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Spontaneous variations in arousal modulate subsequent
visual processing and local field potential dynamics in
the ferret during quiet wakefulness
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Behavioral states affect neuronal responses throughout the cortex and influence visual processing. Quiet wakefulness (QW) is a
behavioral state during which subjects are quiescent but awake and connected to the environment. Here, we examined the effects
of pre-stimulus arousal variability on post-stimulus neural activity in the primary visual cortex and posterior parietal cortex in awake
ferrets, using pupil diameter as an indicator of arousal. We observed that the power of stimuli-induced alpha (8–12 Hz) decreases
when the arousal level increases. The peak of alpha power shifts depending on arousal. High arousal increases inter- and intra-areal
coherence. Using a simplified model of laminar circuits, we show that this connectivity pattern is compatible with feedback signals
targeting infragranular layers in area posterior parietal cortex and supragranular layers in V1. During high arousal, neurons in V1
displayed higher firing rates at their preferred orientations. Broad-spiking cells in V1 are entrained to high-frequency oscillations
(>80 Hz), whereas narrow-spiking neurons are phase-locked to low- (12–18 Hz) and high-frequency (>80 Hz) rhythms. These results
indicate that the variability and sensitivity of post-stimulus cortical responses and coherence depend on the pre-stimulus behavioral
state and account for the neuronal response variability observed during repeated stimulation.

Key words: brain states; in-vivo electrophysiology; oscillations; passive viewing; pupil diameter.

Introduction
When cortical neurons are repeatedly stimulated, their responses
are highly variable (Vogels et al. 1989; Arieli et al. 1996). This
variability results from the spontaneous activity of anatomically
interconnected neurons throughout the cortex and is associated
with the animal’s behavioral state (Ecker et al. 2010; Harris and
Thiele 2011; Schölvinck et al. 2015; Denfield et al. 2018; Jacobs
et al. 2020). Behavioral states can exert global influences through-
out the cortex and distinctively affect neuronal responses and
stimulus perceptibility (Montijn et al. 2015). Therefore, under-
standing the relationship between behavioral states and cortical
activity is critical to elucidate how neuronal variability affects
cortical processing.

Behavioral states range from highly active and attentive to deep
sleep stages. These states correlate with well-defined electrophys-
iological patterns of brain activity. For example, high-frequency
oscillations and desynchronized waves are predominant during
wakefulness, whereas during deep sleep, highly synchronized
low-frequency activity patterns dominate brain activity (Steriade
et al. 1993; Steriade 2006; Harris and Thiele 2011; McGinley,
Vinck, et al. 2015; Sanchez-Vives et al. 2017). During wakefulness,
animals can transition between periods of attentive activity and

wakeful quiescence. These periods of quiet wakefulness (QW)
share features with both active wakefulness (e.g. active behavior,
locomotion, increased muscular tone) and sleep (e.g. immobility,
hippocampal sharp-wave ripples), and their occurrence depends
on internally driven states such as the arousal and attentional
level, and externally driven factors such as task requirements
and sensory context (Niell and Stryker 2010; Harris and Thiele
2011; Reimer et al. 2014, 2016; Vinck et al. 2015; McGinley, David,
et al. 2015; McGinley, Vinck, et al. 2015). In the context of this
study, we defined QW as a state in which the animal is awake
and receiving passively visual stimulation. Still, the animal is
not required to be engaged in a particular task or produce any
motor response secondary to the visual stimulation (Crochet and
Petersen 2006). In psychophysical tasks, a similar condition would
be deemed as “passive attention” (for example, control blocks that
contain the same visual stimuli but do not require a response
are usually interspersed in visuospatial tasks to account for
the stimuli-related activity without attentional load). Although
QW has been classically studied as a state that qualitatively
differs from active behavior, it has recently been shown to be
a dynamic state in which transitions from low-to-high arousal
are accompanied by increasing changes in cortical functioning
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(McGinley, David, et al. 2015; Neske et al. 2019). However, it is still
unknown how these spontaneous changes in QW affect cortical
dynamics during sensory processing. This study aims to elucidate
whether spontaneous changes in the arousal state during QW
are associated with specific brain signatures and whether these
changes might affect visual stimulus processing.

