an
orbigon, the two strands which were separated by the orbigon now come together and keep traveling in
parallel for a while, as in Figure B.6a. On such occasions, we have to insert a whole sequence of identities
into δq. After a while, the two strands may separate again and wildly continue forming orbigons.

The rule of thumb could be memorized as follows:

• id (A”) needs to be inserted when the strands come together.

• id (ID) needs to be inserted when the strands keep running together.

• β (A’) needs to be inserted when the strands separate.

• β (A) needs to be inserted when the strands come together and immediately separate again.

The construction of flowers is so technical because of the large amount of complexity observed while
constructing δq. Explicitly, it concerns the following complications: First, segments of X can bound
multiple orbigons. This makes that there is no linear way of enumerating the terms we need to add to
δq. Instead, the terms will “cross-pollinate” each other. Second, for every orbigon that can be made of
terms already present in δq, we typically add a new β (A) angle to δq. This β angle already creates two
new products µ2(β, α) and µ2(γ, β). Cancelling them entails working with four terms in total. Third,
the identities need separate creation and cancellation procedures.
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idS

(a) An ID stem flower

βR

(b) An orbigon flower

βR

(c) A compound flower

Figure B.6: Illustration of flowers

Remark B.9. We write
r =

∑

m≥1
q∈M

rq,mℓ
m
q ∈ mZ(GtlA).

Recall that an orbigon D comes with a deformation parameter rD. The element rD lies in the deformation
base B and is defined as the product of all rq,m ranging over all orbifold points of D.

Definition B.10. A flower comes with the datum of an concluding situation, which is an A, A’, A”
or ID situation. A flower always comes with the datum of a value, which is a B-multiple of id ℓm (A”),
id ℓm (ID), βℓm (A) or βℓm (A’) for some m ≥ 0, depending on the type of the concluding situation.

We distinguish five types of flowers, namely α flowers, α′ flowers, orbigon flowers, ID stem flowers
and compound flowers. The orbigon flowers remember which flowers their orbigon is made of and the
compound flowers each remember which flowers they form a compound of. The complete recursive
definition of flowers is given in the catalog below. Wherever a flower F is operated on in a formula, its
value is meant.

α flowers: Any α (D) angle of X determines a flower F .

• The concluding situation of F is the type D situation determined by α.

• The value of F is α.

α′ flowers: Any complementary angle α′ℓm−1 (D) with m ≥ 1 determines a flower F .

• The concluding situation of F is the type D situation determined by α′.

• The value of F is rq,mα
′ℓm−1.

Orbigon flowers: Let F1, . . . , Fk be a sequence of flowers, together with the datum of a type A situation
(αR, βR, γR, β

′
R) or a type A” situation (αR, idR, γR, β

′
R), two integers m ≥ 0 and n ≥ 1 and an

orbigon D whose interior angles are the values of F1, . . . , Fk together with β′
Rℓ

m. Then this data
defines a new flower F .

• The concluding situation of F is the type A situation (αR, βR, γR, β
′
R) or the A” situation

(αR, idR, γR, β
′
R).

• The value of F is a multiple of βRℓ
n (A) or idR ℓ

n (A”), depending on whether the concluding
puncture of F is of type A or A”. Denote by q the puncture in the middle of the concluding
situation and by rD ∈ B the deformation parameter of the orbigon D. Let |Fi|B ∈ B denote
the coefficient of the value of Fi, stripping away the information which angle it concerns.

In case the given situation is of type A, the precise value of F is defined as

(−1)‖βRαRβ
′
R‖

∑k
i=1 ‖Fi‖+

∑
i<j ‖Fi‖‖Fj‖+‖βR‖‖α‖+‖α‖rDrm+n+1,q|Fk|B . . . |F1|BβRℓ

n.

In case the given situation is instead of type A”, the precise value of F is defined as

(−1)‖αRβ
′
R‖

∑k
i=1 ‖Fi‖+

∑
i<j ‖Fi‖‖Fj‖rDrq,m+n+1|Fk|B . . . |F1|B idR ℓ

n.
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ID stem flowers: Let F1 be a flower whose concluding situation is an ID situation (idR, αR, γR) or an
A” situation (αR, idR, γR, β

′
R). Depending on whether the source and target strands of idR separate

below the situation, we obtain a new A’ situation (αS , βS , γS) or ID situation (αS , idS , γS). Let F2

be an α′ flower whose value is the complement of γS . This defines a new flower F .

• The concluding situation of F is the A’ situation (αS , βS , γS) or the ID situation (αS , idS , γS).

• The value of F is a multiple of βℓm (A’) or idS ℓ
m (ID), depending on whether the concluding

situation is of type A’ or ID. In case the situation is of A’ type, the precise value of F is

(−1)‖F2‖‖F1‖+|F1|+‖βS‖‖αS‖+|αS |F2F1α
−1
S .

In case the situation is of ID type, the precise value of F is

(−1)‖F2‖‖F1‖+|F1|F1F2α
−1
S .

Compound flowers: Let F1, . . . , Fk be a sequence of k ≥ 2 flowers of ID stem or orbigon type with
concluding situations (αi, βi, γi) (A/A’), such that (a) αi agrees with γi+1 and (b) the angle β′

R

given by the union of the β′
i (or idi) angles, including all αi and γi, is at most a full turn. Then

this data defines a new compound flower F .

• The concluding situation of F is the type A or A” situation (αR, βR, γR, β
′
R) or (αR, idR, γR, β

′
R)

which contains the β′
R just constructed.

• The value of F is a multiple of βRℓ
n (A) or idR ℓ

n (A”), depending on whether the concluding
situation is of type A or A”. To determine the precise coefficient, we shall use a trick by
applying recursion. Regard the flowers F1, . . . , Fk−1. In case k = 2, this is the single ID stem
or orbigon flower F1,1 := F1. In case k ≥ 3, this sequence determines a (smaller) compound
flower F1,k−1. In either case, we can assume that we already know the value of F1,k−1.

We distinguish two similar cases: Assume Fk itself is an orbigon flower whose interior angles
come from the flowers G1, . . . , Gl. Let m ≥ 0 be such that β′

Rℓ
m together with G1, . . . , Gl are

the interior angles of the orbigon Fk. Then we define the value of F as

(−1)‖F1,k−1‖
∑l

j=1 ‖Gj‖+‖βR‖‖αR‖+|αR|F1,k−1(β
′
Rℓ

m)−1.

Assume otherwise that Fk itself is an ID stem flower. Then we define the value of F as

(−1)‖F1,k−1‖+‖βR‖‖αR‖+|αR|F1,k−1α
−1
R .

With this sophisticated construction of flowers, we can define δq simply as the sum over the values of
all flowers of X:

Definition B.11. We put

δq =
∑

F flower of X

F ∈ Hom1
AddGtlr A(X,X).

Lemma B.12. The element δq is well-defined and its leading term is δ.

Proof. Let us explain why δq is well-defined. The first observation is that there are only finitely many
orbigons for a given sequence of interior angles. In conclusion, for any C > 0 there is only a finite number
of flowers F for which it has taken at most C recursive steps to define F . The second observation is that
the value of any flower lies in a certain power of the maximal ideal m ⊆ B. Every time a new flower is
formed, its m-adic exponent increases. Together, both observations show that the series which defines δq
converges in the m-adic topology.

It is very easy to see that the leading term of δq is δ: The only flowers whose value does not lie in a
power of the maximal ideal are the α flowers. Since δ is just the sum of all α flowers, this finishes the
proof.

We aim at showing that
∑
k≥0 µ

k
AddGtlr A(δq, . . . , δq) = 0. In order to flexibly cancel terms in this

sum, we introduce an obvious notion of result components:

Definition B.13. A result component of
∑
k≥0 µ

k
AddGtlr A(δq, . . . , δq) consists of a sequence of k ≥ 0

flowers F1, . . . Fk together with an additive component of µkAddGtlr A(Fk, . . . , F1). More precisely,
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F4

F3 F2

F1

(a) Given compound flower

F4

F3 F2

F1

F1,3
α4

F

(b) µ≥3(F1,3, . . .) + µ2(F, α4)

F4

F3 F2

F1

F2,4
γ1

F

(c) µ≥3(. . . , F2,4) + µ2(γ1, F )

Figure B.7: Compound cancellation

• for k = 0 this entails the curvature µ0
X ,

• for k = 2 this entails a nonvanishing product µkAddGtlr A(Fk, . . . , F1),

• for k ≥ 3 this entails a choice of orbigon contributing to µkAddGtlr A(Fk, . . . , F1).

Proposition B.14. We have
∑
k≥0 µ

k
AddGtlr A(δq, . . . , δq) = 0. Therefore Xq = (⊕ai[si], δq) is curvature-

free.

Proof. We shall provide a list of cancellations and then check that every result component is contained
in this list. We essentially distinguish two types of cancellations, namely the simple and compound
cancellations. A sample compound cancellation is depicted in Figure B.7. The precise list of cancellations
reads as follows:

• The curvature µ0
X and the µ2(α, α′) and µ2(α′, α) result components.

• simple cancellation: Let F1, . . . , Fk be a sequence of flowers. Furthermore, let (αR, βR, γR, β
′
R)

be an A situation or (αR, β
′
R, γR) be an A” situation. Then for every orbigon D with interior angles

F1, . . . , Fk, β
′
Rℓ

m, we have the cancellation

µkAddGtlr A(Fk, . . . , F1, α
′
Rℓ

m+n) + µkAddGtlr A(γ
′
Rℓ

m+n, Fk, . . . , F1) = 0.

By abuse of notation, we have written µ(. . .) where we actually refer to the contribution of the very
specific orbigon D. We have also denoted by α′

R (D) and γ′R (D) the complementary angles of αR
and γR, in the sense that α′

RαR = ℓ = γ′RγR.

• compound cancellation: Let F be a compound flower consisting of flowers F1, . . . , Fk.

Denote by G1, . . . , Gl the flowers that the flower Fk is derived from, and by H1, . . . , Hn the flowers
that F1 is derived from. Denote the concluding situation of Fi by (αi, βi, γi, β

′
i) or (αi, βi, γi, idi),

depending on whether it concerns an A situation or an A’ situation.

Regard the compound flower F1,k−1 consisting of F1, . . . , Fk−1 and the compound flower F2,k con-
sisting of F2, . . . , Fk. In case k = 2, the flowers F1,1 = F1 and F2,2 = F2 are simply ID stem or
orbigon flowers, instead of compound flowers. Either way, we have the cancellations

µ≥3
AddGtlr A(F1,k−1, Gl, . . . , G1) + µ2

AddGtlr A(F, αk) = 0,

µ≥3
AddGtlr A(Hn, . . . , H1, F2,k) + µ2

AddGtlr A(γ1, F ) = 0.
(B.1)

By abuse of notation, µ(F1,k−1), . . .) actually refers to the specific orbigon given by Fk. Similarly,
µ(. . . , F2,k) refers to the specific orbigon given by F1.

In (B.1), we have silently assumed that F1 and Fk are orbigon flowers. In case F1 is instead an ID

stem flower, the term µ≥3
AddGtlr A(. . . , F2,k) should read µ2(id1, F2,k) instead. Similarly, in case Fk

is an ID stem flower, µ≥3
AddGtlr A(F1,k−1, . . .) should read µ2(F1,k−1, idk) instead.

Finally, let us explain why all possible result components of
∑
k≥0 µ

k
r (δq, . . . , δq) are captured in the

above cancellation list. Indeed, all results of flowers naturally come with balloons. Therefore Lemma B.8
applies and any result component falls under one of the following cases:

• Regard a contribution D to µk≥3(βℓm(A/A’), . . .) with βℓm final-out or µk≥3(. . . , βℓm(A/A’)) with
βℓm first-out. By construction, β comes from the concluding situation of a flower. Whether
it concerns an orbigon, ID stem or compound flower, the two terms fall under the compound
cancellation.



175

• Regard a contribution D to µk≥3(α′ℓm(D), . . .) with α′ℓm final-out or µk≥3(. . . , α′ℓm(D)) with α′ℓm

first-out. Then all the other interior angles of the orbigon are also the values of flowers and D falls
directly under the simple cancellation.

• A contribution µ2(βℓm(A/A’), id ℓn) or µ2(id ℓm, βℓn(A/A’)) falls under the compound cancellation.

• A contribution µ2(α′ℓm(D), id ℓn) or µ2(id ℓm, α′ℓn(D)) falls under the compound cancellation.

• Regard a contribution µ2(α(D), βℓm(A/A’)) or µ2(βℓm(A/A’), α(D)). Let F be the flower that β
comes from. Depending on whether F is an orbigon or ID stem flower or a compound flower, the
term falls under the simple or compound cancellation.

This shows that all terms have been canceled. It is a basic inspection that all terms have been canceled
only once. This shows that

∑
k≥0 µ

k
AddGtlr A(δq, . . . , δq) = 0 and finishes the proof.

C Classification of result components

We collect here a few deferred proofs: In section C.1, we prove Lemma 12.11 which classifies result
components. In section C.2, we prove Lemma 13.21 which concerns subdisks of CR, ID, DS and DW
result components. We spend section C.3 till C.7 with a proof of Lemma 13.23 which classifies the image
of D. In section C.8, we prove Lemma 13.25 concerning the signs of result components.

C.1 Shape of result components

We prove here Lemma 12.11, which claims that Table 12.5 is an exhausting classification of result com-
ponents. Recall the situation: We are given a result component of an h- or π-tree and are supposed to
analyze how it is derived. It is not necessary to find the entire tree it is derived from, but only so far
that we recognize it fits the scheme of Table 12.5. We will now go through Table 12.5 case-by-case:

α0, id (C), α4 from h-trees: Note that α0 and id (C) belong to H and hence only appear as direct mor-
phism or result component of a π-tree. Also, α4 does not appear in the disk and multiplication
tables as result component of an h-tree and therefore any α4 is either direct or a result component
of a π-tree in combination with α3.

α3 from h-trees: The angle α3 does not appear in the disk table as result component of a disk hqµ
≥3.

Whenever it appears as the result component of a product hqµ
2, it must be as hqµ

2(α0, α4) and
the involved α0 and α4 are direct.

α′
0 from h-trees: The angle α′

0 only appears in the disk and multiplication table as hqµ
2(α0, α

′
0). The α0

involved is necessarily direct, and inductively we conclude that the α′
0 is the result component of

one of the trees of Figure 12.6b.

β (C) from h-trees: The angle β (C) is necessarily direct or the result component of hqµ
2(id (C), α′

0).
The id (C) is necessarily direct and we already know α′

0 is the result component of one of the trees
in Figure 12.6b.

β′ (C) from h-trees: Same as β (C).

β (A) from h-trees: It appears as tail component in the deformed cohomology basis elements by Propo-
sition 11.12. It appears as tail component of α3 and α4 in the deformed version of (−1)#α3α3 +
(−1)#α4+1α4, and as tail component of β (C) and β′ (C) in the deformed version of id (C).

β (A) main result component of hqµ
≥3: Its classification follows directly from the disk tables 12.2 and

12.3. Note that an all-in disk does not produce a β (A) result component either.

β (A) main result component of hqµ
2: According to Table Table 12.1, this product is either of the type

hqµ
2(β(A), α0), hqµ

2(β(A), id (C)) or hqµ
2(β/β′(C), id (C)). In the first two cases, we inductively

trace the β (A) involved. In the third case, note that we already know the entire tree of β/β′ (C).
Ultimately, we end up either with β (C) or β′ (C) or a β (A) that is a direct, hqµ

≥3 or tail hqµ
2

result component, plus multiple compositions with α0 or id (C) on the right. All three kinds of
trees are depicted in Figure 12.7.

β (A) tail result component: If it is the tail result component of an hqµ
2, then it is necessarily one of the

tail result components marked by +E in Table 12.1. All options come with a corresponding main
result component β (A), β/β′ (C) or α3. If it is the tail result component of an hqµ

≥3, then it is
the result component of one of the final-out disks in Figure 12.3 and comes with a corresponding β
(A).
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id (D) result component of an h-tree: According to the disk and multiplication tables, this concerns a
product hqµ

2(id (C), α4) or hqµ
2(α3, id (C)). The α4 and id (C) involved are necessarily direct.

Furthermore, the α3 is direct or the result component of hqµ
2(α0, α4). In the latter case, we

conclude that µ2(α3, id (C)) equals the co-identity α0 itself, and therefore hqµ
2(α3, id (C)) vanishes.

The id (D) is therefore necessarily a result component of hqµ
2(id (C), α4) or hqµ

2(α3, id (C)) with
all involved α3, α4 or id (C) being direct.

id (B) result component of an h-tree: According to the disk and multiplication tables, this is a first-out
disk or one of the trees in Figure 12.9.

α3 + α4 main result components of ϕπqµ
≥3: Obvious.

α3 + α4 main result component of ϕπqµ
2: It necessarily concerns a result component of a product of the

type ϕπqµ
2(id (C), β(A)), ϕπqµ

2(β(A), id (C)), ϕπqµ
2(id (D), α4) or ϕπqµ

2(α4, id (D)). The first and
second case are depicted in Figure 12.8. The third and fourth case are depicted in Figure 12.11.

α3 + α4 tail result component of a π-tree: It comes either from the G components in Figure 12.3 or from
the G components in Table 12.1. In all cases, this concerns a tail component of a certain ϕπq(βα).
Then the corresponding hq(βα) indeed has a corresponding β (A) main result component.

id (C) main result component of ϕπqµ
2: It comes from a product µ2(id (C), id (D)) or µ2(id (D), id (C)).

Since this id (D) is necessarily the result component of the tree in Figure 13.7a or 13.7b, we obtain
the four id (C) trees in Figure 12.11.

id (C) main result component of ϕπqµ
≥3: It comes from an all-in disk where the first zigzag path turns

right at the concluding arc and the final zigzag path turns left at the concluding arc. An example
is depicted in Figure 13.6e.

id (C) tail result component of a π-tree: It comes either from the H components in Figure 12.3 or from
the H components in Table 12.1. In all cases, this concerns a tail component of a certain ϕπq(βα).
Then the corresponding hq(βα) indeed has a corresponding β (A) main result component.

id (D) result component of a π-tree: It is either (a) the ϕπqµ
≥3 of an all-in disk with equal first and

final zigzag path, or (b) the result component of ϕπqµ
2(id (C), id (B)) or (c) ϕπqµ

2(id (B), id (C))
or (d) ϕπqµ

2(id (D), id (D)). Option (d) is impossible, since nonvanishing of ϕπqµ
2(id (D), id (D))

implies that both identities involved are the identity ida0 at the zigzag path’s identity location,
which is in contradiction to the fact that this involved id (D) lies in R. Options (a), (b) and (c)
are possible and depicted in Figure 12.10. Note the id (B) component involved in (b) and (c)
can impossibly come from µ2(β/β′(C), id (C)) or µ2(β(A), α0), because the arrow directions along
the disk mismatch resp. because the arrow direction of α0 contradicts Convention 10.10. This is
reviewed in Figure 13.8.

α0 result component of a π-tree: A glance at the multiplication and disk tables reveals that it comes from
a product πqµ

2(id (C), α4) or πqµ
2(α3, id (C)) or πqµ

2(α0, id (D)) or πqµ
2(id (D), α0). In the first

case, both inputs are necessarily direct. In the second case, id (C) is definitely direct. Meanwhile,
α3 may be direct or come from hqµ

2(α0, α4) with both α0 and α4 direct. In the third and fourth
case, α0 is direct. Meanwhile, id (D) may come from hqµ

2(α3, id (C)) or hqµ
2(id (C), α4) with both

α3/α4 and id (C) direct. This results in 7 options in total, depicted in Figure 12.12.

We have checked all cases of Table 12.5. This finishes the proof of Lemma 12.11.

C.2 The shape of subdisks

In this section, we prove Lemma 13.21: Subdisks of CR, ID, DS and DW result components are CR, ID,
DS and DW disks, respectively.

Lemma C.1. Subdisks of a CR result components are CR disks: D(ResultCR) ⊆ DiskCR.

Proof. Let r be a CR result component. We show that D(r) is a CR disk. First, the corners of D(r)
are convex by construction. Second, since the subdisk is obtained from gluing smaller subdisks, this
inductively provides that D(r) is indeed the boundary of some immersed disk. Third, stacked co-identities
lie infinitesimally close to each other as in Figure 12.7, but all other input morphisms and the output
morphism lie apart.

Regard a stack of co-identities on a zigzag path L used in r. We show that L is oriented clockwise
with D(r). Recall from Convention 10.10 that co-identities lie in angles with puncture to the right of
the zigzag curve in its natural orientation. The claim now follows from inspection of Figure 12.6c, 12.6d,
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12.6b, 12.7. In all cases, our convention implies that the zigzag curve is oriented clockwise with the
subdisk.

Lemma C.2. Subdisks of ID result components are ID disks: D(ResultID) ⊆ DiskID.

Proof. First, a subdisk of Figure 12.10a or 12.10b has degenerate C input and first and final zigzag paths
are oriented towards the interior of the disk. This makes an ID disk.

Second, a subdisk of Figure 12.10c has degenerate B input. Let us inspect the situation at the
concluding arc of the all-in disk involved. Assume α3 is the first angle of the disk. Then the degenerate
input directly succeeds the output mark and no further input follows at infinitesimally small distance.
The final angle of the disk can impossibly be α3 or α4 due to orientation of the concluding arc, therefore
no input precedes the output at infinitesimally small distance. We see that the first, equivalently final
zigzag path L1 = LN+1 is oriented counterclockwise with the subdisk. We conclude that the subdisk is
an ID disk. A similar conclusion holds in case α4 is the final angle.

Before we tackle DS and DW result components, let us recall the nasty results hq(α(D)). Denote by
Sα the sequence of arcs running from the source or target of α to the source or target of α0, whichever are
closer, without hitting a0. The codifferential hq(α) is then equal to the signed sum of these arc identities:

hq(α) =
∑

c∈Sα

idc .

We are now ready to deal with DS result components.

Lemma C.3. Subdisks of DS result components are DS disks: D(ResultDS) ⊆ DiskDS.

Proof. Let T be one of the 8 trees in Figure 12.11 and r a result component. We need to check that its
subdisk falls under the condition of DS disks. Indeed, it is bounded by two arcs a and b and lies between
a zigzag curve L̃ and its Hamiltonian deformation L̃′. We only need to check two borderline conditions:
The first condition is that a 6= a0 if L̃ is oriented towards the co-identity. The second condition is that
the strip has positive width if L̃ is oriented away from the co-identity.

Assume r is a result component with a = a0. We will show by inspection that Sα runs away from a0
in oppposite direction of the orientation of L̃. For this, consider the two cases that the inner product is
µ2(α3, id (C)) or µ2(id (C), α4) and distinguish further regarding arrow directions. The following graphics
depicts all four cases, with the horizontal zigzag path being L:

a0 a0 a0 a0

In all four cases, we conclude that the arc sequence Sα runs away from a0 against the orientation of
L̃. This means that L̃ is oriented from b to a, in other words: away from the co-identity. This proves the
first condition. The second condition is checked similarly.

Lemma C.4. Subdisks of DW result components are DW disks: D(ResultDW) ⊆ DiskDW.

Proof. This is similar to Lemma C.3. Let us elaborate nevertheless: By definition, DW disks are a
collection of three similar types of disks with α0 output. By definition, DW result components are the
α0 result components of the 7 trees in Figure 12.12. It is our task to check for every of these 7 trees that
their subdisks fall under one of the three types of DW disks.

Of the 7 trees, the two trees without α0 input fall under the triangle DW disk type. The two trees
with an α0 input at the beginning fall under the 4-gon DW disk type with α0 succeeding the output
mark. The two trees with an α0 at the end, as well as the tree with the infinitesimally small subdisk, fall
under the 4-gon DW type with α0 preceding the output mark. The additional conditions are checked in
the same way as for DS result components. This case distinction finishes the proof.
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CR disk D

Narrow locations
(l1,m1), (l2,m2)

Narrow tree

Subtree T(D)
Subresult R(D)
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out
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(l2,m2) (l1,m1)

h5 h4 h3 h2 h1

β (A)

tail πqµ
≥3 = out

Tail

Disk Disk

Figure C.1: Data structures for section C.3 till C.7

C.3 Narrow locations

In this section, we begin proving Lemma 13.23 which states that all CR, ID, DS and DW disks lie in the
image of D. Let us recall the situation: In section C.2 we have already shown that D maps only to CR,
ID, DS and DW disks. Starting in the present section and ending in section C.7, we show that every CR,
ID, DS and DW disk is actually reached by D.

Our strategy is to construct an explicit inverse map: In the present section, we analyze the shape of
a given CR disk D ∈ DiskCR. In section C.4, we build a candidate tree T(D). In section C.5, we build a
result component R(D) of T(D). In section C.6, we verify that its subdisk D(R(D)) is equal to D again.
We will finish our line of proof in section C.7 by applying similar arguments to ID disks and checking the
cases of DS and DW disks combinatorially. The essential data structures for the course of these sections
are collected in Figure C.1.

Here is the observation that drives our strategy: Imagine r is a result component of a π-tree with
subdisk D = D(r). The subdisk catalog orders us to draw the subdisk stroke around all inputs of the
µ≥3 disk and end up near its first/final arc, on both sides of the stroke. The subdisk becomes narrow
there! The reader finds examples in Figure 13.6.

Conversely, assume a CR disk D is given without further knowledge. In order to guess a tree T ,
we simply need to record all the narrow locations of D We are ready for a precise definition of narrow
locations. The reader may already have a glance at Figure C.2, where all upcoming notions are depicted.

Definition C.5. Let D be a CR disk. Index the angles that the boundary of D cuts, in clockwise order.
A narrow location of D consists of two indices m > l on the boundary such that:

• Both m and l lie in angles whose centers (which are punctures) lie on the inside of the disk.

• Let pm be the path connecting m to its puncture and pl the path connecting l to its puncture. Both
lift to paths p̃m and p̃l in the unit disk model. Then require that p̃m and p̃l actually meet.

In particular both punctures are equal. This is the connecting puncture. The union of p̃m and p̃l is the
connector of (l,m). Identify two narrow locations if they only differ by rotation around the respective
punctures (which are co-identities or situation C morphisms around these punctures). A narrow location
(l,m) is trivial if l and m only differ by rotation around their connecting puncture. A narrow location
(l,m) is indecomposable if it is nontrivial and there does not exist an index l < n < m such that both
(l, n) and (n,m) are nontrivial narrow locations. Two narrow locations (l,m) and (l′,m′) are disjoint
if l′ ≥ m or l ≥ m′ (up to rotation around the connecting punctures). A decomposition of a narrow
location (l,m) into indecomposables consists of indecomposable disjoint narrow locations whose union is
(l,m).

Lemma C.6. Let D be a CR disk. Then any two indecomposable narrow locations (l,m) and (l′,m′)
are either nested or disjoint. Any narrow location decomposes uniquely into indecomposables.

Proof. To prove the first claim, assume (l,m) and (l′,m′) are neither nested nor disjoint. Without loss
of generality, we have l < l′ < m < m′. Looking at the unit disk model, the connector of (l′,m′) then
has to pass through the lift of the connecting puncture of (l,m). In particular the lifts of the connecting
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(i) An immersed disk and its narrow tree.

Figure C.2: Illustrations of narrow locations and their terminology

punctures of (l,m) and (l′,m′) are actually equal. Moreover, since the paths p̃l, p̃l′ , p̃m, p̃m′ now all meet,
we have that all of (l, l′), (l′,m), (m,m′) are actually narrow locations, contradicting indecomposability.

For the second claim, existence of a decomposition is clear (one keeps decomposing until the compo-
nents are indecomposable). Uniqueness follows from the first claim.

C.4 Narrow trees

In this section, we introduce narrow trees. The idea is to capture all narrow locations of a given CR disk
in a structured way. Since we have already seen that narrow locations are nested or disjoint, the most
natural structure to capture them is a tree.

Definition C.7. Let D be a CR disk with boundary of length |D|. Then its narrow tree is the ordered
decorated tree defined as follows:

• The nodes are all indecomposable narrow locations.

• The nodes are connected according to inclusion.

• The nodes are ordered horizontally from high (l,m) to low (l,m).
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• The nodes are decorated with their narrow location (l,m).

• Except in the case where (1, |D|) is a narrow location, insert a root standing for the artificial narrow
location (1, |D|). The root’s children are the maximal indecomposable narrow locations.

An schematic example of a disk and its narrow tree is shown in Figure C.2i. In this example, the root
is named R. Note that the decorations (l,m) have been ignored in the narrow tree. In fact, it is not even
possible to given concrete numbers for the decorations (l,m) ∈ N×N, since we have only drawn the disk
schematically.

Definition C.8. Let D be a CR disk and (l,m) a narrow location (other than the artificial narrow
location). Note that (l,m) contains multiple identified pairs (l′,m′). The connector of minimal l′ and
maximal m′ is the upper connector and the connector of maximal l′ and minimal m′ the lower
connector.

Let above (l,m) refer to the portion of D minus the disk bounded by the upper connector and
the corresponding D boundary segment, within (l,m) refer to the portion of D between upper and
lower connector, and below (l,m) refer to the portion of D bounded by the lower connector and the
corresponding D boundary segment. The segment of the boundary of D within (l,m) splits into two
components, which are the left-within and right-within the narrow location. The upper boundary
of (l,m) consists of the two situation A arcs just above (l,m) and the lower boundary of (l,m) consists
of the two situation A arcs just below (l,m).

Now let (l,m) be an indecomposable narrow location of an immersed disk D. The stray morphisms
are the input morphisms that are below (l,m), but above all of its children. A (direct) left (resp. right)
sibling consists of a sibling (l′,m′) of (l,m) in the narrow tree such that l′ = m up to rotation around
the connecting puncture (resp. m′ = l). A (direct) sibling is a direct left or right sibling.

A stack in (l,m) is one of the following: (a) a combination of a stray morphism α3 + α4 directly
followed by an α0 within the next angle being cut, or (b) the combination of multiple α0 and id (C)
differing only by rotation around a puncture, or (c) a child together with all siblings and their within
morphisms, or (d) any stray morphism that is not part of one of these combinations. The narrow location
is 2-rich if it has at least two stacks. It is 1-rich if it has precisely one stack, and if this stack contains
a child then it has a morphism within or a sibling. The narrow location is 0-rich if it has precisely one
stack, and this stack is a child without morphisms within and without direct sibling.

Remark C.9. Due to zigzag consistency, any narrow location has at least one child or at least one stray
morphism. This means that an indecomposable narrow location (l,m) is either 2-rich, 1-rich or 0-rich.

C.5 Subresults

In this section, we build a result component from any given CR disk. More precisely, we associate to
every CR disk D a π-tree T(D) with a result component R(D), in the hope that D(R(D)) equals D again.
We will call T(D) the subtree and R(D) the subresult associated with D.

The strategy of constructing T(D) is to take the narrow tree as a starting point and keep inserting
hqµ

2 nodes to bind together morphisms that lie directly next to each other. We also have to put special
attention to the relation of narrow locations: Siblings have to inserted in a specific order, sometimes
irregularly.

Let us start from regarding a narrow location (l,m). Whenever (l,m) has a left direct sibling or a
morphism left-within, we can easily make a final-out µ≥3 disk of (l,m), whose final morphism stems from
the direct sibling and the further morphisms left-within (l,m). Indeed, (l,m) has at least one child or a

stray morphism, therefore this really yields a µ≥2
TwGtlq Q

.

However in case (l,m) has no left direct sibling and no morphism left-within, we have to distinguish
whether (l,m) is 2-rich, 1-rich or 0-rich. In the 2-rich case, we can proceed with an ordinary µ≥3 and
obtain a main result component. In the 1-rich case, we can proceed with µ2 and obtain a first-order tail
result component. In the 0-rich case, we interpret (l,m) as a tail node of the first 1-rich or 2-rich narrow
location we arrive at when tracing the tree from (l,m) towards the leaves.

This is our basic recipe of turning narrow locations into trees. Let us record a lemma affirming that
this construction works.

Lemma C.10. Let D be a CR disk and let (l,m) be either:

• an indecomposable narrow location. Then let E be the sequence of zigzag segments below (l,m)
and above all children, together with the lower boundary of (l,m) and the upper boundary of all
children.
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• the root (1, |D|) of the narrow tree of D, and assume it is of type id (C). Then let E denote the
sequence of zigzag segments starting at the output mark, staying above the children of (1, |D|), and
ending at the output mark, including the 2/5 arc at the output mark.

• the root (1, |D|) of the narrow tree of D, and assume it is of type α3 + α4. Then let E denote the
sequence of zigzag segments starting at the output mark, staying above the children of (1, |D|), and
ending at the output mark, excluding the 2/5 arc at the output mark.

Then E bounds a discrete immersed disk. Upon reversing Figure 13.5 and the stack figures thereafter,
the sequence of stacks injects into the sequence of interior boundary angles of E. The complement of the
image consists of δ insertions and the β (A) morphisms at the children.

In exception to this assignment, a stack directly after or before a child (or the output mark in case 1)
shall map to the entire corresponding β (A) morphism in F , not only the β (A) morphism surrounding
the left or right part. This means that if there is both a stack directly after and a stack directly before
the output mark (or the output mark in case 1), they map in particular to the same β (A), in exception
to injectivity.

Proof. Note that all D boundary segments involved can be split into small pieces cutting through inde-
composable angles. We shall now construct the discrete immersed disk F as follows. At each of these
angles whose puncture lies outside D, flow E outwards to the puncture.

At each of the angles whose puncture lies inside D, flow E inwards to the puncture. At all angles
whose puncture lies outside D, this procedure enlarges the disk and in particular keeps it immersed. If
F becomes non-immersed as discrete disk, then this is due to two angles whose punctures lie inside D
and meet. In other words, loss of immersedness constitutes a narrow location (l′,m′) of D.

Let us check the possible locations of (l′,m′). Note that (l′,m′) cannot equal (1, |D|). Indeed, in case
(1, |D|) is a narrow location at all, it is nontrivial by assumption, its lower boundary consists of merely
two arcs and it does not pose an obstruction to immersedness at all. Similarly, deduce that (l′,m′) is not
a trivial narrow location.

Since F cuts all children away and children are indecomposable, any child is either contained in (l′,m′)
or disjoint. Splitting (l′,m′) into indecomposable narrow locations then necessarily yields a chain of direct
siblings, which are children of (l,m). By construction of F , such a chain of direct siblings children does
not constitute an obstruction to immersedness at all.

The second part of the statement consists of generically checking whether any two consecutive stacks
occurring along the boundary of D may fall into the same interior boundary angle. For all subdisks in
Figure 13.2, this is definitely not the case. We shall therefore check that Figure 13.2 actually displays all
possible consecutive input stacks. We will illustrate this in case of an α3 + α4 input, whose 2/5 arc is
oriented counterclockwise with the disk, and an arbitrary successor and predecessor.

Since D has convex corners, it cuts the two angles α2 and α3 before respectively after α3 + α4. By
arrow directions, possible α0 inputs may occur both on α2 and α3. Since we assumed the co-identity
rule, there is at most one α0 on both angles. By construction, we assign to the combination of α3 and
possibly one α0 the corresponding α3 interior boundary morphism. Regardless of its precise nature, the
predecessor stack will definitely not map to α3 at the same time.

It remains to check the the successor stack. If the successor lies directly at the target of α3, then due
to arrow direction that morphism produces the next α3 type interior boundary angle indeed lying one
arc apart. If the successor lies farther apart, it does not neighbor with α3 anymore and will not yield this
as interior boundary angle, which is also in line with injectivity. The three combinations that do occur
are those in Figures 13.2l, 13.2m, 13.2o.

We are now ready for the complete definition of subresults.

Definition C.11. Let D be a CR disk. Then its subresult is the result component R(D) ∈ Resultπ on
the subtree T(D) constructed below.

Basic structure of T(D) and R(D):

Inductively for every node in the narrow tree of D, we construct a corresponding h-tree (and finally
π-tree) and explain how it shall be inserted into T(D). We refer to any h-tree being constructed
during this process as a subtree. We select inductively for every node of T(D) a single result com-
ponent. This gives a final result component R(D) of T(D). The construction of T(D) is intended to
inverse the process of taking the subdisk of result components. One can keep an eye on this during
the construction of T(D).
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Non-root 0-rich nodes (l,m) without left direct sibling and without morphisms left-within:

Interpret the narrow location (l,m) as tail node. Trace the tree down to the first narrow location
that is 1-rich or 2-rich. Then this narrow location produces a β (A) tail result component. Use this
as result component of the subtree. An example is depicted in Figure C.3a.

Non-root 1-rich nodes (l,m) without left direct sibling and without morphisms left-within:

Now (l,m) has precisely one stack, and it is either a stack of α4 and α0, or of multiple α0 and id
(C), or a combination of at least two direct siblings or within morphisms, or just a single stray
morphism. In all cases, binding the stack together yields the desired first-order β (A) first-order
tail result component. Note that in the case of a single stray morphism, the β (A) is actually
an additive component of the deformed cohomology input element, and constitutes a leaf node of
T(D). An example is depicted in Figure C.3b.

Non-root nodes (l,m), 2-rich or with a left direct sibling or a morphism left-within:

Bind all stacks of (l,m) together. They will serve as inputs for a final-out disk hqµ
≥3. Now let

us prepare the final-out morphism. In case (l,m) has a left direct sibling, the final-out morphism
is the β (A) output of the left direct sibling. If there are morphisms left-within but no left direct
sibling, bind them together in a β (A) or β/β′ (C) tree and use this as final-out morphism. If there
are no left direct siblings and no left-within morphisms, then use a simple δ insertion as as final-out
morphism. Note that we have ensured that in terms of TwGtlq, this node is really µ≥2

TwGtlq
and

not µ1
TwGtlq

. After making the hqµ
≥3 disk, compose it afterwards with any id (C) or α0 morphisms

that may lie right-within (l,m). An example is depicted in Figure C.3c.

The α3 + α4 case. If the output is of type α3 + α4, then (1, |D|) itself is a narrow location. We will
treat the case where (1, |D|) is trivial first and the non-trivial cases afterwards.

Output of type α3 + α4 with (1, |D|) being a trivial narrow location:

If (1, |D|) is a trivial narrow location, then D revolves around a single puncture, with only id (C)
and α0 inputs. The corresponding π-tree is found by composing from left to right.

Output of type α3+α4 with 2/5 arc pointing away from D, with (1, |D|) having a right-within morphism:

Due to arrow direction, there does not lie an α0 input in the very first angle cut by D, after the
output mark. This means the very first input of D is an id (C) just one cut angle after the output
mark. Build the subtree of (1, |D|) as if it were a non-root node, only putting finally ϕπqµ

2 instead
of hqµ

2. The final µ2 is a product of β (A) and id (C). Since the 2/5 arc points away from D, this
µ2 has a α4 component and its ϕπqµ

2 has the desired α3 +α4 main result component. An example
is depicted in Figure C.3d.

Output of type α3+α4 with 2/5 arc pointing away from D, with (1, |D|) without right-within morphisms,
but decomposable or with a left-within morphism:

Build the subtree of (1, |D|) as if it were a non-root node, only putting finally ϕπqµ
≥3 instead of

hqµ
≥3. Let us check that this indeed yields a α3+α4 result component. Indeed, the final evaluation

µ≥3 yields α4 and ϕπqµ
≥3 has the desired α3 +α4 main result component. An example is depicted

in Figure C.3e.

Output of type α3 + α4 with 2/5 arc pointing away from D, with (1, |D|) without morphisms within,
indecomposable and 0-rich:

Interpret the narrow location (l,m) as tail node, do not insert a node into T , and continue with
the child.

Output of type α3 + α4 with 2/5 arc pointing away from D, with (1, |D|) without morphisms within,
indecomposable and 1-rich:

Then take the subtree of (1, |D|) as if it were not the root node, but put ϕπqµ
2 instead of hqµ

2 and
ϕπqµ

≥3 instead of hqµ
≥3 as root. As established in the multiplication and disk tables, this indeed

yields an α3 + α4 tail result component.

Output of type α3 + α4 with 2/5 arc pointing towards D, with (1, |D|) having a morphism left-within:

Note that in the final angle being cut before the output mark, there can not lie an α0 input be-
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cause of the arc direction. Build the subtree of (1, |D|) now as if (1, |D|) were not the root node,
excluding the final id (C) for the moment. This subtree has a β (A) result component that is in
fact an indecomposable angle. Finally, compose the remaining id (C) with this β (A) and obtain
α3 + α4 as main result component.

Output of type α3 + α4 with 2/5 arc pointing towards D, with (1, |D|) without morphism left-within,
but decomposable or with morphism right-within:

Decompose (1, |D|) into indecomposables C1, . . . , Ck (note k ≥ 1). First combine C2, . . . , Ck from
left to right, together with their morphisms within and the morphisms right-within C1. By as-
sumption there are direct siblings to be combined or there is at least one morphism right-within
Ck. This yields a β (A) or β/β′ (C) result component. Now use this as first-out morphism to
bind a ϕπqµ

≥3 disk of C1. This disk yields a result µ≥3 = α2 and hence a main result component
ϕπqµ

≥3 = α3 + α4. An example is depicted in Figure C.3f.

Output of type α3+α4 with 2/5 arc pointing towards D, with (1, |D|) indecomposable without morphisms
within and 0-rich:

Then α3 + α4 actually appears as tail result component of a ϕπqµ
2 or ϕπqµ

≥3 further downwards.

Output of type α3+α4 with 2/5 arc pointing towards D, with (1, |D|) indecomposable without morphisms
within and 1-rich:

By zigzag consistency, the stack of (1, |D|) cannot consist of a single morphism and also not of the
combination of α4 and α0. Therefore binding this stack together yields a final µ2 component equal
to βα (A), β′α2 or βα3. Now its ϕπqµ

2 has the desired α3 + α4 first-order tail result component.

Output of type α3+α4 with 2/5 arc pointing towards D, with (1, |D|) indecomposable without morphisms
within and 2-rich:

Then make a ϕπqµ
≥3 first-out disk of (1, |D|) with a δ-insertion as first morphism. Note that due

to the 2-richness this is µ2
TwGtlq

or µ≥3
TwGtlq

and not µ1
TwGtlq

.

The id (C) case. If the output is of type id (C), then (1, |D|) is not a narrow location itself. Building
the disk is a little easier.

Output of type id (C), with (1, |D|) 0-rich:

Then trace the tree from (1, |D|) towards the leaves. Pick the subtree of the first narrow location
that is 1-rich or 2-rich. Note it has a β (A) main result component. Changing its root from hqµ

≥3

to ϕπqµ
≥3 or from hqµ

2 to ϕπqµ
2 then yields the desired id (C) tail result component.

Output of type id (C), with (1, |D|) 1-rich:

In case of a single child with morphism within, it has a subtree with hqµ
2 main result component

β (A) associated. The corresponding ϕπqµ
2 version has the desired id (C) first-order tail result

component. In case of a stack, this stack cannot consist of a single stray morphism, since this
would contradict zigzag consistency. Instead, it must be a stack of α4 and α0 or multiple α0 and id
(C). Such a stack comes with a subtree hqµ

2 and main result component β (A) or β/β′ (C). Upon
replacing hqµ

2 by ϕπqµ
2, we obtain the desired id (C) main result component.

Output of type id (C), with (1, |D|) 2-rich:

We now have at least one of the following: two children, one child and one stray morphism, or no
child and two stray morphisms. Pick the subtrees of all children, binding direct siblings and mor-
phisms within together as usual. Bind all stacks of stray morphisms together. Finally, tie everything
into a µ≥3 disk.

The id (D) case.

Output of type id (D), with (1, |D|) 0-rich:

Trace the tree downwards to the leaves. Pick the subtree of the first narrow location that is 1-rich
or 2-rich. Note it has a β (A) main result component. Changing its root from hqµ

≥3 to ϕπqµ
≥3 or

from hqµ
2 to ϕπqµ

2 then yields the desired id (D) tail result component.
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Output of type id (D), with (1, |D|) 1-rich:

Then (1, |D|) contains a single stack, and this stack is not a single child without morphisms within.
This means the stack produces a β (A) or β/β′ (C) main result component and the corresponding
ϕπqµ

2 or ϕπqµ
≥3 version includes the desired id (D) first-order tail result component.

Output of type id (D), with (1, |D|) 2-rich:

Bind together all stacks in (1, |D|) and finally take ϕπqµ
≥3. This is possible due to Lemma C.10.

C.6 Verifying the inverse

In this section, we verify that D maps CR result components bijectively to CR disks. Believe it or not,
we have defined R(D) in such a way that its subdisk is D again. This already shows that D reaches all
CR disks. Proving injectivity of D on ResultCR is harder and requires further constructions.

Lemma C.12. Assigning subresults provides a map R : DiskCR → Resultπ. We have D ◦ R = Id |DiskCR .

Proof. This follows inductively from the construction of R(D).

The above lemma already shows that D reaches all CR disks. Prove injectivity of D on ResultCR is
harder. It requires us to show how to reconstruct the basic structure of r from D(r). By basic structure,
we mean a very specific notion: the evaluation tree.

Definition C.13. Let r be a result component of a Kadeishvili π-tree (T, h1, . . . , hN ). Then its evalu-
ation tree is the decorated ordered tree defined as follows:

• There is a node for every tail result component of type hqµ
2 or ϕπqµ

2 and every result component
of type hqµ

≥3 or ϕπqµ
≥3 used in r.

• For every node, insert as many subsequent nodes above as the used tail part is long.

• Connect the nodes according to the tree structure of T .

• Order the nodes horizontally according to their horizontal appearance in T .

• Regarding decoration of a node X, note that X determines a result component of a subtree on
its own and comes with a β (A) morphism. This determines a narrow location of D(r) and is the
decoration of X.

Lemma C.14. Let r be a result component of a π-tree. Then the narrow tree of D(r) is equal to the
evaluation tree of r.

Proof. All nodes in the evaluation tree of r stand for taking immersed disks and yielding β (A) morphisms
and hence determine narrow locations. The nodes of the evaluation tree are also connected according to
inclusion. Now let us show by induction on the height that this inclusion of the evaluation tree in the
narrow tree is actually surjective. Let N be a node in the narrow tree all of whose children appear in the
evaluation tree. We will show that then also N appears in the evaluation tree. In fact, r needs to bind all
children C1, . . . , Ck together in some immersed disk. This determines a node M in the evaluation tree,
and also a narrow location M . But now the children are nested in both M and N , which means one of
M and N is included in the other. Now if M is strictly included in N , then all children C1, . . . , Ck are
not direct children of M , in contradiction to our assumption. If N is strictly included in M , then M can
impossibly be an immersed disk since a version shorter on both sides already bounds a disk. Therefore
M = N as narrow locations and since M appears in the evaluation tree, we have that N appears in the
evaluation tree, which was to be shown. Finally given the equal structure of the trees, their decorations
are also equal.

Equipped with this characterization, we are ready to prove D injective on ResultCR.

Lemma C.15. The map D : ResultCR → DiskCR is injective, and hence D : ResultCR
∼
−→ DiskCR.

Proof. Let r1, r2 ∈ ResultCR denote two π-trees together with result components whose subdisks D(r1)
and D(r2) are equal. By Lemma C.14, the evaluation trees of r1 and r2 are then equal. This means that
these trees differ only by the order in which stacks are bound and the order in which the nodes of the
evaluation trees are linked together and bound together with morphisms within. It is readily checked
using the disk and multiplication schemes of Table 12.1, 12.2 and 12.3 that there is only a unique way to
bind these combinations.
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. . .

β
(tail result
component)

(a) A non-root node of the narrow tree. This exam-
ple has no siblings, no morphisms left-within, and
is 0-rich. Whatever is below the dots, β becomes a
tail result component.

β

α0 α′
0 id (C)

hqµ
2

hqµ
2 = β′ (C) +β (A)

(b) A non-root node of the narrow tree. This exam-
ple has no siblings, no morphisms left-within, and
is 1-rich. β becomes a tail result component of the
stack of the 3 indicated inputs.

21

α0 α′
0 id (C) 1 2

β (A)

β (A)

(c) A non-root node of the narrow tree. This example has siblings, and those are bound left to right.

3

21

out

1 2 3 α0 α′
0 id (C)

β (A)

β (A)

β (A)

β (A)

ϕπqµ
2 = α3 + α4

(d) An α3 + α4 output with 2/5 arc pointing away from D. Siblings are bound left-to-right. In this example,
sibling 1 has no morphisms left-within. Its subtree is a µ≥3 disk or a tail result component.

3

2
1

out

α0 α′
0 id (C) 1 2 3

β (A)

β (A)

ϕπqµ
≥3 = α3 + α4

(e) An α3 + α4 output with 2/5 arc pointing away from D. Siblings are bound left-to-right. In this example,
sibling 1 is bound as a final-out disk with the stack formed by its three morphisms left-within.

3

21

out

1 δ 2 3

β (A)

β (A)

ϕπqµ
2 = α3 + α4

(f) An α3+α4 outputs with 2/5 arc pointing towards D. Siblings 2 and higher are bound first. The result is then
used as first morphism for a first-out disk of sibling 1. In this example, sibling 2 is assumed to be 2-rich and has
no morphisms left-within, therefore a δ insertion is used.

Figure C.3: Examples of subtree construction.
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For example, a stack of α4 and α0 can only be bound in one way, the choice of result component is
clear from the next higher node in the evaluation tree. A stack of α0 and id (C) morphisms can only be
bound in one way. A stack of direct siblings and α0 and id (C) morphisms can also be bound only in one
way. Essentially, all steps in the construction of T(D) are the unique way to obtain a result component.
In other words, there is only one way to compose a result component whose evaluation tree equals the
narrow tree of D(r1) = D(r2). We conclude that r1 = r2.

C.7 The case of ID, DS and DW disks

In this section, we verify that D sends ID, DS and DW result components bijectively to ID, DS and DW
disks. For ID disks, we sketch inverse constructions similar to the CR case. For DS and DW disks, the
statement reduces to combinatorics.

Let us first dedicate ourselves to ID result components.

Lemma C.16. The map D : ResultID → DiskSL is injective and its image is precisely DiskID.

Proof. Injectivity is similar to the case of CR result components. We now show that all ID disks are
reached by D. Let D be an ID disk. We provide a preimage through explicit construction. In all cases it
can be checked that its subdisk is D again. We shall distinguish the “regular” inputs from the degenerate
ones.

First, assume the degenerate input is of C type. Then the procedure is similar to the CR case. We
construct a result component of Figure 12.10a or 12.10b. Let us apply the formalism of result components
to D. Regard the narrow location (1, |D|) itself.

If (1, |D|) is trivial, then evaluate from left to right all identities except the degenerate input and the
final regular one. Then compose with the final regular id (C) and note that this precisely produces an id
(B) result component of Figure 12.10a or 12.10b. Note that D may have stacked α0 inputs directly after
the output mark. They are welcome in our construction: They are composed one after another with the
ultimate β (A).

If (1, |D|) is nontrivial, decompose it into narrow locations C1, . . . , Ck. As in the CR case, generally
from left to right. In particular, if there is no regular identity left-within C1, then evaluate C2, . . . , Ck
first and use their result for a first-out disk of C1. If there is however a regular identity left-within C1,
then evaluate C1, . . . , Ck entirely from left to right. In both cases this yields hq(α2) = id (B). Finally
compose with the degenerate id (C) and obtain the desired id (C) result component. Again, note that
stacked α0 inputs directly after the output mark are welcome, and that the orientation of the 2/5 arc at
the degenerate id (C) is relevant.

Second, assume the degenerate input is of B type. We construct an all-in disk as in Figure 12.10c.
Denote by L the source and target zigzag path of D. Denote by a0 its identity arc. The degenerate B
input just before the output mark dictates that L turns right at a0.

If L is oriented clockwise with D, then the B input preceding the output identity gives rise to an
α4. As in Lemma C.10, the stacks of D inject into the boundary angles of an all-in disk. The tree
corresponding to D is obtained by binding all stacks into trees, and then evaluating their all-in disk with
µ≥3 = id (D) and hence ϕπqµ

≥3 = id (D).
If L is oriented counterclockwise with D, then the B input succeeding the output identity gives rise

to an α3. Again, an all-in disk yields the desired id (D) result component.

Next are DS result components. Since both DS result components and DS disks are defined by
combinatorics, this reduces to simple checks.

Proposition C.17. The map D : ResultDS → DiskSL is injective and its image is precisely DiskDS.

Proof. Let a DS disk of L and (a, b) be given. We recapitulate how to reconstruct its result component.
Depending on whether L turns right or left at a, let the first factor of the inner multiplication be

the corresponding id (C) or α3 + α4. Correspondingly the second factor will be α3/α4 or id (C). This
indeed produces an id (B) result component, since b lies in the arc sequence Sα starting at a. Similarly
depending on whether L turns right or left at b, let the other factor of the outer multiplication be the
corresponding id (C) or α3/α4.

Now if the two inputs at a come first in D, insert the inner multiplication on the right side of the
tree. If a comes last, insert the inner multiplication on the left side of the tree.

Finally, note that a may equal a0. The α (D) angle involved lies on the opposite side of where L goes.
Therefore if S lies in the same direction as L, then the angle lies on the opposite side and its hq involves
the identity on i, hence a = b really yields a result component. If S lies in the opposite direction of where
L goes, then the angle lies on the side of S and the possible set of b indices does not include a.



C.8. Signs and q-parameters 187

Lemma C.18. The map D : ResultDW → DiskSL is injective and its image is precisely DiskDW.

Proof. This is similar to the DS case. The reader may find the Lemma C.4 and its proof helpful.

C.8 Signs and q-parameters

In this section, we prove Lemma 13.25, which claims that the sign of a result component is precisely
the Abouzaid sign of its subdisk. Our strategy is to start from direct inputs and work our way up. In
particular, we first compute signs of result components of h-trees. This approach requires that we define
Abouzaid signs also for subdisks of h-trees. Note we treat signs additively everywhere.

Definition C.19. Let D be a subdisk of a result component of an h-tree or π-tree. Then its Abouzaid
sign Abou(D) ∈ Z/2Z is the sum of all # signs around D, plus the number of odd inputs hi : Li → Li+1

where Li+1 is oriented counterclockwise with D, plus one if it concerns a π-tree and its output t : L1 →
LN+1 is odd and LN+1 is oriented counterclockwise. In case r is a β (A) result component, the long
version of the subdisk shall be taken.

Recall that a result component of an h- or π-tree is not only a morphism r ∈ HomHLq
(L1, LN+1), but

also remembers how it was derived from the tree. In particular, the value of any result component of an
h-tree or π-tree does not carry any scalars, except signs. It is of the form

±Qε resp. ±Qt, (C.1)

where ± is a sign, Q = q1 . . . qk ∈ CJQ0K is a pure product of punctures, ε : L1 → LN+1 is an elementary
morphism resp. t is a cohomology basis element of L. Note (C.1) means we measure the sign relative to
the natural signs of the cohomology basis elements.

Let us now show that any result component comes precisely with the Abouzaid sign. For a result
component r of a π-tree or h-tree, we denote by S(r) the Abouzaid sign of the subdisk of r. We proceed
by induction.

Signs of direct inputs

Proposition C.20. Let r be a direct result component of an h-tree or π-tree that has a subdisk associ-
ated. Then the sign of r as in (C.1) equals the Abouzaid sign of the subdisk of r.

Proof. The sign is indeed correct for direct inputs. A co-identity α0 (D) comes sign #α0 +1. Its subdisk
is by definition on the α0 side (instead of the α′

0 side) and by Convention 10.10 the zigzag paths runs
counterclockwise, which makes the Abouzaid sign of the co-identity also equal to #α0 + 1. A direct α3

input comes with sign #α3 +1. Its subdisk consists of an input on the 2/5 arc and cutting the α3 angle,
which means the Abouzaid sign is also #α3 + 1. Similarly, a direct α4 comes with sign #α4, a direct β
(C) comes with sign #α3 +#α4 + SD, a direct β′ (C) with sign #α1 +#α2 + SD, a direct α′

0 with sign
#α0. Finally, a direct β (A) as tail component of an α3 + α4 input comes with sign #α3 + 1 + SD if it
is from the α3 part of (11.3) (and hence Li+1 is counterclockwise) and with sign #α4 + SD if it is from
the α4 part of (11.3) (and hence Li+1 is clockwise). A direct β (A) as tail component of an id (C) input
comes with sign #α1 +#α2 + SD if it is from the β′ part of (11.4) and with sign #α3 +#α2 + SD if it
is from the β part of (11.4). All these signs are equal to the Abouzaid signs.

Signs of h-trees

Next, let us check the signs for result components of h-trees.

Lemma C.21. Let r be a result component of an h-tree or π-tree that has a subdisk associated. Then
the sign of r as in (C.1) equals the Abouzaid sign of the subdisk of r.

Proof. The signs are collected in Table C.4. This table informs about the applicable hq rule, the sum of
the input signs, the sum of signs due to µ applications, the sum of signs due to hq applications and the
total Kadeishvili sign. Note that by induction assumption, the inputs already have the correct Abouzaid
sign.

In those rows of Table C.4 that concern a disk result component, the m1, . . . ,mk refer to the inner
angles of the disk. That is, the disk is supposed to be µk≥3(mk, . . . ,m1). Some mi may be δ insertions.
Their S(mi) shall stand for zero. For β (A) result components, SD shall stand for zero if it concerns a
main result component, while equal to the sum of the hash signs around the tail if it concerns a tail result
component. For the α′

0, β/β′ (C) result components, Nα0 denotes the number of α0 inputs in the result
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Component α′
0 of Figure 12.6b β (C) of Figure 12.6c β′ (C) of Figure 12.6d

hq rule hq(αα
′) hq(αα

′), hq(α4β) hq(αα
′), hq(β

′α2)

i-sign Nα0(#α0 + 1)− 1 Nα0(#α0 + 1)− 1 Nα0(#α0 + 1)− 1

µ-sign Nα0
− 1 Nα0

Nα0
− 1

hq-sign (Nα0
− 1)(#α0 + 1) (Nα0

− 1)(#α0 + 1) + #α4 (Nα0
−1)(#α0+1)+#α2+1

K-sign Nα0 − 1 Nα0 Nα0

Component β (A) of hqµ
2(β̃(A), α0) β (A) of hqµ

2(α0, α4) β (A) of hqµ
2(id (C), α′

0)

hq rule hq(βα) hq(α3α4) hq(α4β)

i-sign S(β̃) + #α0 + 1 #α0 + 1 +#α4 S(α′
0)

µ-sign 1 1 1

hq-sign SD +#α0 + 1 SD +#α4 + 1 SD +#α4

K-sign + 1 +1 +1

Component β (A) of hqµ
2(β̃(A), id (C)) β (A) of hqµ

2(β/β′(C), id (C)) β (A) of hqµ
2(α′

0, id (C))

hq rule hq(βα) hq(βα) hq(βα)

i-sign S(β̃) S(β/β′) S(α′
0)

µ-sign 0 0 0

hq-sign SD +#α+ 1 SD +#α+ 1 SD +#α+ 1

K-sign +1 +1 +1

Component β (A) of final-out hqµ
≥3 α3 (B) of Figure 12.6a

hq rule hq(βα) hq(α3α4)

i-sign
∑
S(mi) #α0 + 1 +#α4

µ-sign 0 1

hq-sign SD +#α+ 1 #α4 + 1 + SD

K-sign +1 +1

Table C.4: Signs of most result components of h-trees

component (including the α′
0 used). A single time the notation β̃ was used to distinguish two different β

(A) result components.
Let us examine the example of an β (A) result component of hqµ

2(α0, α4) in detail. Both inputs α0

and α4 are necessarily direct. The morphism α0 comes with sign #α0 + 1 and α4 comes with sign #α4.
This gives a total input sign of #α0 + 1 + #α4. We have µ2(α0, α4) = −α3α4, which gives a sign of 1
due to application of µ. According to Lemma 11.11, we have

hq(α3α4) = (−1)#α4+1


α3 +

∑

D∈T (α3)\ε

(−1)S
D

QDβD


 .

This gives a sign of #α4 + 1 + SD due to application of hq. A Kadeishvili sign of 1 is added. The total
sign the β (A) tail result component is now

#α0 + 1 +#α4 + 1 +#α4 + 1 + SD + 1 ≡ #α0 + SD.

Let us compare with the Abouzaid sign S(β). This sign consists of all # signs around the tail, including
#α0, plus two because both odd inputs α0 and α3 +α4 are counterclockwise. This is precisely the same.

Note Table C.4 does not treat explicitly the β (A) result component of Figure 12.7. This result
component is however a combination of β/β′ (C) or β (A) and α0 and id (C) compositions on the right,
which are already present in Table C.4.
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Component α3 + α4 of final-out α3 + α4 of first-out µk≥3(mk, . . . ,m1)

µ≥2 α4 α2

i-sign
∑
S(mi)

∑
S(mi)

µ-sign 0 1

ϕπq-sign #α4 + 1 #α2 + 1

Component α3 + α4 of µ2(β(A), id (C)) α3 + α4 of µ2(id (C), β(A))

µ≥2 α4 α2

i-sign S(β) S(β)

µ-sign 0 1

ϕπq-sign #α4 + 1 #α2 + 1

Component id (C) of all-in

µ≥2 id (C)

i-sign
∑
S(mi)

µ-sign 0

ϕπq-sign 0

Table C.5: Signs of some π-trees

Signs of π-trees

Lemma C.22. Let r be a direct result component of a π-tree that has a subdisk associated. Then the
sign of r as in (C.1) equals the Abouzaid sign of the subdisk of r.

Proof. The most signs of π-trees are checked in Table C.5. Let us treat the others manually.
Let us check the case where α3 + α4 is the G tail result component of some ϕπq(βα). We could

theoretically check this by going through all the cases. It is easier to rely on what we already have.
Namely −hq(βα) has an associated main result component β, which comes out of hqµ

≥2 with the correct
sign S(β). This means the µ≥2 must have had sign S(β) + #α+ 1 + 1 in front of βα. Then its α3 + α4

G tail result component comes with an additional sign of SD + #α + 1 in case of G1 and SD + #α in
case of G2. In total, we get a sign of S(β) +SD +1 in case of a G1 tail result component and S(β) +SD

in case of a G2 result component, precisely the Abouzaid sign.
Let us check the case where id (C) is the H tail result component of some ϕπq(βα). Then −hq(βα)

has an associated result component β, which comes out of hqµ
≥2 with the correct sign S(β). This means

the µ≥2 must have had sign S(β) + #α + 1 + 1 in front of βα. Then its id (C) H tail result component
comes with an additional sign of SD +#α. In total, we get a sign of S(β) + SD, precisely the Abouzaid
sign.

Checks for the id (D) result components of Figure 12.10 are contained in Table C.6. For example,
regard the case the id (B) comes from a first-out disk µk≥3(mk, . . . ,m1). According to Figure 12.2, the
outside part of m1 is α2 and hence odd. We get µk≥3(mk, . . . ,m1) = −α2 and evaluation of hq(α2) gives
another sign of (−1)#α2 . Together with the Kadeishvili sign we obtain that id (D) has sign S(mk)+ . . .+
S(m1) + #α2 as result component, precisely the Abouzaid sign.

Finally, let us check the α3 + α4 and id (C) result components of the 8 trees of Figure 12.11. Recall
such a result component a degenerate strip on a zigzag path L as subdisk.

Let us investigate the inner product first. In case of µ2(α3, id (C)) resp. µ2(id (C), α4), the inner
product has sign #α3 + 1 resp. #α4 + 1. Regard the infinitesimally short stem of the strip between
the two factors of the inner product. If the angle α3 resp. α4 as morphism L → L falls under case 1 of
Figure 10.7, then hq adds a sign of #α3 +1 resp. #α4 +1. Together with the Kadeishvili sign, the inner
product has a total sign of 1. Indeed, the stem is counterclockwise in this case. If α3 resp. α4 falls under
case 2, then hq adds a sign of #α3 resp. #α4. Together with the Kadeishvili sign, the inner product has
a total sign of 0. Indeed, the stem is clockwise in this case.

Let us now investigate the outer product. Regard the infinitesimally short stem at the output mark.
When id (C) or α3 + α4 comes at the end of the strip, ϕπqµ adds no sign (in case of α3 + α4, the
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Component all-in disk µk≥3(mk, . . . ,m1) ϕπqµ
2(hqµ

2(id (C), β(A)), id (C))

hq – hq(α2)

i-sign
∑
S(mi) S(β)

µ/hq/ϕπq-sign 0 1 + #α2

K-sign 0 1

Component ϕπqµ
2(hqµ

2(β(A), id (C)), id (C)) ϕπqµ
2(id (C), hqµ

2(id (C), β(A)))

hq hq(βα) hq(α2)

i-sign S(β) S(β)

µ/hq/ϕπq-sign SD +#α+ 1 1 +#α2

K-sign 1 1

Component ϕπqµ
2(id (C), hqµ

2(β(A), id (C))) ϕπq(id (C), hqµ
k≥3(mk, . . . ,m1))

hq hq(βα) hq(α2)

i-sign S(β)
∑
S(mi)

µ/hq/ϕπq-sign SD +#α+ 1 1 +#α2

K-sign 1 1

Component ϕπq(hqµ
k≥3(mk, . . . ,m1), id (C))

hq hq(α2)

i-sign
∑
S(mi)

µ/hq/ϕπq-sign 1 + #α2

K-sign 1

Table C.6: Signs of id (D) result components of Figure 12.10.

intrinsic sign #α4 stays correctly until the end). In case α3 + α4 comes at the end of the strip, this
indeed constitutes an odd intersection and an odd output and both add the same sign since both refer
to the orientation of the stem. In case id (C) comes at the end of the strip, this indeed produces an even
intersection and an even output mark.

When id (C) comes at the beginning of the strip, ϕπqµ gets no sign. Indeed, the output is then also
even. When α3+α4 comes at the beginning of the strip, then ϕπqµ gets a single extra sign. The output is
then also α3+α4 and their claimed signs refer to the orientation of L and of its Hamiltonian deformation
L′. Since both point in the same direction, but lie on opposite sides of the strip, they contribute to the
Abouzaid sign with 1.

D The case of punctured spheres

In this section, we redo our entire minimal model computation in the case of specific punctured spheres.
In particular, our treatise includes the 3-punctured sphere, also known as pair of pants. The simplest
yet instructive example of mirror symmetry for punctured surfaces, it would be a shame not to know
the minimal model of its deformed zigzag category. However, no dimer on a sphere is consistent and
Theorem 13.26 therefore fails to apply. This is the reason we redo the entire calculation in the case of
specific sphere dimers with M ≥ 3 punctures.

In section D.1, we give an overview of what goes wrong for non-consistent dimers. In section D.2,
we focus on specific sphere dimers QM with an odd number of punctures M ≥ 3. We choose a specific
type of spin structure, tailored to the use in mirror symmetry. In section D.3, we choose a homological
splitting. In section D.4, we describe the deformed zigzag category Lq. In section D.5, we compute the
deformed decomposition of Lq. In section D.6, we introduce the suitable notion of result components. In
section D.7, we assemble the minimal model HLq. In section D.8, we comment on the case of QM for
even M .
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As we state in Proposition D.18 and D.22, the minimal model HLq can be described explicitly by
means of CR, ID, DS and DW disks. This description also accurately captures the curvature und residual
differential on HLq. Explicitly, for odd M and specific choice of spin structure the category HLq is
curvature-free and has a residual differential. For even M the category HLq has curvature and residual
differential.

D.1 Absence of consistency

In this section, we list consequences of the lack of geometric consistency. Within section 10 until 13, we
have used geometric consistency heavily. Is geometric consistency actually a necessity? To find an answer,
we collect the most important statements which we proved using consistency. For every statement, we
explain how it depends on consistency and whether it can be partially recovered when dropping the
consistency assumption.

Zigzag segments do not bound disks. We proved this statement directly using geometric consis-
tency. Upon dropping geometric consistency, zigzag segments can easily bound disks.

Deformed zigzag paths are uncurvable. We proved this by explicit uncurving, which succeeds be-
cause zigzag segments do not bound disks. When zigzag segments bound disks, two issues can
occur: If the zigzag segment ends in an A situation, we need to adapt the uncurving procedure,
but it provides no hindrance to uncurving. If the zigzag curve actually bounds a teardrop, then the
zigzag path can inherently not be uncurved.

A, B, C, D situations exhaust all angles. This statement mainly uses that every puncture has at
least 4 arc incidences. In fact, a non-consistent dimer may have punctures with only 2 arc incidences.
This gives rise to new types similar to B and C situations, with the difference that the head or tail
of the shared arc 2 = 5 may have 2 arc incidences. More practically, this would push β (C) or β′

(C) to be empty angles.

Lq satisfies µ1
Lq
(H) ⊆ µ1

Lq
(CJQ0K⊗̂R). If Q is so nonconsistent that Lq has inherent curvature, then this

statement is already not applicable any more. Namely, µ1
Lq

does not square to zero anymore and we
cannot invoke the simplified Kadeishvili theorem of section 8.8. If Q is only so nonconsistent that
Lq can be uncurved (albeit by an adapted procedure), then the inclusion typically does not hold.
Nevertheless, the deformed Kadeishvili theorem applies and yields a minimal model with residue
differential. It is clear that the description of Hq will be very complicated.

E, F, G, H disks as classification of tail terms. The shape of the terms in µ≥3
q (δ, . . . , ε, . . . , δ) is

analyzed by zooming in at the concluding puncture. In distinguishing E, F, G, H disks, we have
used that the concluding puncture has at least 4 arc incidences. When dropping consistency, the
resulting terms need not be of A, B, C, D type, but also of the variants explained above.

Situation B/C cohomology basis elements have only type E tail. This is proved directly using
geometric consistency: An intersection between L1 and L2 renders it impossible to find type F,
G, H disks when tracing L1 and L2 away from the intersection. Upon dropping consistency, B/C
cohomology basis elements acquire tail also from F, G, H disks. This raises additional complexity:
The G and H disks will contribute result components, forcing us into capturing them.

Every narrow locations has at least one below morphism. A narrow location without below mor-
phism constitutes a zigzag segment bounding a disk. Upon dropping consistency, imagine a segment
of a zigzag path L that bounds a disk. According to our explanations above, the δ-matrix should
already be adapted to facilitate uncurving. In fact, the new δ-matrix of L will have a situation A
morphism for every disk bounded by one of its segments and more situation A morphisms inserted
on its tail. These situation A morphisms compensate for the lack of below morphisms. This modifi-
cation allows us to construct result components for a given CR/ID disk D even if a narrow location
(l,m) of D has no below morphism.

The calculation for the sphere dimers QM basically proceeds as in the geometrically consistent case.
Based on the above list of issues, we can however point out a few differences: In the consistent case, Lq
is always uncurvable. In the sphere case, for odd M and specific choice of spin structure it is uncurvable,
for even M it is not uncurvable. In the consistent case, minimal models constructed by our deformed
Kadeishvili construction are based on a deformed cohomology space Hq satisfying µ1

Lq
(Hq) = 0. In the

sphere case, we only achieve µ1
Lq
(Hq) ⊆ Hq. In the consistent case, the deformed counterpart ϕ−1(h) of

h = id (C) morphisms includes tails of β/β′ (C). In the sphere case, the deformed counterpart ϕ−1(h) of
h = id (C) morphisms includes no tails, but a single nearby id (B) morphism.
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(a) The sphere dimer Q6 (b) The zigzag curve of Q5 (c) The zigzag curves of Q6

Figure D.1: The sphere dimer and its zigzag curves

D.2 The sphere and its zigzag category

In this section, we define specific sphere dimers and define their category of zigzag paths. The dimers
we pick are those also used as A-side for commutative mirror symmetry in [3]. The dual dimers of these
spheres are consistent and therefore suited for noncommutative mirror symmetry of [18].

The dimer we regard is the sphere dimer QM for M ≥ 3 depicted in Figure D.1a. This dimer has M
punctures and M arcs. It has two polygons, namely the clockwise front side and the counterclockwise
rear side. We shall briefly discuss the differences between the cases of odd and even M , and then focus
on the odd case. In order to apply our findings to deformed mirror symmetry later on, we shall define
one specific spin structure.

The zigzag curves of this sphere dimer QM are described as follows: In case M is odd, there is precisely
one zigzag curve. It cycles around the arcs once, and then cycles around the arcs again with opposite δ
angles. In case M is even, there are precisely two zigzag curves, each of them cycling around the arcs
once. The smooth zigzag curves in both cases are depicted in Figure D.1c. In the picture, the arc system
has been pulled to the front side of the sphere so that the zigzag curves become clearly visible.

Let us now focus on the case of odd M ≥ 3 and fix spin structure as follows.

Convention D.1. The letter Q = QM stands for the sphere dimer with M ≥ 3 odd. The spin structure
of the zigzag path is chosen by assigning #α = 1 to an odd number of interior angles on the rear side of
QM , and #α = 0 to all other angles. The co-identity locations α0 are supposed to lie on the rear side
and the identity locations a0 are arbitrary indexed arcs.

In Definition D.2, we define the category of zigzag paths L ⊆ TwGtlQM as in the case of geometrically
consistent dimers. In the case Q = QM , the only object in the category is the single zigzag path L.

Definition D.2. The category of zigzag paths L ⊆ TwGtlQM is the full subcategory consisting of
the single zigzag path.

We intend to write down the explicit twisted complex for L. The main issue consists of numbering
all indexed arcs of L and the angles between them. In fact, a zigzag path consists of indexed arcs, as
opposed to purely arcs of QM . We shall therefore denote the arcs in sequence by a1, . . . , a2M , with the
convention that h(a1) = qM and t(a1) = q1 and L turns right at the head of a1.

The indexed small angles of L shall be denoted by α1, . . . , α2M , such that α1 : a1 → a2 and α2 : a3 →
a2 and so on. In other words, αi runs at the head of ai if i odd and at the tail of ai if i is even. In other
words, we have α2i : a2i+1 → a2i and α2i+1 : α2i+1 → α2i+2. These angles are depicted in Figure D.2a.

We count all indices modulo 2M . In contrast, an index shift of M typically turns a situation from
left to right and from right to left. For example, we have αi+M 6= αi. Compare Figure D.2a and D.2b.
We also have ai = ai+M as arcs of QM , but not as indexed arcs of L.

For i = 1, . . . , 2M , we denote the complementary angle to αi by α′
i. For instance if i is odd, then αi

runs from ai+1 to ai. We denote the arc identity of ai by idi, and the arc identity ai → ai+M by id′i.
We set βi := id′j αi and β′

i := id′j α
′
i, where j is chosen so that the composition makes sense. We are now

ready to define the deformed category of zigzag paths:
Generically denoting a full turn by ℓ, these angles together with their multiples with ℓ powers form a

basis of the hom space HomL(L,L). Examples of these angles are depicted in Figure D.2c.
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Figure D.2: Numbering of punctures, arcs and angles

D.3 Homological splitting

In this section, we provide a homological splitting for L in case of odd M ≥ 3. We first explain the analogy
of all basis morphisms with the consistent case. Then, we write down an explicit choice of cohomology
basis elements and an explicit choice of R. We explain why it constitutes a homological splitting.

We have seen that EndL(L,L) has a basis given by basis morphisms of the kind idi, id
′
i, αi, α

′
i, βi

and β′
i. Let us compare with the consistent case. The angle idi is an arc identity. In terms of A, B, C,

D situations, we denoted it as id (D). The angle id′i is comparable to an id (C) morphism for odd i, and
comparable to an id (B) morphism for even i. The angle αi is simply α (D), and similarly α′

i is α′ (D).
There are ambiguities of interpreting βi and β′

i in terms of A, B, C, D situations. A possible choice is
matching βi with α4 (B) for odd i and with α1 (B) for even i, and matching β′

i with α3 (B) for odd i and
with α2 (B) for even i. In short, the two differences are that we have explicit indices i instead of using
A, B, C, D situations as enumeration tools and that we have less morphisms overall since ever puncture
has only 2 arc incidences.

We now define a candidate splitting H ⊕ I ⊕R, modeled after the consistent case:

Definition D.3. Denote by H ⊆ HomL(L,L) the space spanned by the cohomology basis elements

• id′i for i odd

• (−1)#(i+M)+1β′
i + (−1)#iβi where i odd,

•
∑2M
i=1 idai ,

• (−1)#α0+1α0.

Choose the space R ⊆ HomL(L,L) to be spanned by βi for even i, β′
i for odd i, (α′

iαi)
k+1 for all i and

k ≥ 0, βiℓ
k+1 for even i and k ≥ 0, β′

iℓ
k+1 for odd i and k ≥ 0, idi for i 6= i0, id′i for even i, βiα

′
iℓ
k for

odd i and k ≥ 0, α′
iℓ
k for all i and k ≥ 0, βiα

′
iℓ
k for even i and k ≥ 0. The spaces H and R, together

with I := Im(µ1
L), constitute the standard splitting for L.

In Table D.3 we have checked that every morphism in EndL(L,L) can be written in terms of H, I
and R. The table also serves as a convenient reference for the definition of H and R. In analogy to the
consistent case, the sum H + I +R is in fact direct. Let us record this as follows:

Lemma D.4. The spaces H, I = Im(µ1
L) and R provide a homological splitting for L.

D.4 Deformed category of zigzag paths

In this section, we define the category Lq of deformed zigzag paths. As in the consistent case, its
definition is based on the complementary angle trick. In contrast to the consistent case, we must expect
that uncurving fails. Due to our specific spin structure, curvature cancels nevertheless.

Definition D.5. Regard a sphere dimer Q = QM with odd M ≥ 3. Let # denote a choice of spin
structure as in Definition D.2. Then the deformed category of zigzag paths is category Lq ⊆
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idi = idi ∈ R, if i 6= i0,

idi =
∑
j idj −

∑
j 6=i idj , if i = i0,

id′i = id′i ∈ R, even i,

id′i = id′i ∈ H, odd i,

αi = αi ∈ H, if αi = α0,

αi = µ1(± idaj ± . . .± idai)± α0,

α′
i = α′

i ∈ R,

βi = βi ∈ R, even i,

βi = (−1)#i((−1)#(i+M)+1β′
i + (−1)#iβi) + (−1)#i+#(i+M)β′

i odd i,

β′
i = (−1)#(i+M)µ1(id′i) + (−1)#(i+M)[(−1)#(i+M−1)+1β′

i−1 + (−1)#(i−1)βi−1] +

(−1)#i+#(i+M)βi, even i,

β′
i = β′

i ∈ R, odd i,

αiℓ
k = (−1)#iµ1((α′

iαi)
k),

α′
iℓ
k = α′

iℓ
k ∈ R,

βiℓ
k = βiℓ

k ∈ R, even i,

βiℓ
k = (−1)#i+1µ1(βiα

′
iℓ
k−1) + (−1)#i+#(i+M)β′

iℓ
k, odd i,

β′
iℓ
k = β′

iℓ
k ∈ R, odd i,

β′
iℓ
k = (−1)#(i+M)µ1(βiα

′
iℓ
k−1) + (−1)#(i+M)+#iβiℓ

k, even i,

(α′
iαi)

k = (α′
iαi)

k ∈ R,

(αiα
′
i)
k = (−1)#i+1µ1(α′

iℓ
k−1) + (−1)(α′

iαi)
k,

βiα
′
iℓ
k = βiα

′
iℓ
k ∈ R,

β′
iαiℓ

k = (−1)#i+1µ1(β′
iℓ
k), odd i,

β′
iαiℓ

k = (−1)#(i+M)+1µ1(βiℓ
k), even i.

Table D.3: Decomposing arbitrary morphisms into H, I and R

TwGtlq QM consisting of the single deformed zigzag path

L = (a1 ⊕ . . .⊕ a2M , δ),

δ =




0 (−1)#1q1α
′
1 0 . . . 0

(−1)#1α1 0 (−1)#2α2 . . . 0

0 (−1)#2q2α
′
2 0

. . . 0
...

...
. . .

. . . (−1)#(2M)α2M

0 0 0 (−1)#(2M)q2Mα
′
2M 0




.

Let us introduce the following shorthand notation for k ∈ Z:

##k := #k + . . .+#(k +M − 1),

Qi := qiqi+2 . . . qi+M−3,

Qodd(k) :=
k+M−1∏

s=k
s odd

qs,

Qeven(k) :=

k+M−1∏

s=k
s even

qs.

(D.1)

We now come to our first meaningful calculation in the sphere case: the curvature of Lq. We expect
curvature in principle, since L is contractible when regarded in the closed surface |Q|. With our specific
spin structure, the curvature contributions from front and rear side however cancel each other.
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Lemma D.6. The curvature of L vanishes, we have µ0
Lq

= 0.

Proof. We have to evaluate µ0
AddGtlq Q

+ µ2
AddGtlq Q

(δ, δ) + µ≥3
AddGtlq Q

(δ, . . . , δ). As in the geometrically

consistent case, the first two terms cancel each other. In contrast, the term µM (δ, . . . , δ) yields two
individual contribution for each index i = 1, . . . , 2M , one from the front and one from the rear side:

µM (δ, . . . , δ) =

2M∑

i=1

(−1)##iQeven
i id′i+

2M∑

i=1

(−1)##(i−M)Qodd
i−M id′i = 0.

We have used that Qeven
i = Qodd

i−M and ##i + ##(i − M) ≡ 1 ∈ Z/2Z by assumption on the spin
structure.

D.5 Deformed decomposition

In this section, we provide the deformed decomposition for Lq. More precisely, the category Lq is
curvature-free but does not satisfy µ1

q(B⊗̂H) ⊆ µ1
q(B⊗̂R). The deformed Kadeishvili theorem neverthe-

less applies and defines a deformed decomposition Hq ⊕ µ
1
q(B⊗̂R) ⊕ (B⊗̂R) with µ1

q(Hq) ⊆ Hq. In this
section, we compute Hq explicitly, together with a few values of the deformed codifferential.

As a preparation, we perform here a few calculations of µ1
Lq

:

µ1
Lq
(id′i) = µ2(id′i, (−1)

#αi−1αi−1 + (−1)#αiαi) + µ2((−1)#αi+Mαi+M + (−1)#αi+M−1αi+M−1, id
′
i)

= (−1)#(i−1)+1βi−1 + (−1)#i+1βi + (−1)#(i+M)β′
i + (−1)#(i+M−1)β′

i−1

for even i,

µ1
Lq
(id′i) = µ2(id′i, (−1)

#iqiα
′
i + (−1)#(i−1)qi−1α

′
i−1)

+ µ2((−1)#(i+M)qi+Mα
′
i+M + (−1)#(i+M−1)qi+M−1α

′
i+M−1, id

′
i)

= (−1)#i+1qiβ
′
i + (−1)#(i−1)+1qi−1β

′
i−1 + (−1)#(i+M)qiβi + (−1)#(i+M−1)qi−1βi−1

for odd i,

µ1
Lq
(αiℓ

k) = µ2(αiℓ
k, (−1)#iqiα

′
i) + µ2((−1)#iqiα

′
i, αiℓ

k) + µM (δ, . . . , αiℓ
k, . . . , δ)

= (−1)#i+1qi[(αiα
′
i)
k+1 + (α′

iαi)
k+1] + µM (δ, . . . , αiℓ

k, . . . , δ),

µ1
Lq
(α′
iℓ
k) = µ2(α′

iℓ
k, (−1)#iαi) + µ2((−1)#iαi, α

′
iℓ
k) + µM (δ, . . . , α′

iℓ
k, . . . , δ)

= (−1)#i+1[(αiα
′
i)
k+1 + (α′

iαi)
k+1] + µM (δ, . . . , α′

iℓ
k, . . . , δ),

µ1
Lq
(βiℓ

k) = µ2(βiℓ
k, (−1)#iqiα

′
i) + µ2((−1)#(i+M)αi+M , βiℓ

k) + µM (δ, . . . , βiℓ
k, . . . , δ)

= (−1)#i+1qiβiα
′
iℓ
k + (−1)#(i+M)+1β′

iαiℓ
k + µM (δ, . . . , βiℓ

k, . . . , δ),

µ1
Lq
(β′
iℓ
k) = µ2(β′

iℓ
k, (−1)#iαi) + µ2((−1)#(i+M)qiα

′
i+M , β

′
iℓ
k) + µM (δ, . . . , β′

iℓ
k, . . . , δ)

= (−1)#i+1β′
iαiℓ

k + (−1)#(i+M)+1qiβiα
′
iℓ
k + µM (δ, . . . , β′

iℓ
k, . . . , δ).

Remark D.7. The shorthand notation (D.1) has the property that

Qeven
k = qkQ

even
k+1 for even k, Qodd

k = qkQ
odd
k+1 for odd k.

For even k we have

Qodd
k−M+1 = Qeven

k+2 = qk+2 . . . qk+M−2, Qeven
k = qk . . . qk+M−1 = qk · (qk+2 . . . qk+M−2) = qk ·Q

odd
k−M+1.

We have used that ##(k + 1) = ##k +#(k +M)−#k.

In order to apply the deformed Kadeishvili theorem, we need to compute the space Hq according to
Lemma 8.16. In other words, we shall calculate the deformed counterparts h − Eh of the cohomology
basis elements h ∈ H. By abuse of notation, let us write #α0 for the # sign associated with α0 and qα0

for the puncture around which α0 winds.

Lemma D.8. The deformed cohomology basis elements are given by

(−1)#(i+M)+1β′
i + (−1)#iβi for odd i
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and
id′i+(−1)#(i−1)+#(i+M−1)qi−1 id

′
i−1 for odd i

and
2M∑

i=1

idi and (−1)#α0+1α0 + (−1)#α0qα0
α′
0.

The differentials µ1
Lq

for these morphisms are given by

µ1
Lq
((−1)#(i+M)+1β′

i + (−1)#iβi) = (−1)##(i+1)+1Qi+2 idL ∈ Hq

and

µ1
Lq
(id′i+(−1)#(i−1)+#(i+M−1)qi−1 id

′
i−1) = (−1)#i+#(i+M)qi

(
(−1)#(i+M)+1β′

i + (−1)#iβi

)

+ (−1)#(i−1)+#(i+M−1)+1qi−1

(
(−1)#(i−2+M)+1β′

i−2 + (−1)#(i−2)βi−2

)
∈ Hq

and

µ1
Lq

(
2M∑

i=1

idi

)
= 0

and

µ1
Lq
((−1)#α0+1α0 + (−1)#α0qα0α

′
0) =

M−1∑

j=0
j even

(−1)##(i+j−M+1)+1Qodd
i+j−M+1[id

′
i+j+1 +(−1)#(i+j)+#(i+j−M)qi+j−M id′i+j ]

+

M−1∑

j=2
j even

(−1)##(i−j+1)Qeven
i−j+1[id

′
i−j+1 +(−1)#(i−j+M)+#(i−j)qi−j id

′
i−j ] ∈ Hq.

Proof. We need to check two things: First, all added infinitesimal terms lie in CJQ0K⊗̂R. Second, the
map µ1

Lq
sends all the deformed basis elements to Hq.

The first step is an easy observation: Indeed id′i−1 for odd i and α′
0 lie in R. For the second part, we

need to evaluate µ1
q on the deformed cohomology basis elements and check that the result belongs to Hq.

We execute all calculations in order:
First, we regard the morphism (−1)#(i+M)+1β′

i + (−1)#iβi for odd i. We compute

µ1
Lq
((−1)#(i+M)+1β′

i + (−1)#iβi) = (−1)#(i+M)+#iβ′
iαi + qiβiα

′
i − qiβiα

′
i + (−1)#i+#(i+M)+1β′

iαi

+
M−1∑

j=0

µM
(
(−1)#(i+j+1)[qi+j+1]αi+j+1[

′], . . . , (−1)#(i+M−1)qi+M−1αi+M−1,

(−1)#(i+M)+1β′
i, (−1)

#(i+1)αi+1, (−1)
#(i+2)qi+2α

′
i+2, . . . , (−1)

#(i+j)[qi+j ]αi+j [
′]

)

+
M−1∑

j=0

µM
(
(−1)#(i+2M−1−j)[qi+2M−1−j ]αi+2M−1−j [

′], . . . , (−1)#(i+M+1)αi+M+1,

(−1)#iβi, (−1)
#(i−1)α′

i−1, . . . , (−1)
#(i−j)[qi−j ]αi−j [

′]

)

=

M−1∑

j=0

(−1)##(i+1)+1Qi+2 idi+j+1 +

M−1∑

j=0

(−1)##(i+M+1)Qi+2 idi−j

= (−1)##(i+1)+1Qi+2 idL ∈ Hq.

We have used that ##(k +M) + ##(k) is the total number of # signs in the dimer, which is odd by
assumption.
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Second, we regard the morphism id′i+(−1)#(i−1)+#(i+M−1)qi−1 id
′
i−1 for odd i. We compute

µ1
Lq
(id′i+(−1)#(i−1)+#(i+M−1)qi−1 id

′
i−1)

= (−1)#i+1qiβ
′
i + (−1)#(i−1)+1qi−1β

′
i−1

+ (−1)#(i+M)qiβi + (−1)#(i+M−1)qi−1βi−1

+ (−1)#(i−2)+#(i−1)+#(i+M−1)+1qi−1βi−2 + (−1)#(i+M−1)+1qi−1βi−1

+ (−1)#(i−1)qi−1β
′
i−1 + (−1)#(i+M−2)+#(i−1)+#(i+M−1)qi−1β

′
i−2

= (−1)#i+1qiβ
′
i + (−1)#(i+M)qiβi

+ (−1)#(i−2)+#(i−1)+#(i+M−1)+1qi−1βi−2 + (−1)#(i+M−2)+#(i−1)+#(i+M−1)qi−1β
′
i−2

= (−1)#i+#(i+M)qi

(
(−1)#(i+M)+1β′

i + (−1)#iβi

)

+ (−1)#(i−1)+#(i+M−1)+1qi−1

(
(−1)#(i−2+M)+1β′

i−2 + (−1)#(i−2)βi−2

)
∈ Hq.

Third, we regard the identity idL =
∑
i idi and compute

µ1
q(idL) = µ2(idL, δ) + µ2(δ, idL) = 0.

Fourth, we deal with the co-identity (−1)#α0+1α0+(−1)#α0qα0α
′
0. Let i be the index where α0 is located,

such that αi = α0. Note that i is even, since α0 is supposed to lie on the counterclockwise side of QM .
In evaluating µ1 on the deformed co-identity, there appear two types of terms: four µ2 terms and many
µM terms. The µ2 terms cancel each other as in the case for consistent dimers:

µ2((−1)#α0+1α0, (−1)
#α0qα0α

′
0) + µ2((−1)#α0qα0α

′
0, (−1)

#α0α0)

+ µ2((−1)#α0qα0α
′
0, (−1)

#α0+1α0) + µ2((−1)#α0α0, (−1)
#α0qα0α

′
0)

= qα0α0α
′
0 − qα0α

′
0α0 + qα0α

′
0α0 − qα0α0α

′
0 = 0.

We are now ready to calculate the µM terms:

M−1∑

j=0

µM
(
(−1)#(i+j−M+1)[qi+j−M+1]α

[′]
i+j−M+1, . . . , (−1)

#(i−1)qi−1α
′
i−1,

(−1)#α0+1α0, (−1)
#(i+1)qi+1α

′
i+1, . . . , (−1)

#(i+j)[qi+j ]α
[′]
i+j

)

+

M−1∑

j=0

µM
(
(−1)#(i−j+M−1)[qi−j+M−1]α

[′]
i−j+M−1, . . . , (−1)

#(i+1)αi+1,

(−1)#α0qα0α
′
0, (−1)

#(i−1)αi−1, . . . , (−1)
#(i−j)[qi−j ]α

[′]
i−j

)

=
M−1∑

j=0

(−1)##(i+j−M+1)+1Qodd
i+j−M+1 id

′
i+j+1 +

M−1∑

j=0

(−1)##(i−j)Qeven
i−j id

′
i−j

= (−1)##(i−M+1)+1Qodd
i−M+1 id

′
i+1 +(−1)##(i)Qeven

i id′i

+
M−1∑

j=2
j even

(−1)##(i+j−M+1)+1Qodd
i+j−M+1 id

′
i+j+1 +

M−1∑

j=2
j even

(−1)##(i+j−M)+1Qodd
i+j−M id′i+j

+

M−1∑

j=2
j even

(−1)##(i−j)Qeven
i−j id

′
i−j +

M−1∑

j=2
j even

(−1)##(i−j+1)Qeven
i−j+1 id

′
i−j+1

=
M−1∑

j=0
j even

(−1)##(i+j−M+1)+1Qodd
i+j−M+1[id

′
i+j+1 +(−1)#(i+j)+#(i+j−M)qi+j−M id′i+j ]

+
M−1∑

j=2
j even

(−1)##(i−j+1)Qeven
i−j+1[id

′
i−j+1 +(−1)#(i−j+M)+#(i−j)qi−j id

′
i−j ] ∈ Hq.
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We have used Remark D.7 and ##(i+ 1) ≡ ##(i−M + 1) + 1 ∈ Z/2Z. These calculations show that
the claimed elements are indeed the deformed cohomology basis elements, which finishes the proof.

The deformed Kadeishvili theorem lays out the following procedure: We have already uncurved the
category Lq successfully. We have the full space Hq in our hands. Next we have to compute the deformed
codifferential hq : HomLq

(L,L) → B⊗̂R. After that, we will be able to evaluate Kadeishvili trees and
derive the minimal model.

It is not necessary to compute the entire codifferential hq. Instead, the most important cohomology
basis morphisms are of the form βi + β′

i and α0 + qα′
0 and id′i+q id

′
i−1. Any product µ≥3

q of these can
only produce an identity. Any product µ2

q of these can only produce βiα
′
i or β′

iαi or α0α
′
0 or α′

0α0 or βi
or β′

i or αi or α′
i. It suffices to calculate the codifferential of these morphisms.

Let us analyze all the easy cases before we calculate the harder ones: For those morphisms lying in
R, the codifferential immediately vanishes. Moreover, for odd i the element βi + β′

i lies in Hq and β′
i lies

in R, thus hq(βi) = 0 for odd i. The nontrivial cases are as follows:

Lemma D.9. We have the following values of the codifferential:

hq(αi) = ± idaj + . . .± idai for αi 6= α0,

hq(β
′
i) = (−1)#(i+M) id′i for even i,

hq(β
′
iαi) = (−1)#i+1β′

i for odd i,

hq(β
′
iαi) = (−1)#(i+M)+1βi for even i,

hq(α0α
′
0) = (−1)#i+1α′

0.

Proof. The first two cases are simple: The value of µ1
q on identities equals the value of µ1 and therefore

decomposition of αi and β′
i from Table D.3 remains valid. We remark that for αi the right-hand side

needs to be written as α0 + qα′
0 − qα

′
0, but since α′

0 ∈ R this is no issue.
The third case consists of checking β′

iαi for odd i:

µ1
q(β

′
i) = (−1)#i+1β′

iαi + (−1)#(i+M)+1qiβiα
′
iℓ
k + µM (. . .).

The term βiα
′
i lies in R. The terms resulting from µM (. . .) are all of the form idi. The hq of such terms

necessarily vanishes, and we deduce the above codifferential equation.
The fourth case of β′

iαi for even i is similar. Finally, we check the fifth case of α0α
′
0:

µ1
q(α

′
0) = (−1)#i+1[(α0α

′
0) + (α′

0α0)] + µM (. . .).

The terms resulting from µM (. . .) are all of the form id′i. These either lie directly in R or they lie in H
when combined with additional id′i−1 ∈ R.

In Lemma D.9, we have saved ourselves from computing the describing the correct signs of hq(αi). In
fact, the signs are analogous to those presented in section 10.3.

D.6 Result components

In this section, we analyze result components of HLq and match them with CR, ID, DS and DW disks.
The starting point is the category Lq. In section D.5 we have already computed the deformed cohomology
basis elements and the deformed codifferential. Here, we regard Kadeishvili trees, analyze the shape of
their outputs and introduce a suitable notion of result components. We introduce a suitable notion of
CR, ID, DS and DW disks and match all result components with smooth disks of these four types.

As in the classical case, we start by computing a multiplication table for important endomorphisms
of L ∈ Lq. The multiplication table is found in Table D.4.

Remark D.10. Most values in Table D.4 are checked easily using Table D.3 and more specifically
Lemma D.9. They can be grouped essentially in three types: those multiplications which always yield a
particular value (with respect to µ2, hqµ

2 and πqµ
2), those which vanish if i is even or odd and yield a

nonzero value if i is odd respectively even, and those which involve α0 where only close inspection proves
them to vanish. The products µ2(α0, id

′
i) and µ2(id′i, α0) notably fall in the latter category. Let us digest

this in case of µ2(α0, id
′
i): From the fact that α0 lies in the counterclockwise polygon, we deduce that the

source arc of α0 is odd and therefore i is even. The result µ2(α0, id
′
i) then equals β′

i−1. Now i− 1 is odd,
the element β′

i−1 lies in R and we conclude hq(β
′
i−1) = πq(β

′
i−1) = 0. This explains the entry of m2 = α0

and m1 = id′i in Table D.4.
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m2 \m1 idi id′i βi β′
i α0 α′

i

idi µ2 = idi id′i βi β′
i α0 α′

i

i = any odd odd even any any

hq = 0 0 0 id′i 0 0

πq = (idi) id′i βi + β′
i βi−1 + β′

i−1 α0 0

id′i µ2 = id′i idi αi α′
i βi β′

i

i = odd any any any even even

hq = 0 0 idi 0 0 id′i
πq = id′i (idi) α0 0 0 βi−1 + β′

i−1

βi µ2 = βi α′
i α′

iαi imp imp βiα
′
i

i = odd any any any any any

hq = 0 0 0 0 0 0

πq = βi + β′
i 0 0 0 0 0

β′
i µ2 = β′

i αi imp αiα
′
i β′

iα0 imp

i = even even any any even any

hq = id′i idi 0 α′
i βi 0

πq = βi−1 + β′
i−1 α0 0 0 0 0

α0 µ2 = α0 β′
i β′

iαi imp imp αiα
′
i

i = any even odd any any even

hq = 0 0 β′
i 0 0 α′

i

πq = α0 0 0 0 0 0

α′
i µ2 = α′

i βi imp βiα
′
i α′

iαi imp

i = any odd any any any any

hq = 0 0 0 0 0 0

πq = 0 βi + β′
i 0 0 0 0

Table D.4: Multiplication table. Whenever the parity of i is specified, this refers to the parity of the
index of the µ2 result, instead of the indices of the inputs or hq and πq values.

Remark D.11. As in the case of consistent dimers, the multiplication table merely indicates possible
products, as opposed to products that actually exist. For example, the three indices “i” in a product rule
like βi = µ2(idi, βi) are not meant to denote the same index, but rather indicate the type of morphism:
The first is an indexed β morphism, the second an indexed arc identity and the third again an indexed
β morphism. The table merely implies that any actually existing product is of the form βi = µ2(idj , βk)
for some combination of indices (i, j, k) allowed. Of course, we can check which combinations actually
yield nonvanishing results: Those are precisely βi = µ2(idi+M+1, βi) for odd i and βi = µ2(idi+M , βi) for
even i. We will refer to precise combinations of indices (i, j, k) that yield nonvanishing results as precise
shape of the product. We may also refer to precise shapes when referring to hq or πq evaluations like
βi + β′

i = πqµ
2(idi, βi). In any case, the precise shape is understood to link all indices involved.

Definition D.12. Kadeishvili h-trees, π-trees and their result components are defined as in the consistent
case. In particular, a tree is supposed to have at least two leaves. The grouping rule for result components
specifically reads as follows: The π-tree result components (−1)#(i+M)+1β′

i and (−1)#iβi shall be grouped
together as one result component. Also, the result components idi shall be grouped together as one result
component.

We now analyze which result components are possible. As in the consistent case, we can assume
that the inputs of a Kadeishvili tree do not include the identity element idL =

∑2M
i=1 idi. We analyze all

possible result components of h-trees first, before proceeding to π-trees. Their inputs may be deformed
basis elements of type α0 + qα′

0, βi + β′
i and id′i.

A Kadeishvili h-tree is decorated by hqµLq
on all its non-leaf nodes. A Kadeishvili π-tree is decorated

by hqµLq
on all its non-leaf non-root nodes, and πqµLq

on the root. Our notation µ2
q or µ≥3

q refers to the
products of AddGtlq Q.

As a first clue towards our analysis, we claim that µ≥3
q can only be applied at the root. Indeed a disk
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direct

α0 βi

hq = β′
i

i odd

Figure D.6: The β′
i trees

α0 . . . α0 α′
0

α′
0

hq = α′
0

≥ 0

Figure D.7: The α′
0 trees

µ≥3
q can only yield idi and id′i. In both cases, their hq-values vanish. Their πq-values are given by

πq(idi) =

{
idL if i = i0

0 else
and πq(id

′
i) =

{
id′i+qi−1 id

′
i−1 if i odd

0 else.

This shows that µ≥3
q can only be applied at the root. The decoration at all other nodes necessarily

concerns a µ2
q.

Lemma D.13. Any result component α0 or βi of an h-tree is direct. Any result components β′
i, α

′
i, id

′
i,

idi of h-trees are derived from one of the trees in Figure D.6, D.7, D.9, D.10.

Proof. We start with explaining the first statement, and then delve into the second one. Our first
observation is that α0 does not appear in the multiplication table D.4 at all and therefore any result
component α0 is necessarily direct. Regard now a result component βi and assume it is non-direct.
According to the multiplication table, it must be derived from a product of the form µ2(β′

i, α0). Let
us investigate the precise shape of this product: As α0 is located on the rear side, the index i of the
morphism β′

i is necessarily even. Therefore β′
i cannot be direct, while a glance at the multiplication table

simultaneously reveals that β′
i with even i cannot be produced as a non-direct result component either.

We conclude that no single result component can be derived from a product µ2(β′
i, α0). Finally, this

means that any result component βi is direct. This proves the first desired statement.
Regard now a result component β′

i and assume it is non-direct. We have already seen that i is
necessarily odd and β′

i is derived from a product of the form µ2(α0, βi). The precise shape of this product
is µ2(α0, βi) with i being equal to the index of the co-identity angle α0 incremented by M . Finally, we
also realize that both α0 and βi are direct. The tree is depicted in Figure D.6.

Regard a result component α′
i and assume it is non-direct. According to the multiplication table, it is

derived from µ2(β′
i, β

′
i) or µ2(α0, α

′
i). Let us examine both cases separately. In the first case, the precise

shape of the product is µ2(β′
i+M , β

′
i). In particular either i or i +M is even, while there are in fact no

result component β′
i with even i. The first case is therefore impossible. In the second case, the precise

shape is µ2(α0, α
′
0). We recall that α0 is necessarily direct, and α′

0 may either be direct or be derived
from a product µ2(α0, α

′
0) again. This gives a recursion on how α′

0 is derived. Solving this recursion gives
the tree in Figure D.7.

Regard a result component id′i and assume it is non-direct. According to the multiplication table, it
is derived from µ2(idi, β

′
i) or µ2(β′

i, idi) or µ2(id′i, α
′
i). Let us examine all three cases. In the first and

second case, β′
i needs even index in order to have nonvanishing hq. However, we have already seen that

result components β′
i all have odd index. This means there is no result component derived from the first

or second case. In the third case, the precise shape of the product is id′i = hqµ
2(id′i+1, α

′
i) and i is even.

We conclude that id′i+1 is direct. Even better, the result component α′
i is necessarily α′

0 and is derived
from one of the trees in Figure D.7. This gives rise to the tree in Figure D.9.

Regard a result component idi. It is necessarily non-direct, since we excluded the identity cohomology
elements from the tree inputs. According to the multiplication table, it is derived from µ2(id′i, βi) or
µ2(β′

i, id
′
i). Let us explore both cases. In the first case, the precise shape is idj = hqµ

2(id′i+M+1, βi) and
i is odd. Note that j is free, and in fact hqµ

2(id′i+M+1, βi) produces many arc identities at once. Finally,
due to parity both id′i+M+1 and βi are necessarily direct. This yields one tree. In the second case, the
precise shape is αi = µ2(β′

i+M , id
′
i+1) with even i. We already know that id′i+1 is necessarily direct. In

contrast, β′
i+M may be either direct or derived from µ2(α0, βi+M ). The latter case however entails that

αi = α0, hence µ2(β′
i+M , id

′
i+1) = α0 and hqµ

2(β′
i+M , id

′
i+1) = 0. We conclude that β′

i+M is necessarily
direct instead. This yields one single tree. In total, both trees producing idi result components are
depicted in Figure D.10.

We are now ready to approach result components of π-trees.
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direct

id′i+1
α0 . . . α0 α′

0

α′
0

α′
0

hq = id′i
i = h(α0) even

≥ 0

Figure D.9: The id′i trees

id′i+M+1 βi

hq =
∑

idj
i odd

β′
i+M id′i+1

hq =
∑

idj
i even

Figure D.10: The idi trees

Lemma D.14. All πqµ
2 result components id′i, β

′
i + βi, idi, α0 are derived from one of the trees in

Figure D.11, D.12, D.13, D.14.

Proof. The idea is to systematically read off from the multiplication table D.4 all possible ways these
result components may be be derived from result components of h-trees. All result components of h-
trees falls under the regime of Lemma D.13, allowing us to make statements on how they are derived
themselves. In each case, we acquire full knowledge of the entire π-tree.

Regard an id′i result component of a π-tree. According to the multiplication table D.4, it is necessarily
derived from µ2(idi, id

′
i) or µ2(id′i, idi). In the first case, the precise shape is id′i = πqµ

2(idi+M , id
′
i) with

i odd. We realize that id′i is necessarily direct, while idi+M may come from two possible trees. In the
second case, the precise shape is id′i = πqµ

2(id′i, idi) with i odd. We realize that id′i is direct, while idi
may again come from two possible trees. In total, the four possible trees are depicted in Figure D.11.

Regard an β′
i+βi result component. According to the multiplication table, it is derived from µ2(idi, βi)

or µ2(idi, β
′
i) or µ2(id′i, α

′
0) or µ2(βi, idi) or µ2(β′

i, idi) or µ2(α′
0, id

′
i). Let us investigate all these six

cases. In the first case, the precise shape is β′
i + βi = πqµ

2(idi+M+1, βi) with i odd. We realize that
βi is direct and idi+M+1 may come from two possible trees. In the second case, the precise shape is
β′
i−1 + βi−1 = πqµ

2(idi+M , β
′
i) with i even. Since no result component β′

i with even i exists, this case
is impossible. In the third case, the precise shape is β′

i−1 + βi−1 = πqµ
2(id′i+1, α

′
0) with i even. We

realize that id′i+1 is direct and α′
0 comes from the known standard type of tree. In the fourth case, the

precise shape is β′
i + βi = πqµ

2(βi, idi) with i odd. We realize that βi is direct and idi may come from
two possible trees. In the fifth case, the precise shape is β′

i−1 + βi−1 = πqµ
2(β′

i, idi) with i even. Since
no result component β′

i with odd i exists, this case is impossible. In the sixth case, the precise shape is
β′
i+M +βi+M = πqµ

2(α′
0, id

′
i+M ) with i = h(α0) even. We realize that id′i+M is direct and α′

0 comes from
the known tree. In total, all six trees are depicted in Figure D.12.

Regard an idi result component. According to the multiplication table, it is derived from µ2(idi, idi)
or µ2(id′i, id

′
i). In the first case, the precise shape is idi0 = πqµ

2(idi0 , idi0). Since the arc identity idi0
never appears as result component of an h-tree, this case is however vacuous. In the second case, the
precise shape is idi0 = πqµ

2(id′i0+M , id
′
i0). This tree is depicted in Figure D.13.

Regard an α0 result component. According to the multiplication table, it is derived from µ2(idi, α0)
or µ2(α0, idi) or µ2(id′i, βi) or µ2(β′

i, id
′
i). Let us investigate all four cases. In the first case, the precise

shape is α0 = πqµ
2(idi, α0) with i = h(α0) even. We realize that α0 is direct, while idi may come from

two possible trees. In the second case, the precise shape is α0 = πqµ
2(α0, idi+1) with i = h(α0) even.

We realize that α0 is direct, while idi+1 may come from two possible trees. In the third case, the precise
shape is α0 = πqµ

2(id′i+M , βi) with i even or α0 = πqµ
2(id′i+M+1, βi) with i odd. The former case is

impossible, since there is no result component βi with i even. In the latter case, both id′i+M+1 and βi
are direct. In the fourth case, the precise shape is α0 = πqµ

2(β′
i+M , id

′
i+1) with i even. We realize that

id′i+1 is direct, while β′
i+M may be direct or derived from µ2(α0, βi+M ). We recall that in the latter case

it is necessary that i = h(α0). The total collection of seven trees is depicted in Figure D.14.
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id′j+M+1 βj id′i

idi+M

πq = id′i
i odd, j odd

β′
j+M id′i+1 id′i

idi+M

πq = id′i
i odd, j even

id′i id
′
j+M+1 βj

idi

πq = id′i
i odd, j odd

id′i β′
j+M id′j+1

idi

πq = id′i
i odd, j even

Figure D.11: π-trees for id′i

id′j+M+1 βj βi

idi+M+1

πq = β′
i + βi

i odd, j odd

β′
j+M id′j+1 βi

idi+M+1

πq = β′
i + βi

i odd, j even

id′i+1
α0 . . . α0 α′

0

α′
0

α′
0

πq = β′
i−1 + βi−1

i = h(α0) even

≥ 0

βi id′j+M+1 βj

idi

πq = β′
i + βi

i odd, j odd

βi β′
j+M id′j+1

idi

πq = β′
i + βi

i odd, j even

α0 . . . α0 α′
0 id′i+M

α′
0

α′
0

πq = β′
i+M + βi+M

i = h(α0) even

≥ 0

Figure D.12: π-trees for β′
i + βi

id′i0+M id′i0

πq = idL

Figure D.13: π-trees for idL =
∑

idi

We now introduce the suitable version of CR, ID, DS and DW disks.

Definition D.15. CR, ID, DS and DW disks are defined as in the case of geometrically consistent
dimers. More specifically, the definitions read as follows: A CR disk is an SL disk where all inputs and
the output lie apart, with the exception that stacks of α0 inputs are allowed if the SL disk lies on the
front side. An ID disk is an SL disk where all inputs and the output lie apart, with the exception that
stacks of α0 inputs are allowed if the disk lies on the front side, and a β′

i+βi may infinitesimally precede
respectively succeed the output mark if the disk lies on the front respectively rear side. A DS disk is one
of the particular types of degenerate strips fitting between L and its Hamiltonian deformation. A DW
disk is one of the particular types of degenerate wedges fitting fitting between L and its Hamiltonian
deformation, with one corner being the co-identity of L. The collections of CR/ID/DS/DW disks are
denoted DiskCR, DiskID, DiskDS and DiskDW respectively.

Subdisks of result components of π-trees are defined in the same way as in the consistent case. A
few peculiarities of the subdisk construction are depicted in Figure D.15 and Figure D.16. As in the
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id′j+M+1 βj α0

idi

πq = α0

i = h(α0) even, j odd

β′
j+M id′j+1 α0

idi

πq = α0

i = h(α0) even, j even

α0 id′j+M+1 βj

idi+1

πq = α0

i = h(α0) even, j odd

α0 β′
j+M id′j+1

idi+1

πq = α0

i = h(α0) even, j odd

id′i+M+1 βi

πq = α0

i odd

β′
i+M id′i+1

πq = α0

i even

α0 βi+M id′i+1

β′
i+M

hq =
∑

idj
i = h(α0) even

Figure D.14: π-trees for α0

consistent case, associating subdisks provides a bijection between result components and CR, ID, DS and
DW disks. Since a π-tree has at least two inputs by definition, the subdisk mapping only reaches CR,
ID, DS and DW disks which have at least two inputs as well. We denote these classes of CR, ID, DS and
DW disks by Disk

≥2
CR, Disk≥2

ID , Disk≥2
DS and Disk

≥2
DW. We record the bijectivity statement as follows:

Lemma D.16. The subdisk mapping D is a bijection

D : Resultπ
∼
−→ Disk

≥2
CR ∪̇ Disk

≥2
ID ∪̇ Disk

≥2
DS ∪̇ Disk

≥2
DW.

Proof. Injectivity should be clear. Proving surjectivity entails recovering for every CR, ID or DS disk D
a result component r whose drawing D(r) is D. We will not prove this in detail. In fact, the cases to be
studied are merely a subset of the cases of the case of consistent dimers.

D.7 Minimal model

In this section we provide our minimal model for Lq. The assembly works as follows: In section D.6, we

have already enumerated all result components for the products µ≥2
HLq

in terms of CR, ID, DS and DW

disks. In section D.5, we have computed the differential µ1
Lq

on the deformed cohomology basis elements.
In the present section, we assemble the minimal model HLq. In particular, we show that not only the

higher products µ≥2
HLq

are computed by CR, ID, DS and DW disks, but also the differential µ1
HLq

. We
offer an explicit list of the CR, ID, DS and DW disks that contribute to the differential.

In Proposition D.18, we claim that the differential µ1
HLq

is enumerated accurately by CR, ID, DS and
DW disks. It makes sense to compile a list of these disks in advance. Recall that the an SL disk with a
single input is a digon: a smooth immersed disks with two corners. In what follows, we try to spot and
list all digons of which the input is a given morphism h. We can already ignore DS and DW disks, since
they have at least two inputs. The following is our sphere digon list:

Digons for the odd morphism h = β′
i + βi: There is precisely one single digon with input h. It is a

CR or ID disk and its output is idL. This type of digon is depicted in Figure D.17a.

In general, one spots this digon as follows: The intersection point h cuts the zigzag curve L̃ into
two segments. One segment departs towards the front side at h and the other depars towards the
rear side. The identity idL lies by choice on one of these two segments. Whether it lies on the front-
or rear-bound segment determines the location of the claimed digon. Specifically, the digon lies on
the front side if departing at h towards the front we hit the identity idL before returning to h, and
on the rear side if departing at h towards the rear side we hit the identity idL before returning to
h.
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α0

rear front

αi

βi

βi

out

rear front

βi

α′
0/α

′
i

out

α0

βi rear front

βi

βi

βi

out

βi

rear front

α′
0/α

′
i

αi

out

α′
0

Figure D.15: idL disk result components and their subdisks. The first five disks lie on the rear side and
the second five on the front side. The first and final arc is supposed to be the identity arc i0 of L and
is highlighted by a crossing double line. This double line also indicates the separation between the first
and the final angle of the disk.

Digons for the even morphism h = id′i: There are precisely two digons with input id′i. Both are CR
disks with output type β′

i+ βi. They simply reach around the punctures neighboring the input id′i.
They are depicted in Figure D.17b.

Digons for the co-identity h = α0: We spotM digons contributing to µ1((−1)#α0+1α0), namely (M−
1)/2 on the front side and (M+1)/2 on the rear side. These digons are all CR disks and have output
of type id′i. In case of M = 5, these digons are all heart-shaped and depicted in Figure D.17c.

In general, one spots these digons as follows: Of the M -many self-intersection point p ∈ L ∩ L, fix
an arbitrary one. We shall construct from this data one certain digon that has corners h and p.
For this, note that p cuts the zigzag curve L̃ into two segments. Only one of these two segments
contains the co-identity location α0. The digon associated with p is then the digon bounded by this
segment. In other words, if the segment containing α0 departs to the front side at h, then the digon
lies on the front side. If the segment containing α0 departs to the rear side at h, then the digon lies
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rear front

α0/αi

α0/αi

out

α0

rear front

β′
i

α0/αi

out

α0

β′
i

rear front

αi

αi

out

rear front

βi

αi

out

βi

Figure D.16: id′i disk result components of π-trees and how to draw their subdisks

β′
i + βi

out

(a) Digon between β′
i+βi and idL

out

out

id′
i

(b) Digons between id′
i and β′

i+βi

out

α0

(c) Digon between α0 and id′
i

Figure D.17: Illustration of digons in Q5

on the rear side. This determines a digon contributing to µ1(h) for every of the self-intersection
points p ∈ L ∩ L.

Before we reach the main theorem, we shall comment on the signs of result components. Recall that
the Abouzaid sign of an SL disk is defined in Definition 13.24 and allows an arbitrary nonnegative number
of inputs. The definition of the Abouzaid sign carries over without change to the case of Q = QM . In
analogy to Lemma 13.25, the sign of a result component agrees with the Abouzaid sign of its subdisk:

Lemma D.17. Let r be the result component of a π-tree. Then the sign of r, relative to the signs of
the output value, equals the Abouzaid sign of its subdisk D(r). The q-parameter ∈ CJQ0K is equal to
Punc(D), the product of all punctures covered by D(r) counted with multiplicities.

In contrast to the consistent case, the category HLq has a residual differential. We can in fact describe
the differential by means of CR and ID digons, the sign being equal to the Abouzaid sign. In contrast
to the consistent case, the definition of the Abouzaid sign rule is here also used for digons. We are now
ready to formulate our freshly built interpretation as a description of the minimal model.

Proposition D.18. Let QM be the standard sphere dimer with an odd number M ≥ 3 of punctures.
Let h1, . . . , hN be a sequence of N ≥ 0 non-identity basis morphisms with hi : Li → Li+1. Then their
product is given by

µNHLq
(hN , . . . , h1) =

∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D).

More explicitly,
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• The curvature µ0
HLq

vanishes.

• The differential µ1
HLq

is given by the digons in the sphere digon list, with Abouzaid sign rule.

• We have (−1)|h|µ2
HLq

(idL, h) = µ2
Lq
(h, idL) = h and µ3

HLq
(. . . , idL, . . .) = 0.

• Products µ≥2
HLq

on all sequences of non-identity inputs are given by the CR, ID, DS and DW disks,

with Abouzaid sign rule.

Proof. The minimal model HLq is given by our deformed Kadeishvili theorem. To start with, recall
that we have already computed the deformed cohomology basis elements in Lemma D.8. The deformed
Kadeishvili theorem then provides curvature, differential and products for HLq. We shall put focus on
checks for the differential, since the structure of the products is very similar to the structure observed in
the geometrically consistent case.

We have noted in Lemma D.6 that the curvature µ0
Lq

already vanishes. According to our Kadeishvili

theorem the curvature µ0
HLq

then vanishes as well. This already proves the first statement. We check the
three remaining statements in order.

For the second statement, regard the differential µ1
Lq

. According to the deformed Kadeishvili theorem,

the differential µ1
HLq

is given by the composition of µ1
Lq

and the projection to deformed cohomology πHq
.

We have computed the differential µ1
Lq

already in Lemma D.8 and observed that µ1
Lq
(Hq) ⊆ Hq.

The projection is therefore without effect and we have µ1
HLq

(h) = µ1
Lq
(h) for deformed cohomology basis

morphisms h. For example, we have

µ1
HLq

((−1)#(i+M)+1β′
i + (−1)#iβi) = (−1)##(i+1)+1Qi+2 idL .

It remains to show that for every deformed cohomology basis element h, its differential µ1
HLq

(h) is
enumerated accurately by CR, ID, DS and DW disks. We have listed all CR, ID, DS and DW disks in
the sphere digon list. For any deformed cohomology basis element h of one of the three types βi/β

′
i, id

′
i

and α0, it remains to interpret the result terms r of µ1
HLq

(h) as enumeration over the digons presented
in the sphere digons list. The crucial part is to prove the sign of every term r equal to the Abouzaid sign
Abou(D) of the corresponding digon D.

First, regard the odd morphism h = β′
i + βi, with odd i. The calculation of Lemma D.8 gives one

single output term, namely the identity idL. This is exactly the result enumerated by the single digon
D from the sphere digons list. It remains to compare the sign (−1)##(i+1)+1 with the Abouzaid sign
of D. The sign of D is computed as follows: In case the digon lies on the front side, the # signs to be
summed up are #i, . . . ,#(i −M + 1). Their sum amounts to ##(i −M + 1), which has equal parity
with ##(i + 1) + 1, since the total number of # signs in QM is assumed to be odd. In case the digon
lies on the rear side, the # signs to be summed up are #(i +M), . . . ,#(i + 1). Their sum amounts to
##(i + 1). An additional sign flip is due, since h is odd and lies counterclockwise with respect to the
rear side. Ultimately, both front and rear cases give the sign ##(i + 1) + 1. This sign agrees with our
calculation of µ1

Lq
(h) in Lemma D.8.

Second, regard the even morphism id′i. There are two digons in our digon list contributing to the dif-
ferential µ1(id′i), namely the two small digons reaching around the neighboring punctures. The Abouzaid
sign rule predicts a sign of (−1)#i+#(i+M) for the upper puncture and (−1)#(i−1)+#(i+M−1) for the lower
puncture, exactly as calculated in Lemma D.8.

Third, regard the co-identity (−1)#α0+1α0. There are M digons in our digon list contributing to the
differential µ1((−1)#α0+1α0), namely (M − 1)/2 on the front side and (M + 1)/2 on the rear side. For
the front side disk with output id′i−j+1, the Abouzaid sign rule predicts a sign of (−1)##(i−j+1). For the

rear side disk with output id′i+j+1, the Abouzaid sign rule predicts a sign of (−1)##(i+j−M+1)+1, the
absolute sign flip (−1) coming from the odd co-identity whose zigzag path runs counterclockwise with
respect to the rear side.

We conclude that the differential µ1
HLq

(h) is computed accurately by the digons from the sphere digons
list for any of the three types of morphisms h. This finishes the checks for the second statement of the
proposition.

The third statement of the proposition is trivial, following immediately from unitality of Lq and the
choice that idL ∈ H. The fourth statement follows from Lemma D.16 and Lemma D.17, in a way entirely
analogous to the geometrically consistent case. This finishes the proof.
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D.8 The case of even M

In this section, we comment on the category of zigzag paths of QM for even M . We define the category L

of zigzag paths and explain how to obtain a homological splitting. We explain how to run the curvature
optimization for the corresponding subcategory of TwGtlq Q and define the category of deformed zigzag
paths L. Finally, we provide a minimal model for HLq.

The dimer QM for even M ≥ 4 has two zigzag paths, each consisting of M arcs. There are M
intersections between the zigzag curves. The front side of the dimer is a clockwise polygon, the rear side
is a counterclockwise polygon.

Convention D.19. The letter Q = QM with M ≥ 4 even denotes the standard sphere dimer with M
punctures. The spin structure is chosen by assigning an even number of # signs on the rear side of QM
and none on the front side. The identity locations are arbitrary chosen, and the co-identity location is
chosen to lie on the rear side of QM .

Definition D.20. The category L ⊆ TwGtlQM is the category consisting of the two zigzag paths in
QM . The standard splitting H ⊕ I ⊕R for L is defined in the analogous way as for odd M . The category
Lq ⊆ Tw′ Gtlq QM is the category consisting of the two zigzag paths with deformed twisted differential
analogous to Definition D.5.

A priori, it is our task to compute a minimal model of the category of zigzag paths in TwGtlq Q
consisting of the same twisted complexes as L ⊆ TwGtlQ. As usual, we are allowed to apply gauge in
order to optimize the curvature. In contrast to the case of geometrically consistent Q or QM for odd M ,
the category Lq is not curvature-free, but its curvature is optimal nevertheless:

Lemma D.21. The curvatures of both zigzag paths L1, L2 ∈ Lq are multiple of their respective identities
idL1

∈ H and idL2
∈ H. In particular, Lq has optimal curvature.

The deformed decomposition Hq ⊕ µ
1
q(B⊗̂R) ⊕ (B⊗̂R) of Lq is similar to the case of odd M . The

differential does not vanish and maps to Hq⊕(B⊗̂R). According to the deformed Kadeishvili construction,
we can compute HLq by setting

µ0
HLq

= µ0
Lq
,

µ1
HLq

(h) = πHq
µ1
Lq
(h),

µN≥2
HLq

(hN , . . . , h1) =
∑

T∈TN

(−1)NT Res(T, h1, . . . , hN ).

The computation for µN≥2
HLq

is similar to the case of odd M . The computation for µ1
HLq

is similar to the

case of odd M as well, with the difference that µ1
HLq

does not cancel because of the different choices of

# signs. The computation for µ0
HLq

is elementary. As in the case of odd M , it turns out that the entire
A∞-structure of the minimal model can be described through CR, ID, DS and DW disks:

Proposition D.22. Let QM be the standard sphere dimer with an even number M ≥ 4 of punctures.
Let h1, . . . , hN be a sequence of N ≥ 0 non-identity basis morphisms with hi : Li → Li+1. Then their
product is given by

µNHLq
(hN , . . . , h1) =

∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D).

E Calculating the mirror objects

The aim of this section is to perform further minimal model calculations which we need for the third
paper in the series. In section E.1, we explain which products in the minimal model need to be computed
and why. In section E.2, we describe the input data of the minimal model construction. In section E.3, we
construct a homological splitting. In section E.4, we compute the deformed decomposition. In section E.5,
we introduce a suitable notion of result components and classify them into two types which we call MD
and MT result components. In section E.6, we show how to match MD/MT result components with disks
of two types which we call MD/MT disks. In Proposition E.19 we finally describe the desired products
in terms of MD and MT disks.
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E.1 Mirror symmetry for punctured surfaces

In this section, we explain the reason we need to perform further minimal model calculations. The
starting point is a brief recapitulatation of mirror symmetry for punctured surfaces. We then explain the
idea of the deformed Cho-Hong-Lau construction and describe which products we need to compute.

Mirror symmetry for punctured surfaces [18] entails a quasi-isomorphism

F : GtlQ→ mf(Jac Q̌, ℓ).

Here Q is a dimer and Q̌ is its mirror dimer which is assumed to be zigzag consistent. The vertices of
Q̌ are identified with the zigzag paths in Q. The algebra Jac Q̌ is the so-called Jacobi algebra of the
dimer and is explicitly defined as the quiver algebra CQ̌ modulo relations. The element ℓ ∈ Jac Q̌ is
a central element known as the potential. The category MF(A, ℓ) denotes the dg category of so-called
matrix factorizations of (A, ℓ). The category mf(Jac Q̌, ℓ) denotes one a certain small subcategory of
MF(Jac Q̌, ℓ), specific to mirror symmetry.

The deformed mirror symmetry which we prove in the third paper entails a quasi-isomorphism of
deformed A∞-categories

Fq : Gtlq Q→ mf(Jacq Q̌, ℓq).

The category Gtlq Q on the left-hand side has an object for every arc a ∈ Q1. The category on the right-
hand side is what we will call a deformed category of matrix factorizations. It has one object for every
arc a ∈ Q1 as well. The functor Fq matches the arc a ∈ Gtlq Q with an deformed matrix factorization
Fq(a).

In the third paper, we compute the deformed algebra Jacq Q̌ and deformed potential ℓq. The starting
point is the category of deformed zigzag paths Lq ⊆ Tw′ Gtlq Q. Thanks to the description of the minimal
model HLq which we provided in the present paper in section 13.5, we express in the third paper the
deformed algebra Jacq Q̌ and the deformed potential ℓq explicitly in terms of combinatorical data of Q.
Viewed the other way around, the present paper is the technical cornerstone for the third paper.

In the third paper, we also compute the precise shape of the deformed matrix factorizations contained
in mf(Jacq Q̌, ℓq). According to the deformed Cho-Hong-Lau construction, the precise shape is given
by certain products in HTwGtlq Q which not only involve zigzag paths, but also the arc objects. The
description of these products is not included in section 13. Therefore, the we have devoted the present
section E to supplementing these products.

The objects of mf(Jacq, ℓq) are explicitly of the form

Fq(a) =

(⊕

L∈L

HomHTwGtlQ(L, a)⊗ (Jacq Q̌)vL, δ

)
,

δ(m) =
∑

N≥0

µHTwGtlq Q(m, b, . . . , b︸ ︷︷ ︸
N

).

Here a denotes any arc in Q, the letter vL denotes the vertex of CQ̌ defined by the zigzag path L, and m
denotes an element of HomHTwGtlQ(L, a). The element b denotes essentially a formal sum over all type
B cohomology basis elements between zigzag paths in Q. Geometrically, the element b includes all odd
transversal intersections between zigzag curves.

The essential calculation which we shall therefore perform in the present section E consists of de-
termining the hom space HomHTwGtlQ(L, a) and computing all possible kinds of products of the form
µHTwGtlq Q(m,hN , . . . , h1). Here hi : Li → Li+1 are type B cohomology basis elements between zigzag
paths and m : LN+1 → a is a cohomology basis element from LN+1 to an arc a ∈ Q1.

E.2 The desired products

In this section, we examine which minimal model HTwGtlq Q we shall compute. In principle, we are
free to choose any minimal model. When computing the mirror Jacobi algebra Jacq Q and potential ℓq,
we have however already made a choice for minimal model of Lq ⊆ TwGtlq Q. The minimal model we
compute here needs to be compatible with these earlier choices.

Convention E.1. Q is a geometrically consistent dimer or a standard sphere dimer Q = QM with M ≥ 3.
The dimer is equipped with choices of spin structure, identity location a0 and co-identity location α0 for
every zigzag path. In case Q = QM with M odd, the spin structure is chosen by assigning #α = 1 to an
odd number of interior angles α on the rear side and #α = 0 to all other angles. In case Q = QM with
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M even, the spin structure is chosen by assigning #α = 1 to an even number of interior angles α on the
rear side and #α = 0 to all other angles. The co-identity α0 shall be chosen to lie in a counterclockwise
polygon.

Definition E.2. We denote by L ⊆ TwGtlQ and Lq ⊆ Tw′ Gtlq Q the categories of zigzag paths and
of deformed zigzag paths, defined as follows:

• If Q is geometrically consistent, L is the category of zigzag paths as defined in section 10.1 and Lq
is the category of deformed zigzag paths as defined in section 11.1.

• If Q = QM for odd M ≥ 3, then L is the category of zigzag paths as defined in section D.2 and Lq
is the category of deformed zigzag paths as defined in section D.4.

• If Q = QM for even M ≥ 3, then L is the category of zigzag paths as defined in section D.8 and Lq
is the category of deformed zigzag paths as defined in section D.8.

To construct a deformed mirror functor Fq : HTwGtlq Q → mf(Jacq Q̌, ℓq), we need a choice of
minimal model of the entire category TwGtlq Q. According to our deformed Kadeishvili theorem, we can
obtain such a minimal model by optimizing curvature for all objects and performing a familiar Kadeishvili
tree construction. The input data for this construction consists only of a homological splitting for every
hom space in TwGtlQ. All other steps are automatic.

Remark E.3. Our deformed Kadeishvili construction has the property that the restriction of a minimal
model H Cq to a subcategory D ⊆ C is the same as the minimal model HD, when the homological splitting
chosen for D is the restriction of the homological splitting chosen for C:

H C|ObD = HD.

To construct the restriction of this functor to Gtlq Q, we however do not need to compute the en-
tire minimal model HTwGtlq Q explicitly. It suffices to know products of the kind µ(hN , . . . , h1) and
µ(m,hN , . . . , h1), where h1, . . . , hN are morphisms between zigzag paths and m is a morphism from a
zigzag path to an arc. By Remark E.3, it suffices to compute a minimal model of the category Q1 ∪ Lq,
which is defined as the subcategory of Tw′ Gtlq Q consisting of arcs and deformed zigzag paths. We define
this category precisely as follows:

Definition E.4. The subcategory of TwGtlQ given by the union of GtlQ and L is denoted

Q1 ∪ L ⊆ TwGtlQ.

The subcategory of TwGtlq Q given by the union of Gtlq Q and Lq is denoted

Q1 ∪ Lq ⊆ TwGtlq Q.

Remark E.5. Applying the Kadeishvili construction to Q1∪Lq involves choosing a homological splitting
for Q1∪L. The deformed mirror symmetry construction in the third paper departs from a single minimal
model model HTwGtlq Q. In consequence, it is not allowed to compute the products of the two kinds
µTwGtlq Q(hN , . . . , h1) and µTwGtlq Q(m,hN , . . . , h1) via different homological splittings of L. Instead,
the homological splitting for Q1 ∪ L needs to extend the homological splitting already chosen for L.

E.3 Homological splitting

In this section, we construct a homological splitting for the category Q1 ∪ L. The starting point is
the definition of the category Q1 ∪ L in section E.2. According to Remark E.5, we have to define the
homlogical splitting for Q1 ∪ L in the following way:

• For the hom spaces HomTwGtlQ(L1, L2) between two zigzag paths L1, L2, the homological splitting
is the homological splitting already established for L. In case Q is geometrically consistent, this
refers to the homological splitting of section 10.3. In case Q = QM for odd M ≥ 3, this refers to
the homological splitting of section D.3. In case Q = QM for even M ≥ 4, this refers to the analog
of section D.3 indicated in section D.7.

• For the hom spaces HomTwGtlQ(L, a) between a zigzag path L and an arc a ∈ Q1, we are free to
choose a homological splitting.

• For the hom spaces HomTwGtlQ(a, L) between an arc a ∈ Q1 and a zigzag path L, we are free
to choose a homological splitting. In practice, this choice is irrelevant for the calculation of the
products µTwGtlQ(m,hN , . . . , h1), so we will merely assume any arbitrary splitting has been chosen.
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β
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β′

α′

(a) S1 situation

β

α

β′

α′

(b) S2 situation

αβ

γ

(c) S3 situation

• For the hom spaces HomTwGtlQ(a, b) between two arcs a, b ∈ Q1, the homological splitting is
predetermined as H = HomTwGtlQ(a, b) and I = R = 0 by the fact that µ1

GtlQ = 0.

According to this list, the only remaining task is to choose a homological splitting for HomTwGtlQ(L, a)
whenever L is a zigzag path and a an arc. We start by classifying morphisms L→ a into three types of
situations.

As in the case of L, let an elementary morphism ε : L → a refer to a morphism between twisted
complexes consisting of a single angle of Q. We shall associate with every elementary morphism a
situation. As usual, the terminology is as follows: Every elementary morphism belongs to a unique
situation, and every situation is of one given type. Running out of letters, we will denote the situation
types by S1, S2, S3. Every situation is defined by a certain collection of arcs and angles. The other
way around, every situation has a collection of elementary morphisms associated, constructed from its
defining angles.

Definition E.6. An S1 situation consists of a zigzag path L and an indexed arc a of L such that L turns
left at the head of a. The nearby angles of the situation are denoted α, α′, β, β′ as in Figure E.1a. The
elementary morphisms belonging to an S1 situation are the morphisms ε : L → a given by idL→a, βℓk,
ββ′ℓk, αℓk, αα′ℓk.

An S2 situation consists of a zigzag path L and an indexed arc a such that L turns right at the head
of a. The nearby angles of the situation are denoted α, α′, β, β′ as in Figure E.1b. The elementary
morphisms belonging to an S2 situation are the morphisms ε : L→ a given by idL→a, α′ℓk, α′αℓk, β′ℓk,
β′βℓk.

An S3 situation consists of two consecutive indexed arcs on a zigzag path L and an arc a such that a
is incident at the common puncture of the two arcs but not equal to either of them. The nearby angles
of the situation are denoted α, β, γ as in Figure E.1c. The elementary morphisms belonging to an S3
situation are the morphisms ε : L→ a given by βℓk, βαℓk.

We have constructed these definitions so that the situations exhaust all elementary morphisms in
HomTwGtlQ(L, a). We record this as follows:

Lemma E.7. Let L be a zigzag path and a an arc. Then any elementary angle ε : L → a belongs to
precisely one S1, S2 or S3 situation.

We are now ready to construct our homological splitting for HomTwGtlQ(L, a). This means to provide
a choice of basis elements for H and R.

Definition E.8. Let L be a zigzag path and a an arc. We let R ⊆ HomTwGtlQ(L, a) be the subspace
spanned by:

• for every S1 situation the morphisms idL→a, αα′ℓk and ββ′ℓk,

• for every S2 situation the morphisms α′ℓk and β′ℓk,

• for every S3 situation the morphism βℓk.

The space H ⊆ HomTwGtlQ(L, a) is spanned by:

• for every S1 situation the morphism (−1)#ββ,

• for every S2 situation the morphism idL→a.

Setting I = µ1
TwGtlQ(R), we refer to H, I,R as the (standard) splitting for HomTwGtlQ(L, a).

It is an elementary check that the standard splitting is indeed a homological splitting.

Lemma E.9. Let a be an arc and L a zigzag path. Then the standard splitting indeed forms a homological
splitting for HomTwGtlQ(L, a).



E.4. Deformed decomposition 211

E.4 Deformed decomposition

In this section, we determine the relevant part of the deformed decomposition of Q1 ∪ Lq. The starting
point is the category Q1 ∪ Lq defined in section E.2 and the homological splitting for Q1 ∪ L defined in
section E.3. In the present section, we show that Q1∪Lq has optimal curvature. We determine explicitly
the deformed decomposition of the hom spaces HomQ1∪Lq

(L, a), where L ∈ L is a zigzag path and a ∈ Q1

an arc.

Lemma E.10. The category Q1 ∪ Lq has optimal curvature.

Proof. If Q is geometrically consistent, then Lq is curvature-free by Lemma 11.5. If Q = QM with M
odd, then Lq is curvature-free by Lemma D.6. If Q = QM with M even, then Lq has optimal curvature
by Lemma D.21. The subcategory Q1 ⊆ Q1 ∪ Lq has optimal curvature by nature, so we conclude that
Q1 ∪ Lq has optimal curvature.

Since Q1∪Lq already has optimal curvature, the products µHTwGtlq Q(m,hN , . . . , h1) can be obtained
by computing the deformed decomposition of HomQ1∪Lq

(L, a) and evaluating Kadeishvili π-trees. As next
step, we shall therefore focus on finding the deformed decomposition for HomQ1∪Lq

. More precisely, we
are interested in the deformed cohomology basis elements.

Finding the deformed decomposition entails finding for every cohomology basis element h ∈ H a
deformed cohomology basis element ϕ−1(h) = h+ r such that r ∈ B⊗̂R and

µ1
TwGtlq (h+ r) ∈ (B⊗̂H)⊕ (B⊗̂R).

For the cohomology basis elements h of the hom space HomTwGtlQ(L, a), we can compute ϕ−1(h) ex-
plicitly:

Lemma E.11. Let a ∈ Q1 be an arc and L a zigzag path. Then the space H satisfies

µ1
TwGtlq Q(H) ⊆ (B⊗̂H)⊕ (B⊗̂R).

In particular, we have Hq = B⊗̂H and the map ϕ : Hq → B⊗̂H is the identity.

Proof. Let us start by checking for every cohomology basis element h that µ1
TwGtlq Q

(h) lies in (B⊗̂H)⊕

(B⊗̂R). Let L be a zigzag path and a an arc. Denote by q = h(a) the puncture at the head of a and
by p = t(a) the puncture at the tail of a. Denote by δ ∈ Hom1

AddGtlq Q(L,L) the twisted differential of
L ∈ Lq.

Regard an S1 situation between L and a. Denote by β, β′ the angles associated with the S1 situation.
We want to compute the differential of the cohomology basis element h = (−1)#ββ. We have

µ1
TwGtlq Q(β) =

∑

k≥0

µk+1
AddGtlq Q

(β, δ, . . . , δ)

= pββ′β [± id (S2)± id (S1)± β(S3)]

∈ (B⊗̂H)⊕ (B⊗̂R).

In the first row, we have simply spelt out the definition of µ1
TwGtlq Q

. In the second row, we have evaluated

all products. The first term pββ′β arises from k = 1. Further terms may arise from k ≥ 2, depending on
the situation. If Q is geometrically consistent, then β (S3) terms may appear, stemming from first-out
discrete immersed disks. If Q is not geometrically consistent, also id (S1) and id (S2) terms can appear.
Either way, we see µ1

TwGtlq Q
(β) lies in (B⊗̂H)⊕ (B⊗̂R).

Regard an S2 situation between L and a. Denote by α′ and β′ the associated angles. Then

µ1
TwGtlq Q(idL→a) = −qα

′ − pβ′ ∈ B⊗̂R.

This proves the claimed inclusion µ1
TwGtlq Q

(H) ⊆ B⊗̂R. In the terminology of Lemma 8.15, this means
E = 0. According to Lemma 8.16, we conclude

Hq = {h− Eh | h ∈ B⊗̂H} = B⊗̂H.

According to Definition 8.17, the map ϕ : Hq → B⊗̂H is the identity. This finishes the proof.
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The deformed decomposition for the hom space HomQ1∪Lq
(L1, L2) between two zigzag paths L1, L2 is

simply the deformed decomposition described earlier. In case Q is geometrically consistent, this deformed
decomposition was computed in Proposition 11.12. In case Q = QM with odd M , it was computed in
Lemma D.8 and in case Q = QM with even M , it was indicated in section D.8.

The deformed decomposition for the hom space HomQ1∪Lq
(a, b) between two arcs a, b ∈ Q1 is trivially

(Hq, µ
1
Q1Lq

(B⊗̂R), B⊗̂R) = (B⊗̂HomGtlQ(a, b), 0, 0).

The deformed decomposition for the hom space HomQ1∪Lq
(a, L) between an arc a ∈ Q1 and a zigzag

path L depends on the choice one makes for the homological splitting of HomTwGtlQ(a, L), but is entirely
irrelevant to the present computation.

E.5 Result components

In this section, we define and analyze result components for the products µHTwGtlq Q(m,hN , . . . , h1). The
starting point is the description of the deformed decomposition from section E.4. In the present section, we
introduce a notion of result components suitable for computing the products µHTwGtlq Q(m,hN , . . . , h1).
We show that all result components fall into two classes which we call MD and MT result components.

According to the deformed Kadeishvili theorem of section 8, the product of the morphisms h1, . . . , hN ,m
in the minimal model HTwGtlq Q is described in terms of Kadeishvili π-trees. Here the sequence
h1, . . . , hN denotes type B cohomology basis elements hi : Li → Li+1 and m denotes a cohomology basis
element m : LN+1 → a. It is our task to evaluate all Kadeishvili π-trees T with inputs h1, . . . , hN ,m.
For sake of convenience, we use the notation of section 10.2 and 10.3 to denote angles, as opposed to the
notation from section D.2 specific to Q = QM . For instance, we denote the type B cohomology basis
elements by α3+α4. As usual, we start with a description of the possible terms that may possibly appear
during evaluation of a Kadeishvili π-tree:

Lemma E.12. Let (T, h1, . . . , hN ,m) be a Kadeishvili π-tree with a type B cohomology basis elements
h1, . . . , hN with hi : Li → Li+1 and m a cohomology basis element m : LN+1 → a. Then:

• A proper subtree of T whose input morphisms only cover the morphisms between zigzag paths may
only have result component β (A).

• A proper subtree of T whose input morphisms also cover m vanishes.

Any nonvanishing result component r is derived either as a disk πqµ
≥3(m, . . .), or as a product πqµ

2(id (S2),
α3/α4(B)) with direct inputs.

Proof. The statement on the subtrees that only involve morphisms between zigzag paths is familiar from
the calculation of HLq.

Regard now a product µTwGtlq Q(m,mk, . . . ,m1) where all m1, . . . ,mk are of type β (A) or α3/α4 (B)
and m is β (S1) or id (S2). We claim this product lies in R, apart from the case of µ2

AddGtlq Q
(id (S2), α4)

and all-in disks µ≥3
AddGtlq Q

(β(S1),mk, . . . ,m1). In these two exceptional cases, the product lies in H.

The first part of checking this claim is to regard the case the product is a µ2. The product is then of
the form µ2(β(S1), β(A)) or µ2(β(S1), α3/α4(B)) or µ2(id (S2), β(A)) or µ2(id (S2), α3/α4(B)). The first
case yields β(S3) ∈ R, the second and third type of composition are impossible, the fourth case yields
β(S1) ∈ H.

The second part of checking the claim is to regard the case of a disk µ≥3. If it concerns an all-in
disk, then the result is an arc identity idL→a ∈ R or idL→a ∈ H. A final-out disk is impossible, since β
(S1) is an indecomposable angle. If it concerns a first-out disk, then the first angle of the disk may be a
δ-morphism or β (A). In both cases, the result is of the type µ≥3 = β(S3) ∈ R.

Finally, we draw two conclusions: Any h-tree consuming m has vanishing result. A given π-tree T
with nonvanishing result must therefore consume m directly at the root. This finishes the proof.

In analogy with section 12, we can define result components also for Kadeishvili π-trees with inputs
h1, . . . , hN ,m. Virtually the same definition can be applied.

Definition E.13. Let (T, h1, . . . , hN ,m) be a Kadeishvili π-tree with a type B cohomology basis elements
h1, . . . , hN with hi : Li → Li+1 and m a cohomology basis element m : LN+1 → a. Then a result
component of (T, h1, . . . , hN ,m) is defined in analogy with Definition 12.6. The set of result components
of all π-trees, ranging over all choices of h1, . . . , hN and m and T , is denoted ResultπM.
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m hN . . . h1

. . .

πqµ
≥3

(a) MD result component

id(S2) α3/α4(B)

πqµ = β(S1)

(b) MT result component

Figure E.2: How MD and MT result components are derived

By Lemma E.12, result components of µ(m,hN , . . . , h1) can be split into two types: those which are
derived from a disk and those which are derived from a product πqµ

2 with direct inputs. In analogy with
section 13.4, we shall give these two types the names mirror disks and mirror triangles, respectively.

Definition E.14. A result component r ∈ ResultπM is a

• MD result component if it is derived as πqµ
≥3(m, . . .).

• MT result component if it derived as πqµ
2(id (S2), α3/α4(B)).

We denote the set of MD and MT result components by ResultMD and ResultMD, respectively.

The distinction between MD and MT result components is depicted in Figure E.2. Result components
of these two types compute the products µHTwGtlq Q(m,hN , . . . , h1). The two names MD (mirror disk)
and MT (mirror triangle) have been chosen in order to reflect their use in computing the deformed mirror
in the third paper of the present series.

E.6 The higher products

In this section, we compute the desired products of the kind µHTwGtlq Q(m,h1, . . . , hN ). The starting
point for the computation is the classification of result components from section E.5. In the present
section, we introduce MD and MT disks with the aim of expressing the products as an enumeration of
disks. We define a matching, the subdisk mapping, between MD/MT result components and MD/MT
disks. In Proposition E.19, we collect the desired description of the products.

The first step of the present section is to define the notion of MD and MT disks, meant to capture
MD and MT result components geometrically. The key observation is that

• The final input of an MD result component is an odd morphism of type m = β(S1) : LN+1 → a
and the output is the morphism id (S2) : L1 → a.

• The final input of an MT result component is an even morphism of type m = id (S1) : LN+1 : a
and the output is the morphism β(S1) : L1 → a.

In either case, we see that the two zigzag curves L̃1, L̃N+1 and the arc a have a triple intersection at
the midpoint of the arc a. In order to capture MD/MT result components by means of disks, the disk
therefore also need to have nontransversal input sequence. This means the correct definition of MD/MT
disks cannot be inferred from parallels with the relative Fukaya pre-category relFukpreQ. Instead, the
parallel needs to be drawn with the relative Fukaya category relFukQ. The products of this category
can be determined on a best-effort basis by performing Hamiltonian deformations on the involved curves.
In the present context of the products µ(m,hN , . . . , h1), this means we have to choose a Hamiltonian
deformation of some of the zigzag paths or arcs in order to guess the correct notion of MD/MT disks.

There is one particular Hamiltonian deformation of the arcs that gives the correct notion of MD/MT
disks: Push every arc a a little into the neighboring clockwise polygon, leaving the zigzag curves in
place. This specific Hamiltonian deformation simultaneously resolves all triple intersections between
zigzag curves in Q and arcs. It predicts us to find disks of two types, depicted in Figure E.3. We
will verify in Lemma E.17 that it is the correct Hamiltonian deformation to capture the products
µHTwGtlq Q(m,hN , . . . , h1). If we had chosen a different homological splitting in Definition E.8, we
would have needed a different Hamiltonian deformation.

In Definition E.15 we provide a rigorous definition of MD/MT disks. For a given arc a, we have
denoted by L and L′ the two zigzag paths which depart from a. Geometrically speaking, L̃ and L̃′ are
the two zigzag curves which intersect at the midpoint of a. This is depicted in Lemma E.17.

Definition E.15. An MD disk (mirror disk) is a CR disk with N ≥ 0 inputs h1, . . . , hN whose
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L′ L
a

out m

b

b

b

(a) Disk

L′ L
a

out m

b

(b) Triangle

Figure E.3: The two types of disks we expect to contribute to µ(m,hN , . . . , h1)

• inputs h1, . . . , hN are all odd and do not contain co-identities,

• output is even and not an identity,

• zigzag segments all run clockwise,

which has undergone the following surgery: The output mark, located at a certain arc a, has been cut off.
The odd morphism at a is added as final input, and the even morphism at a is indicated as new output.

An MT disk (mirror triangle) is a triangle sitting between the deformed arc a and the intersection
of the two zigzag curves L̃ and L̃′ intersecting at a.

We denote by DiskMD and DiskMT the sets of MD and MT disks, respectively.

In the remainder of this section, we show that the product µHTwGtlq Q(m,hN , . . . , h1) is indeed given
by counting MD and MT disks with inputs h1, . . . , hN ,m. The first step is to map a given result
component to an MD or MT disk. The description of this mapping is eased by the classification of
result components given in Definition E.14. According to this classification, result components can
be categorized into what we have called MD and MT result components. An MD result component
r ∈ ResultπM is necessarily derived as πqµ

≥3
q (β(S1),ml, . . . ,m1) where all m1, . . . ,mk are of type α3/α4

(B) or β (A). In particular, every mi is the result component of an h-tree with inputs being a subsequence
of h1, . . . , hN . By section 13.3, every mi comes with an associated subdisk. To define the subdisk of the
MD result component r, we essentially glue together the subdisks of the mi. The precise definition of
subdisks for MD and MT result components reads as follows:

Definition E.16. Let r be a result component of a π-tree (T, h1, . . . , hN ,m). Then its subdisk D(r) is
the drawing defined as follows:

• If T is derived as πqµ
2(id (S2), α3 + α4) with both inputs being direct, then its subdisk D(r) is the

infinitesimal triangle sitting between the Hamiltonian deformed arc a and the intersection of the
two input zigzag curves.

• If T is derived as πqµ
≥3(β(S1),mk, . . . ,m1), then its subdisk D(r) is given by connecting the

subdisks of m1, . . . ,mk and finishing with the input β (S1). The output mark is at id (S2) and lies
infinitesimally apart from the final input β (S1).

In Lemma E.17, we claim that every MD or MT disk is the subdisk of a unique single result component,
in analogy with Lemma 13.23. We have to restrict MD disks to those with at least two inputs because
subdisks of result components always have at least two inputs.

Lemma E.17. The subdisk of an MD result component is an MD disk. The subdisk of an MT result
component is an MT disk. Denoting by Disk

≥2
MD the set of MD disks with at least two inputs, the map

D : ResultπM → Disk
≥2
MD ∪̇ DiskMT is a bijection.

Proof. We divide the proof into two parts: First we comment on MT disks, then we comment on MD
disks.

For MT result components and MT disks, there is not much to say: An MT disk D is a small triangle
located on the counterclockwise side of an. It immediately gives rise to two morphisms α3 + α4 and
m = id (S2) which multiply to πqµ

2 = β(S1). This gives an MT result component whose subdisk is D
again. This shows that D matches MT result components bijectively with MT disks.

For MD disks, it is our task to recover a tree and result component for a given MD disk D ∈ Disk
≥2
MD.

After our long journey in section C, we content ourselves with merely a brief description: Find the
indecomposable narrow locations of D and place them in a tree, ordered by inclusion. The root of this
tree is the artifical narrow location, which we denoted (1, |D|) in section C.4. According to section C.5,
the children C1, . . . , Ck of the root all come with subtrees T1, . . . , Tk and subresults r1, . . . , rk. Each tree
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Ti is an h-tree which consumes part of the inputs h1, . . . , hN , and ri is a result component of Ti. In fact,
all ri are of β (A) type.

With this in mind, we are ready to associate with D a tree T and a result component r of T , such
that D(r) = D. To construct the tree T , put all trees T1, . . . , Tk next to each other, insert a root πqµ

≥3

and connect all outputs of T1, . . . , Tk together with all remaining b inputs and the input m with the
root of T . This gives the desired tree T . The result component r is the πqµ

≥3 result component of id
(S2) type simply given by the data of result components r1, . . . , rk on each Ti, bound together with the
all remaining morphisms and m following the geometry of D. The result component r defined this way
satisfies D(r) = D. This shows that D maps surjectively onto Disk

≥2
MD ∪̇ DiskMT.

We proceed by checking signs.

Lemma E.18. Let r ∈ ResultπM be a result component. Then the absolute sign of r equals the Abouzaid
sign Abou(D(r)).

Proof. First we check the case of MD result components and second the case of MT result components,
both focusing on the geometrically consistent case. Third we comment on the case of the sphere dimers
QM .

For the first part, regard an MD result component r. Let T be the π-tree from which r stems. Then
T has shape as depicted in Figure E.2a. Let T1, . . . , Tk be the children of the root of T , not counting
the direct input m. Then r is derived as πqµ

≥3(m, rk, . . . , r1), with r1, . . . , rk being resukt components
of T1, . . . , Tk. It is our task to evaluate the sign of r. Our procedure is analogous to section C.8.

Let us compute the sign of the result component r. Since it is derived as the product µ≥3(m, rk, . . . , r1)
and the disk is all-in, its total sign is the sum of: the # signs of the δ insertions, the signs of the result
components r1, . . . , rk and the sign of m = (−1)#ββ.

On the other hand, let us compute the Abouzaid sign of D(r). By Definition E.16, the disk D(r) is
formed by tying together the subdisks of r1, . . . , rk. Correspondingly, its Abouzaid sign is the sum of the
signs coming from odd counterclockwise intersections within the subdisks of r1, . . . , rk, plus # signs of
the zigzag curve segments lying between two neighboring subdisks. By Lemma C.21 and Definition C.19,
the sign coming from odd counterclockwise intersections in the subdisk of ri is equal to the absolute sign
of ri. In other words, the total Abouzaid sign of D(r) is the sum of the absolute signs of r1, . . . , rk and
the # signs. This # sign already includes sign #β of final input angle β. Finally, we conclude that both
signs are equal.

For the second part, regard an MT result component r. It is derived as πqµ
2(id (S2), α3/α4(B)),

where id (S2) comes from an S2 situation and α3/α4 comes from a B situation such that both angles
are composable. Recall that α3/α4 is merely an abbreviation for the morphism ϕ−1((−1)#α3+1α3 +
(−1)#α4α4). The relevant result of the product is µ2(id (S2), (−1)#α4α4) = (−1)#β+1β(S1), noting that
β is the same angle in Q as α4. Relative to the sign of the cohomology basis element (−1)#β , the MT
result component r has a total sign of −1.

On the other hand, regard the subdisk D(r) associated with r. It is a small triangle with two inputs
and one output. The first input α3/α4 is odd but its zigzag curves are oriented clockwise with the triangle,
the second input is even, and the output is odd and its target zigzag curve is oriented counterclockwise
with the triangle. The Abouzaid sign of D(r) is therefore −1. We conclude that both signs agree.

For the third part, let us comment on the case of QM . The choice of signs in the cohomology basis
elements, (−1)#(i+M)+1β′

i + (−1)#iβi and id′i is analogous to the choice of sign in the geometrically
consistent case. In particular, the sign computations for MD and MT result components carry over to
the case of QM without change.

In Proposition E.19, we describe the desired products µHTwGtlq Q(m,hN , . . . , h1). It turns out that
for any value of N ≥ 0, this product is determined by enumerating MD and MT disks with inputs
h1, . . . , hN ,m. In case N ≥ 1, this description follows from Lemma E.17 and Lemma E.18. In case
N = 0, the description follows from inspection of the differential µ1

TwGtlq Q
(m). The notation Qi+2 ∈

CJq1, . . . , qM K and ##(i−M +1) appearing in Equation E.2 is taken over from Equation D.1. The index
i denotes the index such that αi is the same angle in Q = QM as β.

Proposition E.19. Let Q be a geometrically consistent dimer or standard sphere dimer Q = QM with
M ≥ 3, as in Convention E.1. Let h1, . . . , hN be a sequence of N ≥ 0 type B cohomology basis elements
hi : Li → Li+1. Let m = (−1)#ββ : LN+1 → a be another cohomology basis element. Then we have

µHTwGtlq Q(m,hN , . . . , h1) =
∑

D∈DiskMD∪̇DiskMT
with inputs h1,...,hN ,m

(−1)Abou(D) Punc(D) t(D). (E.1)
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The differential µ1
HTwGtlq Q

(m) is accurately described by this equality. More explicitly, it is given as
follows:

• If Q is a geometrically consistent dimer, then µ1
HTwGtlq Q

(m) vanishes.

• If Q = QM with M ≥ 3 odd, then for m = idL→a we have µ1
HTwGtlq Q

(m) = 0. For m = (−1)#ββ

(S1), let i be such that ai = t(β). Then

µ1
HTwGtlq Q((−1)

#ββ) = (−1)##(i−M+1)Qi+2 idL→a . (E.2)

• If Q = QM with M ≥ 4 even, then µ1
HTwGtlq Q

(m) vanishes.

Proof. The entire computation is completely analogous to section 13.5: In section 13, we have shown
how to match result components for µHLq

with CR/ID/DS/DW disks. In the present Lemma E.17, we
have shown how to match result components for µ(m,hN , . . . , h1) with MT/MD disks in case N ≥ 1. In
Lemma E.18, we have checked that the sign of a result component agrees with the Abouzaid sign of its
associated subdisk. We conclude that the claimed product description (E.1) in case N ≥ 1 follows as in
section 13.5.

It remains to comment on the case N = 0. This entails determining the differential µ1
HTwGtlq Q

(m)
explicitly, where m is a cohomology basis element m : L→ a. We need to distinguish cases on whether Q
is geometrically consistent or Q = QM . If Q is geometrically consistent, then µ1

TwGtlq Q
(m) lies in B⊗̂R,

as we have seen in the proof of Lemma E.11. Therefore

µ1
HTwGtlq Q(m) = πHq

µ1
TwGtlq Q(m) = 0.

If Q = QM with M ≥ 3 odd, then we can calculate the differential easily by looking at the id (S2) terms
appearing in µ1

TwGtlq Q
(m). For m = idL→a there are no such terms, but for m = (−1)#ββ we find a

single type id (S2) term, namely

µMAddGtlq Q((−1)
#ββ, (−1)#(i−1)qi−1α

′
i−1, (−1)

#(i−2)αi−2, . . . , (−1)
#(i−M+1)αi−M+1)

= (−1)##(i−M+1)Qi+2 idL→a .

The differential µ1
HTwGtlq Q

(m) is given by projecting this term to Hq. Since the term already lies in Hq,

we conclude the desired formula for µ1
HTwGtlq Q

(m). This finishes the case distinction for Q and proves

the explicit description of µ1
HTwGtlq Q

(m) in all cases.

It remains to check (E.1) in case N = 0. This entails reinterpreting the explicit description of
µ1
HTwGtlq Q

(m) in terms of MD disks. This is an easy exercise and we finish the proof here.

This finishes the computation of the desired products µHTwGtlq Q(m,hN , . . . , h1).

F Discussion

In this section, we provide more explanation on the results of the present paper.

F.1 Relation to the literature

In this section, we list a selection of existing papers and for each of them explain how they relate to ours.
To start with, we specify five cornerstones of the present paper. Every paper in our list will then be
discussed in the context of one of these cornerstones.

The first topic of this paper is the category GtlQ and its deformation Gtlq Q. Next, we form the
category of zigzag paths Lq ⊆ Tw Cq and immediately gauge away the curvature from this category. Then
we apply our deformed Kadeishvili theorem, which forces us into lengthy calculations, which end up in a
beautiful geometric interpretation. This structure in mind, we arrive at the following list of cornerstones:

O1 Theory of A∞-deformations

O2 Deformations of GtlQ

O3 The category of zigzag paths

O4 Uncurving of deformations

O5 A deformed Kadeishvili theorem
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O6 Calculations with GtlQ and FukQ

In the remainder of this section, we present a selection of modern papers, each of which associated with
one of these cornerstones. For each paper, we will explain:

• what the paper proves,

• how our paper builds on that paper,

• what aftermath our paper provides to that paper.

Two of these cornerstones are not represented in the selected papers. Indeed, cornerstone (O2) is
provided by the first paper Paper I of this series. Meanwhile, cornerstone (O5) is not related with
any specific literature: While Kadeishvili’s theorem nowadays exists in lots of variants [60], its use in
deformations is apparently new.

Those papers dealing with the A-side of mirror symmetry all depart from either the geometric model
FukQ or the discrete model GtlQ. Moreover, we can classify the papers according to whether they work
with deformations or not. This gives the following diagram:

starting point non-deformed deformed

geometric [18, Appendix B] [63], [46], [47]

discrete [18], [16], [35] this paper

The present paper fills this square by departing from a deformation of the discrete model GtlQ.

F.1.1 Keller

In [40], Keller proves that Morita equivalences of dg-categories induce L∞-quasi-isomorphisms of the
Hochschild DGLA. Thereby, Keller’s work falls under cornerstone (O1).

Keller regards the Hochschild DGLA not as an L∞-algebra, but as B∞-algebra which is slightly
stronger. Let A and B be Morita equivalent dg algebras, with Morita equivalence provided by the A-B-
bimodule M . Then Keller’s core argument for invariance is as follows: Embed A and B into the triangular
dg algebra

D :=

(
A M

0 B

)
.

Both embeddings A,B ⊆ D turn out to be Morita equivalences. Keller exploits the natural restriction
maps HC(D)→ HC(A) and HC(D)→ HC(B), which automatically respect the B∞-structure. Departing
from the knowledge that Hochschild cohomology of dg algebras is invariant under Morita equivalences as
graded vector space, Keller concludes that both HC(D)→ HC(A) and HC(D)→ HC(B) are B∞-quasi-
isomorphisms. Correspondingly, HC(A) and HC(B) are B∞-quasi-isomorphic.

Unfortunately, Keller’s result is currently restricted to the case dg algebras. To the present paper,
this means that we simply assume as axioms that the theory extends to all A∞-categories.

The heavy use of A∞-deformations in our paper shows how imperative it is to extend Keller’s paper
to the A∞-context. According to private communication with Keller, these results can likely be obtained
by the same triangular construction together with appropriate A∞-bimodule theory.

F.1.2 Barmeier-Wang

In [8], Barmeier and Wang prove the power of L∞-morphisms in deformation theory of ordinary algebras.
They depart from a quiver algebra with relations A = CQ/I, where the ideal I is supposed to come
from a reduction system. In order to classify all deformations of A, they replace the Hochschild DGLA
HC(A) by a quasi-isomorphic L∞-algebra L(A). Their line of thinking has contributed heavily to our
cornerstone (O1).

Barmeier and Wang study a type of quiver algebras where the ideal I comes from the act of substituting
paths. Let us describe this in more detail: Let Q be a quiver and S a finite set of paths in Q. Let us
temporarily call a linear combination of paths x = λ1x1 + . . .+ λkxk ∈ CQ reducible if one of the paths
xi contains an element of S as subpath. Now for every s ∈ S let fs ∈ CQ be some “substitution” for s.
Assume that every fs is irreducible and every s ∈ S is irreducible (except containing itself as subpath). In
the words of [8], the system (S, {fs}s∈S) is then a reduction system. The reduction system is supposed
to satisfy the so-called diamond condition. Put I := (s− fs)s∈S and define the associated quiver algebra
as A = CQ/I. In this algebra, it indeed holds that s can be substituted by fs:

asb = afsb ∈ A.
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To define the Hochschild DGLA, we typically use the bar resolution. Barmeier and Wang demonstrate
that this resolution can be substituted by any other one, in particular the very simple bimodule resolution
P• of Chouhy-Solotar, see [8, Section 4.2]. The cochain map between resolutions immediately gives a
quasi-isomorphism of complexes

HomA⊗Aopp

(⊕

i∈N

A⊗A⊗i ⊗A,A

)
∼
−→ HomA⊗Aopp(P•, A). (F.1)

The left-hand side already being a DGLA, the L∞-structure transfer theorem induces an L∞-structure
on the right-hand side such that (F.1) becomes a quasi-isomorphism of L∞-algebras.

Barmeier and Wang then compute part of the L∞-structure on the right-hand side, just enough to
classify all of its Maurer-Cartan elements. It turns out that those Maurer-Cartan elements can be exactly
identified with deformations of the substitutions fs. Since Maurer-Cartan elements are preserved under
the L∞-quasi-isomorphism, this simultaneously classifies all Maurer-Cartan elements of the left-hand side
HC(A):

deformations of A = CQ/(s− fs)s∈S ←→ deformations f̃s = fs + gs

Barmeier and Wang’s realization that L∞-quasi-isomorphisms transport Maurer-Cartan elements has
greatly helped us shape the curved A∞-deformation theory of section 5. There, we make constant use
of the fact that quasi-equivalences of A∞-categories induces L∞-quasi-isomorphisms of their Hochschild
DGLAs:

F : C
∼
−→ D  F∗ : HC(C)

∼
−→ HC(D).

Correspondingly, their sets of Maurer-Cartan elements over any deformation base B match:

MC(HC(C), B)
∼
−→ MC(HC(D), B).

This is the main principle that lets us push deformations to and fro between different categories. For
example, it lets us seamlessly reduce an A∞-category to a skeleton of non-isomorphic objects without
changing its deformation theory. It enable us to prove that if an object X ∈ Cq is uncurvable, then all
objects Y ∈ Cq quasi-isomorphic to X are uncurvable as well.

As aftermath of our paper, we would like to point out that Barmeier and Wang’s paper is restricted
to quiver algebras concentrated in degree zero with ideal given by a reduction system. Gentle algebras
GtlQ already fall wide outside of their scope. The paper of Barmeier and Wang shows that the existence
of a reduction system renders all deformations inherently straightforward. Interesting geometries will
however appear as soon as we pass to algebras without reduction system or those not in degree zero. For
example, the Jacobi algebra Jac(Q) of a dimer does not possess a reduction system. It is a Calabi-Yau-3
algebra if Q is a consistent dimer. This brings Jac(Q) into the regime of Calabi-Yau deformation theory,
on which we comment in the third part of this paper series.

F.1.3 Lowen-van den Bergh

In [50], Lowen and Van den Bergh explain how to remove curvature from A∞-deformations of dg cate-
gories. This contributes to (O4).

Lowen and Van den Bergh depart from a dg algebra A together with an infinitesimally curved A∞-
deformation Aq over CJqK. Lowen and Van den Bergh observe that a category Tw(Aq) of twisted com-
plexes overAq can be formed even with infinitesimal entries below the diagonal, just as in our Remark 5.37.
Interpret Aq as an A∞-deformation with a single object. Then the core observation of Lowen and Van
den Bergh is that the following twisted complex has vanishing curvature:

X :=

(
A⊕A[1],

(
0 µ0

q/q

q idA 0

))
∈ Tw(Aq). (F.2)

This means that Bq := EndTw(Aq)(X,X) is a curvature-free deformed A∞-algebra. What is its special

fiber B? The higher products µ≥3 on Bq are given by embracing µAq
with the matrix entries µ0

q/q and
q idA:

µk≥3
Bq

(ak, . . . , a1) =
∑

µ≥3
AddAq

(δ, . . . , δ, ak, . . . , δ, . . . , δ, a1, δ, . . . , δ).

Restricting this sum to q = 0 yields only higher products µ≥3 of A. Since A is a dg algebra, we deduce
µk≥3
B = 0 and therefore B is a dg algebra as well. We conclude: Bq is a curvature-free A∞-deformation
Bq of some algebra B.
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Lowen and van den Bergh prove that A and B are in fact related by Morita equivalence. This costs
substantial effort and uses the assumption that the curvature µ0

Aq
is nilpotent in the cohomology of A.

The result is however that A and B are Morita equivalent, and moreover that Bq is the deformation of
B corresponding to the deformation Aq of A along this Morita equivalence:

dg algebra A  dg algebra B

curved A∞-deformation Aq  uncurved A∞-deformation Bq

The work of Lowen and Van den Bergh helped us understand that curvature is essential in the notion
of A∞-deformations, but not an invariant on its own. While Lowen and Van den Bergh exchange the dg
algebra itself to remove curvature, our section 9 provides an example where a mere gauge transformation
suffices to remove curvature.

In our recollection of A∞-deformation theory, Lowen and Van den Bergh have greatly helped us un-
derstand how deformations can be transferred from one category to another. We have built on their
understanding that the transfer should happen by means of a L∞-quasi-equivalence, while the corre-
sponding map on Maurer-Cartan elements is always secondary:

C HC(C) MC(HC(C), B)

D HC(D) MC(HC(D), B)

∼ ∼ ∼

  

As aftermath of our paper, we conclude that there is theoretically no hindrance to forming a derived
category of a curved A∞-deformation: By section 5.5 and section 8.3, a derived category HTw Cq exists
even for infinitesimally curved deformations. The statement of Lowen and Van den Bergh that a curved
A∞-deformation has no classical derived category remains true, but our paper contends that the study
of deformations profits greatly from permitting also these “non-classical derived categories” HTw Cq.

Our method in section 9.4 seems to be both a variant and alternative to Lowen and Van den Berghs
uncurving construction (F.2). It is a closely related variant in that our uncurving procedure factorizes the
curvature of (X, δ) into components of δ and new infinitesimal entries. By comparison, Lowen and Van
den Bergh simply factorize µ0 = (µ0/q)(q idA). Our procedure is also an alternative in that we uncurve
the twisted complex itself, without passing to a different category D. This way there is no doubt that
we have only performed a gauge equivalence, and checks for Morita equivalence are not required. Our
method relies a lot on the fact that the twisted differential δ is very rich, and it would be interesting to
know which other twisted complex categories have such property.

F.1.4 Bocklandt-Abouzaid

In [18], Bocklandt introduces the A∞-structure on GtlQ and proposes it as discrete model for the wrapped
Fukaya category wFukQ. In that paper’s appendix, Abouzaid computes the minimal model of an arc
system as part of wFukQ and obtains indeed the gentle algebra. We conclude that [18] contributes to
cornerstone (O6). The paper approaches the A-side via both the non-deformed discrete and non-deformed
geometric side.

As first step of the paper, Bocklandt defines an A∞-structure on GtlQ. Abouzaid then shows that
this GtlQ is in fact a discrete model for wFukQ. He regards the wrapped Fukaya category, as defined
in [2]. He discovers that one can pass with relative ease to the minimal model if one restricts to those
string objects given by an arc system. More concretely, he shows that on A∞-level one can get rid of the
so-called continuation map.

With this in mind, the work of Bocklandt-Abouzaid is a non-deformed prototype for our result: If
the discrete GtlQ provides a model for the geometric wFukQ, then the deformation Gtlq Q is necessarily
a model for a certain deformation of wFukQ (see section F.2.2).

In contrast to Abouzaid’s appendix, our calculations have to depart from the discrete side. Indeed,
a deformed wrapped Fukaya category does not exist as of yet, so that we cannot work ourselves from
geometric to discrete (see section F.2.3).

Our paper provides a new proof of Abouzaid’s appendix in [18], at least on the subset of zigzag
paths. Indeed, we show that HTwGtlq Q matches with the relative Fukaya category. Both categories
are deformations over the same deformation base CJQ0K, i.e. they have one deformation parameter per
puncture in Q. As soon as we restrict both HTwGtlq Q and relFukQ to the special fiber q = 0, we
hold in our hands an explicit matching between HTwGtlQ and FukQ, at least on the category of zigzag
paths. This recovers part of the result of Bocklandt and Abouzaid.
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F.1.5 The lectures of Bocklandt

A recent textbook [16] of Bocklandt explains gentle algebras in detail, shows how to stitch arcs together
to form bands, and how to move towards the Fukaya category. Bocklandt’s book contributes heavily to
cornerstone (O6), and departs from the discrete perspective without deformation.

In its Section 9, Bocklandt recollects the definition of the gentle algebra GtlQ. Next, he shows how
to stitch arcs together along shared angles. This procedure results in twisted complexes in TwGtlQ.

For us, Bocklandt’s explicit stitching procedure makes it entirely transparent how zigzag paths should
be realized as twisted complexes. A zigzag path does not have a unique twisted complex representation,
but there is a particularly simple one which makes direct use of the path’s zigzag nature. This point of
view is facilitated heavily by Bocklandt’s section 9.2.

With this in mind, we can state that the twisted complex construction for gentle algebras is not the
only one where the result can be identified geometrically. In fact, also twisted complexes of curves in the
Fukaya category or wrapped Fukaya category can be identified as being quasi-isomorphic to curves that
result from gluing together the arcs involved, see the book’s Section 6.4.1.

Bocklandt’s textbook contains several more hints relevant to the present paper, namely how to rec-
ognize similarity of HTwGtlQ with the Fukaya category: In its section 9.2, the hom spaces in the
minimal model of TwGtlQ are computed. Bocklandt delivers a basis of representatives of the cohomol-
ogy HHom(X,Y ), in case X,Y are twisted complexes model transversal curves, and in case X = Y as
well. He combines these ingredients into a description of some higher products of HTwGtlQ.

These calculations of Bocklandt provide a direct starting shot for the present paper: They tell us how
to choose cohomology representatives for HHom(X,Y ) and indicate how to obtain the higher products.
There are also vague indications as to how to build a homological splitting.

Our paper essentially completes the calculations of Bocklandt: First complete the cohomology basis
elements of Bocklandt to an entire homological splitting, at least in the case of zigzag paths. Second,
we compute the entire A∞-structure on HLq, including on non-transversal sequences, where Bocklandt’s
calculations are lacking. Third, we extend GtlQ to the deformed case and show how to obtain the relative
Fukaya category. Our deformed case demonstrates how also complicated Kadeishvili trees can contribute
to the higher products, in contrast to Bocklandt’s non-deformed case where only the simplest Kadeishvili
trees yield nonzero results. This renders our paper a powerful extrapolation of Bocklandt’s method.

F.1.6 Seidel

In [63], Seidel introduces the notion of relative Fukaya categories. He departs from the exact Fukaya
category and explains how to work relative to a divisor. He foresees the necessity to use curvature for
those Lagrangians that have teardrops intersecting with the divisor, while according to him all other
Lagrangians would be free of curvature. This way, [63] contributes to cornerstone (O4).

While Seidel does not provide anything explicit in case of punctured surfaces, his ideas carry over
without difficulty: The divisor becomes a finite collection of points, which in our paper correspond to the
punctures M ⊆ S. Each immersed disk should be weighted with the power of a deformation parameter
whose exponent is the intersection number of the disk with the divisor D.

Seidel envisions those Lagrangians to be infinitesimally curved which have teardrops intersecting
the divisor. This expectation has fueled our expectations towards uncurvability of objects in Tw Cq:
According to Seidel, we should expect that those band objects which are topologically nontrivial and do
not bound a teardrop in S are uncurvable, while those with teardrop in S are inherently curved.

Seidel’s definition provides a deformed Fukaya category of pre-category style: Its higher products are
only defined on transversal sequences. At the time of Seidel’s paper, it was not clear how to turn this
definition into an actual category. This was accomplished in general only 20 years later by Sheridan and
Perutz [59]. Yet, their construction relies on the Hamiltonian deformation approach, which renders the
A∞-structure on the non-transversal sequences very complicated.

The aftermath of our paper is a very down-to-earth description of the relative Fukaya category, at least
on the subset of zigzag paths: We describe explicitly all the immersed disks one needs for its definition,
also on all non-transversal sequences. A small caution: Technically, we cannot prove that our explicit
category HLq is indeed (a subcategory of) the relative Fukaya category, but its higher products on the
transversal sequences suggest so.

We confirm Seidel’s expectations regarding curvature in the relative Fukaya category in section 9. We
also extend the width of Seidel’s deformation in that we use one deformation parameter per puncture. It
would be interesting to reintroduce Seidel’s relative Fukaya category with more deformation parameters
even in the higher dimensional case.
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 FA(S)  GtlQ

Figure F.1: Markings on a boundary component after [35]

F.1.7 Barmeier-Schroll-Wang

Intriguingly, Barmeier, Schroll and Wang are working on A∞-deformations on Fukaya categories as well,
in parallel to the present paper. The subject of their work is known to the author, so we would like to
point out a few relations. The work falls under cornerstone (O2).

In the article [8], Barmeier and Wang investigate deformations of quiver algebras with relations. The
idea behind the new work of Barmeier-Schroll-Wang is to apply their methods to topological Fukaya
categories as well.

To understand their line of thought, we should look into the work [35] of Haiden, Katzarkov and
Kontsevich. They define topological Fukaya categories Fuk(S,M) also for marked surfaces (S,M) beyond
our notion of punctured surfaces. Indeed, [35] allows the surface to have a boundary instead of punctured,
and the boundary is supposed to consist alternatingly of markings and “boundary arcs”. In the simplest
case without boundary arcs, their notion is equivalent to our punctured surfaces. In the case with at least
one boundary arc, the topological Fukaya category Fuk(S,M) however allows for a very explicit model: a
graded algebra without differential and higher products. This is the point where the deformation theory
of [8] comes into play.

The work of Barmeier-Schroll-Wang yields results complementary to ours, namely deformations in
the case every boundary component has at least one boundary arc. Since our case of GtlQ is an A∞-
localization of the case with boundary arcs, it will be interesting to speculate about the relations between
our work and Barmeir-Schroll-Wang’s.

F.1.8 Haiden-Katzarkov-Kontsevich

In [35], Haiden, Katzarkov and Kontsevich famously analyze stability conditions on partially wrapped
Fukaya categories. Twisted complexes of the gentle algebra GtlQ serve as model for their actual work.
Their work contributes to cornerstone (O6), departing from the non-deformed discrete side.

As first step, Haiden, Katzarkov and Kontsevich introduce a notion of marked surfaces. In a marked
surface, each boundary component is supposed to consist alternatingly of markings and “boundary arcs”.
Those marked surfaces where every S1 boundary component is fully marked are precisely the punctured
surfaces we use in the present paper.

Using arc systems, they define topological Fukaya categories TwFA(S). If one restricts to the case
of marked surfaces where each S1 boundary component is fully marked, this is just TwGtlQ in our
terminology. This is depicted in Figure F.1.

By an explicit analysis of all possible twisted complexes, they classify the objects of TwFuk(S,M) up
to quasi-isomorphism. This yields two different classes, the string and band objects. We recall this clas-
sification in section 9.2. This classification led Bocklandt [16] to write down the explicit correspondence
between curves and twisted complexes.

The paper [35] then continues to classify stability conditions on a subcategory of the topological
Fukaya category. The result is that these can be identified with singular flat structures on the marked
surface with given poles or zeros.

In our paper, we depart from a special case of the topological Fukaya categories of [35]. Indeed, a
dimer model Q is a specific type of marked surface. Its topological Fukaya category in the sense of [35]
is simply TwGtlQ.

The paper [35] also helps us in section 10 to skip a few checks. Let us recapitulate the claims
in that section: Given two zigzag paths L1, L2 ∈ TwGtlQ, we would like to compute the definition
of HHomTwGtlQ(L1, L2). While this could be checked by hand, we propose to exploit Bocklandt’s
equivalence [18]

F : HTwGtlQ
∼
−→ wFukQ.

The zigzag paths L1, L2 live on the left-hand side, and hence

dimHomHTwGtlQ(L1, L2) ∼= dimHHomwFukQ(F (L1), F (L2)). (F.3)

We are left with computing the right-hand side. For this, we need to know which curves the objects
F (L1) and F (L2) are. Here [35] comes into play and suggests that F (L1) and F (L2) are simply the
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L1 L2 L3

L0

Figure F.2: The curves of Lekili and Polishchuk in case of n = 3 punctures

smoothed-out versions of L1 and L2. With this assumption, the right-hand side of (F.3) becomes simply
the number of intersections between L1 and L2, plus two in case L1 = L2. This finishes the calculation
of the hom space, but has cheated slightly in the identification of F (L1) and F (L2).

Far away on the horizon, Bocklandt has suggested a conjecture regarding stability conditions versus
deformations. The idea is as follows: If we reinterpret the flat structures of [35] as deformations of the
complex structure, they should constitute deformations of the derived category of coherent sheaves of the
marked surface:

StabFukQ ∼= Def CohQ.

Mirror symmetry of punctured surfaces ensures that under some conditions there is a dual dimer such
that FukQ ∼= Coh Q̌ and CohQ ∼= Fuk Q̌. Here Coh is abuse of notation and mean a noncommutative
version of coherent sheaves, e.g. matrix factorizations. We then arrive at

StabCoh Q̌ ∼= Def Fuk Q̌, (F.4)

Def FukQ ∼= Def Coh Q̌, (F.5)

StabFukQ ∼= StabCoh Q̌. (F.6)

Simply speaking, the conjecture arising from [35] is that mirror symmetry swaps stability conditions and
deformations. To prove this monster conjecture, we need a solid understanding of deformations of Fukaya
categories. Our series of three papers will set up a deformed version of mirror symmetry, providing an
explicit realization of the correspondence (F.5). The present paper provides the preliminary step of
equating deformations of the discrete model with those of the geometric side.

F.1.9 Lekili-Polishchuk

In [46], Lekili and Perutz find a commutative mirror for the relative Fukaya category of the 1-punctured
torus, apparently the first use of a relative Fukaya category in mirror symmetry. In [47], Lekili and
Polishchuk generalize this result to the case of the n-punctured torus. They depart from a finite collection
of split-generators of the Fukaya category and compute part of their deformed products in the relative
Fukaya category. This way, they contribute to cornerstone (O6), with a viewpoint from the deformed
geometric side.

Let T1 denote the 1-punctured torus. Lekili and Perutz depart from an explicit definition of the
relative Fukaya pre-category relFukpre T1: Working over the local ring ZJqK, every immersed disk is
weighted by the number it covers the single puncture.

Lekili and Polishchuk regard the n-punctured torus Tn. One might expect that they use an explicit
model of the relative Fukaya category relFukTn and then prove it equivalent to their commutative mirror.
Instead, they pick a set of n+1 curves L0, . . . , Ln in Tn which split-generate the wrapped Fukaya category
wFukTn.

They do not attempt to compute the higher A∞-products on this set of generators entirely, but
rather show that the A∞-structure must come from the perfect complexes of some complex curve Tn [47,
Theorem 1.1.1]. The rest of their argument is devoted to guessing which curve Tn is the right one.

This deduction up to isomorphism yields a functor F : {L0, . . . , Ln} → Perf(Tn). To extend this
functor to all of the relative Fukaya category, Lekili and Polishchuk view all objects of the Fukaya
category as modules over these curves. More precisely, they regard a fully faithful Yoneda functor
wFuk(Tn) → Mod({L0, . . . , Ln}). The right-hand side again maps to Perf(Tn) by an extension of F to
modules.

In the present paper, we have a very similar desire: to equate the A∞-structure on Cq := HLq and
the zigzag subcategory Dq of the relative Fukaya category. If we tried to follow Lekili and Polishchuk’s
approach, we would start from the observation that the non-deformed versions C and D are isomorphic
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Figure F.3: Zigzag paths of the standard 4-punctured torus

by [18]. We would then compute a few deformed higher products of Cq and compare those with Dq, just
enough to prove that Cq ∼= Dq.

In the present paper, we do not follow the approach of Lekili and Polishchuk. In a sense, is a pity we
were not able to guess the right structure like they did.

As aftermath of our paper, we recover the meaning of the curves L0, . . . , Ln of Lekili and Polishchuk.
Indeed, let Q denote the standard n-punctured torus of Figure 6.5b. Then the zigzag paths of Q are
depicted in Figure F.3. There are precisely n diagonal, n vertical and 1 horizontal zigzag paths. Out of
these, the vertical and horizontal are precisely the collection of Lekili and Polishchuk.

Our paper completes Lekili-Polishchuk’s understanding of the deformedA∞-structure on {L0, . . . , Ln}.
Indeed, we compute an entire minimal model category Cq = HLq, which has the same deformed A∞-
structure on transversal sequences as the relative Fukaya category. It is technically not legitimate, but
we could assume that Cq indeed is a model for the relative Fukaya category. This would mean that we
have computed all missing A∞-structure that Lekili and Polishchuk were looking for.

F.2 Why should it work?

This paper shows that the relative Fukaya category can be obtained from a small, discrete model. But
why should such a small model exist? The question is why one expects the candidate we give indeed to
be equivalent to the relative Fukaya category. In this section, we explain how one is led to believe from
an a priori perspective that it should work, and explain why Gtlq Q is suited as a candidate.

F.2.1 The model question

In order to prove results concerning an A∞-category C, one tries to switch between different models of C.
This means, one is interested in A∞-categories D that are isomorphic, quasi-isomorphic, quasi-equivalent
or derived equivalent to the C. If such a category D satisfies certain geometric or algebraic properties or
size constraints, it is called a model (of the given kind) for C:

C ∼= D

original model

better behaved

A standard question in symplectic geometry is then: Can we find a small model D for the Fukaya category
C = FukQ? Ideally, this category D would have very few objects, and still generate the whole Fukaya
category. It does not work however, because cones over a small set of band objects do not yield all other
bands. The question arises how to relax the task so that a small model can still be achieved. A very
natural alternative is to require only that C is contained in the model D. Actually, one would not require
C ⊆ D, because D itself is supposed to have few objects, but one would aim at:

C ⊆ HTwD

original model

better behaved

Thanks to Bocklandt and Abouzaid [18], it is now known that the Fukaya category is indeed contained
in the derived category HTwGtlQ of the gentle algebra GtlQ. There is a quasi-fully-faithful inclusion

FukQ ⊆ HTwGtlQ.

In fact, the category HTwGtlQ is not all too large: It is quasi-equivalent to the wrapped Fukaya
category wFukQ. In other words, Bocklandt and Abouzaid resolve the (relaxed) model question for
FukQ positively.
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Let us now pose the same model question for deformed A∞-categories: Given a category C with a
deformation Cq, can we find a better behaved category D with a deformation Dq such that Cq and Dq are
isomorphic, quasi-isomorphic, quasi-equivalent or derived equivalent?

Cq ⊆ Dq

original model

better behaved

Let us discuss what this means. In the above sketch, we have used ∼= to indicate one of the four
notions of equivalence. In either case, an equivalence on the level of deformations necessarily requires an
equivalence on the non-deformed level. Conversely, one can transport deformations along equivalence of
(non-deformed) categories. Let us summarize as follows:

• Let D be a model for C, and let Cq be a deformation of C. Then there exists a model Dq for Cq,
obtained as a deformation of D.

• If C has no good model (of a certain kind), then Cq does not have a good model either.

Relative Fukaya categories were introduced by Seidel as a deformation of ordinary Fukaya categories. We
may now ask: Is it possible to provide a small model for the relative Fukaya category? Unfortunately,
this is not possible either. A small model for relFukQ would also include a small model for FukQ itself,
which does not exist. The right approach becomes apparent by relaxing the task again. Let us first spell
this out in general:

Let C be a category with a relaxed model D, and let Cq be a deformation. Does a deformation Dq exist
such that it is a relaxed model for Cq? The answer is that this does not necessarily exist. The reason is
that deformations cannot necessarily be lifted from C to D. In fact, the restriction map HC(D)→ HC(C)
induced by the inclusion C → HTwD does absolutely not have to be a quasi-isomorphism of L∞-algebras.
An easy example is the inclusion of quivers

a →֒ a
b

c

The center of the quiver algebra CQ1 on the left is of course C[a], while the center of the algebra CQ2 on
the right is just C2, spanned by the two idempotents. We deduce that the map HH0(CQ2)→ HH0(CQ1)
is not surjective. Here HH0 denotes classical Hochschild cohomology, which is the same as HH−1 in the
A∞-grading. In short, restriction maps between Hochschild cohomologies are far from surjective due to
“global” phenomena.

Let us tie this back to the question of finding a small model for the relative Fukaya category. We
have already discussed that GtlQ provides a small relaxed model for the Fukaya category. As we have
just seen, this does however not imply the existence of a relaxed model for relFukQ in the form of a
deformation of GtlQ. One starting point for understanding the present paper is therefore:

To find an A∞-category D together with a deformation Dq
such that relFukQ embeds quasi-fully-faithfully into HTwDq.

A priori it is not clear that such a category D and deformation Dq should exist. The reason is that
the ordinary and wrapped Fukaya categories are not equivalent and have different deformation theory.
For the same reason, such a pair is not uniquely determined. There are however several ways of trying
to find such a pair:

A1 Guessing,

A2 Trying out the candidate deformation Dq := Gtlq Q of D := GtlQ.

A3 Extending the relative Fukaya category to a deformation wFukq of the wrapped Fukaya category.

In this paper, we succeed in approach A2: We show that Gtlq Q is a relaxed small model for relFukQ,
at least on the subcategory of zigzag paths. In section F.2.2 we explain why approach A2 is plausible and
in section F.2.3 we explain why approach A3 is promising for mathematicians who can handle wrapped
symplectic geometry.

There are three reasons why the author picked approach A2 instead of A3. First, we already have a
concrete Gtlq Q available from Paper I. Second, approach A2 comes only with combinatorial calculations,
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as opposed to deforming and working with the wrapped Fukaya category in approach A3. The expertise
in symplectic geometry on the side of the author was simply not enough. Third, this paper was originally
written not in order to find a small model, but to compute the subcategory of zigzag paths in HTwGtlq Q.
The interpretation as a small model for relFukQ has come out as a useful byproduct.

F.2.2 The candidate Gtlq Q

The goal of this section is to describe why our candidate Gtlq Q is plausible as a (relaxed) model for
relFukQ. The category Gtlq Q itself is a seemingly arbitrary choice defined in Paper I, so that it is a
priori not clear why it should be a model for relFukQ. There are however reasons why one should expect
Gtlq Q to be a model, even before performing any calculations. In this section, we explain those reasons.

Bocklandt-Abouzaid showed that the gentle algebra GtlQ is equivalent to the wrapped Fukaya cat-
egory. In the words of section F.2.1, this implies that GtlQ is a relaxed model for FukQ. As we have
seen in section F.2.1, it is however far from clear that a relaxed model for a deformation can be obtained
as a deformation of a relaxed model. In other words, if GtlQ is a model for FukQ, why should the
deformation Gtlq Q be a model for relFukQ?

There are three reasons why one might expect Gtlq Q to be a relaxed model for relFukQ:

• The derived category HTwGtlq Q exists by construction, and it is a deformation of HTwGtlQ.
In particular, it is equivalent to a deformation of wFukQ and has a restriction to FukQ. In other
words, it contains some deformation of FukQ. One may now speculate which deformation of FukQ
it concerns.

• A glance at the deformed higher products shows that Gtlq Q closely resembles relFukQ: Although
the objects of both categories are completely disjoint, every disk containing one puncture gets
multiplied by that puncture. Every disk containing two punctures gets multiplied by both, etc.
One easily becomes suspicious that the deformation of FukQ contained in HTwGtlq Q is actually
relFukQ.

• Reasoning with the beauty of mathematics, one should expect that relFukQ is such a reasonable
deformation that is extends to wFukQ. By the Bocklandt-Abouzaid equivalence, it then induces a
deformation on GtlQ, and one may now guess which one this is: probably isomorphic to Gtlq Q.

Against the second reason, one might object that similarity of deformations is not the same as equality.
It might be possible that the deformation of FukQ contained in HTwGtlq Q is slightly off, even though
the products of relFukQ and Gtlq Q look so similar. For example, Gtlq Q intrinsically multiplies disks by
q. The process of deriving Gtlq Q may change this factor however to q + q2 instead. This would imply
that HTwGtlq Q does not have the same higher products as relFuk.

The fact that this Gtlq Q actually is a relaxed model for relFukQ and the higher products on
HTwGtlq Q are identical to those of relFukQ is therefore out of pure luck. We will comment on this fact
in section F.3.3.

F.2.3 Alternative via the wrapped Fukaya category

In this section, we explain another approach to obtain a small (relaxed) model for relFukQ. Namely, we
comment on the idea to deform the wrapped Fukaya category, labeled A3 in section F.2.1. We will see
why it is realistic, and what the difficulties are.

Let us recall approach A3 as follows: One tries to lift the deformation of FukQ given by relFukQ to
a deformation wFukq Q of wFukQ. If one succeeds at this approach, then one immediately has relFukQ
as a subcategory of wFukq Q. Pick a generating set X ⊆ wFukQ, typically a collection of arcs that split
the surface. Denote by Xq ⊆ wFukq Q the restriction of the deformation wFukQ to the generating set
X. Since X is a generating set for wFukQ, we have a quasi-equivalence

HTwX → wFukQ

induced from the inclusion X ⊆ wFukQ. The deformation wFukq Q is therefore already determined by
the deformation Xq. In other words, we have a quasi-equivalence

HTwXq → wFukq Q.

Since the right-hand side wFukq Q contains the relative Fukaya category, we conclude that
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HrelFukQ⊆ HTwXq

original model

small

In other words, Xq is a small model for relFuk. We conclude: A lift of the deformation relFukQ to
wFukQ solves the (relaxed) model question for relFukQ. Such a lift does not need to exist a priori and
it is not unique.

Let us explain how one may obtain a candidate deformation wFukq Q such that relFukQ ⊆ wFukq Q.
We can already guess several of its properties:

• On band objects, the higher products are just given by disks multiplied by q-parameters, as in
relFukQ.

• String objects need to have curvature. There is no technical necessity for this, but it is likely from
the point of view that our combinatorial model Gtlq Q also has curvature.

• The definition of higher products through Hamiltonian deformations needs to be completely revised
to be compatible with the curvature. Due to the new higher products, there now exist infinitesimal
results of disks even on teardrops. The obstruction theory in the definition of the Fukaya category
needs to be completely revised.

This list already highlights some of the difficulties. The author has no clue how to properly define such
an extension.

Let us assume for a moment that the paper’s result extends beyond zigzag paths. From this a
posteriori perspective we can deduce that a lift from relFukQ to a deformation wFukq Q exists: Regard
the Bocklandt-Abouzaid quasi-equivalence

HTwGtlQ
∼
−→ wFukQ.

Then the deformation Gtlq Q of GtlQ induces a deformation HTwGtlq Q of HTwGtlQ, and by transport
through the quasi-equivalence also a deformation wFukq Q. Since HTwGtlq Q contains the relative
Fukaya category, we deduce that the same holds for wFukq Q:

relFuk ⊆ HTwGtlq Q
∼
−→ wFukq Q.

In other words, if one believes for a moment that the result of this paper extends to all band objects, then
a lift from relFukQ to wFukQ necessarily exists. Approach A3 does therefore have a solution, although
it is unclear how to construct it explicitly.

F.3 Why does it work?

This paper shows that the relative Fukaya category can be obtained from a small, discrete model. But
why does the calculation work out? What are the ingredients that make it work? In contrast to the
a priori discussion in section F.2, we explain in the present section why it works from an a posteriori
perspective. In particular, we discuss the role of choices and luck.

Let us paraphrase the methods of this paper. The starting point is the deformed gentle algebra
Gtlq Q. The task is to prove that its derived category HTwGtlq Q contains the relative Fukaya category.
To achieve this, we need to realize all Lagrangians in the Fukaya category as specific twisted complexes
over GtlQ, and show that the subcategory of these twisted complexes equals the relative Fukaya category
up to quasi-equivalence of deformations.

How would we achieve an equivalence between this subcategory of HTwGtlq Q and the relative
Fukaya category? The relative Fukaya category relFukQ has mostly vanishing differential µ1, while the
category TwGtlq Q has large hom spaces and non-vanishing differential. They are clearly far away, but
the category HTwGtlq Q already comes closer to the relative Fukaya category. In the present paper, we
show how to actually match them. During the calculations, four facilitating factors have come into play:

• Zigzags: Instead of proving the whole relative Fukaya category to lie inside HTwGtlq Q, we only
prove this for the subcategory Lq of zigzag paths.

• Choices: We choose a “natural” homological splitting of Lq.

• Luck: During the calculation of the minimal model structure of Lq, our choice of homological
splitting proves to be right one both for efficient calculation and to obtain exactly the relative
Fukaya category.
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• Fearless calculations: Performing the model computation for Lq emits enormous amounts of data
and requires us to construct a tower of data structures as depicted in Figure 4.1. Binding the
discrete data structures together to form smooth disk requires us to work through hundreds of
calculations and special cases in order to bring order into the chaos. Practically, lots of trees need
to be classified and large multiplication tables need to be filled. This paper performs the calculation
until the bitter end.

We explain these four facilitating factors in more detail in section F.3.1, F.3.2 and F.3.3.

F.3.1 Restriction to zigzag paths

The result presented in this paper is restricted to zigzag paths. In this section we explain how this
restriction eases the calculations and how the general case may be obtained later on.

Recall that zigzag paths are paths in a dimer that alternatingly turn left and right. When we say
“zigzag path”, we frequently refer to their realization as twisted complex in TwGtlQ or as a band object
in FukQ. Zigzag paths are a small class out of a large set of objects in both categories. Three factors
distinguish zigzag paths from other band objects in FukQ:

• The higher structure on zigzag paths is necessary to compute a mirror for Gtlq Q, according to
Cho-Hong-Lau.

• The arcs in the twisted complex representation of zigzag paths have only small angles between each
other, i.e. no full turns or larger angles. This makes it easy to get grip on the disks between zigzag
paths.

• If one assumes that Q is geometrically consistent, a mild requirement, then all zigzag paths in Q
bound neither discrete nor smooth immersed disks. This is very useful.