Fluctuations in pupil diameter reflect changes in behavioral
state and can occur spontaneously or evoked by stimuli. The
locus coeruleus-norepinephrine (LC-NE) system is regularly impli-
cated as the neural substrate of stimulus-evoked pupil dilation
via changing arousal state, primarily because of the anatomical
connections between the LC and the sympathetic and parasym-
pathetic nervous system (Aston-Jones and Cohen 2005; Joshi et al.
2016; Joshi 2021). Furthermore, brief spontaneous dilations of the
pupil diameter during QW correlate with desynchronization of the
membrane potential of supragranular cortical neurons and with
a decrease of low-frequency power in the neocortex (Reimer et al.
2014, 2016). Thus, continuous fluctuations in behavioral states
can be separated according to spontaneous changes in pupil
diameter, and groups from both sides of this arousal distribution
can be contrasted to unveil differences in cortical dynamics dur-
ing stimulus processing.

We used the ferret, a research animal model with a visual cor-
tex that has a similar organization as that of primates (Kaschube
et al. 2010), to investigate the neuronal correlates of arousal states
during QW. We presented full-field and full-contrast gratings to
awake, head-fixed ferrets and studied rhythmic changes in the
local field potential (LFP) and spiking activity of neurons in ferret
primary visual cortex (area 17, V1) and the posterior parietal
cortex (PPc), a higher order sensory area that shows connections
to visual cortical areas (Dell et al. 2019). We found that pre-
stimulus pupil diameter spontaneously fluctuated during QW.
We separated the distribution of pupil diameters into quintiles
and compared the electrophysiological changes observed in the
lowest and highest quintiles of the distribution. During short
periods of pre-stimulus pupil dilation, corresponding to periods of
high arousal during QW, we observed an increase in orientation
tuning selectivity and spike-count correlations between spiking
responses.

Furthermore, we observed amplitude and peak shifts of the
spectral power of the LFP signal depending on the QW arousal
state. Despite the decrease in power, the high-arousal quintile
within QW states triggered low-frequency interareal increments
in coherence, and computational models able to reproduce these
effects pointed towards feedback (FB) signals from higher brain
areas as a potential cause. The high-arousal condition in QW also
led to frequency-dependent phase-locking of different neuronal
types in the striate cortex. Our results show that the variabil-
ity and sensitivity of cortical responses to a stimulus critically
depend on the animal’s behavioral state before stimulus onset.

Materials and methods
All animal experiments were conducted with the approval of the
local ethical committee of the University of Amsterdam and the
Netherlands National Committee for the protection of animals
used for scientific purposes. We used 6 healthy, adult female
ferrets (Mustela putorius furo) of approximately 6 months old at the
onset of the study. Ferrets were group-housed, maintained under
a 16/8 h dark/light cycle, and received water and food ad libitum.

Stimulation paradigm. We used custom software coded in MAT-
LAB (Mathworks) and the Psychophysics Toolbox (Brainard 1997) to
present visual stimuli to awake ferrets. All stimuli were presented

on an LCD monitor (53.3 x 33 cm, refresh rate 60 Hz). During the
electrophysiological recordings, the ferrets were positioned on an
elevated platform inside a sound-attenuated Faraday cage and
habituated to sitting comfortably in a custom-made cylindrical
body holder (Fig. 1A). We placed the monitor at ∼25 cm in front
of the animals (Fig. 1A). Visual stimuli consisted of presenting a
whole field chevron pattern (SF = 0.18 cycles/deg, TF = 1.2◦/s) for
1 s in 8 different orientations (0◦–315◦ in steps of 45◦), interspersed
with an intertrial interval (ITI) segment of an isoluminant gray
screen, shown for 0.35 s with a random jitter of ±20 ms (Fig. 1B).
Following 11 stimulus repetitions, we presented another isolumi-
nant gray screen for 3 s to record baseline activity. We tracked
eye position and pupil diameter based on the corneal reflection of
light with a noninvasive monocular eye tracker (ISCAN ETL-200,
Rodent Eye Tracking Lab).