It appears possible that the restriction to zigzag paths be overcome in the future, even without redoing
the calculations. Let us sketch how this will work. The first step is to prove mirror symmetry for Gtlq Q,
and the second step is to realize that the mirror depends only on the higher structure on zigzag paths.

Indeed, both relFuk and HTwGtlq Q produce mirror functors

Mod relFuk→ mf(Aq, ℓq) and HTwGtlq Q→ mf(Aq, ℓq).

Both mirrors mf(Aq, ℓq) are equal, since the Cho-Hong-Lau construction only depends on the structure
on the zigzag paths. The module category Mod relFuk contains quasi-fully-faithfully some deformed copy
(GtlQ)′q of Gtlq Q and so does HTwGtlq Q contain the deformation Gtlq Q. Both are mapped quasi-
equivalently to the mirror. It seems that we can deduce this way that (GtlQ)′q

∼= Gtlq Q as deformations
of GtlQ. Together with relFuk ⊆ HTw(GtlQ)′q, we should be able to deduce that relFuk is simply a
subcategory of HTwGtlq Q. In other words, this should imply that Gtlq Q is a small model for relFuk.

F.3.2 Choice

This paper presents a minimal model for (part of) HTwGtlq Q. Such a minimal model is by no means
unique. In this section, we explain why our specific choice of homological splitting works so well.

Let C be an A∞-category. Recall that by a minimal model for C one means any other A∞-category
D such that D is minimal and C and D are quasi-isomorphic:

µ1
D = 0 and C ∼= D.

Given a category C, one may look for minimal models simply by guessing. Such a guess involves

• Possibly identifying the cohomology HHom(X,Y ) for every X,Y ∈ C with some explicit graded
vector space D(X,Y ).

• Guessing an A∞-structure on these spaces D(X,Y ), turning them into an A∞-category D.

• Finding an A∞-quasi-isomorphism C → D or D → C.

Guessing minimal models requires an enormous imagination.
There are also systemic ways of finding minimal models. In fact, the Kadeishvili theorem which we

recall in section 8.2 grants the existence of minimal models and provides an explicit way to construct
them. The formula for the minimal model depends on the choice of a so-called homological splitting
HomC = H ⊕ I ⊕R.

Assume we have chosen a homological splitting HomC = H ⊕ I ⊕ R. Then the map µ1 : R → I
is bijective. One then defines the so-called codifferential h : I → R as the inverse of µ1 : R → I.
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The Kadeishvili construction then describes the H C as follows: The objects are the same as in C. The
hom spaces are the chosen cohomology representatives H. The differential is defined as µ1

H C := 0. The
interesting part in the definition are the (higher) products. They are defined as sums over trees of the
form

hµ2 hµ3

πµ2

For two inputs, there is precisely 1 such tree. For three inputs, there are 3 such trees. For four inputs,
there are 11 such trees. The result of each tree shall be multiplied by a sign. The sign is given by (−1)NT ,
where NT is the number of nodes in the tree, excluding the root. In other words, s is the number of
nodes in the tree labeled hµ. For instance, the product µ2(a, b) for a, b ∈ H is simply given by

µ2
H C(a, b) = πµ2(a, b).

The higher product µ3(a, b, c) for a, b, c ∈ H is given by

µ3
H C(a, b, c) = πµ3(a, b, c)− πµ2(hµ2(a, b), c)− πµ2(a, hµ2(b, c)).

Observing these formulas, we conclude that the minimal model does depend on the choice of H and R.
One may also say: The minimal model depends on the choice of codifferential.

In this paper, we select one concrete choice of a homological splitting for the category L of zigzag
paths in TwGtlQ. The choice looks arbitrary, but has some sophistication behind it. Let us explain the
philosophy behind the cohomology representatives H in our choice:

• We know how many representatives we have to choose: as many as HHom(L1, L2) has dimension.

• The dimensions of HHom(L1, L2) and the dimension of the hom space in the Fukaya category
are equal (either by calculation or by using Bocklandt-Abouzaid). Hom spaces in the Fukaya
category are spanned by intersection points, therefore we should try to find one representatives of
HHom(L1, L2) for every intersection point.

• For each intersection point p ∈ L1 ∩ L2, choose the representative in H such that we have the best
chance of obtaining the Fukaya category as minimal model. For example, a disk existing in the
Fukaya category should be realizable as a product µ≥3

L of the corresponding basis elements in H.

• The signs of the elements in H should be chosen such that in the minimal model we obtain exactly
the Abouzaid sign rule, without further sign conversion.

Regard an endomorphism space End(L,L) of a zigzag path L ∈ L. Our choice for H consists of
two morphism of End(L,L): the identity and a co-identity. While the identity element of End(L,L)
naturally stems from the unitality of GtlQ, the choice of co-identity involves a choice. We namely define
the co-identity to be any of the angles involved in the δ-matrix of L. In other words, we choose the
connecting angle between an arbitrary pair of consecutive arcs in L.

Why is this a sensible choice? One of the reasons to use the identity for H is that it is very natural
and it provides a strict unit in the minimal model HL. This strict unit is simultaneously necessary to
exist if we want to make HL equal to the zigzag paths in the Fukaya category.

A reason why we choose the other basis element of H to be a small angle between two consecutive
arcs of L is that this angle is easily seen to lie in the kernel of µ1 : End(L,L) → End(L,L). Moreover,
we want to obtain the Fukaya category as minimal model, which means that we have to reflect the
arbitrary location of the co-identity morphism of Fukaya categories an closely as possible by means of
the combinatorical datum of an angle.

F.3.3 Luck

A decent amount of luck has been involved in the functioning of the present paper. In this section, we
present five specific occasions where luck is decisive. The reader instead interested in a technical expla-
nation why our choice of Gtlq Q and the homological splitting are wise choices is referred to section F.2.2
and section F.3.2.
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Transparency of deformed cohomology basis After building the homological splitting in the non-
deformed case, we prepare in section 11.3 the calculation of the deformed differential µ1

q on Lq. It turns
out that the differential µ1

q of any morphisms falls apart in contributions of certain types E, F, G and H.
Cohomology basis elements come from type B and C situations which restrict the tail to type E disks.

The entire tail of a cohomology basis element then becomes relatively simple: It depends only on type
E disks, and its tail terms are all of the form β (A). The description of the deformed cohomology basis
elements becomes not only explicit this way, but also very homogeneous.

Requirements for deformed Kadeishvili theorem We are lucky that the deformed Kadeishvili
theorem can be established in the full generality. From a technical point of view, the Kadeishvili theorem
is the only part of the paper that is not straightforward. It form a bottleneck for the minimal model
computation and without its working we could not have pursued the calculation.

Transparency of the deformed codifferential Luck comes into play in our computation of the
deformed codifferential hq in section 11.5. As always in this paper, this computation is rather an enu-
meration in terms of disks than a calculation with a concrete output. The deformed codifferential that
illustrates the impact of luck best is hq(βα), where the angles α, β are from an A situation. In this
case, we have to find a sum of angles in R whose differential totals to βα plus possibly terms of R. The
first-order guess is β itself, however µ1

q(β) may also contain disk terms from E, F, G and H disks.
We are double lucky. First, the F disks only produce β angles from A situations, the G2 disks only

produce α3 and α4 angles, and the H disks only produce β and β′ angles from C situations. All of these
angles lie in the kernel of hq. In other words, those angles are in fact irrelevant in order to compute
hq(βα). We conclude that only the type E and type G1 disks are relevant for computing hq(βα), which
greatly reduces complexity.

As for α4, it can be written as a signed sum α4 = ±h ± α3 of the cohomology basis element h =
(−1)#α3+1α3 + (−1)#α4α4 and the angle α3 lying in R. As a cohomology basis element, h in turn can
be written as a sum h = h′ + r of a deformed cohomology basis element h′ and an remainder r ∈ R. All
of h′, r and α3 have vanishing codifferentials hq, so that we conclude hq(α4) = 0.

Second, the G1 disks yields result of the form α1 ± α2, where α1 and α2 are from a B situation. The
angle α1 again lies in R, while α2 equals d(id2→5) modulo kernel of hq. Since µ1

q(id2→5) = d(id2→5),
we can simply add id2→5 ∈ R to βα and µ1

q(β ± id2→5) will eliminate the α2 term. Ultimately, every
G1 disk only adds in a simple B situation identity into the hq(βα). This is the reason we obtain the
comparatively neat formula in Proposition 11.13.

The chaos and order of result components In section 12, we introduce the notion of result com-
ponents. The subsequent classification of result components, its matching with immersed disks and the
analysis of the immersed disks obtained this way is a roller coaster ride of case distinctions. Despite the
intermediate chaos, the result collapses into a manageable description: four types of immersed disks (CR,
ID, DS), following more or less the same rules. This collapse is a very fortunate turn.

Just the right products in HLq Even with a slightly different homological splitting, we might already
have obtained a minimal model HLq that looks entirely different from the relative Fukaya category. It
would be hopeless to compare even a slightly different result to the relative Fukaya category. We are very
fortunate that we obtain the higher products of the relative Fukaya category up to strict isomorphism.

F.4 Which calculations can be reused?

The heart of the present paper is a long and very specific calculation. In fact, the starting point consists
of a very concrete deformation Gtlq Q of the gentle algebra and the specific subcategory of TwGtlq Q
given by the zigzag paths. This raises the question how the calculations and the result presented here
can ever be used by other mathematicians for their own purposes.

In this section, we would like to answer this question. We explain how one can use the gentle algebra,
the specific deformation Gtlq Q, the homological splitting and the notion of result components in a
modular way as standard tools in computations.

We are convinced that while the precise calculations apply only to the specific situation of Gtlq Q, the
versatility lies in the manner of performing the calculations and matching their result with the expected
outcome. We contend that the mathematical value of the present paper mainly lies in making Kadeishvili
trees computable.
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F.4.1 The gentle algebra

The use of the gentle algebra to perform calculations in mirror symmetry of punctured surfaces is not
yet standard, as of writing. For example, in [3] the notion is still implicit. Some newer work [35] however
uses the notion actively. In this section, we would like to highlight how easy the gentle algebra makes it
to describe intersection theory.

Second, the twisted complexes of GtlQ can be classified up to quasi-isomorphism. Recall from sec-
tion 9.2 that the twisted complexes of GtlQ can be classified as string and band objects. Formulated the
other way around, every twisted complex of GtlQ can be obtained up to quasi-isomorphism by stitching
together arcs along angles. Regard two twisted complexes X,Y ∈ TwGtlQ stitched together from arcs.
Then the hom space Hom(X,Y ) is spanned by all angles from arcs of X to arcs of Y .

Given a whole sequence X1, . . . , Xk+1 of twisted complexes in TwGtlQ and angles αi : Xi → Xi+1,
how to evaluate the higher product µk(αk, . . . , α1)? By definition, this product is taken in the A∞-
category TwGtlQ and as such is made up of δ-insertions. For each Xi, the possible δ-insertions are inser-
tions of arbitrary angles used to stitch together the arcs of Xi. In total, this higher product µk(αk, . . . , α1)
gives a result if the angle sequence α1, . . . , αk can be filled up with δ-insertions to form an immersed disk.

We see that even the twisted completion TwGtlQ is an utterly geometric object and can be used for
geometric proofs.

F.4.2 The deformation Gtlq Q

In Paper I we introduced the deformed gentle algebra Gtlq Q. In fact, we provided even broader defor-
mations and proved that they exhaust all deformations of GtlQ up to gauge equivalence. In this section,
we would like to explain what makes Gtlq Q so versatile for studying deformations of Fukaya categories
and mirror symmetry.

First, GtlQ itself is a small category itself and such ideally suited for computations. Its deformation
Gtlq Q can be described fairly easily. Already the crude insight that Gtlq Q is a deformation capturing
behavior similar to the relative Fukaya category makes Gtlq Q an interesting A-side of mirror symmetry.
For comments on the use of Gtlq Q as model for the relative Fukaya category, see section F.2.1.

As we recall in section 9.2, the twisted complexes of GtlQ can be classified as string and band
objects. As we show in section 9.4, most band objects can be uncurved. The uncurving procedure
adds in infinitesimal connecting angles into the δ-matrix. Let us explain the effect of this procedure.
Regard a sequence of uncurved twisted complexes X1, . . . , Xk+1 and angles αi : Xi → Xi+1. Then the
higher product µk(αk, . . . , α1), taken in TwGtlq Q now includes δ-insertions of the additional infinitesimal
angles in the δ-matrices of the Xi. This makes that also immersed disks count that are bounded by whole
segments of the curves Xi, instead of only a single arc as is the case without deformation. In particular,
immersed disks between the curves Xi that also cover an arbitrary number of punctures now contribute
to the product.

In the present paper, we match HTwGtlq Q with relFukQ. In other words, the deformation Gtlq Q of
GtlQ induces a deformation HLq of HL that looks like the relative Fukaya category. It is interesting to
speculate what happens if we start with other deformations on the GtlQ side. More precisely, recall from
Paper I that GtlQ also permits deformations where “orbifold disks” contribute to the higher products.
Such a deformation of course also induces a deformation on HL. Since HL is a full subcategory of the
Fukaya category, this makes a plausible case for new deformations of the entire Fukaya category. For sure,
such deformations of the Fukaya category have not been discovered yet. Future readers may therefore
find joy in experimenting with other deformations of GtlQ and for example obtain deformed “Fukaya
categories with orbifold points”.

F.4.3 The homological splitting

Whenever one wants to compute a minimal model of an A∞-category explicitly, one needs a homological
splitting R ⊕ I ⊕ H of the A∞-category. A homological splitting is by no means unique, and different
homological splittings result in different but quasi-equivalent minimal models. The present paper deploys
a specific choice of homological splitting for the category L ⊆ TwGtlQ of zigzag paths. In this section,
we explain why this homological splitting should be established as the standard splitting for L. We also
comment on how to extend it to curves other than zigzag paths.

The homological splitting we choose in this paper is very well suited for the category L. This splitting
is chosen under the expectation that HL is a full subcategory of the Fukaya category. The reader finds
the definition of the homological splitting in section 10.3, and comments on why this particular splitting
is suited in section F.3.2. In fact, the homological splitting is both the right splitting to simplify the
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α3

α3

(a) The simplest tree detects the disk.

α3

α1

(b) The simplest tree detects no disk.

Figure F.4: Detecting disks with Kadeishvili trees

calculations, and the right one to prove HLq equal to the relative Fukaya category without further hassle
with gauge equivalence. There is no doubt that the homological splitting is the best one for L.

It is clear that minor modifications to the homological splitting are possible. Most obviously, in the
splitting we present the author is free to choose where to put identity and co-identity morphisms of each
zigzag path (the choices of a0 and α0). A few actual changes are also possible: For instance, regard a
transversal odd crossing between two zigzag paths. In the words of section 10.3, this corresponds to a B
situation. Our choice of cohomology basis elements consists of the angle sum (−1)#α3+1α3+(−1)#α4α4.
Choosing (−1)#α1+1α1 + (−1)#α2α2 instead is however possible just as well.

While basis morphisms in the Fukaya category have a unique “location” in the surface, cohomology
basis morphisms of TwGtlQ can only imitate this behavior. Basis morphism in the Fukaya category lie
on arcs of Q, while odd cohomology basis morphisms of TwGtlQ can only lie around punctures of Q.
The quality of this imitation determines whether the minimal model computation yields a result in the
desired shape or not.

In our choice of homological splitting, we consistently choose α3 + α4 for every single B situation.
This has the advantage that many immersed disks with intersection points h1, . . . , hN between zigzag
paths can be imitated by the simplest possible Kadeishvili tree πµ(βN , . . . , β1), where β1, . . . , βN denote
the corresponding B situation cohomology morphisms of type α3 + α4. More specifically, the simplest
Kadeishvili tree is capable of capturing immersed disks where two situation B crossings follow each other
within one arc distance. An illustration is shown in Figure F.4a.

If we were to choose α3 + α4 for some B situations and α1 + α2 for other B situations, the simplest
Kadeishvili tree would not recognize disks where B situations follow each other rapidly. An example is
shown in Figure F.4b. That figure depicts three curves and a piece of an immersed disk between them.
For the upper B situation the morphism h1 = α3 + α4 was chosen as cohomology basis representative,
while for the lower B situation the morphism h2 = α1 + α2 was chosen. It is impossible to form a disk
µ≥3(. . . , h2, h1, . . .) in TwGtlq Q. We conclude that a random choice of cohomology basis morphisms
makes the minimal model calculation much less tractable.

Let us put the versatility of our homological splitting in the context of result components. Any choice
of homological splitting provides an automatic notion of result components. To exploit result components
for a minimal model calculation, one however needs to enumerate all possible result components by some
target set, see section F.4.4. This enumeration by a target set is not automatic and depends on situational
insight.

In our case of computing HL, the notion of result components only needs to be tweaked minimally in
order to map bijectively to the target set of immersed disks. Upon choice of a very different homological
splitting for L, a notion of result components is still automatic, but the collection of result components
does not biject to immersed disks anymore. Instead, it will biject to a complicated set of disk-like objects
that requires far more detailed analysis. In other words, our choice of homological splitting has the
advantage that its result components have a very simple target set.

It seems possible to find a homological splitting also objects in TwGtlQ which are not zigzag paths.
The idea is still to sort elementary morphisms into different kinds of situations and to define the spaces H
and R explicitly. The difficulty is however that general string and band objects have no limit with regards
to the kind of angles they involve between two arcs. This means it is hard to find explicit cohomology
representatives and to check that it concerns a homological splitting.
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F.4.4 The notion of result components

Result components are a technical tool serving as the main carrier of information in this paper, see
section 12. The idea is easy: A term like (3x + 5y)(2x + 3y) has the result components 6x2, 9xy, 10xy,
15y2. In other words, there are four distinct result components, even though the result can be abbreviated
to only three terms. Result components provide maximum insight into part of the result instead of the
whole, and how it is obtained instead of what is obtained. In this section, we argue that result components
provide a means to analyze complicated Kadeishvili trees.

Regard a Kadeishvili tree T with N leaves and let h1, . . . , hN be inputs for the tree that lie in
cohomology. Then for every node N ∈ T , there is attached a set of result components. The set of result
components is determined from choice of result components of all children of N . In other words, result
components are an inductive notion.

Let us paraphrase how we use result components in the present paper. We map a set of result
components to “open” smooth immersed disks, which are called subdisks in section 13. This map is
defined inductively: Given a result component at a node N , it is analyzed how the result component was
obtained from result components of the node’s children. By induction hypothesis, every of the node’s
children already has a subdisk assigned. The subdisk associated with the result component at N is then
obtained by gluing together the subdisks of the children in a way specific to the type of result component.
This provides an inductively defined map from the set of result components of a Kadeishvili tree to the
set of immersed disks.

For some categories, result components are better suited than for others. If the reader suspects that
its minimal model has limited higher products, result components will not provide any use since most
Kadeishvili trees result in zero anyway. If he however suspects that the minimal model calculation will
result in a certain infinite “hierarchy” of higher products, then result components capture the higher
products effectively.

For the reader who wishes to calculate the minimal model of some A∞-category via result components,
we suggest the following roadmap:

1. Find a homological splitting of the category. Typically, cohomology representatives must be found
at the beginning and the rest space R can be accumulated on the go. The next step is to perform
a few test calculations of products µk(hk, . . . , h1), where hi are cohomology basis elements. The
typical node in a Kadeishvili tree has output covering one or multiple basis elements of R. This is
the time to start accumulating basis elements into R. The reader would then try to evaluate some
products µk(. . .) where the inputs are mixed from both cohomology and R. Which inputs from R
multiply to a nonzero product and how does the product depend on its inputs?

2. Construct a notion of result components. The exact way to do this depends on the situation. In
the easiest case, a result component would simply be defined inductively as an output term of the
evaluation of hµ at each node, or πµ at the root. For other calculations like ours, it makes sense
to distinguish or identify some output terms of hµ or πµ at every node (for example α3 and the
corresponding α4 output are always collected as a combined result component α3 + α4).

3. Analyze how result components are derived. It is by no means necessary to classify all result
components directly. Rather, it is important to classify result components into different types and
understand which result components of which type can be derived from result components of which
other types.

4. Determine a “target structure” or “target set”. The idea is to match result components with
instances of some kind of better understood structure. For example, we have identified immersed
disks as the correct target structure for result components Lq. Upon commencing this step, a vague
idea of what the target structure or target set will be may help. In either case, the target structure
becomes clearer as the application of result components proceeds.

5. Matching result components with target objects. This step is hardest. But when performed suc-
cessfully, this step ensures that the correspondence between result components and target objects
can be written down explicitly and in a recursive manner.

6. Perform an inverse construction. The idea is to classify which instances of the target structure have
been obtained via the identification. By constructing an explicit inverse mapping, it becomes clear
which target objects have been reached and which not.

The hard part always lies in identifying the correct target structure and the right identification of result
components with target objects. Depending on what is expected from the particular minimal model, it
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might be possible to interpret the structure of a given Kadeishvili tree in a geometric way, so as to guess
what the correct target object is.

The field of homological algebra requires us to perform a lot of minimal model calculations. Many
minimal model calculations can be simplified vastly by choosing a clever homological splitting. However,
minimal models are often not computed in their entirety. An example is Bocklandt’s partial computation
of Hmf(JacQ, ℓ) in [18], which is nevertheless sufficient to prove mirror symmetry for punctured sur-
faces. We are convinced that result components can facilitate the execution of complete minimal model
calculations wherever a geometric outcome is expected.

G Notation

The following is a list of heavily used notation specific to this paper:

Notation Meaning Reference

C A∞-category Definition 5.1

Cq A∞-deformation of C Definition 5.14

µq µCq
, more specifically µGtlq Q or µAddGtlq Q Definition 5.14

B deformation base Definition 5.4

m maximal ideal of B Definition 5.4

B⊗̂V completed tensor product with vector space V Definition 5.6

mV shorthand for m⊗̂V ⊆ B⊗̂V Definition 5.6

Tw Cq twisted completion of Cq Definition 5.31

Tw′ Cq liberal twisted completion of Cq Remark 5.37

H Cq minimal model of Cq Corollary 8.14

T set of Kadeishvili tree shapes Definition 8.6

NT number of internal nodes of a tree Definition 8.6

ϕ bijection Hq → B⊗̂H Definition 8.17

F : C → D A∞-functor Definition 5.17

Fq : Cq → Dq functor of deformed A∞-categories Definition 5.18

MC(L,B) Maurer-Cartan elements of DGLA/L∞-algebra Definition 5.40

MC(L,B) MC(L,B) modulo gauge equivalence/homotopy Definition 5.47

HC(C) Hochschild DGLA of C Definition 5.41

(S,M) punctured surface Definition 6.1

A arc system Definition 6.3

a arc in A Definition 6.3

h(a), t(a) puncture at head/tail of arc a Definition 6.3

α angle in A Definition 6.13

h(α), t(α) arc at head/tail of angle α Definition 6.3

Q dimer, typically geometrically consistent Definition 6.11

QM standard sphere dimer section D.2

ida arc identity section 6.4

L zigzag path Definition 6.38

L zigzag category Definition 10.5

Lq deformed zigzag category Definition 11.3

a0 identity location on zigzag path Convention 10.10

α0 co-identity location on zigzag path Convention 10.10

Pk standard k-gon section 6.5

ε elementary morphism ε : L1 → L2 section 6.9
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Notation Meaning Reference

T Kadeishvili tree shape section 8.2

T tail of a morphism ε : L1 → L2 Definition 11.9

Resultπ class of result components of π-trees Definition 13.6

DiskSL class of shapeless disks Definition 13.6

ResultCR class of CR result components Definition 13.13

ResultID class of ID result components Definition 13.13

ResultDS class of DS result components Definition 13.13

ResultDW class of DW result components Definition 13.13

DiskCR class of CR disks Definition 13.15

DiskID class of ID disks Definition 13.17

DiskDS class of DS disks Definition 13.19

DiskDW class of DW disks Definition 13.20

D subdisk mapping D : Resultπ → DiskSL Lemma 13.12

t(D) target/output morphism of disk D Definition 13.6

Abou(D) Abouzaid sign of disk D Definition 13.24

Punc(D) product of punctures covered by D Definition 13.24
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Paper III

Deformed Mirror Symmetry for

Punctured Surfaces

14 Introduction

Mirror symmetry is the quest for equivalences between Fukaya categories and categories of coherent
sheaves. Noncommutative mirror symmetry is the quest for equivalences between Fukaya categories and
categories of sheaves on noncommutative spaces. In the present paper, our starting point is noncommu-
tative mirror symmetry for punctured surfaces:

Gentle algebra
GtlQ

Matrix factorizations
mf(Jac Q̌, ℓ)[18]

∼

In the present paper, we pick one specific deformation Gtlq Q of GtlQ and find the corresponding
deformation of mf(Jac Q̌, ℓ). The result is a deformed mirror equivalence:

Deformed gentle algebra
Gtlq Q

Deformed matrix factorizations
mf(Jacq Q̌, ℓq)

∼

In what follows, we explain our quest from different perspectives. We explain the philosophy of
the specific deformation Gtlq Q, comment on the source of mirror functors from the construction of Cho,
Hong and Lau [26], and explain a bottleneck concerning the question whether the deformed Jacobi algebra
Jacq Q̌ is indeed a deformation of Jac Q̌.

Deformation theory In A∞-deformation theory one studies possible modifications of a given A∞-
structure which keep the A∞-relations intact. One possible line of study consists of formal (infinitesimally)
curved A∞-deformations. The base ring for such deformations is a local algebra B with a few additional
properties.

An interesting question arises when one is given two equivalent A∞-categories C, D and tries to
transfer a deformation from C to D. As a starting point, one is given a quasi-equivalence F : C → D
and a deformation Dq. Transferring the deformation Cq via F then entails finding a deformation Dq of
D together with a deformation Fq of F such that Fq : Cq → Dq is a functor of deformed A∞-categories.

The difficulty in transferring A∞-deformations lies in the character of A∞-theory. Indeed, both the
A∞-products of C and D and the functor F have higher components, which make it impossible to quickly
to write down the corresponding deformation Dq.

Nevertheless, it is known that a transfer of deformations along quasi-equivalences always exists. The
clue is to interpretA∞-deformations of C as Maurer-Cartan elements of the Hochschild DGLA HC(C). The
quasi-equivalence F : C → D then gives rise to a non-canonical L∞-morphism F∗ : HC(C)→ HC(D). By
applying F∗ to a given deformation Cq, viewed as Maurer-Cartan element, one obtains the corresponding
deformation Dq. While this abstract interpretation does make Dq computable, it sets the stage for the
systematic quest of deformed mirror symmetry.
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Gentle algebras A popular way of modeling wrapped Fukaya categories of punctured surfaces deploys
gentle algebras[18]. In this framework, one starts from an oriented closed surface S with a finite set of
punctures M ⊆ S. One chooses a system A of arcs which connect the punctures and divide the surface
into polygons. To an arc system, one can associate a so-called gentle algebra GtlA, reminiscent of the
classical associative gentle algebras of [5]. The gentle algebra GtlA is actually an A∞-category whose
higher products detect the topology of the punctured surface S\M . It was shown in [18] that it accurately
models the wrapped Fukaya category of (S,M).

Dimers are specific kinds of arc systems which suit the purposes of mirror symmetry. We shall consider
the specific mirror symmetry of punctured surfaces, built in [18]. This statement of mirror symmetry
entails a quasi-isomorphism F : GtlQ → mf(Jac Q̌, ℓ). The dimer Q̌ is the so-called dual dimer of Q
and can be built from Q in a combinatorical way. In contrast, the mirror functor F itself is only given
non-constructively and built in an inductive way by solving cocycle equations. Whenever we are given a
deformation Gtlq Q, it would be very hard to explicitly find the corresponding deformation of mf(Jac Q̌, ℓ).

Deformed Fukaya categories Seidel [63] has introduced the idea of deforming Fukaya categories
relative to a divisor. The idea is to introduce a formal parameter q and weight every pseudoholomorphic
disk by qs where s counts the number of intersections of the disk with the divisor. In Paper I, we
have transported this concept to the world of gentle algebras. The result is a deformation Gtlq Q, in
which every puncture comes with its own deformation parameter. Whenever a disk covers the punctures
q1, . . . , qk, the contribution of this disk is weighted by the product q1 . . . qk.

We raised the hope that our candidate deformation Gtlq Q would be the correct way to implement
Seidel’s idea on the side of gentle algebras. In Paper II, we examined this expectation and computed a part
of the A∞-structure of the derived category HTwGtlq Q. Very specifically, it concerns the subcategory
HLq ⊆ HTwGtlq Q given by the zigzag paths in Q. The result is an explicit description of the A∞-
structure of HLq in terms of certain types of immersed disks. While it is hard to determine values for
products of non-transversal sequences in the relative Fukaya category, our description of HLq determines
their values very accurately. Although our calculation is limited to the zigzag paths, we consider Paper II
a crude verification that Gtlq Q is the correct transport of Seidel’s vision to gentle algebras and can be
considered a “relative wrapped Fukaya category”.

Relative Fukaya categories have already served as A-side of mirror symmetry before. For instance,
Lekili and Perutz [46] find a commutative mirror for the relative Fukaya category of the 1-punctured torus,
apparently the first use of a relative Fukaya category in mirror symmetry. In [47], Lekili and Polishchuk
generalize this result to the case of the n-punctured torus. They depart from a finite collection of split-
generators of the Fukaya category and compute part of their deformed products in the relative Fukaya
category. Their mirror is then obtained by guessing the correct deformation on the B-side. Complete
knowledge of the products in the relative Fukaya category or even a relative wrapped Fukaya category
are not required in their approach.

Mirror functors A rich source of mirror functors is the recent construction of Cho, Hong and Lau
[26]. Their construction associates to a given A∞-category C with a suitable subcategory L ⊆ C a
Landau-Ginzburg model (JacQL, ℓ) together with an A∞-functor

F : C → MF(JacQL, ℓ).

The Cho-Hong-Lau construction can be applied to the category C = HTwGtlQ by choosing L to be the
subcategory given by so-called zigzag paths. This application yields back the original mirror symmetry
for punctured surfaces GtlQ ∼= mf(Jac Q̌, ℓ) from [18].

In the present paper, it is our aim to produce a deformation of mf(JacQ, ℓ) which corresponds to
Gtlq Q. Thanks to the Cho-Hong-Lau construction, this task becomes straightforward: The first step is
to deform the Cho-Hong-Lau construction. The result is a procedure which generates mirror functors of
the kind Cq → MF(Jacq Q

L, ℓq). The second step is to apply this deformed construction to the case of
Cq = HTwGtlq Q. The result is a quasi-isomorphism of deformed A∞-categories

Fq : Gtlq Q
∼
−→ mf(Jacq Q̌, ℓq).

In particular, the deformation mf(Jacq Q̌, ℓq) is the desired deformation of mf(Jac Q̌, ℓ) corresponding
to Gtlq Q. It is possible to describe the algebra Jacq Q̌, the potential ℓq and the mirror objects Fq(a)
explicitly. This requires heavy computations in the minimal model HTwGtlq Q which we have performed
in Paper II. Thanks to these earlier computations, we offer in the present paper an explicit description
of Jacq Q̌, ℓq and Fq(a) in terms of combinatorics in Q.
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Flatness of superpotential deformations A bottleneck in this paper is the question whether Jacq Q̌
is a (flat) deformation of Jac Q̌ as an algebra. Indeed, our deformed Cho-Hong-Lau construction leads
to a definition of Jacq Q̌ as a mere quotient of CQ̌JQ0K by certain deformed relations. A quotient by
deformed relations however need not be an algebra deformation in general. The question is whether the
specific case of Jacq Q̌ is a deformation of Jac Q̌ nevertheless. To resolve this question, we prove a flatness
result for superpotential deformations of CY3 algebras.

Our flatness result is a culmination of a long sequence of improvements in the literature. Our starting
point is the work of Berger, Ginzburg and Taillefer [11, 12] which concerns PBW deformations of CY3
algebras. Like all previous results, their work requires the superpotential W to be homogeneous. We
translate their work to the setting of formal deformations and show that the homogeneity condition is
superfluous and can be replaced by a mild boundedness condition. We obtain a flatness result for formal
deformations of CY3 algebras with nonhomogeneous superpotential. In particular, it follows from this
result that Jacq Q̌ is a flat deformation of Jac Q̌ for almost all dimers Q̌.

Ultimately, our flatness result renders the category mf(Jacq Q̌, ℓq) a deformation of mf(Jac Q̌, ℓ) and
Fq an equivalence of deformations. This proves noncommutative mirror symmetry for punctured surfaces.

Assembling deformed mirror symmetry The present paper is the final one in a series of three. We
explain here the purpose of this series, which results have been obtained in the first papers and how we
build on them in the present paper.

Our original motivation was to transport Seidel’s idea of relative Fukaya categories to the world of
gentle algebras and to use it as A-side in a deformed mirror symmetry for punctured surfaces. We realized
that an effective way of constructing the deformation of mf(Jac Q̌, ℓ) was to follow the Cho-Hong-Lau
construction, inserting the deformation Gtlq Q as an input instead of GtlQ. This approach requires an
explicit and lengthy minimal model calculation, which is the reason we distributed the material into a
series of three papers.

The first paper in the series is Paper I and concerns the deformation theory of the gentle algebras
GtlA under certain assumptions on the arc system A. One of the main results is a complete classification
of the deformations of GtlA.

The second paper in the series is Paper II and conducts all the necessary computations for applying
the Cho-Hong-Lau construction. It focuses on the case of the specific deformation Gtlq Q and defines
the category of deformed zigzag paths Lq. By means of a deformed Kadeishvili construction, it builds a
minimal model HLq for Lq. The main result is an explicit description of the deformed A∞-structure of
HLq in terms of four types of immersed disks. These four types are labeled CR, ID, DS and DW disks
and they agree precisely with the immersed disks one expects form the relative Fukaya category.

In the present paper, we tie the previous calculations together. We start by deforming the Cho-Hong-
Lau construction in general. Then, we apply this deformed construction to the special case of Gtlq Q and
obtain a deformed Jacobi algebra Jacq Q̌ and a deformed central element ℓq. Thanks to the second paper,
we have an explicit description of the A∞-structure on HLq, giving an explicit description of Jacq Q̌ and
ℓq. This description is theoretically given in terms of the CR, ID, DS and DW disks from Paper II, but
simplifies a bit in the present paper because mostly products of transversal sequences are regarded. Apart
from proving that Jacq Q̌ is indeed a deformation of Jac Q̌, simply plugging in the results of Paper II
already finishes deformed mirror symmetry.

Structure of the paper In section 15, we review A∞-categories and their deformations. We also
introduce notation and terminology for treating algebra deformations, including the m-adic topology
and flatness conditions. In section 16, we present Koszul duality and the relationship between cyclic
A∞-algebras and Calabi-Yau dg algebras. We show how to tweak Koszul duality in order to obtain
A∞-functors similar to the Cho-Hong-Lau construction. In section 17, we review dimers, gentle algebras
and mirror symmetry of punctured surfaces. In section 18, we review the definition of the category of
deformed zigzag paths Lq and description of its minimal model HLq from Paper II. In section 19, we
investigate deformations of Jacobi algebras given by deformations of the superpotential. We also consider
the specific case Jac Q̌ of Jacobi algebras of dimers. In section 20, we motivate and review the Cho-Hong-
Lau construction. We provide an explicit deformed construction and resolve a few technicalities. In
section 21, we apply the deformed Cho-Hong-Lau construction to the specific case of Gtlq Q. We provide
explicit descriptions of the deformed Jacobi algebra Jacq Q̌, the central element ℓq and the deformed
matrix factorizations Fq(a). In section H, we work out deformed mirror symmetry for the examples of
the 3-punctured sphere and a 4-punctured torus.
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15 Preliminaries on A∞-categories

In this section, we recollect background material on A∞-categories and fix notation. In section 15.1, we
recall A∞-categories, their functors, twisted completion and minimal models. In section 15.2, we recall
completed tensor products, deformations of A∞-categories and their functors. We very briefly comment
on the construction of twisted completion and minimal model for A∞-deformations from Paper II. In
section 15.3, we introduce specific terminology and properties for submodules of B⊗̂X as preparation for
section 19. In section 15.4, we recall m-adically free modules. In section 15.5, we examine variants of our
flatness condition for ideals.

15.1 A∞-categories

In this section we recall A∞-categories, completed tensor products, A∞-deformations and functors be-
tween A∞-deformations. The material is standard and can for instance be found in [16]. Throughout we
work over an algebraically closed field of characteristic zero and write C.

Definition 15.1. A (Z- or Z/2Z-graded, strictly unital) A∞-category C consists of a collection of
objects together with Z- or Z/2Z-graded hom spaces Hom(X,Y ), distinguished identity morphisms idX ∈
Hom0(X,X) for all X ∈ C, together with multilinear higher products

µk : Hom(Xk, Xk+1)⊗ . . .⊗Hom(X1, X2)→ Hom(X1, Xk+1), k ≥ 1

of degree 2 − k such that the A∞-relations and strict unitality axioms hold: For every compatible
morphisms a1, . . . , ak we have

∑

0≤j<i≤k

(−1)‖an‖+...+‖a1‖µ(ak, . . . , µ(ai, . . . , aj+1), aj , . . . , a1) = 0,

µ2(a, idX) = a, µ2(idY , a) = (−1)|a|a, µ≥3(. . . , idX , . . .) = 0.

Next we recall the additive completion Add C of an A∞-category C. This category consists of formal
sums of shifted objects. The hom space between two objects consists of matrices of morphisms between
the summands.

Definition 15.2. Let C be an A∞ category with product µC . The additive completion Add C of C is the
category of formal sums of shifted objects of C:

A1[k1]⊕ . . .⊕An[kn].

The hom space between two such objects X =
⊕
Ai[ki] and Y =

⊕
Bi[mi] is

HomAdd C(X,Y ) =
⊕

i,j

HomC(Ai, Bj)[mj − ki].

Here [−] denotes the right-shift. The products on Add C are given by multilinear extensions of

µkAdd C(ak, . . . , a1) = (−1)
∑

j<i ‖ai‖ljµkC(ak, . . . , a1).

Here each ai lies in some Hom(Xi[ki], Xi+1[ki+1]). The integer li denotes the difference ki+1−ki between
the shifts and the degree ‖ai‖ is the degree of ai as element of HomC(Xi, Xi+1).

Next we recall the twisted completion Tw C of an A∞-category C. The objects of this category are
virtual chain complexes of objects of C:

Definition 15.3. A twisted complex in C is an object X ∈ Add C together with a morphism δ ∈
Hom1

Add C(X,X) of degree 1 such that δ is strictly upper triangular and satisfies the Maurer-Cartan
equation:

MC(δ) := µ1(δ) + µ2(δ, δ) + . . . = 0.

We may refer to the morphism δ as the twisted differential. Note that the upper triangularity ensures
that this sum is well-defined. The twisted completion of C is the A∞-category Tw C whose objects are
twisted complexes. Its hom spaces are the same as for the additive completion:

HomTw C(X,Y ) = HomAdd C(X,Y ).

The products on Tw C of C are given by embracing with δ’s:

µkTw C(ak, . . . , a1) =
∑

n0,...,nk≥0

µAdd C(δ, . . . , δ︸ ︷︷ ︸
nk

, ak, . . . , a1, δ, . . . , δ︸ ︷︷ ︸
n0

).
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A functor between two A∞-categories is a mapping which matches the products of the two categories:

Definition 15.4. Let C and D be A∞-categories. Then a functor F : C → D of A∞-categories consists
of a map F : Ob(C)→ Ob(D) together with for every k ≥ 1 a degree 1− k multilinear map

F k : HomC(Xk, Xk+1)⊗ . . .⊗HomC(X1, X2)→ HomC(FX1, FXk+1)

such that the A∞-functor relations hold:

∑

0≤j<i≤k

(−1)‖aj‖+...+‖a1‖F (ak, . . . , ai+1, µ(ai, . . . , aj+1), aj , . . . , a1)

=
∑

l≥0
1=j1<...<jl≤k

µ(F (ak, . . . , ajl), . . . , F (. . . , aj2), F (. . . , aj1)).

The functor F is an isomorphism if F : Ob(C) → Ob(D) is a bijection and F 1 : HomC(X,Y ) →
HomD(FX,FY ) is an isomorphism for all X,Y ∈ C. The functor F is a quasi-isomorphism if F :
Ob(C) → Ob(D) is a bijection and F 1 : HomC(X,Y ) → HomD(FX,FY ) is a quasi-isomorphism of
complexes for every X,Y ∈ C.

Definition 15.5. When F : C → D and G : D → E are A∞-functors, then their composition is given by
GF : Ob(C)→ Ob(E) on objects and

(GF )(ak, . . . , a1) =
∑

G(F (ak, . . .), . . . , F (. . . , a1)).

Let us recall minimal models and their notation as follows:

Definition 15.6. An A∞-category C is minimal if µ1
C = 0. A minimal model of C is any minimal

A∞-category D together with a quasi-isomorphism F : D → C. A minimal model of C is generically
denoted H C.

By the famous Kadeishvili theorem, every A∞-category has a minimal model. In fact, a minimal
model can be constructed semi-explicitly by sums over trees.

15.2 Deformations of A∞-categories

In this section, we recall deformations of A∞-categories. We follow Paper II where also more detail can
be found. We start by recalling completed tensor products. Then we recall A∞-deformations and their
functors. We comment very briefly on the construction of the twisted completion and minimal models
for A∞-deformations from Paper II.

We recall now completed tensor products B⊗̂X with B a local ring and X a vector space. The letter
B will always denote a local ring with extra properties. We have decided to give this a name:

Definition 15.7. A deformation base is a complete local Noetherian unital C-algebra B with residue
field B/m = C. The maximal ideal is always denoted m.

Remark 15.8. By the Cohen structure theorem, every deformation base is of the form CJx1, . . . , xnK/I
with I denoting some ideal.

If X is a vector spaces, then B⊗̂X = lim(B/mk ⊗X) denotes the completed tensor product over C.
For simplicity, we write m

kX to denote the infinitesimal part m
kX = m

k⊗̂X ⊆ B⊗̂X. Recall that B⊗̂X
is a B-module and comes with the m-adic topology, which turns B⊗̂X into a sequential Hausdorff space.
For convenience, we may from time to time use expressions like x = O(mk) to indicate x ∈ m

kX.

Definition 15.9. A map ϕ : B⊗̂X → B⊗̂Y is continuous if it is continuous with respect to the m-adic
topologies. A map ϕ : (B⊗̂Xk)⊗ . . .⊗ (B⊗̂X1)→ B⊗̂Y is continuous if for every 1 ≤ i ≤ k and every
sequence of elements x1, . . . , x̂i, . . . , xk the map

µ(xk, . . . ,−, . . . , x1) : B⊗̂Xi → B⊗̂Y

is continuous.

Remark 15.10. Every element in B⊗̂X can be written as a series
∑∞
i=0mixi. Here mi is a sequence of

elements mi ∈ m
→∞ and xi is a sequence of elements xi ∈ X. We have used the notation mi ∈ m

→∞ to
indicate that mi ∈ m

ki for some sequence (ki) ⊆ N with ki →∞.
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Remark 15.11. Every B-linear map B⊗̂X → B⊗̂Y is automatically continuous (see Paper II for the
argument), so is every every B-multilinear map (B⊗̂Xk)⊗. . .⊗(B⊗̂X1)→ B⊗̂Y . Linear mapsX → B⊗̂Y
can be uniquely extended to B-linear maps B⊗̂X → B⊗̂Y and multilinear maps Xk ⊗ . . .⊗X1 → B⊗̂Y
can be uniquely extended to B-multilinear maps (B⊗̂Xk)⊗ . . .⊗ (B⊗̂X1)→ B⊗̂Y (see Paper II).

Remark 15.12. The leading term of a B-linear map ϕ : B⊗̂X → B⊗̂Y is the map ϕ0 : X → Y given
by the composition ϕ0 = πϕ|X , where π : B⊗̂Y → Y denotes the standard projection. If the leading
term ϕ0 is injective or surjective, then ϕ is injective or surjective itself (see Paper II for the argument).

We recall now A∞-deformations. When C is an A∞ -category, the idea is to model its A∞-deformations
on the collection of enlarged hom spaces {B⊗̂HomC(X,Y )}X,Y ∈C . Any B-multilinear product on these
hom spaces is automatically continuous. Similarly, functors of A∞-deformations will be defined as maps
between tensor products of the enlarged hom spaces and will be automatically continuous as well.

A∞-deformations of C will always be allowed to have infinitesimal curvature. The reason is that only
this way we get a homologically sensible notion: Whenever µq is an (infinitesimally) curved deformation,
then ν = µ − µq is a Maurer-Cartan element of the Hochschild DGLA HC(C). We comment on this in
more detail in Paper II.

Definition 15.13. Let C be an A∞ category with products µ and B a deformation base. An A∞-
deformation of Cq of C consists of

• The same objects as C,

• Hom spaces HomCq
(X,Y ) = B⊗̂HomC(X,Y ) for X,Y ∈ C,

• B-multilinear products of degree 2− k

µkq : HomCq
(Xk, Xk+1)⊗ . . .⊗HomCq

(X1, X2)→ HomCq
(X1, Xk+1), k ≥ 1

• Curvature of degree 2 for every object X ∈ C

µ0
q,X ∈ mHom2

Cq
(X,X),

such that µq reduces to µ once the maximal ideal m is divided out, and µq satisfies the curved A∞ (cA∞)
relations ∑

k≥l≥m≥0

(−1)‖am‖+...+‖a1‖µq(ak, . . . , µq(al, . . .), am, . . . , a1) = 0.

The deformation is unital if the deformed higher products still satisfy the unitality axioms

µ2
q(a, idX) = a, µ2

q(idY , a) = (−1)|a|a, µ≥3
q (. . . , idX , . . .) = 0.

It sometimes comes handy to work with deformations that include more objects than C does. We fix
terminology as follows:

Definition 15.14. Let C be an A∞-category. Let O be an arbitrary set of objects and F : O → Ob(C) a
map. Then the object-cloned version F ∗C of C is the A∞ -category given by object set O, hom spaces

HomF∗C(X,Y ) = HomC(F (X), F (Y )), X, Y ∈ O,

and products simply given by the same composition as in C.

An A∞-deformation of C always gives an induced deformation of F ∗C. This provides a map of Maurer-
Cartan elements MC(HC(C), B) → MC(HC(F ∗C), B). In case F is surjective, the categories C and F ∗C
are equivalent and the map of Maurer-Cartan elements becomes a bijection after dividing out gauge
equivalence. However, the map on raw Maurer-Cartan elements is not a bijection itself. After these
comments, we are ready for the following terminology:

Definition 15.15. Let C be an A∞-category and B a deformation base. Let O be an arbitrary set
and F : O → Ob C a map. An object-cloning deformation is a deformation Dq of D = F ∗C. The
object-cloning deformation is essentially surjective if F : ObD → Ob C reaches all objects of C up to
isomorphism.

We are now ready to explain the natural extension of A∞-functors to the deformed case.
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Definition 15.16. Let C,D be two A∞-categories and Cq,Dq deformations. A functor of deformed
A∞-categories consists of a map Fq : Ob(C) → Ob(D) together with for every k ≥ 1 a B-multilinear
degree 1− k map

F kq : HomCq
(Xk, Xk+1)⊗ . . .⊗HomCq

(X1, X2)→ HomDq
(FqX1, FqXk+1)

and infinitesimal curvature F 0
q,X ∈ mHom1

D(FqX,FqX) for every X ∈ C, such that the curved A∞-functor
relations hold:

∑

0≤j≤i≤k

(−1)‖aj‖+...+‖a1‖Fq(ak, . . . , ai+1, µq(ai, . . . , aj+1), aj , . . . , a1)

=
∑

l≥0
1=j1<...<jl≤k

µq(Fq(ak, . . . , ajl), . . . , Fq(. . . , aj2), Fq(. . . , aj1)).

If Cq and Dq are strictly unital, then we say Fq is strictly unital if F 1
q (idX) = idFqX for every X ∈ C and

F≥2
q (. . . , idX , . . .) = 0.

Remark 15.17. Note that the functor Fq itself is allowed to have a curvature component. The first two
curved A∞-functor relations read

F 0
q + F 1

q (µ
0
Cq,X) = µ1

Dq
(F 0
q,X),

F 1
q (µ

1
Cq
(a)) + (−1)‖a‖F 2

q (µ
0
Cq,Y , a) + F 2

q (a, µ
0
Cq,X) = µ1

Dq
(F 1
q (a)) + µ2

Dq
(F 0
q,Y , F

1
q (a))

+ µ2
Dq

(F 1
q (a), F

0
q,X), ∀ a : X → Y.

If Fq : Cq → Dq is a functor of A∞-deformations, then its leading term F : C → D is automatically a
functor of A∞-categories.

Twisted completions of A∞-deformations exist. When Cq is a deformation of C, we can form a twisted
completion Tw Cq, as we have elaborated in Paper II. This category Tw Cq is a deformation of Tw C.
The objects of Tw C are defined in terms of twisted differentials as well, but the twisted differentials do
not satisfy the Maurer-Cartan equation with respect to the deformed product µCq

. Instead, the failure
to satisfy the Maurer-Cartan equation is captured in the object’s curvature. For more details we refer to
Paper II.

Minimal models of A∞-deformations exist. When Cq is a deformation of C, we can form a minimal
model H Cq. This category H Cq is a deformation of H C. The differential and curvature of H Cq need not
vanish. Instead, H Cq carries an infinitesimal residue differential and curvature. For more details we refer
to Paper II.

15.3 Submodules of completed tensor products

We introduce here the notions of pseudoclosed and quasi-flat submodules of B⊗̂X which we use in
section 19. We also comment on intersections between submodules.

Let us start by introducing pseudoclosed submodules. The rationale is that not all B-submodules of
B⊗̂X are created equal: Some are closed under taking power series with increasing powers of m, some
are not. As preparation, we define the following notation:

Definition 15.18. Let X be a vector space and Y ⊆ B⊗̂X a subspace. Then we put

BY := Im(B⊗̂Y → B⊗̂X),

m
kY := Im(mk⊗̂Y → B⊗̂X).

Here, the maps B⊗̂Y → B⊗̂X and m
k⊗̂Y → B⊗̂X denote the multiplication maps which send for

instance b⊗ y 7→ by and m⊗ y 7→ my.

Remark 15.19. Explicitly, the spaces BY and m
kY are given by elements of B⊗̂X that can be written

respectively as

x =

∞∑

i=0

miyi ∈ B⊗̂X, mi ∈ m
→∞, yi ∈ Y,

x =
∞∑

i=0

miyi ∈ B⊗̂X, mi ∈ m
≥k,→∞, yi ∈ Y.
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Here we use the notation mi ∈ m
→∞ to indicate that there is a sequence (ki) ⊆ N converging to ∞ such

that mi ∈ m
ki . The notation mi ∈ m

≥k,→∞ indicates that we shall have ki ≥ k.

Remark 15.20. We warn that the notation BY is suggestive but should not be misunderstood. The
rationale behind the notation is that BY should contain any B-linear multiples of Y and power series of
such elements in growing m-order. We emphasize that BY is not the same as the linear span of products
b ·y for b ∈ B and y ∈ Y . Similarly, BY is not the same as the m-adic closure of this span. The analogous
warning holds for m

kY . The intention of the notation is to provide foundations for section 19.

Definition 15.21. An B-submodule M ⊆ B⊗̂X is pseudoclosed if BM ⊆M .

Example 15.22. If Y ⊆ X is a linear subspace, then B⊗̂Y ⊆ B⊗̂X is pseudoclosed. In contrast, the
B-submodule B ⊗X ⊆ B⊗̂X is not pseudoclosed if X is infinite-dimensional, since B(B ⊗X) = B⊗̂X.

Denote by B · Y ⊆ B⊗̂X the space (finitely) spanned by elements of the form by with b ∈ B and
y ∈ Y . Denote by m

k ·Y the space (finitely) spanned by elements of the form my with m ∈ m
k and y ∈ Y .

In general, the spaces BY and m
kY are not the same as B · Y and m

k · Y . Pseudoclosed submodules are
an exception:

Lemma 15.23. Let Y ⊆ B⊗̂X be a pseudoclosed B-submodule. Then BY = B · Y and m
kY = m

k · Y .

Proof. The first statement is obvious since BY ⊆ Y ⊆ B · Y . For the second statement, the idea is
to exploit the Cohen structure theorem. Write B = CJq1, . . . , qnK/I, and regard the maximal ideal
m = (q1, . . . , qn). With this in mind, we can write any element x ∈ BY as a series

x =

∞∑

i=0

mim̃iyi.

Here mi is a monomial of degree k in the variables q1, . . . , qn, the letter m̃i denotes a sequence m̃i ∈ m
→∞,

and yi ∈ Y . We conclude

x =
∑

monomials M
of degree k

M
∑

i≥0
mi=M

m̃iyi.

The outer sum is finite. For every monomial M of degree k, the inner sum is an element of Y since
Y is pseudoclosed by assumption. In conclusion, every summand of the outer sum lies in m

k · Y , and
hence x ∈ m

k · Y . We have shown that m
kY ⊆ m

k · Y . The inverse inclusion is obvious. We conclude
m
kY = m

k · Y , finishing the proof.

Example 15.24. A simple application is the case of the pseudoclosed submodule Y = BX = B⊗̂X. In
this case, the lemma states m

kX = m
k(BX) = m

k · (BX) as subsets of B⊗̂X.

Remark 15.25. We interpret Lemma 15.23 as follows: The space m
k ·Y makes only reference to the B-

module structure, while the space m
kY references a mixture of the B-module structure with the topology

of the ambient space B⊗̂X. For pseudoclosed modules, the topological part is already captured by the
algebraic structure.

We introduce now a flatness condition for B-submodules of B⊗̂X. This flatness condition is partic-
ularly relevant in section 19. To distinguish the notion from existing notions of flatness, we have chosen
to name it quasi-flatness.

Definition 15.26. A B-submodule M ⊆ B⊗̂X is quasi-flat if M ∩mX ⊆ mM .

Remark 15.27. The inverse inclusion mM ⊆M ∩mX holds automatically if M is pseudoclosed.

Lemma 15.28. Let M ⊆ B⊗̂X be a B-submodule. Assume M is quasi-flat and pseudoclosed. Let
ϕ : π(M) → M be a linear section of the projection map π : M → π(M). Then the B-linear extension
ϕ : B⊗̂π(M)→M is a B-linear isomorphism.

Proof. Injectivity follows from Remark 15.12, since the leading term is the identity. For surjectivity, let
x ∈ M . We construct sequences (xk) and (yk) such that x = x1 + . . . + xN + yN for every N ∈ N and
xk ∈ ϕ(m

kπ(M)) and yk ∈ m
k+1 ∩M .

To start with, write x = ϕ(x1)+ y1 for some x1 ∈ π(M) and y1 ∈M ∩mX. For induction hypothesis,
assume the sequences are given until index k. Then note yk ∈ M ∩ m

k+1X. By quasi-flatness, we get
yk ∈ m

k+1M . We can then write yk = xk+1 + yk+1 with xk+1 ∈ ϕ(m
kπ(M)) and yk+1 ∈ M ∩ m

k+1X.
This finishes the inductive construction of the sequences.

Finally, we have x =
∑∞
k=1 xk ∈ ϕ(B⊗̂π(M)). We have shown that ϕ is surjective. This finishes the

proof.
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The following is a useful criterion to find quasi-flat modules:

Proposition 15.29. Let B be a deformation base and X a vector space. Let M1, . . . ,Mk ⊆ B⊗̂X be
B-submodules. Then the following are equivalent:

• We have B⊗̂X =M1 ⊕ . . .⊕Mk.

• The modules Mi are all pseudoclosed and quasi-flat, and X = π(M1)⊕ . . .⊕ π(Mk).

Here π : B⊗̂X → X denotes the canonical projection map.

Proof. We first show that B⊗̂X = M1 ⊕ . . . ⊕Mk implies that all Mi are quasi-flat and X = π(M1) ⊕
. . .⊕ π(Mk). After that, we show the converse.

For the first part, assume B⊗̂X = M1 ⊕ . . . ⊕Mk. Let 1 ≤ i ≤ n. We first show that Mi is closed.
Indeed, regard the projection pi : B⊗̂X → B⊗̂X to the component Mi. This map is clearly B-linear,
hence id−pi is B-linear. By Remark 15.11, the map id−pi is continuous. The kernel of id−pi is Mi and
we conclude that Mi is closed. In particular, Mi is pseudoclosed.

Next, we show that every Mi is quasi-flat. Pick any x ∈ mX ∩Mi. Since x ∈ mX and B⊗̂X =M1 +
. . .+Mk, we can write x = y1 + . . .+ yk with yj ∈ mMj . By pseudoclosedness we have yj ∈ mMj ⊆Mj .
Since the sum M1 ⊕ . . .⊕Mk is direct and x ∈Mi, we get yj = 0 for j 6= i. We conclude x = yi ∈ mMi.
This proves every Mi quasi-flat.

Let us show that X = π(M1)+ . . .+π(Mk). Pick any x ∈ X. Since x then also lies in B⊗̂X, write x =
y1+. . .+yk with yi ∈Mi. We conclude x = π(x) = π(y1)+. . .+π(yk), therefore x ∈ π(M1)+. . .+π(Mk).
Since x was arbitrary, this shows X = π(M1) + . . .+ π(Mk).

Let us show that the sum π(M1)+ . . .+π(Mk) is direct. Assume by contradiction there is a sequence
y1, . . . , yk with yi ∈ Mi and π(y1) + . . .+ π(yk) = 0. Then π(

∑
yi) = 0, in other words

∑
yi ∈ mX. By

assumption we have B⊗̂X = M1 + . . . +Mk, in particuar mX ⊆ m(M1 + . . . +Mk). Therefore we can
write

∑
yi =

∑
zi with zi ∈ mMi. Since the sum M1 ⊕ . . .⊕Mk is direct, we have yi = zi for all i. We

conclude yi = zi ∈ mX and therefore π(yi) = 0 for all i. This shows that the sum π(M1) + . . .+ π(Mk)
is direct. The first implication is proven, finishing the first part of the proof.

For the second part of the proof, assume every Mi is pseudoclosed and quasi-flat and X = π(M1) ⊕
. . . ⊕ π(Mk). Choose a linear section π(Mi) → Mi of the projection π : Mi → π(Mi). According to
Lemma 15.28, the B-linear extension ϕi : B⊗̂π(Mi)→Mi is an isomorphism. Add up all ϕi to arrive at
the map

ϕ : B⊗̂(π(M1)⊕ . . .⊕ π(Mk))→ B⊗̂X,

(x1, . . . , xk) 7→ ϕ1(x1) + . . .+ ϕk(xk).

Note we view π(M1) ⊕ . . . ⊕ π(Mk) simply as vector space decomposition of X. The map ϕ is B-linear
and continuous. Its leading term is by construction the identity on X. Therefore ϕ is an isomorphism.

Using the auxiliary map ϕ, we get that M1 + . . . +Mk = B⊗̂X: By definition of ϕ, its image is
necessarily contained in M1 + . . .+Mk and we conclude that M1 + . . .+Mk = B⊗̂X.

Let us now show that the sum M1+ . . .+Mk is direct. Pick any sequence x1, . . . , xk such that xi ∈Mi

and x1 + . . . + xk = 0. Since ϕi surjects on Mi, write xi = ϕi(yi) with yi ∈ B⊗̂π(Mi). We get that
ϕ(y1 + . . . + yk) = 0. Since ϕ is injective, we get y1 + . . . + yk = 0, hence yi = 0 for all i. This shows
xi = ϕi(yi) = 0 and we conclude that the sum M1 ⊕ . . .⊕Mk is direct. This finishes the proof.

We finish this section by explaining a property regarding intersections of B-submodules. Whenever
X,Y ⊆ B⊗̂A are two subspaces, we may ask: Does it hold that

mX ∩mY = m(X ∩ Y ) ?

This inclusion does not hold in general, but we shall give here the best possible variant in case one of
the spaces X,Y is not deformed. Let us start with an example where the inclusion fails, as well as the
example B = CJqK.

Example 15.30. Regard B = CJp, qK and A = C[X]. Let X = span(px) ⊆ B⊗̂A and Y = span(qx) ⊆
B⊗̂A. Then pqx lies in mX ∩mY , but not in m(X ∩ Y ).

Example 15.31. Regard B = CJqK and arbitrary A. Let X,Y ⊆ B⊗̂A be pseudoclosed. We claim that
(q)X ∩ (q)Y ⊆ (q)(X ∩ Y ). Indeed, pick z ∈ (q)X ∩ (q)Y . By definition of (q)X, we can write

z =
∑

q≥1,→∞xi = q
∑

q→∞xi, z =
∑

q≥1,→∞yi = q
∑

q→∞yi.
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Since X and Y are pseudoclosed, the two sums
∑
q→∞xi and

∑
q→∞yi lie in X and Y , respectively.

Write z = qz′. Then both sums are equal to z′, hence z′ lies in the intersection of X and Y . We conclude
z = qz′ ∈ q(X ∩ Y ). This shows (q)X ∩ (q)Y ⊆ (q)(X ∩ Y ).

Let us now make a more general statement. The idea is to keep one of the spaces X,Y non-deformed.
In other words, one of them is simply of the form B⊗̂V for some subspace V ⊆ A. Let us make this
precise as follows:

Proposition 15.32. Let X be a vector space and B a deformation base. Let V ⊆ X be a subspace and
M ⊆ B⊗̂X a pseudoclosed B-submodule. Then

m
kM ∩ (mkV +m

k+1X) ⊆ m
k(M ∩ (V +mX)) +m

k+1M.

Proof. In the first part of the proof, we illustrate the statement in case of B = CJqK. In the second part,
we build a commutative diagram which allows us to deduce the shape of elements of mkM ∩mkV without
choice of basis for B. In the third part, we conclude the desired statement.

For the first step, let us illustrate the case of B = CJqK. Let qkx ∈ (q)kM ∩ ((q)kV + (q)k+1X).
In particular, we have qkx ∈ (q)kM , hence x ∈ M since M is pseudoclosed. We also have qkx ∈
(q)kV +(q)k+1X, hence x ∈ CJqKV +(q)X. Together this shows qkx ∈ qk(M ∩ (V +(q)X)). We conclude
that in case B = CJqK the claimed statement holds.

For the second step, we build the following commutative diagram of linear maps:

m
k⊗̂M m

k

m
k+1 ⊗

X
V

m
kX

m
k+1X+m

kV

ϕ = πi⊗(πV ◦π0)

π◦c ψ

∼

Let us explain the maps. The horizontal map ϕ performs a projection to m
k/mk+1 on the first tensor

factor and an inclusion of M into B⊗̂X followed by projection to X and projection to X/V on the second
tensor factor. The left vertical map π ◦ c consists of the inclusion M ⊆ B⊗̂X on the second tensor factor,
followed by multiplication with the first tensor factor and projection to the quotient by m

k+1X + m
kV .

The right vertical map ψ is induced from the multiplication map.
We claim that the diagram is commutative and ψ is an isomorphism. To see commutativity, pick an

element m⊗ x with m ∈ m
k and x ∈ M . Under ϕ it is sent to [m]⊗ [x], which under ψ is sent to [mx].

Under π◦c, the element m⊗x is also sent to [mx]. This demonstrates commutativity. To see that ψ is an
isomorphism, recall that m

kX and m
k⊗̂X are isomorphic by means of the splitting map m

kX → m
k⊗̂X.

This splitting map induces a map

m
kX

m
k+1X +m

kV
→

m
k

m
k+1
⊗
X

V
.

This map is an inverse of ψ. This shows that ψ is an isomorphism.
For the third part of the proof, we conclude the desired inclusion. Let us start with the remark that

the kernel of ϕ is equal to

Ker(ϕ) = m
k+1⊗̂M +m

k⊗̂(M ∩ (V +mX)). (15.1)

Let now
∑∞
i=0mixi ∈ m

kM ∩ (mkV +m
k+1X) with mi ∈ m

≥k,→∞ and xi ∈M . Then

(π ◦ c)
(∑

mi ⊗ xi
)
=
∑

miπ0(xi) = 0.

Since π ◦ c = ψϕ and ψ is injective, we get ϕ(
∑
mi ⊗ xi) = 0. Therefore

∑
mi ⊗ xi lies in the kernel of

ϕ, which explicitly reads

∑
mi ⊗ xi ∈ m

k+1⊗̂M +m
k⊗̂(M ∩ (V +mX)).

Contracting the tensors gives

∑
mixi ∈ m

k+1M +m
k(M ∩ (V +mX)).

Since
∑
mixi was arbitrarily chosen, this finishes the proof.
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15.4 m-adically free modules

In this section, we recall the notion of m-adically free modules and their use in A∞-deformations. The
reason is that in section 20, it comes very handy to use A∞-deformations modeled on B-modules which
are only noncanonically isomorphic to B⊗̂HomC(X,Y ). In this section, we first recall the definition of
m-adically free modules, then tie it back to quasi-flat and pseudoclosed modules. After that, we provide
the definition of A∞-deformations that makes use of m-adically free modules.

We start by recalling the notion of m-adically free modules. We pick the following definition, as in
[73]:

Definition 15.33. A B-module M is m-adically free if there is a vector space X such that M ∼= B⊗̂X
as B-modules.

An abstract B-module M enjoys an m-adic topology given by the neighborhood basis x+m
k ·M for

every x ∈M and k ∈ N. We claim that when M ∼= B⊗̂X, then this topology is automatically compatible
with the m-adic topology on B⊗̂X:

Lemma 15.34. Let M be a B-module and ϕ : M → B⊗̂X be a B-linear isomorphism. Then ϕ is a
homeomorphism.

Proof. By bijectivity and B-linearity of ϕ we have ϕ(mk ·M) = m
k · (B⊗̂X). By Lemma 15.23, we have

m
k · (B⊗̂X) = m

kX. This shows that ϕ is a homeomorphism.

Lemma 15.35. Let M,N be m-adically free B-modules and ϕ : M → N a B-linear map. Then ϕ is
automatically continuous.

Proof. Since ϕ is B-linear, we have ϕ(mk ·M) ⊆ m
k ·N . This proves ϕ continuous.

The ad-hoc quasi-flatness condition M ∩ mX ⊆ mM is related to m-adic freeness. While the former
is a condition that makes explicit reference to the ambient space, the latter depends only on the abstract
B-module structure. Both are not equivalent, but we provide here the closest tie we can get.

Proposition 15.36. Let M ⊆ B⊗̂X be a B-submodule. Then the following are equivalent:

• M is quasi-flat and pseudoclosed.

• There is a B-linear isomorphism B⊗̂Y →M with injective leading term Y → X.

Proof. AssumeM is quasi-flat and pseudoclosed. Then according to lemma we get a B-linear isomorphism
B⊗̂π(M)

∼
−→M with leading term the identity. This shows the claim, in particular M is m-adically free.

Conversely, assume M is m-adically free, presented by an injective leading term. Then we have an
isomorphism ϕ : B⊗̂Y → M ⊆ B⊗̂X. The map is automatically continuous. We show that M is
pseudoclosed: Let

∑
mixi be a series with mi ∈ m

→∞ and xi ∈ M . Then write xi = ϕ(yi). We get∑
miyi ∈ B⊗̂Y and ϕ(

∑
miyi) =

∑
miϕ(yi) =

∑
mixi. This shows

∑
mixi ∈ Im(ϕ) = M . Hence M

is pseudoclosed.
To show that M is quasi-flat, pick an element of M ∩mX, written in the form ϕ(x) ∈M ∩mX with

x ∈ B⊗̂Y . We claim x ∈ mY . Write x = y+ z with y ∈ Y and z ∈ mY . Then ϕ(x) = ϕ(y)+ϕ(z). Hence
ϕ(y) ∈ mX. In particular y vanishes under the leading term πϕ : Y → X. By assumption, the leading
term is injective and we get y = 0. This shows ϕ(x) = ϕ(z) ∈ mM . This shows M ∩mX ⊆ mM .

Remark 15.37. It is not true that M ⊆ B⊗̂X is quasi-flat and pseudoclosed if and only if it is m-adically
free. For instance, let X = span(x1, x2) and B = CJqK. Regard the space M = (q)x1 + CJqKx2. The
module M is m-adically free through the isomorphism B⊗̂X → M given by x1 7→ qx1 and x2 7→ x2.
However M is not quasi-flat since qx1 ∈ ((q)X ∩M) \ (q)M .

One can use m-adically free modules to model A∞-deformations. To be more precise, we have so
far defined A∞-deformations as (infinitesimally curved) A∞-structures on the completed tensor product
B⊗̂HomC(X,Y ). It is possible to also allow arbitrary m-adically free B-modules instead, under the
condition that the quotient by m is HomC(X,Y ). We greatly profit from this variant in section 20.

Definition 15.38. Let C be a Z-graded (or Z/2Z-graded) A∞ -category. A loose A∞ -deformation of
C is a collection of m-adically free Z-graded (or Z/2Z-graded) B-modules {HomCq

(X,Y )}X,Y ∈C together
with B-multilinear maps µk≥0

q of degree 2 − k satisfying the curved A∞-relations, together with linear

isomorphisms ψX,Y : HomCq
(X,Y )/(m · HomCq

(X,Y ))
∼
−→ HomC(X,Y ) for every X,Y , such that C is

obtained by dividing out m and identification via {ψX,Y }.
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Definition 15.39. Let C,D be two A∞-categories and Cq,Dq be loose A∞-deformations. A functor of
loose A∞-deformations Fq : Cq → Dq consists of maps Fq : Ob C → ObD together with B-multilinear
maps F k≥0

q such that Fq satisfies the curved A∞-functor relations and F 0
q,X ∈ m ·HomCq

(Fq(X), Fq(X))
for every X ∈ C. The leading term of Fq is the functor F : C → D obtained by dividing out m and
identification via {ψX,Y }. We may also say that Fq is a deformation of F in this case.

Remark 15.40. In contrast to A∞-deformations modeled on B⊗̂HomC(X,Y ), a loose A∞-deformation
does not directly give a Maurer-Cartan element of the Hochschild DGLA HC(C). Instead, one first needs
to make a choice of B-linear identification ϕX,Y : HomCq

(X,Y ) ∼= B⊗̂HomC(X,Y ) for every X,Y ∈ C.
Of course, the identification needs to be compatible with ψX,Y in the sense that its leading term must
be the identity when identifying HomCq

(X,Y )/(m · HomCq
(X,Y )) via ψX,Y . In yet other words, the

following diagram needs to commute:

HomCq
(X,Y ) B⊗̂HomC(X,Y )

HomCq
(X,Y )/(m ·HomCq

(X,Y )) HomC(X,Y ).

ϕX,Y

π π

ψX,Y

Once choices have been made, one obtains a Maurer-Cartan element µq,ϕ ∈ MC(HC(C), B). Let us
explain why two different choices ϕ,ϕ′ yield gauge-equivalent Maurer-Cartan elements: Both ϕX,Y and
ϕ′
X,Y have leading term the identity when identified via ψX,Y , hence the composition

ϕ′
X,Y ◦ ϕ

−1
X,Y : B⊗̂HomC(X,Y )→ B⊗̂HomC(X,Y )

has leading term the identity (without any identification). This shows that the two Maurer-Cartan
elements µq,ϕ and µq,ϕ′ are related by the strict gauge functor ϕ′ ◦ ϕ−1 : (B⊗̂C, µq,ϕ)→ (B⊗̂C, µq,ϕ′).

In analogy to Definition 15.15, we fix the following terminology:

Definition 15.41. Let C be an A∞-category and B a deformation base. Let O be an arbitrary set and
F : O → Ob C a map. A loose object-cloning deformation is a loose deformation Dq of D = F ∗C.
The loose object-cloning deformation is essentially surjective if F : ObD → Ob C reaches all objects
of C up to isomorphism.

15.5 On the quasi-flatness condition

In this section, we present two alternative ways to formulate the quasi-flatness condition that we studied
in section 15.3. This serves as a preparation for later use in section 19. The two alternatives for the
quasi-flatness inclusion M ∩mA ⊆ mM read as follows:

Definition 15.42. Let M ⊆ B⊗̂X be a B-submodule. Then M satisfies the

• weak quasi-flatness inclusion if for every k ≥ 1 we have M ∩m
kX ⊆ m

kM +m
k+1X.

• strong quasi-flatness inclusion if for every k ≥ 1 we have M ∩m
kX ⊆ m

kM .

We claim these alternative inclusions are indeed equivalent to quasi-flatness and moreover that any
quasi-flat B-submodule M ⊆ B⊗̂X is automatically a closed subspace of B⊗̂X:

Proposition 15.43. Let X be a vector space and B a deformation base. Let M ⊆ B⊗̂X be a B-
submodule. If M is pseudoclosed, then the following are equivalent:

• M is quasi-flat.

• M is quasi-flat and closed.

• M satisfies the weak quasi-flatness inclusion.

• M satisfies the strong quasi-flatness inclusion.

In the following lemmas, we provide a proof of Proposition 15.43.

Remark 15.44. The proofs are easier to understand if one has the example of B = CJqK in mind. This
case has the practical property that any element x ∈ mX can automatically be written as qy for some
y ∈ X. If for example it now becomes known that x ∈ mM , then it is immediate that y ∈ M . To see
this, write x ∈ (q)M as a power series in elements of M and divide by q:

qy = x =

∞∑

n=0

qn+1xn = q ·
∞∑

n=0

q→∞xn, hence y =

∞∑

n=0

qnxn ∈M.



247

Lemma 15.45. Let M ⊆ B⊗̂X be a pseudoclosed B-submodule. If M satisfies the weak quasi-flatness
inclusion, then M is quasi-flat.

Proof. It is our task to show M ∩ mX ⊆ mM . Pick x ∈ M ∩ mX. Iterating the weak quasi-flatness
inclusion in combination with pseudoclosedness gives

x ∈ M ∩mX ⊆ mM +M ∩m
2X ⊆ mM +m

2M +M ∩m
3X ⊆ . . . .

More precisely, write x = x1 + y1 with x1 ∈ mM and y1 ∈ M ∩ m
2X. Then write y1 = x2 + y2 with

x2 ∈ m
2M and y2 ∈M ∩m

3X. Continuing this way, we obtain sequences (xk) and (yk) with the property
that

x = (x1 + . . .+ xN ) + yN , xk ∈ m
kM, yk ∈M ∩m

k+1X.

Letting N →∞ we get within B⊗̂X that

x =

∞∑

k=1

xk.

In principle, the right-hand side converges within the completion of M . Since we assumed that M is
pseudoclosed, we can however do better: Every summand xk lies in m

kM and summation starts at k = 1.
Therefore the infinite sum lies in mM . We conclude that x ∈ mM . This shows M ∩mX ⊆ mM .

Lemma 15.46. Let M ⊆ B⊗̂X be a quasi-flat B-submodule. Then M satisfies the strong quasi-flatness
inclusion.

Proof. The proof consists of two parts: We first prove the auxiliary inclusion m
kM ∩ m

k+1X ⊆ m
k+1M

for every k ≥ 1. Second, we derive the strong quasi-flatness inclusion by iterating the auxiliary inclusion.
First, let us prove the auxiliary inclusion. Denoting by π : B⊗̂X → X the standard projection, regard

the subspace π(M) ⊆ X. We can choose a B-linear continuous map ϕ : B⊗̂π(M) → M with leading
term the identity. Then any x ∈M can be written as x = ϕ(y) + z with z ∈M ∩m ⊆ mM .

Let x ∈ m
kM ∩mk+1X. Then we can write x = ϕ(y) + z with y ∈ m

kπ(M) and z ∈ m
k+1M . We get

that y − ϕ(y) ∈ m
k+1X and ϕ(y) = x− z ∈ m

k+1X. Summing up, we get y ∈ m
k+1X ∩m

kπ(M), hence
y ∈ m

k+1π(M). In consequence, we have ϕ(y) ∈ m
k+1M . Finally, we get x = ϕ(y) + z ∈ m

k+1M . This
proves the auxiliary inclusion.

Finally, we combine quasi-flatness with iterated applications of the auxiliary inclusion:

M ∩m
kX = (M ∩mX) ∩m

kX

⊆ (mM ∩m
2X) ∩m

kX

⊆ (m2M ∩m
3X) ∩m

kX

⊆ . . . ⊆ m
kM.

This finishes the proof.

Lemma 15.47. Let M ⊆ B⊗̂X be a pseudoclosed and quasi-flat B-submodule. Then M is closed.

Proof. Let
∑
xn be a series of elements xn ∈ M that converges in B⊗̂X. Then xn ∈ m

→∞X ∩M . By
the strong quasi-flatness inclusion, we get xn ∈ m

→∞M . The limit of the series hence lies in BM . Since
M is pseudoclosed, the limit lies in M . We conclude that M is closed.

The combination of the above lemmas proves Proposition 15.43. For B-submodules, pseudoclosed
and quasi-flat implies closed, and closed implies pseudoclosed. However closed does not imply quasi-flat,
for instance the submodule M = CJqKx1 + (q)x2 ⊆ CJqK⊗̂ span(x1, x2) is closed but not quasi-flat.

16 Preliminaries on Koszul duality

In the present section, we present Koszul duality as a preparation for section 20. Koszul duality is a
phenomenon which provides a rich source of nontrivial A∞-functors by matching A∞-algebras and dg
algebras. Classical Koszul duality involves only ordinary (associative, non-dg) algebras and makes best-
effort statements on their homological properties. Modern Koszul duality concerns A∞-algebras and dg
algebras and largely recovers classical Koszul duality from a more elegant description.
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A-side B-side

Augmented A∞-algebra DG algebra

A = (C id⊕CX1 ⊕ . . .⊕ CXn, µA) A! = (C〈〈x∨1 , . . . , x
∨
n〉〉, µ

∨
A)

Cyclic A∞-structure Calabi-Yau dg structure

Degree n Dimension n

A-coderivation Linear map

m : T (Ā[1])⊗M → T (Ā[1])⊗N m∨ :M → N ⊗A!

A-module Twisted complex

(M,µM ) F (M) = (M ⊗A!, µ∨
M,0)

Technically, modern Koszul duality consists of dualizing the A∞-axioms on vector space level. The
results can be described both abstractly in terms of dual vector spaces and the bar construction, as well
as concretely by means of a choice of basis and a construction of dg structure on a power series algebra. In
the present section, we follow the works of Ginzburg [34], Van den Bergh [70, 13], Lu-Wu-Palmieri-Zhang
[51] and [14].

In section 16.1, we recall A∞-modules and their categories. In section 16.2, we recall Koszul duality
between augmented A∞-algebras and dg algebras and the Koszul duality functor. In section 16.3, we recall
several classical properties of Koszul duality and explain how they survive in modern Koszul duality. In
section 16.4, we recall Calabi-Yau dg algebras. In section 16.5, we focus on ordinary (non-dg) Calabi-Yau
algebras. In section 16.6, we focus on the special case of ordinary Calabi-Yau algebras of dimension n = 3.
In section 16.7, we recall the notion of cyclic A∞-algebras and explain the correspondence between cyclic
A∞-algebras and dg Calabi-Yau algebras via Koszul duality. In section 16.8, we tweak Koszul duality
statements in order to motivate the Cho-Hong-Lau construction.

Remark 16.1. In this section, we partially follow the dg sign convention rather than the A∞-sign
convention:

µ1(µ2(f, g)) = µ2(µ1(f), g) + (−1)|f |µ2(f, µ1(g)),

µ2(f, µ2(g, h)) = µ2(µ2(f, g), h).

The precise distribution is as follows: The A∞-algebra A follows A∞-signs. The dg algebra A!, the dg
categories ModfdrightA and TwA! as well as the dg functor F : ModfdrightA → TwA! follow dg signs. We
amend all signs to the A∞-setting in section 20.

16.1 Modules

In this section, we recall modules over A∞-algebras. We start by recalling the interpretation of A∞-
structures as coderivations on the bar construction. Then we recall A∞-modules and categories of A∞-
modules.

We start by recalling the tensor coalgebra construction. We denote by [1] the left-shift.

Definition 16.2. Let A be an A∞-algebra. Regard the tensor algebra

T (A[1]) =
⊕

n∈N

A[1]⊗n.

The canonical coproduct ∆ : T (A[1])→ T (A[1])⊗ T (A[1]) is given by

∆(ak ⊗ . . .⊗ a1) =
∑

0≤i≤k

(ai ⊗ . . .⊗ a1)⊗ (ak ⊗ . . .⊗ ai+1). (16.1)

A coderivation m : T (A[1])→ T (A[1]) is a linear map satisfying the co-Leibniz rule

∆ ◦m = (m⊗ id+ id⊗m) ◦∆.

Here the maps m⊗ id and id⊗m bear the sign given by the Koszul sign rule:

(m⊗ id)((ak ⊗ . . .⊗ a1)⊗ (bl ⊗ . . .⊗ b1)) = m(ak ⊗ . . .⊗ a1)⊗ (bl ⊗ . . .⊗ b1)

(id⊗m)((ak ⊗ . . .⊗ a1)⊗ (bl ⊗ . . .⊗ b1)) = (−1)‖a1‖+...+‖ak‖(ak ⊗ . . .⊗ a1)⊗m(bl ⊗ . . .⊗ b1).
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Remark 16.3. The A∞-product µ on A can be interpreted as a coderivation µA : T (A[1]) → T (A[1])
given by

µA(ak ⊗ . . .⊗ a1) =
∑

0≤j<i≤k

(−1)‖a1‖+...+‖aj‖ak ⊗ . . .⊗ µ(ai, . . . , aj+1)⊗ . . .⊗ a1.

The A∞-relations for µ are equivalent to the condition µ2
A = 0. One easily checks that µA is indeed a

coderivation with respect to the coproduct ∆. This check explains the awkward flip used in (16.1). If
one uses “Polish notation” µ(a1, . . . , ak) instead of µ(ak, . . . , a1), one can avoid this flip (see [62, 26]).

Definition 16.4. Let A be an A∞-algebra. Then the bar construction BA is the dg coalgebra structure
on T (A[1]) given by the canonical coproduct ∆ together with the coderivation µA.

Modules over dg algebras comes with only an action map A ⊗M → A and a differential M → M .
When A is an A∞-algebra, one allows the action maps to have higher components. For sake of section 16.2,
we restrict here to defining right A-modules. Left A-modules are defined analogously.

Definition 16.5. Let A be an A∞-algebra. Then a right A-module is a graded vector space M together
with a degree 1 map µ :M⊗T (A[1])→M of satisfying the A∞-relations when combined with the product
µ of A in a suitable way:

∑

0≤i≤k

(−1)‖a1‖+...+‖ai‖µ(µ(m, ak, . . . , ai+1), ai, . . . , a1)

+
∑

0≤j<i≤k

(−1)‖a1‖+...+‖aj‖µ(m, ak, . . . , ai+1, µ(ai, . . . , aj+1), aj , . . . , a1) = 0.

We shall only regard unital A-modules, in the sense that µ(m, id) = m and µ≥3(m, . . . , id, . . .) = 0.

An A-module can be captured elegantly as a coderivation, comparable to the way that the A∞-product
on A can be captured via a coderivation:

Definition 16.6. Let A be an A∞-algebra and M a graded vector space. Then we regard the comodule
map ∆M :M ⊗ T (A[1])→ T (A[1])⊗ (M ⊗ T (A[1]) given by

∆M (m⊗ ak ⊗ . . .⊗ a1) =
∑

0≤i≤k

(ai ⊗ . . .⊗ a1)⊗ (m⊗ ak ⊗ . . .⊗ ai+1).

A map f :M ⊗ T (A[1])→ N ⊗ T (A[1]) is a coderivation if

∆N ◦ f = (id⊗f) ◦∆M .

In the context of coderivations, we denote by µA also the map M ⊗ T (A[1])→M ⊗ T (A[1]) given by

µA(ak ⊗ . . .⊗ a1 ⊗m) =
∑

0≤j<i≤k

(−1)‖a1‖+...+‖aj‖ m⊗ ak ⊗ . . .⊗ µ(ai ⊗ . . .⊗ aj+1)⊗ . . .⊗ a1.

Remark 16.7. Whenever f :M⊗T (A[1])→ N⊗T (A[1]) is a coderivation, we can consider its projection
to N which we denote by f0 :M ⊗ T (A[1])→ N . Conversely, if f0 :M ⊗ T (A[1])→ N is a graded linear
map, we can turn it into a coderivation f : M ⊗ T (A[1]) → N ⊗ T (A[1]). The precise correspondence
between f and f0 reads

f(m⊗ ak ⊗ . . .⊗ a1) =
∑

0≤i≤k

(−1)|f0|(‖a1‖+...+‖ai‖)f0(m⊗ ak ⊗ . . .⊗ ai+1)⊗ ai ⊗ . . .⊗ a1.

In terms of Definition 16.6, a right A-module is simply a coderivation µM :M ⊗ T (A[1])→M ⊗ T (A[1])
of degree 1 such that (µM + µA)

2 = 0. The use of the letter µA is clearly an abuse of notation, but we
expect no confusion to arise.

Capturing an A-module in terms of a coderivation µM makes it particularly straightforward to define
a category of A-modules:

Definition 16.8. Let A be an A∞-algebra. Then ModfdrightA is the dg category of finite-dimensional
right A-modules, with structure specified as follows:
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• The hom space HomModfd
right A

(M,N) is the space of coderivations M ⊗ T (A[1])→ N ⊗ T (A[1]).

• The product µ2
Modfd

right A
is ordinary composition.

• The differential measures failure to be a module morphism:

µ1
Modfd

right A
(f) = (µA + µN ) ◦ f − (−1)|f |f ◦ (µA + µM ).

Remark 16.9. It is readily checked by hand that µ1
Modfd

right A
(f) is a coderivation if f is a coderivation.

Bimodules are another important tool in homological algebra. They can be defined in a way analogous
to left or right A-modules, see for instance [62, Section 2]. We come back to bimodules in the dg case in
section 16.4.

16.2 Koszul duality

In this section, we recapitulate Koszul duality as a preparation to the Cho-Hong-Lau construction. Koszul
duality is a construction connecting an A∞-algebra A with a dg algebra A!, its Koszul dual. Surprisingly,
this construction also induces a correspondence between A∞-modules over A and twisted complexes over
A!:

F : ModfdrightA −−−−−→ TwA!.

Our aim is to recall as fast as possible that Koszul duality produces functors. For further details we refer
to [51] and [16, Section 12.5].

Definition 16.10. An augmented A∞ -algebra is an A∞-algebra A with a decomposition A = Ā⊕C id
such that µ(ak, . . . , a1) ∈ Ā whenever a1, . . . , ak ∈ Ā.

Remark 16.11. If A is an augmented A∞-algebra, many constructions for A can be carried out by
working with the “augmented” tensor coalgebra T (Ā[1]) instead of the full tensor coalgebra T (A[1]). For
instance, to define an A-module it suffices to provide the map T (Ā[1])⊗M →M instead of T (A[1])⊗M →
M since we only work with unital modules.

The canonical coproduct ∆ : T (Ā[1]) → T (Ā[1]) ⊗ T (Ā[1]) and for a graded vector space M the
comodule map ∆M : T (Ā[1]) ⊗M → T (Ā[1]) ⊗ T (Ā[1]) ⊗M are defined as in the non-augmented case,
this time restricting to T (Ā[1]) instead of T (A[1]).

Remark 16.12. If M is a graded vector space, we denote its graded dual vector space by M∨. The dual
of T (Ā[1]) is equal to

T (Ā[1])
∨
=

∞∏

n=0

(Ā[1]
∨
)⊗n.

Here we make the identification that reverses the order of tensor components:

V ∨
1 ⊗ . . .⊗ V

∨
k

∼
−−−−−→ (Vk ⊗ . . .⊗ V1)

∨
,

ϕ1 ⊗ . . .⊗ ϕk 7−−−−−→ (−1)
∑

1≤s<t≤k |ϕs||ϕt|[(xk ⊗ . . .⊗ x1) 7→ ϕ1(x1) . . . ϕk(xk)].
(16.2)

The dual of a map m : T (Ā[1])→ T (Ā[1]) has the shape m∨ : T (Ā[1])
∨
→ T (Ā[1])

∨
.

Definition 16.13. Let A be a finite-dimensional augmented A∞-algebra. Then its Koszul dual A! is
the dg algebra given by

A! = T (Ā[1])
∨
.

Upon the identification of (16.2), the product on A! is defined as the standard product on ̂T (Ā[1]
∨
). The

differential on A! is given by

dv = (−1)|v|+1v ◦ µA, ∀v ∈ T (Ā[1])
∨
= HomC(T (Ā[1]),C).

Here µA : T (Ā[1])→ T (Ā[1]) denotes the product of A.

Example 16.14. Pick a basis x1, . . . , xk for A. Then we have the dual elements x∨i of degree |x∨i | =
1− |xi|. Multiplication within A! can be performed simply as x∨i · x

∨
j = x∨i x

∨
j . To interpret this element

as element of T (Ā[1])
∨

, we have to apply the sign flip from (16.2):

x∨i x
∨
j = (−1)|x

∨
i ||x∨

j |(xj ⊗ xi)
∨
.
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Here we have written (xj ⊗ xi)
∨

for the element of A! which sends the element xj ⊗ xi to 1 and all other
basis tensors to zero. Now write the product of A as

µl(xil , . . . , xi1) =
∑

1≤j≤k

cjil,...,i1xj .

Then

dA!(x∨j ) = (−1)|x
∨
j |+1

∑

l≥1
1≤il,...,i1≤k

cjil,...,i1(xil ⊗ . . .⊗ xi1)
∨

= (−1)|x
∨
j |+1

∑

l≥1
1≤il,...,i1≤k

cjil,...,i1(−1)
∑

1≤s<t≤l |x
∨
is

||x∨
it
| x∨i1 . . . x

∨
il
.

Remark 16.15. The Koszul dual A! is indeed a dg algebra. Abstractly speaking, the dual of the operator
∆ is the ordinary product ∆∨ : T (Ā[1])

∨
⊗ T (Ā[1])

∨
→ T (Ā[1])

∨
. Dualizing µ2

A = 0 gives (µ∨
A)

2 = 0 and
dualizing the co-Leibniz rule for µA with respect to ∆ gives the Leibniz rule for µA with respect to ∆∨.
The signs can be checked by hand.

Definition 16.16. Let A be an augmented A∞-algebra. Let M and N be graded vector spaces and
f : M ⊗ T (Ā[1]) → N a linear map. Then the Koszul transform of f is the partial dual map
f∨ :M → N ⊗A!. It is a graded linear map with characterizing property

∀m ∈M, a ∈ T (Ā[1]) : 〈f∨(m), a〉 = f(m⊗ a).

Here 〈−,−〉 liberally denotes the standard pairing between T (Ā[1])
∨

and T (Ā[1]), in this case as map

〈−,−〉 : (N ⊗ T (Ā[1])
∨
)⊗ T (Ā[1])→ N.

We copy Definition 15.2 and adapt it slightly to the dg case.

Definition 16.17. Let D be a dg algebra. Then the category AddD is the category of formal shifted
sums of copies of D with hom spaces given as spaces of matrices with entries D. The differential µ1

AddD

and product µ2
AddD are the linear and bilinear extension of differential and product of D, with a sign

change. On single matrix entries, the sign change is as follows:

µ1
AddD(a) = (−1)k−ldDa, ∀a : D[k]→ D[l],

µ2
AddD(a, b) = (−1)|a|D(k−l)ab, ∀a : D[l]→ D[m], b : D[k]→ D[l].

Definition 16.18. Let D be a dg algebra. Then a twisted complex over D is an element X ∈ AddD
together with an element δ ∈ End1AddD(X) such that δ is upper triangular and satisfies the Maurer-Cartan
equation:

µ1
AddD(δ) + µ2

AddD(δ, δ) = 0.

The differential and product on TwD follow the sign rule

µ1
TwD(f) = µ1

AddD(f) + µ2
AddD(δ, f) + (−1)|f |+1µ2

AddD(f, δ),

µ2
TwD(f, g) = µ2

AddD(f, g).

The product µ2
AddD is comparable to a matrix product and similarly µ1

AddD acts as entry-wise dif-
ferential. As preparation for the Koszul duality functor, we prove a few properties regarding the Koszul
transform. We show that the Koszul transform of f ◦ g agrees with the matrix product µ2

AddD of f∨ and
g∨ and that taking the Koszul transform of f ◦ µA amounts to taking the entry-wise differential µ1

AddD

of f∨. The precise statement is as follows:

Lemma 16.19. Let A be a finite-dimensional augmented A∞-algebra. Let f :M⊗T (Ā[1])→ N⊗T (Ā[1])
and g : L⊗ T (Ā[1])→M ⊗ T (Ā[1]) be coderivations. Then

µ2
AddD(f

∨
0 , g

∨
0 ) = (f ◦ g)0

∨
(16.3)

µ1
AddD(f

∨
0 ) = (−1)|f |+1(f ◦ µA)0

∨
. (16.4)
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Proof. The simplest way to evaluate both statements is by choosing bases for A, L, M and N . Let
X,Y ∈ T (Ā[1]) be basis elements homogeneous with respect to both tensor degree and ‖ · ‖Ā[1]. Let
εL ∈ L and εM ∈ M and εN ∈ N be further basis elements. Let f and g be given coderivations. They
are determined solely by their first component f0 and g0. Since the statement is linear in f and g, we
may assume that g0(εL ⊗X) = εM and f0(εM ⊗ Y ) = εN and that f0 and g0 vanish on all other basis
elements for L⊗ T (Ā[1]) and M ⊗ T (Ā[1]). The Koszul transforms of f , g read

f∨(εM ) = εN ⊗ Y
∨,

g∨(εL) = εM ⊗X
∨.

Let us now show (16.3). We note that (f ◦ g)0 vanishes on all basis elements, except

(f ◦ g)0(εL ⊗X ⊗ Y ) = (−1)|g|‖Y ‖f(g(εL ⊗X)⊗ Y ) = (−1)|g||Y
∨|εN .

Therefore (f ◦ g)∨ and f∨ · g∨ vanish on all basis elements of L, except

(f ◦ g)∨(εL) = (−1)|g||Y
∨|εN ⊗ (X ⊗ Y )

∨

= (−1)|g||Y
∨|+|X∨||Y ∨|εN ⊗ Y

∨X∨

= (−1)(|εL|−|εM |)|Y ∨|εN ⊗ Y
∨X∨

= (−1)(|εL|−|εM |)|Y ∨|(f∨ · g∨)(εL)

= µ2
AddD(f

∨, g∨)(εL).

In the third row we have used that |g|+ |εL| = |X
∨|+ |X∨|. This proves (16.3).

We now prove (16.4). It is our aim to compute the composition (f ◦ µA)0 = f0 ◦ µA. Since f0
vanishes on all basis elements except εM ⊗Y and (16.4) is linear in µA itself, we may simply assume that
µA(εM ⊗ Z) = εM ⊗ Y for some basis element Z ∈ T (Ā[1]) and µA vanishes on all other basis elements.
Then (f ◦ µA)0 vanishes on all basis elements of L⊗ T (Ā[1]), except

(f ◦ µA)0(εM ⊗ Z) = f0(εM ⊗ Y ) = εN .

We see that (f ◦ µA)0
∨

vanishes on all basis elements of M , except

(f ◦ µA)0
∨
(εM ) = εN ⊗ Z

∨

= (−1)|Y
∨|+1εN ⊗ dY

∨

= (−1)|f |+1µ1
AddD(f

∨)(εM ).

In the last row, we have used that |εM |+ |f | = |εN |+ |Y
∨|. This finishes the proof.

Remark 16.20. In Lemma 16.19, it is essential that f and g be coderivations. For instance, µA :
M ⊗ T (Ā[1]) → M ⊗ T (Ā[1]) is not a coderivation on its own and in fact its zeroth component µM,0

vanishes, while a composition f ◦ µA may again have nonvanishing zeroth component and therefore
nonvanishing Koszul transform.

In Corollary 16.21, we recall the Koszul duality functor between modules over A and twisted complexes
over A!. The idea is to apply “Koszul transform” the action map of every module. The construction is
functorial, therefore gives rise to a dg functor.

Corollary 16.21. Let A be a finite-dimensional augmented A∞-algebra. Then the following defines a
dg functor:

F : ModfdrightA −−−−−→ TwA!,

(M,µM ) 7−−−−−→ (M ⊗A!, µ∨
M,0),

f −−−−−→ f∨0 .

We call F the Koszul duality functor of A.

Proof. There are three items to check. First, we show that µ∨
M,0 satisfies the Maurer-Cartan equation.

Then, we check that F preserves differential and product. We start with the Maurer-Cartan equation:

µ1
AddA!(µ

∨
M,0) + µ2

AddA!(µ
∨
M,0, µ

∨
M,0) = (µM,0 ◦ µA)

∨
+ (µM,0 ◦ µM )

∨

= (µM ◦ µA + µM ◦ µM + µA ◦ µM )0
∨
= 0.
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In the second row, we have used that (µA ◦ µM )0 = 0. Next, for every coderivation f : M ⊗ T (Ā[1]) →
N ⊗ T (Ā[1]) we have

F (µ1(f)) = ((µN + µA) ◦ f − (−1)|f |f ◦ (µM + µA))0
∨

= (µN ◦ f)0
∨ − (−1)|f |(f ◦ µM )0

∨ − (−1)|f |(f ◦ µA)0
∨

= µ2
AddA!(µ

∨
N,0, f

∨
0 )− (−1)|f |µ2

AddA!(f
∨
0 , µ

∨
M,0) + µ1

AddA!(f
∨
0 )

= µ1
TwA!(F (f)).

If additionally g : L⊗ T (Ā[1])→M ⊗ T (Ā[1]) is a coderivation, then

F (µ2(f, g)) = F (f ◦ g) = (f ◦ g)0
∨
= µ2

AddA!(f
∨, g∨) = µ2

TwA!(F (f), F (g)).

This shows that F is a dg functor and finishes the proof.

Remark 16.22. Strictly speaking, the object F (M) = (M ⊗A!, µ∨
M,0) only becomes a twisted complex

upon choice of a graded basis for M . Furthermore, µ∨
M,0 need not be an upper triangular matrix. However,

if Ā is concentrated in positive degrees, then sorting the basis elements of M in order of descending degree
makes µ∨

M,0 upper triangular.

16.3 Classical Koszual duals

In this section, we comment on the relations of the modern with the classical Koszul dual construction.
Classical Koszul duality is namely a phenomenon known for ordinary algebras and we recall here its
typical properties: First, the double Koszul dual (A!)! is A again. Second, the Koszul dual algebra
is formal. Third, the Koszul algebra is the Ext algebra of its simple module C = A/Ā. In the present
section, we recall these statements in the classical context and recall how they translate to modern Koszul
duality. A valuable source is [51].

Koszul duality has classically been a correspondence between Koszul algebras, a class of ordinary
algebras with quadratic relations:

Ordinary algebra
V⊗V
R = C〈X,Y 〉

(XY−Y X)

Ordinary algebra
V ∨⊗V ∨

R⊥ = C〈X,Y 〉
(X2,Y 2,XY+Y X)

Koszul

The relations on either side are the “orthogonal complement” of the relations on the other side along
the pairing (V ⊗ V )⊗ (V ∨ ⊗ V ∨) → C. In particular, classical Koszul duality is an involution from the
beginning.

Koszul duality for A∞-algebras is not a one-way street either. If A is an augmented finite-dimensional
A∞-algebra, we regard the double dual (A!)!. It is possible that this dg algebra is quasi-isomorphic to A
itself. However, the double Koszul dual construction applies vector space duals twice so that finiteness
conditions are required to match A exactly with (A!)!.

A sufficient finiteness criterion can be formulated if one assumes that the A∞-algebra A has an
additional grading, also referred to as Adams grading. The direct sum decomposition A = C id⊕Ā
is supposed to be compatible and the products µk are assumed to be homogeneous with respect to the
Adams grading. One then says that A is Adams connected if the homogeneous part of Ā with respect
to any Adams degree j ∈ Z is finite-dimensional and vanishes either for all j ≤ 0 or all j ≥ 0 [51]. This
connectedness assumption is a sufficient finiteness criterion and ensures that the double Koszul (A!)! is
quasi-isomorphic to A again:

Theorem 16.23 ([51]). Let A be an augmented A∞-algebra. If A is Adams connected, then (A!)! and
A are quasi-isomorphic as A∞-algebras.

The classical Koszul dual is automatically an ordinary graded algebra, without the need to pass to
cohomology. From a modern perspective, Koszul duals are dg algebras and only passing to cohomology
HA! and forgetting the A∞-structure gives an ordinary graded algebra. Koszul algebras are certain types
of algebras distinguished by the property that their Koszul dual A! tends to be a formal dg algebra.
This way, one can forget the higher structure on HA! and recover classical Koszul duality. For sake of
completeness, we recall the definition here:
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Definition 16.24 ([9]). A graded associative algebra A is Koszul if it is positively graded A =
⊕

i≥0A
i,

we have A0 = C id and C = A/
⊕

i>0A
i as an A-module has a resolution of graded A-modules

. . .→ P 2 → P 1 → P 0 → A→ 0

in which every P i is generated by its degree i component: P i = AP ii .

In [51] a precise criterion was given for formality:

Theorem 16.25 ([51, Corollary 2.7]). Let A be an (a, b)-generated Koszul algebra in the sense of [51,
Definition 2.6]. Then we have an A∞-quasi-isomorphism A! ∼= H0A!.

Remark 16.26. Classical Koszul duality is full of correspondences between types of algebras. Folk-
lore statements include that Koszul algebras correspond to Koszul algebras, Gorenstein corresponds to
Gorenstein, Artin-Schelter regular corresponds to Frobenius [51, Corollary D, E].

Remark 16.27. The classical analog of TwH0A! is Perf H0A!. This is the reason why Koszul duality is
classically formulated as triangulated equivalence between categories of the form DModA and Perf H0A!,
see for instance [51, Theorem B]. These classical Koszul duality functors are typically complicated for
the reason that they do not take the possible higher structures on HA! into account. In the classical
world, this is “solved” by restricting to Koszul algebras. Thanks to modern Koszul duality, it is possible
to recover classical Koszul duality from the functor ModfdA → TwA!. The idea is to replace A! by its
zeroth cohomology, which is an ordinary algebra. Abstractly, we aim for a functor TwA! → TwH0A!

in order to precompose it with the Koszul duality functor ModfdA → TwA!. We follow this route in
section 16.8.

Another classical statement of Koszul duality is that A! can be interpreted as Ext algebra of the
simple module C = A/Ā of A. As we recall in Lemma 16.28, this is also the case if A is an A∞-algebra.
One can alternatively use this description of A! as defining property. With regards to notation, let A be
an augmented A∞-algebra. Then we denote by C the simple right A-module C = A/Ā. Its action map
C⊗ T (Ā[1])→ C is simply zero. In these terms, A! is just the dg algebra HomrModfdA(C,C):

Lemma 16.28. Let A be an augmented A∞-algebra. Then we have an isomorphism of dg algebras

A! ∼= HomModfd
right A

(C,C).

Proof. This follows easily from Corollary 16.21. Indeed, the Koszul duality functor F sends the simple
module C to the twisted complex (A!, 0) ∈ TwA! and therefore establishes a map between the two dg
endomorphism algebras. It is easy to see that F is fully faithful. Since the endomorphism algebra of
(A!, 0) is just A!, we are done.

Remark 16.29. Similar to Lemma 16.28, let (M,µM ) be a finite-dimensional right A-module. Then we
have an isomorphism of right A!-modules

M ⊗A! ∼= HomModfd
right

(C,M).

The differential on M ⊗ A! is induced from induced from ModfdrightA and the action of A! is by (signed)

right-multiplication. The action of A! on HomModfd
right

(C,M) is by composing with A! ∼= HomModfd
right

(C,C)

on the right.

16.4 Calabi-Yau algebras

In this section, we recall Calabi-Yau algebras. This class of algebras is now widely recognized as a
noncommutative analog of Calabi-Yau manifolds. The definition brings several technical difficulties and
correspondingly a wide range of adaptations and variants have been introduced in the literature. In the
present section, we follow the original definition of Ginzburg [34], in particular we focus on the dg case.

We start by recalling opposite and enveloping algebras.

Definition 16.30. Let A be a dg algebra. Then the opposite algebra Aop of A is obtained by setting
Aop = A as vector space and defining

dAop(a) = −dA(a), a ·Aop b = (−1)|a||b|ba.

The enveloping algebra Ae = A ⊗ Aop is the tensor product of A and Aop. It is an dg algebra itself
with product (a⊗ b)(c⊗ d) = (−1)|b||c|ac⊗ bd and differential d(a⊗ b) = da⊗ b+ (−1)|a|a⊗ db.
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Definition 16.31. Let A be a dg algebra. Then an A-bimodule is the same as an Ae-module. The
space A becomes naturally a bimodule over A by putting (a ⊗ b)x = (−1)|b||x|axb for a ⊗ b ∈ Aop and
x ∈ A. The space Ae is also an A-bimodule, but in two different ways. The default action is the outer
action given by

(a⊗ b).(x⊗ y) = (−1)|b||x|ax⊗ yb, a⊗ b ∈ Ae, x⊗ y ∈ Ae.

The alternative is the inner action given by

(a⊗ b).(x⊗ y) = (−1)|b||x|+|a||b|+|a||x|xb⊗ ay, a⊗ b ∈ Ae, x⊗ y ∈ Ae.

The dg category of dg modules over a dg algebra can be defined similar to the module category over
an A∞-algebra. If D is a dg algebra, we denote this dg category by ModD. It is not the same as the
ordinary category with hom spaces the morphisms of dg modules, but rather the differential measures
failure to be a dg morphism. To define ModD, one turns the dg algebra into an honest A∞ by means
of the sign flip µ1(a) = (−1)|a| and µ2(a, b) = (−1)|b|ab and then forms ModD according to the recipe
presented in section 16.1. One may express the result more explicitly which we will not attempt here.

In particular, we can form the category ModAe. When M ∈ ModAe , we can regard the hom space

MD = HomModAe(M,Ae).

For us, it is most important that MD is again a dg Ae-module, often called the dual bimodule of M .
Its differential is the differential µ1

ModAe and the Ae-action on MD is the inner action on the codomain
Ae. It is elementary to check that MD is indeed a dg module. According to Kontsevich and Soibel-
man, the bimodule AD is to be viewed as “inverse dualizing bibundle” F 7→ F ⊗ K−1

X [− dimX] of the
noncommutative manifold defined by A [42, Definition 8.1.6].

When M is a dg module, the n-th left shift M [n] also becomes an object of ModAe. Reflecting the
definition of Calabi-Yau manifolds in the commutative world, the dg algebra A is called Calabi-Yau if
the dual bimodule AD is quasi-isomorphic to a shift of A:

Definition 16.32. Let A be a dg algebra. Then A is Calabi-Yau of dimension n ≥ 1 (CYn) if AD[n]
and A are quasi-isomorphic in the category ModAe.

Remark 16.33. The original definition [34, Definition 3.2.3] requires that the quasi-isomorphism is a
self-dual morphism. Van den Bergh has shown in [70, Proposition C.1] that this condition is typically
automatic.

The definition of the hom space HomAe(A,Ae) takes the degrees of the chosen resolution of A and
the degrees of Ae into account. In particular, requiring HomAe(A,Ae) and A[n] to be quasi-isomorphic
cannot be easily translated into a property regarding resolutions on A. If A is however an ordinary
algebra (concentrated in degree zero), then the definition simplifies as follows:

Lemma 16.34 ([34, (3.2.5)]). Let A be an associative algebra which has a finite projective A-bimodule
resolution of finitely generated bimodules. Then A is Calabi-Yau of dimension n ≥ 1 if and only if

HHk(A,Ae) ∼=

{
A if k = n,

0 else.
(16.5)

Here HHk(A,Ae) is equipped again with the inner A-bimodule action and the isomorphism is meant as
A-bimodules.

Proof. By definition HHk(A,Ae) is the cohomology of HomAe(A,Ae), together with the additional A-
bimodule action. We now prove both directions.

If A is CYn then HomAe(A,Ae) and A[n] are quasi-isomorphic as objects of ModAe. There exist
closed morphisms f and g between them and a morphism h of degree −1 such that fg = id+d(h).
In particular f and g define quasi-inverse morphisms of complexes and we conclude the cohomology of
HomAe(A,Ae) is A, concentrated in degree n.

Conversely, assume (16.5) holds. The conclusion is a general statement regarding complexes. Let P •

be a complex with homology concentrated in a single degree, namely ϕ : A
∼
−→ Hk P . Then there is a

quasi-isomorphism ψ : A → P • of complexes given by a 7→ ϕ(a) ∈ Hk P ⊆ P k. This map is indeed
a map of chain complexes since the differential on A and on the image ψ(A) vanishes. The map is a
quasi-isomorphism since on cohomology this map is just ϕ. This finishes the proof.
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Remark 16.35. In contrast to dg algebras, two A∞-algebras can not be tensored easily to form a tensor
A∞-algebra. Instead, the construction is difficult and has attracted various literature [49, 55]. This
includes an advanced construction of the tensor product A⊗Aop as A∞-algebra.

This way, A ⊗ Aop itself becomes an A-bimodule. This construction should not be confused with
the naive bimodule action of A mentioned in [56, Theorem 1.8]. In this naive action, A acts on the two
tensor components of the graded vector space A ⊗ Aop separately. In the present section, we avoid all
difficulties by restricting to the case of A being a dg algebra whenever we need the algebra Ae or A⊗Aop

as A-bimodule.

In the definition of a category of modules ModA, one is not limited to choosing the specific resolution
T (A[1]) ⊗ M of M . Instead one may choose an arbitrary “projective replacement”. In case A is an
A∞-algebra, this is a topic of research, but if A is a dg algebra, then the correct notion of “projective
replacement” is to be K-projective:

Definition 16.36 ([51, Section 4.2]). Let A be a dg algebra. Then a dg module P is K-projective
if the dg hom space HomModA(P,Q) is acyclic whenever Q is an acyclic dg module. A K-projective
replacement of M ∈ ModfdA is a K-projective dg module P together with a quasi-isomorphism P →M .

Remark 16.37. Keller shows in [41, Section 3.2] that K-projective replacements can be found by re-
solving a module into a complex of so-called dg-projective modules. A module P is called dg-projective
if it is a cofibrant object with respect to the projective model structure on the category of dg categories.
Explicitly, P is dg-projective if for every surjective quasi-isomorphism L։M , every morphism P →M
factors through L.

Remark 16.38. The hom spaces in ModfdA enjoy various names in the literature, thanks to the fact
that their cohomology can also be built as derived hom functor. Generally, the cohomology hom spaces
H• HomModfd A(M,N) may be denoted RHom•

A(M,N) or Ext•A(M,N). When M = N , the dg hom space
HomModfd A(M,M) is actually a dg algebra itself and its minimal model becomes an A∞-algebra. This
A∞-algebra is commonly denoted RHom•

A(M,M) as well, despite the fact that classical derived hom
functors do not retain homotopy information.

Remark 16.39. If A is a dg algebra, then the Hochschild cohomology HH•(A,M) with coefficients in
an A-bimodule M is by definition equal to H• HomModAe(A,M).

16.5 Van den Bergh and Serre duality

In this section, we recall Van den Bergh and Serre duality for ordinary (non-dg) Calabi-Yau algebras.
As it turns out, the Calabi-Yau property for ordinary algebras is closely related to having a self-dual
bimodule resolution. This fact has been observed and exploited in [14].

Definition 16.40 ([14]). Let A be an algebra and 0→ Pn → . . .→ P 0 → A be a projective A-bimodule
resolution of A by finitely generated bimodules. Then P • is a self-dual resolution if HomAe(P •, Ae) ∼=
Pn−• as complexes of A-bimodules:

0 HomAe(P 0, Ae) . . . HomAe(Pn, Ae) 0

0 Pn . . . P 0 0

∼ ∼

Lemma 16.41. If A has a selfdual projective bimodule resolution of length n ≥ 1 then A is CYn.

Proof. Let P • be a selfdual bimodule resolution. By definition, the Hochschild cohomology HHk(A,Ae)
is the homology in degree k of the complex HomAe(P •, Ae). By selfduality, this homology is just the
homology in degree n− k of P •, which is A if k = n and zero otherwise. This shows that A is CYn.

A bimodule resolution of A gives rise to resolutions for all left and right A-modules. The idea is to
tensor the resolution on the right or left side with M , respectively:

Lemma 16.42 ([12, Lemma 2.4]). Let A be an algebra and P • → A a projective bimodule resolution.
Let M be a left A-module. Then P • ⊗AM →M is a resolution for M .

Van den Bergh duality is a Poincaré-style theorem for Hochschild homology and cohomology of CYn
algebras. This duality was first observed in [13] and we recall it as follows:
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Theorem 16.43 ([13]). Let A be a CYn algebra. If A has a finite projective resolution of finitely
generated bimodules, then

HHk(A,M) ∼= HHn−k(A,M).

Proof. We recall here the proof in the easy case where A has a selfdual resolution P •. We compute

HHk(A,M) = Hk HomAe(P •,M)

= Hk
(
HomAe(P •, Ae)⊗Ae M

)

= Hk(Pn−• ⊗Ae M) = HHn−k(A,M).

As we recapitulate in Lemma 16.44, a CYn algebra has the property that the n-th shift is a Serre
functor for its derived category. In [14], CYn algebras were precisely defined by this characteristic
property. It is unclear to which extent the definitions are equivalent.

Lemma 16.44 ([12, Proposition 2.3]). Let A be an algebra with a finite projective resolution of finitely
generated bimodules. If A is CYn, then for all finite-dimensional A-modules M,N there are natural
isomorphisms of graded vector spaces

Ext•A(M,N)
∨ ∼= Extn−•

A (N,M).

Proof. We recall here the proof from [12]. The first step of the proof is to realize that thanks to
Lemma 16.42, ExtkA(M,N) equals the Hochschild cohomology HHk(A,HomC(M,N)):

ExtkA(M,N) = Hk HomA(P
• ⊗M,N) = Hk HomAe(P •,HomC(M,N)) = HHk(A,HomC(M,N)).

Here HomC(M,N) is the A-bimodule with the left factor acting on N and the right factor acting on M :
(aϕb)(m) = aϕ(bm).

The second step is to show HHk(A,M∨) ∼= HHk(A,M)
∨

for finite-dimensional A-bimodules M . Here
the vector space dual M∨ is also an A-bimodule by letting the left factor act from the right on M and
the right factor act from the left on M , explicitly (aϕb)(m) = ϕ(bma). We compute

HHk(A,M∨) = Hk HomAe(P •,HomC(M,C)) = HomC(P
• ⊗Ae M,C) = HHk(A,M)

∨
.

Combining the first two steps with Van den Berg duality, we conclude

ExtkA(M,N) ∼= HHk(A,HomC(M,N))

= HHk(A,HomC(N,M)
∨
)

∼= HHk(A,HomC(N,M))
∨

∼= HHn−k(A,HomC(N,M))
∨

∼= Extn−kA (N,M)
∨
.

This finishes the proof.

Remark 16.45. The duality between the two Ext spaces can also be interpreted as a pairing

〈−,−〉 : Ext•A(M,N)× Extn−•
A (N,M)→ C.

This pairing can also be expressed by means of the traces TrM , TrN on Ext•A(M,M) and Ext•A(N,N) as

〈x, y〉 = TrN (x ◦ y) = (−1)|x||y| TrM (y ◦ x), x ∈ Ext•A(M,N), y ∈ Extn−•
A (N,M).

Here ◦ denotes the composition of extensions, equivalently the product of HModA. The trace TrM :
Ext•A(M,M) → C is induced from the trace on the complex HomA(P

• ⊗M,P • ⊗M) which computes
Ext•(M,M). The correct signs were computed in [14, Appendix].
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16.6 Jacobi algebras

In this section, we recall characterizations of ordinary (non-dg) CY3 algebras. The core idea is that
most CY3 algebras are the Jacobi algebra of a quiver with superpotential. Conversely, most quivers with
superpotential gives rise to a CY3 algebra. In the present section, we recall the precise criteria from
[14]. In particular, we recall superpotentials and their associated Jacobi algebras as well as a candidate
bimodule resolution for Jacobi algebras. This section serves as a direct preparation for section 19.

We start by fixing terminology for cyclic elements of quiver algebras as follows:

Definition 16.46. Let Q be a quiver. A path in Q is a cycle if it starts and ends at the same vertex. If
p is a cycle in Q, we denote by pcyc ∈ CQ the sum of its cyclic permutations. We extend this assignment
linearly to CQ and denote it by p 7→ pcyc as well. An element W ∈ CQ is cyclic if it lies in the image
of this map. Explicitly, W is cyclic if it is a linear combination of cycles whose coefficients are invariant
under cyclic permutation:

W =
∑

cycles ak...a1

λak...a1ak . . . a1, with ∀i = 1, . . . , k : λak...a1 = λai−1...ai+1ai .

A superpotential on a quiver Q is defined as a cyclic element W ∈ CQ which is a linear combination
of paths of length at least two:

Definition 16.47. A superpotential is a cyclic element W ∈ CQ≥2. Its relations are the elements

∂aW =
∑

paths ak...a1
with ak=a

λak...a1ak−1 . . . a1, a ∈ Q1.

Its Jacobi algebra is given by

Jac(Q,W ) =
CQ

(∂aW )
.

Here (∂aW ) denotes the two-sided ideal generated by the partial derivatives ∂aW for a ∈ Q1.

Remark 16.48. A typical assumption in the literature is that the paths are of length at least three. In
fact, length two term gives rise to a single arrow being contained in one relation ∂aW . The effect is that
this arrow is killed in the Jacobi algebra.

The original paper of Ginzburg [14] formulated the expectation that all CY3 algebras “appearing in
nature” are Jacobi algebras of quivers with superpotential. This expectation was largely verified in [14],
with the core result that a quiver algebra with graded relations which is CY3 is necessarily of the form
Jac(Q,W ):

Theorem 16.49 ([14, Theorem 3.1]). Let Q be a quiver and let A = CQ/I be the quotient by a
finitely generated graded ideal I ⊆ CQ≥2. If A is CY3, then there exists a superpotential W such that
CQ/I ∼= Jac(Q,W ).

The idea of the proof is to explore the structure of I in terms of resolutions for the simple modules of
A. These first bits of these resolutions are standard and do not depend on the ideal I. In contrast, the
last bits depend on I but can be guessed by consideration on the dimension of the Ext spaces based on
the assumption that A is CY3.

Conversely, not every Jacobi algebra is CY3. There is however a precise criterion due to [14] as well.
The criterion is formulated in terms of a “candidate” bimodule resolution for A. We start with the
following notation:

Definition 16.50. Let W ∈ CQ≥2 be a superpotential. Then the CQ0-bimodule generated by W in CQ
is denoted

W = CQ0WQ0 =
⊕

v∈Q0

CvWv ⊆ CQ.

The relations space is denoted
R = span{∂aW | a ∈ Q1}.

To introduce the candidate bimodule resolution, let Q be a quiver, W ∈ CQ≥3 a superpotential. Let
us temporarily write A = Jac(Q,W ) for the Jacobi algebra. The candidate bimodule resolution has the
shape

0→ A ⊗
CQ0

W ⊗
CQ0

A
g1
→ A ⊗

CQ0

R ⊗
CQ0

A
g2
→ A ⊗

CQ0

CQ1 ⊗
CQ0

A
g3
→ A ⊗

CQ0

A→ A→ 0. (16.6)
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Remark 16.51. The maps in the sequence (19.1) are described as follows:

• For the map g1, let w =
∑
i∈I riai =

∑
j∈J birj ∈W , where all ai an bi are arrows and the ri, rj ∈ R

are compatible elements. The map g1 sends the element 1⊗ w ⊗ 1 to

g1(1⊗ w ⊗ 1) =
∑

i∈I

1⊗ ri ⊗ ai −
∑

j∈J

bj ⊗ rj ⊗ 1.

• For the map g2, let r ∈ R and for d ≥ 0 write r =
∑
i∈Id

p
(d)
i a

(d)
i q

(d)
i ∈ R, where p

(d)
i are paths of

length d and a
(d)
i are arrows. The map g2 sends the element 1⊗ r to

g2(1⊗ r ⊗ 1) =
∑

d≥0

∑

i∈Id

p
(d)
i ⊗ a

(d)
i ⊗ q

(d)
i .

• The map g3 is given by 1⊗ a⊗ 1 7→ a⊗ 1− 1⊗ a.

• The fourth map is simply the contraction map.

The sequence (19.1) is clearly a chain complex. Whether or not it is exact is an indicator on whether
A is CY3 or not:

Theorem 16.52 ([14, Theorem 4.3]). Let Q be a quiver and W ∈ CQ≥3 a superpotential. Then the
algebra Jac(Q,W ) is CY3 if and only if the sequence (16.6) is a bimodule resolution for A.

16.7 Cyclic A∞-algebras

In this section, we recall the correspondence of cyclic A∞-algebras and Calabi-Yau dg algebras via Koszul
duality. In Lemma 16.44 and 16.28, we have already seen that A! is the endomorphism algebra of the
simple module C and that modules over a CYn algebra enjoy Serre duality of degree n. This is a strong
indication that HA! has a cyclic structure of degree n. As we recall in this section, this is the norm and
cyclic A∞-algebras correspond to Calabi-Yau algebras under Koszul duality:

A
Cyclic

A!

Calabi-Yau
Koszul

In this section, we start by recalling the notion of cyclic A∞-algebras. Then we explain that their
Koszul duals are so-called deformed dg-preprojective algebras, which are Calabi-Yau. This explains
the correspondence of cyclic A∞-algebras and Calabi-Yau dg algebras via Koszul duality. Our primary
reference is [70]. We start by recalling cyclic A∞-algebras, a generalizations of Frobenius algebras:

Definition 16.53. Let A be an A∞-algebra. Then A is cyclic of degree n if it is equipped with a bilinear
nondegenerate pairing 〈−,−〉 : A×A→ C of degree −n such that 〈x, y〉 = (−1)|x||y|〈y, x〉 and

〈µk(ak+1, . . . , a2), a1〉 = (−1)‖ak+1‖(‖ak‖+...+‖a1‖)〈µk(ak, . . . , a1), ak+1〉.

Remark 16.54. The pairing is a noncommutative and categorical manifestation of a symplectic form.
This is one of the reasons that cyclic A∞-algebras are dominant in the theory of Fukaya categories. In
our context, the notion of cyclic Fukaya categories is reserved for the A-side of mirror symmetry, while
Calabi-Yau algebras are reserved for the B-side of mirror symmetry.

When discussing Koszul duality for cyclic A∞-algebras, we frequently need to choose a basis compat-
ible with the pairing 〈−,−〉. We recall this piece of linear algebra as follows:

Lemma 16.55. Let V be a finite-dimensional graded vector space over C and 〈−,−〉 : V × V → C a
nondegenerate bilinear form of degree −n with 〈x, y〉 = (−1)|x||y|〈y, x〉. Then there is a graded basis for
V in which 〈−,−〉 takes the form

〈−,−〉 =




Ik

±Ik

Il

−Im

Im



, (16.7)

±Ik = diag((−1)(n+1)|x1|, . . . , (−1)(n+1)|xk|).
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Here k = dimV<n/2 and the first k basis elements x1, . . . , xk can be freely chosen. The matrix Il appears
only if n is even and n/2 is even. The symplectic part consisting of Im and −Im only appears if n is even
and n/2 is odd. In these cases we have l = dimVn/2 and m = dimVn/2/2, respectively.

Proof. Let x1, . . . , xk be a given graded basis for V<n/2. The restricted pairing 〈−,−〉 : V<n/2×V>n/2 → C

gives an isomorphism ϕ : V>n/2
∼
−→ V ∨

<n/2 and the basis x1, . . . , xk gives rise to a dual basis x∨1 , . . . , x
∨
i ∈

V ∨
<n/2. Pick x∗j ∈ V>n/2 such that ϕ(x∗j ) = x∨j . Then

〈xi, x
∗
j 〉 = ϕ(x∗j )(xi) = x∨j (xi) = δij , 〈x∗j , xi〉 = (−1)(n−|xj |)|xi|δij = (−1)(n+1)|xi|δij .

Picking x1, . . . , xk, x
∗
1, . . . , x

∗
k as first part of the basis sets up the first diagonal block of the matrix.

If n is odd, then V = V<n/2 ⊕ V>n/2 and we are done. If n is even and n/2 is even, then 〈−,−〉 is a
nondegenerate symmetric bilinear form on Vn/2 and we can find a basis in which 〈−,−〉 : Vn/2×Vn/2 → C

is the identity matrix. If n is even and n/2 is odd, then 〈−,−〉 : Vn/2 × Vn/2 → C is a symplectic form
on Vn/2 and we can choose a symplectic basis. This finishes the proof.

Definition 16.56. Let V be a finite-dimensional graded vector space over C and 〈−,−〉 : V × V → C a
nondegenerate bilinear form of degree −n. Choose a basis for V in which 〈−,−〉 takes the shape (16.7):

x1, . . . , xk, x
∗
1, . . . , x

∗
k if n odd,

x1, . . . , xk, x
∗
1, . . . , x

∗
k, xk+1, . . . , xk+l if n even, n/2 even,

x1, . . . , xk, x
∗
1, . . . , x

∗
k, xk+1, . . . , xk+m, x

∗
k+1, . . . , x

∗
k+m if n even, n/2 odd.

Then we call the pair of sequences

x1, . . . , xk and x∗1, . . . , x
∗
k if n odd,

x1, . . . , xk, xk+1, . . . , xk+l and x∗1, . . . , x
∗
k, x

∗
k+1 := xk+1, . . . , x

∗
k+l := xk+l if n even, n/2 even,

x1, . . . , xk, xk+1, . . . , xk+m and x∗1, . . . , x
∗
k+m if n even, n/2 odd

a basis with dual basis for V via 〈−,−〉.

Remark 16.57. For any i we have |x∗i | = n− |xi|, regardless of whether n is odd or even.

Van den Bergh investigated the correspondence between cyclic A∞-algebras and Calabi-Yau dg alge-
bras via Koszul duality in [70]. The technical core result is a structure characterization of Calabi-Yau
dg algebras. Roughly speaking, a dg algebra is CYn if it is weakly equivalent to a so-called deformed
dg-preprojective algebra Π(Q,n,W ) for some quiver Q and superpotential W ∈ CQ≥3. Here W is re-
quired to satisfy {W,W} = 0 with respect to the so-called necklace bracket {−,−}, on which we will not
elaborate here. We recall the construction of the algebras Π(Q,n,W ) as follows:

Definition 16.58. Let Q be a graded quiver, n ≥ 3 an integer and W ∈ CQ≥3 a superpotential
homogeneous of degree −n + 3 with respect to the grading on Q. Assume that W is “graded cyclic”,
instead of cyclic. Assume {W,W} = 0 with respect to the necklace bracket. Let Q̃ be the double quiver,
obtained from Q by inserting for every arrow a an arrow a∗ in opposite direction. The arrow a∗ is assigned
degree −n+2−|a|Q. In the special case where an arrow a is a loop with odd degree |a|Q = (2−n)/2, no

arrow a∗ is adjoined and one puts a∗ = a. Let Q̄ be the quiver obtained from Q̃ by additionally inserting
on every vertex a loop zi of degree 1− n. Then the deformed dg-preprojective algebra

Π(Q,n,W ) = (ĈQ̃, dΠ)

is the dg algebra modeled on ĈQ̃ with the following differential:

dΠ(a) = (−1)(|a|+1)|a∗|∂a∗W,

dΠ(a
∗) = (−1)|a|+1∂aW,

dΠ(zi) =
∑

h(a)=i

[a, a∗].

We recall Van den Bergh’s structure result as follows:

Theorem 16.59 ([70, Theorem 10.2.2]). Let Q be a graded quiver, n ≥ 3 an integer and W ∈ CQ̃≥3

a superpotential with {W,W} = 0. Assume W is homogeneous of degree −n + 3 with respect to the
grading on Q and all arrows in Q lie in degree range [−n+ 2, 0]. Then Π(Q,n,W ) is CYn.
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Van den Bergh also shows the converse statement that every CYn dg algebra under suitable finiteness
conditions is equivalent to some deformed dg-preprojective algebra Π(Q,n,W ). It is an easy consequence
of Theorem 16.59 that the Koszul dual of a minimal cyclic A∞-category is CYn:

Corollary 16.60. Let A be a finite-dimensional augmented minimal A∞-algebra concentrated in non-
negative degrees with A0 = C id. Assume A is cyclic of degree n. Then A! is a deformed dg-preprojective
algebra and is therefore CYn.

Proof. The idea is to represent A! as a deformed dg-preprojective algebra Π(Q,n,W ) by letting the
arrows of Q stand for basis elements of A and letting the superpotential W record the product µ. We
ignore signs.

The first step is to choose a basis for A by means of Lemma 16.55. Since A0 = C id, we can include
the element id in the the basis and obtain a basis with dual basis of the following form:

A = C id⊕ span{x1, . . . , xk} ⊕ span{x∗1, . . . , x
∗
k} ⊕ Cid∗.

Of course, we have to make adaptations in case n is even: There may be self-dual basis elements of degree
n/2. This is not a problem and is adequately reflected in the definition of Π(Q,n,W ) by the intricate
extra condition on loops. We shall for simplicity proceed with the assumption that n is odd.

We define the quiver Q to be a single vertex with k arrows, such that the double quiver Q̄ and the
extended quiver Q̃ satisfy

ĈQ̃ = C〈〈x∨1 , . . . , x
∨
k , (x

∗
1)

∨
, . . . , (x∗k)

∨〉〉,

ĈQ̄ = C〈〈x∨1 , . . . , x
∨
k , (x

∗
1)

∨
, . . . , (x∗k)

∨
, (id∗)

∨
〉〉.

In these graded algebras, the variables x∨i and (x∗i )
∨

have degrees 1− |xi| and 1− |x∗i |, respectively. The
variable (id∗)

∨
has degree 1− n.

We define the superpotential W ∈ ĈQ̃ by Koszul transforming the A∞-structure on µ:

W =
∑

1≤i0,i1,...,il≤k

2l+1 star options

〈µ(x
[∗]
il
, . . . , x

[∗]
i1
), x

[∗]
i0
〉

︸ ︷︷ ︸
∈C

· (x
[∗]
il
)
∨
. . . (x

[∗]
i1
)
∨
(x

[∗]
i0
)
∨

︸ ︷︷ ︸
∈CQ̃

.

Here we sum over choices of indices i0, . . . , il as well as choices of starred or non-starred basis elements
and variables. Minimality of A ensures that W lies in CQ≥3 and cyclicity of A ensures that W is graded
cyclic. The A∞-relations for A ensure that {W,W} = 0.

The quiver Q, the cyclicity degree n and the superpotential W now yield a deformed dg-projective
algebra Π(Q,n,W ). Explicitly, its differential reads

dΠx
∨
i = (−1)(|x

∨
i |+1)|(x∗

i )
∨

∂(x∗
i )

∨W,

dΠ(x
∗
i )

∨
= (−1)|x

∨
i |+1∂x∨

i
W,

dΠ(id
∗)

∨
=

k∑

i=1

x∨i (x
∗
i )

∨ − (x∗i )
∨
x∨i .

In the remainder of the proof, we check that Π(Q,n,W ) equals A!. In fact, we have already named all

the variables 2k + 1 variables in ĈQ precisely the way in which variables for A! are named.
To see that also the differentials dΠ and dA! agree, note that the derivative ∂xi

∨W precisely records
the x∗i coefficient of all possible products µ(. . .) of which the input is not the identity id or the co-identity
id∗. In principle, the differential of A! also records those products µ(. . .) which contain a co-identity,
however those products vanish:

|µl(x
[∗]
il
, . . . , id∗, . . . , x

[∗]
i1
)| ≥ (2− l) + (l − 1) + n = n+ 1.

Here we have used the assumption that A is concentrated in non-negative degrees and the co-idenity is
in degree n. We draw the conclusion that such products vanish because A is limited to degrees at most
n. Ultimately, d(x∗i )

∨
= ∂x∨

i
agrees with the differential of (x∗i )

∨
in A!.

Also on the variable (id∗)
∨

, the differentials of Π(Q,n,W ) and A! agree. Indeed, the differential of
A! records appearances of id∗ as result of products µ(. . .). Thanks to cyclicity, we have

〈µl≥3(al, . . . , a1), id〉 = 0,

〈µ2(a, b), id〉+ 〈µ2(b, id), a〉+ 〈µ2(id, a), b〉 = 0.
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When plugging in a = xi and b = x∗j , we precisely obtain dA!((id∗)
∨
) = dΠ((id

∗)
∨
). Ultimately, we

conclude that A! = Π(Q,n,W ). Thanks to Theorem 16.59, the algebra Π(Q,n,W ) is CYn and therefore
A! is CYn itself. This finishes the proof.

16.8 Cho-Hong-Lau roadmap

In this section, we motivate the Cho-Hong-Lau construction from the perspective of Koszul duality. The
idea is to pass the dg algebra A! to cohomology. Regarded as ordinary algebra, the cohomology H0A!

need not be a Calabi-Yau algebra itself. Under grading assumptions on A, it is however a Jacobi algebra
and therefore a candidate to be CY3. We explain how to drop the grading requirements so that one can
start from A being Z/2Z-graded. The Koszul duality functor only survives this drop of requirements
when we replace the actual cohomology H0A! by a surrogate. At the end of the section, we provide this
tweaked Koszul duality functor which comes close to the Cho-Hong-Lau construction.

Our first starting point is an A∞-category A which is cyclic of degree n, concentrated in non-negative
degree and has degree zero part A0 = C id:

A = C id⊕A1 ⊕ . . .⊕An−1 ⊕ Cid∗.

Our interest lies in the Koszul duality functor ModfdrightA→ TwA! which we recalled in section 16.2. The

essential step leading to the Cho-Hong-Lau construction consists of replacing the dg algebra A! by its
zeroth cohomology H0A!, which is an ordinary associative algebra. In this section, we provide a simple
explanation why this works particularly well if A is cyclic of degree 3.

We start with the observation that passing to the minimal model is unproblematic if A is concentrated
in non-negative degree. We denote the minimal model of the dg algebra A! by HA!. Its degree zero part
is H0A!.

Lemma 16.61. Let A be a non-negatively graded augmented A∞-algebra such that A0 = C id. Then
there is an A∞-morphism A! → H0A!.

Proof. By definition of the minimal model HA!, there is an A∞-quasi-isomorphism A! → HA!. In the
remainder of the proof, we show that the projection π0 : HA! → H0A! is an A∞-morphism. Regard
homogeneous elements a1, . . . , ak ∈ HA!. Writing out the definition of µH0 A!(π0ak, . . . , π0a1), it is our
task to show

π0µHA!(ak, . . . , a1) =

{
µHA!(π0a2, π0a1) if k = 2

0 if k 6= 2.
(16.8)

The basic observation is that A! is concentrated in non-positive degrees because Ā is concentrated in
positive degrees. The cohomology HA! is then also concentrated in non-positive degrees. To check (16.8),
we distinguish four cases according to the value of k and the degrees of the input elements a1, . . . , ak.

If k = 1, both sides vanish. If k = 2 and a1, a2 are both of degree zero and (16.8) holds. If k = 2 and
one of a1, a2 is of negative degree, then µHA!(a2, a1) is of negative degree and both sides of (16.8) vanish.
If k ≥ 3, then µHA!(ak, . . . , a1) has degree at most 2 − k ≤ −1 and therefore both sides vanish as well.
This finishes the proof.

We borrow the following notation from Definition 19.32.

Definition 16.62. Let V be a vector space and R ⊆ V be a subspace. Then I(R)
T̂ (V )

is the ideal

of T̂ (V ) given by the image of the map T̂ (V )⊗̂R⊗̂T̂ (V ) → T̂ (V ). Explicitly, I(R)
T̂ (V )

consists of all

elements that can be written as a series

∞∑

i=0

piriqi, pi ∈ V
⊗→∞, ri ∈ R, qi ∈ V

⊗→∞.

Lemma 16.63. LetA be an augmentedA∞-algebra concentrated in non-negative degrees withA0 = C id.
Then we have an algebra identification

H0A! =
̂T ((A1)

∨
)

I({dA!x | x ∈ (A2)
∨}) ̂T ((A1)∨)

.
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Proof. Since Ā is concentrated in positive degrees, its left-shift Ā[1] is concentrated in non-negative
degrees. We can write

A! =
∞∏

i=0

((A1)
∨

︸ ︷︷ ︸
deg 0

⊕ (A2)
∨

︸ ︷︷ ︸
deg −1

⊕ . . .)⊗i

In the remainder of the proof, we determine the degree zero cocycles and degree zero coboundaries of A!.
For the degree zero cocycles, we note that the degree zero part of A! is (A1)

∨
and the degree one part

of A! is zero. Together, the degree zero cocyles of A! are just T (A1)
∨

.
For the degree zero coboundaries, we determine first the degree −1 part of A!. In fact, the part

of degree −1 consists of products of degree zero elements with precisely one degree −1 element, more
precisely

∞∏

i=0

i∑

j=0

(A1)
∨⊗j ⊗ (A2)

∨
⊗ (A1)

∨⊗i−j .

Now the degree zero coboundaries of A! are precisely the differentials of elements in this space. Since
dA!x = 0 for x ∈ (A1)

∨
, we immediately see that for x1, . . . , xi ∈ (A1)

∨
and y ∈ (A2)

∨
we have

dA!(xi ⊗ . . .⊗ xi−j+1 ⊗ y ⊗ xi−j ⊗ . . .⊗ x1) = xi ⊗ . . .⊗ xi−j+1 ⊗ dA!y ⊗ xi−1 ⊗ . . .⊗ x1.

We conclude that the degree zero coboundaries of A! are precisely elements of I({dA!y | y ∈ (A2)
∨
}).

This finishes the proof.

We shall continue writing I for the ideal defined in Lemma 16.63:

Definition 16.64. Let A be an augmented Z-graded finite-dimensional A∞-algebra cyclic of degree
n ≥ 3. Denote by A1 and A2 the homogeneous subspaces of degree 1 and 2, respectively. Then we denote
by I the ideal

I = I({dA!x | x ∈ (A2)
∨
}) ̂T ((A1)∨

⊆ ̂T ((A1)
∨
).

It is in fact possible to say more about the ideal in case A is cyclic of degree 3:

Lemma 16.65. Let A be an augmented finite-dimensional A∞-algebra. Assume A is cyclic of degree 3
and concentrated in non-negative degrees with A0 = C id:

A = C id⊕A1 ⊕A2 ⊕ Cid∗.

Then we have a Koszul duality functor ModfdrightA→ TwH0A!. Upon choosing a basis x1, . . . , xk for A1,

the algebra H0A! can be written as a Jacobi-type algebra and is naturally a candidate to be CY3:

H0A! =
C〈〈x∨1 , . . . , x

∨
k 〉〉

I(∂x∨
i
W )C〈〈x∨

1 ,...,x
∨
k
〉〉
. (16.9)

Proof. We divide the proof into three steps. In the first step, we explain the Koszul duality functor. In
the second step, we examine the algebra H0A!. In the third step, we comment on CY3-ness.

For the first step, pick the Koszul duality functor ModfdrightA→ TwA! from Corollary 16.21. Thanks

to Lemma 16.61, we have an additional morphism of A∞-algebras A! → H0A!, which induces an A∞-
functor TwA! → TwH0A!. Composing these two, we obtain the desired Koszul duality functor

ModfdrightA→ TwA! → TwH0A!.

For the second step of the proof, the starting point is the description H0A! = ̂T ((A1)
∨
)/I from Lemma 16.63.

It is our task to examine the ideal I. Choose a basis x1, . . . , xn for A1 and denote by x∗1, . . . , x
∗
n the cor-

responding dual basis for A2 via 〈−,−〉. We construct the superpotential W ∈ ̂T ((A1)
∨
) as follows:

W =
∑

1≤i1,...,ik,i0≤n

〈µ(xik , . . . , xi1), xi0〉x
∨
i0x

∨
i1 . . . x

∨
ik
.

This specific pairing has the chance of not vanishing only because n = 3. In fact, the degree of µ(. . .) is
2 while the degree of xi0 is 1. The superpotential W is cyclic since µ is assumed to be cyclic. We now
claim that ∂x∨

i0
W = dA!(x∗i0)

∨
. Indeed,

∂x∨
i0
W =

∑

1≤i1,...,ik≤n

〈µ(xik , . . . , xi1), xi0〉x
∨
i1 . . . x

∨
ik

= dA!(x∗i0)
∨
.
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This proves the desired description of H0A!. For the third part of the proof, we comment on the non-
technical statement regarding the claimed CY3 candidate status of H0A!. As we have shown in the
second part of the proof, the algebra H0A! is the quotient of a noncommutative power series ring by
derivatives of a superpotential. This does technically not imply that H0A! is CY3. However, it is known
that if the number of variables and the degree of the superpotential are high enough, then the typical
superpotential does turn the quotient into a CY3 algebra [14, Corollary 4.4]. This finishes the proof.

Remark 16.66. It is essential that the cyclicity degree of A is 3: Assume A is cyclic of degree n instead.

In order to represent dx∨ as derivative of a superpotential W ∈ ̂T ((A1)
∨
), the only natural way is by dx∨

being either the derivative ∂x∨W or ∂(x∗)∨W . However, the variable x∨ has degree −1 and the variable

(x∗)
∨

has degree 1− (n−2) = 3−n. We conclude that only for n = 3 any of the variables, namely (x∗)
∨

,
has a chance of appearing in W . This shows that cyclicity in degree n = 3 is favorable for passing A! to
cohomology.

The reduction of the Koszul dual to zeroth cohomology in Lemma 16.65 makes room for further
weakening of the assumptions on the side of the A∞-algebra A. As we show in Lemma 16.68, we can
drop the requirement that A be Z-graded and concentrated in non-negative degrees. The idea is to
circumvent A! and work directly with the quotient algebra displayed on the right-hand side of (16.9).
When we restrict µA or µM to T (Ā1), we shall use the letter m instead of µ:

Definition 16.67. Let A = C id⊕Ā1⊕ Ā2⊕Cid∗ be an augmented Z/2Z-graded finite-dimensional A∞-
algebra cyclic of odd degree. We denote the restriction to T (A1) of the map µA :M ⊗T (Ā)→M ⊗T (Ā)
and its partial dual µ∨

A by

mA : M ⊗ T (Ā1)→M ⊗ T (Ā1),

m∨
A,0 : M →M ⊗ T (Ā1)

∨
.

Let M ∈ ModfdrightA be a finite-dimensional right A-module with action map µM : M ⊗ T (A[1]) →
M ⊗ T (A[1]). Then we denote the restriction to T (A1) of µM and µ∨

M by

mM : M ⊗ T (Ā1)→M ⊗ T (Ā1),

m∨
M,0 : M →M ⊗ T (Ā1)

∨
.

We now formulate the Koszul duality where A is not required to be Z-graded. From the standpoint
of Koszul duality, this statement is the closest to the Cho-Hong-Lau construction that lies within the
framework of finite-dimensional modules and twisted complexes:

Lemma 16.68. Let A = C id⊕Ā1 ⊕ Ā2 ⊕ Cid∗ be an augmented Z/2Z-graded finite-dimensional A∞-

algebra cyclic of odd degree. Write J = ̂T ((A1)
∨
)/I. Then we have a Koszul duality functor

F : ModfdrightA −−−−−→ Tw J,

(M,µM ) 7−−−−−→ (M ⊗ J,m∨
M,0),

f 7−−−−−→ f∨.

Proof. We only provide a glimpse of the proof here, since the more general version is treated in section 20.
For instance, it is instructive to explain why (M,m∨

M,0) is a twisted complex over J .
In order to recognize (M,m∨

M,0) as twisted complex over J , we have to check its Maurer-Cartan

identity. Since M is a module over A, we have (mM ◦mA)0+(mM ◦mM )0 = 0. The image of (mM ◦mA)0
∨

lies in M ⊗ I. This means that modulo M ⊗ I, we have

µ2
Add J(m

∨
M,0,m

∨
M,0) = (mM ◦mM )0

∨
= 0.

This shows that m∨
M,0 satisfies the Maurer-Cartan equation in Add J and (M ⊗ J,m∨

M,0) is indeed a
twisted complex.

Remark 16.69. The functor F in Lemma 16.68 can be made explicit upon choice of basis for A. Choose
a basis of a consisting of elements xi in odd degree and the dual elements x∗i in even degree:

A = C id︸︷︷︸
even

⊕ span{x1, . . . , xk}︸ ︷︷ ︸
odd

⊕ span{x∗1, . . . , x
∗
k}︸ ︷︷ ︸

even

⊕Cid∗︸︷︷︸
odd

.
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The algebra J takes on the form

J =
C〈〈x∨1 , . . . , x

∨
k 〉〉

I(∂x∨
i
W )C〈〈x∨

1 ,...,x
∨
k
〉〉
.

Formulated in terms of the basis, the fact that m∨
M squares to zero is based on the observation that

0 =
∑

l≥0
1≤i1,...,il≤k

(µ · µ)(m,xil , . . . , xi1)

=
∑

l≥0
1≤i1,...,il≤k
0≤s≤r≤l

µ(m,xil , . . . , µ(xir , . . . , xis+1
), . . .) +

∑

l≥0
1≤i1,...,il≤k

0≤r≤l

µ(µ(m,xil , . . . , xir+1
), . . . , x1).

Note that there are no signs since all xi are odd. When dualizing the above equality, the first summand on
the second row lands in the ideal I(∂x∨

i
W )C〈〈x1,...,xk〉〉 and vanishes in J . Meanwhile, the second summand

on the second row dualizes to (m∨
M,0)

2. We conclude that (m∨
M,0)

2 = 0, in other words (M ⊗ J,m∨
M ) is

a twisted complex.

The construction of Lemma 16.68 leads directly to the Cho-Hong-Lau construction. The idea is to
extend the construction of the Koszul duality functor ModfdrightA→ Tw J to the case of non-augmented
algebras. On the side of the Koszul dual, the required adaption consists of passing from the twisted
completion to matrix factorizations. In section 20, we recall this Cho-Hong-Lau construction and in
particular amend all signs to the rules for A∞-categories.

17 Preliminaries on mirror symmetry

In this section, we recollect preliminaries on mirror symmetry of punctured surfaces from [18].

17.1 Gentle algebras

In this section, we recall the A∞-gentle algebra from [18] and its deformed version from Paper I. In
particular, we explain the philosophy of Gtlq Q as a discrete relative Fukaya category.

Definition 17.1. A punctured surface is a closed oriented surface S with a finite set of punctures
M ⊆ S. We assume that |M | ≥ 1, or |M | ≥ 3 if S is a sphere.

The assumptions on |M | are cosmetical and explained in Paper II.

Definition 17.2. Let (S,M) be a punctured surface. An arc in S is a not necessarily closed curve
γ : [0, 1] → S running from one puncture to another. An arc system on a punctured surface is a
finite collection of arcs such that the arcs meet only at the set M of punctures. Intersections and self-
intersections are not allowed. The arc system satisfies the no monogons or digons condition [NMD]
if

• No arc is a contractible loop in S \M .

• No pair of distinct arcs is homotopic in S \M .

The arc system satisfies the no monogons or digons in the closed surface condition [NMDC] if

• No arc is a contractible loop in S.

• No pair of distinct arcs is homotopic in S.

An arc system is full if the arcs cut the surface into contractible pieces, which we call polygons.

Definition 17.3. A dimer Q is a full arc system on a punctured surface such that every polygon is
bounded by at least three arcs and the arcs along the boundary of a polygon are all oriented in the same
direction. The letter Q0 denotes the set of punctures of the dimer, the letter Q1 denotes the set of arcs,
and |Q| denotes the closed surface.

Remark 17.4. All polygons in a dimer are either bounded entirely clockwise, or entirely anticlockwise.
A polygon neighboring a clockwise polygon is anticlockwise, and the other way around. A dimer can
be interpreted as a quiver embedded in a surface, therefore quiver terminology applies and we may for
instance refer to paths of Q.
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Figure 17.1: Illustration for GtlQ and Gtlq Q

The gentle algebra GtlQ is an A∞-category defined as follows: Its objects are the arcs a ∈ Q1. A
basis for the hom space HomGtlQ(a, b) is given by the set of all angles around punctures from a to b.
This includes empty angles, which are the identities on the arcs. The hom spaces of GtlQ are not
finite-dimensional, in contrast to what is classically called a gentle algebra. The Z/2Z-grading on GtlQ
is given by declaring all interior angles of polygons to have odd degree. The differential µ1 is plainly set
to zero, and the product µ2(α, β) of two angles α, β is defined as the concatenation αβ of α and β if both
angles wind around the same puncture and α starts where β ends:

µ1 := 0, µ2(α, β) := (−1)|β|αβ.

The higher products µ≥3 on GtlQ are defined in terms of what we will call discrete immersed disks.
Roughly speaking, a discrete immersed disk may either be a polygon, or a sequence of polygons stitched
together. We make this precise by regarding immersions of the standard polygon Pk, depicted in Fig-
ure 17.1a:

Definition 17.5. Let Q be dimer. A discrete immersed disk in Q consists of an oriented immersion
D : Pk → |Q| of a standard polygon Pk into the surface, such that

• The edges of the polygon are mapped to a sequence of arcs.

• The immersion does not cover any punctures.

The immersion mapping itself is only taken up to reparametrization. The sequence of interior angles of
D is the sequence of angles in Q given as images of the interior angles of Pk under the map D. An angle
sequence α1, . . . , αk is a disk sequence if it is the sequence of interior angles of some discrete immersed
disk.

We can now describe the higher products µ≥3 on GtlQ as follows:

Definition 17.6. Let Q be a dimer. Then the gentle algebra GtlQ of Q is the A∞-category with
objects the arcs a ∈ Q1, hom spaces spanned by angles, and A∞-product µ defined by µ1 = 0 and
µ2(α, β) = (−1)|β|αβ. To define µk≥3, let α1, . . . , αk be any disk sequence, let β be an angle composable
with α1, i.e. βα1 6= 0, and let γ be an angle post-composable with αk, i.e. αkγ 6= 0. Then

µk(βαk, . . . , α1) := β, µk(αk, . . . , α1γ) := (−1)|γ|γ.

The higher products vanish on all angle sequences other than these.

In Paper I we defined a deformation Gtlq Q of GtlQ, hoping it to provide a discrete relative Fukaya
category. In Paper II, we confirmed this hope. The starting point for the definition of Gtlq Q is a dimer
which satisfies the [NMDC] condition. The category Gtlq Q is a curved A∞-deformation of GtlQ over
the deformation base B = CJQ0K, which has one deformation parameter per puncture. We denote the
maximal ideal by m = (Q0) ⊆ CJQ0K.

The curvature µ0
q of Gtlq Q is defined as follows: For every puncture q ∈ Q0, denote by ℓq the sum of

all full turns around q, summed over all arc ends at q. The total curvature µ0
q of Gtlq Q is defined as the

sum over all puncture contributions:

µ0
q :=

∑

q∈Q0

qℓq.

The product µ1
q still vanishes and the product µ2

q := µ2 is not deformed. The higher products µ≥3
q

however count discrete immersed disks which are now also allowed to cover punctures, weighting the
result of every disk with the product ∈ CJQ0K of the punctures covered. The definition of µ0

q and µ≥3
q is

depicted in Figure 17.1.
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Figure 17.2: A zigzag path L
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Figure 17.3: On consistency

17.2 Zigzag paths

In this section, we recall the notions of zigzag paths and geometric consistency for dimers. An exhaustive
reference is [17]. More information is also found in Paper II.

Definition 17.7. Let Q be a dimer. A zigzag path L is an infinite path . . . a2a1a0a−1a−2 . . . of arcs in
Q together with an alternating choice of “left” or “right” for every i ∈ N such that

• ai+1ai lies in a clockwise polygon if i is assigned “right”,

• ai+1ai lies in a counterclockwise polygon if i is assigned “left”.

We also say that L turns left at ai if i is assigned “left” and turns right if ai is assigned “right”. Two
zigzag paths are identified if their paths including left/right indications differ only by integer shift.

Slightly simplified, a zigzag path L is a path in Q that turns alternatingly maximally right and
maximally left in Q. The typical shape of a zigzag path is drawn in Figure 17.2. If every puncture of Q
has valence at least 4, then the left/right indication is a superfluous datum. In this case, the left/right
indication for zigzag paths is a superfluous part of the datum of a zigzag path. For other dimers Q, the
left/right indication is very important. An example is the M -punctured sphere QM which we will recall
in section 18. Our definition deviates slightly from the definition of [18].

Geometric consistency is a specific instance of various consistency conditions which can be imposed
on dimers. To define it, we denote by Q̃ the lift of the arc system Q to the universal cover of the closed
surface |Q|. We define the auxiliary notion of zigzag rays as follows, depicted in Figure 17.3a:

Definition 17.8. Let a ∈ Q̃1 be an arc. Then the four zigzag rays starting at a are the sequences of
arcs (a1i )i≥0, (a2i )i≥0, (a3i )i≥0 and (a4i )i≥0 in Q̃ determined by a10 = a20 = a30 = a40 = a and the following
properties:

• The sequences (a1i ) and (a2i ) satisfy h(a
1/2
i ) = t(a

1/2
i+1).

• The sequences (a3i ) and (a4i ) satisfy t(a
3/4
i ) = h(a

3/4
i+1).

• The path a
1/2
i+1a

1/2
i lies in the boundary of a counterclockwise polygon when i is odd/even, and

clockwise when i is even/odd.

• The path a
3/4
i a

3/4
i+1 lies in the boundary of a counterclockwise polygon when i is odd/even, and

clockwise when i is even/odd.

A dimer is geometrically consistent if the zigzag rays starting with an arc a in the universal cover
intersect nowhere, except at a itself. The precise definition reads as follows:

Definition 17.9. Let Q be a dimer. Then Q is geometrically consistent if for every a ∈ Q̃1 the four
zigzag rays (a1i ), (a

2
i ), (a

3
i ) and (a4i ) satisfy the following property: Whenever aki = alj , then i = j and

k = l, or i = j = 0.

Remark 17.10. Many dimers are geometrically consistent. In contrast, a dimer on a sphere is never
geometrically consistent. A dimer which contains the pattern sketched in Figure 17.3b is also not geo-
metrically consistent. A geometrically consistent dimer satisfies the [NMDC] condition.
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17.3 Matrix factorizations

In this section, we recall the notion of matrix factorizations. After recalling the definition, we focus on
matrix factorization categories. Matrix factorizations serve as B-side in mirror symmetry. As such, our
standard reference is [18].

Matrix factorizations go back to 20th century work of Buchweitz and others. In a nutshell, the
observation is as follows: Let A be an algebra and ℓ ∈ Z(A) a central element. Such a pair (A, ℓ) is also
called a Landau-Ginzburg model. If ℓ is prime in A, there is no nontrivial factorization ℓ = ab in A.
However, there may be modules M,N ∈ ModA with maps f : M → N and g : N → M such that both
g ◦ f : M → M and f ◦ g : N → N are multiplication by ℓ. In other words, for typical ℓ there are more
factorizations on the module level than in the algebra itself. This gives rise to the following definition:

Definition 17.11. Let A be an associative algebra and ℓ ∈ A a central element. A matrix factorization
of (A, ℓ) is a pair of finitely generated projective A-modules (P,Q) together with A-module morphisms
f : P → Q and g : Q→ P such that f ◦ g = ℓ idQ and g ◦ f = ℓ idP .

Remark 17.12. There is an alternative definition: A matrix factorization is a Z/2Z-graded projective
A-module M together with an odd A-module map δ : M → M such that δ2 = ℓ idM . This definition is
equivalent to Definition 17.11. Given (M, δ), simply put P := M even and Q := Modd. The odd map δ

then automatically splits into two maps f : P → Q and g : Q → P . Conversely given f : P Q : g ,
put

M = P ⊕Q[1], δ =

(
0 g

f 0

)
.

The set of matrix factorizations of (A, ℓ) can be turned into a Z/2Z-graded dg category MF(A, ℓ).
The intuition behind the dg structure is to interpret every matrix factorization (M, δ) as an almost chain
complex, more precisely a twisted complex over the curved A∞-category (A, ℓ). We use the notation δ̃
to denote the tweaked version δ̃(m) = (−1)|m|δ(m) of δ.

Definition 17.13. Let (A, ℓ) be a Landau-Ginzburg model. The category of matrix factorizations
MF(A, ℓ) is defined as follows:

• Objects are the matrix factorizations (M, δ) of (A, ℓ).

• Hom spaces are given by Hom((M, δM ), (N, δN )) = HomA(M,N), naturally Z/2Z-graded.

• The differential is given by µ1(f) = δ̃N ◦ f − (−1)|f |f ◦ δ̃M for f ∈ Hom((M, δM ), (N, δN )).

• The product is given by µ2(f, g) = (−1)‖f‖|g|f ◦ g.

More explicitly, regard two matrix factorizations f : P Q : g and f ′ : P ′ Q′ : g′ . Then

their hom space is

Hom(P, P ′)⊕Hom(Q,Q′)︸ ︷︷ ︸
even

⊕Hom(P,Q′)⊕Hom(Q,P ′)︸ ︷︷ ︸
odd

.

A morphism can be presented as a 2-by-2 matrix

(
A B

C D

)
, where A : P → P ′ and B : Q → P ′ and so

on. In these terms, we can write

µ1
MF(A,ℓ)

(
A B

C D

)
=

(
−g′C +Bf −g′D +Ag

f ′A−Df f ′B − Cg

)
.

The product µ2
MF(A,ℓ) is simply given by signed matrix multiplication

µ2
MF(A,ℓ)

((
A B

C D

)
,

(
A′ B′

C ′ D′

))
=

(
AA′ +BC ′ −AB′ +BD′

CA′ −DC ′ CB′ +DD′

)
.
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(a) An F-term flip

(b) These 3 paths are equivalent.

Figure 17.4: F-term equivalence

17.4 Jacobi algebras of dimers

In this section, we recollect the Jacobi algebras of dimers, together with their associated categories of
matrix factorizations. We also fix some notation in this section. For example, the Jacobi algebra of a
dimer will be denoted JacQ, its special central element will be denoted ℓ ∈ JacQ. We would like to remind
the reader that the full category of matrix factorizations is denoted MF(JacQ, ℓ). Meanwhile, we recall
in this section a specific small subcategory, denoted by lowercase letters mf(JacQ, ℓ) ⊆ MF(JacQ, ℓ).

Let us start by fixing terminology and notation for cyclicity:

Definition 17.14. Let Q be a quiver. If p is a path in Q, we denote by pcyc ∈ CQ the sum of its cyclic
permutations. We extend this assignment linearly to CQ and denote it by p 7→ pcyc as well. An element
W ∈ CQ is cyclic if it is a linear combination of cyclic paths in Q whose coefficients are invariant under
cyclic permutation:

W =
∑

cycles ak...a1

λak...a1ak . . . a1, with ∀i = 1, . . . , k : λak...a1 = λai−1...ai+1ai .

We recall that superpotentials are defined as cyclic elements of length at least two:

Definition 17.15. A superpotential is a cyclic element W ∈ CQ≥2. Its relations are the elements

∂aW =
∑

paths ak...a1
with ak=a

λak...a1ak−1 . . . a1, a ∈ Q1.

Its Jacobi algebra is given by

Jac(Q,W ) =
CQ

(∂aW )
.

Here (∂aW ) denotes the two-sided ideal generated by the partial derivatives ∂aW for a ∈ Q1.

A dimer Q is nothing else than a specific type of quiver embedded in a surface. In particular it
comes with an associated path algebra CQ. The dimer structure of Q provides us with an additional
central element W ∈ CQ, given by the difference of the clockwise polygons of Q and the counterclockwise
polygons, cyclically permuted:

W =
∑

a1,...,ak
clockwise

(a1 . . . ak)cyc −
∑

a1,...,ak
counterclockwise

(a1 . . . ak)cyc.

Definition 17.16. Let Q be a dimer. Then its Jacobi algebra is the associative algebra JacQ =
CQ/(∂aW ).

The relations ∂aW equate two neighboring polygons: Flipping a path over an arc a is possible if the
path follows all arcs of a neighboring polygon apart from a. These flip moves are known as F-term moves
and the equivalence relation on the set of paths in Q is known as F-term equivalence. The terminology
is depicted in Figure 17.4. A good reference is [28].

Regard the set of paths in Q modulo F-term equivalence. The set contains a special element ℓv for
each vertex v ∈ Q0, given by the boundary of a chosen polygon incident at v. All boundaries of polygons
incident at v are F-term equivalent, hence ℓv does not depend on the choice. In other words, it can be
rotated around v. We may drop the subscript from ℓv if it is clear from the context. The element ℓ
commutes with all paths, that is, uℓ ∼ ℓu. Davison [28] introduced the following consistency condition
for dimers:
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Figure 17.5: Three-punctured sphere and its mirror dimer

Definition 17.17 ([28]). A dimer Q is cancellation consistent if it has the following cancellation
property:

pℓ ∼ qℓ =⇒ p ∼ q.

The Jacobi algebra contains a special element which we denote by ℓ as well and which is called the
potential. It is given by the sum of the elements ℓv over v ∈ Q0:

ℓ =
∑

v∈Q0

ℓv ∈ JacQ.

The relations of JacQ ensure that ℓ is central and as an element of JacQ is independent of the choices
of incident polygons.

We are ready to discuss matrix factorizations of the Landau-Ginzburg model (JacQ, ℓ). For every
vertex v ∈ Q0, the module (JacQ)v is projective. There are many further projectives, for instance given
by taking direct sums of these elementary projectives. The hom space HomJacQ((JacQ)v, (JacQ)w)
between two standard projectives is naturally identified with v(JacQ)w, the subspace of paths in JacQ
starting at w and ending at v. A matrix factorization between two such projectives can be visualized as
a bipartite graph consisting of vertices in Q, connected by paths in Q, such that all products sum up to
ℓ.

There is a special subcategory mf(JacQ, ℓ) ⊆ MF(JacQ, ℓ). The idea is that every polygon boundary
can be factorized as the product of a single boundary arrow and all the other boundary arrows. More
precisely, let a ∈ Q1 be an arrow. There are precisely two polygons neighboring a. The complements of
their boundary are paths r+a and r−a . Within JacQ, these two paths are identified and we simply denote
them by ā = r+a = r−a ∈ JacQ. Since aā = ℓh(a) and āa = ℓt(a), we can build matrix factorizations from
a and ā:

Definition 17.18. Let Q be a dimer and a ∈ Q1. Then mf(JacQ, ℓ) ⊆ MF(JacQ, ℓ) is the subcategory
given by the matrix factorizations

Ma = (JacQ)h(a) (JacQ)t(a)
a

ā
, a ∈ Q1.

Remark 17.19. These matrix factorizations Ma are no factorizations of ℓ as element of JacQ. Instead
their behavior is “local”. We expect that the collection {Ma}a∈Q1 already generates HTwMF(JacQ, ℓ)
under shifts and cones. Such a result might be obtained by a local analysis or re-interpretation in terms
of the commutative model of [36] or [58].

17.5 Mirror symmetry for punctured surfaces

In this section, we recall mirror symmetry for punctured surfaces from [18]. We start with an overview of
the ingredients and the original proof. In particular, we exhibit A- and B-side of this mirror equivalence,
explain the equivalence on object level and on hom spaces. Regarding terminology, we recall here the
construction of the dual dimer Q̌ attached to Q. To prepare the reader for the rest of the paper, we
explain why the original setup makes it so hard to deform mirror symmetry and how the more recent
Cho-Hong-Lau construction solves this issue.

The basic ingredient for mirror symmetry for punctured surfaces is a dimer Q and its dual dimer Q̌,
defined as follows:

Definition 17.20. Let Q be a dimer. Then its dual dimer Q̌ is the dimer obtained by cutting Q into its
polygons, flipping over the counterclockwise polygons and inverting their arrows, and gluing everything
together again along the arrows.
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opp1

opp2

b a

(a) Odd k = 5

opp2

opp1

b a

(b) Even k = 6

Figure 17.6: Opposite paths for even and odd k

Example 17.21. In Figure 17.5, we have depicted the example of Q being the three-punctured sphere.
Its mirror dimer Q̌ is a one-punctured torus. In this example, we have Jac Q̌ = C[a, b, c] and ℓ = abc.

Remark 17.22. A basic observation is that punctures in Q correspond to zigzag paths in Q̌. Moreover,
let α : a → b be an angle in Q. Denote by k ≥ 0 its “length”, or the number of indecomposable
angles contained in α. Then α can be reinterpreted in the mirror as a zigzag segment Zα given by
a = z0, z1, . . . , zk = b between the arcs a and b in Q̌, with the property that h(zi) = t(zi+1).

In the remainder of this section, we explain the following mirror symmetry of punctured surfaces:

Theorem 17.23 ([18]). Let Q be a dimer such that the dual dimer Q̌ is cancellation consistent. Then
there exists an isomorphism of Z/2Z-graded A∞-categories

F : GtlQ→ Hmf(Jac Q̌, ℓ).

Let us recollect this functor F on object level. The objects of GtlQ are the arcs of Q. The arcs of Q
are in bijection with those of Q̌. The category Hmf(Jac Q̌, ℓ) is the minimal model of mf(Jac Q̌, ℓ) and
as such has the same objects as mf(Jac Q̌, ℓ). Combining these three observations, it is easy to grasp the
functor F on object level: It simply maps a ∈ Q1 to the matrix factorization Ma ∈ Hmf(Jac Q̌, ℓ).

We can also grasp F on the level of morphisms. Recall that the hom space HomGtlQ(a, b) is spanned
by angles starting on a and ending on b, rotating around a common puncture. The corresponding basis
for HHommf(Jac Q̌,ℓ)(Ma,Mb) was determined in [18, Lemma 8.3]. Let α : a → b be an angle in Q. By

Remark 17.22, the angle α comes with an associated zigzag segment Zα in Q̌. Define opp1 to be the path
from t(b) to t(a) and opp2 the path from h(b) to h(a) along Zα. This definition is depicted in Figure 17.6.
Denote by ζ(Zα) the morphism of matrix factorizations ζ(Zα) :Ma →Mb given by

ζ(Zα) =

(
opp2 0

0 opp1

)
.

In case k is odd, let opp1 be the path from h(b) to t(a) and opp2 the path from t(b) to h(a). Denote by
ζ(Zα) the morphism of matrix factorizations ζ(Z) :Ma →Mb given by

ζ(Zα) =

(
0 opp1

opp2 0

)
.

It is an easy check that for any parity of k the morphism ζ(Zα) is a closed morphism in mf(JacQ, ℓ) in
the sense that µ1

mf(Jac Q̌,ℓ)
(ζ(Z)) = 0. In terms of ζ(Zα), the functor F on level of objects and on the

level F 1 on hom spaces is given by

F (a) =Ma, ∀a ∈ Q1,

F 1(α) = ζ(Zα), ∀α : a→ b.

Remark 17.24. This minimal model Hmf(JacQ, ℓ) is by no means canonical. It can be calculated by
the Kadeishvili construction, which however depends on the a choice of a so-called homological splitting
for all hom spaces in mf(Jac Q̌, ℓ). In [18], it was observed that whatever splitting is chosen, the map F 1

alone is never an A∞-functor. Instead, it is necessary to include higher components F≥2.

The higher products F≥2 have been constructed in [18, Appendix A]. The idea is to construct F k+1

inductively from F 1, . . . , F k. A first important ingredient is knowledge of the products

µ1
Hmf(Jac Q̌,ℓ)

(F 1(αk), . . . , F
1(α1)),



272 18. Preliminaries on the category of zigzag paths

at least for sequences α1, . . . , αk which are consecutive interior angles of some polygon. The second
ingredient is a temporary restriction to the case that Q is large enough to force certain unknown terms
to vanish. With these two premises the component F k+1 can be constructed inductively.

Remark 17.25. The construction of F k+1 consists of solving a Hochschild cocycle equation, which of
course has no unique solution. Correspondingly, the functor F cannot be computed explicitly from [18].

The lack of explicit functor F seemed to make it very difficult to deform mirror symmetry: Once
we deform GtlQ to Gtlq Q, there must be a deformation mfq(Jac Q̌, ℓ) of mf(Jac Q̌, ℓ) such that Gtlq Q
and Hmfq(Jac Q̌, ℓ) are still isomorphic. Actually finding this mirror deformation is a nontrivial task.
The most basic approach is to write down the A∞-functor equations and find manually a collection of
deformed A∞-products on Hmf(Jac Q̌, ℓ) which still keep F a functor. This is impossible if F itself is
unknown.

Fortunately, a modern explicit construction of a mirror functor F : GtlQ→ mf(Jac Q̌, ℓ) is available
due to Cho, Hong and Lau [26]. We shall explain here what makes this Cho-Hong-Lau construction
so suited for deformations. The idea can be formulated in more generality: Let C be an A∞-category
and L ⊆ C an subcategory. Then the Cho-Hong-Lau construction produces from the structure of the
endomorphism algebra of L a mirror Landau-Ginzburg model (J, ℓ) and a functor F : C → MF(J, ℓ):

L ⊆ C
A∞-category with subcategory

C → mf(J, ℓ)
mirror functor

Remark 17.26. Let C = HTwGtlQ and L ⊆ HTwGtlQ be the category of zigzag paths in Q, which we
recall in section 18.1. Then the mirror (J, ℓ) is precisely (Jac Q̌, ℓ) and the construction gives an explicit
functor F : GtlQ→ MF(Jac Q̌, ℓ). We recall this fact in more detail in section 21.1.

In the context of deformations, the Cho-Hong-Lau construction is extraordinarily useful. Simply
speaking, applying the construction to the deformed category Gtlq Q yields a deformed Landau-Ginzburg
model (Jacq Q̌, ℓq) and a deformed functor Fq : Gtlq Q → MF(Jacq Q̌, ℓq). In the rest of this paper, we
make this rigorous. One bottleneck consists of proving that Jacq Q̌ is actually a deformation of Jac Q̌.

18 Preliminaries on the category of zigzag paths

In this section, we recollect the description of the deformed category of zigzag paths from Paper II. The
aim is to translate the material in such a way that it becomes directly usable in section 21.

In section 18.1, we recall the three ways of thinking about zigzag paths: as zigzag paths in the dimer
Q, as zigzag curves in the surface |Q|, and as twisted complexes lying in TwGtlQ. In particular, we recall
the interpretation of intersection points between two zigzag curves as basis of cohomology hom space of
the corresponding twisted complexes. We recall the definition of the A∞-category L of zigzag paths.
In section 18.2, we recall the deformed counterpart Lq of L. In section 18.3, we review the deformed
A∞-structure on HLq in terms of CR, ID, DS and DW disks. Overall, we try to introduce the reader to
the translation presented in Table 18.1. In section 18.4, we review another class of A∞-products on the
minimal model HTwGtlq Q.

Throughout this section, Q denotes a fixed geometrically consistent dimer or a standard sphere dimer
QM with M ≥ 3, depicted in Figure 18.2a and 18.2b. For section 18.3 and 18.4, we assume additionally
Convention 18.1.

18.1 Category of zigzag paths

In this section, we review the category L of zigzag paths from Paper II. Throughout, Q is a geometrically
consistent dimer or one of the standard sphere dimers QM with M ≥ 3.

There is a triad correspondence between zigzag paths, zigzag curves and corresponding twisted com-
plexes. We have depicted this in Figure 18.3. Let us explain their relation as follows:

• Zigzag paths are combinatorial gadgets in Q.

• Zigzag curves are defined as their smoothed analogs in the surface |Q|.

• A zigzag path L comes with a canonical twisted complex presentation also denoted L ∈ TwGtlQ.
The datum of L ∈ TwGtlQ includes a δ-matrix consisting of angles between the arcs lying on the
zigzag path.
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Gadget Discrete Smooth

Input datum Q |Q| \Q0

(deformed) Q (|Q|, Q0)

Wrapped category GtlQ wFuk(|Q| \Q0)

(deformed) Gtlq Q nonexistent

Zigzag object L L̃ ⊆ |Q| \Q0

(deformed) L L̃ ⊆ |Q|

Zigzag category HL “L̃”

(deformed) HLq “L̃q”

Basis morphisms h ∈ HomHL(L1, L2) p ∈ L̃1 ∩ L̃2

A∞-products CR/ID/DS/DW disks Morse-Bott disks

Table 18.1: Translation between discrete and smooth

(a) Q5 with its single zigzag curve (b) Q6 with its two zigzag curves

Figure 18.2: The sphere dimers and their zigzag curves

In our setting, we allow additional signs in the entries of the δ-matrix of the twisted complex. Once a
specific choice of signs has been selected for every zigzag path, the sets of zigzag paths, zigzag curves
and their twisted complexes are in one-to-one correspondence. We therefore allow ourselves to switch
liberally between the three corresponding objects. For additional clarity, we may denote zigzag paths or
their twisted complexes by letters L,L1, . . . and associated zigzag curves by L̃, L̃1, . . ..

Interpreting a zigzag curve as object in the wrapped Fukaya category or as a twisted complex in
TwGtlQ requires two more pieces of data. The first datum is the choice of spin structure. Choosing
simultaneous spin structures for all zigzag paths in Q is equivalent to associating a sign (−1)#α to every
internal angle of every polygon in Q. Once the spin structure is chosen, we can form the twisted complex
L ∈ TwGtlQ for every zigzag path L, depicted with signs in Figure 18.3. For the purpose of the present
paper, we choose the # signs in a very specific way, described in Convention 18.1.

The second piece of data required is the choice of location for the identity and co-identity on every
zigzag path. More precisely, this choice entails a choice of one of one indexed arc a0 on L and the selection
of one single angle α0 out of all angles present in the δ-matrix of L. In the twisted complex presentation,
the choice of identity and co-identity location are not visible. They are however needed as a choice to
compute the products in the minimal model of TwGtlq Q, just like the products in the wrapped Fukaya
category also depend on these choices.

We codify the convention on these choices as follows:

Convention 18.1. The dimer Q is a geometrically consistent dimer or standard sphere dimer QM with
M ≥ 3. Each zigzag path is supposed to come with a choice of an identity location a0 and a co-identity
location α0. The co-identity α0 shall be chosen to lie in a counterclockwise polygon. The spin structures
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zigzag path

←→
zigzag curve

←→

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ) with

δ =




0

(−1)#α1α1 0 . . . 0 (−1)#α2kα2k

(−1)#α2α2 (−1)#α3α3 . . . 0 0

0 (−1)#α4α4 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . (−1)#α2k−3α2k−3 0

0 0 . . . (−1)#α2k−2α2k−2 (−1)#α2k−1α2k−1

0 0




twisted
complex

Figure 18.3: Three descriptions of a zigzag path

L2 L1

(a) Even

L2 L1

(b) Odd

Figure 18.4: Intersection degree

is given by assigning to every interior angle α of a clockwise polygon the # sign #α = 0 and to every
interior angle α of a counterclockwise polygon the # sign #α = 1.

Definition 18.2. The category of zigzag paths is the category L ⊆ TwGtlQ given by the twisted
complexes associated with all zigzag paths of Q, each with its single associated choice of spin structure.

In Paper II, we have investigated the minimal model HTwGtlQ. The objects of this minimal model
are the same as those of TwGtlQ. In particular, this category contains all twisted complexes associated
with zigzag paths. However, the hom spaces are compressed in comparison to TwGtlQ. We have provided
explicit basis elements for these hom spaces HomHTwGtlQ(L1, L2) in Paper II. The basis elements can

be identified with intersection points of L̃1 and L̃2:

Lemma 18.3. Let L1 and L2 be two zigzag paths. Then the intersection points between L̃1 and L̃2

naturally provide a basis for the hom space HomHL(L1, L2). In case L1 = L2, this concerns only the
transversal self-intersection points, which count double, plus the identity and co-identity points.

Remark 18.4. The description of the hom spaces by means of intersection points between L̃1 and
L̃2 is expected from the derived equivalence of GtlQ and the wrapped Fukaya category [18]. Un-
der this equivalence, the zigzag path L corresponds to the zigzag curve L̃. As such, the hom space
HomwFuk(|Q|,Q0)(L1, L2) has basis given by intersections between L̃1 and L̃2. Since zigzag curves bound

no digons in the punctured surface |Q| \ Q0, the differential on HomwFuk(|Q|,Q0)(L̃1, L̃2) vanishes and

consequently intersection points also provide a basis for the cohomology HHomwFuk(|Q|,Q0)(L̃1, L̃2). In

summary, this identifies intersections between L̃1 and L̃2 as hom space HomHTwGtlQ(L1, L2).

Every basis morphism p : L1 → L2 comes with a degree |p| ∈ Z/2Z assigned. The degree depends on
the orientation of the intersection between L̃1 and L̃2. The precise convention is depicted in Figure 18.4.

Remark 18.5. The basis of the hom space HomHTwGtlQ(L1, L2) is special in case L1 = L2. Its basis is
then given by transversal intersections plus two special morphisms, namely the identity and co-identity.
The transversal intersections are self-intersections, and they give in fact two morphisms in HTwGtlQ,
of which one is odd and the other is even. Whenever we refer to self-intersections of a zigzag curve, it is
understood that the datum of a self-intersection shall include the choice of whether we mean the odd or
the even morphism. For more details we refer to Paper II or [16, Chapter 9].
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18.2 Deformed category of zigzag paths

In this section, we recall the deformation Lq of L from Paper II. First, we recall the use of the deformed
gentle algebra Gtlq Q. We then explain that the zigzag curves survive upon deforming GtlQ to Gtlq Q.
Finally, we recall how the process of “uncurving” produces the deformed, yet curvature-free category Lq.

We are interested in the minimal model of TwGtlq Q. For our purposes, it suffices in fact to look at
the subcategory of TwGtlq Q given by zigzag paths:

Definition 18.6. The category Lpre
q ⊆ TwGtlq Q is the subcategory consisting of the twisted complexes

of all zigzag paths of Q, each with their chosen spin structure.

In Paper II, we showed how to compute a minimal model of a deformed A∞-category Cq. The first
step in the procedure consists of optimizing curvature according to a well-defined prescription. The result
of the curvature optimization procedure is an A∞-deformation that is gauge equivalent to Cq.

In the specific case of Lpre
q , we can explicitly describe the result Lq of the curvature optimization

procedure:

Definition 18.7. Let L be a zigzag path of Q, with associated twisted complex

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ)

as in Figure 18.3. Then the corresponding deformed zigzag path is the following object of Tw′ Gtlq,
still denoted L:

L = (a1 ⊕ a3 ⊕ . . .⊕ ak ⊕ a2 ⊕ . . .⊕ a2k, δ) ,

δ =




0 ditto

(−1)#α1q1α
′
1 (−1)#α2q2α

′
2 0 . . . 0

0 (−1)#α3q3α
′
3 (−1)#α4q4α

′
4 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . (−1)#α2k−2q2k−2α
′
2k−2

(−1)#α2kq2kα
′
2k 0 0 . . . (−1)#α2k−1q2k−1α

′
2k−1

0




.

Here “ditto” denotes the same matrix entries as in Figure 18.3. The letter qi denotes the puncture around
which αi winds. The angle α′

i is defined as the complementary angle to αi. In other words, the angle α′
i

is such that α′
iαi comprises a single full turn around a puncture.

The category of deformed zigzag paths is the subcategory Lq ⊆ Tw′ Gtlq Q consisting of the
deformed zigzag paths.

Remark 18.8. The definition of the deformed zigzag path is a specific application of the “complementary
angle trick” laid out in Paper II. On the level of twisted complexes, the complementary angle trick in-
finitesimally changes the δ-matrices of the zigzag paths. The resulting δ-matrices are not upper triangular
anymore, whence the notation Tw′ Gtlq Q. On the level of the category Lpre

q itself, the complementary
angle trick consists of a specific gauge transformation.

Remark 18.9. The category Lq of deformed zigzag paths is a deformation of the category L of zigzag
paths. In Paper II, we proved that Lq has “optimal curvature” in the sense of the deformed Kadeishvili
theorem. In fact, if Q is geometrically consistent, then Lq is curvature-free. If Q = QM for M odd, then
Lq is curvature-free as well (due to choice of spin structure). If Q = QM for M even, then the curvature
of the two zigzag paths in Lq is an infinitesimal multiple of their identity morphisms.

18.3 Minimal model structure

In this section, we recall the deformed A∞-products on HLq from Paper II. As it turns out, these
products have striking similarity with the products of the relative Fukaya category. Although we do not
need Fukaya categories here, it is helpful to recall that their products are enumerated in terms of what
we may call smooth immersed disks. In the present section, we recall that also the products of HLq can
be enumerated in terms of certain types of smooth immersed disks. We recollect their precise rule.

The category Lq is a deformed A∞-category and as such has no classical minimal model. In Paper II,
we define a notion of minimal models for deformed A∞-categories and show that every deformed A∞

has a minimal model. Moreover, we show how to compute minimal models by means of a deformed
Kadeishvili construction. In Paper II, we compute the minimal model HLq of Lq in its entirety.
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out

co-identities

co-identities

Figure 18.5: This pictures depicts a typical CR disk. The disk has twelve inputs of which eight are
co-identities. There are two groups of co-identities, each consisting of four co-identities stacked together.
By definition, the zigzag curves on which the two stacks of co-identities lie are required to run clockwise,
as indicated by the arrows.

Remark 18.10. The aim of our minimal model computation in Paper II was to identify the higher
products of HLq as higher products of the relative Fukaya category. Here is a sketch of this computation:
We provided an explicit homological splitting as well as corresponding deformed codifferential hq and
deformed projection πq in terms of “tails of morphisms”. It remained to evaluate all Kadeishvili trees.
The essential step was to analyze Kadeishvili trees by what we called “result components”. It turned out
that every result component can be matched with a disk between the zigzag curves. Finally, we classified
the disks that appeared this way into the types CR, ID, DS and DW. In other words, the minimal model
HLq is given by intersection points of the zigzag curves, together with a deformed A∞-structure which
counts disks.

The minimal model HLq can be expressed by means of counting CR, ID, DS and DW disks. The
first step in this section is to recall these four types of disks. We give a verbal and visual characterization
of these disks. As auxiliary disk type we recall the SL disks (shapeless disks), with a slightly abridged
definition.

For the definition of these disk types, let L1, . . . , LN+1 be a fixed sequence of N +1 ≥ 1 zigzag paths
and hi : Li → Li+1 for i = 1, . . . , N some basis morphisms. Since identities among the inputs hi yield
well-known products µHLq

(hN , . . . , h1) by the unitality property of HLq, we assume that none of the
inputs hi is an identity. Note that co-identities are however allowed. Let t : L1 → LN+1 be another
intersection point, the letter standing for “target candidate”.

Definition 18.11. An SL disk (shapeless disk) with inputs h1, . . . , hN and output t consists of an
oriented immersion D : PN+1 → |Q| of the standard (N + 1)-gon PN+1 such that

• the i-th edge of D is mapped to a segment of L̃i, for i = 1, . . . , N + 1,

• the i-th corner of D is mapped to the intersection point corresponding with hi, for i = 1, . . . , N ,

• the N + 1-th corner of D is mapped to the intersection point corresponding with t,

• all corners of D are convex.

The immersion D itself is taken up to reparametrization.

Remark 18.12. SL disks are allowed to be monogons (N = 0) or digons (N = 1). All the L̃i-segments
are allowed to be empty. We can also imagine these empty segments as being infinitesimally short.

The standard polygon PN+1 together with its numbering of corners and edges is depicted in Fig-
ure 17.1a. Note that disk inputs are numbered in opposite direction as they would be in the standard
definition [1]. The difference is necessary in order to match with the convention for gentle algebras [18].
With the definition of SL disks in mind, we are ready to recall the CR, ID, DS and DW disk types.
Among these four disk types, only CR and ID disks are relevant for this paper and we have depicted their
schematic in Figure 18.5 and 18.6. For DS and DW disks we given an abridged definition and explain
what makes them irrelevant.

Definition 18.13. A CR disk (co-identity rule disk) is an SL disk all of whose segments are of non-
empty, with the exception that multiple stacked co-identity inputs with empty segments in between are
allowed, as long as their zigzag curve is oriented clockwise with the disk. We denote by DiskCR the set of
all CR disks, taking the union over arbitrary input sequence h1, . . . , hN and output t.
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out

co-identities

(a) Clockwise odd input

out

co-identities

(b) Counterclockwise odd input

out

co-identities

(c) Even input

Figure 18.6: These pictures depict typical ID disks, categorized according to the type of their degenerate
input. All depicted ID disks have nine inputs, of which four consist of a stack of co-identities and one
is the degenerate input. The degenerate input is the input located directly next to the output mark.
The orientations of the zigzag curves near the output mark are enforced by the specific rules of ID disks.
The orientation of the zigzag curve carrying the co-identities is enforced by the requirement that the disk
becomes CR upon excision of the output mark.

Definition 18.14. A ID disk (identity degenerate disk) is an SL disk satisfying the following conditions:

• The output is an identity,

• Precisely one input, the degenerate input, is infinitesimally close to the output,

• The degenerate input is an odd or even transversal intersection,

• The disk becomes CR upon excision of the output and substitution of the output mark by the
degenerate input,

• In case the degenerate input is odd, it precedes respectively succeeds the output mark if L̃1 is
oriented clockwise respectively counterclockwise with the disk,

• In case the degenerate input is even, then the source zigzag curve of the degenerate input is coun-
terclockwise and the target zigzag curve of the degenerate input is clockwise.

We denote by DiskID the set of ID disks with arbitrary inputs and output.

DS and DW disks (degenerate strip disks, degenerate wedge disks) are immersed strips fitting into
one of the two digons bounded by a zigzag curve L̃ and its Hamiltonian deformation. It is possible to
make this more precise. However, every DS and DW disk necessarily includes at least one even input.
This already renders DS and DW disks irrelevant for the present paper. Even without recalling the
precise definition, we denote by DiskDS and DiskDW the set of DS and DW disks, respectively.

In order to give the description of the products µHLq
in terms of disks, we have to introduce two

pieces of notation here: the Abouzaid sign and the deformation parameter attached to a disk. We have
chosen to name this sign rule after Abouzaid for the reason that it is the same as in [1].

Definition 18.15. Let D be an SL disk. Then its Abouzaid sign Abou(D) ∈ Z/2Z is the sum of all
# signs on the boundary of D, plus the number of odd inputs hi : Li → Li+1 where L̃i+1 is oriented
counterclockwise relative to D, plus one if the output t : L1 → LN+1 is odd and L̃N+1 is oriented
counterclockwise. The deformation parameter Punc(D) ∈ CJQ0K is the total product of all punctures
covered by D, counted with multiplicity.

We will now make the description of the product structure on HLq precise. The procedure is familiar:
Let h1, . . . , hN be a sequence of inputs. The product µHLq

(hN , . . . , h1) is given by enumerating all disks
with inputs h1, . . . , hN and arbitrary output t : L1 → LN+1. In our specific case, the types of disks
involved are the CR, ID, DS and DW disks. The contribution from a disk D carries the Abouzaid sign
(−1)Abou(D) and is weighted by the deformation parameter Punc(D) ∈ CJQ0K. For a disk D, denote its
output t : L1 → LN+1 by t(D).

Theorem 18.16 (Paper II). Let Q be a geometrically consistent dimer or standard sphere dimer QM
with M ≥ 3. The A∞-product µHLq

is strictly unital. Let h1, . . . , hN be a sequence of N ≥ 0 non-identity
basis morphisms with hi : Li → Li+1. Then their product is given by

µNHLq
(hN , . . . , h1) =

∑

D∈DiskCR∪̇DiskID∪̇DiskDS∪̇DiskDW
D has inputs h1,...,hN

(−1)Abou(D) Punc(D) t(D).
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Remark 18.17. The description of Theorem 18.16 also describes curvature µ0
HLq

and differential µ1
HLq

of the minimal model accurately. Let us explain this as follows:
In case Q is geometrically consistent, the curvature µ0

HLq
and the differential µ1

HLq
vanish. This is

witnessed by the fact that there are no monogons or digons in Q bounded by zigzag curves.
In case Q = QM for odd M , the curvature µ0

HLq
vanishes, but the differential µ1

HLq
is nonzero. This

vanishing of curvature is witnessed by the fact that there are monogons in QM bounded by zigzag curves,
but they cancel each other due to the spin structure. The differential is witnessed by the fact that there
are digons in QM bounded by zigzag curves.

In case Q = QM for even M , both curvatue µ0
HLq

and µ1
HLq

are nonzero. This is witnessed by the
fact that there are both monogons and digons in QM bounded by zigzag paths.

18.4 Preparation for mirror objects

In this section we review further selected products in the category HTwGtlq Q from Paper II. Namely,
we regard products of the form µ(m,hN , . . . , h1), where h1, . . . , hN is a sequence of odd morphisms
hi : Li → Li+1 not containing co-identities and m ∈ HomHTwGtlq Q(LN+1, a) is a morphism to an
arc a ∈ Gtlq Q. Ultimately, knowledge of these products serves the calculation of mirror objects in
section 21.6.

We start with reviewing the hom space HomHTwGtlQ(L, a). Here L ∈ HTwGtlQ is a zigzag path in

Q and a ∈ GtlQ is an arc. The zigzag curve L̃ and the arc a are both curves in the surface |Q|. While
L̃ is a closed curve, the arc a is an interval. The curves L̃ and a may be disjoint or intersect. If they
intersect, they intersect in a single point, namely the midpoint of a:

a

odd

L̃
a

even
L̃

a L̃

L̃

The picture on the left depicts a single odd intersection L→ a. The picture in the middle depicts an
even intersection L→ a. It is also possible that L intersects the arc a twice, depicted on the right. Given
that HTwGtlQ and the wrapped Fukaya category are equivalent, we expect that intersections L → a
provide a natural basis for the hom space HomHTwGtlQ(L, a). We confirmed this in Paper II:

Lemma 18.18. Let L be a zigzag path and a an arc in Q. Then a natural basis for the hom space
HomHTwGtlQ(L, a) is given by the intersections between a and L̃.

Every intersection point m : L1 → a comes with a partner m∗ : L2 → a. To see this, let L2 be the
zigzag path departing from a on the opposite side of L1. Then also L̃2 intersects a at its midpoint. When
m is even, its partner m∗ is odd, and vice versa. It is possible that L1 = L2, namely in case the two
zigzag paths departing from a are equal. Apart from the zigzag paths L1 and L2, there is not a single
other zigzag path in Q that intersects a. Let us review an additional type of disk, depicted in Figure 18.7:

Definition 18.19. An MD disk (mirror disk) is a CR disk whose

• inputs h1, . . . , hN are all odd and do not contain co-identities,

• output is even and not an identity,

• zigzag segments all run clockwise,

which has undergone the following surgery: The output mark, located at a certain arc a, has been cut off.
The odd morphism at a is added as final input, and the even morphism at a is indicated as new output.

The Abouzaid sign Abou(D) and the deformation parameter Punc(D) of an MD disk are defined in
analogy to Abouzaid signs and deformation parameters for SL disks. Given an arc a ∈ Q1, there are two
zigzag paths departing from a. In particular, there is one single odd basis morphism between these two
zigzag paths located at a. With this in mind, we are ready to recall the description of some products of
the form µHTwGtlq Q(m,hN , . . . , h1) from Paper II:

Lemma 18.20. Let h1, . . . , hN be a sequence of N ≥ 0 odd cohomology basis elements hi : Li → Li+1

such that none of them is the co-identity. Let a be an arc. Let m ∈ HomHTwGtlq Q(LN+1, a) be an odd
intersection. Then we have

µHTwGtlq Q(m,hN , . . . , h1) =
∑

MD disk D
with inputs h1,...,hN ,m

(−1)Abou(D) Punc(D)m∗.



279

a
out m

h1

. . .

hN

(a) MD disk for odd m

a
out m

b

(b) A triangle for even m

Figure 18.7: Disks contributing to products µ(m, b, . . . , b)

Let m ∈ HomHTwGtlq Q(LN+1, a) be an even intersection. Then the product µ(m,hN , . . . , h1) vanishes,
except if N = 1 and h1 is the odd intersection at a between the two zigzag paths departing from a. In
this case, we have

µHTwGtlq Q(m,h1) = −m
∗.

Remark 18.21. In case Q is geometrically consistent, the differential µ1
HTwGtlq Q

(m) vanishes. This is
also the case if Q = QM for even M . In case of Q = QM with M odd, the differential is instead given
by counting digons which lie on the clockwise face of QM . By definition of MD disks, this, corner case is
included in Lemma 18.20.

19 Flatness of superpotential deformations

In this section, we show that a superpotential deformation of a CY3 Jacobi algebra is flat under assump-
tion of a certain boundedness condition:

Jacobi algebra
Jac(Q,W ) = CQ

(∂aW )

Deformed Jacobi algebra
Jac(Q,Wq) =

B⊗̂CQ
(∂aWq)

boundedness condition

Deformation theory for algebras has historically followed the question when a deformation of an ideal
gives rise to a deformation of the algebra. The core indicators of this development are the type of algebra
studied, the degree |R| of the relations in the algebra, and the degrees |R′| admitted for the deformation
of the relations. Past development shows a continuous improvement on these two degrees:

Year Authors Type of algebra Deformation |R| |R′|

1994 Braverman and Gaitsgory [20] Koszul PBW 2 2

2001 Berger [10] N -Koszul — N —

2006 Berger and Ginzburg [11] N -Koszul PBW N < N

2006 Berger and Taillefer [12] CY3 PBW N < N

2023 this paper CY3 formal bounded any

In the present section, we examine this “flatness question” for the case of formal deformations of CY3
Jacobi algebras. We build on the work of Ginzburg-Berger, which shows that CY3-ness and homogeneity
of the superpotential W with respect to a positive integer grading on Q give rise to an inductive argument
that ensures flatness. The proof can however be continued without homogeneity requirement and we land

in the completed path algebra ĈQ. In this section, we construct a boundedness condition which allows
us to land back in CQ by means of a posteriori estimates. The result is a flatness theorem that goes
beyond the work of Berger and Ginzburg. Finally, we show that Jacobi algebras of most dimers satisfy
our boundedness condition.

The general context of our work is the theory of deformations of associative algebras. The main
question can be sketched as follows: Let A be an algebra and I ⊆ A an ideal, then we have the quotient
algebra A/I. Let now B be a deformation base, for instance B = CJqK. Let now Iq ⊆ B⊗̂A be an ideal,
for instance Iq ⊆ AJqK. We can then form the quotient algebra (B⊗̂A)/Iq, for instance AJqK/Iq. The
main question is:

How need I and Iq be related so that (B⊗̂A)/Iq is a deformation of A/I?
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Our results are presented in section 19.11 and can be summarized as follows: Let A = Jac(Q,W ) be a
CY3 algebra given by a quiver Q with superpotential W . The relations of this algebra are the derivatives
∂aW of the superpotential. Let W ′ ∈ mCQ be a deformation of the superpotential, that is, any additional
cyclic terms lying in order m. Then we can consider the deformed relations ∂a(W + W ′) ∈ B⊗̂CQ.
We show that if the relations ∂aW satisfy a certain boundedness condition, then Jac(Q,W + W ′) is
automatically a deformation of Jac(Q,W ).

The boundedness condition for the relations ∂aW is best described as follows: Each relation ∂aW is
a linear combination of paths in Q. We define an equivalence relation on the set of paths in Q as follows:

• If p and q are paths appearing in the same relation ∂aW , then p ∼ q.

• If p ∼ q, then apb ∼ aqb for arbitrary paths a, b.

• Take the transitive hull.

This equivalence relation partitions the set of paths in Q into equivalence classes. Our boundedness
condition demands that the path length in every equivalence class is bounded. In other words, we
demand that path length cannot increase to infinity if we apply (parts of) relations.

We have structured this section as follows: In section 19.1, we provide some intuition and terminology
regarding flatness. In section 19.2, we recollect the tools of Berger and Ginzburg [11]. In section 19.3, we
set up notation and formulate a stronger versions of the tools of Berger and Ginzburg. In section 19.4,
we introduce our boundedness argument and demonstrate its strength, most of which can be read in-
dependent of the deformations context. In section 19.5, we introduce more notation for ideal-like sets
which allows us to apply the boundedness argument to the flatness question. In section 19.6, we prove a
bounded version of the tools of Berger and Ginzburg. In section 19.7 we derive our first flatness result

which concerns quasi-flatness of a certain auxiliary ideal in B⊗̂ĈQ. In section 19.8, we prove our second
flatness result by tracing our way back to the non-completed path algebra. In section 19.9, we provide
an a posteriori interpretation of the auxiliary ideal, which promotes our first flatness result to a flatness

result for completed ideals in ĈQ. In section 19.10, we provide criteria for the Jacobi algebra of a dimer
to satisfy our boundedness condition. In section 19.11, we streamline our flatness theorems.