Headpost implantation. To maintain a stable visual field through-
out recordings, ferrets received a cranial headpost-implant in
two separate surgeries. First, ferrets were implanted with a tita-
nium baseplate under aseptic and sterile surgical conditions.
The baseplate was screwed to the skull’s frontal bone with four
titanium screws and fortified using C&B Super Bond (Parkell)
under general anesthesia. We used Ketamine (10 mg/kg) and Dex-
domitor (0.08 mg/kg) administered i.m. to induce general anes-
thesia, and isoflurane (1–3%) delivered in 100% medical-grade O2

for maintenance. Marcaine 0.5% was used as a local anesthetic
for intubation. Also, we used Buprenorphine (0.01 mg/kg, s.c.,
preoperative) and Meloxicam (0.2 mg/kg, s.c., peri- and post-
operative) as analgesia; and Amoxicillin (20 mg/kg, s.c., in a
single-dose peri- and post-operative) for antibiotic prophylaxis.
Atropine (0.05 mg/kg, s.c.) and Dopram (5 mg/kg, s.c.) were used
in case of respiratory distress. Dehydration was prevented using
50 mL of saline (0.9%, s.c.). We routinely monitored the respiratory
rate, heart rate, and internal body temperature during surgery to
maintain physiological values (LifeVet M, Eickemeyer). We used
Antisedan (0.8 mg/kg, i.m.) to reverse the action of Dexdomitor
at the end of the surgery. After an average of four weeks of
ossification around the baseplate’s anchor screws, we installed a
head-post pole under light isoflurane anesthesia to allow head-
fixed electrophysiological recordings. A small skin incision was
performed above the baseplate, and the pole was attached and
secured with Loctite 242. Meloxicam (0.2 mg/kg, s.c.) was used as
post-operative analgesia.

Electrode implantation. Under the same surgical conditions, we
performed a 1.5 mm diameter craniotomy over the primary visual
cortex of the ferret (area 17, V1) using cranial, gyral, and sulcal
landmarks (Innocenti et al. 2002; Manger et al. 2004). Once the
dura was exposed and retracted, a 32-channel multielectrode
silicon probe (Models A4 x 8–5 mm-200-400-177-CM32 and A2 x
16–10 mm-100-500-177-CM32, NeuroNexus) was inserted approx-
imately 1.5 mm along the dorsoventral axis in the visual cortex
(n = 6). In addition, half of these animals (n = 3) received an addi-
tional implant of the same probe in area PPc. The electrophysio-
logical implant was covered with a protective cap and chronically
fixed with dental cement (Simplex Rapid Acrylic Powder, Kem-
dent). Then, the wound was closed by suturing the skin or gluing
with Vetbond (3 M). Finally, the electrode placement was verified
post hoc using a conventional Nissl staining procedure in brain
slices of 100 μm thickness.

Electrophysiological recording techniques and signal preprocessing.
We recorded spiking, and LFP activity in V1 and PPc using an
analog Neuralynx ERP-54 system and collected data with the
CheetahRev 5.6.3 (Hardware SubSystem Cheetah 64) software.
The signals were recorded with an input range of 1,506 μV and
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Fig. 1. Spontaneous pupil fluctuations during passive visual stimulation. (A) Experimental design. Awake head-fixed ferrets were placed in a cylindrical
holder, to which they were familiarized, in front of a computer screen displaying visual stimuli. Inset: a schematic of the ferret cortex displaying the
target areas for recordings (V1 and PPc). (B) The experiment consisted of the presentation for 1 s of a drifting grating (SF = 0.18 cycles/deg, TF = 1.2◦/s)
for 8 different orientations. During the ITI, a gray screen was presented for 0.35 s with a SOA of ±0.02 s. (C) Pupil response of one ferret normalized over
all trials. For visualization purposes, pupil trials were smoothed with a low-pass Butterworth filter with a cut-off frequency of 3 Hz and subsequently
averaged across all ferrets and sessions. The onset of the stimulus occurs at 0 s. The period of 0.2 s before stimulus onset (in gray) corresponds to the
pre-stimulus control window. (D) Pre-stimulus pupil sizes (expressed as number of pixels, px) were divided into quintiles. (E) Pupil responses for the first
quintile (Q1, low arousal) and the last quintile (Q5, high arousal) normalized per quintile. The normalized data show a similar pupil dynamic range for
both conditions (Joshi 2021).

a sampling frequency of 30,303 Hz in 32 continuously sampled
channels (CSC). The electrophysiological signals were amplified
with an amplitude gain of 830 dB and filtered with a band-pass
filter between 0.1 and 9,000 Hz. Transistor–transistor logic pulses
for time stamping of stimulus presentation were serially sent
through an Arduino Board Mega 2560 to the acquisition system.
All signals were recorded continuously for the entire duration
of the recording session. The recorded signals were processed
offline using the FieldTrip toolbox (https://www.fieldtriptoolbox.
org/) for electrophysiological analyses (Oostenveld et al. 2011)
and MATLAB custom software. We used the open-source software
Kilosort2 to extract single-unit spikes from the broadband signal
(Pachitariu et al. 2016). Following automatic spike detection, we
performed an additional manual curation of those spikes ambigu-
ously separated. The multi-unit activity was obtained from the
broadband signal using a high-pass filter at 500 Hz (Butterworth
filter, second order). For LFP analyses, the original broadband
signal was detrended, linearly downsampled to 1,024 Hz, and low-
pass filtered with a Butterworth filter (second order) with a cut-
off frequency of 100 Hz. We removed powerline artifacts from the
LFP using a band-stop filter centered at 50 Hz and harmonics.
Then, we segmented the continuous signals in epochs of interest,
for each channel, between 0.3 s pre-stimulus onset and 1 s post-
stimulus onset.

Trial inclusion criteria and grouping. We visually inspected the
stimulus-evoked-pupil response of the eye-tracking recordings to
assess the quality of the traces. We eliminated those trials in

which motor artifacts were identified and when an accurate pupil
size could not be determined during the presentation of visual
stimuli or the pre-stimulus baseline. To determine the arousal
state of the animal before stimulation and define the high- and
low-arousal conditions, we selected a time epoch between −0.2 s
and stimulus onset as a pre-stimulus baseline window. From
this window, we obtained the distribution of the average pupil
size. We then divided the pre-stimulus pupil size distribution into
quintiles (Figs. 1D and Fig. 3A), selecting the trials of the 1st and
5th quintiles for further analysis. We denominated those trials
of the 1st quintile as the low-arousal group (condition QW-low
arousal) and the 5th quintile as the high-arousal group (condition
QW-high arousal).

Orientation selectivity index. We calculated an orientation selec-
tivity index (OSI) to measure the orientation-tuning properties of
the recorded neurons in the ferret primary visual cortex. First,
we computed the mean discharge rate (in spikes/s) for each
stimulus orientation (8 in total) using a spike density function
and convolving the spike trains with a gaussian kernel. Then, after
identifying the orientation that evoked the highest rate over trials
(Ratepref) and inferring the orthogonal orientation (Ratenon-pref), we
computed the neuronal d’ (Berens et al. 2008; Meijer et al. 2017,
2020) as an OSI, a measure that includes the pooled variance
across neurons, according to the formula:

OSI = Ratepref − Ratenonpref√
σpref +σnonpref

2

(1)
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Following Meijer et al. (2017), we selected an OSI > 0.4 as a cut-
off value to classify a neuron as orientation-selective.