19.1 Flatness and quasi-flatness

In this section, we recapitulate flatness of algebra deformations and quasi-flatness of ideal deformations.
The core connection is that a quasi-flat ideal deformation typically makes the quotient algebra a flat
algebra deformation:

Quasi-flat ideal deformation
Iq ⊆ B⊗̂A of I ⊆ A

Flat algebra deformation
(B⊗̂A)/Iq of A/I

It is our aim to study deformations of ideals. We deploy notation and terminology from section 15.3,
in particular the distinct notation m

kY 6= m
k · Y . Let A be an algebra and I ⊆ A an ideal. Regard a

deformation base B and let Iq ⊆ B⊗̂A be an ideal. The question is in which cases (B⊗̂A)/Iq can be
identified with B⊗̂(A/I). A first observation is that Iq needs to be close enough to I. More precisely, we
should have π(Iq) = I, or in other words Iq+mA = I+mA. This condition is not strong enough however.
The basic problem is that Iq may be too large in higher orders of m. Elements of A may get unexpectedly
annihilated in the quotient (B⊗̂A)/Iq when multiplied by elements of m. The further condition that Iq
therefore needs to satisfy is the quasi-flatness property Iq ∩mA ⊆ mIq.

We start by fixing terminology for deformations of algebras and ideals as follows:

Definition 19.1. Let A be an algebra and B a deformation base. Then a B-algebra Aq is a deformation
of A if there is a B-linear algebra isomorphism ϕ : Aq

∼
−→ (B⊗̂A,µq) where µq is a deformation of the

product µ : A⊗A→ A.

Definition 19.2. Let A be an algebra and I ⊆ A an ideal. Let B be a deformation base and Iq ⊆ B⊗̂A
an ideal. Then Iq is a deformation of I if I +mA = Iq +mA.

Remark 19.3. Our terminology is slightly confusing: We have decided to call Iq a deformation of I
already if it is loosely related to I. In contrast, our notion for deformations of algebras is very strict.

Recall from section 15.3 that Iq is quasi-flat if Iq ∩ mA ⊆ mIq. The ideal Iq is pseudoclosed if
BIq ⊆ Iq. In the following, we present two sample deformations of the ideal I = (X) ⊆ A = C[X] over
B = CJqK. One of the deformations is quasi-flat and the other is not:
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Object Quasi-flat Not quasi-flat

Algebra A C[X] C[X]

Ideal I (X) (X)

Quotient A/I C C

Deformed ideal Iq (X + q) (X) + (q)

Iq ∩ qA qIq qA

Quotient AJqK/Iq
C[X]JqK
(X+q) = CJqK C[X]JqK

(X)+(q) = C

Not every deformation of an algebra A/I can be described through a deformation of its ideal I.
Conversely, not every deformation I gives rise to a deformation of A/I. We recall here a classification of
those deformations Iq that give rise to deformations of A/I:

Proposition 19.4. Let A be an algebra and I ⊆ A an ideal. Let B be a deformation basis and Iq ⊆ B⊗̂A
a deformation of I. Put Aq = (B⊗̂A)/Iq. Then the following are equivalent:

• Iq is quasi-flat and pseudoclosed.

• Aq is a deformation of A/I.

In this case, the m-adic topology on Aq agrees with the quotient topology and any B-linear isomorphism

Aq
∼
−→ B⊗̂(A/I) is automatically continuous.

Proof. We divide the proof into three parts: We first show that Iq being quasi-flat and pseudoclosed
implies that Aq is a deformation. Second we show the converse, and third we draw the topological
conclusions.

For the first part, assume Iq is quasi-flat and pseudoclosed. It is our task to find an isomorphism

of B-algebras ϕ : (B⊗̂A)/Iq
∼
−→ (B⊗̂(A/I), µq), where µq is a deformation of the algebra structure of

A/I. Pick a complement V ⊆ A of I such that A = I ⊕ V . Both Iq ⊆ B⊗̂A and BV ⊆ B⊗̂A are
quasi-flat and pseudoclosed. By Proposition 15.29 we conclude that B⊗̂A = Iq ⊕ BV . We obtain a
B-linear isomorphism

ϕ :
B⊗̂A

Iq
=
Iq ⊕BV

Iq

∼
−→ BV

∼
−→

BI ⊕BV

BI

∼
−→ B⊗̂

A

I
.

This already provides ϕ as B-linear map. It remains to check that the algebra structure µq induced
on B⊗̂(A/I) from (B⊗̂A)/Iq via ϕ is a deformation of the natural algebra structure µ of A/I. Pick
a, b ∈ V ⊆ A. Write ab = x +m + v with x +m ∈ Iq, x ∈ I, m ∈ mA, v ∈ BV . Projecting ab to BV
along Iq ⊕BV gives v. Projecting ab to BV along BI ⊕BV instead gives v+O(m). This shows that µq
is a deformation of µ.

For the second part, assume there is an isomorphism of B-modules ϕ : (B⊗̂A)/Iq → B⊗̂(A/I). Regard
the B-linear projection map π : B⊗̂A→ (B⊗̂A)/Iq. The composition ϕπ : B⊗̂A→ B⊗̂(A/I) is B-linear
and surjective. Pick a linear section A/I → B⊗̂A of ϕπ and extend to a B-linear and continuous map
ψ : B⊗̂(A/I) → B⊗̂A following Remark 15.11. Thanks to continuity, ψ is a section of ϕπ in the sense
that ϕπψ = id. In other words, we have the B-linear map ψϕ : (B⊗̂A)/Iq → B⊗̂A with π(ψϕ) = id.
This shows that the projection π has a B-linear section, hence Iq is a direct summand of B⊗̂A. By
Proposition 15.29, we conclude that Iq is quasi-flat and pseudoclosed.

For the third part, let ϕ : Aq → B⊗̂(A/I) be any B-linear isomorphism. By Lemma 15.34, this
map is automatically continuous when Aq is equipped with the m-adic topology. By Remark 15.11, the

composition B⊗̂A→ Aq
∼
−→ B⊗̂(A/I) is automatically continuous as well, and the universal property of

the quotient topology renders ϕ continuous when Aq is equipped with the quotient topology. This settles
all claims.

Remark 19.5. When A is unital, then the B-algebra isomorphism ϕ : (B⊗̂A)/Iq → (B⊗̂A,µq) can be
chosen to preserve the unit. Indeed, one simply chooses the complement V to contain the unit.

Remark 19.6. The statement of Proposition 19.4 still holds true when A is an algebra over a semisimple
algebra Λ, for instance Λ = CQ0 with Q a quiver. The ideals I and Iq are automatically a Λ-submodule as
well, and the complement V ⊆ A can be chosen as a Λ-submodule due to semisimplicity. The B-algebra
isomorphism ϕ : (B⊗̂A)/Iq → (B⊗̂(A/I), µq) then becomes Λ-linear.
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Let us illustrate flatness in the case of deformations of a deformation of a superpotential W on a
quiver Q. Our typical starting point is a cyclic deformation Wq ∈ B⊗̂CQ of W . This deformation gives
rise to deformed relations ∂aWq for a ∈ Q1. The question we try to settle is when the ideal (∂aWq) or its
closure in B⊗̂CQ is quasi-flat. On an intuitive level this means the following: We start from any element
x ∈ CQ and continue adding up deformed relations ∂aWq:

x+ p1∂a1Wqq1 + p2∂a2Wqq2 + . . .

Here pi, qi are arbitrary paths in Q. If we arrive at some point at an element of the form x + O(m),
does the infinitesimal part necessarily vanish or have we incurred additional terms in higher order? If the
infinitesimal part always vanishes, then the deformed ideal (∂aWq) contains no unexpected new relations.
If the infinitesimal part consists of higher-order multiples of relations, then the deformed ideal (∂aWq)
still contains no new relations. If the infinitesimal part consists of strictly more than m(∂aWq), then
the deformed ideal (∂aWq) contains new relations in higher order which cannot be made by combining
existing relations in lower order.

Relations in higher order which cannot be made from combining existing relations in lower order
indicate an ideal that is not quasi-flat. More precisely, these relations lie in ((∂aWq)∩mCQ) \m(∂aWq).
They kill more than expected in the higher-order part of the quotient (B⊗̂CQ)/(∂aWq) and prevent the
quotient from being isomorphic to B⊗̂CQ/(∂aW ).

19.2 Berger-Ginzburg inclusion

In this section we recall superpotentials, the CY3 property and the Berger-Ginzburg inclusion. More
precisely, we start by recalling superpotentials and their associated Jacobi algebras. In terms of a bimodule
resolution, we recall what it means for an algebra to have the CY3 property. Jacobi algebras are sometimes
CY3. If so, their superpotentials satisfies a certain condition which appeared in [11]. The reformulation
of the CY3 property in terms of this condition is essential for us, and we shall refer to the this condition
as the Berger-Ginzburg inclusion.

Remark 19.7. This section is meant as a motivational section. The reader who wishes to take the origin
of the Berger-Ginzburg inclusion for granted is advised to skip to section 19.3. For instance, the original
Berger-Ginzburg inclusion presented here is in fact not sufficient for our purposes, so we will build a
stronger Berger-Ginzburg inclusion from scratch in section 19.3.

To start with, let Q be a quiver. Recall from section 16.6 that a superpotential on Q is a cyclic
element of CQ≥2. Recall also that we may denote by W the CQ0-bimodule generated by W in CQ:

W = CQ0WQ0 =
⊕

v∈Q0

CvWv ⊆ CQ.

Recall that we denote the relations space by

R = span{∂aW | a ∈ Q1}.

Remark 19.8. By abuse of notation, we have used the same notation for W ∈ CQ≥2 as for its associated
bimodule in the above definition. We shall stick to this notation. The distinction should always be clear.
In section 19.3, the terminology will be changed and improved.

Recall that the Jacobi algebra associated with (Q,W ) is the algebra A = Jac(Q,W ) = CQ/(∂aW ).
Let us temporarily keep the shorthand A for the Jacobi algebra. Recall from section 16.6 the candidate
resolution of A as A-bimodule:

0→ A ⊗
CQ0

W ⊗
CQ0

A
g1
→ A ⊗

CQ0

R ⊗
CQ0

A
g2
→ A ⊗

CQ0

CQ1 ⊗
CQ0

A
g3
→ A ⊗

CQ0

A→ A→ 0. (19.1)

We have described this sequence in Remark 16.51. As we recall in section 16.6, the Jacobi algebra
A = Jac(Q,W ) is CY3 if and only if the sequence is exact:

Theorem 19.9 ([14, Theorem 4.3]). Let Q be a quiver and W ∈ CQ≥3 a superpotential. Then the
algebra Jac(Q,W ) is CY3 if and only if the sequence (19.1) is exact.

Recall also from Lemma 16.42 that the exact sequence can be used to produce projective resolutions
for all left and right modules of A. When tensoring the sequence on the left with CQ0 over A, then we
obtain a resolution of CQ0 as right A-modules:

0→W ⊗
CQ0

A
f1
→ R ⊗

CQ0

A
f2
→ CQ1 ⊗

CQ0

A
f3
→ A→ CQ0 → 0. (19.2)
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Remark 19.10. The maps f1, f2, f3 are described as follows: For f1, write an element w =
∑
i∈I riai in

terms of relations ri ∈ R and arrows ai ∈ Q1, then map f1(w) =
∑
i∈I ri ⊗ ai. For f2, write an element

r =
∑
i∈I aipi with arrows ai, then map f2(r) =

∑
i∈I ai⊗ pi. The map f3 is the multiplication map and

the fourth map is the projection onto the quotient of A by all arrows.

Requiring an algebra to be CY3 is an algebro-geometric condition. Berger and Ginzburg [11] translate
this condition for A = Jac(Q,W ) to a more tractable condition in terms of the superpotential and
relations. More precisely, their approach is to evaluate exactness of the sequence (19.2) at the module
second from the left. The result is an inclusion in terms of R and W :

Lemma 19.11 ([11, Theorem 2.6]). If Jac(Q,W ) is CY3, then the Berger-Ginzburg inclusion holds:

RCQ ∩ CQ1R ⊆WCQ+RI(R). (19.3)

Remark 19.12. The inclusion (19.3) can be roughly interpreted as follows: Let p ∈ CQ be a path. Add
any amount of ideal elements ry ∈ RCQ and ar ∈ CQ1R to p. If we land at p again after the addition,
the additions of the two types have been equal and therefore lie in the intersection RCQ∩CQ1R. By the
inclusion (19.3), the relations we have added are equivalent to applying the entire set of relations ∂aW
around some vertices and terms that “vanish quadratically” in A/I(R).

Berger and Taillefer [12] use the intermediate results of Berger and Ginzburg [11] to deduce flatness
of PBW deformations. Apart from the CY3 condition in the form of the Berger-Ginzburg inclusion, their
core assumption is that the superpotential W ∈ CQ≥2 is homogeneous in path length. Translated to the
setting of formal deformations, their statement would read as follows:

Proposition 19.13. Let Q be a quiver and W ∈ CQ≥2 a homogeneous superpotential. If (B,m) is
a deformation base and W ′ ∈ mCQ≥2 is a cyclic element, then the deformed ideal B(∂aW + ∂aW

′) is
quasi-flat. In other words, the “deformed Jacobi algebra”

Jac(Q,W +W ′) :=
B⊗̂CQ

B(∂aW + ∂aW ′)

is a deformation of Jac(Q,W ).

We shall not prove Lemma 19.11 and Proposition 19.13 here. Namely, the core assumption that W
is homogeneous is too restrictive for our purposes. We will prove stronger versions of both.

19.3 Notation and conventions

In this section, we define the setup in which we prove flatness properties. As a first step, we start
from relation spaces instead of superpotentials. Second, we introduce a stronger version of the Berger-
Ginzburg inclusion. We fix both items in a notational framework, which does not make explicit reference
to superpotentials. Finally, we show that relations coming from CY3 superpotentials fall within the
framework.

It may happen that one is interested in checking flatness of Calabi-Yau like algebras where the relation
space R is given, without the relations coming from a single superpotential W . In this case, one may
form the space W = CQ1R ∩RCQ1 which serves as a replacement for the superpotential:

CY3 viewpoint
W ∈ CQ≥2

superpotential
 

R = span(∂aW )
relation space

Deformation viewpoint
R ⊆ CQ

relation space
 

W = CQ1R ∩RCQ1

superpotential space

The approach of starting with a relation space R is also the context used in [11]. We will codify the
setup in Convention 19.14. During the remainder of section 19, we stick to this convention.

Convention 19.14. The letter Q denotes a quiver. The space R ⊆ CQ≥1 is a finite-dimensional CQ0-
bimodule of relations. We write W := CQ1R ∩ RCQ1. When regarding deformations, (B,m) is a

deformation base and ψ : R → mĈQ is a CQ0-bimodule map. The ideal generated by R is denoted

I(R) = CQRCQ ⊆ CQ. The space of deformed relations is denoted P := (Id+ψ)(R) ⊆ B⊗̂ĈQ. Two
additional properties may be assumed:
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[BG] The strong Berger-Ginzburg inclusion

R⊗ CQ ∩ c−1(CQ1I(R)) ⊆ f(W ⊗ CQ) +R⊗ I(R). (19.4)

Here, c : R ⊗ CQ → RCQ denotes the contraction map and f : W ⊗ CQ → R ⊗ CQ1CQ denotes
the map that splits W into relations and arrows.

[CP] The property (CQ1P + PCQ1) ∩mĈQ = 0.

Remark 19.15. We drop subscripts from the tensor product ⊗. When the two tensorands come from
quiver algebras, the tensor product always refers to the tensor product over CQ0:

R⊗ CQ = R⊗CQ0
CQ, R⊗ I(R) = R⊗CQ0

I(R), W ⊗ CQ =W ⊗CQ0
CQ, . . .

In the remainder of the section, we illustrate which algebras fall under the framework of Conven-
tion 19.14. In particular, we show that Jacobi algebras with the CY3 property satisfy the conditions
[BG] and [CP].

Example 19.16. The algebra C〈A,B,C〉/(BC,CA,AB) falls into the framework of Convention 19.14.
Its relations are given by R = span(BC,CA,AB) and by definition we have

W = CQ1R ∩RCQ1 = span(ABC,BCA,CAB).

This space is three-dimensional and not spanned by a single superpotential on CQ. The algebra is not
CY3. However the strong Berger-Ginzburg inclusion is satisfied:

R⊗ CQ ∩ c−1(CQ1I(R)) = BC ⊗ACQ+ CA⊗BCQ+AB ⊗ CCQ = f(W ⊗ CQ).

The algebra therefore falls within our framework Convention 19.14 and can therefore be treated with our
approach.

For this specific algebra another approach to deformations is possible: In [8], Barmeier and Wang
study quiver algebras whose relations are defined by so-called reduction systems. The deformations of
these algebras are in combinatorial correspondence with deformations of their reduction system. The
specific relations BC = CA = AB = 0 constitute a reduction system, therefore this specific algebra falls
under the framework of [8].

Next, we show that the case of superpotentials falls within the framework of Convention 19.14. As a
preparation, we need the following lemma, modeled after [11].

Lemma 19.17. Assume [CP]. Then the two replacement maps

ψ0 :W → mCQ1ĈQ,
∑

i∈I

airi 7→
∑

i∈I

aiψ(ri),

ψ1 :W → mĈQCQ1,
∑

i∈I

riai 7→
∑

i∈I

ψ(ri)ai.

are well-defined and equal.

Proof. For well-definedness, it suffices to note that ψ0 and ψ1 are nothing else than the splitting maps
W ⊆ RCQ1 → R⊗CQ1 and W ⊆ CQ1R→ CQ1⊗R, composed with ψ acting either on the left or right
factor. Now let us explain why ψ0 = ψ1. Let w ∈W , then

ψ0(w)− ψ1(w) = (w + ψ0(w))− (w + ψ1(w)) ∈ PCQ1 + CQ1P.

The left-hand side simultaneously lies in mĈQ. By [CP], the difference ψ0(w) − ψ1(w) vanishes. This
proves ψ0 = ψ1.

We are now ready to see how the case of relations coming from a superpotential fits into the framework
of Convention 19.14. Let W be a superpotential and W ′ ∈ mCQ a deformation. We simply put R =
span{∂aW} and ψ(∂aW ) := ∂aW

′. To make these definitions work, one needs to check that the relations
∂aW are linearly independent and that CQ1R ∩ RCQ1 is indeed the CQ0-bimodule generated by the
superpotential W ∈ CQ. We verify this in the following lemma. Note that W is required to consist of
paths of length ≥ 3 this time:
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Lemma 19.18. Let Q be a quiver with superpotential W ∈ CQ≥3. Assume Jac(Q,W ) is CY3. Then
the relations ∂aW for a ∈ Q1 are linearly independent. Put R = span{∂aW}. Then CQ1R ∩ RCQ1 is
equal to the CQ0-bimodule generated by W . The property [BG] holds.

Moreover, let W ′ ∈ mĈQ be a (cyclic) deformation. Define ψ : R→ mĈQ by ψ(∂aW ) = ∂aW
′. Then

[CP] holds.

Proof. We prove all four statements one after another. For sake of simplicity, we use the notation W to
mean both the superpotential and the CQ0-bimodule CQ0WCQ0 generated by the superpotential. In an
expression like W ⊆ CQ1R or w ∈W , the letter W is to be interpreted as the CQ0-bimodule CQ0WCQ0.
This way, no confusion should arise.

The first statement on linear independence of the relations ∂aW is now widely known, due to Ginzburg,
Bocklandt, Berger, Taillefer and others. For example, the CY3 property implies by [14, Section 4.2] that
the sequence (19.1) is a self-dual resolution of Jac(Q,W ). Hence R and CQ1 are equal in dimension and
the relations are linearly independent.

For the second part of the proof, we show that CQ1R∩RCQ1 is the CQ0-bimodule generated by W .
The inclusion W ⊆ CQ1R ∩ RCQ1 is easy and follows from cyclicity: Indeed for any vertex v ∈ Q0 we
have

vWv =
∑

h(a)=v

a∂aW =
∑

t(a)=v

∂aWa.

The first sum lies in CQ1R and the second sum lies in RCQ1, hence vWv lies in their intersection.
The converse inclusion CQ1R ∩RCQ1 ⊆W follows from inspection of the exact sequence (19.2). To

see this, pick an element
∑
riai with ri ∈ R and ai ∈ Q1 that simultaneously lies in CQ1R. We claim

that
∑
ri ⊗ ai goes to zero under f2 : R⊗ Jac(Q,W )→ CQ1 ⊗ Jac(Q,W ). Indeed, the assumption that∑

riai ∈ CQ1R implies

f2

(∑
ri ⊗ ai

)
=
∑

riai = 0 ∈
CQ1CQ

CQ1I(R)
∼= CQ1 ⊗ Jac(Q,W ).

By exactness of (19.2), we deduce that
∑
ri⊗ ai lies in the image of f1. Therefore within R⊗ Jac(Q,W )

we can write
∑
ri ⊗ ai = f1(

∑
wi ⊗ pi), where wi ∈ W and pi are paths. We shall now try to lift this

equality to R⊗ CQ. As a first step, recall that

R⊗ Jac(Q,W ) =
R⊗ CQ

R⊗ I(R)
.

In consequence there exists a z ∈ R⊗ I(R) such that within R⊗ CQ we have

∑
ri ⊗ ai = f

(∑
wi ⊗ pi

)
+ z.

Here f : W ⊗ CQ → R ⊗ CQ1CQ denotes the map that splits W into relations and arrows. The terms
wi ⊗ pi and z ∈ R ⊗ I(R) look wild, but in reality we can vastly reduce the complexity: Collect in an
index set S all indices i where the path pi is not a vertex. For such indices i ∈ S, we have that all terms
in f(wi⊗ pi) have right tensor component of length at least 2. Note that all terms in R⊗ I(R) also have
right tensor length at least 2. Nevertheless, the left-hand side

∑
ri ⊗ ai has terms only with right tensor

length 1, since ai are arrows. We deduce that f
(∑

i/∈S wi ⊗ pi
)
+ z = 0. Finally, we conclude

∑
ri ⊗ ai = f

(∑

i∈S

wi ⊗ 1

)
.

Contracting the tensors on both sides gives
∑
riai ∈W as desired. This proves the second statement.

For the third statement, it is our task to prove that the strong Berger-Ginzburg inclusion holds. We
note that

W ⊗
CQ

I(R)
∼=

W ⊗ CQ

W ⊗ I(R)
, R⊗

CQ

I(R)
∼=

R⊗ CQ

R⊗ I(R)
CQ1 ⊗

CQ

I(R)
∼=

CQ1CQ

CQ1I(R)
.

Inserting this into the exact sequence (19.2), we get the exact sequence

W ⊗ CQ

W ⊗ I(R)

[f ]
→

R⊗ CQ

R⊗ I(R)

[c]
→

CQ1CQ

CQ1I(R)

Evaluating Ker ⊆ Im on this sequence yields the strong Berger-Ginzburg inclusion.
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The fourth statement follows again from cyclicity. Any element in CQ1P + PCQ1 can be written as
x+ψ0(x) + y+ψ1(y), where x ∈ RCQ1 and y ∈ CQ1R. If such an element additionally lies in mCQ, we
get x+ y = 0, since ψ0 and ψ1 only give terms in mCQ. Hence x = −y ∈ CQ1R ∩RCQ1 =W . Without
loss of generality, we can assume x and y are in the form

x =
∑

t(a)=v

∂aWa =
∑

h(a)=v

a∂aW = −y.

We deduce

ψ0(x) =
∑

t(a)=v

∂aW
′a =

∑

h(a)=v

a∂aW
′ = −ψ1(y).

In total, x+ψ0(x)+y+ψ1(y) vanishes. This demonstrates the fourth statement and finishes the proof.

We have seen that the case of a CY3 superpotential is covered by Convention 19.14. From here on, we
proceed in the context of Convention 19.14. We finish the present section with remarks on the difference
between our strong Berger-Ginzburg inclusion and the original Berger-Ginzburg inclusion, as well as an
explanation on how Berger and Ginzburg proceed in case of a homogeneous superpotential.

Remark 19.19. Let us compare the standard Berger-Ginzburg inclusion (19.3) and strong Berger-
Ginzburg inclusion (19.4). We claim that the strong inclusion implies the standard inclusion and the
converse holds if W ∈ CQ is homogeneous. To show the strong-to-weak implication, lift any element
x ∈ RCQ∩CQ1R to the tensor product R⊗CQ, apply the strong inclusion and contract again. To prove
the weak-to-strong implication, assume W is homogeneous. Let x ∈ R⊗ CQ ∩ c−1(CQ1I(R)), then

c(x) ∈ RCQ ∩ CQ1I(R) ⊆WCQ+RI(R) = c(f(W ⊗ CQ) +R⊗ I(R)).

Homogeneity makes the contraction map c injective and hence x ∈ f(W ⊗CQ) +R⊗ I(R). This proves
the weak-to-strong implication.

The work of Berger and Ginzburg [11] takes place in the context of PBW deformations. We have
translated their result to the case of formal deformations in Proposition 19.13. Now that we have intro-
duced better terminology, we are ready to explain how Berger and Ginzburg prove their result. Translated
again to formal deformations, their core lemma is the following:

Lemma 19.20 (Berger-Ginzburg). Assume the standard Berger-Ginzburg inclusion and [CP]. Then

I(P )CQ ∩mCQ ⊆ CQ1(I(P )CQ ∩mCQ) +mI(P )CQ. (19.5)

After proving this lemma, Berger and Ginzburg assume that Q has a grading in which every arrow
is positive and W is homogeneous. They continue as follows: Pick an element x on the left-hand side of
homogeneous degree in zeroth order. By the lemma we can write x = y+z, where y ∈ CQ1(I(P )CQ∩mCQ)
and z already lies in mI(P )CQ. In y, we can split off arrows on the left. This results in reducing the
degree and we can assume by induction that the part with an arrow less already lies in mI(P )CQ, hence
y ∈ CQ1mI(P )CQ ⊆ mI(P )CQ. It follows that I(P )CQ ∩ mCQ ⊆ mI(P )CQ. This proves flatness in the
setting of Berger and Ginzburg where W is homogeneous.

19.4 Relations of bounded type

In this section, we show how to circumvent the homogeneity requirement of Berger and Ginzburg. Our
substitution for the homogeneity requirement is a simple yet powerful boundedness condition. In the
present section, we first introduce the boundedness argument in high generality. Then we demonstrate
its strength in a sequence of applications. In section 19.6, we tailor it specifically to the case of deformed
relations and derive a bounded version of the strong Berger-Ginzburg inclusion. The boundedness con-
dition allows us in section 19.7 to continue the proof of flatness without homogeneity assumption.

In the most general way, our boundedness argument is stated as follows:

Lemma 19.21. Let V be a vector space with basis V0 and an equivalence relation ∼ on V0. Let X ⊆ V
be a subspace with spanning set X0 such that the V0-constituents of every x0 ∈ X0 are ∼-related. Then
for every set C ⊆ V0 closed under ∼ we have

X ∩ span(C) ⊆ span(X0 ∩ span(C)).
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Proof. The strategy is to write an element on the left-hand side in terms of the spanning set X0 and then
realize that the terms not related to C vanish collectively. Indeed, let

x =
∑

i∈I

λixi ∈ X ∩ span(C), xi ∈ X0, |I| <∞.

Now let S ⊆ I be the set of indices i ∈ I where the constituents of xi lie in C. Regard the decomposition

x =
∑

i∈S

λixi +
∑

i/∈S

λixi.

The V0-constituents of the first summand all lie in C, while the constituents of the second summand all
lie outside of C. Since the left-hand side x lies in span(C), the second summand necessarily vanishes.
Since xi ∈ X0 ∩ span(C) for i ∈ S, this finishes the proof.

We have a specific application to quiver algebras with relations R in mind: Declare paths pcq and pdq
related if c and d appear in a relation of R together. Let us make this precise.

Definition 19.22. Let Q be a quiver and R ⊆ CQ a finite-dimensional CQ0-bimodule. Assume a basis
F for R is given. For each c ∈ F , decompose c =

∑
λici as linear combination of paths (λi 6= 0), then

set pciq ∼ pcjq for any paths p, q and indices i, j. Denote by ∼ the transitive hull of this relation. Two
paths p and q are F -related if p ∼ q. For N ∈ N denote the supremum of all lengths of paths related to
paths of lengths ≤ N by

h(N) = sup{|q| | ∃p : |p| ≤ N, p ∼ q} ∈ N ∪ {∞}.

The basis F is of bounded type if h(N) <∞ for all N ∈ N.

Remark 19.23. The basis F is always assumed to be a basis for R as CQ0-bimodule. Simply speaking,
for every c ∈ F there shall be vertices v, w ∈ Q0 such that every path in c runs from v to w.

During the present section, we provide applications of the bounded type condition. Typically, we will
work with the basis F explicitly. In later sections it is only relevant that there exists a basis of bounded
type. We therefore set up the following terminology:

Definition 19.24. Let Q be a quiver and R ⊆ CQ a finite-dimensional CQ0-bimodule of relations. Then
R is of bounded type if it has a basis F of bounded type. A superpotential W is of bounded type if
its relation space R = span{∂aW} is of bounded type.

Example 19.25. If R ⊆ CQ is graded space with respect to path length or any other grading that
is positive on the arrows, then any homogeneous basis for R is of bounded type: Degree is then an
invariant under F -relatedness and length becomes bounded by a multiple of the degree. Here are three
easy instances for the algebra CQ = C〈A,B,C〉:

• Regard R = span(AB−BA,BC−CB,CA−AC) with basis F = {AB−BA,BC−CB,CA−AC}.
We claim that F is of bounded type. Indeed, two paths p, q in Q are F -related if and only if they
differ by reordering of A, B and C. For instance, ABAC ∼ AACB. In particular, any two F -related
paths are of equal length and h(N) = N . This shows that F is of bounded type.

• Regard R = span(AB − C4, BA− C2B) and F = {AB − C4, BA− C2B}. This gives for instance
BC4 ∼ BAB ∼ C2B2. To see that F is of bounded type, give A,B degree 2 and C degree 1. Then
F -related paths are equal in degree. We have h(0) = 0 and h(1) = 1 and h(N) = 2N for N ≥ 2.

• Regard R = span(AB,ABC). The basis F = {AB,ABC} is of bounded type and h(N) = N . The
basis F = {AB+ABC,AB−ABC} is however not of bounded type, because AB ∼ ABC ∼ ABCC
etc.

Remark 19.26. Given a basis F ⊆ R and an integer N ∈ N, denote by l(N) the minimal length of
paths F -related to paths of length ≥ N :

l(N) = min{|q| | ∃p : |p| ≥ N, p ∼ q}.

Then h(l(N)) ≥ N . Indeed, pick a path of length l(N). Then it is F -related to a path of length ≥ N
and hence the supremum h(l(N)) is at least N .

Assume F is of bounded type. Then h is finite on every integer. The inequality h(l(N)) ≥ N ensures
that l(N) converges to infinity as N → ∞. Simply speaking, if l(N) stays small, this means there are
short paths equivalent to longer and longer paths, precisely the opposite of the assumption. In total, we
conclude that the interval [l(M), h(N)] goes to infinity as [M,N ] goes to infinity. Moreover, we can say

p ∼ q, |q| ∈ [M,N ] =⇒ |p| ∈ [l(M), h(N)].
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M N

l(M) h(N)

. . . . . . path length

support of x

related paths

unrelated paths

x
=
y
+
z =⇒ z = 0

Figure 19.1: Decomposition into related and unrelated paths

To demonstrate the strength of the boundedness assumption, we apply Lemma 19.21 to relations of
bounded type. For instance, the next lemma brings elements x ∈ X known to satisfy length bounds back
to a bounded part of the spanning set. We write CQM≤ ≤N for the subspace of CQ spanned by paths of
length between M and N .

Lemma 19.27. Let Q be a quiver and R ⊆ CQ a CQ0-bimodule with basis F . Let X ⊆ CQ be a
subspace with spanning set X0 such that for every x0 ∈ X0 all paths appearing in x0 are F -related. Then

∀M,N ∈ N : X ∩ CQM≤ ≤N ⊆ span(X0 ∩ CQl(M)≤ ≤h(N)). (19.6)

Proof. We apply Lemma 19.21. As ambient space use V = CQ, as spanning set V0 use the set of paths
in Q, as relation ∼ use F -relatedness, and as restriction C use the set of paths in Q that are F -related
to paths of length between M and N . Lemma 19.21 now yields X ∩ span(C) ⊆ span(X0 ∩ span(C)).

The desired inclusion (19.6) is slightly weaker than this. Let us check. The left side of (19.6) is
contained in X ∩ span(C), since C includes in particular all paths of length between M and N . Finally
span(X0 ∩ span(C)) is contained in the right side of (19.6), since paths in C always have length at least
l(M) and at most h(N).

We provide a further example of path length analysis, a toy version of our later flatness results.

Lemma 19.28. Let Q be a quiver and R ⊆ CQ a CQ0-bimodule with basis F . Let (B,m) be a
deformation base. Let X ⊆ B⊗̂CQ be a subspace with spanning set X0 such that for every x0 ∈ X0 all
zeroth-order paths in x0 are F -related. Then

X ∩ (CQ≤N +mCQ) ⊆ span(X0 ∩ (CQ≤h(N) +mCQ)) +X ∩mCQ.

Proof. It is possible to build on Lemma 19.27, but we deploy Lemma 19.21 instead. Denote by π :
X → CQ the projection to zeroth order. Define Y0 := π(X0). It is a spanning set for π(X). Now let
x ∈ X ∩ (CQ≤N +mCQ). Then

π(x) ∈ π(X) ∩ CQ≤N ⊆ span(Y0 ∩ CQ≤h(N)) ⊆ span(π(X0 ∩ (CQ≤h(N) +mCQ))).

Hence we can choose x′ ∈ span(X0 ∩ (CQ≤h(N) +mCQ)) such that π(x) = π(x′). In particular, we have
x− x′ ∈ X ∩mCQ. We finish the proof with the observation that x = x′ + (x− x′).

Lemma 19.28 is best summarized as follows: When forming a large sum x over X0 elements, once
their zeroth-order length surpasses h(N) they cannot contribute anymore to x, up to higher order terms.
In other words, summands of zeroth-order length > h(N) contribute only to higher order terms.

Remark 19.29. The original idea behind our boundedness condition is best explained as follows: We are
given an element x ∈ CQ1(I(P )CQ ∩ mCQ) and are supposed to improve on this. Berger and Ginzburg
proceed by splitting off arrows on the left and thereby reducing degree. Our idea is to iterate the inclusion
instead which increases degree. The resulting elements xi lie in higher an higher path length. If we can
show that the terms in very high path length are not related at all with the low length terms we started
with, then the xi must vanish. This insight led to the boundedness condition presented in this section.

19.5 Ideals tailored to boundedness

In this section, we collect and introduce notation for many ideal-like sets. For instance, we have already
used the notation I(R) earlier to denote ideals generated by the relation space R. In the present section,
we define new ideal-like sets that are tailored to our boundedness argument of section 19.4.

The setting of this section is Convention 19.14. The ideal-like sets we define here are depicted in
Table 19.2. In Definition 19.30, we start with simple subspaces of CQ where the lengths are bounded. In
Definition 19.31, we define ideal-like spaces in which length bounds are imposed on the paths embracing
a relation:
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Notation Definition Typical element Requirement

I(R) = CQRCQ
K∑
i=0

piriqi finite sum

I(R)
ĈQ

= Im(ĈQ⊗̂R⊗̂ĈQ

→ĈQ)

∞∑
i=0

piriqi |pi|+ |qi| → ∞

ĈQRĈQ = Im(ĈQ⊗R⊗ĈQ

→ĈQ)

K∑
i=0

( ∞∑
j=0

λjpj
)
ri
( ∞∑
j=0

ηjqj
)

|pi|, |qi| → ∞

(P ) = Im(ĈQ⊗̂P ⊗̂ĈQ

→B⊗̂ĈQ)

∞∑
i=0

pi(ri + ψ(ri))qi |pi|+ |qi| → ∞

I(P ) = B (P )
∞∑
j=0

mj

∞∑
i=0

pi(ri + ψ(ri))qi
mj∈m

→∞

|pi|+|qi|→∞

I(P )CQ = BCQPCQ
∞∑
i=0

mipi(ri + ψ(ri))qi mi ∈ m
→∞

CQM≤ ≤N = span
M≤|p|≤N

p
K∑
i=0

pi M ≤ |pi| ≤ N

(CQRCQ)M≤ ≤N = span
M≤|prq|≤N

prq
K∑
i=0

piriqi M ≤ |piriqi| ≤ N

(CQPCQ)M≤ ≤N = span
M≤|prq|≤N

p(r + ψ(r))q
K∑
i=0

pi(ri + ψ(ri))qi M ≤ |piriqi| ≤ N

Table 19.2: Ideal-like sets with their definitions, typical elements and requirements. For sake of legibility,
we have omitted double indices in the description of the typical elements. For instance pj in double sums
should read pi,j .

Definition 19.30. We define the following four subspaces of CQ and CQ⊗CQ0 CQ:

• The spaces
CQM≤ ≤N , CQ≥N , CQ≤N

are the subspaces of CQ spanned by paths of length in [M,N ], [N,∞) or [0, N ], respectively.

• The spaces
(CQ⊗ CQ)M≤ ≤N , (CQ⊗ CQ)≥N , (CQ⊗ CQ)≤N

are the subspaces of CQ ⊗CQ0
CQ spanned by pure tensors p ⊗ p′ where p and p′ are paths with

length bound |pp′| ∈ [M,N ], |pp′| ≥ N or |pp′| ≤ N , respectively.

Definition 19.31. We define the following six subspaces of CQ and B⊗̂ĈQ:

• The spaces
(CQRCQ)M≤ ≤N , (CQRCQ)≥M , (CQRCQ)≤N

are the subspaces of CQ consisting of elements that can be written in the form

x =
∑

finite

piriqi,

where pi, qi are paths in Q and ri ∈ R are relations such that for all i every path contained in
piriqi ∈ CQ has length in [M,N ] or [M,∞) or [0, N ], respectively.

• The spaces
(CQPCQ)M≤ ≤N , (CQPCQ)≥M , (CQPCQ)≤N

are the subspaces of B⊗̂ĈQ consisting of elements that can be written in the form

x =
∑

finite

pi(ri + ψ(ri))qi,

where pi, qi are paths in Q and ri ∈ R are relations such that for all i every path contained in
piriqi ∈ CQ has length in [M,N ] or [M,∞) or [0, N ], respectively.

We finally define several ideal-like spaces which are finely tuned to the purpose of bounding path
lengths:
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Definition 19.32. We define the spaces I(R), I(R)
ĈQ

, ĈQRĈQ, (P ), I(P ) and I(P )CQ as follows:

• The space I(R) = CQRCQ ⊆ CQ is the ideal generated by R. In other words, it contains elements
of the form

x =
K∑

i=0

piriqi.

Here ri ∈ R and pi, qi are paths in Q.

• The space I(R)
ĈQ
⊆ ĈQ is defined as the image of the multiplication map ĈQ⊗̂R⊗̂ĈQ→ B⊗̂ĈQ.

In other words, its elements are of the form

x =
∞∑

i=0

piriqi.

Here ri ∈ R and pi, qi are paths with |pi|+ |qi| → ∞.

• The space ĈQRĈQ is the ideal generated by R in ĈQ. In other words, its elements are of the form

x =
K∑

j=0

( ∞∑

i=0

λi,jpi,j
)
ri,j
( ∞∑

i=0

ηi,jqi,j
)
.

Here ri ∈ R and pi,j , qi,j are paths in Q such that for every j ∈ N the lengths |pi,j | and |qi,j |
converge to ∞ as i→∞.

• The space (P ) ⊆ B⊗̂ĈQ is image of the multiplication map ĈQ⊗̂P ⊗̂ĈQ→ B⊗̂ĈQ. In other words,
it contains elements of the form

x =

∞∑

i=0

pi(ri + ψ(ri))qi.

Here ri ∈ R, and pi, qi are paths in Q with combined length |pi|+ |qi| → ∞.

• The space I(P ) ⊆ B⊗̂ĈQ is defined as I(P ) = B (P ). In other words, it contains elements of the
form

x =

∞∑

j=0

mj

∞∑

i=0

pi,j(ri,j + ψ(ri,j))qi,j .

Here mj ∈ m
→∞ and for every j ∈ N the combined length |pi,j |+ |qi,j | of pi,j and qi,j is supposed

to converge to ∞ as i→∞.

• If Im(ψ) ⊆ mCQ, then the space I(P )CQ ⊆ B⊗̂CQ is defined as B(CQPCQ) ⊆ B⊗̂CQ. In other
words, it contains elements of the form

x =

∞∑

i=0

mipi(ri + ψ(ri))qi.

Here mi ∈ m
→∞ and ri ∈ R. The elements pi, qi are paths in Q.

Remark 19.33. In Definition 19.32, we have done our best to give both an abstract and a practical
definition of all ideal-like sets. The abstract definitions come with the following two peculiarities: First,
the notation B(P ) in the definition of I(P ) makes use of the shorthand notation of Definition 15.18.

Second, the given abstract definition of (P ) makes use of the completed tensor product ĈQ⊗̂P ⊗̂ĈQ. The
completion here is taken with respect to the Krull topology, which we actually only explain in section 19.9.

Just like B⊗̂X consists of formal power series in elements of X, the space ĈQ⊗̂P ⊗̂ĈQ consists of formal
two-sided power series of paths embracing elements of P . For the present context, it suffices to accept
the explicit description of the elements of (P ) in terms of series.

Remark 19.34. The individual definitions are tedious to memorize, but the hidden structure becomes
apparent once we compare the definitions:

R P

formed in CQ I(R) I(P )CQ

formed in ĈQ I(R)
ĈQ

I(P )
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The default objects are I(R) and I(P ). The ideals I(R)
ĈQ

and I(P )CQ only appear in section 19.8
and 19.9.

Remark 19.35. We list here a few warnings:

• I(R)
ĈQ

is an ideal in ĈQ, but not the ideal generated by R and not its closure either.

• I(P ) is an ideal in B⊗̂ĈQ, but not the ideal generated by P and not its closure either.

• (CQPCQ)M≤ ≤N is not the same as CQPCQ ∩ CQM≤ ≤N .

For instance, closedness of I(P ) in the m-adic topology would entail roughly the following: Whenever a
sequence (xn) ⊆ I(P ) becomes concentrated in high powers of mk, the differences xn−xn+1 are not only
concentrated in m

k as a whole, but can be written as a sum over mipi(ri + ψ(ri))qi where every single
coefficient mi lies in m

k. This observation visualizes that I(P ) is not necessarily closed. Once we prove
I(P ) quasi-flat however, it is also closed in the m-adic topology according to Proposition 15.43.

We have depicted abbreviated descriptions of the various sets in Table 19.2.

19.6 Bounded strong Berger-Ginzburg inclusion

In this section, we prove a bounded version of the strong Berger-Ginzburg inclusion. The necessity of
this bounded version is illustrated by the large amount of path length estimates we need to deploy in
section 19.7. Indeed, the lack of homogeneity for W makes it necessary to estimate lengths of virtually
every vector involved in the flatness argument. One of the sources of vectors in the flatness argument is
the strong Berger-Ginzburg inclusion. As such, we need a version of the strong Berger-Ginzburg inclusion
that is suited for the bounded world. The present section is meant to provide this bounded version. It is
surprising that the bounded version follows directly from the ordinary strong Berger-Ginzburg inclusion.
It is a kind of a posteriori estimate and works without additional assumptions on Q or W :

Strong Berger-Ginzburg
R⊗ CQ ∩ c−1(CQ1I(R))

⊆ f(W ⊗ CQ) + R⊗ I(R)

Bounded strong Berger-Ginzburg
R⊗ CQ ∩ c−1(CQ1I(R)) ∩ (CQ⊗ CQ)M≤ ≤N

⊆ f(W ⊗ CQl(M)−|W |≤ ≤h(N)) + R⊗ (CQRCQ)l(M)−|R|≤ ≤h(N)

a posteriori

Since the strong Berger-Ginzburg inclusion works with tensors instead of paths, our first step in this
section is to introduce a notion of F -relatedness for tensors:

Definition 19.36. Let F be a basis for R. Then two pure tensors of paths p⊗p′ and q⊗q′ are F -related
if pp′ and qq′ are F -related.

We shall now construct a spanning set W0 for W with the property that for every w ∈ W0 all pure
tensors of paths appearing in f(w) are F -related. Recall from Convention 19.14 that f :W ⊗CQ→ R⊗
CQ1CQ is the map which splitsW into relations and arrows. When w ∈W , then we have f(w) ∈ R⊗CQ1.

Lemma 19.37. Let F be a basis for R. Then W = CQ1R ∩RCQ1 has a spanning set W0 such that for
every w ∈W0 the constituents of f(w) ∈ R⊗ CQ1 are F -related.

Proof. The strategy is to decompose an arbitrary w ∈W into a sum
∑
wp such that the constituents of

f(wp) are F -related. Pick w ∈W . Since W = CQ1R∩RCQ1, we can write w in two ways as finite sums

w =
∑

i∈I

airi =
∑

j∈J

r′jbj .

Here ai and bj are scalar multiples of arrows and ri and r′j lie in F . Note that in both sums the constituents
of every individual summand are F -related. Denote by P the finite set of paths appearing anywhere in
these sums, modulo F -relatedness. Now P splits both I and J into classes. Namely for p ∈ P , let Ip ⊆ I
be the set of indices i where the constituents of airi are F -related to p. Similarly, let Jp ⊆ J be the set
of indices where the constituents of r′jbj are F -related to p. For every p ∈ P , both sums

wp =
∑

i∈Ip

airi, w′
p =

∑

j∈Jp

r′jbj
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have path support lying in the equivalence class of p. Since the index sets (Ip)p∈P and (Jp)p∈P both
exhaust disjointly I and J , we conclude wp = w′

p for every p ∈ P . Furthermore wp ∈ CQ1R and
w′
p ∈ RCQ1, hence wp = w′

p ∈W . By construction, all constituents in

f(wp) =
∑

j∈Jp

r′j ⊗ bj .

contract to paths F -related to p. In particular, all constituents of f(wp) are related to each other. We
have decomposed w ∈ W into summands wp ∈ W such that all constituents in f(wp) are F -related
to each other. Running this algorithm for every w ∈ W provides a spanning set W0 with the desired
property. Naturally one can extract a finite one from it.

Remark 19.38. The statement of Lemma 19.37 is obvious in case R is the space of relations R =
span(∂aW ) coming from a CY3 superpotential. Indeed, simply use the spanning set

W0 =




∑

t(a)=v

∂aWa

∣∣∣∣ v ∈ Q0



 . (19.7)

Let us check that the spanning set W0 satisfies the claimed condition. For w =
∑
t(a)=v ∂aWa, we simply

have f(w) =
∑
t(a)=v ∂aW ⊗ a. By cyclicity of W , all constituents of this sum are related. This makes

that W0 satisfies the requirements of Lemma 19.37.

Before we devote ourselves to the bounded version of the strong Berger-Ginzburg inclusion, we need
length bounds for the paths in R and W . While R and W are not homogeneous, any element r ∈ R or
w ∈W can still be decomposed as a linear combination of paths in Q:

r = λ1p1 + . . . λkpk or w = ε1q1 + . . .+ εlql.

The paths p1, . . . , pk or q1, . . . , q1 are typically not of the same length. However, R and W are finite-
dimensional by Convention 19.14. This implies that the path lengths encountered in R and W are
bounded. We therefore fix the following notation:

Definition 19.39. The maximum path length encountered in R and W is denoted by |R| ∈ N and
|W | ∈ N.

We are ready to prove our bounded version of the strong Berger-Ginzburg inclusion:

Lemma 19.40. Assume R is of bounded type. If the strong Berger-Ginzburg inclusion [BG] holds, then
it also holds in the bounded form

R⊗ CQ ∩ c−1(CQ1I(R)) ∩ (CQ⊗ CQ)M≤ ≤N

⊆ f(W ⊗ CQl(M)−|W |≤ ≤h(N)) + R⊗ (CQRCQ)l(M)−|R|≤ ≤h(N) (19.8)

Here N,M ∈ N are arbitrary integers. The inclusion also holds when two-sided bounds are replaced by
one-sided bounds from above or below.

Proof. The proof boils down to applying Lemma 19.27 to the right side of the Berger-Ginzburg inclusion.
Pick a spanning set W0 ⊆W as in Lemma 19.37. Put X = f(W ⊗CQ)+R⊗I(R) and use splits f(w⊗p)
and products r ⊗ pr′q as spanning set X0 ⊆ X, where w ∈W0, r, r′ ∈ F , and p, q are paths. Regard the
ambient space V = CQ⊗ CQ and its basis V0 consisting of pure tensors of paths.

By construction, all constituents in a split f(w ⊗ p) are F -related. Namely they consist of F -related
tensors, with additional p on the right side. Also all constituents in a product r ⊗ pr′q are F -related.
Indeed, decomposing r =

∑
λici and r′ =

∑
λ′ic

′
i into scalar multiples of paths, we have

∀i0, j0, i1, j1 : ci0 ⊗ pc
′
j0q ∼ ci1 ⊗ pc

′
j0q ∼ ci1 ⊗ pc

′
j1q.

Further choose C ⊆ V0 as the set of path tensors p ⊗ p′ whose contraction pp′ is related to a path of
length at least M and at most N . This set is closed under ∼. Finally, all assumptions of Lemma 19.21
are satisfied and we obtain

(
f(W ⊗ CQ) +R⊗ I(R)

)
∩ span(C) ⊆ span(X0 ∩ span(C)). (19.9)
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It remains to interpret both sides of this inclusion. Let us start with the right side. Tensors in span(C)
have length between l(M) and h(N). If an element f(w⊗p) lies in span(C), then p has length l(M)−|W | ≤
|p| ≤ h(N). If an element r⊗ pr′q lies in span(C), then all paths c in pr′q have length l(M)− |R| ≤ |c| ≤
h(N). We conclude that the right side of (19.9) is contained in the right side of (19.8).

We finish the proof with the remark that the left side of (19.8) is contained in the left side of (19.9),
since the strong Berger-Ginzburg inclusion holds by assumption and tensors of length between M and N
lie in span(C).

19.7 Quasi-flatness in the completed path algebra

In this section, we prove our first quasi-flatness result. The idea is to use our boundedness condition from
section 19.4 to continue the line of Berger and Ginzburg without homogeneity assumption. The flatness

result in this section deals with the ideals I(P ) ⊆ B⊗̂ĈQ in the completed quiver algebra. In section 19.8
we will reduce the result of the present section to the case of the non-completed quiver algebra.

For convenience of the reader, we have sketched in Lemma 19.20 the core idea of Berger and Ginzburg.
It is however not necessary to be aware of the statement. Rather, we prove from scratch a bounded version
of their statement. Before we proceed, recall from Definition 19.39 that |R| and |W | denote the maximum
path length encountered in R and W .

Lemma 19.41. Assume R is of bounded type and [BG] and [CP] hold. Then

(CQPCQ)≥N ∩mĈQ ⊆ CQ1(CQPCQ)≥l(N)−|R|−1 +mI(P )≥l(N)−2|R| (19.10)

Proof. By assumption, R has a basis F of bounded type. Now pick an element

x̃ =
∑

i∈I

pi(ri + ψ(ri))qi ∈ (CQPCQ)≥N ∩mĈQ.

By definition of (CQPCQ)≥N , we can assume pi and qi are scalar multiples of paths, ri lies in F and all
paths in piriqi have length at least N . Let us inspect the sum. The terms where pi ∈ CQ≥1 already lie
on the right-hand side of (19.10) and do not need further treatment. The terms where pi is a vertex are
nasty. Denote by I0 ⊆ I the set of these nasty indices. Put

x :=
∑

i∈I0

piri ⊗ qi ∈ R⊗ CQ.

Since x̃ is supposed to vanish on zeroth order, we have

c(x) =
∑

i∈I0

piriqi = −
∑

i∈I\I0

piriqi ∈ CQ1I(R).

At the same time, x lies in (CQ⊗CQ)≥N and hence on the left-hand side of the bounded strong Berger-
Ginzburg inclusion (19.8), using N for the lower bound and dropping the upper bound. We conclude

x ∈ f(W ⊗ CQ≥l(N)−|W |) +R⊗ (CQRCQ)≥l(N)−|R|.

Split x = y + z according to this decomposition. We want to determine ψ(x) = ψ(y) + ψ(z), where ψ
here acts on the left tensor factor of R⊗ CQ. Let us regard y first. We can write y as a finite sum

y =
∑

i∈K

f(wi ⊗ p
′
i)

with wi lying in W and p′i scalar multiples of paths with |p′i| ≥ l(N) − |W |. By Lemma 19.17, we have
ψ0 = ψ1 on W . Therefore we can swap ψ0(wi) over:

c(y + ψ0(y)) =
∑

i∈K

(wi + ψ0(wi))p
′
i =

∑

i∈K

(wi + ψ1(wi))p
′
i.

Note that wi + ψ1(wi) ∈ CQ1P by nature. We obtain the first intermediate result

c(y + ψ0(y)) ∈ CQ1PCQ≥l(N)−|W |.
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Now regard z. We can write

z =
∑

i∈L

r′i ⊗ sir
′′
i ti,

where r′i, r
′′
i ∈ F and si, ti are scalar multiples of paths, and all paths in sir

′′
i ti have length at least

l(N)− |R|. We get

c(z + ψ(z)) =
∑

i∈L

(r′i + ψ(r′i))sir
′′
i ti

=
∑

i∈L

r′isi(r
′′
i + ψ(r′′i ))ti +

∑

i∈L

ψ(r′i)si(r
′′
i + ψ(r′′i ))ti −

∑

i∈L

(r′i + ψ(r′i))siψ(r
′′
i )ti

∈ CQ1(CQPCQ)≥l(N)−|R| +mI(P )≥l(N)−2|R|.

In the last row, we have used that r′i ∈ R ⊆ CQ≥1. In total, we get

x̃ =
∑

i∈I

pi(ri + ψ(ri))qi = c(y + ψ(y)) + c(z + ψ(z)) +
∑

i∈I\I0

pi(ri + ψ(ri))qi

∈ CQ1(CQPCQ)≥l(N)−|R|−1 +mI(P )≥l(N)−2|R|.

We have used that |W | ≤ |R|+ 1.

The following is a continuation of the line of Berger and Ginzburg.

Lemma 19.42. Assume R is of bounded type and [BG] and [CP] holds. Then

I(P ) ∩mĈQ ⊆ CQ1(I(P ) ∩mĈQ) +mI(P ).

Proof. The strategy is to divide an element x on the left-hand side into chunks xN that individually lie
in (CQPCQ)≥N ∩m. We estimate that the lengths of the ideal paths used in xN converge to ∞, so that
summing up the chunks again lands on the right-hand side and not in completion of I(P ).

Since mI(P ) already lies on the right side, it suffices to regard elements of (P ) on the left-hand side.
Regard such an element

x =

∞∑

i=0

pi(ri + ψ(ri))qi ∈ (P ) ∩mĈQ.

For N ≥ 0, let SN ⊆ N be the set of indices i where all paths in piriqi are related to a path of length
≤ N . All sets SN are finite and together exhaust N. In order to rewrite x, let us make these sets disjoint
by setting S′

N := SN \ SN−1 for N ≥ 1 and S′
0 := S0. Put

xN =
∑

i∈S′
N

pi(ri + ψ(ri))qi.

Then we get x =
∑∞
N=0 xN . We show that each chunk xN lies in mĈQ. Let M < N and i ∈ S′

M , j ∈ S
′
N .

Then paths in piriqi are related to paths of length ≤ M , while paths in pjrjqj are not related to paths
of length ≤ M , since j /∈ SM . This implies that the zeroth order path supports of all chunks xN are

pairwise disjoint. However we know that x ∈ mĈQ, hence x vanishes on zeroth order. We conclude

xN ∈ CQPCQ ∩mĈQ.
Now note that for i ∈ S′

N the term piriqi has length at least N , for otherwise i would be contained in
SN−1. We conclude that

xN ∈ (CQPCQ)≥N ∩mĈQ.

Using Lemma 19.41, we deduce

xN ∈ CQ1(CQPCQ)≥l(N)−|R|−1 +mI(P )≥l(N)−2|R|.

Since R is of bounded type, we have l(N) → ∞ as N → ∞. When summing up xN over N ∈ N, this
estimate on path lengths embracing P ensures that we get two well-defined sums in I(P ) and not e.g. in
the completion of I(P ):

x =
∞∑

N=0

xN ∈ CQ1I(P ) +mI(P ).

Since x lies in mĈQ by assumption, we obtain

x ∈ (CQ1I(P ) ∩mĈQ) +mI(P ) = CQ1(I(P ) ∩mĈQ) +mI(P ).

This finishes the proof.
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We now arrive at our first flatness result. Recall that quasi-flatness for I(P ) refers to the inclusion

I(P ) ∩mĈQ ⊆ mI(P ).

Proposition 19.43 (Quasi-flatness I). Assume R is of bounded type and [BG] and [CP] hold. Then
I(P ) is quasi-flat.

Proof. Iterating the statement of Lemma 19.42, we get

I(P ) ∩mĈQ ⊆ CQ1(I(P ) ∩mĈQ) +mI(P )

⊆ CQ1(CQ1(I(P ) ∩mĈQ) +mI(P )) +mI(P ) ⊆ . . . .

In other words, pick x ∈ I(P )∩mĈQ. Then we get a sequence of elements xN ∈ CQN (I(P )∩mĈQ) and
yN ∈ mCQN−1I(P ) with

∀N ∈ N : x = xN + y1 + . . .+ yN .

Now the series
∑∞
N=1 yN defines an element in mI(P ), since its summands yN contain only paths of

higher and higher length. We claim that this element is precisely x. Indeed, disregard all paths longer
than an arbitrary number. Then the series stabilizes to x after finitely many summands and does not
change anymore thereafter. Finally, we conclude x is the sum of the series, which we already know lies
in mI(P ).

19.8 Quasi-flatness in the path algebra

In this section, we build our second quasi-flatness result. Namely, we show that I(P )CQ is quasi-flat if R
is of bounded type and the conditions [BG] and [CP] hold. In section 19.7 we have already seen that I(P )
is quasi-flat. The idea of the present section is to use the boundedness argument to bring quasi-flatness
from I(P ) to I(P )CQ.

The first step is to refine the Berger-Ginzburg lemma Lemma 19.20. We deploy the bounded version
of the Berger-Ginzburg inclusion, sticking to the lower bounds and forgetting the upper bounds.

Lemma 19.44. Let R be of bounded type. Then for any natural numbers M ≤ N we have

I(P ) ∩ ( ĈQM≤ ≤N +mĈQ) ⊆ (CQPCQ)l(M)≤ ≤h(N) +mĈQ ∩ I(P ).

The inclusion also holds once the upper bound or lower bound is dropped.

Proof. Since mI(P ) already lies on the right-hand side, it suffices to prove the inclusion of

(P ) ∩ ( ĈQM≤ ≤N +mĈQ).

Pick an element

x =
∞∑

i=0

pi(ri + ψ(ri))qi ∈ (P ) ∩ ( ĈQM≤ ≤N +mĈQ).

We can assume |pi| + |qi| → ∞. Our strategy is to decompose x into two parts. Let S ⊆ N be the set
of indices i where the constituents of piriqi are related to paths of length in the interval [M,N ] ⊆ N.
Then for i ∈ S all paths in piriqi are related to paths of length in [M,N ] and are hence of length in
[l(M), h(N)] themselves. In particular S is finite. Meanwhile for i /∈ S no paths in piriqi are related to
paths of length in [M,N ] and we conclude that

∑

i∈N\S

piriqi = 0.

In other words, we have

xN\S :=
∑

i∈N\S

pi(ri + ψ(ri))qi ∈ (P ) ∩mCQ,

while

xS :=
∑

i∈S

pi(ri + ψ(ri))qi ∈ (CQPCQ)l(M)≤ ≤h(N).

Recalling x = xS + xN\S gives that x lies in the right-hand side of the desired inclusion.
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We seek to apply Lemma 19.44 iteratively. As we pull out more and more powers of the maximal
ideal, we need to ensure that the remainder is still bounded in length at zeroth order. We can achieve
this if we require from the very beginning that an element x ∈ I(P ) has bounded length at order of m.
For B = CJqK we would require that the path lengths at every q power qk are bounded. For general
deformation basis B, we shall require that the path lengths in x shall be bounded if we project to B/mk.
This gives rise to a subset of B⊗̂CQ, namely the space of elements with length at most Nk at m-order
≤ k. Let us record this in the following definition:

Definition 19.45. Let N0, N1, . . . be an increasing sequence of integers. Then we set

CQ≤(N0,N1,...) = {x ∈ B⊗̂CQ | πk(x) ∈ (B/mk)⊗ CQ≤Nk
∀k ∈ N}

= CQ≤N0 +m
1CQ≤N1 +m

2CQ≤N2 + . . . .

Here πk : B⊗̂CQ→ (B/mk)⊗ CQ denotes the standard projection.

Example 19.46. For B = CJqK the space CQ≤(N0,N1,...) is simply the space of CQ-valued power series

in q where the paths at order qk are of length ≤ Nk.

We are now getting closer to proving quasi-flatness of I(P )CQ. As we shall see, elements of I(P )CQ
are namely distinguished elements of I(P ) in the sense that they simultaneously lie in CQ≤(N0,...) for
some sequence N0 ≤ N1 ≤ . . .. To exploit this property, let us prove the following lemma.

Lemma 19.47. Assume R is of bounded type and I(P ) is quasi-flat. Let N1 ≤ N2 ≤ . . . be a sequence.
Then there exists a sequence N ′

1 ≤ N
′
2 ≤ . . . such that

I(P ) ∩ CQ≤(0,N1,...) ⊆
∞∑

k=1

m
k(CQPCQ)≤N ′

k

= m
1(CQPCQ)≤N ′

1
+m

2(CQPCQ)≤N ′
2
+ . . .

Proof. The idea is to iterate Proposition 15.32 in combination with Lemma 19.44 and quasi-flatness of
I(P ). In the first part of the proof, we construct the desired sequence (N ′

k). In the second part, we
construct the desired decomposition for individual elements x ∈ I(P ) ∩ CQ≤(0,N1,...). In the third part,
we wrap up and prove the desired inclusion.

For the first part of the proof, let us construct the sequence (N ′
k). Given arbitrary k ∈ N, let Mk

be the maximum path length encountered in the image of π ◦ ψ : R → B/mk ⊗ CQ. We construct an
auxiliary sequence as

N ′′
1 = N1,

N ′′
2 = max(M1 + h(N ′′

1 ), N2),

N ′′
3 = max(M2 + h(N ′′

2 ), N3),

. . .

The sequence (N ′′
k ) is increasing, since h(N ′′

i ) ≥ N
′′
i . We construct the final desired sequence as

N ′
k = h(N ′′

k ).

For the second part of the proof, we prove a finite version of the desired inclusion by iterating
Lemma 19.44. Pick an arbitrary element x ∈ I(P ) ∩ CQ≤(0,N1,...). We shall inductively construct
sequences (yk)k≥1, (xk)k≥0 such that

∀k ≥ 0 : x = y1 + . . .+ yk + xk,

∀k ≥ 0 : xk ∈ m
k+1I(P ),

∀k ≥ 1 : yk ∈ m
k(CQPCQ)≤h(N ′′

k
).

(19.11)

Our induction starts at k = 0. Note that we are not required to construct an element y0. For the
induction base k = 0, note that quasi-flatness gives

x ∈ I(P ) ∩ CQ≤(0,N1,...) ⊆ mI(P ).

We simply put x0 = x. This satisfies the requirement (19.11) for the induction base k = 0.
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Towards the induction step, let k ≥ 0 and assume that x0, . . . , xk and y1, . . . , yk have been constructed
with property (19.11). Regard the element xk = x − y1 − . . . − yk. Since x ∈ CQ≤(0,N1,...) and yi ∈

m
i(CQPCQ)≤h(N ′′

k
), the total length in xk at level mk+1 is less or equal to

max(Nk+1,Mk + h(N ′′
1 ),Mk−1 + h(N ′′

2 ), . . . ,M1 + h(N ′′
k )) ≤ max(Nk+1,Mk + h(N ′′

k )) = N ′′
k+1.

In the above inequality, the term Mk+h(N
′′
k ) in the second maximum only appears when k ≥ 1. In either

case, the bound by Nk+1 is valid. In combination with Proposition 15.32, Lemma 19.44 and quasi-flatness
we conclude

xk ∈ m
k+1I(P ) ∩m

k+1(CQ≤(N ′′
k+1)

+mĈQ)

⊆ m
k+1(I(P ) ∩ (CQ≤N ′′

k+1
+mĈQ)) +m

k+2I(P )

⊆ m
k+1((CQPCQ)≤h(N ′′

k+1)
+mI(P )) +m

k+2I(P )

⊆ m
k+1(CQPCQ)≤h(N ′′

k+1)
+m

k+2I(P ).

According to this sum decomposition, write xk = yk+1 + xk+1. This finishes the induction step. Ulti-
mately, we have constructed the sequences (xk)k≥0 and (yk)k≥1 with property (19.11).

For the third part of the proof, we wrap up and prove the desired inclusion. Regard an element
x ∈ I(P ) ∩ CQ≤(0,N1,...) together with its sequences (xk) and (yk). With respect to the m-adic topology

on B⊗̂A, we have the converging series

x =

∞∑

k=1

yk.

Indeed, the summands lie in increasingly high powers of m. The limit is x, since the difference between
y1 + . . .+ yk and x is xk which lies in increasingly high powers of m. Even better, we conclude

x ∈
∞∑

k=1

m
k(CQPCQ)≤h(N ′′

k
).

Since x was arbitrary and N ′
k is defined as h(N ′′

k ), this proves the claim.

We are ready to prove quasi-flatness of I(P )CQ. The requirement is that I(P ) is already quasi-flat.
By Proposition 19.43, this happens for example R is of finite type and [BG] and [CP] hold.

Proposition 19.48 (Quasi-flatness II). Assume R is of bounded type and ψ maps to mCQ. If I(P ) is
quasi-flat, then I(P )CQ is quasi-flat.

Proof. It is our task to show I(P )CQ ∩ mCQ ⊆ mI(P )CQ. Pick an element x ∈ I(P )CQ ∩ mCQ. Start
with the observation that the relation space R is finite-dimensional, the image of ψ lies in mCQ instead

of mĈQ and in I(P )CQ only finitely many paths are multiplied to P at order ≤ k. We see that x has
bounded path length at order ≤ k for every k ∈ N. In other words, there is a sequence N = (N0, N1, . . .)
such that x ∈ CQ≤(0,N1,...). In total, we have x ∈ I(P ) ∩ CQ≤(0,N1,...). According to Lemma 19.47 , we
get

x ∈
∞∑

k=1

m
k(CQPCQ)≤N ′

k
.

This shows x ∈ I(P )CQ and finishes the proof.

19.9 Closedness results

In this section, we prove additional closedness results. The idea is that a quotient of an algebra by an
ideal can always be taken. However, if the algebra enjoys topological properties, they can be lost in the
quotient if the ideal is not good enough. In the present section we devote ourselves to the study of this

problem in the case of the deformed ideals I(P ) ⊆ ĈQ. Essentially, we show that I(P ) is good enough

for the “Krull topology” on ĈQ if R is of bounded type.

Let us start by recalling the classical topology on ĈQ.

Definition 19.49. The Krull topology on CQ (or ĈQ) is the topology generated by the neighborhood
basis

x+ CQ≥N or x+ ĈQ≥N , for x ∈ CQ, N ∈ N.
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Remark 19.50. With the Krull topology, the space CQ is first countable and sequential. A sequence
xn ∈ CQ converges to some x ∈ CQ if xn − xn+1 is concentrated in higher and higher path length. The

space CQ is not complete: The space ĈQ is in fact its completion.

Remark 19.51. A standard setup in algebra is as follows: Given is a path algebra CQ of a quiver and one
is interested in dividing out an ideal I ⊆ CQ. One accepts the quotient algebra CQ/I without questioning
its topological properties. If Iq is a quasi-flat deformation of I, then (B⊗̂CQ)/Iq is a deformation of CQ/I.
For path algebras of quivers, this is all one typically desires.

In contrast, consider an ideal I ⊆ ĈQ in the completed path algebra. Then one can still form the

quotient ĈQ/I, but one is interested in the Krull topology on the quotient. Therefore one typically

requires that I ⊆ ĈQ is closed with respect to the Krull topology.

Remark 19.52. Let us use the standard notation ĈQRĈQ for the ideal generated by R in ĈQ. We
claim that

ĈQRĈQ ⊆ I(R)
ĈQ
⊆ I(R).

Indeed, the left-hand side is the finite span of elements of the form prq where r ∈ R and p, q ∈ ĈQ. A
reordering, or counting argument, for the constituents of p and q shows that prq ∈ I(R)

ĈQ
. On the other

hand, pick an element x ∈ I(R)
ĈQ

, presented as a series Definition 19.32. Truncating the series at high

indices immediately shows that x lies in the closure of I(R).

We arrive at the following inclusion:

R ⊆ I(R) ⊆ ĈQRĈQ ⊆ I(R)
ĈQ
⊆ I(R).

In case R is of bounded type, we can improve on these inclusions: We shall see that I(R)
ĈQ

is the

closure of I(R) and thereby also the closure of ĈQRĈQ.

Remark 19.53. At this point, we shall comment on the stark difference with the commutative case.

In fact, ĈQRĈQ is not necessarily closed with respect to the Krull topology, while this would hold if

A = ĈQ were commutative. Indeed, let A be a commutative local ring with maximal ideal mA. Then
(A,mA) is a Zariski ring and hence any ideal I ⊆ A is automatically closed with respect to the mA-adic

topology. If ĈQ were commutative, this would imply that ĈQRĈQ is closed with respect to the Krull
topology.

We shall here give an example of a quiver Q and a space R where ĈQRĈQ is clearly not closed:

C A
B

R = span(B).

We note that the series
∑∞
i=0A

iBCi lies in the closure of CQRCQ, and claim that it does not lie in

ĈQBĈQ. The clue is to analyze the structure of infinite sums of paths. For any element
∑∞
i,j=0 λi,jA

iBCj

let us call (λi,j) its coefficient matrix. An element of the form

(
∞∑

i=0

λiA
i

)
B




∞∑

j=0

ηjC
j




has a coefficient matrix of column rank at most one, since all columns are multiples of each other. Any

element in the ideal ĈQBĈQ is a finite sum of elements of this form and therefore has coefficient matrix
with finite column rank. The coefficient matrix of the element x =

∑∞
i=0A

iBCi is however an infinite

diagonal matrix which has infinite rank. We conclude x /∈ ĈQBĈQ. This illustrates a difference with
the commutative case and shows how intricate closedness can be.

Lemma 19.54. Let R be of bounded type. Then I(R)
ĈQ

is the closure of I(R) in the Krull topology.

Proof. It is clear that I(R)
ĈQ

is contained in the closure of I(R). Conversely, I(R) is naturally a subset

of I(R)
ĈQ

. It remains to be shown that I(R)
ĈQ

is closed.

Regard a sequence (xn) ⊆ I(R)
ĈQ

with xn → x ∈ ĈQ. It is our task to show that x can be written
as a series

x =
∞∑

i=0

piriqi where ri ∈ R, |pi|+ |qi| → ∞.
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We can assume that xn+1 − xn ∈ CQ≥kn for a sequence (kn) ⊆ N with kn → ∞. The standard
boundedness argument shows that

xn − xn+1 ∈ I(R) ∩ ĈQ≥kn ⊆ (CQRCQ)≥l(kn).

Summing up over n ≥ 0, we get that x is indeed an element of I(R)
ĈQ

.

Next, we shall prove that I(R)
ĈQ

has a closed complement in ĈQ.

Example 19.55. The existence of closed complements is intricate. It is not true that a complement of

an ideal I ⊆ CQ gives rise to a closed complement of its closure I ⊆ ĈQ. More precisely, if CQ = I + V ,

then it does not necessarily hold that ĈQ = I + V . For instance, pick CQ = C〈A〉 and regard

I = (1 +A) = span(1 +A,A+A2, . . .),

V = span(1).

We have C〈A〉 = I ⊕ V . We have 1−An ∈ I, hence 1 ∈ I ∩ V .

Lemma 19.56. Let R be of bounded type. Then I(R)
ĈQ

has a closed complement.

Proof. It is our task to find a closed subspace V ⊆ ĈQ such that ĈQ = I(R)
ĈQ
⊕ V . The naive idea

is to fill V by picking paths of increasing length which complement I(R). However, the closure of the
space spanned by these paths need not have vanishing intersection with I(R)

ĈQ
in general. The remedy

is provided by the boundedness condition, which allows us to reduce the vanishing intersection property
to checking it on finite lengths of paths. We divide the proof into three steps: In the first part of the
proof, we construct the space V . In the second part, we show I(R)

ĈQ
∩ V = 0. In the third part, we

show ĈQ = I(R)
ĈQ

+ V .

For the first part of the proof, we construct the space V . Pick for every N ∈ N a set VN of paths of
length N such that all paths in Vn for n ≤ N are linearly independent of I(R), but span CQ≤N when
combined with I(R):

CQ≤N ⊆ span(V0 ∪ . . . ∪ VN )⊕ I(R).

Our candidate space for the closed complement is

V =

∞∏

N=0

spanVN ⊆ ĈQ.

This is the subspace consisting of elements of ĈQ which are supported on paths lying in the union
∪N∈NVN . The space V is closed with respect to the Krull topology. Indeed, sticking to our sequential

viewpoint, whenever (xn) ⊆ V converges in ĈQ, then coefficients of xn on paths in low path length

stabilize. From a purely topological viewpoint, if x ∈ ĈQ \ V , then x has support on some path p /∈
∪N∈NVN . Any element y ∈ x + CQ>|p| then also has support on this path p and therefore y /∈ V . This
shows V is closed.

For the second part of the proof, we show I(R)
ĈQ
∩ V = 0. Pick any element x ∈ I(R)

ĈQ
∩ V . We

shall prove that x ∈ CQ>N for every N ∈ N. Indeed, let N ∈ N. Then decompose x = x1 + x2 into path
support related to length ≤ N and path support not related to length ≤ N . Since x lies in V and V is
built from pure paths, we have that x1, x2 ∈ V . More specifically, since all paths related to length ≤ N
are of length ≤ h(N), we have x1 ∈ span(V0 ∪ . . . ∪ Vh(N)).

We claim that x1 ∈ I(R). Indeed, write

x =

∞∑

i=0

piriqi, ri ∈ R, |pi|+ |qi| → ∞.

Let S ⊆ N be the set of indices where all paths in piriqi are related to paths of length ≤ N . Then

x =
∑

i∈S

piriqi +
∑

i∈N\S

piriqi.

In the first summand, all paths are related to paths of length ≤ N . In the second summand, no paths
are related to length ≤ N . In conclusion, we have

x1 =
∑

i∈S

piriqi, x2 =
∑

i∈N\S

piriqi.
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We obtain x1 ∈ I(R). In conclusion x1 ∈ I(R) ∩ span(V0, . . . , Vh(N)). However by construction of the
sets Vn, the sum I(R) + span(V0, . . . , Vh(N)) is actually direct and hence x1 = 0. We conclude x = x2.
Since all paths in the support of x2 are not related to length ≤ N , they are of length > N . We conclude

x ∈ ĈQ>N . Since N was arbitrary, we conclude x = 0. This shows I(R)
ĈQ
∩ V = 0.

For the third part of the proof, we show that ĈQ = I(R)
ĈQ

+V . The idea is to break down an element

of ĈQ into pieces which individually lie in the two spaces and make sure the pieces sum up appropriately.

Let now x ∈ ĈQ. Split x into pieces according to path length:

x =
∞∑

n=0

xn, |xn| = n.

We claim that for every n ∈ N we have xn ∈ I(R)≥l(n) + span(Vl(n) ∪ . . . Vn). To prove this, fix n ∈ N.
By construction, we can write x = yn + zn with yn ∈ I(R) and zn ∈ span(V0 ∪ . . . ∪ Vn). Write

yn =

∞∑

i∈I

piriqi, ri ∈ R, |I| <∞.

Let S ⊆ I be the set of indices i ∈ I where all paths in piriqi are related to a path of length n. We have

yn = y
(1)
n + y

(2)
n with

y(1)n =
∑

i∈S

piriqi, y(2)n =
∑

i∈I\S

piriqi.

For i ∈ S, all paths in piriqi are of length ≥ l(n). This implies y
(1)
n ∈ I(R)≥l(n).

Next, split zn = z
(1)
n + z

(2)
n with z

(1)
n , z

(2)
n ∈ span(V0 ∪ . . . ∪ Vn) such that z

(1)
n only contains paths

related to paths of length n and z
(2)
n only contains paths not related to paths of length n. Since all paths

related to paths of length n have length at least l(n), we have z
(1)
n ∈ span(Vl(n) ∪ . . . ∪ Vn).

We argue that y
(2)
n +z

(2)
n = 0. Indeed, all paths in y

(1)
n +z

(1)
n are related to paths of length n, while all

paths in y
(2)
n + z

(2)
n are not related to length n. Since xn itself has length n, we conclude y

(2)
n + z

(2)
n = 0.

Finally, we get xn = y
(1)
n +z

(1)
n . Since y

(1)
n ∈ I(R)≥l(N) and z

(1)
n ∈ span(Vl(n)∪ . . .∪Vn) and l(n)→∞,

we get

x =
∞∑

n=0

y(1)n + z(1)n =
∞∑

n=0

y(1)n +
∞∑

n=0

z(1)n ∈ I(R)
ĈQ

+ V.

This proves that ĈQ = I(R)
Ĉq

+ V . Together with the fact I(R)
ĈQ
∩ V = 0 proven before, this proves

the direct sum decomposition ĈQ = I(R)
ĈQ
⊕ V and finishes the proof.

In the remainder of this section, we devote ourselves to the study of P and its associated ideal-like
spaces. Let us give an indication of the additional topology we want to regard. As we recalled in

Remark 19.51, for a quotient ĈQ/I one typically demands that I ⊆ ĈQ be closed with respect to the

Krull topology. The quotient ĈQ/I then inherits a quotient topology. The tensor product B⊗̂(ĈQ/I)
then obtains a combination of the Krull and m-adic topology. We define this topology as follows:

Definition 19.57. Let B be a deformation base. Then the tensor topology on B⊗̂ĈQ is the limit
topology induced from

B⊗̂ĈQ = lim(B/mk ⊗ ĈQ)

Here the individual spaces B/mk ⊗ ĈQ are equipped with the Krull topology. An explicit neighborhood

basis for the topology is given by the subspaces x+m
kĈQ+BĈQ≥N for x ∈ B⊗̂ĈQ.

Remark 19.58. With respect to the tensor topology, a sequence xn ⊆ ĈQ converges if for every k ∈ N,
the path lengths of the differences xn − xn+1 go to infinity once m

k is divided out.

We have the following chain of inclusions for P and its associated ideal-like spaces:

P CQPCQ ĈQP ĈQ

(P )

(B⊗̂ĈQ)P (B⊗̂ĈQ)

I(P ) I(P ) I(P )
⊗⊆ ⊆

⊆
⊆

⊆

⊆
⊆ ⊆
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Here (B⊗̂ĈQ)P (B⊗̂ĈQ) denotes the ideal generated by P in B⊗̂ĈQ. If R is of bounded type and

I(P ) is quasi-flat, the inclusions simplify: We shall see that I(P ) is the closure of (B⊗̂ĈQ)P (B⊗̂ĈQ).

Lemma 19.59. Let R be of bounded type and I(P ) quasi-flat. Write l̃(N) = l(N) − |R| for N ∈ N.
Then for k ≥ 1 and N ≥ 0 we have

I(P ) ∩ (BĈQ≥N +m
kĈQ)

⊆
k−1∑

i=0

m
i(CQPCQ)≥l(l̃i(N)) +m

kI(P )

= (CQPCQ)≥l(N) +m(CQPCQ)≥l(l̃(N)) +m
2(CQPCQ)≥l(l̃(l̃(N))) + . . .+m

kI(P ).

Proof. The proof is very similar to the proof of Lemma 19.47. The idea is to iterate Proposition 15.32 in
combination with Lemma 19.44 and quasi-flatness of I(P ).

Let x ∈ I(P ) ∩ (BĈQ≥N +m
kĈQ). Then in particular

x ∈ I(P ) ∩ (ĈQ≥N +mĈQ) ⊆ (CQPCQ)≥l(N) +mI(P ).

According to this sum decomposition, write x = y1 + x1. We clearly have y1 ∈ BĈQ≥l(N)−|R|. Since

x ∈ BĈQ≥N +m
kĈQ, we conclude x1 ∈ mI(P )∩ (BĈQ≥l̃(N)+m

kĈQ). We now continue this way, using
Proposition 15.32:

x1 ∈ mI(P ) ∩ (mĈQ≥l̃(N) +m
2ĈQ)

⊆ m(I(P ) ∩ (ĈQ≥l̃(N) +mĈQ)) +m
2I(P )

⊆ m((CQPCQ)≥l(l̃(N)) +mI(P )) +mI(P )

⊆ m(CQPCQ)≥l(l̃(N)) +m
2I(P ).

Split x1 = y2 + x2 according to this sum decomposition and continue. The result is immediate.

Proposition 19.60. Assume R is of bounded type and I(P ) is quasi-flat. Then I(P ) is the closure of

the ideal (B⊗̂ĈQ)P (B⊗̂ĈQ) with respect to the tensor topology.

Proof. It is clear that (B⊗̂ĈQ)P (B⊗̂ĈQ) is contained in I(P ) and that I(P ) is contained in the closure

of (B⊗̂ĈQ)P (B⊗̂ĈQ). It remains to show that I(P ) is closed.

To prove I(P ) closed, regard a series of (xn) ⊆ I(P ) converging in B⊗̂ĈQ:

x =
∞∑

n=0

xn.

We now explain how to prove x ∈ I(P ). It entails inspecting every xn and dividing it into chunks in such
a way it becomes evident that a reordering of the chunks sums up to an element of I(P ). The reordering

is unproblematic, keeping x intact as element of B⊗̂ĈQ.
In order to define the chunks, we shall build a sequence (nk)k≥1 ⊆ N. Let k ≥ 1. Since we assume

the series
∑
xn converges in the tensor topology, there exists for every n ∈ N a (maximally chosen)

N
(k)
n ∈ N such that xn ∈ BCQ

≥N
(k)
n

+ m
kĈQ. We have that N

(k)
n → ∞ as n → ∞. In particular, we

have l(l̃k−1(N
(k)
n )) → ∞ as n → ∞. Choose nk ∈ N so high that l(l̃k−1(N

(k)
n )) ≥ k for all n ≥ nk. Of

course, we can enforce that nk is an increasing sequence: nk ≥ nk−1. We have now built the sequence
(nk)k≥1 which is essential in the construction of the chunks.

Let now n ∈ N and assume n ≥ n1. Then there is a unique k ∈ N such that nk ≤ n < nk+1. We get

xn ∈ I(P ) ∩ [BCQ
≥N

(k)
n

+m
kĈQ]

⊆
k−1∑

i=0

m
i(CQPCQ)

≥l(l̃i(N
(k)
n ))

+m
kI(P )

⊆ B(CQPCQ)≥k +m
kI(P ).
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In the second row, we have applied Lemma 19.59. In the third row, we have used that l(l̃i(N
(k)
n )) ≥

l(l̃k−1(N
(k)
n )) ≥ k minding n ≥ nk. With respect to the two summands, write now

xn = x(1)n + x(2)n , x(1)n ∈ B(CQPCQ)≥k, x(2)n ∈ m
kI(P ).

We can now write

x =

n1−1∑

n=0

xn +

n2−1∑

n=n1

x(1)n

︸ ︷︷ ︸
∈B(CQPCQ)≥1

+

n3−1∑

n=n2

x(1)n

︸ ︷︷ ︸
∈B(CQPCQ)≥2

+ . . .+

n2−1∑

n=n1

x(1)n

︸ ︷︷ ︸
∈m

1I(P )

+

n3−1∑

n=n2

x(1)n

︸ ︷︷ ︸
∈m

2I(P )

+ . . . ∈ I(P ).

The top row is a finite sum. The second row adds up to an element of I(P ) since the path lengths
increase. The third summand adds up to an element of I(P ) since the powers of m increase. This finally
shows x ∈ I(P ) and we conclude I(P ) is closed with respect to the tensor topology.

We finish this section by commenting on deformations of algebras where the Krull topology is taken
into account. Recall from Proposition 19.4 that B⊗̂A/Iq is a deformation of A/I if Iq is a quasi-flat
deformation of I. It would be delightful to have a version of this statement which takes into account

the Krull topology in case A = ĈQ. This requires two steps: First we shall define what it means for

a deformation to be tensor continuous. Second we shall prove that B⊗̂ĈQ/Iq is a tensor continuous
deformation in case Iq is quasi-flat and closed with respect to the tensor topology. Let us start as follows:

Definition 19.61. Let I ⊆ ĈQ be a closed ideal and Iq a deformation closed with respect to the tensor

topology. Then (B⊗̂ĈQ)/Iq is a (tensor continuous) deformation of ĈQ/I if there exists a deformation

µq of the product µ : (ĈQ/I)⊗ (ĈQ/I)→ (ĈQ/I) together with a B-linear algebra isomorphism

ϕ :
B⊗̂ĈQ

Iq

∼
−→ (B⊗̂(ĈQ/I), µq)

which is a homeomorphism with respect to the tensor topology.

Lemma 19.62. Let Q be a quiver, I ⊆ ĈQ a closed ideal which has a closed complement in ĈQ. Let

Iq be a deformation closed with respect to the tensor topology. If Iq is quasi-flat, then (B⊗̂ĈQ)/Iq is a

(tensor continuous) deformation of ĈQ/I.

Proof. The proof proceeds as in Proposition 19.4, with minor adaptions. The first step is to choose a

complement V ⊆ ĈQ such that ĈQ = I ⊕ V . In comparison with Proposition 19.4, we can choose V to
be closed. As in Proposition 19.4, we obtain the direct sum decompositions

ĈQ = I ⊕ V, B⊗̂ĈQ = Iq ⊕BV.

The difference in our case is that the first is not only a direct sum of vector spaces and the second not
only a direct sum of m-adically closed subspaces. Instead, the direct summands of the first sum are closed
with respect to the Krull topology and the summands of the second sum are closed with respect to the
tensor topology. As in Proposition 19.4, we define the map

ϕ : B⊗̂
ĈQ

I
= B⊗̂

V ⊕ I

I

∼
−→ B⊗̂V

∼
−→

Iq ⊕BV

Iq
=
B⊗̂ĈQ

Iq
.

This map is immediately a homeomorphism with respect to the tensor topology. One then transfers the

product of (B⊗̂ĈQ)/Iq onto a deformed product µq on B⊗̂(ĈQ/I). This finishes the proof.

19.10 Dimers of bounded type

In this section, we introduce a boundedness condition of dimers. Our motivation comes from Jacobi
algebras of dimers, which are a special case of Jacobi algebras of quivers with superpotential. It is
our interest to show that a deformation of the superpotential leads to a flat deformation of the Jacobi
algebra. Fortunately, Jacobi algebras of most dimers are CY3. In other words, a Jacobi algebra of a
dimer falls under the framework developed in the past sections. The only question remaining is whether
the superpotential is of bounded type.

In the present section, we show that the superpotential of a Jacobi algebra of a dimer is of bounded
type in the following cases:
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(a) An F-term flip

(b) These 3 paths are equivalent.

. . . ?

(c) Longer and longer?

Figure 19.3: Intuition on F-term equivalence

• All polygons in Q have equal number of edges (obvious),

• Q is cancellation consistent and sits in a torus (Lemma 19.66),

• Q is cancellation consistent and has no triangles (Theorem 19.72).

To start our investigation, let us recall the construction of this Jacobi algebra and the meaning of
consistency. Let Q be a dimer. Then its superpotential W ∈ CQ is given by the difference of the
clockwise polygons of Q and the counterclockwise polygons, cyclically permuted:

W =
∑

a1,...,ak
clockwise

(a1 . . . ak)cyc −
∑

a1,...,ak
counterclockwise

(a1 . . . ak)cyc.

The relations ∂aW equate two neighboring polygons: Flipping a path over an arc a is possible if the path
follows all arcs of a neighboring polygon apart from a. These flip moves are known as F-term moves
and the equivalence relation on the set of paths in Q is known as F-term equivalence. The terminology
is depicted in Figure 19.3. A good reference is [28].

Regard the set of paths in Q modulo F-term equivalence. The set contains a special element ℓv for
each vertex v ∈ Q0, given by the boundary of a chosen polygon at v. All boundaries of polygons incident
at v are F-term equivalent, hence ℓv does not depend on the choice. In other words, it can be rotated
around v. We may drop the subscript from ℓv if it is clear from the context. The element ℓ commutes
with all paths, that is, uℓ ∼ ℓu. Davison [28] introduced the following consistency condition for dimers:

Definition 19.63 ([28]). A dimer Q is cancellation consistent if it has the following cancellation
property:

pℓ ∼ qℓ =⇒ p ∼ q.

Remark 19.64. An equivalent requirement is pr ∼ qr ⇒ p ∼ q for all compatible paths p, q, r. Indeed
assume pr ∼ qr. Then pick an “inverse” path r′ in Q such that rr′ ∼ ℓk for some k ∈ N, and observe
pℓk ∼ prr′ ∼ qrr′ ∼ qℓk, hence p ∼ q.

The Jacobi algebra of Q is given by Jac(Q) = CQ/(∂aW ). It has a special central element ℓ ∈ Jac(Q),
given by the sum of the ℓv at all vertices v ∈ Q0:

ℓ =
∑

v∈Q0

ℓv ∈ Jac(Q),

The set of paths in Q modulo F-term equivalence is a basis for Jac(Q). Davison shows in [28, Theorem
8.1] that Jac(Q) is CY3 if Q is cancellation consistent. A complete survey of consistency conditions can
be found in [17]. For example, zigzag consistency implies cancellation consistency.

The previous sections of this paper establish that CY3 algebras with relations of bounded type have
favorable deformation theory: Whenever we deform their superpotential in a cyclic way, the deformation
is flat. We want to apply this to Jacobi algebras of dimers. Since Jac(Q) is already known to be CY3 if
Q is cancellation consistent, it remains to ask if the relations ∂aW are of bounded type. This is the case
for some dimers, but not for all. In the present section, we provide criteria for this to happen. Let us
give this notion a name.

Definition 19.65. A dimer Q is of bounded type if all F-term equivalence classes are bounded in path
length. Equivalently, all F-term equivalence classes are finite sets.
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ℓ

(a) Initial flip always has an ℓ
(b) Zigzag paths act as cage

a

b1

. . .

bk

c

(c) Crossing a zigzag path

Figure 19.4: Zigzag intuition

In this new terminology, the Jacobi algebra of a dimer Q has favorable deformation theory if Q if
cancellation consistent and of bounded type. Which dimers are of bounded type? An easy example are
the dimers whose polygons are all of equal length. Indeed, in such case an F-term move preserves length.
A more intricate case is the following:

Lemma 19.66. Let Q be a cancellation consistent torus dimer. Then Q is of bounded type.

Proof. In [17, Theorem 7.6] it is shown that a cancellation consistent torus dimer has a so-called “consis-
tent R-grading”, or “anomaly-free R-symmetry”. Broomhead shows in [23, Section 2.3] that the existence
of an anomaly-free R-symmetry implies that for every arc there exists a perfect matching P : Q1 → {0, 1}
that is positive on that arc. Summing up all the perfect matching gradings, we obtain a positive integer
grading d on CQ in which W is homogeneous. The degree d of a path is then preserved under F-term
equivalence. Since length of a path p is bounded by its total degree d(p), we conclude that any cancellation
consistent dimer on a torus is of bounded type.

In this section, we give another wide class of cancellation consistent dimers of bounded type: those
where all polygons are of length at least 4. The core observation is that whenever a path flips over a
zigzag path for the first time, it includes a cycle ℓ right there, see Figure 19.4a. In short, this gives rise
to the following line of proof: It suffices to regard paths equivalent to ℓk and proceed by induction over
k ∈ N. Once F-term moves bring a path p ∼ ℓk to cross a zigzag path for the first time, it includes a cycle
ℓ right there. Stripping away ℓ from the path makes it equivalent to ℓk−1 and by induction hypothesis
such a path is bounded in length. In other words, zigzag paths at sufficient distance provide a “cage” for
F-term equivalence classes, see Figure 19.4b.

The problem with this “cage proof” is that construction of an effective cage requires topological
arguments and geometric consistency. We derive a more refined proof, focusing on the crossings between
p and individual zigzag paths.

Definition 19.67. A crossing of p over a zigzag path Z is a sequence of k ≥ 1 consecutive arcs in p
that follow Z, such that p leaves Z to the left or right before the sequence, and the right resp. left after
the sequence (Figure 19.4c).

Paths containing a full cycle ℓ around a polygon are easy to bound in length by induction. We
therefore regard mainly paths that are ℓ-free, that is, do not contain a full cycle ℓ around some polygon.
In other words, a path is ℓ-free if it is not of the form pℓq. Note this is not the same as being a minimal
path, since minimality refers to F-term equivalence: A path is minimal if it is not F-term equivalent to a
path of the form ℓq. We are now ready to prove that crossings with zigzag paths are a partial invariant.

Lemma 19.68. Let Q be a dimer without triangles and let Z be a zigzag path. Let p and q be two
closed ℓ-free paths differing only by an F-term move. Then p and q have the same number of crossings
with Z.

Proof. The strategy is to inspect the crossings of p and q over Z, and match them up. It is essential
that Q has no triangles, because triangles bordering Z make it possible to create new crossings, see
Figure 19.5.

Let us inspect a crossing of p over Z. Without loss of generality we can assume that p turns right at
the end of the sequence and left at the beginning. We show that the crossing is preserved when p flips to
q. We scrutinize this by a case distinction on where the flip happens. Recall that a flip always involves
precisely one polygon minus an arc.

Regard the sequence a, b1, . . . , bk, c of arcs on p crossing over Z. Regard the case that the arcs involved
in the flip are all before a. Then a, b1, . . . , bk, c stay entirely part of the path and the crossing is preserved.

Regard the case that k ≥ 2. Then no three consecutive bi arcs can be involved in the flip, because
they follow a zigzag and do not circle around a polygon. Two consecutive bi arcs are not enough for a
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Figure 19.5: Triangles ruin our invariant.

X

(a) Case 1

X

(b) Case 2

impossible

(c) Case 3

X

(d) Case 4

Figure 19.6: F-term moves of ℓ-free paths preserve zigzag crossings.

flip, since all polygons are assumed to consist of at least 4 arcs. Hence arcs before a, a itself, b1 and b2
remain as possible arcs involved in the flip. In all cases we check that a crossing at the same point still
exists in q. The case where arcs bk−1, bk, c, . . . on the other side of the crossing are involved follows
similarly.

We distinguish 4 cases, depicted in Figure 19.6. In cases 1–3, only arcs before a and a itself are
involved in the flipping. Case 1 depicts the situation where a lies maximally left, case 2 depicts an
average situation, case 3 depicts the situation where a lies maximally right. Due to arrow directions, case
1 and 3 differ in appearance.

It turns out in case 1 that there is a new arc, indicated by a checkmark in the figure, that leaves
Z and everything between that arc and b1 follows Z. In other words q still has a crossing at the same
location. In case 2, the arc leaving Z also changes through the flip, but the crossing as a whole remains.
Case 3 is actually impossible: By assumption a leaves Z, and in order to conclude a polygon P minus
an arc, p needs to continue turning around P . It ends precisely at the head of b1, concluding an ℓ-cycle
. . . , a, b1.

Case 4 is the situation where arcs before a, the arc a itself and b1 are involved in the flipping. Since
a and b1 are supposed to be part of the flipping, the polygon to be flipped is necessarily the one lying
in the corner of the zigzag path at b1, b2. The first arc of p involved in the flip starts at the head of b2
(or the corresponding vertex of Z in case k = 1). What comes before that arc in p? The arc b2 following
b1 on Z, which we also label this way by abuse if k = 1, cannot come before it, because p is ℓ-free. By
arrow directions, it can also not concern the arc b3, similarly labeled by abuse if k ≤ 2. Hence it must
concern an arc that turns left of the zigzag path. In the figure this arc is depicted again by a checkmark.
This demonstrates that also in case 4 the crossing is preserved.

Finally it is also easy to see that the crossing is preserved in case where paths before a, a itself and
b1 and b2 are involved in the flip. Moreover, no flip is possible that includes a, b1 and c if k = 1.

Let us scrutinize the conclusion. We have associated to each crossing of p over Z, let us call it χ, a
crossing ϕ(χ) of q over Z. Is this map χ 7→ ϕ(χ) a one-to-one correspondence? Swapping the roles of
p and q, we also have a map ψ from crossings of q over Z to crossings of p over Z. Inspecting the case
distinction Figure 19.6 again, it becomes apparent that ψ has no other choice than associating to ϕ(χ)
back χ again. For example, a crossing χ and its image ϕ(χ) always have an arc on Z in common, and
similarly χ and ψ(χ) do. In other words ϕ ◦ ψ = Id and similarly ψ ◦ ϕ = Id. We conclude that p and q
have the same number of crossings over Z.

Given a path p, recall our plan is to utilize the crossings of p over arbitrary zigzag paths as a partial
invariant to bound the length of p. As announced, we do not construct an explicit cage, but rather argue
as follows: The only way to avoid crossing zigzag paths is to follow the boundary of a polygon. If we
assume p is ℓ-free, then following the boundary of a polygon is possible for at most K consecutive arcs,
where K is the maximum length of polygons in Q. We conclude that p necessarily crosses a zigzag path
at least once every K arcs. Let us make this precise.

Lemma 19.69. Let Q be a cancellation consistent dimer. If p is an ℓ-free path having C crossings with
zigzag paths, then its length is bounded by K(C + 1).

Proof. The strategy is to show that p necessarily crosses a zigzag path at least once every K arcs, and
then apply Lemma 19.68.
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We claim that a path cba of length 3 either crosses a zigzag path at b or is part of a polygon. To check
this, we take on the perspective of b, allowing us to find words for where a and c turn at head and tail
of b. The generic case is when a and c are neither left-most nor right-most. Then, the path cba crosses
both zigzag paths starting at b.

Let us treat the special cases. If c is the left-most (resp. right-most) at the head of b and a is the
right-most (resp. left-most) at the tail of a, then cba is part of a counterclockwise (resp. clockwise)
polygon. If c is the left-most (resp. right-most), but a is not the right-most (resp. left-most), then the
zigzag path starting at b and turning right (resp. left) crosses p at b. Similarly if a is the right-most
(resp. left-most), but c is not the left-most (resp. right-most), then the zigzag path starting at b and
turning left (resp. right) crosses p at b.

Either way, we conclude a path cba of length 3 either crosses a zigzag path at b or is part of a polygon.
Now regard a path longer than 3 arrows. How many consecutive arcs are possible without crossing a
zigzag path? By consistency, there are at least four polygons incident at every vertex. Hence if dcb lies
in a polygon and cba lies in a polygon, then both lie in the same polygon. We conclude that after K
arcs, a path has either completed a cycle around a polygon or crossed a zigzag path. If a path p contains
no cycle at all, then it has crossed at least ⌊|p|/K⌋ many zigzag paths. Reading this inequality the other
way around gives the desired bound.

We recall some notions, before diving into the proof. Let p be a path in Q. By consistency, p is
equivalent to a composition ℓkq of a cycle power ℓk and a minimal path q. That is, q cannot be written as
a multiple of ℓ. This decomposition p = ℓkq is unique up to equivalence of q. Let us call k the “looseness”
of p.

Remark 19.70. If p = p2ℓp1 is a path containing a cycle, then p2ℓp1 ∼ p2p1ℓ. If Q is cancellation
consistent, it satisfies the cancellation condition: If p is equivalent to ℓk, then p2p1 is equivalent to ℓk−1.
Once established that paths equivalent to ℓk−1 have bounded length, then p2p1 and hence p2ℓp1 are also
bounded.

Lemma 19.71. Let Q be a cancellation consistent dimer without triangles. For any vertex v and integer
k, the paths equivalent to ℓk at v are of bounded length.

Proof. We have a partial invariant at hand: the number of times a given pass crosses a zigzag path. This
number is not preserved under F-term equivalence in general, but becomes an invariant once we restrict
to closed ℓ-free paths.

We proceed by induction. Assume all closed paths equivalent to ℓk−1 starting at vertex v have length
≤ N . Let p be a path equivalent to ℓk. If p contains a cycle ℓ, then we can bound |p| ≤ N + K by
Remark 19.70 and we are done. Therefore we can assume p is ℓ-free.

Pick a sequence ℓk = p1, . . . , pn = p of paths, each related to its successor by an F-term move. Let
m < n be the maximal number where pm still contains a cycle ℓ. Then |pm| ≤ N +K by the induction
hypothesis. An F-move changes length by at most K, hence |pm+1| ≤ N + 2K. By Lemma 19.68, the
path pm+1 has the same total number of crossings with zigzag paths as pm+2, . . . , pn do.

Since |pm+1| ≤ N + 2K, the path pm+1 has at most 2N + 4K crossings with zigzag paths. We have
seen this number stays constant and hence also pn has at most 2N +4K crossings with zigzag paths. By
Lemma 19.69 its length is bounded by K(2N + 4K + 1). This finishes the induction.

Theorem 19.72. Any cancellation consistent dimer without triangles is of bounded type.

Proof. Lemma 19.71 already establishes the claim for the paths p = ℓk. We deduce from this the general
case where p is an arbitrary path. Fix some path p′ from the end of p to the start of p, such that p′p is
contractible. Then p′p ∼ ℓk0 for some k0. Now let q be an arbitrary path equivalent to p. We get

q ∼ p =⇒ p′q ∼ p′p ∼ ℓk0 .

By Lemma 19.71, the length of p′q is bounded. In particular, the length of q is bounded.

Remark 19.73. The bound of Lemma 19.71 is exponential in k:

q ∼ ℓk =⇒ |q| ≤ O((2K)k).

The bound is also exponential if we fix p and regard paths q ∼ pℓk. Indeed, let p and p′ be fixed paths
with p′p ∼ ℓk0 , then

q ∼ ℓkp =⇒ |q| ≤ |p′q| ≤ O((2K)k),

since p′q ∼ ℓk+k0 . These bounds are far from sharp. Regard for example a relatively straight dimer like
the one in Figure 19.3b. This figure convinces us that the expected bound is actually linear in k.
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19.11 Main theorems on flatness

In this section, we collect our main theorems on flatness. In particular, we return to the case where
the relations come from a superpotential. For the statement of our theorem, the deformed relations are
supposed to come from a deformation of the superpotential and the algebra is supposed to be CY3.

Let us state our flatness result first in the most general way, taking the setup from Convention 19.14.

Remark 19.74. Recall that I(R) is the ideal generated by R in CQ. The spaces I(R)
ĈQ

, I(P )CQ
and I(P ) are a bit more complicated. We defined them in an intricate way in section 19.5. Under the

assumptions of Proposition 19.75, the definitions however simplify: The space I(P ) ⊆ B⊗̂ĈQ is quasi-flat
by Proposition 19.43 and I(P )CQ ⊆ B⊗̂CQ is quasi-flat if ψ only maps to mCQ by Proposition 19.48.

In simplified terms, the space I(R)
ĈQ

is the closure of the ideal generated by R in ĈQ by Lemma 19.54.

The space I(P )CQ is the closure of the ideal generated by P in B⊗̂CQ if ψ only maps to mCQ, since

I(P )CQ is quasi-flat and hence closed. The space I(P ) is the closure of the ideal generated by P in B⊗̂ĈQ
with respect to the tensor topology by Proposition 19.60. Written out, we have

I(R) = CQRCQ ⊆ CQ,

I(R)
ĈQ

= CQRCQ ⊆ ĈQ,

I(P )CQ = (B⊗̂CQ)P (B⊗̂CQ) ⊆ B⊗̂CQ, if ψ(R) ⊆ mCQ,

I(P ) = (B⊗̂ĈQ)P (B⊗̂ĈQ)
⊗

⊆ B⊗̂ĈQ.

With these preparations, we are ready to state our flatness result in the most general way.

Proposition 19.75. Under Convention 19.14, assume R is of bounded type and [BG] and [CP] hold.
Then we have:

• B⊗̂ĈQ
I(P ) is a (tensor continuous) deformation of ĈQ

I(R)
ĈQ

.

• B⊗̂CQ
I(P )CQ

is a deformation of CQ
I(R) if ψ only maps to mCQ.

Proof. This is a culmination of what we have proved in the preceding sections. Regard the first statement.
Since R is of bounded type and [BG] and [CP] hold, Proposition 19.43 implies that I(P ) is quasi-flat. By
Lemma 19.54, we have that I(R)

ĈQ
is closed and by Lemma 19.56 it has a closed complement. Invoking

Lemma 19.62 gives that (B⊗̂ĈQ)/I(P ) is a deformation of ĈQ/I(R)
ĈQ

.

Regard the second statement. By Proposition 19.48, also I(P )CQ is quasi-flat. Invoking Proposi-
tion 19.4 proves the second statement. This finishes the proof.

Let us restate this proposition in case the relations come from a superpotential. Recall that a super-
potential W gives a relation space R = span{∂aW} and a deformation W ′ of the superpotential gives a
deformed relation space P = span{∂a(W +W ′)}. All details are taken care of by Lemma 19.18. Let us
use the following notation:

Jac(Q,W ) =
CQ

(∂aW )
,

Jac(Q̂,W ) =
ĈQ

(∂aW )
,

Jac(Q,W +W ′) =
B⊗̂CQ

(B⊗̂CQ)(∂a(W +W ′))(B⊗̂CQ)
, if W ′ ∈ mCQ,

Jac(Q̂,W +W ′) =
B⊗̂ĈQ

(BĈQ)(∂a(W +W ′))(BĈQ)
⊗ .

With these considerations, the following theorem is an immediate consequence of Proposition 19.75.

Theorem 19.76. Let Q be a quiver, W ∈ CQ≥3 a superpotential and W ′ ∈ mĈQ be cyclic. If Jac(Q,W )
is CY3 and W is of bounded type, then

• Jac(Q̂,W +W ′) is a deformation of Jac(Q̂,W ).

• Jac(Q,W +W ′) is a deformation of Jac(Q,W ) if W ′ ∈ mCQ.
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The theorem also applies to the standard Jacobi algebra JacQ of a dimer. Here cancellation con-
sistency of Q already implies that JacQ is CY3 [28, Theorem 8.1]. We have investigated the specific
superpotential W = W+

cyc −W
−
cyc in section 19.10. It is the difference of the clockwise and the counter-

clockwise polygons in Q. If all polygons in Q have equal length or Q sits in a torus or has no triangles,
then the superpotential W is of bounded type.

Theorem 19.77. Let Q be a cancellation consistent dimer of bounded type. Denote by W the super-

potential of Q and let W ′ ∈ mĈQ be cyclic. Then

• Jac(Q̂,W +W ′) is a deformation of Jac(Q̂,W ).

• Jac(Q,W +W ′) is a deformation of Jac(Q,W ) if W ′ ∈ mCQ.

20 A deformed Cho-Hong-Lau construction

In this section, we recapitulate the mirror construction of Cho, Hong and Lau [26] and formulate a
deformed version. Let us sketch this procedure: The construction of Cho, Hong and Lau starts from
an A∞-category C together with a designated subcategory L ⊆ C whose A∞-products are cyclic. From
this pair (C,L) they construct a Landau-Ginzburg model: an algebra Jac(QL,W ) with a central element
ℓ ∈ Jac(QL,W ). They also construct a functor F : C → MF(Jac(QL,W ), ℓ):

Cyclic subcategory
L ⊆ C

Mirror functor
F : C → MF(Jac(QL,W ), ℓ)

The idea to deform this construction is as easy as it can get: Once we change C to a deformation
Cq, the relations of Jac(QL,W ) deform and the central element ℓ changes. As long as the subcategory
Lq ⊆ Cq is still cyclic, this gives a deformed Landau-Ginzburg model (Jac(QL,Wq), ℓq) together with a
deformed functor Fq : Cq → MF(Jac(QL,Wq), ℓq):

Cyclic deformed subcategory
Lq ⊆ Cq

Deformed mirror functor
F : Cq → MF(Jac(QL,Wq), ℓq)

In section 20.1, we motivate the Cho-Hong-Lau construction via Koszul duality. In section 20.2, we
recall the construction and fix notation. In section 20.3, we start deforming the construction by building
a deformed Landau-Ginzburg model. In section 20.4, we prepare a category of projective modules for
deformed algebras. In section 20.5, we define categories of deformed matrix factorizations. In section 20.6,
we construct the deformed mirror functor.

After discussing the Cho-Hong-Lau construction in section 20.2, we will assume Convention 20.6
throughout the rest of the section. From section 20.3 onwards, we assume its deformed version Conven-
tion 20.22. In text and lemmas, we may typically omit mentioning the conventions, while for the actual
results we will always remind the reader. We may refer to the non-deformed Cho-Hong-Lau construction
as the “classical construction” and to the deformed version as the “deformed construction”.

20.1 Perspective from Koszul duality

In this section, we motivate the construction of Cho, Hong and Lau from the perspective of Koszul
duality. In fact, the Cho-Hong-Lau construction is a specialized variant of Koszul duality adapted to the
case that C is not an augmented A∞-category. In section 16 we have already recalled Koszul duality and
the connection between cyclic A∞-algebras and Calabi-Yau algebras. We have also provided a series of
direct tweaks to Koszul duality which motivate the Cho-Hong-Lau construction. In the present section,
we compile explicitly a roadmap from Koszul duality to the Cho-Hong-Lau construction:

Starting from arbitrary C: Koszul duality departs from an augmented finite-dimensional A∞-algebra
A and yields a functor ModfdrightA → TwA!. Cho, Hong and Lau instead depart from an A∞-
category C and subcategory of reference objects L ⊆ C. They form the A∞-algebra A = Hom(L,L).
Their mirror functor is then roughly the composition

F : C
Hom(L,−)
−−−−−−→ ModfdrightA

Koszul
−−−−→ TwA!.
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Multiple reference objects: The Koszul dual A! is always an algebra of noncommutative power series.
When departing from a category L with multiple objects, the algebra A becomes structured over
the semisimple ring CQ0. The Koszul dual A! inherits the structuring and becomes a quiver algebra
with vertex set Q0. The dual element x∨i runs in the opposite direction of xi.

Passing to cohomology: The Koszul dual of an A∞-algebra is a dg algebra. Cho, Hong and Lau forget
the dg algebra and pass to cohomology. The root cause for the success of this procedure consists
of an A∞-morphism A! → H0A!. As we demonstrate in Lemma 16.61, this A∞-morphism exists
naturally if A is positively graded.

Restriction to odd morphisms: The Koszul dual of an A∞ -algebra A spanned by x1, . . . , xn is gen-
erated by dual variables x∨1 , . . . , x

∨
n of degree |x∨i | = 1 − |xi|. Cho, Hong and Lau take the even

part of A into account, but restrict the mirror H0A! to the degree zero generators only. The only
relations divided out are dA!x∨ for x ∈ A2. As we demonstrate in Lemma 16.63, this approach
comes completely naturally if A is positively graded.

Relaxing the grading: Z-gradedness of A is not a necessity for Koszul duality. As we demonstrate
in Lemma 16.65, it is however essential for using H0A! as codomain of Koszul duality. Cho,
Hong and Lau admit A to be Z/2Z-graded. To obtain a functioning Koszul duality in this case, the
codomain of the functor is not based on the actual cohomology H0A! but deploys a surrogate. As we
demonstrate in Lemma 16.68, the functioning surrogate for H0A! is a quotient of the tensor algebra
generated by x∨i for xi odd. The surrogate ideal is generated by the restrictions of dA!x∨i ∈ A

! to
T (Āodd[1]) ⊆ T (Ā[1]) for xi even.

Cyclicity of relations: Cyclicity of the A∞-algebra A typically makes its Koszul dual A! a Calabi-Yau
dg algebra. While its cohomology H0A! is not necessarily a Calabi-Yau, the surrogate algebra used
instead of H0A! is always the Jacobi algebra Jac(QL,W ) of a quiver with superpotential. It is a
candidate for being a Calabi-Yau algebra of dimension 3.

Non-augmented C: Koszul duality requires that the algebra A is augmented in the sense that A∞-
products of non-identities never yield identities. Cho, Hong and Lau solve this by accumulating all
products that yield identities in an element ℓ ∈ A!. The element ℓ is central in A! and therefore
forms a curved dg algebra (A!, ℓ).

Matrix factorizations: Together with the curvature mentioned above, the result is a Landau-Ginzburg
model (JacW QL, ℓ) consisting of the Jacobi algebra of a quiver with superpotential, together with
the additional potential ℓ as curvature. The suitable analog of the codomain TwJac(QL,W ) in this
curved setting is category MF(JacW QL, ℓ) of matrix factorizations.

Opposite construction: Koszul duality yields a strictly defined Koszul dual A! and a functor to TwA!.
Cho, Hong and Lau instead construct a Jacobi algebra based on the opposite algebra of A!. In this
algebra, generator x∨i points in the same direction as xi. The codomain of the functor never has
to be written Tw(A!)op, because Tw is replaced by MF. While Tw is naturally a category of right
modules, the category MF is by definition a category of left modules and therefore already takes
the opposite into account.

The most important ingredients of the Cho-Hong-Lau construction are the category C and a choice
of subcategory L = {L1, . . . , LN} ⊆ C which is largely cyclic with respect to a non-degenerate odd
graded-symmetric pairing 〈−,−〉. We shall fix this terminology as follows:

Definition 20.1. Let C be an Z/2Z-gradedA∞-category. An odd non-degenerate graded-symmetric
pairing on C consists of a family of non-degenerate odd bilinear pairings 〈−,−〉L1,L2

indexed by all pairs
of objects L1, L2 ∈ C, with

〈−,−〉L1,L2 : Hom(L1, L2)×Hom(L2, L1)→ C, 〈x, y〉 = (−1)|x||y|〈y, x〉.

Remark 20.2. We simply write 〈−,−〉 instead of 〈−,−〉L1,L2 . We set 〈x, y〉 = 0 whenever x, y lie in
incompatible hom spaces.

When choosing a basis for the odd part of the hom spaces of L, one obtains a dual basis for the even
part of the hom spaces of L as in Definition 16.56. We shall prepare here terminology for the precise type
of basis that the Cho-Hong-Lau construction requires:

Definition 20.3. Let L = {L1, . . . , LN} be a unital A∞-category with non-degenerate odd graded-
symmetric pairing 〈−,−〉. Let Eij be disjoint index sets for every 1 ≤ i, j ≤ N and let

{Xe}e∈Eij
⊆ Homodd(Li, Lj), {Ye}e∈Eji

⊆ Homeven(Li, Lj), id∗Li
∈ Homodd(Li, Li)



310 20. A deformed Cho-Hong-Lau construction

for every 1 ≤ i, j ≤ N . Then the triple {Xe}, {Ye}, {id
∗
Li
} is a CHL basis for L if

1. These families of morphisms form a basis for the hom spaces of L when combined with the identities
idLi

:

Hom(Li, Lj) = span{Xe}e∈Eij
⊕ span{Ye}e∈Eji

[ ⊕ span{idLi
, id∗Li

} if i = j].

2. We have the pairing identities

〈Ye, Xf 〉 = 〈Xf , Ye〉 = δef , 〈id∗Li
, idLj

〉 = 〈idLj
, id∗Li

〉 = δij ,

〈Xe, Xf 〉 = 〈Ye, Yf 〉 = 0, 〈idLi
, idLj

〉 = 〈id∗Li
, id∗Lj

〉 = 0,

〈Xe, idLi
〉 = 〈Xe, id

∗
Li
〉 = 0, 〈Ye, idLi

〉 = 〈Ye, id
∗
Li
〉 = 0.

(20.1)

The element id∗Li
is the co-identity of Li in L.

Remark 20.4. In contrast to the case of cyclic A∞-algebras, the pairing pairs the opposite hom spaces
Hom(Li, Lj) and Hom(Lj , Li). The dual basis element for Xe ∈ Hom(Li, Lj) is therefore an element
Ye ∈ Hom(Lj , Li). This is the reason why the basis elements Ye for Homeven(Li, Lj) are indexed by the

index set Eji borrowed from the basis of the opposite hom space Homodd(Lj , Li).

Remark 20.5. A Cho-Hong-Lau basis for L always exists if the hom spaces of L are finite-dimensional.
This is a simple consequence of Definition 16.56 which we shall briefly explain. First, the identity idLi

determines a dual odd element id∗Li
∈ Homodd(Li, Li). One now freely chooses further odd elements

Xe ∈ Homodd(Li, Lj), where the index e ranges over an arbitrary set Eij for every 1 ≤ i, j ≤ N .
Together with the co-identities, the elements Xe are supposed to form a basis for the odd part of the
hom spaces of C:

Homodd(Li, Lj) = span{Xe}e∈Eij
[⊕Cid∗Li

if i = j].

According to Definition 16.56, we obtain a unique dual basis for the even hom spaces. It is of the form

Homeven(Li, Lj) = span{Ye}e∈Eji
[⊕C idLi

if i = j].

By construction, the triple {Xe}, {Ye} and {id∗Li
} now satisfies the pairing identities (20.1) and forms a

CHL basis according to Definition 20.3.

20.2 The Cho-Hong-Lau construction

In this section, we recall the construction of the noncommutative mirror functor due to Cho, Hong and
Lau [26]. The aim is to define the mirror functor as fast as possible. The mirror functor recalled here
serves as leading term of the deformed mirror functor which we construct in the next sections. The
present section also serves to fix notation and terminology as well as to fix sign conventions.

In Convention 20.6, we record the complete list of input data and assumptions for the Cho-Hong-Lau
construction. The input data include a category C and a chosen subcategory L ⊆ C. The input data also
include a choice of CHL basis for L. The assumptions include that L is “cyclic on the odd augmented
part” of L. The precise list reads as follows:

Convention 20.6. The A∞-category C is Z/2Z-graded and unital. A subset of reference objects L =
{L1, . . . , LN} ⊆ C is provided. The category L is supposed to come with an odd non-degenerate graded-
symmetric pairing 〈−,−〉. A CHL basis {Xe}e∈Eij ,1≤i,j≤N , {Ye}e∈Eij ,1≤i,j≤N , {id∗Li

}1≤i≤N for L is
provided. The category L is required to be cyclic on the odd part with respect to 〈−,−〉:

〈µ(Xek+1
, . . . , Xe2), Xe1〉 = 〈µ(Xek , . . . , Xe1), Xek+1

〉.

The hom spaces Hom(Li, X) are assumed to be finite-dimensional for 1 ≤ i ≤ N and X ∈ C.

The construction of mirror and mirror functor proceeds by Koszul transforming the A∞-structure of
L. In classical Koszul duality, one transforms the A∞-structure of an A∞ -algebra by looking at which
sequences of basis input elements produce a given basis element as output. In the construction of Cho,
Hong and Lau, the role of the input sequences is played by sequences of basis elements Xe1 , . . . , Xek ,
ranging over all hom spaces in L. To record the products on these sequences, one introduces a formal
variable xe for every e ∈ Eij and 1 ≤ i, j ≤ N . The variables are subject to constraints on composition,
coming from a quiver structure:
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Definition 20.7. The CHL quiver QL has one vertex Li for every reference object Li and an arrow
xe : Li → Lj for every e ∈ Eij and 1 ≤ i, j ≤ N .

With the definition of QL in mind, we build the auxiliary formal element

b =

N∑

i,j=1

∑

e∈Eij

xeXe. (20.2)

In principle, the basis morphisms Xe lie in different hom spaces. If we view L as a direct sum of its

elements L1, . . . , LN , we can interpret b as an element of ĈQL ⊗ Hom(L,L). Our convention is that
product of the type µ(mk, . . . ,m1, b, . . . , b) are always to be understood as multlinear expansions of the
product under use of the sum (20.2). More background can be found in [26, Chapter 2].

Summing up products of the type µ(mk, . . . ,m1, b, . . . , b) over increasing number of b-insertions gives
an infinite series. The summands consist of paths in QL multiplied by basis elements Xe, Ye or (co)iden-
tities. The coefficients series of a basis element Xe need not converge in CQL, but generally only in the

completed path algebra ĈQL. The special case where the coefficient series terminate is however relevant,
as it allows one to obtain a Landau-Ginzburg model building on the quiver algebra CQL instead of its
completion. We shall give this case a name:

Definition 20.8. L is of bounded growth if for all morphisms m1, . . . ,m1 in C there is an l0 ∈ N such
that

∀l ≥ l0 : µk+l(mk, . . . ,m1, b, . . . , b) = 0.

With this in mind, we can define all relevant intermediates of the Cho-Hong-Lau construction as
follows:

Definition 20.9. The relations Re ∈ ĈQL and the potential ℓ ∈ ĈQL are defined by

∑

k≥1

µk(b, . . . , b) = ℓ idL +
N∑

i,j=1

∑

e∈Eij

ReYe. (20.3)

The superpotential is defined as

W = 〈
∑

k≥1

µk(b, . . . , b), b〉 ∈ ĈQL.

The Jacobi algebra is defined as

Jac(Q̂L,W ) =
ĈQL

(∂xe
W )

. (20.4)

The Landau-Ginzburg model is the pair (Jac(Q̂L,W ), ℓ). If L is of bounded growth, then Re, ℓ,W
are regarded as elements of CQL, the Jacobi algebra is defined as Jac(QL,W ) = CQ/(∂xe

W ), and the
Landau-Ginzburg model is (Jac(QL,W ), ℓ).

Remark 20.10. The element W ∈ ĈQL is cyclic, as we recall in Lemma 20.16. Its derivative ∂xe
W is

defined by stripping off xe from the front (or rear) side of all terms in W that start (or end) with xe.

Remark 20.11. The description of ℓ and Re in (20.3) is to be interpreted as follows: All the products
µ(b, . . . , b) are even and can hence be written as a sum of the even basis elements. The even basis elements
are by assumption of the form Ye and idLi

. The element Re is formed by recording the coefficient of Ye
and the element ℓ is formed by recording the coefficients of the identities idLi

and summing up.

Remark 20.12. We have used the notation X for the closure of a set X ⊆ ĈQL with respect to the

Krull topology on ĈQL. More information on the Krull topology can be found in section 19.9.

Remark 20.13. In Definition 20.9, the two uses of the symbol (∂xe
W ) differ slightly. Namely in (20.4),

the expression (∂xe
W ) denotes the ideal ĈQL span(∂xe

)eĈQL generated by the relations ∂xe
W in ĈQL,

while in the case of bounded growth it denotes the ideal generated in CQL. Alternatively, the shared
definition (∂xe

W ) = CQL span(∂xe
W )CQL can be used in both cases since in (20.4) closure is taken. The

notation for the two ideals also differs slightly from the notation of section 19.
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Remark 20.14. We have decided to treat the case that L is of bounded growth in parallel with the
general case. In contrast, Cho, Hong and Lau [26] specialize to the case of bounded growth only in Chapter
10. In fact, their construction departs from the even more general situation involving the Novikov ring.
We shall try to make explicit every time whether we regard the general construction which uses the
completed path algebra and the closure of the ideal, or the specific construction which uses the ordinary
path algebra and ideal.

Remark 20.15. Unfortunately the calculations of [26] and [25] appear to contain at least two independent
sign issues. We have therefore decided to repeat the calculations here and repair the signs. We shall
here trace back the signs: The first dubious sign can be found in [25, Theorem 2.19]: The expressions
(2.10), (2.12), (2.14) indeed add up to zero due to the A∞-relation for C, but we need to show that the

difference +(2.10) − (2.12) − (2.14) vanishes. This issue breaks the functor equations for F̂ , even if the
matrix factorizations under consideration have vanishing δ. The second dubious sign can be found in the
combination of [26, Definition 4.3] and [26, Definition 4.4]. The specific combination of sign conventions

for µ1
MF and for the endomorphism δ of F̂ seems to break the functor equations for F̂ . A third issue is

that even without regarding the functor relations the definition of F̂ immediately renders F̂ (id) = − id,

while it would be desirable to have F̂ (id) = id. We have tried to repair all issues, even though it makes

the sign convention for F̂ slightly unesthetic.

From now on, the element ℓ is typically regarded as an element in the quotient Jac(QL,W ). Its
significance in the quotient and the relation between Re and W is explained as follows:

Lemma 20.16. The superpotential W ∈ ĈQL is cyclic and we have Re = ∂xe
W . The potential ℓ ∈

Jac(Q̂L,W ) is central. The analogous statements hold if L is of bounded growth.

Proof. We divide the proof into the four obvious parts. The first part of the proof is to check cyclicity of
W . To show this, regard the sum decomposition

〈µk(b, . . . , b), b〉 =
∑

e1,...,ek+1

〈µk(Xek+1
, . . . , Xe2), Xe1〉xek+1

. . . xe1 . (20.5)

We will group the collection of all summands into cyclic orbits. Namely, regard any term λxek+1
. . . xe1

appearing in this sum. Recall that by the cyclicity assumption of Convention 20.6 we have

λ = 〈µk(Xek+1
, . . . , Xe2), Xe1〉 = 〈µ

k(Xek , . . . , Xe1), Xek+1
〉, (20.6)

This means the permuted version λxek . . . xe1xek+1
also appears in the sum (20.5), with equal coefficient

λ. This renders 〈µk(b, . . . , b), b〉 cyclic. Summing over k ≥ 1, we derive that the entire superpotential W
is cyclic.

The second part of the proof is to check that Re = ∂xe
W . Usually, derivatives of a cyclic superpotential

are written in terms of those paths starting with the given variable xe. Since W is already cyclic, it suffices
to extract all paths which instead end on xe. To avoid double indexing by e, we will write xf in the

expansion of 〈µk(b, . . . , b), b〉. Ultimately, we calculate within ĈQL that

∂xe
W = ∂xe

〈∑

k≥1

µk(b, . . . , b),
∑

f

xfXf

〉

= ∂xe

〈
ℓ idL +

∑

f

RfYf ,
∑

f

xfXf

〉
= ∂xe


∑

f

Rfxf


 = Re.

The third part of the proof is to check that ℓ ∈ Jac(Q̂L,W ) is central. In this part of the proof, we shall

regard ℓ interchangeably as element of ĈQL or Jac(Q̂,W ). We start with the observation that within

ĈQL ⊗Hom(L,L) we have

0 =
∑

k≥1

∑

l≥1

µk(b, . . . , µl(b, . . . , b), . . . , b) =
∑

k≥1

µk(b, . . . ,

N∑

i=1

ℓi idLi
+
∑

ReYe, . . . , b).

We have essentially performed a reordering of the double sum which is legitimate since the path lengths
regarding QL encountered in µ(b, . . . , b) increase as the number of inputs increases. We now claim
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that apart from µ2(b, ℓi idLi
) and µ2(ℓi idLi

, b), the entire sum on the right-hand side of the equation
lies in (∂xe

W ) ⊗ Hom(L,L). Indeed, all terms with identities vanish for k ≥ 3 and k = 1 and the
products involving Ye all embrace relations Re. We caution that the expression does in general not lie in

ĈQL span(∂xe
W )ĈQL, see Remark 19.53 for an illustration. Ultimately, we conclude within Jac(Q̂L,W )⊗

Hom(L,L) that

0 = µ2(b, ℓ idL) + µ2(ℓ idL, b).

Let 1 ≤ i, j ≤ N and e ∈ Eij . Then extracting the Xe-component gives

0 = xeℓ− ℓxe within Jac(Q̂L,W ).

We conclude that ℓ commutes with all arrows in QL and hence with all finite paths. Let now x ∈ ĈQL be

an arbitrary element. If one wants to take Krull-continuity of the projection π : ĈQL → Jac(Q̂L,W ) for
granted, simply choose a sequence (xn) ∈ CQL with xn → x, then 0 = π(xn)ℓ− ℓπ(xn)→ π(x)ℓ− ℓπ(x),
hence xℓ = ℓx. If not, write x =

∑
k≥0 xk where xk is homogeneous of length k. Then


∑

k≥0

π(xk)


 ℓ = π




∑

k≥0

xk


 ℓ


 = π


∑

k≥0

xkℓ


 = π


∑

k≥0

ℓxk + zk


 = ℓ


∑

k≥0

π(xk)


 .

Here zk ∈ (∂xe
W ) denotes the difference of xkℓ and ℓxk when regarded as elements of ĈQL. Note that

zk has length at least k since xk does, hence
∑
zk ∈ (∂xe

W ). We conclude that ℓ commutes with any

element x ∈ Jac(Q̂L,W ) and hence ℓ ∈ Z(Jac(Q̂L,W )). The fourth part of the proof consists of observing
that the calculations still hold, even simplify, in case L is of bounded growth. This finishes the proof.

It is time to demonstrate how one calculates in the Jacobi algebra. For instance, within Jac(Q̂L,W )⊗
Hom(L,L) the expression (20.3) simplifies to

∑

k≥1

µk(b, . . . , b) =
N∑

i=1

ℓi idLi
∈ Jac(Q̂L,W )⊗Hom(L,L).

We are ready to recall the construction of the mirror functor of Cho, Hong and Lau. The idea is
to tweak the Koszul duality functor for the A∞-algebra A = End(L). We shall construct two functors

F̂ and F , where F̂ serves the general case and F the case where L is of bounded growth. The domain

of both functors is C and the codomains are the matrix factorization categories MF(Jac(Q̂L,W ), ℓ) and
MF(Jac(QL,W ), ℓ), respectively. We start with the explicit descriptions on the level of objects:

F̂ (X) =




N⊕

i=1

Jac(Q̂L,W )Li ⊗Hom(Li, X), δ(m) =
∑

k≥1

(−1)‖m‖µk(m, b, . . . , b)


 , (20.7)

F (X) =




N⊕

i=1

Jac(QL,W )Li ⊗Hom(Li, X), δ(m) =
∑

k≥1

(−1)‖m‖µk(m, b, . . . , b)


 . (20.8)

Let us explain how to interpret these expressions as matrix factorizations. Recall from Remark 17.12 that
a matrix factorization can be defined as a Z/2Z-graded module which together with an odd endomor-

phism which squares to the desired central element. In our case, the Jac(Q̂L,W )-module Jac(Q̂L,W )Li⊗
Hom(Li, X) shall have Z/2Z-grading inherited from Hom(Li, X). Since b is odd, the map δ itself be-
comes odd. The module is projective and finitely generated since Hom(Li, X) is finite-dimensional by

assumption. If we check that δ squares to ℓ, then F̂ (X) is indeed a matrix factorization.

Lemma 20.17. For X ∈ C the object F̂ (X) is indeed a matrix factorization of (Jac(Q̂L,W ), ℓ). If L is
of bounded growth, then F (X) is a matrix factorization of (Jac(QL,W ), ℓ).

Proof. We merely check the case of F̂ (X). It is our task to show that δ2 equates to multiplying by ℓ.
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Calculating in Jac(Q̂L,W )⊗Hom(L, X), we get

δ(δ(m)) = δ(
∑

k≥1

(−1)‖m‖µk(m, b, . . . , b))

=
∑

l≥1

∑

k≥1

(−1)‖m‖+‖m‖−1µl(µk(m, b, . . . , b), b, . . . , b)

= −
∑

n≥1

(µ · µ)n(m, b, . . . , b) +
∑

k≥2

∑

l≥1

µk(m, b, . . . , µl(b, . . . , b), . . . , b)

= µ2(m, ℓ idL) = ℓm ∈ Jac(Q̂L,W )⊗Hom(L, X).

Here we have used the A∞-relation µ · µ = 0 and
∑
l≥1 µ

l(b, . . . , b) = ℓ idL. We conclude that δ2 = ℓ.

This shows that F̂ (X) is a matrix factorization. The analogous calculations show that F (X) is a matrix
factorization when L is of bounded growth.

We are finally ready to write down the functors F̂ and F . On objects, these functors map X ∈ C to
their associated matrix factorizations F̂ (X) and F (X) defined in (20.7). On morphisms, the functors are
intuitively constructed through viewing Hom(Li, X) as a module over End(L) and composing with the
Koszul duality functors. We explain the origin of the functors in more detail in Remark 20.21.

Definition 20.18. The CHL functor F̂ is the mapping

F̂ : C −−−−−→ MF(Jac(Q̂L,W ), ℓ), (20.9)

X 7−−−−−→ F̂ (X), (20.10)

F̂ (mk, . . . ,m1)(m) = (−1)(‖m1‖+...+‖mk‖)‖m‖+1
∑

l≥0

µk+l+1(mk, . . . ,m1,m, b, . . . , b) (20.11)

for mi : Xi → Xi+1, m ∈ F̂ (X1). (20.12)

In case L is of bounded growth, the functor F : C → MF(Jac(QL,W ), ℓ) is defined analogously.

Remark 20.19. Let us elaborate and make sense of the definition of F̂ (mk, . . . ,m1). To start with,
the sequence m1, . . . ,mk is an arbitrary sequence of morphisms mi : Xi → Xi+1 in C. The morphism

F̂ (mk, . . . ,m1) is supposed to be a Jac(Q̂L,W )-module map F̂ (X1) → F̂ (Xk+1). Let us make sense of
its definition: The element m used to define this map lies in the direct sum

F̂ (X1) =
⊕

i∈QL

0

Jac(Q̂L,W )Li ⊗Hom(Li, X1).

Its image F̂ (mk, . . . ,m1)(m) is defined by the products µ(mk, . . . ,m1,m, b, . . . , b), with an arbitrary
amount of b-insertions. The result of each of these products lives in

F̂ (Xk+1) =
⊕

j∈QL

0

Jac(Q̂L,W )Lj ⊗Hom(Lj , Xk+1).

To see this, recall that the formal parameters xe in b simply get multiplied up as we evaluate the product.

Simply speaking, a product where the right-most b-summand xeXe is consumed lands in Jac(Q̂L,W )t(e)⊗

Hom(Lt(e), Xk+1). Finally, note that F̂ (mk, . . . ,m1) is indeed a module map: If a ∈ Jac(Q̂L,W ), then
F (mk, . . . ,m1)(am) = aF (mk, . . . ,m1)(m) since the factor a can be pulled to the front.

The main algebraic result of Cho, Hong and Lau entails that F̂ indeed defines an A∞-functor:

Lemma 20.20. The CHL functor is a unital A∞-functor F̂ : C → MF(Jac(Q̂L,W ), ℓ). In case L is of
bounded growth, then F is a unital A∞-functor as well.

Proof. We have that F̂ (id)(m) = (−1)‖m‖+1µ2(id,m) = m, therefore F̂ (id) = id. Similarly, we have

F̂ (mk, . . . ,m1) = 0 whenever k ≥ 1 and one mi is an identity. For the functor relations, we need to check

∑

i,j

(−1)‖m1‖+...+‖mj‖F̂ (mk, . . . , µ(mi, . . . ,mj+1), . . . ,m1)

= µ2
MF(F̂ (mk, . . . ,mi+1), F̂ (mi, . . . ,m1)) + µ1

MF(F̂ (mk, . . . ,m1)).
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Both sides are homomorphisms F̂ (X) → F̂ (Y ) of certain Jac(Q̂L,W )-modules. In order to equate both

sides, we plug in an arbitrary element m ∈ F̂ (X) and start evaluating from the left-hand side. Minding
the notation δ̃(m) = (−1)|m|δ(m), we get:

∑

0≤i≤j≤k

(−1)‖m1‖+...+‖mj‖F̂ (mk, . . . , µ(mi, . . . ,mj+1), . . . ,m1)(m)

=
∑

0≤i≤j≤k
0≤l

(−1)‖m1‖+...+‖mj‖+(‖m1‖+...+‖mk‖+1)‖m‖+1µk+l(mk, . . . , µ(mi, . . . ,mj+1), . . . ,m1,m, b, . . . , b)

=
∑

1≤i≤k−1
j,l≥0

(−1)‖m‖+(‖m1‖+...+‖mk‖+1)‖m‖µk−i+l+1(mk, . . . , µ
i+1+l(mi, . . . ,m1,m, b, . . . , b), b, . . . , b)

+
∑

i,j≥0

(−1)‖m‖+(‖m1‖+...+‖mk‖+1)‖m‖µi+1(µk+j+1(mk, . . . ,m1,m, b, . . . , b), b, . . . , b)

+
∑

i,j≥0

(−1)‖m‖+(‖m1‖+...+‖mk‖+1)‖m‖µk+i+1(mk, . . . ,m1, µ
j+1(m, b, . . . , b), b, . . . , b)

=
∑

1≤i≤k−1

(−1)zF̂ (mk, . . . ,mi+1)(F̂ (mi, . . . ,m1)(m))

+ (−1)‖m‖+(‖m1‖+...+‖mk‖+1)‖m‖+(‖m1‖+...+‖mk‖)‖m‖+1+1δ̃(F̂ (mk, . . . ,m1)(m))

+ (−1)‖m‖+(‖m1‖+...+‖mk‖+1)‖m‖+1+(‖m1‖+...+‖mk‖)‖δ̃(m)‖+1F̂ (mk, . . . ,m1)(δ̃(m))

z = ‖m‖+ (‖m1‖+ . . .+ ‖mk‖+ 1)‖m‖+ (‖m1‖+ . . .+ ‖mi‖)‖m‖+ 1 + (‖mi+1‖+ . . .+ ‖mk‖)(‖F̂ (mi, . . . ,m1)(m)‖) + 1

=
∑

1≤i≤k−1

(−1)(‖mi+1‖+...+‖mk‖)(‖m1‖+...+‖mi‖+1)F̂ (mk, . . . ,mi+1)(F̂ (mi, . . . ,m1)(m))

+ δ̃(F̂ (mk, . . . ,m1)(m))− (−1)|F̂ (mk,...,m1)|F̂ (mk, . . . ,m1)(δ̃(m))

= µ2
MF(F̂ (mk, . . . ,mi+1), F̂ (mi, . . . ,m1))(m) + µ1

MF(F̂ (mk, . . . ,m1))(m).

This calculation deserves a few comments. In the first equality, we have unraveled the definition of F̂ .
In the second equality, we have used the A∞-relations for C, which adds an absolute flip to the sign.
In the third equality, we have reinterpreted the inner and outer µ applications as F̂ or δ̃, using that
δ̃(m) = −

∑
l≥1 µ

l(m, b, . . . , b). In the fourth equality, we have rewritten the expressions in terms of the
products µMF. Since m was arbitrary, we conclude that the A∞-functor relations hold. The very same
calculations apply for F in case L is of bounded growth.

Remark 20.21. The approach of Cho, Hong and Lau seems to originate from Yoneda functors instead
of Koszul duality. We sketch here their line of reasoning [25, 26], focusing on the case of a single reference
object, L = {L}. Let Ch denote the dg category of chain complexes.

A typical Yoneda functor in the A∞-world takes the shape F = Hom(L,−) : C → Ch and sends
X ∈ C to the chain complex (Hom(L,X), µ1). The functor F is not strict, but has higher components
F≥1 given by F (mk, . . . ,m1)(m) = ±µ(mk, . . . ,m1,m).

Twisting an A∞-category C by any element b gives a new possibly curved A∞-category. Cho, Hong
and Lau simply decided to enlarge the category C by introducing formal variables xe for every odd basis
element Xe of the hom space Hom(L,L). Their twist is given by the element b =

∑
xeXe. This gives

an enlarged and twisted category Cb = (C〈〈xe〉〉, b). Its products µkb are given by twisting µ with b. This
category in principle has a Yoneda functor Fb : Cb → Ch itself, given by

Fb(X) = (Hom(L,X), µ1
b),

Fb(mk, . . . ,m1)(m) = µb(mk, . . . ,m1,m).
(20.13)

At this point, adaptations have to be made. For instance the map µ1
b , explicitly µ1

b(m) = µ(b, . . . ,m, . . . , b),
is not a differential anymore because Cb has curvature µ(b, . . . , b). Before we proceed, simplify Fb slightly
by inserting b only at the right-most positions in (20.13).

To make µ1
b a differential and restore the functor Fb, the crucial idea is to enforce relations among the

variables xe to at least render the curvature a multiple of the identity. This precisely explains the choice
of the relations Re. It be noted that µ1

b is still not a differential since µ(b, . . . , b) may contain an identity
term ℓ idL. This in mind, µ1

b however squares to ℓ and we are in the realm of matrix factorizations. The
functor Fq can be adapted accordingly. This explains the original motivation of Cho, Hong and Lau.
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Gadget Classical Deformed

Completed quiver algebra ĈQL B⊗̂ĈQL

(slow growth) CQL B⊗̂CQL

Superpotential W ∈ ĈQL Wq ∈ B⊗̂ĈQL

(slow growth) W ∈ CQL Wq ∈ B⊗̂CQ
L

Relations Re ∈ ĈQL Rq,e ∈ B⊗̂ĈQL

(slow growth) Re ∈ CQL Rq,e ∈ B⊗̂CQ
L

Jacobi algebra Jac(Q̂L,W ) = ĈQL

(∂xeW )
Jac(Q̂L,Wq) =

B⊗̂Q̂L

(∂xeW )
⊗

(slow growth) Jac(QL,W ) = CQL

(∂xeW ) Jac(QL,Wq) =
B⊗̂CQL

(∂xeW )

Potential ℓ ∈ Jac(Q̂L,W ) ℓq ∈ Jac(Q̂L,Wq)

(slow growth) ℓ ∈ Jac(QL,W ) ℓq ∈ Jac(QL,Wq)

Table 20.1: Terminology of deformed Cho-Hong-Lau construction

20.3 Deformed Landau-Ginzburg model

In this section, we start deforming the construction of Cho, Hong and Lau. The idea is as easy as it
can get: We apply the Cho-Hong-Lau construction formally to the whole formal family of categories
(Cq). Intuitively, we obtain a family of matrix factorization categories. More precisely, we get a new

algebra Jac(Q̂L,Wq), a new central element ℓq ∈ Z(Jac(Q̂L,Wq)), a deformation MF(Jac(Q̂L,Wq), ℓq) of

MF(Jac(Q̂L,W )ℓ) and a functor F̂q running from Cq to MF(Jac(Q̂L,Wq), ℓq). In other words: Thanks to
the generality the Cho-Hong-Lau construction, the mirror gets deformed when the input category C gets
deformed.

In the present section, we devote ourselves to the construction of Wq, ℓq and the Jacobi algebra

Jac(Q̂L,Wq). In section 20.5, we define the deformed matrix factorizations category and in section 20.6
we construct our deformed mirror functor. We document our setup in the following convention:

Convention 20.22. The category C, the reference objects L = {L1, . . . , LN}, the basis elements Xe, Ye,
id∗Li

and the pairing 〈−,−〉 are as in Convention 20.6. Let Cq be a deformation of C over a deformation
base (B,m). We assume Cq is (deformed) cyclic on odd elements:

〈µq(Xek+1
, . . . , Xe2), Xe1〉 = 〈µq(Xek , . . . , Xe1), Xek+1

〉.

We assume that Cq is strictly unital with the same identities idX as in C:

µ1
q(idX) = 0, µ2

q(a, idX) = a, µ2
q(idX , a) = (−1)|a|a, µ≥3

q (. . . , idX , . . .) = 0.

The letter Lq denotes the subcategory of Cq given by the objects L1, . . . , LN ∈ L.

In overview, our construction of the deformed Landau-Ginzburg model (Jac(Q̂L,Wq), ℓq) proceeds as

follows: We model the algebra Jac(Q̂L,Wq) still via the CHL quiver QL and relations. More precisely,

we regard the enlarged version B⊗̂ĈQL instead of ĈQL. The deformed superpotential Wq lives in this

enlarged algebra instead of ĈQL. The deformed Jacobi algebra Jac(Q̂L,Wq) is defined as quotient of

B⊗̂ĈQL instead of ĈQL. The deformed potential ℓq lives in the center of Jac(Q̂L,Wq). We develop in
parallel a variant in case L is of bounded type. For the variant in case of bounded type, we need an
additional condition on the deformed products µq. We refer to this condition as being of slow growth,
and the condition already implies that L is of bounded growth. All terminology is collected in Table 20.1.

Definition 20.23. Lq is of slow growth if for all morphisms m1, . . . ,mk in C and for every n ∈ N there
exists an l0 ∈ N such that

∀l ≥ l0 : µk+lq (mk, . . . ,m1, b, . . . , b) ∈ m
nHom(L, Xk+1).
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Remark 20.24. If Lq is of slow growth, then L is automatically of bounded growth.

We are now ready to define the deformed relations Rq,e and potential ℓq. As the reader may expect,
these are simply read off from µq(b, . . . , b).

Definition 20.25. The deformed relations Rq,e ∈ B⊗̂ĈQL and the deformed potential are defined
by

∑

k≥0

µkq (b, . . . , b) = ℓq id+
N∑

i,j=1

∑

e∈Eij

Rq,eYe. (20.14)

The deformed superpotential is defined as

Wq = 〈
∑

k≥0

µkq (b, . . . , b), b〉 ∈ B⊗̂ĈQ
L.

The deformed Jacobi algebra is defined as

Jac(Q̂L,Wq) =
B⊗̂ĈQL

(∂xe
W )

⊗ .

The deformed Landau-Ginzburg model is the pair (Jac(Q̂L,Wq), ℓq). If Lq is of slow growth, then
Rq,e, ℓq, Wq are regarded as elements of B⊗̂CQL, the deformed Jacobi algebra is defined as Jac(QL,Wq) =

(B⊗̂CQL)/(∂xe
W ), and the deformed Landau-Ginzburg model is (Jac(Q̂L,Wq), ℓq).

Remark 20.26. The element Wq ∈ B⊗̂ĈQL is cyclic, as we shall see in Lemma 20.30. Cyclicity for

Wq is to be understood in the sense that Wq ∈ B⊗̂ĈQL
cyc, where ĈQL

cyc ⊆ ĈQL is the subspace of
elements invariant under cyclic permutation. More explicitly, Wq is of the form

∑
mipi with mi ∈ m

→∞

and pi ∈ ĈQL
cyc. This explains the sense in which Wq is cyclic.

The derivatives ∂xe
Wq are elements of B⊗̂ĈQL. More precisely, the derivative ∂xe

Wq is defined as

limk ∂xe
πk(Wq) where πk denotes the projection πk : B⊗̂ĈQL

cyc → B/mk ⊗ ĈQL
cyc. More explicitly, if

Wq =
∑
mkpk with mk ∈ m

→∞ and pk ∈ ĈQL
cyc, then ∂xe

Wq =
∑
mk∂xe

pk. This explains how to
understand ∂xe

Wq.

Remark 20.27. The definition of the relations Rq,e is understood as follows: The chunk of Rq,e read
off from µkq (b, . . . , b) for a certain k ≥ 0 consists of paths in QL of length k, weighted with deformation

parameters. More precisely, this chunk lies in B⊗̂CQL
k . The total relation Rq,e is the sum of these chunks

over k ≥ 0. As such, the deformed relations Rq,e all lie in B⊗̂ĈQL. As in the classical case, the relation
Rq,e only contain paths running from h(e) to t(e) for every e ∈ Eij .

Similarly, the potential ℓq lies in B⊗̂ĈQL. We shall from now on typically denote by ℓq its projection

to Jac(Q̂L,Wq). As in the classical case, the only paths contained in ℓq are loops of QL.

Remark 20.28. In contrast to the classical case, the category Cq may also have infinitesimal curvature.
This is not a problem. We simply start counting from k = 0 instead of k = 1 in (20.14).

Remark 20.29. Within the present section 20, we have decided to stick to the following closure notations:

If X ⊆ ĈQL, then X is the closure with respect to the Krull topology. If X ⊆ B⊗̂ĈQL or X ⊆ B⊗̂CQL,

then X denotes the closure with respect to the m-adic topology. If X ⊆ B⊗̂ĈQL, then X
⊗

denotes the
closure with respect to the tensor topology. For more information on the tensor topology, we refer to
section 19.9.

In the rest of this section, we check properties of the deformed Landau-Ginzburg model. Our first
milestone is a deformed version of Lemma 20.16:

Lemma 20.30. Assume Convention 20.22. Then the superpotential Wq ∈ B⊗̂ĈQL is cyclic and we have

Rq,e = ∂xe
Wq. The potential ℓq ∈ Jac(Q̂L,Wq) is central. The analogous statements hold if Lq is of slow

growth.
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Proof. The proof is analogous to the proof of the classical version Lemma 20.16. Cautious is due when
working with the completed ideals. We shall therefore spell out a few details. By comparison, the fact
that Cq is allowed to have curvature is technically unproblematic.

Cyclicity of Wq and the property that Rq,e = ∂xe
Wq follow immediately from the cyclicity assumption

in Convention 20.22 and are unproblematic in the sense that these properties hold in B⊗̂ĈQL.

We shall rather comment in detail on the centrality of the deformed potential ℓq: Within B⊗̂ĈQL ⊗
Hom(L,L), we have

0 =
∑

k≥0

∑

0≤l≤k

µk−l+1
q (b, . . . , µlq(b, . . . , b), b, . . . , b)

=
∑

k≥1

∑

l≥0

µkq (b, . . . , µ
l
q(b, . . . , b), . . . , b)

=
∑

k≥1

µkq (b, . . . ,
N∑

i=1

ℓq,i idLi
+
∑

ReYe, . . . , b).

(20.15)

In the first row, we have used the curved A∞-relations. In the second row, we have applied a reordering of
the double sum with increasing path length. In the third row, we have reproduced (20.14). We claim that

up to the two terms µ2
q(b, ℓq,i idLi

) and µ2
q(ℓq,i idLi

, b), the entire sum lies in span(∂xe
Wq)

⊗
⊗Hom(L,L).

Indeed, for every k ≥ 3 and for k = 1 the summand lies in the intersection of B⊗̂CQL span(Re)CQ
L

and B⊗̂CQL
≥k−1. Therefore the series converges, apart from the two special summands, to an element of

span(∂xe
Wq)

⊗
⊗Hom(L,L). Within Jac(Q̂L,Wq)⊗Hom(L,L), we conclude that

0 = µ2
q(b, ℓq id) + µ2

q(ℓq id, b).

Let 1 ≤ i, j ≤ N and e ∈ Eij . Then extracting the Xe-component gives

0 = xeℓq − ℓqxe within Jac(Q̂L,Wq).

We conclude that ℓ commutes with all arrows in QL, hence with all finite paths and the image of

B ⊗ CQL. Let now x ∈ B⊗̂ĈQL be an arbitrary element. We shall prove that π(x)ℓ = ℓπ(x), where

π : B⊗̂ĈQL → Jac(Q̂L,Wq) is the projection. The easiest way to achieve this is by approximating x by
finite paths via the tensor topology. Pick any sequence (xn) ⊆ B ⊗ CQL such that xn → x in the tensor

topology. Since (∂xe
Wq)

⊗
is closed with respect to the tensor topology, the projection π is continuous.

We obtain
0 = π(xn)ℓ− ℓπ(xn)→ π(x)ℓ− ℓπ(x) within Jac(Q̂L,Wq).

We conclude that ℓ commutes with any element x ∈ Jac(Q̂L,Wq) and hence ℓ ∈ Z(Jac(Q̂L,Wq)). This
finishes the third part.

The fourth part of the proof consists of observing that the calculations still hold in case Lq is of slow
growth. Indeed, in this case the double sums in the calculation (20.15) all become finite and apart from
the two special terms lie in span(∂xe

Wq), noting that the closure is taken this time only with respect to
the m-adic topology. The approximation of x ∈ B⊗̂CQL happens by a sequence xn ∈ B ⊗ CQL which
converges to x in the m-adic topology. This proves the fourth step and finishes the proof.

20.4 Projectives of deformed algebras

In this section, we show that projectives of an algebra and any deformation are in one-to-one correspon-
dence. The purpose of this section is to build a rigorous foundation for our deformed category of matrix
factorizations.

Projectives of Aq Projectives of A

The core idea of matching projectives is as follows: Projectives of A are direct A-module summands
of a free A-module. Given such a decomposition A⊕n = P1 ⊕ . . . Pk into projectives, intuition says that
the modules Pi can be extended to Aq-modules Pq,i such that A⊕n

q = Pq,1 ⊕ . . . ⊕ Pq,k. The extensions
Pq,i are direct summands of A⊕n

q and therefore automatically projective. This procedure allows us to
turn projectives of A into projectives of Aq. Conversely, our expectation is that a projective module Pq of
Aq gives rise to a projective P of A by merely setting P = Pq/mPq. This allows us to match projectives
of Aq with projectives of A.
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If P is a projective of A, then B⊗̂P is not a projective of Aq. Instead, the module needs to be tweaked
a little. This is best accomplished by realizing P as image of an A-linear idempotent p : A⊕n → A⊕n and
lifting p to an Aq-linear idempotent pq : A⊕n

q → A⊕n
q . We achieve this by an adaption of the classical

idempotent lifting argument to the case of formal deformations:

Lemma 20.31. Let A be an algebra and Aq = (B⊗̂A,µq) a deformation. Let p : A⊕n → A⊕n be an
A-linear idempotent in the sense that p2 = p. Then there exists an Aq-linear idempotent pq : A

⊕n
q → A⊕n

q

with leading term p.

Proof. The idea is to lift p to an arbitrary Aq-module map and then turn it iteratively into a projection.
As a first step, let p0 : A⊕n

q → A⊕n
q be any Aq-linear continuous lift of p, for instance given by setting

p0(ei) = p(ei) ∈ A
⊕n ⊆ A⊕n

q where e1, . . . , en are the basis vectors of A⊕n
q .

As a second step, we construct a sequence of Aq-module maps pk : A⊕n
q → A⊕n

q such that p2k − pk ∈

m
2k End(A⊕n

q ) and pk+1 − pk ∈ m
2k End(A⊕n

q ). The first item in the sequence is the already constructed
map p0. Assume for induction that the sequence has already been constructed up to pk. Then put

ε = p2k− pk. By induction hypothesis, ε : A⊕n
q → A⊕n

q is an Aq-module map which lies in m
2k End(A⊕n

q ).
The trick is to set pk+1 = pk ± ε in order to render p2k+1 − pk+1 of lesser order than p2k − pk = ε. The

correct sign is neither plus or minus in general, but differs for two parts of ε. More precisely, we split ε
into a part mapping to the image of pk and a part almost mapping to the kernel of pk:

ε = pk ◦ ε+ (pk − id) ◦ ε.

The right sign for the first part is −1, while the sign for the second part is +1. In consequence, we put

pk+1 = pk − pk ◦ ε+ (id−pk) ◦ ε.

Since pk is a Aq-linear, so is pn+1. Noting that ε commutes with pk by definition, we get

p2k+1 − pk+1 = (pk − pkε+ (id−pk)ε)
2 − (pk − pkε+ (id−pk)ε)

= (p2k − pk)− 2p2kε+ 2(pk − p
2
k)ε+ pkε− (id−pk)ε+O(ε

2)

= pkε+ (id−pk)ε− 2p2kε+ 2(pk − p
2
k)ε+ pkε− (id−pk)ε+O(ε

2)

= 4(pk − p
2
k)ε+O(ε

2) = O(ε2).

In the calculation, we have written O(ε2) for any expressions containing an ε2 factor. We conclude that

pk+1 ∈ (m2k)2 End(A⊕n
q ) = m

2k+1

End(A⊕n
q ). This finishes the construction of pk+1 and thereby the

inductive construction of the sequence (pk).
Finally, the sequence (pk) converges to a limit map pq : A⊕n

q → A⊕n
q . It can be explicitly described

as limit of pk in every matrix entry, where matrix representation is taken with respect to the direct sum
description A⊕n

q . We conclude that pq is an Aq-linear map with p2q = pq. Since xk+1 − xk ∈ mEnd(A⊕n
q )

for k ≥ 0, the map pq reduces to p modulo m. This finishes the proof.

Let P ⊆ A⊕n
q be a submodule, not necessarily projective. Regard the projection map π : B⊗̂A→ A.

Then π(P ) ⊆ A⊕n is an A-submodule of A⊕n. To avoid confusion, let us write µq for the deformed
product of Aq and µ for the product of A. In these terms, we have for a ∈ A and x ∈ B⊗̂A⊕n that
µ(a, π(x)) = π(µq(a, x)). Now if x ∈ P , then µq(a, x) ∈ P and we get µ(a, π(x)) = π(µq(a, x)) ∈ π(P ).
This shows that π(P ) is an A-submodule. With this observation in mind, we can make the following
statement:

Lemma 20.32. Let P ⊆ A⊕n
q be a projective module. Then the A-module π(P ) is projective.

Proof. Write A⊕n
q = P ⊕ Q for some Aq-module Q. As kernels of projections, both are automatically

closed with respect to the m-adic topology, in particular pseudoclosed. According to Proposition 15.29,
we get that A⊕n = π(P )⊕ π(Q) as vector spaces. As observed before, both π(P ) and π(Q) are actually
A-submodules of A⊕n. We conclude that π(P ) is a projective A-module. This finishes the proof.

The endomorphism space HomAq
(A⊕n

q , A⊕n
q ) is the same as A⊕n

q = B⊗̂A⊕n as B-module. If A⊕n
q =

P1⊕. . .⊕Pk is a decomposition into Aq-submodules, then every hom space HomAq
(Pi, Pj) can be naturally

interpreted as B-linear subspace of B⊗̂A⊕n. In fact, B⊗̂A⊕n is their direct sum.

Lemma 20.33. Let A⊕n
q = P1 ⊕ . . . ⊕ Pk be a decomposition as Aq-module. Then HomAq

(Pi, Pj) ⊆

B⊗̂A⊕n is pseudoclosed and quasi-flat, and we have π(HomAq
(Pi, Pj)) = HomA(π(Pi), π(Pj)).
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Proof. We have A⊕n2

q = HomAq
(A⊕n

q , A⊕n
q ) =

⊕
i,j HomAq

(Pi, Pj). By Proposition 15.29, we conclude
that every HomAq

(Pi, Pj) is quasi-flat and pseudoclosed.

It remains to show that π(HomAq
(Pi, Pj)) = HomA(π(Pi), π(Pj)) ⊆ A⊕n2

q . Pick any Aq-linear mor-
phism ϕ : Pi → Pj . We claim that π(ϕ) : π(Pi) → π(Pj) is an A-module map. Indeed, for a ∈ A and
x ∈ Pi we have

π(ϕ)(µ(a, π(x))) = π(ϕ(µq(a, x))) = π(µq(a, ϕ(x))) = µ(a, π(ϕ(x))) = µ(a, π(ϕ)(x)).

Conversely, let ϕ : π(Pi) → π(Pj) be an A-module morphism. We shall construct an Aq-module map
ϕq : Pi → Pj such that π(ϕq) = ϕ. The idea is to view the composition ϕ̃ : A⊕n ։ π(Pi)→ π(Pj) →֒ A⊕n.

We can write ϕ̃ as an element of A⊕n2

. In particular, we obtain a map of Aq-modules ϕq : Pi →֒ A⊕n2

q →

A⊕n2

q ։ Pj with π(ϕq) = ϕ. This shows π(HomAq
(Pi, Pj)) = HomA(π(Pi), π(Pj)) and finishes the

proof.

Let us set up more terminology. We denote by ProjA the category of finitely generated projective
A-modules and by ProjAq the category of finitely generated Aq-modules. Both are ordinary unital C-
linear categories. We use the terminology of A∞-deformations for these two categories, even though
the only product of both is an ordinary associative composition with different sign rule. In terms of
Definition 15.41, we shall prove that ProjAq is a loose object-cloning deformation of ProjA.

The first step is to define the mapping F : ObProjAq → ObProjA as given by F (P ) = P/(m · P ).
Obviously, the quotient P/(m·P ) carries a natural action of A = Aq/mAq, rendering it an A-module. This
mapping F is the generalization of the mapping P 7→ π(P ) to projectives not presented as submodules
of free modules. We shall now prove that F (P ) is actually projective:

Lemma 20.34. Let P ∈ ProjAq. Then the A-module F (P ) = P/(m · P ) is projective.

Proof. It suffices to regard the case of a submodule P ⊆ A⊕n
q . We claim that P/(m · P ) ∼= π(P ) as

A-modules. Regard the A-linear projection map π : P → π(P ). The map is surjective. Its kernel
is P ∩ mA⊕n. Since P is a direct summand of B⊗̂A⊕n as B-module, P ⊆ B⊗̂A⊕n is quasi-flat and
pseudoclosed. In particular we have P ∩mA⊕n = mP = m · P . We obtain an isomorphism of A-modules
P/(m·P )

∼
−→ π(P ). By Lemma 20.32, π(P ) is a projective A-module and we finish the proof by concluding

that P/(m · P ) ∈ ProjA.

Proposition 20.35. The category ProjAq is an essentially surjective loose object-cloning deformation
of ProjA over B via the mapping F : ObProjAq → ObProjA.

Proof. The proof consists of two steps: First we show that F is essentially surjective. Second, we show
that ProjAq becomes an object cloning deformation of ProjA.

To see that F is essentially surjective, let P ∈ ProjA be any finitely generated projective A module.
There exists an isomorphic module P ′ and a decomposition A⊕n = P ′ ⊕ Q for some n ∈ N and some
module Q. Pick a lift A⊕n

q = P ′
q ⊕Qq. Then P ′

q/(m · P
′
q)
∼= P , since mP ′

q = m · P ′
q. This shows that P is

reached by F up to isomorphism. In other words, F is essentially surjective.

To see that ProjAq is a loose object-cloning deformation of ProjA, we have to provide linear isomor-
phisms

ψP,Q : HomAq
(P,Q)/(m ·HomAq

(P,Q))
∼
−→ HomA(F (P ), F (Q)) for P,Q ∈ ProjAq.

Let ϕ ∈ HomAq
(P,Q). Then ϕ descends to a map F (P )→ F (Q). We define ψP,Q(ϕ) as this descended

map. We need to check that ψP,Q is an isomorphism. For this, we note that ψP,Q is defined purely
in terms of the module structure of P and Q. It therefore suffices to show bijectivity of ψP,Q only
in case P and Q are embedded as submodules of a free module A⊕n

q . In this case, the hom space

HomAq
(P,Q) has an interpretation as pseudoclosed quasi-flat B-submodule of B⊗̂A⊕n2

. The map ψP,Q
is in this case the map HomAq

(P,Q)/(m · HomAq
(P,Q)) → HomA(π(P ), π(Q)) simply induced from

the projection to zeroth order HomAq
(P,Q) → HomA(π(P ), π(Q)). The map ψP,Q is surjective since

HomA(π(P ), π(Q)) = π(HomAq
(P,Q)) by Lemma 20.33, and injective since HomAq

(P,Q) is quasi-flat.
This shows that ψP,Q is an isomorphism.

Finally, we have to check that composition in the category ProjAq reduces to composition in ProjA
via {ψP,Q}P,Q once m is divided out. This is however immediate, since composition commutes with
descending to the quotient by m. This finishes the proof.
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Remark 20.36. The correspondence between projectives of Aq and A can typically be made more
explicit. Assume for instance, an element v ∈ A is an idempotent in the sense that v2 = v. Then Av
is a projective of A since Av is the image of the A-linear idempotent map (−)v : A → A. Moreover, if
v2 = v within Aq, then Aqv is a projective of Aq, since it is the image of the idempotent Aq-linear map
(−)v : Aq → Aq.

The A-projective F (Aqv) = Aqv/(m · Aqv) can be naturally identified with Av via the map ϕ :

Aqv/(m · Aqv)
∼
−→ Av given by ϕ(a) = π(a)v for a ∈ Aqv ⊆ B⊗̂A, where π : B⊗̂A → A is the standard

projection. Since µq is a deformation of µ, we have ϕ(µq(a, b)) = π(µq(a, b))v = µ(π(a), π(b))v and
conclude that ϕ is A-linear. The map ϕ is surjective since for a ∈ A we have ϕ(a) = av. The map ϕ is
injective, since π(a)v = 0 for a ∈ Aqv implies π(µq(a, v)) = 0, hence µq(a, v) ∈ m ∩ Aqv ⊆ m · Aqv, since
Aqv ⊆ B⊗̂A is quasi-flat.

Hom spaces between projectives can also be identified. Let v, w be two idempotents of A still idem-
potent in Aq. Then we have the natural identification

HomAq
(Aqv,Aqw)

m ·HomAq
(Aqv,Aqw)

∼
−→ HomA(F (Aqv), F (Aqw))

∼
−→ HomA(Av,Aw).

20.5 Deformed matrix factorizations

In this section, we define deformed categories of matrix factorizations. There are several issues on the
road to their definition. In order to satisfy our demand to serve as mirror model in the deformed Cho-
Hong-Lau construction, the definition furthermore needs to deviate from what one expects. The first
step in this section is to explain these issues. We then provide a successful construction of the deformed
category of matrix factorizations for any deformed Landau-Ginzburg model. We finish this section with an
explanation how this category becomes an deformation of the ordinary category of matrix factorizations.

Our starting point is a pair (A, ℓ) consisting of an associative algebra A with a central element ℓ ∈ A.
Recall from section 17.4 that the category of matrix factorizations MF(A, ℓ) is a dg category which has
as objects pairs of finitely generated projective A-modules M,N together with A-module morphisms
f :M → N and g : N →M such that f ◦ g = ℓ idN and g ◦ f = ℓ idM .

The starting point for the deformed setup is a pair (Aq, ℓq) of a deformation Aq of A and a deformed
central element ℓq ∈ Z(Aq). More precisely, Aq = (B⊗̂A,µq) shall be an associative deformation of the
algebra A over a deformation base B, in the sense that µq : (B⊗̂A) ⊗ (B⊗̂A) → B⊗̂A is a B-linear
associative product that reduces to the product µ : A ⊗ A → A once m is divided out. The element
ℓq ∈ Z(Aq) is required to be a deformation of ℓ in the sense that ℓq − ℓ ∈ mA. We fix this terminology
as follows:

Definition 20.37. A Landau-Ginzburg model (A, ℓ) is a pair of an associative algebra and a central
element. A deformation (Aq, ℓq) of (A, ℓ) consists of an algebra deformation Aq = (B⊗̂A,µq) of A
together with a central element ℓq ∈ Z(Aq) which is a deformation of ℓ. Disregarding the reference to
(A, ℓ), we may call (Aq, ℓq) a deformed Landau-Ginzburg model.

The following is a naive candidate for a deformed matrix factorization category: Objects are projective
Aq-modules M,N together with Aq-module maps f : M → N and g : N → M such that f ◦ g =

ℓq idN and g ◦ f = ℓq idM . The hom space of two such matrix factorizations f :M N : g and

f ′ :M ′ N ′ : g′ would be defined as HomAq
(M,M ′)⊕. . . similar to the classical case. The differential

µ1 on this category would be given by commuting a morphism with f, g and f ′, g′ as in the classical case.
The product µ2 would be given by standard matrix composition. This defines a dg category and a naive
candidate for a deformed category of matrix factorizations.

Let us now sketch the issues associated with this naive definition. The leading question is how to
interpret this category as a deformation of MF(A, ℓ), both on object and morphism level.

The first issue consists of matching projective modules of Aq with projective modules of A. Even
more, we also need that the hom spaces between projective modules of the two kinds match. We have
resolved this in section 20.4.

The second issue consists of matching the factorization morphisms f, g for ℓq with factorization mor-
phisms for ℓ. In fact, multiple matrix factorizations of (Aq, ℓq) reduce to the same matrix factorization
of (A, ℓ). A simple example is to multiply f by an element 1 + ε with ε ∈ m and multiply g by
(1 + ε)−1 =

∑
(−ε)i. Conversely, it is unclear whether every matrix factorization of (A, ℓ) extends to a

matrix factorization of (Aq, ℓq). This makes a precise correspondence between matrix factorizations of
(A, ℓ) and of (Aq, ℓq) impossible. We resolve this by building MF(Aq, ℓq) as an object-cloning deformation
of MF(A, ℓ).
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The third issue consists of liberalizing the category MF(Aq, ℓq) enough so that it can serve as codomain
of the deformed mirror functor. As we shall see, our deformed mirror functor does not map to objects
(M,N, f, g) where all compositions f ◦ g and g ◦ f are equal to each other. Instead, the compositions will
only agree with the predefined central element ℓq on zeroth order and differ per object. This phenomenon
is inevitable when starting form a curved A∞-deformation. It requires us to admit objects very liberally
into the category MF(Aq, ℓq).

We resolve the third issue as follows: The objects of MF(Aq, ℓq) are pairs (M,N, f, g) of projective
modules and module maps, but f ◦ g and g ◦ f need only equal ℓq up to zeroth order. The difference of
f ◦ g and ℓq, and of g ◦ f and ℓq, serves as curvature of MF(Aq, ℓq). Since our deformed mirror functor
typically requires the codomain to carry curvature as well, this resolves the third issue sufficiently.

At this point, we stress the crucial importance of Aq being a deformation of A in the sense of Defini-
tion 19.1. Intuitively, if Aq is smaller than B⊗̂A, then its modules have smaller hom spaces as well, which
breaks all chances to make the category of matrix factorizations of (Aq, ℓq) a deformation of MF(A, ℓ).

Definition 20.38. Let (Aq, ℓq) be a deformed Landau-Ginzburg model. A deformed matrix factoriza-
tion of (Aq, ℓq) consists of two finitely generated projective Aq-modules P,Q together with Aq-module
maps f : P → Q and g : Q → P such that f ◦ g − ℓq idQ ∈ m · HomAq

(Q,Q) and g ◦ f − ℓq idP ∈
m ·HomAq

(P, P ).

Example 20.39. Let A = C[X,Y ] and regard the trivial deformation Aq = (AJqK, µ). Regard the
central element ℓ = XY and the deformed central element ℓq = XY + q. The object (A,A,X, Y ) is a
matrix factorization of (A, ℓ). Both (Aq, Aq, X, Y ) and (Aq, Aq, X + 5q, Y + qX) are deformed matrix
factorizations of (Aq, ℓq). Both however do not factor to ℓq precisely, but only on zeroth order. In fact,
there are no single elements f, g ∈ Aq such that fg = XY + q and f −X ∈ (q) and g − Y ∈ (q). To see
this, assume f = X + qz and g = Y + qw, then fg = XY + q(zY +Xw) + q2zw. In order for this to be
equal to ℓq = XY + q, we need that zY +Xw is 1 on first order, which is impossible. This shows that
matrix factorizations need not have strict lifts, but deformed matrix factorizations are rather abundant.

Remark 20.40. As in the classical case, the pair of modules (P,Q) can also be described as a Z/2Z-
graded module M = P ⊕ Q[1] (where both graded parts are projective). The pair of morphisms (f, g)
can be described as an odd morphism δ : P ⊕ Q[1] → P ⊕ Q[1]. We shall liberally switch between the
two kinds of notation, identifying

f : P Q : g ←→

(
P ⊕Q[1],

(
0 g

f 0

))
.

We are now ready to define MF(Aq, ℓq). As in the classical case, if (M, δ) is a deformed matrix

factorization, we denote by δ̃ the tweaked differential given by δ̃(m) = (−1)|m|δ(m).

Definition 20.41. Let (Aq, ℓq) be a deformed Landau-Ginzburg model. The deformed category of
matrix factorizations MF(Aq, ℓq) is defined as follows:

• Objects are the deformed matrix factorizations (M, δ) of (Aq, ℓq).

• Hom spaces are given by Hom((M, δM ), (N, δN )) = HomAq
(M,N), naturally Z/2Z-graded.

• The curvature of an object (M, δ) is given by µ0
(M,δ) = ℓq idM −δ

2.

• The differential is given by µ1(f) = δ̃N ◦ f − (−1)|f |f ◦ δ̃M for f ∈ Hom((M, δM ), (N, δN )).

• The product is given by µ2(f, g) = (−1)‖f‖|g|f ◦ g.

Remark 20.42. In writing MF(Aq, ℓq), we have abused notation: The category MF(Aq, ℓq) is not the
same as (classical) matrix factorizations of the pair (Aq, ℓq).

We aim at showing that MF(Aq, ℓq) is an object-cloning deformation of MF(A, ℓ). To make this true,
we provide a map ObMF(Aq, ℓq) → ObMF(A, ℓ). The construction of this map is easy and consists of
taking the leading term of any matrix factorization:

Definition 20.43. Let (Aq, ℓq) be a deformed Landau-Ginzburg model. Let (M, δ) be a deformed matrix
factorization of (A, ℓ). Then the leading term of (M, δ) is the matrix factorization O(M, δ) of (A, ℓ)
given by

O(M, δ) = (M/(m ·M), π(δ)).
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In this definition, π(δ) denotes the induced map M/(m ·M)→M/(m ·M) and is automatically an A-
module map. The quotient M/(m ·M) is understood to be performed in even and odd degree separately.
We are now ready to show that MF(Aq, ℓq) is an object-cloning deformation of MF(A, ℓ).

Proposition 20.44. The category MF(Aq, ℓq) is a loose object-cloning deformation of MF(A, ℓ) along
the map O : ObMF(Aq, ℓq)→ ObMF(A, ℓ).

Proof. We divide the proof into three steps: The first step is to show that MF(Aq, ℓq) satisfies the (curved)
A∞-axioms, merely regarding its hom spaces as Z/2Z-graded vector spaces instead of B-modules. The
second step is to investigate the B-linear structure on its hom spaces and the shape of the products. The
third step is to draw the conclusion that MF(Aq, ℓq) is indeed an object-cloning deformation of MF(A, ℓ).

For the first step, we check all curved A∞-relations for MF(Aq, ℓq) one after another. The first relation
reads

µ1(µ0
(M,δ)) = δ̃ ◦ (ℓq idM −δ

2)− (ℓq idM −δ
2) ◦ δ̃ = 0.

Note we have used that δ2 = −δ̃2 and ℓq is central. The second relation reads

µ1(µ1(f)) + (−1)‖f‖µ2(µ0, f) + µ2(f, µ0) = δ̃ ◦ (δ̃ ◦ f − (−1)|f |f ◦ δ̃)

− (−1)|f |+1(δ̃ ◦ f − (−1)|f |f ◦ δ̃) ◦ δ̃

+ (−1)‖f‖+|f |(ℓq idM −δ
2) ◦ f + f ◦ (ℓq idM −δ

2)

= −δ2 ◦ f + f ◦ δ2 − ℓqf + fℓq + δ2 ◦ f − f ◦ δ2 = 0.

We have used again that ℓq is central. The third relation is analogous to the classical case and reads

µ1(µ2(f, g)) + (−1)‖g‖µ2(µ1(f), g) + µ2(f, µ1(g)) = (−1)‖f‖|g|(δ̃ ◦ f ◦ g − (−1)|fg|f ◦ g ◦ δ̃)

+ (−1)|f ||g|+‖g‖(δ̃ ◦ f − (−1)|f |f ◦ δ̃) ◦ g

+ (−1)‖f‖‖g‖f ◦ (δ̃ ◦ g − (−1)|g|g ◦ δ̃) = 0.

The fourth relation is associativity and all other relations vanish.
For the second part of the proof, we give MF(Aq, ℓq) the structure of loose object-cloning deformation.

This entails providing for every two deformed matrix factorizations (M, δM ), (N, δN ) a linear Z/2Z-graded
isomorphism

ψ(M,δM ),(N,δN ) :
HomMF(Aq,ℓq)((M, δM ), (N, δN ))

m ·HomMF(Aq,ℓq)((M, δM ), (N, δN ))

∼
−→ HomMF(A,ℓ)(O(M, δM ), O(N, δN )).

The hom space HomMF(Aq,ℓq)((M, δM ), (N, δN )) merely consists of the direct sum of four hom spaces
from the category ProjAq. Thanks to Proposition 20.35, every of these four hom spaces, quotiented by
m, comes with a natural isomorphism to the corresponding hom space from the category ProjA. We
now construct the isomorphism ψ(M,δM ),(N,δN ) by simply combining these four isomorphisms on their
respective domains.

For the third part of the proof, we explain why MF(Aq, ℓq) is a loose object-cloning deformation of
MF(A, ℓ) via O. Indeed, composition in MF(Aq, ℓq) is merely given by matrix composition and we have
seen in Proposition 20.35 that it is compatible via ψ with composition in ProjA. Similarly, the differential
in MF(Aq, ℓq) is defined via commuting with δ, which reduces via ψ to commuting with the induced δ
in ProjA and hence to the differential of MF(A, ℓ). Finally, the curvature in MF(Aq, ℓq) is infinitesimal
and reduces to zero after dividing out m. This proves MF(Aq, ℓq) a loose object-cloning deformation of
MF(A, ℓ) via O and finishes the proof.

20.6 Deformed mirror functor

In this section, we construct our deformed mirror functor. The idea is to simply repeat the Cho-Hong-Lau
construction using the deformed category Cq as input instead of C. As we have seen in section 20.3, we

obtain a deformed Landau-Ginzburg model (Jac(Q̂L,Wq), ℓq). The target of the mirror functor is then the

deformed category of matrix factorizations MF(Jac(Q̂L,Wq), ℓq). We deploy notation and assumptions
from Convention 20.22. As in the classical case, we construct functors in the general case and the case
of slow growth in parallel.

The first step of this section is to define the deformed functors F̂q : Cq → MF(Jac(Q̂L,Wq), ℓq) and
Fq : Cq → MF(Jac(QL,Wq), ℓq) on object level. The second step is to define them on morphism level.
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Finally we check that F̂q and Fq satisfy the deformed A∞-functor relations and their leading terms are

the classical Cho-Hong-Lau functors F̂ and F .

An important assumption in this section is that Jac(Q̂L,Wq) be a deformation of Jac(Q̂L,W ), or
Jac(QL,Wq) be a deformation of Jac(QL,W ), in the sense of Definition 19.1. As such, these algebras
come with B-linear algebra isomorphisms

ϕ̂Jac : Jac(Q̂L,Wq)
∼
−→ (B⊗̂ Jac(Q̂L,W ), µJac,q),

ϕJac : Jac(Q
L,Wq)

∼
−→ (B⊗̂ Jac(QL,W ), µJac,q).

We fix these isomorphisms and will always view Jac(Q̂L,Wq) and Jac(QL,Wq) as deformations of

Jac(Q̂L,W ) and Jac(QL,W ).

Remark 20.45. By Remark 19.6, the isomorphisms ϕ̂Jac and ϕJac can be assumed to be unital and be

CQL
0 -bimodule morphisms. For instance, any vertex element Li ∈ Jac(Q̂L,Wq) is mapped to the vertex

Li ∈ Jac(Q̂L,W ), without getting deformed. We also have L2
i = Li in Jac(Q̂L,Wq) and Jac(QL,Wq),

since the same holds in Jac(Q̂L,W ) and Jac(QL,W ). The two module maps (−)Li : Jac(Q̂L,Wq) →

Jac(Q̂L,Wq) and (−)Li : Jac(QL,Wq) → Jac(QL,Wq) are therefore idempotents. We conclude that

Jac(Q̂L,Wq)Li and Jac(QL,Wq)Li are projectives.

We start with the explicit description of F̂q and Fq on object level.

F̂q(X) =




N⊕

i=1

Jac(Q̂L,Wq)Li ⊗HomC(Li, X), δ(m) =
∑

k≥1

(−1)‖m‖µkq (m, b, . . . , b)


 ,

Fq(X) =




N⊕

i=1

Jac(QL,Wq)Li ⊗HomC(Li, X), δ(m) =
∑

k≥1

(−1)‖m‖µkq (m, b, . . . , b)


 .

Note that each map δ is well-defined since Lq is of slow growth.

Lemma 20.46. ForX ∈ C the object F̂q(X) is indeed a deformed matrix factorization of (Jac(Q̂L,Wq), ℓq).
If Lq is of slow growth, then Fq(X) is a deformed matrix factorization of (Jac(QL,Wq), ℓq).

Proof. We merely check the case of F̂q(X). It is our task to show that ℓq idF̂q(X)−δ
2 is infinitesimal.

Calculating in Jac(Q̂L,Wq)⊗Hom(L, X), we find

ℓqm− δ
2(m) = ℓqm− δ

2(m)

= ℓqm+
∑

i,j≥0

µi+1
q (µj+1

q (m, b . . . , b), b, . . . , b)

= ℓqm−
∑

i,j,k≥0

µq(m, b, . . . , b︸ ︷︷ ︸
i

, µq(b, . . . , b︸ ︷︷ ︸
j

), b, . . . , b︸ ︷︷ ︸
k

)− (−1)‖m‖
∑

i≥0

µi+2
q (µ0

q,m, b, . . . , b)

= (−1)|m|
∑

i≥0

µi+2
q (µ0

q,m, b, . . . , b)

∈ m · (Jac(Q̂L,Wq)⊗Hom(L, X)).

Here we have used the curved A∞-relation for µq and
∑
l≥0 µ

l
q(b, . . . , b) = ℓq idLq

. We conclude that

ℓq idF̂q(X)−δ
2 is infinitesimal and F̂q(X) is a deformed matrix factorization. The analogous calculations

show that Fq(X) is a matrix factorization when Lq is of bounded growth.

Remark 20.47. Explicitly, the curvature of the object F̂q(X) is the endomorphism of F̂q(X) given by

µ0
MF,F̂q(X)

(m) = ℓqm− δ
2(m) = (−1)|m|

∑

l≥0

µl+2
q (µ0

q,m, b, . . . , b).

We now define the deformed CHL functor in analogy to the classical CHL functor:
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Definition 20.48. The deformed CHL functor F̂q is the mapping

F̂q : Cq −−−−−→ MF(Jac(Q̂L,Wq), ℓq),

X 7−−−−−→ F̂q(X),

F̂q(mk, . . . ,m1)(m) = (−1)(‖m1‖+...+‖mk‖)‖m‖+1
∑

l≥0

µk+l+1
q (mk, . . . ,m1,m, b, . . . , b)

for mi : Xi → Xi+1, m ∈ F̂q(X1).

In case Lq is of slow growth, the functor Fq : Cq → MF(Jac(QL,Wq), ℓq) is defined analogously.

Remark 20.49. Note that we put F 0
q = 0, as opposed to F 0

q :=
∑
l≥0 µ

l+1
q (−, b, . . . , b).

We shall now prove that F̂q and Fq are actually functors. We shall also show that their leading terms

are the classical functors F̂ and F . The categories MF(Jac(Q̂L,Wq), ℓq) and MF(Jac(QL,Wq), ℓq) are

only object-cloning deformations of MF(Jac(Q̂L,W ), ℓ) and MF(Jac(QL,W ), ℓ), so making the statement
on leading terms rigorous we need to provide an identification map on object level. In Definition 20.43,
we have already provided such identification maps

O : ObMF(Jac(Q̂L,Wq), ℓq)→ ObMF(Jac(Q̂L,W ), ℓ),

O : ObMF(Jac(QL,Wq), ℓq)→ ObMF(Jac(QL,W ), ℓ).

The map O sends F̂q(X) and Fq(X) to

O(F̂q(X)) =




N⊕

i=1

Jac(Q̂L,Wq)Li

m · Jac(Q̂L,Wq)Li
⊗HomC(Li, X), δ(m) =

∑

k≥1

(−1)‖m‖(π ⊗ id)(µkq (m, b, . . . , b))


 ,

O(Fq(X)) =




N⊕

i=1

Jac(QL,Wq)Li
m · Jac(QL,Wq)Li

⊗HomC(Li, X), δ(m) =
∑

k≥1

(−1)‖m‖(π ⊗ id)(µkq (m, b, . . . , b))


 .

Here π denotes the projection from the Jacobi algebra to its quotient by m. Meanwhile, the object F̂ (X)

is given by a sum of projectives of the form Jac(Q̂L,W )Li. As discussed in Remark 20.36, the difference
is entirely cosmetic and we shall naturally identify

O(F̂q(X))
∼
−→ F̂ (X),

O(Fq(X))
∼
−→ F (X).

(20.16)

A similar statement holds for the hom spaces. Regard a hom space between two image objects F̂q(X)

and F̂q(Y ), divide out m, and identify the quotient via the map ψ from section 20.4. According to

Remark 20.36, the result can further be identified naturally with the hom space in MF(Jac(Q̂L,W ), ℓ) or
MF(Jac(QL,W ), ℓ):

Hom(F̂q(X), F̂q(Y ))

m ·Hom(F̂q(X), F̂q(Y ))

ψ
−−−→

∼
Hom

(
F̂q(X)

m · F̂q(X)
,

F̂q(Y )

m · F̂q(Y )

)
∼
−→ Hom(F̂ (X), F̂ (Y )),

Hom(Fq(X), Fq(Y ))

m ·Hom(Fq(X), Fq(Y ))

ψ
−−−→

∼
Hom

(
Fq(X)

m · Fq(X)
,

Fq(Y )

m · Fq(Y )

)
∼
−→ Hom(F (X), F (Y )).

(20.17)

We claim that with respect to this identification, the leading terms of the two functors F̂q and Fq are the

classical Cho-Hong-Lau functors F̂ and F :

Theorem 20.50. Assume Convention 20.22 and that Jac(Q̂L,Wq) is a deformation of Jac(Q̂L,W ). Then

the mapping F̂q defines a functor of loose object-cloning A∞-deformations

F̂q : Cq → MF(Jac(Q̂L,Wq), ℓq).

The leading term of F̂q via the identifications (20.16) and (20.17) is the classical Cho-Hong-Lau functor

F̂ .
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Assume instead Convention 20.22, that Lq is of slow growth and that Jac(QL,Wq) is a deformation
of Jac(QL,W ). Then the mapping Fq defines a functor of loose object-cloning A∞-deformations

Fq : Cq → MF(Jac(QL,Wq), ℓq).

The leading term of Fq via the identifications (20.16) and (20.17) is the classical Cho-Hong-Lau functor
F .

Proof. First we check the A∞-functor relations, then we comment on the leading term. To start with,
for the functor relations it is our task to check that

∑

0≤j≤i≤k

(−1)‖m1‖+...+‖mj‖F̂q(mk, . . . , µq(mi, . . . ,mj+1), . . . ,m1)

= µ2
MF(F̂q(mk, . . . ,mi+1), F̂q(mi, . . . ,m1)) + µ1

MF(F̂q(mk, . . . ,m1)).

Checking these relations is similar to the classical case Lemma 20.20. The calculation does not use
explicitly that δ2 vanishes, therefore remains intact. However, due to the possible curvature of Cq a few
new terms appear on one side of the A∞-functor equation. We shall check these terms in more detail.

Assume there are k ≥ 1 input morphismsm1, . . . ,mk. Comparing with the calculation in Lemma 20.20,
the new terms on the left-hand side of the functor relation are

∑

0≤n≤k

(−1)‖m1‖+...+‖mn‖F̂q(mk, . . . ,mn+1, µ
0
q,mn, . . . ,m1)(m)

=
∑

0≤n≤k
0≤l

(−1)‖m1‖+...+‖mn‖+‖m‖(‖m1‖+...+‖mk‖+1)+1µk+l+1
q (mk, . . . ,mn+1, µ

0
q,mn, . . . ,m1,m, b, . . . , b).

There are no new terms on the right-hand side of the functor relation. When applying the curved
A∞-relation as in the proof of Lemma 20.20, the terms on the left-hand side disappear and the terms
µq(mk, . . . ,m1,m, b, . . . , µ

≥0
q (b, . . . , b), . . . , b) come in, which still vanish since

∑
µq(b, . . . , b) = ℓq idLq

.
This proves the functor relations for k ≥ 1.

Also for k = 0 the functor relation is still satisfied:

F̂ 1
q (µ

0
X)(m) = (−1)‖m‖+1

∑

l≥0

µl+2
q (µ0

q,m, b, . . . , b) = µ0
F̂q(X)

.

The computations for Fq are analogous. This finishes the checks of the functor relations.

Finally, let us now comment on the leading terms of F̂q and Fq. Indeed, every functor component F̂ kq
or F kq is constructed via the deformed products of Cq.

We need to check the Jac(Q̂L,Wq)-linear map F̂ kq (mk, . . . ,m1) : F̂q(X1)→ F̂q(Xk+1). Up to terms of

m · F̂q(Xk+1), this map is equal to

∑

l≥0

µk+l+1(mk, . . . ,m1,−, b, . . . , b) : F̂q(X1)→ F̂q(Xk+1).

Passing along ψ gives

∑

l≥0

µk+l+1(mk, . . . ,m1,−, b, . . . , b) : F̂q(X1)/(m · F̂q(X1))→ F̂q(Xk+1)/(m · F̂q(Xk+1)).

This map is not the same as F̂ k(mk, . . . ,m1) yet. But now identify F̂q(X1)/(m · F̂q(X1))
∼
−→ F̂ (X1) and

similarly for Xk+1. Recalling Remark 20.36, the induced map F̂ (X1)→ F̂ (Xk+1) is merely given by the

composition F̂ (X1)→ F̂q(X1)/(m · F̂q(X1))→ F̂q(Xk+1)/(m · F̂q(Xk+1))→ F̂ (Xk+1), yielding the map

∑

l≥0

µk+l+1(mk, . . . ,mk,−, b, . . . , b) : F̂ (X1)→ F̂ (Xk+1).

This is precisely F̂ k(mk, . . . ,m1). We have shown that the leading term of F̂q is F̂ . The same argument
holds for Fq. This finishes the proof.
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21 Deformed mirror symmetry

In this section, we collect all preliminary results and prove deformed mirror symmetry, our main theorem.
The procedure is as follows: We start with a geometrically consistent dimer Q under Convention 18.1. By
section 18, the deformed category of zigzag curves HLq ⊆ HTwGtlq Q is deformed cyclic. By section 20,
we obtain an algebra Jacq Q̌ plus central element ℓq ∈ Jacq Q̌ together with a functor

Fq : Gtlq Q→ mf(Jacq Q̌, ℓq).

By section 19, this algebra Jacq Q̌ is a deformation of Jac Q̌. The necessary requirement for this last step is
that Q̌ is cancellation consistent and of bounded type. Finally, we interpret the category mf(Jacq Q̌, ℓq) as
a deformation of the classical mirror mf(Jac Q̌, ℓ), and the morphism Fq as a deformation of the classical
A∞ mirror quasi-isomorphism

F : GtlQ→ mf(Jac Q̌, ℓ).

In particular, we conclude that Fq itself is a quasi-isomorphism.

21.1 Mirror symmetry by Cho-Hong-Lau

In this section, we recollect how a gentle algebra as specific instance of the Cho-Hong-Lau construction
yields mirror symmetry for punctured surfaces. The first step in this section is to provide some details
on this specific instance. Second, we read off the specific properties for the Cho-Hong-Lau construc-
tion. Third, we realize that the resulting mirror functor indeed recovers mirror symmetry for punctured
surfaces. This section is an integrated summary of [26, Chapter 10].

Remark 21.1. Cho, Hong and Lau depart from a folklore version of wrapped Fukaya category, where
the complete set of products is unclear. We have opted in the present paper to use the very rigorous
description of HTwGtlQ and HTwGtlq Q from Paper II. In particular, we restrict to the case that Q
is geometrically consistent or a standard sphere dimer.

Our starting point is a dimer Q whose zigzag paths are equipped with a specific choice of spin
structure, which we have codified in Convention 18.1. We shall start describing the specific instance of
the Cho-Hong-Lau construction needed for mirror symmetry. The first step is to choose C = HTwGtlQ.
The subcategory of reference objects, denoted L in section 20, is the category of zigzag paths HL ⊆
HTwGtlQ.

As a second step, we describe the CHL basis that needs to be chosen. The right choice of basis elements
{Xe} for HomHL(L1, L2) is the collection of all transversal intersection points of L1 and L2 which are
odd as morphisms L1 → L2. In other words, every single transversal intersection points between two
arbitrary zigzag curves appears as basis element for precisely one hom space, namely the one in which it
is odd. The set of transversal intersection points between zigzag curves in Q is precisely the same as the
set of arcs Q1. We shall therefore fix notation as follows:

Definition 21.2. For every arc a ∈ Q1, we denote by Xa the odd morphism in L which is located at the
midpoint of a. Similarly, we denote by Ya the even morphism in L which is located at the midpoint of a.

Remark 21.3. Visually speaking, we have the correspondence

odd morphisms
(transversal only)

←→ arrows a ∈ Q1 ←→ even morphisms
(transversal only)

With this in mind, the specific instance of the Cho-Hong-Lau construction which yields mirror sym-
metry for punctured surfaces is described as follows:

• The category C is the derived category HTwGtlQ of the gentle algebra GtlQ.

• The subcategory L ⊆ C is the subcategory HL ⊆ HTwGtlQ of zigzag paths.

• The CHL basis consists of all odd cohomology basis elements Xe between zigzag paths, all even
cohomology basis elements Ye between zigzag paths, and the co-identity elements id∗Li

.

• The odd pairing 〈−,−〉 on HL is defined by enforcing the pairing identities (20.1). Explicitly, one
sets 〈−,−〉 to zero on all pairs of basis elements except

〈Xe, Yf 〉 = δef , 〈id∗Li
, idLj

〉 = δij .
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Gadget General Specific

Category C HTwGtlQ

Reference objects L HL = {L1, . . . , LN}

Cohomology basis {Xe, Ye, idL, id
∗
L} intersection points

Quiver QL Q̌

Superpotential W 〈µ(b, . . . , b), b〉 W = Q̌+
cyc − Q̌

−
cyc

Relations Re 〈µ(b, . . . , b), Xe〉 r+a − r
−
a

Landau-Ginzburg model (Jac(QL,W ), ℓ) (Jac Q̌, ℓ)

Matrix factorization F (a) (M, δ) (Jac Q̌)h(a) (Jac Q̌)t(a)
a

ā

Table 21.1: For every gadget involved in the Cho-Hong-Lau construction, this overview exhibits the
general definition and its specific shape in the case of HL ⊆ HTwGtlQ.

L1

L2

a

in Q in Q̌

a
L1

L2

Figure 21.2: This picture depicts the correspondence between odd intersections in Q and arrows in Q̌.
The odd basis element Xa : L1 → L2, given by the intersection of L̃1 and L̃2 located at the midpoint of
the arc a, corresponds to an arrow L1 → L2 in the dual dimer Q̌.

Application of the Cho-Hong-Lau construction to HL ⊆ HTwGtlQ yields precisely the dual dimer
Q̌, which we have recalled in section 17.5:

Lemma 21.4. The CHL quiver of HL ⊆ HTwGtlQ is the quiver QL = Q̌.

Proof. By general definition, the vertices of the quiver QL are the reference objects Li ∈ L and the arrows
from Li to Lj are given by the index set Eij . For the specific case of L ⊆ HTwGtlQ, the reference
objects are the zigzag paths of Q. Since zigzag paths of Q are in correspondence with vertices of Q̌, this
identifies the vertices of QL and Q̌. For given vertices i, j, the set of arrows Eij from i to j is equal to
the set of odd transversal intersection points Li → Lj . Every odd transversal intersection is located at
the midpoint of an arc a ∈ Q1. The corresponding arc a ∈ Q̌1 runs from i to j as well, as illustrated in
Figure 21.2. We conclude that QL = Q̌.

Lemma 21.5 ([26, Lemma 10.13]). Application of the Cho-Hong-Lau construction to L ⊆ HTwGtlQ
yields the familiar superpotential

W =
∑

ak...a1
clockwise

(ak . . . a1)cyc −
∑

ak...a1
counterclockwise

(ak . . . a1)cyc ∈ (CQ̌)≥3.

In particular, application yields the familiar relations Ra = r+a − r−a and the familiar Jacobi algebra
Jac(QL,W ) = Jac Q̌.

Proof. It is our task to determine the superpotential W . After that, the conclusion on the relations Ra
and the Jacobi algebra is immediate.

The general superpotential is given by W = 〈µ(b, . . . , b), b〉. Specifically for HL ⊆ HTwGtlQ this
description boils down to calculating the products

µHTwGtlQ(Xek , . . . , Xe1)
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e

e1

ek

..
.

(a) The two disks contributing to ∂eW
(b) Checkerboard coloring

Figure 21.3: One can put a checkerboard coloring on the area of the dimer Q. The checkerboard coloring
makes it easy to check that there are only two disks which contribute to ∂eW .

The result of such a product is a linear combination of the even basis elements Ye and possibly an identity.
It is our task to extract the coefficient of every Ye in the product. We claim that this coefficient is precisely

〈µHTwGtlQ(Xek , . . . , Xe1), Xe〉 =





+1 if ek . . . e1e is a clockwise polygon in Q̌

−1 if ek . . . e1e is a counterclockwise polygon in Q̌

0 else

. (21.1)

To compute the product, we use our explicit description of the minimal model HL, see section 18.3.
Recall that section 18.3 actually describes the deformed version HLq of HL. The A∞-structure HL

is obtained from the deformed A∞-structure of HLq by extracting the leading terms of every product.
Spelling this out, the higher products in HL are simply determined by only those CR, ID, DS and DW
disks that do not cover any punctures.

With this in mind, we are ready to calculate the products (21.1). Let D be a (CR, ID, DS or DW)
disk contributing to the product. Note that all input morphisms Xei are odd and the output is not an
identity, so D is necessarily a CR disk.

We claim that the disk D precisely bounds the interior of an (elementary) polygon, as depicted in
Figure 21.3a. Indeed, the zigzag curves of Q split D into pieces of two types: the first type comprises
an interior of a polygon of Q, and the second type comprises a polygonal neighborhood of a puncture
bounded by neighboring zigzag curves. Two pieces of D bounding each other are of opposite type. An
example of this checkerboard coloring is depicted in Figure 21.3b. Since the specific disk D is supposed
to cover no puncture, it only consists of pieces of the first type. In fact, there it consists of only one such
piece, since any second bordering piece would be of the second type. This shows that D precisely fits a
polygon of Q.