Spike-count correlations (rSC). To obtain the pre- and post-
stimulus correlated variability of spiking responses across
high- and low-arousal conditions, we calculated the Pearson’s
correlation of spike counts (noise correlations) for every pair of
simultaneously recorded single units (Cohen and Kohn 2011) from
the ferret primary visual cortex. To remove the potential influence
of confounding variables that could affect the variability of
spiking responses, we transformed all spike counts from every
neuron into a z-score using the mean and SD for every repetition
of both experimental conditions (Nandy et al. 2017; Arbab et al.
2018). Then, we pooled these z-scored values in pairs of neurons
and obtained the Pearson’s correlation from these pairs. The
rSC was calculated for each condition using a spike-counting
window of 0.2 s across the entire epoch of interest Fig. 2B. We
controlled the trial-to-trial variability in spike-count correlations
by shuffling the neurons across conditions before calculating
the rSC and repeating the analysis through different spike-count
windows, ranging from 0.05 to 0.3 s (Kass and Ventura 2006; Arbab
et al. 2018).

Spectral analysis of power. The raw LFP data from each channel
were separated into 2 groups (QW-high and QW-low arousal con-
ditions) corresponding to the 1st and 5th quintiles of the pupil size
distribution across trials. The resulting epochs of interest were
demeaned and divided by their standard deviation. From these
segments, we used a 1 s segment of the baseline window (from
1.5 to 2.5 s) and a 1 s period from the stimulus onset, comprising
the entire visual stimulation. Then, we obtained the spectrally
decomposed Fourier coefficients of every epoch of interest (per
channel), applying a discrete fast Fourier transform (FFT) to the
segmented trials.

We used the irregular-resampling auto-spectral analysis
(IRASA) method to obtain the spectral power, which isolates
the oscillatory components from the fractal (1/f ) activity of the
power spectrum of any neurophysiological signal (Wen and Liu
2015). IRASA estimates the oscillatory and fractal power spectral
components by resampling the neural signal using multiple non-
integer positive numbers and their reciprocals. Then, it calculates
the geometric mean of the auto-power spectra of each resampled
signal. The resulting spectrum contains a redistribution of the
fundamental and the harmonic oscillatory frequencies by an
offset that varies with the resampling factor. Conversely, the
fractal component of the spectral estimation remains constant
independently of the resampling factor. Finally, we obtained an
approximate estimate of the power spectrum of the oscillatory
component by subtracting the median of the mean auto-power
spectra (containing the fractal estimation of the power) from the
original power spectrum (obtained from the previously calculated
Hanning tapered Fourier coefficients). The power estimates were
normalized per session and animal relative to the mean power
between 4 and 100 Hz (Malkki et al. 2016).

Phase-locking of LFP–LFP signals. The LFP–LFP phase-locking
value across electrodes was calculated using the weighted phase
lag index (WPLI), a bivariate metric of the phase consistency
across signals, less affected by volume conduction, noise, and
sample size (Vinck et al. 2011). Specifically, the WPLI estimates, for
a particular frequency, the non-equal probability of phase leads
and lags of the imaginary part of the cross-spectrum, weighted by
the magnitude of this imaginary part of the cross-spectrum. The
WPLI was computed using the equation:

� =
∣∣E {I {X}} sgn (I {X})∣∣

E |I {X}| (2)

where the expression E {I {X}} represents the estimation of the
imaginary part of the cross-spectrum between 2 channels, and
the expression sgn () the signed function of that estimator. The
WPLI metric was estimated from a 4-tapered multitaper Fourier
decomposition (Jarvis and Mitra 2001) over an epoch of 1 s dura-
tion, resulting in a spectral smoothing of ±2 Hz.