Let us conclude the product formula (21.1). If ek . . . e1e is a clockwise polygon in Q̌, then the same
path forms a clockwise polygon in Q. As we have just seen, there is a single disk D contributing the
product, and we conclude

µ(Xek , . . . , Xe1) = Ye.

The sign is positive because all inputs of D are odd and run clockwise with the disk, the output is odd,
and no # signs appear on the zigzag curve segments. If ek . . . e1e is a counterclockwise polygon in Q̌,
then the path e1 . . . eke is a counterclockwise polygon in Q. As we have just seen, there is a single disk
D contributing to the product, and we conclude

µ(Xek , . . . , Xe1) = −Ye.

The sign is negative because D has k odd inputs running counterclockwise with D, while there is also a
#-sign in every of the k + 1 corners of the polygon.

If ek . . . e1e is a path in Q̌ that is not a polygon, there is no disk D with inputs Xe1 , . . . , Xek and
output Ye at all. In summary, we have shown (21.1). Ultimately, the superpotential is given by

W = 〈µHTwGtlQ(b, . . . , b), b〉

=
∑

ek,...,e1,e

ek . . . e1e〈µ(Xek , . . . , Xe1), Ye〉

=
∑

ak...a1
clockwise

(ak . . . a1)cyc −
∑

ak...a1
counterclockwise

(ak . . . a1)cyc.

This finishes the calculation of the superpotential W . The final statement on Ra and Jac(QL,W ) is now
immediate: By Lemma 20.16, we have Ra = ∂aW which simplifies to Ra = r+a − r

−
a . In particular, we

have Jac(QL,W ) = Jac Q̌. This finishes the proof.
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Remark 21.6. As preparation for the proof of Lemma 21.7, let us fix some terminology regarding the
identity location of a zigzag path. Let Li ∈ L be one of the zigzag paths of Q. The identity location of Li
is a certain arc a0. This arc borders precisely two polygons in Q. One of the two is clockwise, the other
counterclockwise. The special polygon Pi of Li is the one lying on the left or right side of the arc a0,
depending on whether where Li turns left or right at the head of a0, respectively. If Q has no punctures
of valence 2, this condition can also be expressed as follows: P is the polygon which has the identity arc
a0 and its successor within Li as part of the boundary.

In case Pi is clockwise, we denote by p1, . . . , pl be the boundary arcs of Pi, in clockwise order and
ending with the identity arc pl = a0. In case Pi is counterclockwise, let p1, . . . , pl be the boundary arcs of
Pi, in clockwise order and starting with p1 = a0. We may call p1, . . . , pl the special polygon sequence
of Li. Note that pl . . . p1 is only a path in Q if Pi is clockwise, while it is always a path in Q̌.

Lemma 21.7 ([26, Lemma 10.21]). Application of the Cho-Hong-Lau construction to L ⊆ HTwGtlQ
yields the familiar potential ℓ =

∑
ℓv ∈ Jac Q̌. Altogether, application yields the familiar Landau-

Ginzburg model (Jac Q̌, ℓ).

Proof. The general potential ℓ =
∑
i∈QL

0
ℓi is given by

ℓi = 〈µ(b, . . . , b), idLi
〉.

Specifically for L ⊆ HTwGtlQ this description boils down to extracting the identities from the products

µHTwGtlQ(Xek , . . . , Xe1).

Denote by p1, . . . , pl the special polygon sequence of Li, defined in Remark 21.6. We claim the
coefficient of idLi

in the product µ(Xek , . . . , Xe1) is precisely

〈µHTwGtlQ(Xek , . . . , Xe1), id
∗
Li
〉 =

{
+1 if ek . . . e1 = pl . . . p1

0 else.
(21.2)

As in the proof of Lemma 21.5, we use our explicit description of the minimal model HL. Again, the only
disks that count are those not covering any punctures. Let D be a (CR, ID, DS or DW) disk contributing
to the product (21.2). Note that all input morphisms Xei are odd and the output is an identity, so D is
necessarily a CR or ID disk. Similar to the case of the products presented in the proof of Lemma 21.5,
we conclude that D precisely bounds a certain polygon P . More precisely, the length l of the polygon is
equal to the number k of inputs of D, and the boundary arcs of P are equal to e1, . . . , ek in this order.

Let us analyze the properties of D. By assumption, the output of D is the identity of Li. This identity
is therefore located on one of the boundary arcs of P . Since every single odd intersection located at arcs
of the polygon is used as input of D, the identity location necessarily of Li necessarily lies infinitesimally
close to one of the inputs of D. We conclude that D is necessarily an ID disk.

We claim that P is the special polygon Pi of Li. To show this, assume P is clockwise. By the definition
of ID disks, the input lying close to the output precedes the output. In other words, the identity arc is
ek and the zigzag path Li is the one turning right at the head of ek. Assume now P is counterclockwise.
By definition of ID disks, the input lying close to the output succeeds the output. In other words, the
identity arc is e1 and the zigzag path Li is the one turning left at the head of e1. In both cases we
conclude that P is precisely the special polygon Pi.

We are ready to conclude the product formula (21.2). In case e1, . . . , ek = p1, . . . , pk within Q is the
boundary of the special polygon Pi, then there is a single disk contributing to the product as we have
just seen. We conclude

〈µ(Xek , . . . Xe1), id
∗
Li
〉 = +1.

The sign is always positive. Indeed, if D lies in a clockwise polygon, then all of its k inputs are odd but
clockwise with D and no # signs appear on the boundary of D. If D lies in a counterclockwise polygon,
then all of its k inputs are odd and counterclockwise, while there is also a #-sign in every of the k corners
of the polygon

In case e1, . . . , ek is not p1, . . . , pk, then there is no disk contributing to the product as we have just
seen. We conclude

〈µ(Xek , . . . , Xe1), id
∗
Li
〉 = 0.



21.1. Mirror symmetry by Cho-Hong-Lau 331

Ultimately, the potential reads

ℓ =
∑

i∈Q̌0

〈µHTwGtlQ(b, . . . , b), id
∗
Li
〉

=
∑

i∈Q̌0

ℓi ∈ Jac Q̌.

Here for every i the letter ℓi denotes an arbitrary boundary cycle of a polygon starting at vertex i ∈ Q̌0.
This finishes the proof.

Lemma 21.8 ([26, Proposition 10.30]). Application of the Cho-Hong-Lau construction to L ⊆ HTwGtlQ
yields the familiar matrix factorizations

F (a) = a : (Jac Q̌)h(a) (Jac Q̌)t(a) : ā for a ∈ ObGtlQ = Q1.

Proof. By definition, the matrix factorization F (a) is given by (M, δ) with module given by

M =
⊕

Li∈Q̌0

(Jac Q̌)Li ⊗HomHTwGtlQ(Li, a).

and differential given by

δ(m) = (−1)‖m‖
∑

µHTwGtlQµ(m, b, . . . , b).

Let us evaluate the module. As seen earlier, there are precisely two indices i, j whose hom space
HomHTwGtlQ(Li, a) is non-empty. These indices correspond to the two zigzag paths that cross the
arc a. Of course, the two zigzag paths leaving a might actually be equal, in which case we set i = j. If
we set i to be the zigzag path with the even intersection and j the zigzag path with the odd intersection,
we have i = h(a) and j = t(a). This already gives the shape

(M, δ) = ∗ : (Jac Q̌)h(a) (Jac Q̌)t(a) : ∗ .

It remains to evaluate the differential δ. Denote the even intersection point by p ∈ HomHTwGtlQ(Lh(a), a)
and the odd intersection point by q ∈ HomHTwGtlQ(Lt(a), a). As we have seen earlier, the two products
µHTwGtlQ(p, b, . . . , b) and µHTwGtlQ(q, b, . . . , b) are computed by MT and MD disks, respectively. For
the present non-deformed case, this description boils down to the equations

δ(h(a)⊗ p) = (−1)‖p‖µHTwGtlQ(p, b, . . . , b) = (−1)1+1a⊗ q,

δ(t(a)⊗ q) = (−1)‖q‖µHTwGtlQ(q, b, . . . , b) = +ā⊗ p.

This shows that the module map (Jac Q̌)h(a) → (Jac Q̌)t(a) is given by left multiplication with a and
the module map (Jac Q̌)t(a)→ (Jac Q̌)h(a) is given by left multiplication with ā.

We are now ready to grasp the mirror functor associated with the specific case of HL ⊆ HTwGtlQ.
Indeed, we have computed the specific Landau-Ginzburg model and the mirror objects. The functor itself
is not a quasi-equivalence, but it becomes one if we restrict to domain GtlQ ⊆ HTwGtlQ and codomain
mf(Jac Q̌, ℓ) ⊆ MF(Jac Q̌, ℓ).

Corollary 21.9 ([26, Proposition 10.32]). If Q̌ is zigzag consistent, the CHL functor F : GtlQ →
mf(Jac Q̌, ℓ) is a quasi-isomorphism.

Proof. On the level of objects, F maps an arc a ∈ Q1 to the matrix factorization F (a) which is bijective
on the level of objects. On the level of hom spaces, we are forced to cheat a little and believe the following
fact: Let L1, . . . , LN+1 be a sequence of N+1 ≥ 1 zigzag paths and let a, b ∈ Q1 be arcs. Let h1, . . . , hN be
odd morphisms with hi ∈ HomHL(Li, Li+1) not containing co-identities, let m ∈ HomHTwGtlQ(LN+1, a)
and α ∈ HomHTwGtlQ(a, b) be further morphisms. Then we shall assume without proof that the product

µHTwGtlQ(α,m, hN , . . . , h1)

is computed by smooth immersed disks with Abouzaid sign. A good illustration of these disks can be
found in [26, Figure 20]. This illustration makes it easy to check that F 1 sends an angle α ∈ HomGtlQ(a, b)
to its associated morphism of matrix factorizations

±

(
0 −opp1

opp2 0

)
or ±

(
opp2 0

0 opp1

)
,
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depending on whether α is odd or even. It was shown in [18] that these morphisms of matrix factorizations
provide a basis for HHommf(Jac Q̌,ℓ)(F (a), F (b)). This proves the functor F a quasi-isomorphism.

The original mirror functor for punctured surfaces [18] was defined in a nonconstructive and nonunique
way. Its properties known precisely are its values on objects and the first component F 1. All higher
components F≥2 are defined nonconstructively. In contrast, the CHL functor F : GtlQ → mf(Jac Q̌, ℓ)
has explicitly defined higher components, at least if one counts the involved higher products of HTwGtlQ
as explicit. The CHL functor should therefore be viewed as a modern constructive incarnation of the
original mirror functor.

Remark 21.10. Cho, Hong and Lau use a different convention for Fukaya categories: In their convention,
a disk D contributing to a product µ(hN , . . . , h1) is supposed to hit the intersection points h1, . . . , hN in
counterclockwise order. We have decided to stick with the original definition of gentle algebras and let
products be given by counting disks hitting the intersection points in clockwise order.

Correspondingly, the conventions for the dual dimer Q̌ also differ: In their convention, the dual dimer
Q̌ is obtained from Q by flipping over the clockwise faces. In our convention, the dual dimer Q̌ is
obtained by flipping over the counterclockwise faces instead. The results differ by a flip of orientation
and an inversion of the arrows.

21.2 Midpoint polygons

In this section, we introduce an auxiliary tool for the description of the deformed superpotential and
deformed potential in section 21.4 and 21.5. The deformed Cho-Hong-Lau construction namely expresses
superpotential and potential in term of the products on HLq which are in turn enumerated in terms of
CR, ID, DS and DW disks. In the present section, we overhaul this description and provide one single
type of disks, which we call midpoint polygons.

Definition 21.11. A midpoint polygon is an immersion of the standard polygon D : PN → |Q| with
N ≥ 1, such that

• The boundary of PN is mapped to (nonempty) zigzag curve segments.

• The corners are convex and lie on intersections points of zigzag curves.

• The corners point into the interior of a polygon.

The map D itself is taken only up to reparametrization. The corners h1, . . . , hN of D lie on intersection
points of zigzag curves, in other words on the midpoints of arcs a1, . . . , aN ∈ Q1. We refer to the sequence
of arcs as the arc sequence of D. The midpoint polygon starts at arc a1 and ends at arc aN . It starts
at the left/right side of a1 if the interior of D at a1 lies at the left/right of the arc a1 in the arc’s
natural orientation. It ends at the left/right side of aN if the interior of D lies at the left/right of
the arc aN in the arc’s natural orientation. A arc crossing of D is the datum of a single (indexed)
arc crossed by one of the zigzag segments of D, not counting the corner arcs. Arc crossings are always
supposed to come with the datum of their location on the boundary of D.

Midpoint polygons are our most general container format for enumerating products in HLq. Midpoint
polygons with specific properties or specific additional data can be used to enumerate specific products.
By requiring that the corners point into the interior of a polygon, we have incarnated the fact that we
only regard disks with odd inputs.

Definition 21.12. Let D be a midpoint polygon with sides lengths n1, . . . , nk. Then the sign of D is
|D| =

∑
(ni − 1)/2 ∈ Z/2Z. The deformation parameter Punc(D) ∈ CJQ0K is the product of the

punctures covered by D, counting multiplicities. Let e1, . . . , ek be the arc sequence of D. Then the path
recording of D is the path Arcs(D) = ek . . . e1 ∈ CQ̌.

A sample midpoint polygon is depicted in Figure 21.4a.

21.3 Cyclicity and slow growth

In this section, we check that HLq is deformed cyclic and of slow growth. These two properties are
technical requirements for the deformed Cho-Hong-Lau construction according to Theorem 20.50. We
check the cyclicity property directly in terms of midpoint polygons. By contrast, the slow growth property
makes reference also to products between arcs and zigzag paths in HTwGtlq Q and must therefore be
dealt with from scratch. We do not prove slow growth with respect to the entire category, but restrict to
arcs and zigzag paths.



21.3. Cyclicity and slow growth 333

e1
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(a) Midpoint polygon

ni = 3
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(b) Lengths and signs of zigzag segments

Figure 21.4: These pictures illustrate midpoint polygons and how we measure the lengths of their bound-
ary segments. In the midpoint polygon on the left, the intersection points are located at arcs e1, e2,
e3 of Q. To this midpoint polygon D, we assign the path recording Arcs(D) = e3e2e1 and the sign
|D| = 3 · (7− 1)/2 = 1 ∈ Z/2Z.

Lemma 21.13. The A∞-deformation HLq is deformed cyclic on odd sequences containing no co-
identities.

Proof. Rotating a midpoint polygon contributing to 〈µHLq
(Xek−1

, . . . , Xe1), Yek〉 gives a midpoint polygon
contributing to 〈µHLq

(Xek , . . . , Xe2), Xe1〉. Their Abouzaid signs and deformation parameters agree. We
conclude that both pairings agree, which finishes the proof.

Let us now check the slow growth requirement property. The requirement is slightly problematic in
that we are supposed to evaluate products of the form µHTwGtlq Q(mk, . . . ,m1, b, . . . , b). Here m1, . . . ,mk

are morphisms between arbitrary objects of HTwGtlq Q and we do not have these products under
control. However, for our purposes it suffices to construct the mirror functor merely on the subcategory
Gtlq Q ⊆ HTwGtlq Q. Inspecting the construction of the functor Fq and the proof of Lemma 20.46
and Theorem 20.50, we conclude that for constructing the functor Fq : Gtlq Q→ MF(Jac(QL,Wq), ℓq) it
suffices to check the slow growth property of Definition 20.23 only for morphisms with m1 : L→ a1 and
mi : ai−1 → ai with L ∈ Lq and a1, . . . , ak ∈ Gtlq Q. We record this as follows:

Lemma 21.14. Let k ≥ 0 and a1, . . . , ak ∈ Gtlq Q. Let L ∈ Lq and m1 : L→ a1 and mi : ai−1 → ai for
i = 2, . . . , k. Then for every n ∈ N there exists an l0 ∈ N such that

∀l ≥ l0 : µk+lHTwGtlq Q
(mk, . . . ,m1, b, . . . , b) ∈ m

nHom(L, ak).

Proof. The intuition is that the number of b insertions is a lower bound for the size of a disk contributing
to the product. In other words, the number of punctures covered by a disk is at least as large as
the number of b insertions, up to a multiplicative constant. If one is willing to assume that the product
µHTwGtlq Q(mk, . . . ,m1, b, . . . , b) is computed by counting disks (which we have not shown), this argument
should suffice.

Otherwise, the property can be checked rigorously as follows: According to the minimal model calcu-
lation procedure detailed in Paper II, the product can be computed by summing over Kadeishvili trees.
In Paper II, we also provide a description of the applicable codifferential hq for hom spaces between
zigzag paths and for hom spaces from zigzag paths to arcs.

The idea is to measure subtrees containing purely b inputs separately. Thanks to the dedicated subdisk
construction in Paper II, we see that result components of h-trees only consisting of b inputs immediately
lie in order ≥ n as soon as they have a certain amount of K ∈ N inputs. The h-trees consisting only of b
inputs only yield β (A) result components of order ≥ 1. Apart from the fact that this already establishes
the claim in case k = 0, this observation is important for what follows.

If m is any morphism between zigzag paths or arcs, then we call the maximum length of angles
contained in m simply the length of m. Let I be the sum of the lengths of m1, . . . ,mk. Let F the
maximum length of a full turn around a puncture in Q.

Pick a result component of the product µ(mk, . . . ,m1, b, . . . , b) of order < n. Let T be the Kadeishvili
π-tree which the result component is derived from. We call a node of T pure if its subtree purely consumes
b inputs (instead of mi) and if it is maximal with this property T (in that its parent does not have this
property). We view a subtree at a pure node of T as an indecomposable unit. We call all nodes of T
typical that are non-leaf and not contained in a pure subtree.

Regard a typical node N ∈ T . We claim the result at N has length at most one less than its total
inputs including outer δ insertions and excluding inner δ inputs and direct b inputs. Indeed, the result
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component at the node is a morphism from a zigzag path to an arc by construction. When m is an H
or R basis morphism from a zigzag path to an arc, it can be checked easily that the following products
vanish:

hqµ
2
AddGtlq Q(m,α3/α4), hqµ

2
AddGtlq Q(m,β(A)), πqµ

2
AddGtlq Q(m,α3/α4), πqµ

2
AddGtlq Q(m,β(A)).

Therefore the node N is necessarily decorated with hqµ
≥3
AddGtlq Q

or πqµ
≥3
AddGtlq Q

. A first-out or final-out

disk definitely reduces the length of the inputs. This shows the claim.
According to the claim just proven, the total length of the output of a typical node N ∈ T is at most

I + nF − s, where s is the number of typical nodes in the subtree at N . This bounds the number of
typical nodes in T by I+nF . The subtree at every pure node has at most K nodes by assumption. Since
there are at most n pure nodes, the tree T in total has at most I + nF + nK nodes. This bounds the
total number of nodes in T .

Regard a typical node N . Among the child nodes of N , there are at most k typical children and at
most n pure children. Moreover, N may have at most n direct outer δ insertions. This gives rise to
already 2n+ k inputs of the hqµAddGtlq Q at N . Every string of direct b and δ insertions between these
2n+k inputs is limited to at most F items, since otherwise no discrete immersed disk can be made. This
means that N consumes at most (2n+ k + 1)F many direct b inputs. This number is bounded.

The total number of direct b inputs at typical nodes is therefore bounded by (2n+ k + 1)F (I + nF ).
The total number of b inputs used for pure trees is at most nK. Therefore the total number of b inputs
in the tree T is bounded by (2n+ k + 1)F (I + nF ) + nK.

We have shown that the product µHTwGtlq Q(mk, . . . ,m1, b, . . . , b) can only have nonzero result com-
ponents of order < n if the number of b insertions is bounded. In consequence, once the number of
b insertions exceeds this bound, all result components are necessarily of order ≥ n. This finishes the
proof.

21.4 Deformed superpotential

In this section, we start applying the deformed Cho-Hong-Lau construction to HLq ⊆ HTwGtlq Q. The
result is a deformed superpotential Wq ∈ CQ̌JQ0K, which we describe explicitly in terms of midpoint poly-
gons. After that, we describe the resulting deformed Jacobi algebra. In order to obtain a mirror functor
according to Theorem 20.50, we are required to show that the deformed Jacobi algebra is a deformation
of the classical Jacobi algebra. In the present section, we invoke the flatness result Theorem 19.77 to
show that this is the case. Recall that we work under Convention 18.1.

Lemma 21.15. The deformed superpotential Wq ∈ CQ̌JQ0K can be expressed as

Wq =
∑

D clockwise
midpoint polygon

(−1)|D| Punc(D)Arcs(D) −
∑

D counterclockwise
midpoint polygon

(−1)|D| Punc(D)Arcs(D).

Proof. Let us digest the statement. It is our task to evaluate the products µHLq
(Xek−1

, . . . , Xe1) and
extract the coefficient of Yek . By our explicit description of the products from section 18.3, these products
boil down to counting CR, ID, DS and DW disks. Since ID disks have identity outputs and DS and DW
disks are already irrelevant, we are left with the task of counting CR disks.

Let D be a CR disk with inputs Xe1 , . . . , Xek−1
and output Yek . Since D is CR and its inputs contain

no co-identities, all of the zigzag segments of D are actually non-empty. This immediately renders D a
midpoint polygon. More precisely, we associate with D the midpoint polygon given by the one with the
same shape as D and arc sequence e1, . . . , ek. Note that this sets up a bijection

{CR disks with inputs Xe1 , . . . , Xek−1
and output Yek}

←→ {midpoint polygons with arc sequence e1, . . . , ek}.

We can therefore write

〈µ(Xek−1
, . . . , Xe1), Yek〉 =

∑

CR disks D
with inputs Xe1

,...,Xek−1

and output Yek

(−1)Abou(D) Punc(D)

=
∑

midpoint polygons D
with arc sequence e1,...,ek

(−1)Abou(D) Punc(D).
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Here we have already anticipated that the Abouzaid sign of a CR disk D with inputs Xe1 , . . . , Xek−1
and

output Yek is equal to the Abouzaid sign attached to its associated midpoint polygon by Definition 21.12.
In the remainder of the proof, we check that these two signs are indeed equal. Regard one of the

CR disks. Its boundary cuts a number of angles of clockwise and counterclockwise polygons of Q. Let
n1, . . . , nk denote the lengths of the zigzag segments, as depicted in Figure 21.4b. The # signs alternate
along the zigzag segments and the individual lengths ni are all odd. At every corner Xei , the two
neighboring signs are equal and in fact determined by whether D is clockwise or counterclockwise.

If D is clockwise, the sign at every corner is 0 ∈ Z/2Z and it alternates ni times until the next corner.
This gives a sign contribution of (ni − 1)/2. The total sign becomes

k∑

i=1

ni − 1

2
∈ Z/2Z. (21.3)

Since all zigzag curves lie clockwise with D, this is already the Abouzaid sign of D. If D is counter-
clockwise, the sign at every corner is 1 ∈ Z/2Z. In comparison with (21.3), we incur a sign flip for all
n1 + . . . + nk angles that L runs through. Since every ni is odd, this changes the sign by k ∈ Z/2Z.
Since all zigzag paths are counterclockwise relative to D, the Abouzaid sign also incurs an increase by
k − 1 ∈ Z/2Z. This makes the sign precisely opposite to (21.3) and finishes the proof.

The deformed Cho-Hong-Lau construction proceeds by defining the deformed Jacobi algebra. The
construction comes in two variants, depending on whether the category of reference objects L is of slow
growth with respect to C or not. In the case of HLq ⊆ HTwGtlq Q, we have seen in Lemma 21.14 that
HLq is of slow growth, at least in a way sufficient for the Cho-Hong-Lau construction. We can therefore
apply the slow growth variant of the deformed Cho-Hong-Lau construction and obtain a deformed Jacobi
algebra Jac(Q̌,Wq) according to Definition 20.25. We shall abbreviate this algebra by Jacq Q̌:

Definition 21.16. We denote the deformed Jacobi algebra by

Jacq Q̌ = Jac(Q̌,Wq) =
CQ̌JQ0K

(∂eWq)e∈Q̌1

.

Remark 21.17. Recall that the closure refers to the m-adic topology on CQ̌JQ0K.

Let us now explain that the deformed Jacobi algebra Jacq Q̌ is a deformation of the classical Jacobi
algebra Jac Q̌ in the sense of Definition 19.1. We have investigated this question in detail during section 19
in the general context of superpotential deformations of CY3 Jacobi algebras. We record the specific case
of Jacq Q̌ as follows:

Corollary 21.18. If Q̌ is cancellation consistent and of bounded type, then Jacq Q̌ is a deformation of
Jac Q̌.

Proof. The goal is to invoke Theorem 19.77. We have to check two conditions. First, Wq and therefore
also W ′ =Wq−W is indeed cyclic as shown in Lemma 21.13 or equivalently 21.15. Second, Wq indeed lies

in CQ̌JQ0K instead of only ĈQ̌JQ0K, since HLq is of slow growth by Lemma 21.14. Finally, we conclude
that Theorem 19.77 applies and Jacq Q̌ is a deformation of Jac Q̌. This finishes the proof.

Remark 21.19. The dual dimer Q̌M of the standard sphere dimer QM is cancellation consistent. The
dimer Q̌M is also of bounded type because its two polygons have the same length, namely M . Therefore
Corollary 21.18 particularly applies to the case Q = QM .

21.5 Deformed potential

In this section, we compute the deformed potential. More precisely, we evaluate the definition of the
deformed potential from the deformed Cho-Hong-Lau construction in the case of HLq. The result is an
element ℓq ∈ Q̌JQ0K. We describe this element in terms of midpoint polygons. Recall that we work under
Convention 18.1.

Recall that the deformed Cho-Hong-Lau construction in general requires us to compute a deformed
potential ℓq ∈ B⊗̂Q

L, given by counting identity outputs of products of the form µ(Xek , . . . , Xe1). More
precisely, the definition reads

ℓq =
∑

i∈QL

0

〈µ(b, . . . , b), id∗i 〉.
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L
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e3

a0 = e1

(a) First type

L

a0 = e3

e1

e2

(b) Second type

a0 Le1

e2

e3

(c) Third type

Figure 21.5: These pictures illustrate L-polygons of all three types. According to the definition, the
midpoint polygon underlying an L-polygon of the first type starts on the left side of a0. In the first
picture, we have depicted this by writing e1 = a0. The midpoint polygon underlying an L-polygon of
the second type ends on the right side of a0. We have depicted the ending in the second picture as
e3 = a0. The midpoint polygon underlying an L-polygon of the third type requires that the zigzag
segment between the first and the last arc is L and comes with the datum of a crossing with a0. In the
third picture, we have indicated this crossing by a thick cross.

It is our task to evaluate this deformed potential for the specific CHL pair HLq ⊆ HTwGtlq Q. In this
specific case, the products µHLq

(b, . . . , b) are given by an enumeration of CR, ID, DS and DW disks. As
announced, DS and DW disks are irrelevant. In fact, the enumeration boils down to counting midpoint
polygons of specific type.

Regard a midpoint polygon. Its boundary crosses many arcs. Indeed, it consists of segments of zigzag
curves, which run between midpoints of arcs. The longer the segments, the more arcs are crossed. A
midpoint polygon may or may not cross arcs that are identity arcs a0 of zigzag paths. If a midpoint
polygon starts at, ends at or crosses an arc that is the identity arc a0 of a zigzag path, then the midpoint
polygon together with the datum of this crossing determines an identity contribution to the product
of the intersection points associated with the polygon’s corners. To make this precise, we set up the
following terminology:

Definition 21.20. Let L be a zigzag path in Q with identity location a0. An L-polygon is one of the
following:

• If L turns left at the head of a0: a midpoint polygon starting at the left side of a0.

• If L turns right at the head of a0: a midpoint polygon ending on the right side of a0.

• A midpoint polygon D whose segment between the last and first arc is an L segment, together with
the datum of a crossing of this L-segment with the arc a0 ∈ L.

We have illustrated L-polygons in Figure 21.5. With this in mind, we can express the potential
ℓq ∈ CQ̌JQ0K in terms of L-polygons:

Lemma 21.21. The deformed potential ℓq =
∑
i∈Q̌0

ℓq,i ∈ CQ̌JQ0K can be expressed as

ℓq,i =
∑

Li-polygons D

(−1)|D| Punc(D)Arcs(D).

Proof. It is our task to evaluate identity terms in the products µHLq
(b, . . . , b) and match them with

L-polygons of the three types.
According to the description recapitulated in section 18.3, the products µHLq

(b, . . . , b) are computed
by enumerating CR and ID disks. More precisely, a counterclockwise CR disk with inputs Xe1 , . . . , Xek

and output idLi
corresponds precisely to an Li-polygon with arc sequence e1, . . . , ek of the first type.

A clockwise CR disk with inputs Xe1 , . . . , Xek and output idLi
corresponds precisely to an Li-polygon

with arc sequence e1, . . . , ek of the second type. An ID disk with inputs Xe1 , . . . , Xek and output idLi

corresponds precisely to an Li-polygon with arc sequence e1, . . . , ek of the third type. This already
matches all identity terms in the products µHLq

(b, . . . , b) with L-polygons.
It remains to check the signs. More precisely, we have to check that the Abouzaid sign of a CR or

ID disk contributing to µHLq
(b, . . . , b) is equal to the sign |D| ∈ Z/2Z of its associated midpoint polygon

D. To see that both are equal, we distinguish whether D is clockwise or counterclockwise. If the disk is
clockwise, its Abouzaid sign is simply the sum of the # signs along D, which by the proof of Lemma 21.15
is equal to |D|. If D is counterclockwise and has k corners, its Abouzaid sign is the sum of the # signs



21.6. Deformed mirror objects 337

b1

...

... b2

... −

... = b2∂b2Wq

Figure 21.6: The difference between two choices of ℓq is a relation.

plus k, which by the proof of Lemma 21.15 is still |D|. This shows that the Abouzaid sign of a disk is
equal to the sign |D| of the associated midpoint polygon D. This proves the desired formula for ℓq,i.

The deformed potential ℓq ∈ CQ̌JQ0K depends on the choice of identity locations. However, we claim
that it becomes independent of this choice when we pass to the deformed Jacobi algebra Jacq Q̌:

Lemma 21.22. The deformed potential ℓq ∈ Jacq Q̌ = CQ̌JQ0K/(∂aWq) is independent of the choice of
identity locations.

Proof. The idea is to describe the difference of two possible choices explicitly in terms of the relations
∂aWq. Denote by L1, . . . , LN the zigzag paths of Q. Recall that the element ℓq is the sum of elements ℓq,i
over all 1 ≤ i ≤ N . The identity location on a certain zigzag path Li only impacts the element ℓq,i and no
other summands. It therefore suffices to study only a single element ℓq,i. It also suffices to assume that
the two choices of identity locations to be studied are arcs which are neighbors along Li. The strategy is
to enumerate Li-polygons with respect to the two choices.

Let us denote the two neighboring arcs are b1 and b2, such that h(b1) = t(b2) and Li turns left at the
head of b1 and right at the head of b2. The situation is depicted in Figure 21.6. We claim that Li-polygons
with respect to a0 = b1 and Li-polygons with respect to a0 = b2 are almost the same. Indeed, the typical
Li-polygon with respect to a0 = b1 has a very long L̃i-segment and many crossings with b1. Since b2 is
the neighbor of b1, all these Li-polygons can be interpreted alternatively as Li-polygons with respect to
a0 = b2. The only difference lies in the corner cases.

To be very precise, the only Li-polygons with respect to a0 = b1 which cannot be interpreted as Li-
polygons with respect to a0 = b2 are those which start at b1 and end at b2, with just the shortest possible
L̃i-segment in between, consisting of a single angle. The only Li-polygons with respect to a0 = b2 which
cannot be interpreted as Li-polygons with respect to a0 = b1 are those which end at b2. Let us denote

by ℓ
(b1)
q,i and ℓ

(b2)
q,i the two potentials in CQ̌JQ0K obtained from the two choices of identity locations. In

these terms, we conclude

ℓ
(b2)
q,i − ℓ

(b1)
q,i =

∑

clockwise
midpoint polygons D

ending at b2

Punc(D)Arcs(D)−
∑

counterclockwise
midpoint polygons D

ending at b2

Punc(D)Arcs(D)

= b2∂b2Wq.

This shows that the difference of ℓ
(b1)
q,i and ℓ

(b2)
q,i is a relation in the deformed Jacobi algebra. In conclusion,

the potential is independent of the choice of identity locations.

21.6 Deformed mirror objects

In this section, we compute the deformed mirror objects. More precisely, we evaluate the definition of
the deformed mirror functor for the arc objects a ∈ Gtlq Q ⊆ HTwGtlq Q. We describe these objects
Fq(a) ∈ MF(Jacq Q̌, ℓq) in terms of midpoint polygons. Recall that we work under Convention 18.1. As
we have seen in section 21.1, the mirror functor F : HTwGtlQ → MF(Jac Q̌, ℓ) sends the arcs a ∈ Q1

to very explicit matrix factorizations F (a). We provide in this section an explicit computation of the
deformed matrix factorizations Fq(a), which is in fact likewise explicit:

arc a ∈ ObGtlQ = Q1 (Jac Q̌)h(a) (Jac Q̌)t(a)
a

ā

F
7−−−−→

arc a ∈ ObGtlq Q = Q1 (Jacq Q̌)h(a) (Jac Q̌)t(a)
a

āq

Fq

7−−−−−→
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To compute the object Fq(X) for X ∈ Cq, we are in general required to find for every Li ∈ L the hom
space HomCq

(Li, X). We also need to compute the products µq(m, b, . . . , b) where m ∈ HomCq
(Li, X) is

a morphism from one of the reference objects to X.
For the specific instance HLq ⊆ HTwGtlq Q of the deformed Cho-Hong-Lau construction, we have

described the hom spaces and the relevant products already section 18.4. Computing the mirror objects
Fq(a) for a ∈ Gtlq Q now boils down to evaluating the products µHTwGtlq Q(m, b, . . . , b), where m ∈
HomHTwGtlq Q(L, a) is an even or odd intersection point between L and a. Recall that the products for
even m are easy to express, while the products for odd m are computed by MD disks. We shall simplify
the description of these products here in terms of midpoint polygons.

Definition 21.23. Let a ∈ Q1 be an arc. Define the deformed complement of a as

āq =
∑

clockwise
midpoint polygons D

ending at a

Punc(D) ∂aArcs(D) ∈ Jacq Q̌.

Corollary 21.24. The deformed mirror objects are the deformed matrix factorizations given by

Fq(a) = (Jacq Q̌)h(a) (Jacq Q̌)t(a)
a

āq
.

Proof. It is our task to evaluate the products µHTwGtlq Q(m, b, . . . , b). Here m is an even or odd inter-
section point between a zigzag path and an arc. We shall regard the two cases separately and explain
the relevant products.

First of all, fix an arc a ∈ Q1. Let L be the zigzag path turning left at the head of a and L′ the zigzag
path turning right at the head of a. Let m : L→ a be the odd intersection point and m∗ : L′ → a the even
intersection point. Regard the odd morphism Xa : L → L′ of zigzag paths. According to Lemma 18.20,
the product µHTwGtlq Q(m

∗, Xa) is equal to −m and it is the only nonvanishing term in µ(m∗, b, . . . , b).
We conclude

δ(m∗) = (−1)‖m
∗‖
∑

l≥0

µl+1
HTwGtlq Q

(m∗, b, . . . , b) = am.

Regard now the odd intersection point m : L → a and regard a sequence Xe1 , . . . , XeN of odd basis
morphisms with Xei : Li → Li+1 and LN+1 = L. According to Lemma 18.20, we can describe the
product µHTwGtlq Q(m,Xek , . . . , Xe1) by means of MD disks with output m∗:

µHTwGtlq Q(m,Xek , . . . , Xe1) =
∑

D MD disk
with inputs Xe1 ,...,Xek

,m

Punc(D)m∗.

Unraveling the definition, an MD disk with inputs Xe1 , . . . , Xek ,m is the same as a midpoint polygon
with arc sequence e1, . . . , ek, a. We can therefore write

δ(m) = (−1)‖m‖
∑

l≥0

µl+1
HTwGtlq Q

(m, b, . . . , b) =
∑

clockwise
midpoint polygons D

ending at a

Punc(D) ∂aArcs(D)m∗ = āqm
∗.

In summary, we have computed the map δ both on the odd hom space Hom(L, a) and the even hom
space Hom(L′, a). This finishes the proof.

Remark 21.25. The mirror objects Fq(a) ∈ mf(Jacq Q̌, ℓq) have curvature. Explicitly, their curvature
reads

µ0
MF,Fq(a)

(m) = ℓqm− δ
2(m) = (−1)|m|

∑

l≥0

µl+2
HTwGtlq Q

(µ0
HTwGtlq Q,m, b, . . . , b).

In Figure 21.7, we have depicted how to interpret this curvature geometrically.

21.7 Main result

In this section, we state our main result. It consists of a wide range of deformed mirror equivalences for
punctured surfaces. The A-side is the deformed gentle algebra Gtlq Q and the B-side is the deformed
category of matrix factorizations mf(Jacq Q̌, ℓq). When dividing out the maximal ideal, one recovers the
classical mirror symmetry originally described in [18]. More specifically, one recovers the classical mirror
functor of Cho, Hong and Lau defined in [26, Chapter 10].
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Figure 21.7: The picture depicts the products µ(µ0
q,m, b, . . . , b), which determine the curvature of Fq(a).

The products can be interpreted as smooth immersed disks between odd intersections of zigzag curves,
with a small embayment given by intermediately tracing an arc. The longer a disk, the more arcs can be
embayed and the more it contributes to curvature of mirror objects. The less punctures a disk is supposed
to cover, the shorter it is, which shows nicely why the classical mirror objects F (a) are curvature-free.

Remark 21.26. For sake of completeness, we provide here a brief overview of the setting. The starting
point is a dimer Q which is geometrically consistent or a standard sphere dimer QM with M ≥ 3. We
assume that the dual dimer Q̌ is zigzag consistent and of bounded type. The bounded type requirement
for dimers is detailed in section 19.10. For instance, a cancellation consistent dimer on a torus or without
triangles is automatically of bounded type.

Our mirror functor is a specific instance of the deformed Cho-Hong-Lau construction of section 20.
The input datum for this specific instance is the deformed category of zigzag paths Lq and its minimal
model HLq ⊆ HTwGtlq Q. In section 21.4, we have started evaluating the deformed Cho-Hong-Lau
construction for this specific instance and obtained an explicit description of the deformed superpotential
Wq and deformed Jacobi algebra Jacq Q̌. In section 21.5, we have obtained an explicit description of the
deformed potential ℓq. The general deformed Cho-Hong-Lau construction gives rise to a functor

Fq : Gtlq Q→ MF(Jacq Q̌, ℓq).

In section 21.6, we have computed explicitly the mirror objects Fq(a) for a ∈ Q̌1. We denote by
mf(Jacq Q̌, ℓq) the subcategory consisting of these objects:

mf(Jacq Q̌, ℓq) = {Fq(a)}a∈ Q̌1
⊆ MF(Jacq Q̌, ℓq).

Remark 21.27. In our main result, we wish to present a mirror functor of A∞-deformations. At the
present point, both the Jacobi algebra Jacq Q̌ and the category MF(Jacq Q̌, ℓq) however do not come with
a canonical identification as completed tensor product of Jac Q̌ and MF(Jac Q̌, ℓ) with B. We amend this
by the following procedure:

• The algebra Jacq Q̌ is a deformation of Jac Q̌ in the sense that there exists a deformation µJac,q of
the product of Jac Q̌ and a CJQ0K-linear algebra isomorphism

ϕJac,q : Jacq Q̌
∼
−→ (CJQ0K⊗̂ Jac Q̌, µJac,q).

This identification is not canonical and depends on choice. For sake of the construction, we shall
fix one identification and view Jacq Q̌ as (CJQ0K⊗̂ Jac Q̌, µJac,q).

• The category MF(Jacq Q̌, ℓq) is by construction only a loose object-cloning deformation of the
category MF(Jac Q̌, ℓ). This means that its objects are not the same as the objects of MF(Jac Q̌, ℓ)
and its hom spaces cannot be naturally identified with the completed tensor product of the hom
spaces of MF(Jac Q̌, ℓ). Instead, such identification depends on choice. We have elaborated on this
phenomenon in section 20.6. We amend this by regarding the subcategory mf(Jacq Q̌, ℓq) instead
of MF(Jacq Q̌, ℓq).

• The category mf(Jacq Q̌, ℓq) is by construction only a loose deformation of mf(Jac Q̌, ℓ). This entails
that the objects Fq(a) are in correspondence with the objects F (a), but the hom spaces have not
been identified. We amend this by noting that the specific projective modules contained in Fq(a)
are of the form (Jacq Q̌)Li. These projective modules come with natural isomorphisms

HomJacq Q̌
((Jacq Q̌)Li, (Jacq Q̌)Lj)

∼
−→ Li(Jacq Q̌)Lj

∼
−→ B⊗̂Li(Jac Q̌)Lj .



340 21. Deformed mirror symmetry

We can therefore identify the hom spaces of mf(Jacq Q̌, ℓq) as

Hommf(Jacq Q̌,ℓq)
(Fq(a), Fq(b))

∼
−→ B⊗̂Hommf(Jac Q̌,ℓ)(F (a), F (b)). (21.4)

This way, we can view mf(Jacq Q̌, ℓq) as an actual A∞-deformation of mf(Jac Q̌, ℓ).

• The mirror functor Fq : Gtlq Q → MF(Jacq Q̌, ℓq) is by construction only a functor of loose A∞-
deformations. This means that it does not have a naturally defined leading term. However, once
we interpret mf(Jacq Q̌, ℓq) as an actual A∞-deformation of mf(Jac Q̌, ℓ), the functor Fq : Gtlq Q→
mf(Jacq Q̌, ℓq) becomes a functor of actual A∞ -deformations and does have a well-defined leading
term.

In Theorem 21.28 we present the main result. It is a specific instance of Theorem 20.50 and yields a
wide range of deformed mirror equivalences. In the statement of the result, we have already applied the
reinterpretation of mf(Jacq Q̌, ℓq) as actual A∞-deformation of mf(Jac Q̌, ℓ), according to Remark 21.27.

Theorem 21.28. Let Q be a geometrically consistent dimer or standard sphere dimer QM with M ≥ 3.
Assume that the dual dimer Q̌ is zigzag consistent and of bounded type. Denote by (Jacq Q̌, ℓq) the
deformed Landau-Ginzburg model associated with Q. Then:

1. The algebra Jacq Q̌ is a deformation of Jac Q̌.

2. The category mf(Jacq Q̌, ℓq) is an A∞-deformation of mf(Jac Q̌, ℓ).

3. The deformed Cho-Hong-Lau functor provides a quasi-isomorphism of deformed A∞-categories

Fq : Gtlq Q
∼

−−−−−→ mf(Jacq Q̌, ℓq).

4. The leading term of Fq is the classical Cho-Hong-Lau functor F : GtlQ→ mf(Jac Q̌, ℓ).

Proof. This is essentially a restatement of Theorem 20.50, applied to the case of HLq ⊆ HTwGtlq Q.
Although we have already worked with the functor Fq in section 21.6, we shall recapitulate here why the
conditions of Theorem 20.50 are satisfied. After that, we comment on the first, second, fourth and third
claimed statement, in this order.

Let us explain that all requirements of Theorem 20.50 are satisfied. To start with, we briefly trace
the requirements according to Convention 20.22. The category HLq is strictly unital with the same
identities as HL. It comes with a non-degenerate odd pairing and a choice of CHL basis. As shown in
Lemma 21.13, the deformed A∞-structure is cyclic on the odd part. As we explained in section 21.3, we
restrict the construction of the deformed Cho-Hong-Lau functor to the domain Gtlq Q. We have seen in
section 18 that the hom spaces between zigzag paths and arcs are finite-dimensional. This establishes all
requirements of Convention 20.22, adapted to the restriction of the functor to Gtlq Q.

The other requirements of Theorem 20.50 are that HLq is of slow growth and that Jacq Q̌ is a
deformation of Jac Q̌. In Lemma 21.14 we have indeed verified that HLq is of slow growth, at least to an
extent sufficient for application of the deformed Cho-Hong-Lau construction when restricting the functor
to Gtlq Q. In Corollary 21.18, we have verified that Jacq Q̌ is a deformation of Jac Q̌. This already proves
the first claimed statement.

We see that all requirements of Theorem 20.50 are satisfied, adapted to the restriction of the functor
to Gtlq Q. Invoke the slow growth version of Theorem 20.50 and conclude that the large category
MF(Jacq Q̌, ℓq) is a loose object-cloning deformation of MF(Jac Q̌, ℓ). Furthermore, the deformed Cho-
Hong-Lau functor defines a functor of loose object-cloning deformations

Fq : Gtlq Q→ MF(Jacq Q̌, ℓq).

Note that the functor is restricted to Gtlq Q ⊆ HTwGtlq Q because we have only partially verified that
HLq is of slow growth. We now explain the second, third and fourth claimed statements of the theorem.

For the second statement of the theorem, we explain why mf(Jacq Q̌, ℓq) is a deformation of mf(Jac Q̌, ℓ).
Indeed, the subcategory mf(Jacq Q̌, ℓq) consists of the objects Fq(a). As such, it is a loose object-cloning
deformation of mf(Jac Q̌, ℓ) via the object-cloning map

O : Ob(mf(Jacq Q̌, ℓq)) −−−−−→ Ob(mf(Jac Q̌, ℓ)),

Fq(a) 7−−−−−→ F (a).

Since the object-cloning map O is in fact a bijection, we can call mf(Jacq Q̌, ℓq) simply a loose deformation
of mf(JacQ, ℓ) instead of a loose object-cloning deformation. Upon the further identification (21.4), we
can naturally view mf(Jacq Q̌, ℓq) as an actual deformation of mf(Jac Q̌, ℓ).
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Figure H.1: The 3-punctured sphere and its mirror

For the fourth statement, regard the deformed Cho-Hong-Lau functor Fq provided to us by Theo-
rem 20.50. We merely restrict the codomain of Fq to the subcategory mf(Jacq Q, ℓq) ⊆ MF(Jacq Q, ℓq):

Fq : Gtlq Q→ mf(Jacq Q̌, ℓq).

This restriction is a bijection on object level. In Theorem 20.50, we have investigated its leading term.
By definition, the leading term entails dividing out m on hom spaces on both sides. We have shown the
leading term is F when the following subsequent identification is applied:

HomMF(Jacq Q̌,ℓq)
(Fq(a), Fq(b))

(Q0) ·HomMF(Jacq Q̌,ℓq)
(Fq(a), Fq(b))

∼
−→ HomMF(Jac Q̌,ℓ)(F (a), F (b)), (21.5)

Under the present interpretation of mf(Jacq Q̌, ℓq) as actual deformation of mf(Jac Q̌, ℓ), we can go a
step further. Indeed, passing Fq to the quotient by m and subsequently applying (21.5) is equivalent
to interpreting mf(Jacq Q̌, ℓq) as actual deformation of mf(Jac Q̌, ℓ) by means of (21.4) and taking the
leading term of the functor of actual A∞-deformations Fq : Gtlq Q→ mf(Jacq Q̌, ℓq). This shows that F
is the leading term of the functor Fq of actual deformed A∞-categories. This proves the fourth statement.

For the third statement, recall from Corollary 21.9 that the classical Cho-Hong-Lau functor F :
GtlQ → mf(JacQ, ℓ) is a quasi-isomorphism. Since F is the leading term of Fq, the functor Fq is then
also a quasi-isomorphism in the sense of Paper II. This finishes the proof.

Remark 21.29. The classical mirror functor F : HTwGtlQ → MF(Jac Q̌, ℓ) is not quasi-fully-faithful
on the entire category HTwGtlQ. For instance, a narrow loop around a puncture is mapped to the
zero object, because the loop does not intersect any zigzag curves. While we have formally not verified
the slow growth condition for HLq with respect to the entire category HTwGtlq Q, suppose we obtain
a deformed Cho-Hong-Lau functor Fq : HTwGtlq Q→ MF(Jacq Q̌, ℓq). This functor would then not be
quasi-fully-faithful either, in the sense of Paper II.

Remark 21.30. We can build another functor F̃q : HTwGtlq Q → HTwMF(Jacq Q̌, ℓq) by extending
the deformed Cho-Hong-Lau functor Fq : Gtlq Q → MF(Jacq Q̌, ℓq) to the deformed twisted completion

and passing to the deformed minimal model, in the sense of Paper II. In contrast to Fq, the functor F̃q
is quasi-fully-faithful.

H Examples

In this section, we present two examples of deformed mirror symmetry. We consider the 3-punctured
sphere and a 4-punctured torus. In both cases we determine the deformed Jacobi algebra Jacq Q̌ and the
deformed potential ℓq explicitly.

H.1 3-punctured sphere

In this section, we exhibit mirror symmetry and deformed mirror symmetry for the 3-punctured sphere.
We start by explaining the dimer involved together with its zigzag curve. Then we turn to the Jacobi
algebra and the mirror objects. We explain all midpoint polygons and compute the deformed Landau-
Ginzburg model and the deformed matrix factorizations.
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Figure H.2: Six midpoint polygons contributing to Wq

The dimer and its mirror The sphere we regard is depicted in Figure H.1a. The figures depicts the
three punctures qa, qb, qc, the three arcs a, b, c and the zigzag curve. The zigzag curve, as an object of
the Fukaya category, is also known as the Seidel Lagrangian.

The mirror dimer Q̌ is a 1-punctured torus depicted in Figure H.1c. The superpotential W ∈ CQ̌
equalsW = (abc)cyc−(cba)cyc. The Jacobi algebra is Jac Q̌ = C〈a, b, c〉/(ab−ba, ca−ac, bc−cb) = C[a, b, c].
The potential is ℓ = abc ∈ Jac Q̌. The mirror objects are the matrix factorizations

Ma = Jac Q̌ Jac Q̌
a

bc
, Mb = Jac Q̌ Jac Q̌

b

ca
, Mc = Jac Q̌ Jac Q̌

c

ab
.

The deformed superpotential The deformed gentle algebra Gtlq Q has three deformation parameters
qa, qb and qc. To compute the deformed superpotential, we have to enumerate all midpoint polygons in
Q. There are in total 12 midpoint polygons contributing to Wq, depicted in Figure H.2 and H.3. They
fall into the following four groups: Three of them are 3-gons on the front side and have arc sequences
abc, bca and cab (sign +1). They are depicted in Figure H.2a. Three of them are 3-gons on the rear side
and have arc sequences cba, bac and acb (sign −1). They are depicted in Figure H.2b. Three of them
are monogons mainly lying on the front side with arc sequences a, b, c (sign +1, q-parameters qa, qb, qc,
respectively). They are depicted in Figure H.3a, H.3b and H.3c. Three of them are monogons mainly
lying on the rear side with arc sequences a, b, c (sign −1, q-parameters qa, qb, qc, respectively). They are
depicted in Figure H.3d, H.3e and H.3f. We conclude that the deformed terms cancel each other and we
are left with

Wq =W = (abc)cyc − (cba)cyc ∈ C〈a, b, c〉.

The deformed Jacobi algebra is Jacq Q̌ = C[a, b, c]Jqa, qb, qcK.

The deformed potential The expression for the deformed potential depends on the choice of identity
location for the zigzag path L. Let us choose the identity to lie on the copy of a which turns right at
head and tail of a. This choice is depicted in Figure H.4. The deformed potential ℓq is determined by
enumerating L-polygons. The specific choice of a0 gives the following four L-polygons. We list these
polygons here and recapitulate in technical terms from which part of the minimal model HLq they come
from:

• One L-polygon is a 3-gon lying on the front side and ending at the right side of a. The underlying
midpoint polygon is the same as the one depicted in Figure H.2a. Its contribution to ℓq is abc. In
terms of HLq, it concerns an ID disk.

• One L-polygon is a monogon mainly lying on the front side and ending at the right side of a. The
underlying midpoint polygon is the same as the one depicted in Figure H.3a. Its contribution to ℓq
is −qaa. In terms of HLq, it concerns an ID disk.

• One L-polygon is a monogon mainly lying on the rear side and having a crossing with a0. The
underlying midpoint polygon is the same as the one depicted in Figure H.3e. Its contribution to ℓq
is −qbb. In terms of HLq, it concerns a CR disk.

• One L-polygon is a monogon mainly lying on the front side and having a crossing with a0. The
underlying midpoint polygon is the same as the one depicted in Figure H.3c. Its contribution to ℓq
is −qcc. In terms of HLq, it concerns a CR disk.
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Figure H.3: Six canceling midpoint polygons contributing to Wq
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Figure H.4: Identity location a0

The total deformed potential amounts to

ℓq = abc− qaa− qbb− qcc ∈ Jacq Q̌.

We immediately see that ℓq ∈ Jacq Q̌ = C[a, b, c]Jqa, qb, qcK is still central.

The deformed mirror objects The deformed mirror objects Fq(a), Fq(b), Fq(c) can be determined
by enumerating clockwise midpoint polygons ending at a, b and c, respectively. For the arc a, there are
two such midpoint polygons. The first is a 3-gon and has ∂aArcs(D) = bc, sign +1 and no q-parameters.
The second is a monogon and has ∂aArcs(D) = 1, sign −1 and q-parameter qa. Both add up to a
contribution of bc− qa. The deformed mirror object is therefore

Fq(a) = Jacq Q̌ Jacq Q̌
a

bc− qa
.

Similar considerations hold for Fq(b) and Fq(c). The deformed mirror objects are listed in Table H.5.
Note that none of the “factors” actually factor to ℓq. Instead, the failure to factor ℓq is infinitesimal and
serves as curvature of the deformed matrix factorizations.

H.2 4-punctured torus

In this section, we exhibit mirror symmetry and deformed mirror symmetry for a 4-punctured torus dimer.
We start by explaining the dimer involved together with its zigzag curve. Then we turn to the Jacobi
algebra and the mirror objects. We explain all midpoint polygons and compute the deformed Landau-
Ginzburg model and the deformed matrix factorizations. Centrality of the deformed Landau-Ginzburg
potential obtained is not obvious, and we provide a manual check.
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Object Description Curvature

Fq(a) Jacq Q̌ Jacq Q̌
a

bc− qa
−qbb− qcc

Fq(b) Jacq Q̌ Jacq Q̌
b

ca− qb
−qaa− qcc

Fq(c) Jacq Q̌ Jacq Q̌
c

ab− qc
−qaa− qbb

Table H.5: The deformed mirror objects

The dimer and its mirror The torus dimer we regard is depicted in Figure H.6a. The dimer has four
punctures q1, q2, q3, q4, eight arcs a1, . . . , a4 and b1, . . . , b4 and four elementary polygons. It has four
zigzag paths and is geometrically consistent. The associated zigzag curves are depicted in Figure H.6c.
The figure also depicts a few sample midpoint polygons of different sizes (without indication which is the
first and the last midpoint).

The mirror dimer Q̌ is a 4-punctured torus as well, depicted in Figure H.6b. In the numbering of the
figure, the correspondence between the punctures 1, 2, 3, 4 of Q̌ and zigzag paths of Q is as follows:

1 ∈ Q̌0 ←→ L1 = . . . , b1, a2, b4, a3, . . .

2 ∈ Q̌0 ←→ L2 = . . . , b2, a3, b3, a2, . . .

3 ∈ Q̌0 ←→ L3 = . . . , a1, b2, a4, b3, . . .

4 ∈ Q̌0 ←→ L4 = . . . , a1, b4, a4, b1, . . .

For instance, the two associated zigzag curves L̃1 and L̃2 are depicted in Figure H.8a. The superpotential
W ∈ CQ̌ equals

W = (b1a4b2a2)cyc + (b4a1b3a3)cyc − (b2a3b1a1)cyc − (b3a2b4a4)cyc.

The Jacobi algebra Jac Q̌ = CQ̌/(∂aW )a∈Q1 is a noncommutative quiver algebra with relations. The
dimer Q̌ is zigzag consistent and therefore Jac Q̌ is CY3. Its 12 relations read

a4b2a2 = a1b2a3,

a2b1a4 = a3b1a1,

. . . = . . . .

The potential ℓ ∈ Jac Q̌ reads
ℓ = (b1a4b2a2)cyc.

The mirror objects are the eight matrix factorizations

Ma1 = (Jac Q̌)L3 (Jac Q̌)L4

a1

b3a3b4
, Ma2 = (Jac Q̌)L2 (Jac Q̌)L1

a2

b1a4b2
,

Ma3 = (Jac Q̌)L2 (Jac Q̌)L1

a1

b4a1b3
, Ma4 = (Jac Q̌)L3 (Jac Q̌)L4

a4

b2a2b1
,

Mb1 = (Jac Q̌)L1 (Jac Q̌)L3

b1

a4b2a2
, Mb2 = (Jac Q̌)L4 (Jac Q̌)L2

b2

a2b1a4
,

Mb3 = (Jac Q̌)L4 (Jac Q̌)L2

b3

a3b4a1
, Mb4 = (Jac Q̌)L1 (Jac Q̌)L3

b4

a1b3a3
.

The deformed superpotential The deformed gentle algebra Gtlq Q has four deformation parameters
q1, q2, q3, q4. To compute the deformed superpotential Wq, we have to enumerate all midpoint polygons in
Q. As can be seen from Figure H.6c, there are infinitely many midpoint polygons. All midpoint polygons
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(b) Its mirror Q̌ (c) A few midpoint polygons

Figure H.6: Illustration of 4-punctured torus

are rectangular, in particular for the sign |D| we have |D| = 0 ∈ Z/2Z for every midpoint polygon D.
The midpoint polygons can be classified into 64 different types according to their arc sequence, or 16 if
one takes arc sequences up to cyclic permutation. All 16 types are listed in Table H.7.

The midpoint polygons of any type are a family indexed by natural numbers k, l ∈ N, standing for
the width and height of the polygon. More precisely, define side lengths of a midpoint polygon to be the
number of angles cut by the zigzag segments. In these terms, every family comes with a minimally small
midpoint polygon and all larger midpoint polygons in the family are derived from this minimal version
by extending side lengths by multiples of 4. For every of the 16 types, we have indicated in Table H.7 the
q-parameters of the midpoint polygon of size (k, l). This way, we have efficiently enumerated all midpoint
polygons and their properties in 16 types and two parameters.

We use the following abbreviations:

q = q1q2q3q4, q14 = q1q4, q23 = q2q3.

With this in mind, the deformed superpotential can be expressed as a sum over sixteen terms, eight of
which actually cancel out due to symmetry of the 4-punctured torus:

Wq =
∑

8 clockwise
types

∑

k,l≥0

Punc(D)Arcs(D)cyc −
∑

8 counterclockwise
types

∑

k,l≥0

Punc(D)Arcs(D)cyc

=


∑

k,l≥0

ql23q
k
14q

2kl −
∑

k,l≥0

q(q14q)
l(q23q)

kq2kl


 (b2a2b1a4)cyc

+


∑

k,l≥0

q(q23q)
l(q14q)

kq2kl −
∑

k,l≥0

ql14q
k
23q

2kl


 (b3a2b4a4)cyc

+


∑

k,l≥0

ql23q
k
14q

2kl −
∑

k,l≥0

q(q14q)
l(q23q)

kq2kl


 (b3a3b4a1)cyc

+


∑

k,l≥0

q(q23q)
l(q14q)

kq2kl −
∑

k,l≥0

ql14q
k
23q

2kl


 (b2a3b1a1)cyc.

The deformed Jacobi algebra is Jacq Q̌ = CQ̌Jq1, q2, q3, q4K/(∂aWq)a∈Q̌1
. Here (∂aWq)a∈Q̌1

denotes

the closure of the ideal generated by the derivatives ∂aWq ∈ CQ̌Jq1, q2, q3, q4K with respect to the
(q1, q2, q3, q4)-adic topology.

The deformed potential The deformed potential ℓq as element of CQ̌Jq1, q2, q3, q4K is the sum of four
potentials, one for each of the four zigzag paths:

ℓq = ℓq,1 + ℓq,2 + ℓq,3 + ℓq,4.

The expression for the deformed potential ℓq,i as element of CQ̌Jq1, q2, q3, q4K depends on the choice of
identity location for the zigzag path Li. For instance, let us choose the identity of the zigzag path
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Orientation q-parameter Punc(D) arc sequence Arcs(D)

clockwise ql23q
k
14q

2kl b1a4b2a2

clockwise q3q
l
23(q14q)

kq2kl b4a1b2a2

clockwise q4(q23q)
lqk14q

2kl b1a1b3a2

clockwise q(q23q)
l(q14q)

kq2kl b4a4b3a2

clockwise ql23q
k
14q

2kl b4a1b3a3

clockwise q2q
l
23(q14q)

kq2kl b1a4b3a3

clockwise q1(q23q)
lqk14q

2kl b4a4b2a3

clockwise q(q23q)
l(q14q)

kq2kl b1a1b2a3

counterclockwise ql14q
k
23q

2kl b2a3b1a1

counterclockwise q4q
l
14(q23q)

kq2kl b3a2b1a1

counterclockwise q3(q14q)
lqk23q

2kl b2a2b4a1

counterclockwise q(q14q)
l(q23q)

kq2kl b3a3b4a1

counterclockwise ql14q
k
23q

2kl b3a2b4a4

counterclockwise q1q
l
14(q23q)

kq2kl b2a3b4a4

counterclockwise q2(q14q)
lqk23q

2kl b3a3b1a4

counterclockwise q(q14q)
l(q23q)

kq2kl b2a2b1a4

Table H.7: Enumeration of midpoint polygons

L1 = . . . , a2, b1, a3, b4, . . . to be the arc a2. Then the summands ℓq,1 and ℓq,2 read

ℓq,1 =


∑

k,l≥0

lql23q
k
14q

2klb1a4b2a2 +
∑

k,l≥0

(l + 1)q(q14q)
l(q23q)

kq2kl


 b1a4b2a2

+


∑

k,l≥0

lq4(q23q)
lqk14q

2kl +
∑

k,l≥0

(l + 1)q4q
l
14(q23q)

kq2kl


 b1a1b3a2

+


∑

k,l≥0

lq3q
l
23(q14q)

kq2kl +
∑

k,l≥0

(l + 1)q3(q14q)
lqk23q

2kl


 b4a1b2a2

+


∑

k,l≥0

lq(q23q)
l(q14q)

kq2kl +
∑

k,l≥0

(l + 1)ql14q
k
23q

2kl


 b4a4b3a2

+


∑

k,l≥0

(l + 1)q2q
l
23(q14q)

kq2kl +
∑

k,l≥0

lq2(q14q)
lqk23q

2kl


 b1a4b3a3

+


∑

k,l≥0

(l + 1)q(q23q)
l(q14q)

kq2kl +
∑

k,l≥0

lql14q
k
23q

2kl


 b1a1b2a3

+


∑

k,l≥0

lql23q
k
14q

2kl +
∑

k,l≥0

(l + 1)q(q14q)
l(q23q)

kq2kl


 b4a1b3a3

+


∑

k,l≥0

lq1(q23q)
lqk14q

2kl +
∑

k,l≥0

(l + 1)q1q
l
14(q23q)

kq2kl


 b4a4b2a3
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and

ℓq,2 =


∑

k,l≥0

(k + 1)ql23q
k
14q

2kl +
∑

k,l≥0

kq(q14q)
l(q23q)

kq2kl


 a2b1a4b2

+


∑

k,l≥0

(k + 1)q4(q23q)
lqk14q

2kl +
∑

k,l≥0

kq4q
l
14(q23q)

kq2kl


 a2b1a1b3

+


∑

k,l≥0

(k + 1)q3(q23)
l(q14q)

kq2kl +
∑

k,l≥0

kq3(q14q)
lqk23q

2kl


 a2b4a1b2

+


∑

k,l≥0

(k + 1)q(q23q)
l(q14q)

kq2kl +
∑

k,l≥0

kql14q
k
23q

2kl


 a2b4a4b3

+


∑

k,l≥0

k(q23)
l(q14)

kq2kl +
∑

k,l≥0

(k + 1)q(q14q)
l(q23q)

kq2kl


 a3b4a1b3

+


∑

k,l≥0

(k + 1)q1(q23q)
lqk14q

2kl +
∑

k,l≥0

kq1q
l
14(q23q)

kq2kl


 a3b4a4b2

+


∑

k,l≥0

kq2q
l
23(q14q)

kq2kl +
∑

k,l≥0

(k + 1)q2(q14q)
lqk23q

2kl


 a3b1a4b3

+


∑

k,l≥0

(k + 1)q(q23q)
l(q14q)

kq2kl +
∑

k,l≥0

kql14q
k
23q

2kl


 a3b1a1b2.

Centrality The general mirror construction guarantees that the deformed potential ℓq is central in
the deformed Jacobi algebra Jacq Q̌. In what follows, we verify centrality manually in the case of the
4-punctured torus. Our starting point is the explicit description of Wq and ℓq in terms of midpoint
polygons. It turns out that centrality is not as obvious as in the classical case of ℓ ∈ Jac Q̌. The checks
we present incarnate particular cases of the A∞-relations for HLq, in fact going beyond the transversal
case. Checking centrality therefore presents evidence that the description of HLq in terms of CR, ID, DS
and DW disks is accurate and is therefore evidence for the correctness of Paper II.

To get started, recall that proving ℓq central entails finding for every arc a ∈ Q̌1 an element x ∈ (∂aWq)
such that aℓq + x = ℓqa within CQ̌. In the classical case of ℓ ∈ Jac Q̌, this element x can be described as
a sequence of F-term flips of the path ℓa ∈ CQ̌, see section 19.10. In the deformed case of ℓq ∈ Jacq Q̌,
the potential ℓq is much more complicated and the element x can only be obtained by inspecting and
Koszul dualizing the A∞-relations of HLq.

For symmetry reasons, it suffices to prove ℓqa − aℓq ∈ (∂aWq) for a single arc a ∈ Q̌1, which we
choose to be the arc a = a2. Recall that t(a2) = L1 and h(a2) = L2. The arrow set Q̌1 identifies with
odd transversal intersections of zigzag paths in Q, and we write Xa for the odd basis morphism whose
corresponding intersection point is located at the midpoint of the arc a. For instance, the two zigzag
paths L1 and L2 and the morphism Xa2 : L1 → L2 are depicted in Figure H.8a. Recall that the element
b is a formal sum of the odd transversal intersections Xa, weighted by their formal parameter a ∈ Q̌1. In
our case, we have explicitly

b =
4∑

i=1

aiXai +
4∑

i=1

biXbi .

The first step to centrality is to obtain a candidate expression for x = ℓq,2a2 − a2ℓq,1 in terms of the
relations ∂aWq. The idea is to inspect those A∞-relations which lead to centrality in the proof of
Lemma 20.30:

µHLq
(µ≥0(b, . . . , b)) + µHLq

(b, µ≥0
HLq

(b, . . . , b))

+µHLq
(µ≥0(b, . . . , b), b) + µ≥3

HLq
(b, . . . , µ≥0(b, . . . , b), . . . , b) = 0.

(H.1)

The expression on the left-hand side of (H.1) is a sum of multiple odd morphisms weighted by paths in
Q̌. To guess x, we extract the coefficient of the odd morphism Xa2 .
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Xa2

L̃1L̃2

L̃2L̃1

(a) The zigzag paths L1 and L2 and the morphism Xa2 : L1 → L2

Let us inspect all four terms of (H.1). The first term vanishes in the case of the 4-punctured torus,
since it is geometrically consistent. For the second and third term, recall that µ≥0(b, . . . , b) is the sum of
the idententities of the zigzag paths Li weighted by ℓq,i, and the even intersections Ya weighted by the
relations ∂aWq:

µ≥0(b, . . . , b) =
4∑

i=1

ℓq,i idLi
+

4∑

i=1

∂aiWqYai +
4∑

i=1

∂biWqYbi .

We insert this expression into the second and third terms of (H.1) and extract the coefficient of Xa2 .
Since there are no 3-gons among zigzag curves in Q, the Xa2 coefficient of the second term is a2ℓq,1 and
the Xa2 coefficient of the third term is −ℓq,2a2.

For the fourth term in (H.1), we have to count CR, ID, DS and DW disks with output Xa2 and input
sequence consisting of odd elements of the form Xai or Xbi , mixed with one single even input of the form
Yai or Ybi . The Xa2 coefficient from every CR, ID, DS or DW disk is then the path in Q̌ given by the
concatenation of the ai or bi symbols, inserting the relation ∂aiWq or ∂biWq instead at the even input.

It remains to enumerate all relevant CR, ID, DS and DW disks explicitly in the case of the 4-punctured
torus:

• CR disks are 4-gons, in fact rectangles due to the shape of Q. CR disks contribute both to the
inner and to the outer µ3

HLq
in (H.1).

• ID disks are 5-gons, in fact rectangles of which one side has an output marking on the identity
location a2. They are only relevant for the inner µHLq

since their output is an identity and not
Xa2 .

• DS disks are only relevant for the outer µHLq
since they require at least one even input. According to

the intricate rules for DS disks, the only DS disk with output Xa2 is the DS disk with infinitesimally
small side lengths contributing to µ3

HLq
(Xa2 , Ya2 , Xa2). The existence of this DS disk is independent

of the choice of co-identity location. In terms of the Kadeishvili construction from Paper I, this DS
disk corresponds to the π-tree with associated DS result component depicted in Figure H.9.

• DW disks are irrelevant. In fact, a DW disk has at least one even input and has a co-identity output
and can therefore neither contribute to the inner µHLq

nor contribute Xa2 to the outer µHLq
.

This finishes our evaluation of (H.1). All in all, the A∞-relations for HLq claim that the Xa2 coefficients
of (H.1) add up to zero. This provides us with a candidate expression for x = ℓq,2a2 − a2ℓq,1 in terms of
the relations ∂aWq. We record and verify this guess as follows:

Lemma H.1. Regard the 4-punctured torus Q with its zigzag paths L1, L2, L3, L4. Denote by ℓq,1
and ℓq,2 the potentials in CQ̌Jq1, q2, q3, q4K associated with L1 and L2 under the choice of a2 as identity
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α4 id(C) α4

µ2 = α4

hq = idb1

µ2 = α4

πq = α3 + α4

Figure H.9: DS result component contributing to µ3(Xa2 , Ya2 , Xa2)

location. Then within CQ̌Jq1, q2, q3, q4K we have

ℓq,2a2 − a2ℓq,1 = a2(∂a2Wq)a2 (H.2)

+

( ∑

k,l≥0

q1q
lqk14q

2kl −
∑

k,l≥0

q1q23q
l(q23q)

kq2kl
)
a3b4(∂b1Wq)

+

( ∑

k,l≥0

q14q
2lqk14q

2kl −
∑

k,l≥0

q23qq
2l(q23q)

kq2kl
)
a2b1(∂b1Wq)

+

( ∑

k,l≥0

q1q2q4q
l(q14q)

kq2kl −
∑

k,l≥0

q2q
lqk23q

2kl

)
a3b1(∂b4Wq)

+

( ∑

k,l≥0

q14qq
2l(q14q)

kq2kl −
∑

k,l≥0

q23q
2lqk23q

2kl

)
a2b4(∂b4Wq)

+

( ∑

k,l≥0

q1q2q
lqkq2kl −

∑

k,l≥0

q1q2q
lqkq2kl

)
a3(∂a2Wq)a3

+

( ∑

k,l≥0

q2q2lq2kq2kl −
∑

k,l≥0

q2q2lq2kq2kl
)
a2(∂a2Wq)a2

+

( ∑

k,l≥0

qqlq2kq2kl −
∑

k,l≥0

qqlq2kq2kl
)
a3(∂a3Wq)a2

+

( ∑

k,l≥0

qq2lqkq2kl −
∑

k,l≥0

qq2lqkq2kl
)
a2(∂a3Wq)a3

+

( ∑

k,l≥0

q2q14(q14q)
lqkq2kl −

∑

k,l≥0

q2q
l
23q

kq2kl
)
(∂b2Wq)b3a3

+

( ∑

k,l≥0

q14q(q14q)
lq2kq2kl −

∑

k,l≥0

q23q
l
23q

2kq2kl
)
(∂b2Wq)b2a2

+

( ∑

k,l≥0

q1q
l
14q

kq2kl −
∑

k,l≥0

q1q23(q23q)
lqkq2kl

)
(∂b3Wq)b2a3

+

( ∑

k,l≥0

q14q
l
14q

2kq2kl −
∑

k,l≥0

q23q(q23q)
lq2kq2kl

)
(∂b3Wq)b3a2.

In particular, we have ℓqa2 = a2ℓq within Jacq Q̌.

Proof. The strategy is to cancel terms on the right-hand side against each other. The correct means
of finding cancellation partners is by tracing back all terms to their respective geometric origins. More
precisely, recall that the claimed identity (H.2) is supposed to reflect the A∞-relations for HLq. The
A∞-relations again reflect the geometric property that nonconvex disks can be divided into convex disks
in two different ways. Once we trace back every term on the right-hand side of (H.2) to its nonconvex disk
origin, we find the correct cancellation partner. A few corner cases remain in which the disk is actually
convex, and these correspond to the left-hand side.

It might be tempting to cancel the eight middle terms on the right-hand side of (H.2) first. However,
the cancellation of these eight terms is specific to the case of the 4-punctured torus and we in fact need
to preserve these terms in order to make the other cancellations transparent.
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To get started, note that the identity (H.2) consists of CJq1, q2, q3, q4K-linear combinations of paths
of length five. Checking the identity entails comparing coefficients of every of the possible paths. In
the remainder of the proof, we merely focus on two example paths: a2b1a1b3a2 and a2b1a1b2a3. Out of
these two, the case of the first path is easily settled because the right-hand side contains no such paths.
The case of the second path is much harder and truly illustrates the geometric reason for equality. The
authors also checked manually the coefficients of all 14 other paths and used the results to eradicate all
errors in (H.2). For the present demonstration, we merely restrict to the two paths mentioned.

Let us comment on the first path a2b1a1b3a2. We determine the coefficient of this path in all four
entities of (H.2). The coefficient coming from the term ℓq,2a2 is

∑

k,l≥0

(k + 1)q4(q23q)
lqk14q

2kl +
∑

k,l≥0

kq4q
l
14(q23q)

kq2kl.

The coefficient coming from the term a2ℓq,1 is

∑

k,l≥0

lq4(q23q)
lqk14q

2kl +
∑

k,l≥0

(l + 1)q4q
l
14(q23q)

kq2kl.

The coefficient coming from the term a2(∂a2Wq)a2 is

∑

k,l≥0

q4q
k
14(q23q)

lq2kl −
∑

k,l≥0

q4q
l
14(q23q)

kq2kl = 0.

Note that this vanishing is specific to the 4-punctured torus. The coefficient in the rest of the right-hand
side of (H.2) vanishes because ∂b1Wq has vanishing a1b3a2 coefficient, because ∂a2Wq has vanishing b1a1b3
coefficient, and because ∂b3Wq has vanishing a2b1a1 coefficient. All in all, both the left-hand side and
the right-hand side of (H.2) cancel out. This proves the identity (H.2) on the level of a2b1a1b3a2 terms.

We now focus on the second path a2b1a1b2a3 ∈ CQ̌ and prove that its coefficient in (H.2) vanishes.
Regarding the left-hand side, the coefficient in ℓq,2a2 vanishes and the coefficient in −a2ℓq,1 consists of
the two sums

−
∑

k,l≥0

(l + 1)q(q23q)
l(q14q)

kq2kl −
∑

k,l≥0

lql14q
k
23q

2kl. (H.3)

Regarding the right-hand side, the coefficient in a2(∂a2Wq)a2 vanishes. The relevant contribution of the
24 remaining relation terms is

+
∑

k,l≥0

q1q4q
2lqk14q

2kla2b1(∂b1Wq)

−
∑

k,l≥0

q2q3qq
2l(q23q)

kq2kla2b1(∂b1Wq)

−
∑

k,l≥0

qq2lqkq2kla2(∂a3Wq)a3

+
∑

k,l≥0

qq2lqkq2kla2(∂a3Wq)a3

+
∑

k,l≥0

q1q
l
14q

kq2kl(∂b3Wq)b2a3

−
∑

k,l≥0

q1q2q3(q23q)
lqkq2kl(∂b3Wq)b2a3

(H.4)
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We count the a1b2a3 coefficients in ∂b1Wq, ∂a3Wq and ∂b3Wq as follows:

∂b1Wq|a1b2a3 =+
∑

k,l≥0

q2k+1+l+2kl
14 q2l+1+k+2kl

23

−
∑

k,l≥0

ql+2kl
14 qk+2kl

23

∂a3Wq|b1a1b2 =+
∑

k,l≥0

q2k+l+1+2kl
14 q2l+k+1+2kl

23

−
∑

k,l≥0

ql+2kl
14 qk+2kl

23

∂b3 |a2b1a1 =+
∑

k,l≥0

q4q
k+l+2kl
14 q2l+2kl

23

−
∑

k,l≥0

q4q
k+l+2kl
14 q2k+2kl

23

Plugging these expressions into (H.4), we get twelve terms which we name as follows:

1A: +
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)(l′+1)
14 q

2(k+1)l+(k′+1)(2l′+1)
23

1B: −
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+l′(2k′+1)
14 q

2(k+1)l+k′(2l′+1)
23

2A: −
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)(l′+1)
14 q

2(k+1)(l+1)+(k′+1)(2l′+1)
23

2B: +
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)l′

14 q
2(k+1)(l+1)+k′(2l′+1)
23

3A: −
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)(l′+1)
14 q

(k+1)(2l+1)+(k′+1)(2l′+1)
23

3B: +
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)l′

14 q
(k+1)(2l+1)+k′(2l′+1)
23

4A: +
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)(l′+1)
14 q

(k+1)(2l+1)+(k′+1)(2l′+1)
23

4B: −
∑

k,l,k′,l′≥0

q
(k+1)(2l+1)+(2k′+1)l′

14 q
(k+1)(2l+1)+k′(2l′+1)
23

5A: +
∑

k,l,k′,l′≥0

q
(1+l+k+2kl)+(k′+l′+2k′l′)
14 q

k(2l+1)+2l′(k′+1)
23

5B: −
∑

k,l,k′,l′≥0

q
(1+l+k+2kl)+(k′+l′+2k′l′)
14 q

k(2l+1)+2k′(l′+1)
23

6A: −
∑

k,l,k′,l′≥0

q
(1+l+k+2kl)+(k′+l′+2k′l′)
14 q

(k+1)(2l+1)+2(k′+1)l′

23

6B: +
∑

k,l,k′,l′≥0

q
(1+l+k+2kl)+(k′+l′+2k′l′)
14 q

(k+1)(2l+1)+2k′(l′+1)
23

It is our task to sum up these twelve terms (1A–6B) and prove the sum equal to (H.3). Again, note
that 3A and 3B cancel with 4A and 4B. However, performing this easy cancellation would obfuscate all
other cancellations. Instead, we shall obtain the correct cancellations by inspecting the geometric origin
of every of these twelve terms.
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We give a catalog of all cancellations below. To understand the reasons behind the cancellations, we
shall demonstrate here how one finds the correct cancellation for the term 1A in case l ≥ l′ + 1. Its
geometric origin is depicted in Figure H.10a. In short, this figure depicts a pair of disks contributing to

µHLq
(Xa2 , Xb1 , µHLq

(Xa1 , Xb2 , Xa3)). (H.5)

More precisely, the disk labeled ∂b1Wq contributes to the inner µHLq
, while the disk labeled “coeff”

contributes to the outer µHLq
. The side lengths of the disk labeled ∂b1Wq are 4k′ + 3 and 4l′ + 3.

Correspondingly, the example depicted has k′ = l′ = 0. The side lengths of the disk labeled “coeff” are
4k+4 and 4l+1. Correspondingly, the example depicted has k = 0 and l = 1. The nonconvex shape can
be split into two other pieces, depicted in Figure H.10b. That figure depicts a pair of disks contributing
to

µHLq
(Xa2 , µHLq

(Xb1 , Xa1 , Xb2), Xa3). (H.6)

The two individual contributions to (H.5) and (H.6) cover the same area and therefore have the same
deformation parameters. A quick check shows that they have equal sign. Noting that 1A and 3A come
with opposite overall signs, this makes 3A our candidate for cancellation with 1A in case l ≥ l′ + 1.

The cancellation of 1A and 3A involves a change of indices. More precisely, the term 1A with indices
(k, l, k′, l′) cancels with 3A with indices (k, l− l′−1, k+k′+1, l′). To obtain this correspondence between
indices, let us understand the disks in Figure H.10b. The disk labeled ∂a3Wq contributes to the inner
µHLq

, while the disk labeled “coeff” contributes to the outer HLq. The side lengths of the disk labeled
∂a3Wq are 4(k + k′ + 1) + 3 and 4l′ + 3. The side lengths of the disk labeled “coeff” are 4k + 4 and
4(l − l′ − 1) + 2. This means we expect to find the partner of 1A with indices (k, l, k′, l′) in 3A with
indices (k, l − l′ − 1, k + k′ + 1, l′).

Similar considerations for all other pairs of terms give rise to a list of cancellation candidates. In
what follows, we compile this list and check for every entry individually that it indeed cancels out with
its partner:

• 1A in case l ≥ l′ + 1 cancels with 3A with indices (k, l − l′ − 1, k + k′ + 1, l′):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1) = (k + 1)(2(l − l′ − 1) + 1) + (2(k + k′ + 1) + 1)(l′ + 1),

(q23) : 2(k + 1)l + (k′ + 1)(2l′ + 1) = (k + 1)(2(l − l′ − 1) + 1) + ((k + k′ + 1) + 1)(2l′ + 1).

• 1A in case l ≤ l′ cancels with 6A with indices (k′, l′ − l, k + k′ + 1, l):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1)

= (1 + (l′ − l) + k′ + 2k′(l′ − l)) + ((k + k′ + 1) + l + 2(k + k′ + 1)l),

(q23) : 2(k + 1)l + (k′ + 1)(2l′ + 1) = (k′ + 1)(2(l′ − l) + 1) + 2((k + k′ + 1) + 1)l.

• 1B in case k ≥ k′ cancels with 5A with indices (k′, l + l′, k − k′, l):

(q14) : (k + 1)(2l + 1) + l′(2k′ + 1) = (1 + (l + l′) + k′ + 2k′(l + l′)) + ((k − k′) + l + 2(k − k′)l),

(q23) : 2(k + 1)l + k′(2l′ + 1) = k′(2(l + l′) + 1) + 2l((k − k′) + 1).

• 1B in case k + 1 ≤ k′ cancels with 3B with indices (k, l + l′, k′ − k − 1, l′):

(q14) : (k + 1)(2l + 1) + l′(2k′ + 1) = (k + 1)(2(l + l′) + 1) + (2(k′ − k − 1) + 1)l′,

(q23) : 2(k + 1)l + k′(2l′ + 1) = (k + 1)(2(l + l′) + 1) + (k′ − k − 1)(2l′ + 1).

• 2A in case k + 1 ≤ k′ cancels with 4A with indices (k, l + l′ + 1, k′ − k − 1, l′):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1) = (k + 1)(2(l + l′ + 1) + 1) + (2(k′ − k − 1) + 1)(l′ + 1),

(q23) : 2(k + 1)(l + 1) + (k′ + 1)(2l′ + 1) = (k + 1)(2(l + l′ + 1) + 1) + ((k′ − k − 1) + 1)(2l′ + 1).

• 2A in case k ≥ k′ cancels with 6B with indices (k′, l + l′ + 1, k − k′, l):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1)

= (1 + (l + l′ + 1) + k′ + 2k′(l + l′ + 1)) + ((k − k′) + l + 2(k − k′)l)

(q23) : 2(k + 1)(l + 1) + (k′ + 1)(2l′ + 1) = (k′ + 1)(2(l + l′ + 1) + 1) + 2(k − k′)(l + 1).
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• 2B in case l ≥ l′ cancels with 4B with indices (k, l − l′, k + k′ + 1, l′):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)l′ = (k + 1)(2(l − l′) + 1) + (2(k + k′ + 1) + 1)l′.

(q23) : 2(k + 1)(l + 1) + k′(2l′ + 1) = (k + 1)(2(l − l′) + 1) + (k + k′ + 1)(2l′ + 1).

• 2B in case l + 1 ≤ l′ cancels with 5B with indices (k′, l′ − l − 1, k + k′ + 1, l):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)l′

= (1 + (l′ − l − 1) + k′ + 2k′(l′ − l − 1)) + ((k + k′ + 1) + l + 2(k + k′ + 1)l),

(q23) : 2(k + 1)(l + 1) + k′(2l′ + 1) = k′(2(l′ − l − 1) + 1) + 2(k + k′ + 1)(l + 1).

• 3A in case k′ ≤ k cancels with 5A with indices (k − k′, l, k′, l + l′ + 1):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1)

= (1 + l + (k − k′) + 2(k − k′)l) + (k′ + (l + l′ + 1) + 2k′(l + l′ + 1)),

(q23) : (k + 1)(2l + 1) + (k′ + 1)(2l′ + 1) = (k − k′)(2l + 1) + 2(l + l′ + 1)(k′ + 1).

• 3B in case l′ ≥ l + 1 cancels with 5B with indices (k + k′ + 1, l, k′, l′ − l − 1):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)l′

= (1 + l + (k + k′ + 1) + 2(k + k′ + 1)l) + (k′ + (l′ − l − 1) + 2k′(l′ − l − 1)),

(q23) : (k + 1)(2l + 1) + k′(2l′ + 1) = (k + k′ + 1)(2l + 1) + 2k′((l′ − l − 1) + 1).

• 4A in case l′ ≥ l cancels with 6A with indices (k + k′ + 1, l, k′, l′ − l):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)(l′ + 1)

= (1 + l + (k + k′ + 1) + 2(k + k′ + 1)l) + (k′ + (l′ − l) + 2k′(l′ − l)),

(q23) : (k + 1)(2l + 1) + (k′ + 1)(2l′ + 1) = ((k + k′ + 1) + 1)(2l + 1) + 2(k′ + 1)(l′ − l).

• 4B in case k ≥ k′ cancels with 6B with indices (k − k′, l, k′, l + l′):

(q14) : (k + 1)(2l + 1) + (2k′ + 1)l′ = (1 + l + (k − k′) + 2(k − k′)l) + (k′ + (l + l′) + 2k′(l + l′)),

(q23) : (k + 1)(2l + 1) + k′(2l′ + 1) = ((k − k′) + 1)(2l + 1) + 2k′((l + l′) + 1).

We have shown that most terms of (H.4) cancel out. It remains to analyze the corner cases which did
not cancel and match them with (H.3). In fact, the only remaining corner terms are 6A with indices
(k, l, k, l′) and 5B with indices (k, l, k, l′). We conclude that the sum of the 12 terms (1A–6B) is

−
∑

k,l,l′≥0

q
1+(l+l′)+2k+2k(l+l′)
14 q

(k+1)(2(l+l′)+1)
23 −

∑

k,l,l′≥0

q
1+(l+l′)+2k+2k(l+l′)
14 q

k(2(l+l′)+3)
23

= −
∑

k,s≥0

(s+ 1)q1+s+2k+2ks
14 q1+k+2s+2ks

23 −
∑

k,s≥0

sqs+2ks
14 qk+2ks

23 .

We recognize this expression as equal to (H.3). In other words, the coefficient of a2b1a1b2a3 in the
centrality identity (H.2) agrees on both sides. This finishes the checks for the coefficients of a2b1a1b2a3,
and thereby finishes our selected calculations aimed at demonstrating (H.2).
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a2 (out)

a2

b1

a1

b2

a3

b1

k

k′

l

l′

∂b1Wq

coeff

(a) The origin of 1A

a2 (out)

a2

b1

a1

b2

a3

a3
k

k + k′

l − l′

l′

∂a3Wq

coeff

(b) The origin of 3A

Figure H.10: Term 1A cancels with term 3A if l ≥ l′ + 1
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Note IV

Explicit Hochschild Classes for

Gentle Algebras

22 Introduction

Hochschild cohomology is a crucial invariant for understanding an object’s deformation theory. Gen-
tle algebras are discrete models for Fukaya categories of punctured surfaces. We have computed the
Hochschild cohomology of gentle algebras in Paper I under a technical restriction regarding the surface.
In this note, we go beyond the restriction. More precisely, we extend the computation of Paper I to
include all gentle algebras of punctured surfaces. The idea is to write down explicit Hochschild cocycles,
instead of constructing them implicitly as in Paper I.

The findings from Paper I can be summarized as follows:

Generation criterion: It determines for a given collection of cocycles with certain prescribed shape in
low adicity whether it concerns a basis of Hochschild cohomology or not. We recall the generation
criterion in section 24.1.

Odd cocycles: We provided an explicit collection of odd cocycles. This family satisfies the requirements
of the generation criterion and therefore forms a basis for odd Hochschild cohomology. We recall
the odd cocycles in section 24.2.

Sporadic even cocycles: We provided a semi-explicit collection of even cocycles. In the present note,
we refer to them as the sporadic cocycles. We recall the sporadic cocycles in section 24.3.

Ordinary even cocycles: We provided an implicit collection of even cocycles under the assumption
that the arc system satisfies the [NL2] condition. In the present paper, we refer to these cocycles as
ordinary even cocycles. The sporadic and ordinary even cocycles together satisfy the generation
criterion. Under the condition [NL2], they form a basis for even Hochschild cohomology.

The problem with Paper I is the requirement of the [NL2] condition. In fact, the ordinary even
cocycles were constructed in Paper I as cup products of carefully selected sporadic and odd classes. The
sporadic classes required for this construction only exist if the [NL2] condition holds. Without the [NL2]
condition, the construction via the cup product fails, leaving us without proof of existence of the ordinary
even cocycles. The aim of the present note is to circumvent the [NL2] condition. The idea is to provide an
explicit construction for the ordinary even cocycles. The amount of explicitness makes the construction
independent of the [NL2] condition. A drawback is that long calculations are required to check that the
ordinary even classes actually satisfy the cocycle condition. This is the reason we cut the present note
from Paper I.

This note is organized as follows: In section 23, we recall A∞-categories, Hochschild cohomology and
gentle algebras. In section 24, we recall the generation criterion, the odd cocycles and the sporadic even
cocycles from Paper I. In section 25, we construct the ordinary even cocycles and perform detailed checks
that they indeed satisfy the Hochschild cocycle condition. We summarize the findings in section 25.4.

23 Preliminaries

In this section, we recall A∞-categories, Hochschild cohomology and gentle algebras. A more extensive
introduction can be found in Paper I or Paper II.
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23.1 A∞-categories

In this section we briefly recall A∞-categories.

Definition 23.1. A (Z- or Z/2Z-graded, strictly unital) A∞-category C (over e.g. C) consists of a
collection of objects together with Z- or Z/2Z-graded hom spaces Hom(X,Y ), distinguished identity
morphisms idX ∈ Hom0(X,X) for all X ∈ C, together with multilinear higher products

µk : Hom(Xk, Xk+1)⊗ . . .⊗Hom(X1, X2)→ Hom(X1, Xk+1), k ≥ 1

of degree 2 − k such that the A∞-relations and strict unitality axioms hold: For every compatible
morphisms a1, . . . , ak we have

∑

0≤n<m≤k

(−1)‖an‖+...+‖a1‖µ(ak, . . . , µ(am, . . . , an+1), an, . . . , a1) = 0,

µ2(a, idX) = a, µ2(idY , a) = (−1)|a|a, µ≥3(. . . , idX , . . .) = 0.

The symbol ‖a‖ = |a| − 1 denotes the reduced degree of a.

23.2 The Hochschild DGLA

In this section, we recall Hochschild cohomology for A∞-categories. First, we recall DG Lie algebras
(DGLAs). Second, we recall the Hochschild complex for A∞-categories together with its DGLA structure.
Third, we comment on the cup product.

Definition 23.2. A DG Lie algebra (DGLA) is a Z- or Z/2Z-graded vector space L together with a
differential d : Li → Li+1 and a bracket [−,−] : L × L → L satisfying the Leibniz rule and the Jacobi
identity:

[a, b] = (−1)|a||b|+1[b, a],

d(d(a)) = 0,

d([a, b]) = [da, b] + (−1)|a|[a, db],

0 = (−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]].

Hochschild cohomology has historically been defined for ordinary associative algebras. The Hochschild
complex carries a natural DGLA structure. In more modern times, Hochschild cohomology together with
the DGLA structure has been extended to the case of A∞-categories. We recall this construction as
follows:

Definition 23.3. Let C be a Z- or Z/2Z-graded A∞-category. Then its Hochschild complex HC(C) is
given by the graded vector space

HC(C) =
∏

X1,...,Xk+1∈C
k≥0

Hom
(
HomC(Xk, Xk+1)[−1]⊗ . . .⊗HomC(X1, X2)[−1],HomC(X1, Xk+1)[−1]

)
.

For η, ω ∈ HC(C), temporarily denote by µ · ω ∈ HC(C) the Gerstenhaber product given by

(η · ω)(ak, . . . , a1) =
∑

(−1)(‖al‖+...+‖a1‖)‖ω‖η(ak, . . . , ω(. . .), al, . . . , a1).

Define a Z- or Z/2Z-graded DGLA structure on HC(C) as follows: Its grading ‖ · ‖ is the one induced
from the shifted degrees of the hom spaces of C. In other words, we have the equation

‖η(ak, . . . , a1)‖ = ‖η‖+ ‖ak‖+ . . .+ ‖a1‖, η ∈ HC(C).

The bracket on HC(C) is the Gerstenhaber bracket

[η, ω] = η · ω − (−1)‖ω‖‖η‖ω · η.

Its differential is given by commuting with the product µC ∈ HC1(C):

dν = [µC , ν].
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Remark 23.4. Let ν ∈ HC1(C). Then µC+εν is an infinitesimal (curved A∞-)deformation of µC over the
local ring B = C[ε]/(ε2) if and only if dν = 0. More precisely, Hochschild cohomology HH1(C) classifies
infinitesimal deformations of C up to gauge equivalence.

Remark 23.5. In case C is only Z/2Z-graded, the Hochschild DGLA is only a Z/2Z-graded DGLA and
Hochschild cohomology is only a Z/2Z-graded vector space.

Remark 23.6. The DGLA structure on HC(C) induces (noncanonically) the structure of an L∞-algebra
on Hochschild cohomology HH(C).

Remark 23.7. For ordinary algebras, which are concentrated in degree zero and have vanishing higher
products, the Hochschild cohomology is typically defined without the shifts. This results in a grading
difference of 1 from what we present here. For example, the center of the algebra is the classical zeroth
Hochschild cohomology. In our A∞-setting, this cohomology will rather be found in degree −1.

There is also a second product on HC(C): the cup product.

Definition 23.8. The cup product on HC(C) is given by

(κ ∪ ν)(ar, . . . a1) :=
∑

0≤i≤j≤u≤v≤r

(−1)zµ(ar, . . . , κ(av, . . . , au+1), . . . , ν(aj , . . . , ai+1), . . . , a1)

with z = (‖a1‖+ . . .+ ‖au‖)‖κ‖+ (‖a1‖+ . . .+ ‖ai‖)‖ν‖+ ‖ν‖+ 1.

23.3 The gentle algebra and its deformation

In this section, we recall A∞-gentle algebras from [18].

Definition 23.9. A punctured surface is a closed oriented surface S with a finite set of punctures
M ⊆ S. We assume that |M | ≥ 1, or |M | ≥ 3 if S is a sphere.

Definition 23.10. Let (S,M) be a punctured surface. An arc in S is a not necessarily closed curve
γ : [0, 1]→ S. A loop is an arc γ with γ(0) = γ(1). An arc system A on (S,M) is a finite collection of
arcs such that the arcs in A meet only at the set M of punctures. Intersections and self-intersections are
not allowed.

An arc system A is full if the arcs cut the surface into contractible pieces, which we call polygons.
The arc system A satisfies the condition [NMD] if:

• Any two arcs in A are non-homotopic in S \M .

• All loops in A are non-contractible in S \M .

Let us now recall the construction of the gentle algebra GtlA. It is an A∞-category and we shall
start by describing its objects, differential and product. After that, we will recall the higher products on
GtlA.

Definition 23.11. Let A be a full arc system with [NMD]. Then the gentle algebra GtlA is the
A∞-category defines as follows:

• Its objects are the arcs a ∈ A.

• A basis for the hom space HomGtlA(a, b) is given by the set of all angles around punctures from a
to b.

• The Z/2Z-grading on GtlA is given by declaring all indecomposable angles to have odd degree.

• The differential µ1 is zero.

• The product µ2 is defined as a signed version of the ordinary product of GtlA:

µ1 := 0, µ2(α, β) := (−1)|β|αβ.

The angles include empty angles, which are the identities on the arcs. A non-empty angle is inde-
composable if it cannot be written as αβ where α, β are non-empty angles. The higher products are
defined in Definition 23.15.

Remark 23.12. The hom spaces of GtlA are not finite-dimensional, in contrast to what is classically
called a gentle algebra.
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The ordinary product αβ still means concatenation of angles, and we will keep this notation. We
now recall the higher products µ≥3 of GtlA. They capture the topology of the arcs and angles. Roughly
speaking, a higher product of a sequence of angles is nonzero if the sequence bounds a disk. Such a disk
may either be a polygon, or a sequence of polygons stitched together, known as an immersed disk. Let
us make this precise:

Definition 23.13. An immersed disk consists of an oriented immersion of a standard polygon Pk into
the surface, such that

• Every edge of Pk is mapped to an arc.

• The immersion does not cover any punctures.

A sequence of angles α1, . . . , αk is a disk sequence if there exists an immersed disk such that α1, . . . , αk
are the interior angles of the immersed disk, counting in clockwise order.

Remark 23.14. A disk sequence α1, . . . , αk always has length k ≥ 3 because all polygons in the arc
system A have at least three corners. Simply speaking, there are no digons.

We can now describe the higher products µ≥3 on GtlA as follows:

Definition 23.15. Let α1, . . . , αk be a disk sequence. Let β be an angle composable with α1 in the sense
that βα1 6= 0, and let γ be an angle post-composable with αk in the sense that αkγ 6= 0. Then we define
higher products

µk(βαk, . . . , α1) := β, µk(αk, . . . , α1γ) := (−1)|γ|γ.

The higher products vanish on all angle sequences other than these. If α1, . . . , αk is a disk sequence, we
call the sequence α1, . . . , βαk final-out if β 6= id and the sequence α1γ, . . . , αk first-out if γ 6= id. We
call either of them all-in if β and γ are merely identities.

Remark 23.16. In Paper I, we have imposed the additional condition [NL2] on arc systems. The
condition entails that A contains no loops and no two arcs share more than one endpoint. In particular,
the [NL2] condition requires that the number of punctures |M | in the surface is at least two. We do not
require the [NL2] condition in the present note.