Phase locking of spike-LFP signals. The strength of the phase-
locking between the LFP and the spikes was measured using the
pairwise phase consistency (PPC) analysis (Vinck et al. 2012). For
each frequency bin f , we determined spike-LFP phases in epochs
of 5/f (5 cycles) length centered around the spikes obtained during
the baseline and stimulation period. The PPC index was obtained
from the Kaiser-tapered (β = 3) Fourier coefficients and calculated
according to the formula:

ψ =
∑M

m=1

∑M
l�=m

∑Nm
j=1

∑Nm
k=1

(
sin

(
θj,m

)
sin

(
θk,l

) + cos
(
θj,m

)
cos

(
θk,l

))
∑M

m=1

∑M
l�=mNmNl

(3)

where θ j,m, and θk,l are the jth and kth spikes at frequency f in
trial m and trial l, respectively. Nm and Nl denote the number
of spikes N in different trials. This method solves the problem
of statistical dependence between spike-LFP phases because it
restricts the PPC analysis to those spikes recorded from separate
trials (Vinck et al. 2012). The PPC analysis was calculated using the
spiketriggeredspectrum function (method: ppc1) from the FieldTrip
toolbox (Oostenveld et al. 2011). The PPC index was calculated per
each neuron individually. The resultant PPC spectra were averaged
across all neurons.

Computational model. The computational model is based on our
previous work (Mejias et al. 2016; Lindeman et al. 2021) and
involves 3 levels of description: intra-laminar, inter-laminar, and
inter-areal (Fig. 5A). We consider 2 cortical regions at the inter-
areal level: the primary visual cortex (area 17, V1) and the PPc.
Each area consists of 2 cortical layers, or laminar modules, which
represent the inter-laminar level and simulate the dynamics of
superficial (2/3) and deep (5/6) layers, respectively. Each lami-
nar module has 1 excitatory and 1 inhibitory population (e.g.
intra-laminar level) modeled using firing rate dynamics. Their
respective firing rates rE(t) and rI(t) are described by the following
equations:

τE
drE(t)

dt
= −rE(t) + F (IE)

√
τE ξE(t) (4)

τI
drI(t)

dt
= −rI(t) + F (II) + √

τI ξI(t) (5)

Here, τE and τI are the time constants for the excitatory and
inhibitory populations, respectively. ξE(t) and ξI(t) are the Gaussian
white noise terms of zero mean and standard deviation (σ ) one.
For superficial layers, we chose τE = 6 ms, τI = 15 ms for the time
constants and σ = 0.3 for the noise strength, which leads to a
noisy oscillatory dynamic in the gamma range. For deep layers,
we chose τE = 42 ms, τI = 105 ms and σ = 0.45, which leads to a
noisy oscillator in the alpha-band frequency range. The relatively
large values for the time constants in deep layers are thought to
reflect other slow biophysical factors not explicitly included in the
model, such as the dynamics of NMDA receptors.

The function F(x) = x/
(
1 − exp (−x)

)
is the input–output trans-

fer function, applied for simplicity to all excitatory and inhibitory
neuronal populations, which transforms the incoming input cur-
rents into their corresponding cell-averaged firing rates. The argu-
ment of the transfer function is the incoming current for each
population, which involves (i) a background term, (ii) a local term,
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Table 1. Parameter values of the computational model for
V1–PPc laminar interactions.

Parameter Value (layer) Parameter Value (state)

τE 6 ms (sup),
42 ms (deep)

wEE 1.5

τ I 15 ms (sup),
105 ms (deep)

wIE 3.5

σ 0.3 (sup),
0.45 (deep)

wEI 3.25

Ibg 3 (sup), 2 (deep) wII 2.5
wds 1 JA-d 1 (10 for high arousal)
wsd 0.75 JA-s 0.3 (3 for high arousal)
JFF 0.5 JFB-I 0.5
JFB-s 1.6 JFB-d 0.2

and (iii) a long-range term. The incoming current for excitatory
and inhibitory populations, respectively, is:

IE = IE
bg + IE

local + IE
lr (6)

II = II
local + II

lr (7)

The background term is a default constant current only
received by excitatory neurons in V1 and area PPc. It equals IE

bg = 3
for superficial excitatory neurons and IE

bg = 2 for deep excitatory
neurons. This term already includes the effects of the passive
visual input received by V1 during the experiment. The local term
involves the input coming from neurons within the area, and is
given by:

IE
local = wEErE − wEIrI + IE

interlaminar (8)

II
local = wIErE − wIIrI + II

interlaminar (9)

Here, wab are the synaptic weights from population b to a (see
Table 1 for numerical values). The interlaminar terms represent
contributions from a different layer than those terms used for
the population under scrutiny. The only interlaminar projections
are from superficial excitatory to deep excitatory neurons, with
synaptic strength wds = 1, and from deep excitatory to superficial
inhibitory neurons, with strength wsd = 0.75 (Mejias et al. 2016).

With these parameters compatible with experimental values,
the model produces noise-driven oscillators through stochasti-
cally perturbed stable focus dynamics—i.e. the activity behaves
like a physical damped oscillator, which is kicked out of the fixed
point by existing fluctuations. Furthermore, contrary to other
models (Wilson and Cowan 1972), which often utilize a limit
cycle dynamic, the oscillatory activity produced here is weakly
coherent from one cycle to another, providing a closer match to
the highly irregular rhythmic activity of LFPs in actual neuronal
recordings and reproducing a wide range of experimental findings
(Mejias et al. 2016; Lindeman et al. 2021). Finally, the long-range
term (IE

lr and II
lr Eqs 6 and 7) in the input current includes currents

coming from other neocortical areas. These currents follow the
general form Jabrb, (with Jab being the synaptic strength from area
b to area a). Therefore, we will specify only the synaptic coupling
strengths to characterize them.

Following anatomical evidence widely consistent for mammals
(Markov et al. 2014; Harris et al. 2019), we consider feedforward
(FF) projections from primary visual to posterior parietal cortices
originating in layer 2/3 pyramidal V1 neurons and target (indi-
rectly via layer 4, which is not explicitly included in the model)

pyramidal neurons in PPc layer 2/3 (with a synaptic strength of
JFF = 0.5). Feedback (FB) projections stem from pyramidal neurons
in deep layers of PPc and target pyramidal neurons in superficial
(strength of JFB-s = 1.6) and deep layers (strength of JFB-d = 0.2), and
inhibitory neurons in superficial and deep layers (strength of
JFB-I = 0.5 for both cases). The long-range terms for the excitatory
and inhibitory populations for each area and layer (indicated
by super or subindices) are therefore described by the following
equations:

IV1,L2/3E
lr = JFB−s rPPC,L5/6E (10)

IV1,L2/3I
lr = JFB−IrPPC,L5/6E (11)

IV1,L5/6E
lr = JFB−drPPC,L5/6E (12)

IV1,L5/6I
lr = JFB−IrPPC,L5/6E (13)

IPPC,L2/3E
lr = JFFrV1,L2/3E (14)

IPPC,L2/3I
lr = IPPC,L5/6E

lr = IPPC,L5/6I
lr = 0 (15)

Arousal signals to these cortical areas are modeled as top–
down FB inputs arriving mostly in deep PPc layers (with a strength
of JA-d = 1 for the low arousal case) and in superficial layers of V1
(strength of JA-s = 0.3 for low arousal, see Table 1), in agreement
with recent hypotheses about the dependence of FB targets on
the hierarchical distance of the projections (Markov et al. 2014).
For the high-arousal signal, these top–down arousal inputs are
multiplied by 10.