24 Previous calculations

In this section, we summarize findings on Hochschild cohomology from Paper I. We divide the section
into three parts: In section 24.1, we recall the generation criterion from Paper I. The criterion determines
for a given collection of cocycles with certain prescribed shape in low adicity whether it concerns a basis
of Hochschild cohomology or not. In section 24.2, we recall a certain collection of odd cocycles. This
family satisfies the requirements of the generation criterion and therefore forms a basis for odd Hochschild
cohomology. In section 24.3, we recall a certain collection of even cocycles, the sporadic even cocycles.

24.1 The generation criterion

In this section, we recall the two generation criteria for odd and even Hochschild cohomology of GtlA
from Paper I. The two generation criteria hold for all full arc systems of punctured surfaces and are not
restricted to the assumption [NL2]. In section 24.2, we use the generation criterion for odd Hochschild
cohomology to explain the basis for odd Hochschild cohomology we obtained in Paper I. In section 25,
we use the generation criterion for even Hochschild cohomology to construct and verify an explicit basis
for even Hochschild cohomology.

We use the notation ℓm to denote a full turn around the puncture m. The meaning is depicted in
Figure 24.1b:

Definition 24.1. Whenever m ∈M is a puncture, the letter ℓm denotes the sum of full turns around the
puncture m, starting from every incident arc. Every loop incident at m gives rise to two contributions to
ℓm. The element ℓm is a formal sum of endomorphisms of the arcs incident at m. In other words, ℓm can
be interpreted as a cochain ℓm ∈ HC(GtlA) of arity 0. When r ≥ 1 is a natural number, the expression
ℓrm denotes the r-th power of ℓm, equally consisting of endomorphisms of the arcs incident at m.

Proposition 24.2 (Paper I). Let A be a full arc system with [NMD]. Let νid and {νm,r}m∈M,r≥1 be
odd Hochschild cocycles. Assume the following conditions:
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• ν0id =
∑
a∈A ida.

• ν0m,r = ℓrm.

Then the collection of {νid} ∪ {νm,r}m∈M,r≥1 is a basis for HHodd(GtlA).

In Definition 24.3, we fix notation for a certain class S of even Hochschild cocycles which merely “scale
angles”. The idea is that the quotient S/[id,−] is the 1-adic part of Hochschild cohomology which merely
“scales angles”. The precise definition is as follows:

Definition 24.3. Let A be a full arc system with [NMD]. Denote by S ⊆ HCeven(GtlA) the space of all
even cochains ν such that ν 6=1 = 0, dν = 0, and ν(α) = λαα for some scalar λα for every indecomposable
angle α. Denote by [id,−] ⊆ S the subspace spanned by all Gerstenhaber commutators [ida,−] ∈ S

ranging over a ∈ A.

Proposition 24.4 (Paper I). Let A be a full arc system with [NMD]. Let {νP }P∈P0 be a collection of
even Hochschild cocycles, indexed by some set P0. Assume the following conditions:

• νP ∈ S.

• The collection {νP }P∈P0
is a basis for S/[id,−].

Let {νm,r}m∈M,r≥1 be another collection of even Hochschild cocycles. Assume the following conditions:

• ν0m,r = 0,

• ν1m,r(α) = ℓrmα for indecomposable angles α winding around m.

• ν1m,r(α) = 0 for indecomposable angles α not winding around m.

Then the two collections {νP }P∈P0 and {νm,r}m∈M,r≥1 together form a basis for HHeven(GtlA).

The generation criteria build on the following technical lemma:

Lemma 24.5 (Paper I). Let A be a full arc system with [NMD]. Then:

• A cochain ν ∈ HCodd(GtlA) with dν = 0 and ν0 = 0 satisfies ν ∈ Im(d).

• A cochain ν ∈ HCeven(GtlA) with dν = 0 and ν1 = 0 satisfies ν ∈ Im(d).

24.2 Odd Hochschild cocycles

In this section, we recall odd Hochschild cohomology of gentle algebras from Paper I. The idea to find
Hochschild cocycles of GtlA is to trace Seidel’s explanation [63] on deformations of Fukaya categories.
Seidel’s proposal is to define the higher products relative to a divisor. In Paper I, we translated this
idea to gentle algebras of punctured surfaces. In particular, we describe in Paper I a basis of the odd
Hochschild cohomology. In the present section, we recall this basis.

Example 24.6. We will define the odd Hochschild cocycles νm,r by their behavior on orbigons of type
(m, r). If r = 1, then orbigons of type (m, r) can be interpreted in a more standard way. In fact, they
are the same as immersed disks covering the puncture m precisely once, and no other punctures apart
from m. More precisely, we may say the sequence α1, . . . , αk of angles is an immersed disk covering the
puncture m ∈ M if there is an immersion of the standard polygon Pk into S such that every edge is
mapped to an arc and the immersion covers a single puncture, and only once, namely m. An example of
an immersed disk α1, . . . , αk covering a puncture is depicted in Figure 24.1a.

This basis is best recalled as follows:

Definition 24.7. Let m ∈M be a puncture and r ≥ 1 a natural number. Then the Hochschild cocycle
νm,r is defined by

• The 0-adic component ν0 is ℓrm.

• The 1-adic component ν1 vanishes.

• The 2-adic component ν2 vanishes.

• Assume that α1, . . . , α
(1)
i , ℓrm, α

(2)
i , . . . , αk is a disk sequence. Put αi = α(2)α(1). Let β be an angle

composable with α1 in the sense that βα1 6= 0, and let γ be an angle post-composable with αk in
the sense that αkγ 6= 0. Then put

νk(βαk, . . . , α1) = β, νk(αk, . . . , α1γ) = (−1)|γ|γ.

The higher products ν≥3 vanish on all angle sequences other than these.
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Figure 24.1

The single Hochschild cocycle νid is given by ν0id =
∑
a∈A ida and ν>0

id = 0.

In terms of orbigons, the assumption in Definition 24.7 reads that α1, . . . , αk is the reduced sequence
of an orbigon of type (m, r).

Lemma 24.8 (Paper I). The cochains νid and νm,r are Hochschild cocycles.

Theorem 24.9 (Paper I). The collection of νid and (νm,r)m∈M,r≥1 provides a basis for HHodd(GtlA).

Proof. According to the generation criterion Proposition 24.2, a collection of cocycles is a basis if it has
the right 0-ary components. This is clearly the case.

24.3 Sporadic even cocycles

In this section, we recall a first type of even Hochschild cocycles, the sporadic classes. The idea is to
select just 1-adic cochains ν = ν1 with ν1(α) being a multiple of α whenever α is an indecomposable angle.
More precisely, we pick a collection (νP )P∈P0

⊆ S in such a way that the requirements of Proposition 24.4
are satisfied.

Our starting point is the set S. Recall from section 24.1 that this set consists of all 1-adic cocycles
which are of the form ν1(α) = λαα for every angle α. Simply speaking, S is the set of cocycles among the
1-adic cochains which merely scale angles. Our first step in this section is to make the cocycle condition
explicit:

Lemma 24.10 (Paper I). Let A be a full arc system with [NMD]. Let ν ∈ HCeven(GtlA) be an even
cochain such that ν 6=1 = 0 and ν(α) = λαα for some scalar λα for every indecomposable angle α. Then

dν = 0 ⇐⇒ for every polygon α1, . . . , αk :

k∑

i=1

λαi
= 0.

Whenever ν ∈ S, we also write #ν(α) = λα for the scalar coefficient of ν(α) whenever α is an angle
in A. For instance, we have #ν(αk . . . α1) = #ν(αk) + . . .+#ν(α1).

Lemma 24.11. The quotient S/[id,−] of sporadic cocycles by sporadic inner derivations is isomorphic
to H1(S,M ;C). This space has dimension 2g − 1 + |M |.

Proof. The proof consists of two steps. To compare S/[id,−] and H1(S,M ;C), we will pick a cell decom-
position of the surface S and show that its degree one cocycles are S, while its degree one coboundaries
are [id,−]. In the second step, we read off the dimension of this relative homology space by an alternative
cell decomposition.

For the first step, let us describe the cell decomposition we put on S. It is a dual decomposition to
the punctures, arcs and polygons of A. The zero-dimensional cells are the midpoints of the polygons
plus the punctures M . The one-dimensional cells are arrows from the midpoints of the polygons to all
corners around the polygon. The surface is split into topological disks by the one-dimensional cells, one
for each arc of A. The two-dimensional cells are defined to be those disks. This cell complex is depicted
in Figure 24.2a.

Regard the relative cellular chain complex formed by this cell decomposition, relative to the zero-cells
M . Our aim is to identify its degree-one cocycles with S and its degree-one coboundaries with [id,−].

Let us regard a degree-one cocycle η. Such a cocycle can be written as a linear combination of arrows
from the centers of the polygons to the corners. Note that the arrows are precisely in correspondence
with the indecomposable angles of A. Therefore let us write η =

∑
α λαα with coefficients λα ∈ C. The

cocycle condition, relative to M , is equivalent to requiring that the sum of the coefficients λα vanishes
along each polygon.



361

(a) Cell decomposition iden-
tifying S/I with relative ho-
mology. Arcs of A are drawn
dashed.

a

α1 α2

α3 α4

(b) Surrounding angles

b−1
1

a−1
1

b1

a1

p1...
p|M|
p1

(c) Easy cell decomposition

What are the coboundaries? They are spanned by the coboundaries of all two-dimensional cells.
Regard one two-dimensional cell given by an arc a ∈ A. Its boundary consists of the signed sum of the
four one-cells bounding it. In terms of the angle interpretation of the one-cells as angles of A, this signed
sum is precisely α1 − α2 + α4 − α3, where the angles are numbered as in Figure 24.2b. This coboundary
corresponds exactly to Hochschild coboundary d(ida) ∈ [id,−]. In other words, the quotient of degree-one
cocycles by coboundaries precisely computes S/[id,−].

For the second step, we are supposed to compute the dimension of H1(S,M ;C) by choosing an easier
cell decomposition. Note that the relative homology does not depend on the location of the points M ,
as long as they are distinct. Next, recall that every closed surface of genus g can be split into a single
disk by 2g non-crossing loops a1, . . . , ag and b1, . . . , bg, all starting and ending at a single point p1. The
boundary of the disk is given by the sequence a1, b1, a

−1
1 , b−1

1 , . . ..

Now form the desired cell decomposition as follows. The zero-cells are p1, plus |M | − 1 additional
points p2, . . . , p|M | lying on a1. The one-cells are the 2g− 1 arcs plus the intervals between the points on
a1. Their complement in S is a single disk. Use this disk as the single two-cell. This cell decomposition
is depicted in Figure 24.2c.

We are now ready to compute the degree-one homology of the cell complex of this cell decomposition,
relative to p and the |M | − 1 many points lying on a1. In fact, all 2g− 1 + |M | arcs of the cell decompo-
sition are cocycles, since all endpoints were chosen relative. The space of coboundaries is spanned by the
boundary of the single disk. Since all arcs appear precisely twice around this disk with opposite orienta-
tion, the space of degree-one coboundaries vanishes. We conclude the relative homology H1(S,M ;C) is
of dimension 2g − 1 + |M |.

Definition 24.12. The sporadic classes are any choice of basis representatives (νP )P∈P0
⊆ S for

S/[id,−]. The index set P0 has cardinality 2g − 1 + |M |.

25 Even Hochschild cocycles

In this section, we construct explicit even Hochschild cocycles. Recall that we have already constructed
sporadic even Hochschild cocycles (νP )P∈P0

⊆ S in section 24.3. In the present section, we define a
second class of Hochschild cocycles which we call the ordinary even Hochschild cocycles. The sporadic
and ordinary even Hochschild cocycles together will form a basis for the even Hochschild cohomology.

We proceed as follows: In section 25.1, we given an explicit description of Hochschild cocycles ν.
In section 25.2, we check that the Hochschild cochain dν vanishes on a certain type of sequences which
we call parking garage sequences. In section 25.3, we check that dν also vanishes on all other types of
sequences. In total, we obtain that dν = 0. In section 25.4 we construct the Hochschild cocycles νm,r.
We show that together with the sporadic cocycles they provide a basis for HHeven(GtlA). Finally, we
comment on the Gerstenhaber bracket and cup product on Hochschild cohomology.

25.1 Construction

In this section we construct even Hochschild cocycles explicitly from certain input data. The input data
consists of a choice of puncture m ∈ M , a natural number r ≥ 1 and a choice of “weight” for every
indecomposable angle around m. The construction of the Hochschild cocycle associated with this data is
similar to the odd case, albeit more tricky.
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Input scalars #ν1(α)

Splitting angles Magic angles

Turning angles

Construction of ν=⇒
=⇒
=⇒
=⇒

Figure 25.1: Logical structure of notions

The basic idea of the construction is as follows: Let α1, . . . , αk, ℓ
r
m be a disk sequence. Then we define

ν(αk, . . . , α1) as the identity on the first, equivalently last arc of the sequence. This idea is depicted in
Figure 25.2a. This does not suffice however to make ν a cocycle. Instead, we need to give ν nonzero
values on certain other special sequences and choose the scalars of these values in a clever way. It turns
out there is no canonical choice for the scalars. We therefore start from the datum of a scalar value
#ν(α) for every indecomposable angle α winding around m. Defining the special sequences is rather
intricate and makes use of what we call turning angles and magic angles. To define magic angles, we have
to define yet another auxiliary notion, the splitting angles. The structure of the section is summarized
in the logical diagram Figure 25.1.

Arc system We fix a full arc system A which satisfies the [NMD] condition.

Input scalars We assume the choice of a puncture m ∈M , a natural number r ≥ 1 and the choice of
a scalar #ν1(α) for every indecomposable angle α winding around the puncture m. An example of input
scalars is depicted in Figure 25.2b.

Splitting angles We introduce here precise measurement for certain angles. In terms of orbigons,
it concerns angles between different ways of viewing an orbigon as a fold. We try to break down the
terminology as far as possible to the more elementary notion of disk sequences.

Let s = α1, . . . , αk be an angle sequence. We regard indices 1 ≤ i ≤ k such that αi has a decomposition

αi = α
(2)
i α

(1)
i such that α1, . . . , α

(1)
i , ℓrm, α

(2)
i+1, . . . , αk is a disk sequence. We define the splitting set Is

of s = α1, . . . , αk to be the set of such indices and decompositions:

Is = {(i, α
(1)
i , α

(2)
i ) | 1 ≤ i ≤ k, αi = α

(2)
i α

(1)
i ,

α1, . . . , α
(1)
i , ℓrm, α

(2)
i+1, . . . , αk is a disk sequence}.

The set Is may be empty. The more often the sequence α1, . . . , αk winds around m, the larger the set
Is. An example sequence s = α1, . . . , α6 in case r = 1 together with its splitting set Is is depicted in

Figure 25.2c. The elements of Is are totally ordered by the number i, or the length of α
(1)
i among equal

indices. We capture the angle between two elements of Is in the following terminology:

Definition 25.1. Let (i, α
(1)
i , α

(2)
i ) ≤ (j, α

(1)
j , α

(2)
j ) be two elements of Is. Then the splitting angle

between (i, α
(1)
i , α

(2)
i ) and (j, α

(1)
j , α

(2)
j ) is

• if i < j, then α is the angle such that α
(2)
i , αi+1, . . . , αj−1, α

(1)
j , α is a disk sequence.

• if i = j, then we set α = (α
(1)
i )−1α

(2)
j

In case i = j, the splitting angle is simply speaking the difference between α
(1)
i and α

(1)
j . In Fig-

ure 25.2c, we have illustrated the splitting angle in case i < j. In the figure, the splitting angle is drawn
dashed.

Definition 25.2. If Is is nonempty, the splitting angle of an element (i, α
(1)
i , α

(2)
i ) ∈ Is is the splitting

angle between min Is and (i, α
(1)
i , α

(2)
i ).

In terms of orbigons, all terminology is easily described as follows: The set Is is nonempty if α1, . . . , αk
is the reduced sequence of an orbigon X of type (m, r). The set Is is then simply the set of all possible
ways the orbigon X can be obtained via folding. The minimum min Is is the earliest possible way to
obtain X via folding.
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(c) Splitting angle (dashed)

Figure 25.2: Illustration of ideas and auxiliary notions

Construction of the cochain We are now ready to construct a cochain ν from given collection of
input scalars #ν1. The idea is to define ν1 as the derivation which sends an indecomposable angles α to
#ν1(α)αℓrm. Whenever α1, . . . , αk are indecomposable angles around m such that αk . . . α1 6= 0, let us
already now write

#ν1(αk . . . α1) = #ν1(αk) + . . .+#ν1(α1).

The higher component ν≥2 will be defined on four types of distinguished sequences. To every such
distinguished sequence, we define the associated turning angle and the associated magic angle. The
contribution of the sequence to ν≥2 is defined in terms of these two angles. The full definition reads as
follows:

Definition 25.3. Let A be a full arc system with [NMD]. Let m ∈M , r ≥ 1 and let #ν be a collection
of input scalars around m. Then the associated even Hochschild cochain ν is defined by the following
rules. For every rule, we define indicate its turning angle and its magic angle.

• The 0-adic component ν0 vanishes.

• The 1-adic component ν1 is defined by ν1(α) = #ν1(α)αℓrm for α winding around m.

• An angle sequence α1, . . . , αk is end-split with turning angle < ℓr if there exists an angle α
winding around m with α < ℓr such that α1, . . . , αk, α is a disk sequence. The turning angle of the
sequence is the angle α. The magic angle of the sequence is ℓrm. The contribution to ν is

νk(αk, . . . , α1) = (−1)‖α‖#ν1(α)α−1ℓrm.

• An angle sequence α1β, . . . , αk with α1β 6= 0 is old-era end-split with turning angle ℓr if
α1, . . . , αk, ℓ

r is a disk sequence. The turning angle of the sequence is ℓr. The magic angle of the
sequence is ℓrm. The contribution to ν is

νk(αk, . . . , α1β) = −#ν
1(ℓrm)β.

• An angle sequence α1β, . . . , γαk with γ 6= id is new-era end-split with turning angle ℓr if
α1, . . . , αk, ℓ

r is a disk sequence. The turning angle of the sequence is ℓr. Regard the arc (more
precisely, arc incidence) which is the head of αk, equivalently the tail of α1. The magic angle of the
sequence is the indecomposable angle n around m which follows this arc clockwise around m. The
contribution to ν is

νk(γαk, . . . , α1β) = −#ν
1(n)γβ.

• An angle sequence α1, . . . , γαk or α1β, . . . , αk is middle-split if there is a 0 < i < k such that
α1, . . . , αi, ℓ

r, αi+1, . . . , αk is a disk sequence. The turning angle of the sequence is ℓr. The triple
(i, αi, αi+1) defines an element of the splitting set Is of the sequence s = α1, . . . , αi+1αi, . . . , αk.
The magic angle of the sequence is the splitting angle α of (i, αi, αi+1) with respect to the angle
sequence s. The contribution to ν is

νk(γαk, . . . , α1) = (−1)‖α1‖+...+‖αi‖#ν1(α)γ,

νk(αk, . . . , α1β) = (−1)‖α1‖+...+‖αi‖#ν1(α)β.

Remark 25.4. The higher components ν≥2 are well-defined: Any angle sequence falls within at most one
of the four types presented in Definition 25.3. Whenever it falls within one of the types, its presentation



364 25. Even Hochschild cocycles

in terms of αi, β or γ is unique. In case the angle sequence is middle-split, the index i is unique.
Alternatively, it is possible to circumvent this uniqueness statement. Indeed, add up contributions to ν
instead, as in the odd case of Paper I.

Remark 25.5. The sign rules follow a united pattern: If α1, . . . , αk is end-split with turning angle
α < ℓr, the sign (−1)‖α‖ is equal to (−1)‖α1‖+...+‖αk‖ since α1, . . . , αk, α is a disk sequence and reduced
degrees in a disk sequence add up to even parity. If α1, . . . , αk is (old-era or new-era) end-split with
turning angle ℓr, the sign −1 is equal to (−1)‖α1‖+...+‖αk‖. More generally, the sign consumes precisely
the angles between the minimum element of Is and the split actually taken by the sequence.

Remark 25.6. The rules for middle-split and end-split ν are analogous: They yield exactly the same
result, except that the end-split rule for magic angle < ℓr does not allow for additional β and γ at
the front and at the back. For example, even the signs agree, since ‖ℓrm‖ is odd. Let us explain why
we distinguish the two rules. The first rule yields α−1

k ν1(αk)α
−1
k . This angle always winds around m.

Evaluate
0 = (dν)(γ, αk, . . . , α1) = µ2(γ, ν(αk, . . . , α1))− ν(µ

2(γ, αk), . . . , α1)

This yields ν(γαk, . . . , α1) = γν(αk, . . . , α1). If αk is less than ℓrm, then ν(αk, . . . , α1) is non-empty
and winds around m, while γ leaves the arc at the opposite side. Hence the product vanishes, except
if ν(αk, . . . , α1) is the identity. This happens precisely in the borderline case that αk consists of r full
turns: αk = ℓrm. Only in this case additional β and γ on the left and right make sense. This explains the
distinction between the first and second rule.

The rule for middle-split sequences has appearance similar to the odd case. One may in principle add
γ and β simultaneously on both sides. This addition is however vacuous: The angles γ and β are not
composable and γβ = 0.

25.2 Cancellation on parking garage sequences

In this section, we perform first checks for the cocycle condition. Our starting point is a cochain ν defined
in Definition 25.3 from input scalars #ν1. In the present section, we check that dν = [µ, ν] vanishes on
certain sequences, which we call parking garage sequences.

Many of the terms in [µ, ν] are easy to cancel away in pairs. Some are harder and cancel away only
as a whole. All sequences α1, . . . , αk producing hard terms in [µ, ν] are of the same type: they have
an angle αi around m such that µ(. . . , ν1(αi), . . .) is a nonzero contribution. That is, once we prolong
αi by r turns around m, the sequence α1, . . . , ℓ

rαi, . . . , αk becomes a disk sequence. After αk plus ℓr

turns around m, the prolonged sequence compensates its turns by winding back around m in clockwise
direction. Let us regard the path traced by the sequence as it winds back. Regard the polygons lying
around m in clockwise order. Since α1, . . . , ℓ

rαi, . . . , αk is supposed to be a disk sequence, the winding
back path runs around all these polygons in clockwise order. It may have additional disks stitched to it
at the polygons’ outside, but the basic structure is a helix consisting of the polygons around m. Such a
sequence resembles a parking garage spiral, with optional parking space attached on the exterior of each
polygon. The schematic is depicted in Figure 25.3.

Let us describe in formulas how the helix is formed. Denote for a moment by P1, . . . , Pl the polygons

traced by the sequence. Let α
(i)
1 , . . . , α

(i)
si be their internal angles, with α

(i)
1 being the angle at m. The

parking garage sequence then consists of the angles

α
(1)
2 , . . . , α

(1)
s1−1, α

(2)
2 α(1)

s1 , . . . , α
(2)
s2−1, α

(3)
2 α(2)

s2 , . . . , α
(l)
sl−1

plus the long turn angle around m, consisting of all the polygon angles at m minus r full turns:

α
(1)
1 . . . α

(l)
l ℓ

−r.

Let us explain how the additional parking space is attached. Regard a polygon α
(i)
1 , . . . , α

(i)
si in the spiral.

The angle α
(i)
1 is the angle at q. The angles α

(i)
2 and α

(i)
si are the angles next to q and are used to attach

the polygons to each other, forming the parking spiral. The parking spiral has l polygons and l − 1
interior arcs. Its outer boundary consists of

∑
(si − 1) − 1 many exterior arcs, a start arc and an end

arc. The additional parking space in the form of disk sequences β1, . . . , βm may now be attached to the
exterior arcs. Wherever we add parking space around the spiral, we augment the garage sequence by that
additional disk sequence. When attaching to arcs not involved in the spiral gluing, the augmentation
looks like

. . . , α
(i)
j , α

(i)
j+1, . . .  . . . , β1α

(i)
j , β2, . . . , βm−1, α

(i)
j+1βm, . . . .
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Figure 25.3: Illustration of parking garage sequences

When attaching to one of the two exterior arcs of the polygon next to the gluing, the augmentation rather
looks like

. . . , α
(j+1)
2 α(j)

sj , α
(j+1)
3 , . . .  . . . , β1α

(j+1)
2 α(j)

sj , β2, . . . , βm−1, α
(j+1)
3 βm, . . .

in case of the first exterior arc of a polygon, and looks like

. . . , α
(j)
sj−1, α

(j+1)
2 α(j)

sj , . . .  . . . , β1α
(j)
sj−1, β2, . . . , βm−1, α

(j+1)
2 α(j)

sj βm, . . . .

in case of the last exterior arc of a polygon. Let us put this definition on paper.

Definition 25.7. A parking garage sequence consists of tracing consecutive polygons around m in
clockwise order, and compensating all these turns minus ℓr by a single angle around m. Additional disk
sequences may be stitched to the exterior arcs of the sequence.

We aim at showing that dνP vanishes on its parking garage sequences. Regard such a garage sequence
αs, . . . , α1, α, αk, . . . , αs+1. What terms appear in dνP , applied to this sequence? First, it is possible
to apply ν1 to α. Indeed, the garage sequence becomes a disk sequence once we prolong α by r turns
and hence µ(. . . , ν1(α), . . .) is one of the terms in dνP . Second, it is possible to apply an inner end-split
ν to any part of the outer sequence that is precisely r turns long. Such terms give roughly as many
contributions as there are polygon sectors around the spiral, and they add up nicely. Finally, it is also
possible to apply an inner µ to the top-most part of the garage or the bottom-most part of the garage.

Let us explain why no other terms appear.
To ease the calculation, we reduce a given garage sequence to its minimal version that has all additional

parking space removed. This minimal version has the same individual terms in dνP as the original garage
sequence: Additional parking space merely consists of (incomplete) disk sequences and creates no further
options to evaluate µ or ν. Moreover, the value of the individual terms stays exactly the same: For
example, the signs for inner end-split ν evaluations are independent of the length of the β and γ angles
entering and leaving the additional parking space. While the signs for the top-most inner µ do depend on
the degree of the angle leaving the parking space at angle α below the top, this is compensated again by
the sign (−1)‖µ‖·... associated with this term ν(. . . , µ(α, αk, . . .), . . .) in the Hochschild differential, since
µ is odd.

Let us now make this rigorous, check the signs and add up all terms.

Lemma 25.8. We have dνP = 0 on parking garage sequences.

Proof. Let us start by listing up all terms with signs and result. Since we choose a parking garage
sequence without extra angles β or γ at start or end, all results of contributions µ(ν) or ν(µ) in dνP are
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scalar multiples of the identity of the first/last arc h(αs) = t(αs+1) of the garage sequence. In the list
below, we indicate this scalar for all terms, as well as the sign due to the Hochschild differential.

We start with the generic case, where the beginning and end of the garage sequence lie somewhere
one the outer spiral. That is, the final arc is not α or αk. In other words, the first arc is not α or α1.

To ease the calculation, let us define three angles top, mid and bot, all winding around m. These
angles can best be read off from Figure 25.3a. First of all, mid is the sector around m that the start/end
of the sequence lies in. For example, the arc h(αs) = t(αs+1) lies in this sector. The angle mid now splits
the spiral angle αℓr into two more parts: top lying above mid, and bot lying below mid.

In other words, top forms a disk sequence together with the angles αs+1, . . . , αk (minus the part of
αs+1 and those successor angles that reach into the special sector mid). Similarly, bot forms a disk
sequence with α1, . . . , αs (minus the part lying in mid).

With this notation we can write bot ·mid · top = αℓr. Recall that #ν1(β) is the scalar coefficient of
ν1(β), for any angle β. With this in mind, we have

#ν1(bot) + #ν1(mid) + #ν1(top) = #ν1(α) + #ν1(ℓr).

For convenience, denote by first that sector around m that is bottom-most in the garage sequence. In
other words, α1 lies in this sector.

1. µ(. . . , ν1(α), . . .)

This term is characteristic for the garage sequence and appears always. Its result has scalar coeffi-
cient #ν1(α). The Hochschild sign is +1.

2. µ(. . . , α, ν(αk, . . .), . . .)

This top-most inner end-split ν appears if the outer sequence from start to top is at least r full
turns long. Its result has scalar coefficient −#ν1(ℓr). The Hochschild sign is +1.

3. µ(. . . , ν(. . . , α1), α, . . .)

This bottom-most inner end-split ν appears if the outer sequence from bottom to stop is at least r
full turns long. Its result has scalar coefficient −#ν1(first), where first is the first sector around m
at the bottom of the sequence. The Hochschild sign is +1.

4. µ(. . . , α, . . .︸︷︷︸
≥1

, ν(. . .), . . .)

Such top-part inner end-split ν terms appear if the outer sequence from start to top is more than r
full turns long. Their individual result coefficients are −#ν1 of the next sector after their end. In
total, all these terms add up to −#ν1(top · ℓ−r) = −#ν1(top) + #ν1(ℓr). The Hochschild sign is
+1.

5. µ(. . . , ν(. . .), . . .︸︷︷︸
≥1

, α, . . .)

Such bottom-part inner end-split ν terms appear if the outer sequence from bottom to stop is more
than r full turns long. Their individual result coefficients are −#ν1 of the next sector after their
end. In total, all these terms add up to −#ν1(mid)−#ν1(bot · ℓ−r) +#ν1(first). The Hochschild
sign is +1.

6. ν(. . . , µ(α, αk, . . . , αt), . . .)

This top-most inner µ appears if the outer sequence from start to top includes α. The first angle

of the inner µ is a certain αt, and a part α
(1)
t of it reaches outside the disk, so write αt = α

(2)
t α

(1)
t .

The outer ν application is middle-split and gives an extra sign, so that the result coefficient is

(−1)|α
(1)
t #ν1(top · α−1) · (−1)‖αs+1‖+...+‖α

(1)
t ‖.

The Hochschild sign is (−1)1+‖αs+1‖+...+‖αt−1‖, rendering a total contribution to dνP of merely
#ν1(top · α−1).

7. ν(. . . , µ(αt, . . . , α1, α), . . .)

This bottom-most inner µ appears if the outer sequence from bottom to stop includes α. The final

angle of the inner µ is a certain αt, and a part α
(2)
t of it reaches outside the disk, so write αt =

α
(2)
t α

(1)
t . The outer ν is again middle split, yielding a result coefficient of (−1)‖αs+1‖+...+‖αk‖#ν1(top).

The Hochschild sign is (−1)1+‖αs+1‖+...+‖αk‖, rendering a total contribution to dνP of −#ν1(top).
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It remains to check that all these terms cancel out, regardless of the length of α and the location of the
start and end index s. For this, we need a case distinction after the length of the angles involved. For
example, by top ≥ α we mean that the top angle of the garage sequence includes α. We are now ready
to summarize the contributions of terms 1–7 as follows:

• Term 1 always yields a contribution of #ν1(top) + #ν1(mid) + #ν1(bot)−#ν1(ℓr).

• If top ≥ ℓr, then 2+4 yield a total contribution of −#ν1(top).

• If bot ≥ α, then 7 yields a total contribution of −#ν1(top).

• If top ≥ α, then 6 yields a total contribution of #ν1(ℓr)−#ν1(mid)−#ν1(bot).

• If bot ≥ ℓr, then 3+5 yield a total contribution of #ν1(ℓr)−#ν1(mid)−#ν1(bot).

Since αℓr = bot ·mid ·top and mid consists of precisely one sector, we have that either top ≥ ℓr or bot ≥ α
(but not both). Similarly, either top ≥ α or bot ≥ ℓr. We conclude that either way, all contributions to
dνP add up as

#ν1(top) + #ν1(mid) + #ν1(bot)−#ν1(ℓr)−#ν1(top) + #ν1(ℓr)−#ν1(mid)−#ν1(bot) = 0.

Let us now regard the two exceptions where the start is right before α or right after α. The difference
with the generic case is that there is no proper mid sector. Let us regard the first exceptional case, where
the sequence consists of the angles α, α1, . . . , αk. Then there are no 2, 4 or 6 terms, since the top is
basically empty. The bottom-most terms 3+5 contribute however with #ν1(α) as in the generic case,
and the bottom-most term 7 is special and contributes by #ν1(ℓr). A special contribution of −#ν1(ℓr)
comes from µ(ν(αk, . . .), . . . , α), the equivalent of the mid term in the generic case of 5. Finally, the 1
term contributes #ν1(α) as in the generic case. In total, these four terms add up to zero.

Let us regard the second exceptional case, where the sequence consists of the angles α1, . . . , αk, α.
Then there are no 3, 5 or 7 terms, since the bottom is empty. The top-most term 2 contributes −#ν1(α),
the other top 4 terms contribute −#ν1(ℓr), and the top 6 term contributes #ν1(ℓr). Together with the
type 1 term #ν1(α), this adds up to zero again.

Lemma 25.9. We still have dνP on parking garage sequences when a γ is attached at the front and/or
a β attached at the back.

Proof. Let us regard a garage sequence with additional γ at the end. Regard first the case where the
final angle is one of α1, . . . , αk−1. Then that final angle αs+1 changes to γαs+1. We claim the effect on
dνP , applied to the garage sequence, is merely a multiplication by γ. Essentially, this means checking
that all old-era ν contributions stay old-era.

For example, let us check the first three types of terms explicitly. The contribution of term 1 gets
only multiplied by γ. For term 2, this is also true, since the final angle is assumed not to be α, and the
outer µ itself gets multiplied by γ. This holds likewise for term 3, except in the case when there are no
angles to the left of the inner ν, where the term looks like µ(ν(. . . , α1), α, . . .). Since the final angle is
not αk, the inner ν was of new-era type. Prolonging the final angle naturally preserves the new-era type
of the ν evaluation.

Now let us regard the two special cases where the final angle is either α or αk. We start with the
case where the final angle is α. The garage is then the sequence α1, . . . , αk, γα. Inspecting all terms 1–7,
most terms just get multiplied by γ, but we also incur the following changes:

• µ(ν1(γα), αk, . . . , α1) now contributes #ν1(γ) extra,

• ν(µ(γα, αk, . . .), . . . , α1) keeps contributing as long as γ < ℓr, but the rotation amount of the outer
ν now decreases from ℓr to ℓrγ−1. This means it contributes #ν1(γ) less. When γ ≥ ℓr, it stops
contributing entirely, meaning it contributes #ν1(ℓr) less than in the case without γ.

• The new term ν1(µ(γα, αk, . . . , α1)) suddenly starts contributing when γ > ℓr, namely by #ν1(γℓ−r).
The Hochschild sign is −1.

Adding up these extra contributions, the total remains precisely the same as in the case without γ, for
γ < ℓr as well as γ ≥ ℓr.

Now regard the case that αk is the final angle of the garage sequence. The sequence is then
α, α1, . . . , γαk. We have the following contributions:

1. µ(. . . , ν1(α))

This simply gets multiplied by γ and the result is #ν1(α)γ. The Hochschild sign is +1.
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2’. µ(ν(γαk, . . .), . . . , α)

While the generic case term 2 has inner ν of old-era type, this pendant is new-era and yields
−#ν1(next)γ, where n is the next sector after the top of the garage. The Hochschild sign is +1.

3. µ(γαk, . . . , ν(. . . , α1), α)

In no case is it possible to take an inner ν that includes all angles from α1 to αk, since these angles
cover strictly more than r turns around m. Therefore γαk lies outside of the inner ν, which thereby
remains old-era. The outer µ simply gets multiplied by γ and gives −#ν1(first)γ. The Hochschild
sign is +1.

4. Terms of type 4 do not appear when αk is the final angle.

5. µ(. . . , ν(. . .), . . .︸︷︷︸
≥1

, α)

We do not count µ(ν(γαk, . . .), . . . , α) among these terms, since we already attributed it to 2’.
Then, all that changes for these type 5 terms is that they get multiplied by γ. They add up to(
−#ν1(α) + #ν1(first)

)
γ. The Hochschild sign is +1.

6. The term of type 6 does not appear when αk is the final angle.

7. ν(. . . , µ(αt, . . . , α1, α))

Since the angles α1, . . ., αk cover strictly more than the angle α does, we have t < k. In other
words, ν was old-era and becomes new-era. Its new value is −#ν1(next)γ. The Hochschild sign is
−1.

In total, this adds up to zero again. Let us finally comment on the changes we incur once we add β at the
back, in addition to a possible γ. Both µ≥3 and ν≥2 are “equivariant” under appending β at the back.
It remains to check the cases where ν1 is involved, and check for longer terms appearing because α gets
longer. If one of α1, . . ., αk is the angle in the back of the sequence, it is readily checked that all terms
simply get multiplied by β. If α is the angle in the back, we incur the following changes:

• ν(. . . , µ(. . . , αβ)) still contributes as long as β < ℓr, however the sequence the inner µ is applied
to becomes longer and longer, and similarly the magic angle of the outer ν becomes shorter and
shorter. We lose −#ν1(β) as coefficient. If β ≥ ℓr, the term does not contribute anymore at all,
and we have lost −#ν1(ℓr), compared to the sequence without β. The Hochschild sign is −1. All
signs together, we deduce an extra contribution of −#ν1(β) or −#ν1(ℓr).

• ν1(µ(αk, . . . , α1, αβ)) starts to contribute once β > ℓr, namely by #ν1(βℓ−r). The Hochschild sign
is −1.

• µ(αk, . . . , α1, ν
1(αβ)) contributes an extra #ν1(β). The Hochschild sign is +1.

Whether β ≤ ℓr or β > ℓr, we conclude the additional contribution vanishes, compared to the case
without β.

Finally, when both non-empty β and γ are appended, we conclude the result is a multiple of γβ, which
vanishes. Indeed, pick two consecutive angles around the garage sequence. Then appending an angle γ
behind the first and an angle β behind the second necessarily makes β and γ incomposable.

25.3 Cancellation on other sequences

In the section 25.2, we checked that dν vanishes on parking garage sequences. Here ν is an even Hochschild
cochain constructed in section 25.1 from the input data m ∈ M , r ≥ 1 and input scalars #ν1(α). In
the present section, we check that dν also vanishes on all other sequences of angles. The procedure is as
follows: Pick a sequence α1, . . . , αk of angles and evaluate dν(αk, . . . , α1). This gives a collection of terms
of the form µ(. . . , ν(. . .), . . .) and ν(. . . , µ(. . .), . . .). We show how to partition this collection of terms
such that within each partition, the terms cancel each other. In contrast to the odd case, the partitions
do not always consist of two, but sometimes also of three terms.

Of course, we cannot handle each individual sequence of angles individually, but rather need to classify
sequences according to their shape. Most importantly, we distinguish the shapes according to the types
of µ and ν that can be applied and the number of angles before and after the inner application. This
way, we can partition all possible sequences of angles α1, . . . , αk and terms appearing in dν(αk, . . . , α1)
in bulk format: Each of the partitions we provide makes reference to a particular shape.

In total, this procedure requires considerable case-checking effort, namely

1. listing all partitions,
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2. characterizing for each partition the required sequence shape,

3. proving that each partition sums up to zero,

4. mapping each term in dν(. . .) to one partition,

5. proving all terms in all partitions are hit at most once,

6. proving all terms in all partitions are hit at least once.

We do not conduct all steps rigorously. In fact, we concentrate on 1, 2, 3, 4, but without rigor. Below,
we list all partitions, ordered roughly after the type of sequence involved. Typically, such a sequence
winds once around a certain area and then around another, possibly the one being nested in the other.
We indicate the type of these areas as “disk”, “< ℓr” or “ℓr”. In the figures, the thick dot indicates the
location of m and the grey rings indicate the magic angles of the ν(. . .) for every involved cancelling term.

Remark 25.10. The list indicates clearly that the given pair or triple of terms cancels. To see this,
recall that ν(. . .) is by definition weighted with the input scalar #ν1 of its magic angle. In order to make
the claimed pairs or triples of terms cancel each other, we need to show that a signed sum of input scalars
of the magic angles is zero. Since the input scalars #ν1 are additive on angles, this amounts to checking
that every indecomposable angle around m appears in an even number of magic angles (ignoring signs).
The reader can easily convince himself that this is the case by looking at the grey rings around m in
every figure: Every ray away from m hits an even number of grey rings.

No. Figure Cancelling terms Ref.

1

mm+1

1k

<ℓr <ℓr

ℓr

µ(. . . , ν(αm, . . . , α1))
µ(ν(αk, . . . , αm+1), αm, . . . , α1)
ν(. . . , µ2(αm+1, αm), . . .)

25.11a
25.13a
25.28

2 k 1

ss+1 m

ℓr

µ(. . . , ν(αs, . . . , α1))
µ(ν(αk, . . . , αm), . . . , α1)
ν(. . . , µ2(αs+1, αs), . . .)

25.11b
25.15b
25.28

3

mm+1

2
1

k

<ℓr <ℓr

ℓr

µ(. . . , ν(αm, . . . , α1))
µ2(ν(αk, . . . , α2), α1)
ν(. . . , µ2(αm+1, αm), . . .)

25.11c
25.23b
25.28

4

mm+1

k
1

<ℓr <ℓr

< ℓr

µ(. . . , ν(αm, . . . , α1))
µ(ν(αk, . . . , αm+1), αm, . . . , α1)
ν(. . . , µ2(αm+1, αm), . . .)

25.11d
25.13a
25.28
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No. Figure Cancelling terms Ref.

5

nn+1

1

m+1m

<ℓr <ℓr

ℓr

µ(. . . , ν(αm, . . .), . . .)
ν(. . . , µ2(αm+1, αm), . . .)
ν(. . . , µ2(αn+1, αn), . . .)

25.12
25.28
25.28

6

mm+1

1
k

<ℓr <ℓr

ℓr

µ(ν(αk, . . . , αm+1), αm, . . .)
µ2(αk, ν(αk−1, . . . , α1))
ν(. . . , µ2(αm+1, αm), . . .)

25.13a
25.25b
25.28

7

m

k

1ℓr

µ(ν(αk, . . . , αm), . . . , α1)
ν(αk, . . . , µ(αm, . . . , α1))

25.14c
25.18d

8 k 1

m n

ℓr

µ(ν(αk, . . . , αn), . . .)
ν(. . . , µ(αm, . . . , α1))

25.15a
25.19b

9

ss+1

k 1

m n

ℓr

µ(ν(αk, . . . , αn), . . .)
µ(. . . , ν(αm, . . . , α1))
ν(. . . , µ2(αs+1, αs), . . .)

25.15c
25.16
25.28

10

s

s+1

m

1
k

ℓr

µ(ν(αk, . . . , αm), . . .)
ν(. . . , µ2(αs+1, αs), . . .)
µ2(αk, ν(αk−1, . . . , α1))

25.15d
25.28
25.25c

11

s

s+1

n

1

m+1m

ℓr

µ(. . . , ν(αm, . . . , αn), . . .)
ν(. . . , µ2(αm+1, αm), . . .)

25.16a
25.28

12

s

s+1

m

1k

ℓr

µ(ν(αk, . . . , αm), . . . , α1)
ν(αk, . . . , µ(αm, . . . , α1))

25.16b
25.19a
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No. Figure Cancelling terms Ref.

13

m

1k−1

kdisk <ℓr

< ℓr

ν(µ(αk, . . . , αm+1), αm, . . .)
µ(ν1(αk), . . .)
µ2(αk, ν(αk−1, . . . , α1))
α < ℓr

25.17a3
25.22
25.27b

14

n

1

m+1m

<ℓr

ν(. . . , αm+1, µ(αm, . . . , αn), . . .)
ν(. . . , µ2(αm+1, αm), . . .)

25.17b
25.28

15

1

k

≤ℓr

ν1(µ(αk, . . . , α1))
µ(. . . , ν1(α1))
µ2(ν(αk, . . . , α2), α1)
α ≤ ℓr, α1 ≥ α

25.20b
25.21c
25.24c

16

m

k
1

<ℓr <ℓr

≤ ℓr

ν(. . . , µ(αm, . . . , α1))
µ(. . . , ν1(α1))
µ2(ν(αk, . . . , α2), α1)
α ≤ ℓr, α1 < α

25.17c
25.21b
25.24b

17

nn+1

1

m

<ℓr

ν(. . . , µ(αm, . . . , αn+1), . . .)
ν(. . . , µ2(αm+1, αm), . . .)

25.17d
25.28

18

n

1

m+1m

ℓr

ν(. . . , µ(αm, . . . , αn), . . .)
ν(. . . , µ2(αm+1, αm), . . .)

25.18b
25.28

19

nn+1

1

m

ℓr

ν(. . . , µ(αm, . . . , αn+1), . . .)
ν(. . . , µ2(αn+1, αn), . . .)

25.18e
25.28

20

s

s+1nn+1

1
m

ℓr

ν(. . . , µ(αm, . . . , αn+1), . . .)
ν(. . . , µ2(αn+1, αn), . . .)

25.19c
25.28
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No. Figure Cancelling terms Ref.

21

s

s+1m

2
1

k

ℓr

µ2(ν(αk, . . . , α2), α1)
µ(. . . , ν(αm, . . . , α1))
ν(. . . , µ2(αs+1, αs), . . .)

25.23c
25.16
25.28

22

s

s+1

1
k

2

ℓr

µ2(ν(αk, . . . , α2), α1)
ν(. . . , µ2(αs+1, αs), . . .)
µ2(αk, ν(αk−1, . . . , α1))

25.23d
25.28
25.25d

23

s

s+1

12

k

ℓr

µ2(ν(αk, . . . , α2), α1)
ν(αk, . . . , µ

2(α1, α2))
25.24a
25.28

24

12

k

≤ℓr

µ2(ν(αk, . . . , α2), α1)
ν(αk, . . . , µ

2(α2, α1))
25.24c
25.28

25

s

s+1m

1
k

ℓr

µ2(αk, ν(αk−1, . . . , α1))
ν(µ(αk, . . . , αm), . . . , α1)

25.25a
25.19

26

m

1k−1

k

ℓr

µ2(αk, ν(αk−1, . . . , α1))
µ(ν1(αk), αk−1, . . . , α1))
ν(µ(αk, . . . , αm), . . . , α1)
α = ℓr

25.26a
25.22
25.17a2

27

1

k−1
k

ℓr

µ2(αk, ν(αk−1, . . . , α1))
ν(µ2(αk, αk−1), . . . , α1))

25.26b
25.28

28
k−1

k

m

1

ℓr

µ2(αk, ν(αk−1, . . . , α1))
µ(ν(αk, . . . , αm), . . . , α1))
ν(µ2(αk, αk−1), . . . , α1)

25.26c
25.15e
25.28
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No. Figure Cancelling terms Ref.

29

k−1

k
1

ℓr
µ2(αk, ν(αk−1, . . . , α1))
ν(µ2(αk, αk−1), . . . , α1)
µ2(ν(αk, . . . , α2), . . . , α1)

25.26d
25.28
25.23e

30

s

s+1

1

k−1
k

ℓr

µ2(αk, ν(αk−1, . . . , α1))
ν(µ2(αk, αk−1), . . . , α1))

25.27a
25.28

We now investigate all possible terms in dν(. . .). For every term, we provide the other terms with
which it cancels. These pairs or triples can be found back in the partition list above. A few possible
terms are omitted due to analogy with other terms, and we have correspondingly not listed them in the
partition table either. In Proposition 25.29, we draw the conclusion that dν = 0.

Lemma 25.11. A contribution µ≥3(. . . , ν≥2(. . .)) with ν end-split with turning angle < ℓr cancels.

Proof. Since we assumed the inner ν to be end-split with turning angle < ℓr, its result is some angle α
winding around m. Then α forms a disk sequence together with αm+1, . . . , αk. In order to find the terms
canceling the contribution, we distinguish the following cases: (a) The angle α is an ordinary interior
angle for the outer µ, and the outer µ is all-in. (b) The angle α is an ordinary interior angle for the outer
µ, the outer µ is final-out, and the result part of αk is shorter than α1. (c) The angle α is an ordinary
interior angle for the outer µ, the outer µ is final-out, and the result part of αk is longer than α1. (d)
The angle α is a first-out angle. See Figure 25.5.

Regard case (a). Then we have the triple cancellation

µ≥3(. . . , ν≥2(αm, . . . , α1)) + µ≥3(ν≥2(αk, . . . , αm+1), αm, . . . , α1) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Regard case (b). Then αk includes a γ at the front, but is short. It splits the input sequence of ν into
a “small” disk sequence and a remaining “big” part. We get the cancellation

µ≥3(. . . , ν≥2(αm, . . . , α1)) + µ≥3(ν≥2(αk, . . . , αt), . . . , α1) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Regard case (c). Then the long αk angle makes it possible to create another inner ν, the third one in
the following cancellation:

µ≥3(. . . , ν≥2(αm, . . . , α1)) + µ2(ν≥2(αk, . . .), α1) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Regard case (d). Then we can apply ν to both disks. Their sum gets compensated by combining the
two disks:

µ≥3(. . . , ν≥2(αm, . . . , α1)) + µ≥3(ν≥2(αk, . . . , αm+1), αm, . . . , α1) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Lemma 25.12. A contribution µ≥3( . . .︸︷︷︸
≥1

, ν≥2(. . .), . . .︸︷︷︸
≥1

) with ν end-split with turning angle < ℓr cancels.

Proof. Write µ≥3(αk, . . . , ν
≥2(αm, . . .), αn, . . . , α1). See Figure 25.6. We have a triple cancellation

µ≥3(. . . , ν≥2(. . .), . . .) + ν≥2(. . . , µ2(αm+1, αm), . . .) + ν≥2(. . . , µ2(αn+1, αn), . . .).

Lemma 25.13. A contribution µ≥3(ν≥2(. . .), . . .) with ν end-split with turning angle < ℓr cancels.
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Figure 25.5: Cancellation for Lemma 25.11. Magic angles of each contribution to dν are drawn as gray
rings around q. From these figures one deduces cancellation: Each sector around q appears exactly an
even number of times, here 0 or 2. Inspection shows that overlapping contributions indeed appear with
opposite sign.
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Lemma 25.13: Case (a)

1
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Figure 25.6: Cancellation for Lemma 25.12 and Lemma 25.13

Proof. Since we assumed the inner ν to be end-split with turning angle < ℓr, its result is some angle
α winding around m. Then α forms a disk sequence together with α1, . . . , αm. By assumption, α is
necessarily an ordinary or the final out angle for this disk. In order to find the terms canceling the
contribution, we distinguish the following cases: (a) The angle α is an ordinary interior angle for the
outer disk sequence, and α1 reaches outside the orbigon at its tail. (b) The angle α is a final-out angle.
(c) The angle α is an ordinary interior angle, and α1 does not reach outside.

Regard case (a), where α is an ordinary interior angle of the outer µ. Then we have the triple
cancellation

µ≥3(ν≥2(αk, . . . , αm+1), αm, . . . , α1) + µ2(αk, ν(αk−1, . . . , α1)) + ν(. . . , µ2(αm+1, αm), . . .).

Regard case (b), where α is a final-out angle of the outer µ. In particular, the first angle α1 of the outer
µ has no β appended. We have the triple cancellation

µ≥3(ν≥2(αk, . . . , αm+1), . . .) + µ≥3(. . . , ν≥2(αm, . . . , α1)) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Regard case (c). Then we have the cancellation

µ(ν(αk, . . . , αm+1), . . .) + µ(. . . , ν(αt, . . . , α1)) + ν(. . . , µ2(αm+1, αm), . . .).

Lemma 25.14. A contribution µ≥3(. . . , ν≥2(. . .), . . .) with ν old- or new-era end-split with turning angle
ℓr cancels.

Proof. We distinguish cases: (a) The ν is old-era and is not the final angle in µ. (b) The ν is old-era and
is the final angle in µ, and µ is all-in or first-out. (c) The ν is old-era and is the final angle in µ, and µ
is final-out. (d) The ν is new-era and has β appended. (e) The ν is new-era without β.

Regard case (a). Label the angles as µ≥3(αk, . . . , ν
≥2(αm, . . . , αn+1), . . .). Then the next angle αm+1

after ν winds around m. Prolonging it by ℓr gives precisely a disk sequence, in other words the sequence
is a parking garage sequence.

Regard case (b). Then α1 is the first angle of µ and winds around m. Prolonging it by ℓr gives a disk
sequence and we have a parking garage again.

Regard case (c). Label the angles as µ≥3(ν≥2(αk, . . . , αm), . . . , α1). Then we can swap the order in
which µ and ν are applied:

µ≥3(ν≥2(αk, . . . , αm), . . . , α1) + ν≥2(αk, . . . , µ
≥3(αm, . . . , α1)).

Regard case (d). Then the split of ν necessarily divides the outer µ disk into two. The angle αt where
the split touches the opposite boundary of the µ disk creates a contribution µ≥3(. . . , ν1(αt), . . .). We
have a garage sequence.

Case (e) is similar to the combination of (a), (b) and (c): If there is an angle before ν, then we can apply
ν1 and have a garage sequence. If there is no angle before ν, we have a contribution µ≥3(. . . , ν≥2(. . .)).
It this is an all-in or final-out µ, then the final angle αk winds around m and we have a parking garage.
If this is a first-out µ, then we can swap the order of µ and ν again.
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Figure 25.7: Cancellation for Lemma 25.14
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Figure 25.8: Cancellation for Lemma 25.15

Lemma 25.15. A contribution µ≥3(ν≥2(. . .), . . .) with middle-split first-out ν and first-out µ cancels.

Proof. Label the angles as µ≥3(ν≥2(αk, . . . , αm+1), αm, . . .). We distinguish cases: (a) The result part of
α1 is shorter than the corresponding interior angle of ν, it ends before the m puncture and cuts the ν
piece into two. (b) The result part of α1 is shorter than the corresponding interior angle of the ν, and it
ends at the m puncture in ν. (c) The result part of α1 is shorter than the corresponding interior angle
of ν, it ends after the m puncture and cuts the ν piece into two at some angle αt, and the split is neither
at the end of the sequence (s+1 = k) nor at the cut (t = s+1). (d) The result part of α1 is longer than
the corresponding interior angle of ν. (e) As in (c), but the split being at the end or at the cut.

Regard case (a). Write αt for the angle where the result part of α1 hits the ν sequence. We have a
cancellation

µ≥3(ν≥2(αk, . . . , αm+1), αm, . . .) + ν≥2(. . . , µ≥3(αt, . . . , α1)).

Regard case (b). Write αs, αs+1 for the angles where the split happens. The split gives rise to an
end-split ν(αs, . . . , α1) and its result fills up the remaining angle from αs+1 to αk, giving a contribution
µ≥3(αk, . . . , αs+1, ν

≥2(αs, . . . , α1)). Together with µ2(αs+1, αs) contraction, this provides a cancellation

µ≥3(ν≥2(αk, . . . , αm+1), αm, . . .) + ν≥2(. . . , µ2(αs+1, αs), . . .) + µ≥3(αk, . . . , αs+1, ν
≥2(αs, . . . , α1)).

Regard case (c). Write αt for the angle where the result part of α1 hits the ν sequence. We have a
cancellation

µ≥3(ν≥2(αk, . . . , αm+1), αm, . . .) + µ≥3(. . . , ν≥2(αt, . . . , α1)) + ν≥2(. . . , µ2(αs+1, αs), . . .).

Note in case the result part of α1 has no arc going to m, the last term vanishes and the first two
already cancel out. If the result part of α1 however has an arc going to m, then the third term precisely
compensates for the difference in magic angle between the first two terms.

Regard case (d). We have a cancellation

µ≥3(ν≥2(αk, . . . , αm+1), αm, . . .) + ν≥2(. . . , µ2(αs+1, αs), . . .) + µ2(αk, ν
≥2(αk−1, . . . , α1)).

Regard case (e). We have a cancellation

µ(ν(αk, . . . , αm+1), . . .) + µ2(αk, ν(αk−1, . . . , α1)) + ν(. . . , µ2(αs+1, αs), . . .).

Lemma 25.16. A contribution µ≥3(. . . , ν≥2(. . .), . . .) with middle-split ν cancels.
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Figure 25.9: Cancellation for Lemma 25.16

Proof. We carry out the inspection only in case ν is first-out. Distinguish cases: (a) The ν≥2 result is not
the final angle for µ. (b) The ν≥2 result is the final angle for µ, and µ is all-in or final-out. The remaining
case that the ν≥2 result is the final angle for µ and µ is first-out is the content of Lemma 25.15.

Regard case (a). We have a cancellation

µ≥3(. . . , ν≥2(αm, . . . , αn+1), . . .) + ν≥2(. . . , µ2(αm+1, αm), . . .).

The magic angles of both ν terms are readily seen to be equal: The input sequence for the second ν is
only prolonged by a disk sequence, hence has no additional sectors around m.

Regard case (b). We can then swap the order in which we apply µ and ν:

µ≥3(ν≥2(. . . , αm+1), αm, . . . , α1) + ν≥2(. . . , µ(αm+1, . . . , α1)).

Lemma 25.17. dν vanishes on any sequence that has a ν≥2(. . . , µ≥3(. . .), . . .) contribution, with ν
end-split with turning angle < ℓr.

Proof. We distinguish cases: (a) The inner µ is first-out, and its result is used as final angle of ν. (b)
The inner µ is first-out, and its result is not used as final angle of ν. (c) The inner µ is final-out and its
result is used as first angle for ν, and the turning angle of ν together with α1 is less than or equal to
ℓr. (d) The inner µ is final-out and its result is not used as first angle for ν. (e) As (c), but with angle
together larger than ℓr.

Regard case (a). Then the final angle αk of the inner µ winds around m. Distinguish (a1) αk together
with the turning angle of ν is bigger than ℓr. (a2) αk together with the turning angle is ℓr. (a3) α1

together with the turning angle is less than ℓr.

Regard case (a1). Then the sequence α1, . . . , αk−1 winds more than ℓr times around m and we
simply have a final-out parking garage. Regard case (a2). Then we have an end-split contribution
ν≥2(αk−1, . . . , α1) with turning angle ≤ ℓr, and find the cancellation

ν≥2(µ≥3(αk, . . . , αm+1), αm, . . .) + µ(ν1(αk), . . .) + µ2(αk, ν
≥2(αk−1, . . . , α1)).

Case (a3) has the same cancellation as (a2).

Regard case (b). Then the result of the inner µ is not the final angle of the sequence. We can
simply connect the final angle αm of the inner µ with the next angle αm+1 of the outer ν, producing a
cancellation

ν≥2(. . . , αm+1, µ
≥3(αm, . . . , αn+1), . . .) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Case (c) is similar to (a). Indeed, α1 winds around m. By assumption α1 together with the turning
angle of ν is less than ℓr. We have an end-split contribution ν≥2(αk, . . . , α2) with turning angle ≤ ℓr,
and find the cancellation

ν≥2(. . . , µ≥3(αm, . . . , α1)) + µ≥3(. . . , ν1(α1)) + µ2(ν≥2(αk, . . . , α2), α1).

Case (d) is similar to (b). Case (e) is a parking garage sequence.

Lemma 25.18. dν vanishes on any sequence that has a ν≥2(. . . , µ≥3(. . .), . . .) contribution, with ν
old-era or new-era end-split with turning angle ℓr.
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Figure 25.10: Cancellation for Lemma 25.17

Proof. See Figure 25.11. Let us check the old-era case first and then comment on the new-era case.
Distinguish cases: (a) The inner µ is first-out and its result is the final angle of ν. (b) The inner µ is

first-out and its result is an ordinary or the first angle of ν. (c) The inner µ is final-out and its result is
the first angle of ν, and ν is all-in. (d) The inner µ is final-out and its result is the first angle of ν, and
ν is first-out. (e) The inner µ is final-out and its result is not the first angle of the outer ν.

Regard case (a). Write the contribution as ν(µ(αk, . . . , αm+1), . . . , ). Then the final angle αk of the
inner µ winds around m. By assumption, the sequence α1, . . . , αm+1 already winds at least ℓr around m,
in particular does α1, . . . , αk−1. This constitutes a garage sequence.

Regard case (b). We can simply connect the angle αm+1 after µ to the final angle αm of µ:

ν≥2(. . . , µ≥3(αm, . . . , αn+1), . . .) + ν≥2(. . . , µ2(αm+1, αm), . . .).

Case (c) is similar to case (a) and yields a parking garage sequence. In case (d), there is no relevant
turning around m and we can swap the order in which we apply µ and ν:

ν≥2(. . . , µ≥3(αm, . . . , α1)) + µ≥3(ν≥2(αk, . . . , αm), . . .).

Both ν evaluations have equal final angle. Since the left one is old-era, the right-one is old-era as well
and both have equal coefficient. Case (e) is similar to (b).

We have proven the old-era case. Finally, let us comment on the case ν is new-era instead. We claim
all cancellations carry over one-to-one. Indeed, in the proof until now we have only used cancellations
via parking garage sequences and cancellations in pairs. Those two cancellations from parking garage
sequences carry over, since at a parking garage we are free to append γ at the front. The cancellations
in pairs consist of two cancellations with a µ2 insertion and one cancellation by swapping the order of
applying µ and ν. In the new-era case, these three cancellations still exist: In all three cancellations,
the coefficients of both contributions change simultaneously to #ν1 of the new-era sector and hence still
cancel out.

Lemma 25.19. Any contribution ν≥2(. . . , µ≥3(. . .), . . .) with ν mid-split cancels.

Proof. We only check this in case µ is final-out. Distinguish cases: (a) The µ result is used as first angle
for ν, and ν is first-out. (b) The µ is used as first angle for ν, and the result is an ordinary angle for ν.
(c) The µ result is used as final-out angle, as first part of the split, or as ordinary but not first angle for
ν. (d) The µ is used as second part of the split.

Regard case (a). Then ν has no final-out angle and we simply swap the order of µ and ν.
Regard case (b). Then ν may have a final-out angle, preventing us from producing a cancellation from

swapping the order. This complicated case can be dealt with in a similar way as in the case distinction
of Lemma 25.16.

Regard case (c). Label angles as ν(. . . , µ(αm, . . . , αn+1), . . .). We argue there is an angle αn before
αn+1 and we can produce a cancellation with the contraction ν(. . . , µ2(αn+1, αn), . . .). Indeed, if the µ
result is used as first part of the split, then it is not the first angle in the ν sequence, since a mid-split
contribution with first angle being the first part of the split vanishes already. Therefore we can assume
there is an ordinary, second part of the split or first-out angle before αs. This produces a cancellation
from a simple augmentation by µ2.

Regard case (d). This means the first angle of the inner µ goes around m and we have a parking
garage.
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Figure 25.12: Cancellation for Lemma 25.19

Lemma 25.20. Any sequence contributing ν1(µ≥3(. . .)) vanishes under dν.

Proof. We shall make a case distinction whether the inner µ is first-out or final-out. Both cases work
similarly, so let us just assume the inner µ is first-out. Then the sequence is of the form α1β, . . . , αk with
α1, . . . , αk a disk sequence. This means α1 is precisely as long as the total angle that α2, . . . , αk winds
back. Moreover, ν1(β) is nonzero, hence β and also α1 wind around m.

To find a cancellation, our best guess is that α1β, . . . , αk constitutes a parking garage with inner spiral
angle (part of) α1β. Whether this is the case or not depends on the size of the angle that α2, . . . , αk
covers. Distinguish cases as follows: (a) The angle α1 is bigger than ℓr. (b) The angle α1 is smaller than
or equal to ℓr.

In case (a) we have a parking garage sequence. Regard case (b). Then no inner ν≥2 application is
possible with at most k − 2 terms, since α2, . . . , αk is too short. However since α1 ≤ ℓr, we have an
end-split ν≥2(αk, . . . , α2) and obtain a cancellation in a triple

ν1(µ(αk, . . . , α1β)) + µ≥3(αk, . . . , ν
1(α1β)) + µ2(ν≥2(αk, . . . , α2), α1β)).

See Figure 25.13.

Lemma 25.21. Any contribution µ≥3(αk, . . . , ν
1(α1)) with first-out µ cancels.

Proof. Label the angles as µ(αk, . . . , ν
1(α1)). Since this contribution is a first-out µ, we can write

ν1(αk) = αβ. While α1, . . . , ν
1(αk) is a first-out disk, the sequence α, α2, . . . , αk is an actual (all-in) disk

sequence. The angle α is the angle that describes how much α2, . . . , αk turns. Let us distinguish cases
after the length of α: (a) We have α > ℓr. (b1) We have α ≤ ℓr and α1 < α. (c) We have α ≤ ℓr and
α1 ≥ α.

In case (a), we have first-out garage sequence.
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Cancellation for Lemma 25.21

Regard case (b1). Then the tail arc of α1 cuts the α, α2, . . . , αk disk into two. Denote by αt the angle
where the arc touches the opposite side of the disk. We reach the cancellation

µ(αk, . . . , ν
1(α1)) + µ2(ν(αk, . . . , α2), α1) + ν(. . . , µ(αt, . . . , α1)).

(b1a) has the same cancellation as (b1).
Regard case (c). Then the angles α1, . . . , αk already conclude a disk and α2, . . . , αk are short enough

to produce an end-split ν and we reach the cancellation

µ(αk, . . . , ν
1(α1)) + ν1(µ(αk, . . . , α1)) + µ2(ν(αk, . . . , α2), α1).

Lemma 25.22. All contributions µ≥3(. . . , ν1(αm), . . .) cancel.

Proof. In Lemma 25.21, we already dealt with the case of ν1 being the first-out angle for µ. The case it
is the final-out angle is similar. We are left with the checking the case it is an ordinary angle, that is,
neither first-out nor final-out. Label the angles as

µ(αk, . . . , ν
1(αm), . . . , α1β) or µ(γαk, . . . , ν

1(αm), . . . , α1) or µ(αk, . . . , ν
1(αm), . . . , α1),

depending on whether µ is first-out, final-out or all-in. This means α1, . . . , ν
1(αm), . . . , αk is a disk

sequence. Since ν1(αm) has length bigger than ℓr, the remaining angles turn more than r turns around
m and we conclude α1, . . . , αm, . . . , αk is a garage sequence. Finally the original sequence, which may
have additional β and γ, is an (all-in, first-out or final-out) garage sequence.

Lemma 25.23. Any contribution µ2(ν≥2(αk, . . . , α2), α1) with ν middle-split final-out or all-in cancels.
We assume α1 is at the same side as αk, which is always the case if ν is final-out.

Proof. Distinguish cases: (a) The angle α1 is shorter than the corresponding interior angle of ν and starts
after m. (b) The angle α1 is shorter and starts at m. (c) The angle α1 is shorter and starts before m.
(d) The angle α1 is longer. (e) The split is at (αk−1, αk) and α1 is at least as long as the interior angle
after the split.

Regard case (a). Then we have a cancellation

µ2(ν≥2(αk, . . . , α2), α1) + ν(. . . , µ(αt, . . . , α1)).

It is readily checked that the two magic angles agree.
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Regard case (b). Then we have a cancellation

µ2(ν≥2(αk, . . . , α2), α1) + µ(. . . , ν(αs, . . . , α1)) + ν(. . . , µ2(αs+1, αs), . . .).

Regard case (c). Then we have a cancellation

µ2(ν≥2(αk, . . . , α2), α1) + µ(. . . , ν(αt, . . . , α1)) + ν(. . . , µ2(αs+1, αs), . . .).

Note in case there is no arc reaching to m within α1, then the last term vanishes, but the first two are
then already equal.

Regard case (d). Then we have a cancellation

µ2(ν(αk, . . . , α2), α1) + ν(. . . , µ2(αs+1, αs), . . .) + µ2(αk, ν(αk−1, . . . , α1)).

Regard case (e). Then we have a similar cancellation to (d), namely

µ2(ν(αk, . . . , α2), α1) + ν(µ2(αk, αk−1), . . .) + µ2(αk, ν(αk−1, . . . , α1)).

Lemma 25.24. Any contribution µ2(ν≥2(αk, . . . , α2), α1) with ν first-out middle split, or end-split with
turning angle < ℓr, or end-split with turning angle ℓr cancels.

Proof. Distinguish cases: (a) ν is first-out middle-split. (b) ν is end-split ≤ ℓr, and α1 winds around m,
and α1 is shorter than the turning angle of ν. (c) ν is end-split, and α1 winds around m, and α1 is at
least as long as the turning angle of ν. (d) ν is end-split ℓr and all-in, and α1 does not wind around m.

Regard case (a). Then α1 can be appended to α2, still forming a middle-split ν. Therefore we have a
simple cancellation

µ2(ν≥2, . . .) + ν≥2(. . . , µ2(α2, α1)).

In case (b), we have a cancellation

µ2(ν≥2(αk, . . . , α2), α1) + µ(αk, . . . , α2, ν
1(α1)) + ν(αk, . . . , µ(αt, . . . , α1)).

In case (c), we have the cancellation

µ2(ν≥2(αk, . . . , α2), α1) + µ(αk, . . . , ν
1(α1)) + ν1(µ(αk, . . . , α1)).

Regard case (d). Then α1 is composable with α2 and we have the cancellation

µ2(ν≥2(αk, . . . , α2), α1) + ν≥2(αk, . . . , µ
2(α2, α1)).

Since this only changes the first angle of the ν, the two terms are either both old-era or both new-era,
and hence have the same magic angle and produce an equal result.

Lemma 25.25. A contribution µ2(αk, ν
≥2(αk−1, . . .)) with ν first-out or all-in middle-split cancels.

Proof. Distinguish cases: (a) The angle αk is shorter than the corresponding interior angle of ν, and
stops before m. (b) The angle αk is shorter and stops at m. (c) The angle αk is shorter and stops after
m. (d) The angle αk is longer.

Regard case (a). Then the target arc of αk hits the opposite side of ν at some angle αt. We have the
cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + ν(µ(αk, . . . , αt), . . . , α1).

Regard case (b). Then we have the cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + µ(ν(αk, . . . , αs+1), . . . , α1) + ν(. . . , µ2(αs+1, αs), . . .).

Regard case (c). Then the target arc of αk hits the opposite side of ν at some angle αt. Then we have
the cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + ν(. . . , µ2(αs+1, αs), . . .) + µ(ν(αk, . . . , αt), . . . , α1).

Regard case (d). Then we have the cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + µ2(ν(αk, . . . , α2), α1) + ν(. . . , µ2(αs+1, αs), . . .).
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Lemma 25.26. A contribution µ2(αk, ν
≥2(αk−1, . . .)), with ν end-split with turning angle ℓr cancels.

Proof. Distinguish cases: (a) ν is all-in and αk starts at the opposite side of the split angle. (b) ν is
final-out. (c) ν is first-out and not final-out, and αk is shorter than angle in ν after the split. (d) ν is
first-out and not final-out, and αk is longer.

Regard case (a). Distinguish cases: (a1) αk < ℓr. (a2) αk ≥ ℓ
r. In case (a1), the target of αk touches

the opposite side of the ν orbigon at some angle αt and we have the cancellation

µ2(αk, ν(αk−1, . . . , α1)) + µ(ν1(αk), . . . , α1) + ν(µ(αk, . . . , αt), . . . , α1).

In case (a2), we have the cancellation

µ2(αk, ν(αk−1, . . . , α1)) + µ(ν1(αk), . . . , α1) + ν1(µ(αk, . . . , α1)).

Regard case (b). Then αk is composable with αk−1 and we have a simple cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + ν(µ2(αk, αk−1), . . . , α1).

Here both ν are new-era.
Regard case (c). The target arc of αk hits the opposite side of ν at some angle αt and we have the

cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + µ(ν(αk, . . . , αt), . . . , α1) + ν(µ2(αk, αk−1), . . . , α1).

Regard case (d). We have the cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + ν(µ2(αk, αk−1), . . . , α1) + µ2(ν(αk, . . . , α2), α1).

Lemma 25.27. A contribution µ2(αk, ν
≥2(αk−1, . . .)), with ν final-out middle-split, or end-split with

turning angle < ℓr cancels.

Proof. Distinguish cases: (a) ν is final-out middle-split. (b) ν is end-split with turning angle < ℓr.
Regard case (a). Then we have a simple cancellation

µ2(αk, ν
≥2(αk−1, . . .)) + ν(µ2(αk, αk−1), . . . , α1).

Regard case (b). Distinguish cases: (b1) αk is smaller than the turning angle of ν. (b2) αk is at least
the turning angle of ν. In case (b1), the target of αk touches the opposite side of the ν orbigon at some
angle αt and we have the cancellation

µ2(αk, ν(αk−1, . . . , α1)) + µ(ν1(αk), . . . , α1) + ν(µ(αk, . . . , αt), . . . , α1).

In case (b2), we have the cancellation

µ2(αk, ν(αk−1, . . . , α1)) + µ(ν1(αk), . . . , α1) + ν1(µ(αk, . . . , α1)).

Lemma 25.28. Any contribution ν≥2(. . . , µ2(. . .), . . .) cancels.

Proof. Write this sequence as ν≥2(. . . , µ2(αm+1, αm), . . .). Distinguish cases: (a) The product αm+1αm
is an ordinary angle of ν, and αm splits the ν orbigon into two. (b) The product αm+1αm is an ordinary
angle of ν, and αm and αm+1 create another split of the orbigon. (c) αm+1αm is a first-out or final-out
angle of end-split ν. (d) αm+1αm is a final-out angle of end-split ν.

In case (a), we can produce a ν≥2(. . . , µ≥3(. . .), . . .). In case (b), we can generally produce a
µ≥3(. . . , ν≥2(αm, . . . , αs+1), . . .). In both cases, we fall already into the regime of the previous lemmas.

Regard case (c). Then again depending on the configuration of αm and αm+1 we can split off a disk
sequence from ν and land in one of the cases already dealt with.

Proposition 25.29. The cochain ν ∈ HC(GtlA) is a Hochschild cocycle: ν ∈ Ker(d).

Proof. We have analyzed all terms µ(. . . , ν(. . .), . . .) and ν(. . . , µ(. . .), . . .). For a given sequence, the
previous lemmas show that its set of contributions can be partitioned so that the contributions in
each partition cancel out together. The only terms we have not checked are ν1(. . . , µ2(. . .), . . .) and
µ2(. . . , ν1(. . .), . . .). Their cancellation follows precisely from ν1 being a derivation.
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25.4 Summary

In this section, we summarize our findings. Our starting point is the knowledge that the cochain defined
in Definition 25.3 is indeed a Hochschild cocycle. We construct the ordinary even Hochschild cochains
νevenm,r and show that together with the sporadic classes they form a basis for HHeven(GtlA). Finally, we
calculate the Gerstenhaber bracket and the cup product in analogy to Paper I and conclude that the
classification theorem of Paper I still holds.

The idea for the even Hochschild cocycle νevenm,r is to choose input scalars #ν1(α) for all indecomposable
angles around m such that their sum is 1. The Hochschild cocycle νevenm,r is then defined as the cocycle we
constructed from this data in section 25.1:

Definition 25.30. Let A be a full arc system with [NMD]. Let m ∈M and r ≥ 1. Choose any collection
of input scalars #ν1 such that their sum is 1. The ordinary even Hochschild cocycle νevenm,r is the
cocycle ν constructed from #ν1 by Definition 25.3.

This way, the cocyle νevenm,r is not canonical. However, different choices #ν1,#ν′1 yield gauge equivalent
cocyles ν, ν′ in the sense that ν − ν′ ∈ Ker(d):

Lemma 25.31. Different choices of #ν1 yield gauge equivalent cocyles νevenm,r .

Proof. The clue is to regard the cochain ε = ε0 given by r full turns around m, starting from an arbitrary
arc incidence at m. The 1-adic component (dε)1 then reads (dε)1(α) = αε0−ε0α. To apply this to ν and
ν′, note that the difference #ν1 −#ν′1 sums up to zero around m, therefore the component ν1 can be
written as a sum of cochains of the type (dε)1. We conclude that ν − ν′ can be gauged so that its 0-adic
and 1-adic components vanish. By Lemma 24.5, ν − ν′ can be gauged to zero entirely. This finishes the
proof.

Together with the odd and the sporadic even classes, the ordinary even Hochschild classes form a
basis for HH(GtlA):

Theorem 25.32. Let (S,M) be a punctured surface and A a full arc system with [NMD]. Then the
odd classes νid, νoddm,r , the sporadic even classes {νP }P∈P0

and ordinary even classes νevenm,r for a basis for
HH(GtlA).

Proof. Jointly, the classes satisfy the requirements of the generation criterion Proposition 24.2 and 24.4.
The statement is then immediate.

Theorem 25.33. Let (S,M) be a punctured surface and A a full arc system with [NMD]. Let m1 6= m2

be two distinct punctures in M , let i, j ≥ 0 be two indices, and νP , νQ two sporadic classes. Then the
Gerstenhaber bracket in cohomology reads as follows:

[νoddm1,i, ν
odd
m2,j ] = 0,

[νevenm1,i, ν
odd
m2,j ] = δm1,m2

j · νoddm1,i+j ,

[νevenm1,i, ν
even
m2,j ] = δm1,m2

(j − i) · νevenm1,i+j ,

[νevenm1,i, νP ] = −i#νP (ℓq) · ν
even
m1,i,

[νP , ν
odd
m1,i] = i#νP (ℓq) · ν

odd
m1,i,

[νP , νQ] = 0.

Proof. Recall that a bracket [ν, η] on cohomology level is defined as the projection to cohomology π[ν, η] of
the bracket on chain level. This makes for the following strategy: We compute just enough of the bracket
at chain level in order to deduce its projection to cohomology. In fact, by Lemma 24.5 odd Hochschild
classes ν are already determined by their 0-adic component ν0 and even Hochschild classes are already
determined by their 1-adic component ν1. It therefore suffices to compute the 0-adic component [ν, η]0

on chain level in case the bracket value is odd, and the 1-adic component [ν, η]1 in case the bracket value
is even. To compute these 0-adic and 1-adic components, we typically only need to know the 0-adic and
1-adic component of ν and η:

[ν, η]0 = ν1(η0)− (−1)‖ν‖‖η‖η1(ν0),

[ν, η]1(α) = ν1(η1(α)) + (−1)‖η‖‖α‖ν2(η0, α) + ν2(α, η0)

− (−1)‖ν‖‖η‖
(
η1(ν1(α)) + (−1)‖ν‖‖α‖η2(ν0, α) + η2(α, ν0)

)
.
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We are now ready to check the claimed identities. For the first identity, we have

[νoddm1,i, ν
odd
m2,j ]

1(α) = 0.

Indeed, the classes νoddm1,i
and νoddm2,j

have no 1- and 2-adic components. For the second identity, regard

[νevenm1,i, ν
odd
m2,j ]

0 = (νevenm1,i)
1((νoddm2,j)

0) = δm1,m2
jℓi+jm1

.

Indeed, the 0-adic component of the cocycle νoddm2,j
consists of j full turns around m2, starting at each arc

incident at m2. The derivation (νevenm1,i
)1 multiplies each angle around m1 by a certain scalar, in fact such

that it multiplies one full turn by precisely 1. Given it is a derivation, it multiplies j full turns around q
precisely by j. It however sends turns around m2 6= m1 to zero. For the third identity, we have

[νevenm1,i, ν
even
m2,j ]

1(α) = (νevenm1,i)
1((νevenm2,j)

1(α))− (νevenm2,j)
1((νevenm1,i)

1(α))

= δm1,m2

(
#ν1m2,j(α)(#ν

1
m1,i(α) + j)ℓi+jm1

α−#ν1m1,i(α)(#ν
1
m2,j(α) + i)ℓi+jm1

)

= δm1,m2(j − i)ℓ
i+j
m1

α.

Here we have used that #ν1m1,i
(α) = #ν1m1,j

(α). In other words, we have assumed that the ordinary even
cocycles for different i 6= j but equal puncture have been constructed with the same input scalars, which
is legitimate by Lemma 25.31. Finally, this bracket [νevenm1,i

, νevenm2,j
] has the same 1-adic component as the

cohomology class δm1,m2
(j − i)νevenm1,i+j

and hence projects to it. For the fourth identity, regard

[νevenm1,i, νP ]
1(α) = ((νevenm1,i)

1(ν1P (α))− ν
1
P ((ν

even
m1,i)

1(α))

= #ν1m1,i(α)#νP (α)ℓ
i
m1
α−#ν1m1,i(α)(#νP (α) + i#νP (ℓm1

))ℓim1
α.

We conclude that this bracket has precisely the same 1-adic component as −i#νP (ℓm1)ν
even
m1,i

and hence
projects to it. For the fifth identity, regard

[νP , ν
odd
m1,i]

0 = ν1P (ℓ
i
m1

) = i#νP (ℓm1
)ℓim1

.

We conclude that the bracket has the same 0-adic component as i#νP (ℓm1
)νoddm1,i

and hence projects to
it. For the sixth identity, regard

[νP , νQ]
1(α) = ν1P (ν

1
Q(α))− ν

1
Q(ν

1
P (α)) = #νP (α)#νQ(α)α−#νQ(α)#νP (α)α = 0.

This means the 1-adic component of [νP , νQ] vanishes, this bracket is therefore gauge equivalent to zero
and its projection to cohomology vanishes.

Theorem 25.34. Let (S,M) be a punctured surface and A a full arc system with [NMD]. Let m1 6= m2

be two distinct punctures and let i, j ≥ 1 be two indices, and νP , νQ two sporadic classes. Then the cup
product in cohomology reads as follows:

νoddm1,i ∪ νoddm2,j = δm1,m2ν
odd
m1,i+j ,

νoddm1,i ∪ νevenm2,j = δm1,m2
νevenm1,i+j ,

νoddm1,i ∪ νP = #νP (ℓm1)ν
even
m1,i,

νevenm1,i ∪ νevenm2,j = 0,

νevenm1,i ∪ νP = 0,

νP ∪ νQ = 0.

The odd class νid acts as identity element: νid ∪ κ = κ ∪ νid = κ.

Proof. We compute the cup products of the given Hochschild cocycles first on chain level. Then we
compute their projection to cohomology. In fact, for the odd products it suffices to compute the 0-adic
component (ν ∪ η)0 and for the even products it suffices to compute the 1-adic component (ν ∪ η)1. We
are now ready to start the calculations. For the first identity, regard

(νoddm1,i ∪ ν
odd
m2,j)

0 = δm1,m2µ
2(ℓim1

, ℓjm1
) = ℓi+jm1

.
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This is precisely the 0-adic component of the Hochschild cohomology class νoddm1,i+j
and hence projects to

it. For the second identity, regard

(νoddm1,i ∪ ν
even
m2,j)

1(α) = (−1)‖α‖+1µ2(ℓim1
, ν1m2,j(α))

= δm1,m2(−1)
‖α‖+1+|α|ℓim1

#ν1m2,j(α)ℓ
j
m1
α = δm1,m2#ν(α)ℓ

i+j
m1

α.

If m1 = m2, then this is precisely equal to (νevenm1,i+j
)1(α), hence the cup product on chain level projects

to νevenm1,i+j
. For the third identity, regard

(νoddm1,i ∪ νP )
1(α) = (−1)‖α‖+1µ2(ℓim1

, ν1P (α)) = (−1)‖α‖+1µ2(ℓim1
,#νP (α)α) = #νP (α)ℓ

i
m1
α.

This product νoddm1,i
∪ νP sends every angle winding around a puncture different from m1 to zero. Since

we can add commutators with arbitrary turns around m1 as gauges, the projection of νoddm1,i
∪ νP to

cohomology can be read off from the sum of the coefficients #νP (α) over all indecomposable angles α
around m1. In total, the product projects to

#νP (ℓm1
)νevenm1,i.

To discuss the fourth, fifth and sixth identity, let us write ν and η for the two factors. Both ν and η are
even. This means they have vanishing 0-adic component ν0 = η0 = 0. In particular, their cup product’s
0-adic component

(ν ∪ η)0 = µ2(ν0, η0)

vanishes. This shows that ν ∪ η = 0 in these three cases. To see that the odd class νid acts as identity
element, note that

(κ ∪ νid)(αk, . . . , α1) = (−1)‖νid‖+1µ2(κ(αk, . . . , α1), id) = κ(αk, . . . , α1),

(νid ∪ κ)(αk, . . . , α1) = (−1)‖νid‖(‖α1‖+...+‖αk‖)+‖κ‖+1µ2(id, κ(αk, . . . , α1)) = κ(αk, . . . , α1).

This finishes the proof.

Remark 25.35. In Paper I, we also proved a formality theorem for HH(GtlA) and a classification
theorem for formal deformations of GtlA. Our proof of the formality theorem builds on a topological
grading for GtlA. Without the [NL2] condition, the power of the topological grading collapses. The
classification theorem however stays intact since it does not make explicit reference to the even Hochschild
cocycles.
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Summary: Deformed mirror symmetry

for punctured surfaces

In this thesis we devote ourselves to a phenomenon that comes from physics and is known as homo-
logical mirror symmetry. The mirror does not concern reflection of light, but is about a mysterious
correspondence between two types of geometry. The one geometry is concerned with so-called symplectic
structures, that is, structures to which the principle of the Hamiltonian equations of motion applies. The
other geometry deals with so-called complex structures, that is, structures where for instance a surface
is parameterized by means of the complex numbers C.

The mysterious conjecture of mirror symmetry entails that for every object of symplectic geometry
there should exist a corresponding object from complex geometry, such that the symplectic deformation
theory of the symplectic object is equal to the complex deformation theory of the complex object. The
name mirror symmetry comes from the so-called Hodge diamond, a matrix of numbers indicating the
dimensions of the deformation theories. The idea is that by mirroring the Hodge diamond of a symplectic
object along its diagonal one obtains exactly the Hodge diamond of the corresponding complex object.

Kontsevich put this phenomenon into a much better mathematical form in 1994. In this form we
are no longer dealing with dimension numbers, but with so-called categories. A category is actually
an abstraction of the symplectic or complex structure that is extremely flexible. In connection with
homological mirror symmetry, one is then interested in so-called Fukaya categories on the symplectic
side and so-called categories of coherent sheaves on the complex side. Whereas a symplectic object
itself cannot be compared to a complex object, it can happen that the Fukaya category of a symplectic
object is equal to the category of coherent sheaves of a complex object. Homological mirror symmetry
today involves trying to find the corresponding symplectic object for a given symplectic object via the
formulation of the appropriate categories.

In the optimal case, one can deduce the original mirror symmetry dealing with dimension numbers
from Kontsevich’s homological mirror symmetry. After all, the deformation theory of a Fukaya is quite
similar to the symplectic deformation theory of the given symplectic object and the deformation theory
of a category of coherent sheaves is similar to the complex deformation theory of the complex object. So
if the two categories are equivalent, then their deformation theories and thus very roughly the dimension
numbers of the symplectic or complex deformations of the geometric objects are also the same.

As nicely as the original mirror symmetry could be traced from Kontsevich’s homological mirror sym-
metry, it is unfortunately difficult to show that the deformation theory of a Fukaya category corresponds
exactly to symplectic deformations of the geometric object. Moreover, nowadays one is interested in much
more than just dimension numbers. In fact, one tries to build explicitly the whole space of deformations
and to compare those spaces, rather than only their dimension numbers. This means that for a given
symplectic deformation, one wants to know exactly what the corresponding complex deformation on the
other side looks like.

A simple example of homological mirror symmetry deals with the case where the symplectic object
is a so-called punctured surface. Measured by the generality of mirror symmetry, this is really only the
1-dimensional case. For this simple case, a good understanding of what the corresponding complex object
looks like already exists in the mathematical literature. In fact, this complex object is non-commutative,
meaning that it does not occur in the real world and can only be modeled by its category.

In this thesis, we devote ourselves to working out the correspondence of deformation theories for this
simple example. Our first goal is to determine the entire deformation theory of the Fukaya category
of such a punctured surface. Our second goal is to determine all the information we might need to
achieve the corresponding deformation on the complex side. Our third goal is to actually construct the
corresponding deformation and show that it is indeed the correct one. Thus, we have not equated the
entire deformation theories but only a small, yet representative part.

In the first part of this thesis, we determine the entire deformation theory of the Fukaya category of
a given punctured surface. In doing so, we use a discrete model for the Fukaya category that actually
cuts the surface into pieces. In first view, this makes the calculations very simple. In particular, we
easily succeed in writing down candidate deformations explicitly. We also show that our list actually
contains all so-called formal deformations. Thus we do not end up with a description of the whole space
of deformations, but rather with a kind of local approximation, a Taylor series of the space.

In the second part of this thesis, we focus on one specific deformation of the Fukaya category. Since
this deformation has a lot of parameters, this is actually a summary of a lot of individual deformations
and incorporates a great deal of information on how the Fukaya category can be deformed. We therefore
show that this deformation is equivalent to a view of Seidel. Unlike this thesis, Seidel does not start
with a discrete model, but with a smooth model of the Fukaya category. Therefore, it requires a gigantic
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effort to show that these two deformations are equal. We build lots of data structures that serve to take
us from the discrete side to the smooth side. Among other things, the discrete structure is described by
trees, which are a kind of graphs that produce a mathematical chain reaction. The smooth side, on the
other hand, is described by disks, which are polygons embedded in the surface. Eventually we reach a
correspondence between these trees and disks. With this, we have achieved all the information we need
to determine the corresponding deformation of the complex side, and furthermore fulfilled Seidel’s vision.

In the third part of this thesis, we explicitly determine the corresponding deformation of the complex
side. This is normally a very difficult process because there is no natural way to pull a deformation of a
category through the equivalence of categories. But fortunately there is a construction in the literature
that makes such a tracing explicitly possible when in the case of punctured surfaces. To implement this
properly, we need of course the results of the gigantic calculations from the second part. As soon as
we feed these into the construction we immediately get a candidate deformation on the complex side.
This deformation is actually guaranteed to be the correct one, only it is written down in a way that
makes it not immediately obvious that it is really a deformation. In order to prove that it is still a
deformation, we must show that the category has not become smaller due to the deformation, so to
speak. Fortunately, here again there is help from the literature. However, we have to work hard to adapt
it to our case. Indeed, the case known from the literature is about homogeneous superpotentials where
it can be shown that if the category becomes smaller this can at most concern an element of a certain
length. But if we remove homogeneity, the paths spin completely out of control. We therefore define an
additional boundedness condition by which we regain control of these paths and show that it actually
concerns a deformation. By doing so, in the case of punctured surfaces, we are guaranteed to have the
right deformation on the complex side and have successfully deformed homological mirror symmetry.
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Samenvatting: Gedeformeerde spiegelsymmetrie

voor geperforeerde oppervlakken

In dit proefschrift wijden we ons aan een fenomeen dat uit de natuurkunde komt en bekend staat als ho-

mologische spiegelsymmetrie. Bij deze spiegel gaat het echter niet om de reflectie van licht, maar om een
mysterieuze overeenkomst tussen twee soorten meetkunde. De ene meetkunde houdt zich bezig met zoge-
naamde symplectische structuren, dat wil zeggen structuren waarop het principe van de Hamiltoniaanse
bewegingsvergelijkingen van toepassing is. De andere meetkunde houdt zich bezig met zogenaamde com-

plexe structuren, dat wil zeggen structuren die bijvoorbeeld een oppervlak parametriseren door middel
van de complexe getallen C.

Het mysterieuze vermoeden van spiegelsymmetrie houdt in dat er voor ieder object van de sym-
plectische meetkunde een corresponderend object uit de complexe meetkunde bestaat, zodanig dat de
symplectische deformatietheorie van het symplectische object gelijk is aan de complexe deformatietheorie
van het complexe object. Het begrip spiegelsymmetrie komt van de zogenaamde Hodge-diamant, een
matrix van getallen die de dimensies van de deformatietheorieën aangeeft. Het idee is dat je de Hodge-
diamant een complex object verkrijgt door de Hodge-diamant van het corresponderende symplectische
object langs zijn diagonaal te spiegelen.

Kontsevich heeft dit fenomeen in 1994 in een veel betere wiskundige vorm gebracht. In deze vorm
hebben we niet meer met dimensiegetallen te maken, maar met zogenaamde categoriën. Een categorie is
eigenlijk een abstractie van de symplectische dan wel complexe structuur die buitengewoon flexibel is. In
samenhang met homologische spiegelsymmetrie spreken we dan van zogenaamde Fukaya-categorieën aan
de symplectische kant en categorieën van coherente schoven aan de complexe kant. Waar een symplectisch
object zelf niet vergelijkbaar is met een complex object, kan het juist wel gebeuren dat de Fukaya-
categorie van een symplectisch object gelijk is aan de categorie van coherente schoven van een complex
object. Homologische spiegelsymmetrie houdt daarom tegenwoordig in dat men via het formuleren van
de passende categoriën probeert voor een gegeven symplectisch object het corresponderende symplectisch
object te vinden.

In het beste geval kan men de originele spiegelsymmetrie die over dimensiegetallen gaat, herleiden uit
Kontsevich’s homologische spiegelsymmetrie. Immers, de deformatietheorie van een Fukaya-categorie is
goed vergelijkbaar met de symplectische deformatietheorie van het gegeven symplectische object, en de
deformatietheorie van een categorie van coherente schoven is vergelijkbaar met de complexe deformati-
etheorie van het complexe object. Dus wanneer de twee categorieën equivalent zijn, dan zijn ook hun
deformatietheorieën en daarmee ook heel grof de dimensiegetallen van de symplectische dan wel complexe
deformaties van de meetkundige objecten gelijk.

Zo mooi als de originele spiegelsymmetrie zou kunnen worden herleid uit Kontsevich’s homologische
spiegelsymmetrie, zo moeilijk is het helaas aan te tonen dat de deformatietheorie van bijvoorbeeld een
Fukaya-categorie precies overeenkomt met symplectische deformaties van het meetkundig object. Boven-
dien is men tegenwoordig aan veel meer geïnteresseerd dan alleen aan dimensiegetallen. In feite probeert
men de gehele ruimte van deformaties expliciet op te bouwen en deze ruimtes met elkaar te vergelijken, en
niet alleen maar de dimensiegetallen. Dat houdt in dat men voor een gegeven symplectische deformatie
precies wil weten hoe de corresponderende complexe deformatie aan de andere kant eruit ziet.

Een simpel voorbeeld van de homologische spiegelsymmetrie is het geval waarin het symplectisch
object een zogenaamd geperforeerd oppervlak is. Gemeten aan de generaliteit van spiegelsymmetrie
betreft dit eigenlijk alleen het 1-dimensionale geval. Voor dit eenvoudige geval bestaat er in de wiskundige
literatuur al een goed begrip van hoe het corresponderende complexe object eruit ziet. In feite is dit
complexe object niet-commutatief, dwz. het komt in de echte wereld niet voor en kan alleen gemodelleerd
worden via zijn categorie.

In dit proefschrift werken we de overeenstemming van deformatietheorieën voor dit eenvoudige voor-
beeld uit. Ons eerste doel is het bepalen van de gehele deformatietheorie van de Fukaya-categorie van
zo’n geperforeerd oppervlak. Ons tweede doel is het bepalen van alle informatie die we nodig zouden
kunnen hebben om de corresponderende deformatie aan de complexe kant te verkrijgen. Ons derde doel
is de corresponderende deformatie daadwerkelijk te construeren en aan te tonen dat deze constructie echt
de juiste is. Hiermee hebben we weliswaar niet de deformatietheorieën als geheel gelijk kunnen stellen,
maar toch een representatief deel daarvan.

In het eerste deel van dit proefschrift bepalen we dus de gehele deformatietheorie van de Fukaya-
categorie van een gegeven geperforeerd oppervlak. We maken daarbij gebruik van een discreet model
voor de Fukaya-categorie waarmee we het oppervlak min of meer in stukken knippen. Hierdoor worden
onze berekeningen heel eenvoudig. In het bijzonder lukt het ons gemakkelijk om kandidaat-deformaties
expliciet af te leiden. Ook tonen we aan dat onze lijst daadwerkelijk alle zogenaamde formele deformaties
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bevat. We komen dus niet uit bij een beschrijving van de gehele ruimte van deformaties, maar wel bij
een soort lokale benadering, een Taylor-reeks van deze ruimte.

In het tweede deel van dit proefschrift richten wij ons op één specifieke deformatie van de Fukaya-
categorie. Deze deformatie heeft een groot aantal parameters en is hierdoor eigenlijk een samenvatting
van heel veel individuele deformaties die een goed deel van de informatie bevat hoe de Fukaya-categorie
gedeformeerd kan worden. We tonen dan ook aan dat deze deformatie gelijk is aan een visie van Seidel.
In tegenstelling tot dit proefschrift start Seidel niet met een discreet model, maar met een glad model
van de Fukaya-categorie. Het vereist daarom een gigantische inzet om aan te tonen dat deze twee
deformaties gelijk zijn. We bouwen heel veel datastructuren die ertoe dienen ons van de discrete kant
naar de gladde kant te brengen. Onder meer wordt de discrete structuur beschreven door bomen, dat
zijn een soort grafen die een wiskundige kettingreactie voortbrengen. De gladde kant wordt daarentegen
beschreven door schijven, dat zijn veelhoeken die in het oppervlak zijn ingebed. Uiteindelijk bereiken we
een correspondentie tussen deze bomen en schijven. Daarmee hebben we alle informatie bij elkaar die we
nodig hebben om de corresponderende deformatie van de complexe kant te bepalen, en bovendien Seidels
visie waargemaakt.

In het derde deel van dit proefschrift bepalen we expliciet de corresponderende deformatie van de com-
plexe kant. Dit is normaliter een moeilijk proces omdat er geen natuurlijke manier is om een deformatie
van een categorie te transporteren via een equivalentie van categorieën. Maar gelukkig is er een constructie
in de literatuur die zo’n transport expliciet mogelijk maakt in het geval van geperforeerde oppervlakken.
Om dit goed door te voeren hebben we natuurlijk de resultaten van de uitvoerige berekeningen uit het
tweede deel nodig. Zodra wij deze invoeren in de constructie krijgen we direct een kandidaat-deformatie
aan de complexe kant. Deze deformatie is gegarandeerd de juiste, alleen is zij opgeschreven op een manier
waarop niet direct duidelijk dat het echt een deformatie is. Om aan te tonen dat het toch een defor-
matie is, moeten wij aantonen dat de categorie door de deformatie als het ware niet kleiner is geworden.
Gelukkig komt er ook hier weer hulp vanuit de literatuur. Wel moeten we stevig werken om deze op
ons geval toe te passen. Het geval dat uit de literatuur bekend is gaat namelijk over homogene super-
potentialen waarbij men kan aantonen dat als de categorie kleiner wordt, dit hooguit een element van
een bepaalde lengte kan betreffen. Maar als we de homogeniteit weghalen, loopt de lengte van de paden
geheel uit de hand. We definieren daarom een extra begrenzingsvoorwaarde waardoor we deze paden
weer onder controle krijgen en aantonen dat het daadwerkelijk om een deformatie gaat. Daarmee hebben
in het geval van geperforeerde oppervlakken gegarandeerd de juiste deformatie aan de complexe kant te
pakken en succesvol homologische spiegelsymmetrie gedeformeerd.
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