To mimic the depth of the recording electrodes for V1 and PPc
in experiments, we estimate the LFP signal in the model by a
weighted average of the excitatory superficial and deep layers,
with a superficial-to-deep ratio of 2:8 for both areas (i.e. 20% and
80% weight of the superficial and deep layers, respectively). These
simulated signals were then used to compute spectral coherence
(as in Mejias et al. 2016) and the WPLI index.

Statistical testing. We assessed significant differences between
conditions using a nonparametric statistical approach (Wilcoxon
rank-sum and sign tests) with a significance threshold of P < 0.05.
For the connectivity analyses, we calculated a nonparametric
permutation test of the coherence differences (Maris et al. 2007),
adjusted by a multiple comparison correction at the subject
level (Scheeringa et al. 2011). First, the individual differences
between electrodes (within-subjects) were computed using a
Welch t-statistic. Next, we obtained individual P-values of the
t-Welch differences from a Student’s t cumulative distribution
function, using the Welch-Statterth-Waite equation to estimate
the degrees of freedom of every distribution, and a cluster-
based approach across frequencies to select significant frequency
band clusters (Maris and Oostenveld 2007). Then, we built a
null distribution of these frequency bin clusters by computing
a paired sample t-test and randomly exchanging the condition
labels between conditions. We repeated this step across 1,000
permutations of the data retaining the maximum and minimum
values of the cluster-selected values. Finally, we compared the
observed T-statistics to the maximal and minimum distributions.
T-statistics were considered significant at P < 0.05 if they were
below the 2.5th percentile of the minimum or above the 97.5th
percentile of the maximal distribution. We used a generalized
linear mixed model (GLMM) to evaluate the power changes due to
arousal considering the variability across animals and channels
as random effects (Tuerlinckx et al. 2006; Johnson et al. 2015). The
statistical significance of the GLMM was tested using a likelihood
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ratio test under a χ2 distribution with a significant threshold set
at P < 0.05.

Results
To investigate the effects of spontaneous arousal changes during
QW on cortical microcircuits, we recorded the LFP signal and
spiking activity from the ferret primary visual cortex (area 17)
and the caudal part of the posterior parietal cortex (PPc) from
sixferrets. Ferrets passively viewed full-screen gratings at eight
different orientations for 1 s while we continuously recorded
pupil diameter changes. These pupil diameter changes were
used to infer the behavioral state of the animal (Fig. 1A and B,
Supplementary Fig. 1).

Pupil diameter spontaneously fluctuates during
quiet wakefulness
We first focused on the pupil response of the animal during stim-
ulus presentation (Supplementary Fig. 1A shows an example of a
30 s pupil recording). Fig. 1C shows an example of a normalized
pupil trace. Supplementary Fig. 1B shows the non-normalized
version of those pupil traces). As expected, pupil illumination pro-
duces a typical event-related response consisting of pupil dilation
followed by a constriction that undershoots the pre-stimulus size
period (Wang and Munoz 2015; Wang et al. 2017). We wondered
whether this event-related pupil fluctuation could be affected by
the behavioral state of the ferret. Therefore, we calculated the
area of the pupil (in pixels) in a pre-stimulus window between
0.2 and 0 s pre-stimulus onset (Fig. 1C, Supplementary Fig. 1),
using the average of that window as an indicator of the animal’s
behavioral state before the stimulus appeared (Aston-Jones and
Cohen 2005; Joshi et al. 2016; Joshi and Gold 2020; Joshi 2021).

We used the average of this pre-stimulus window to create a
pupil size distribution that we separated into quintiles (Fig. 1D).
Based on the distribution of pupil sizes, we considered those trials
from the first quintile (Q1) exhibiting maximum constriction as
low-arousal trials. Conversely, the last quintile (Q5) trials dis-
playing maximum dilation were considered high-arousal trials.
Since both quintiles pertain to a distribution of a QW state, we
denominate both conditions as QW-low (QW-L) and QW-high
(QW-H) arousal, respectively. We used ∼80 trials per session per
condition for subsequent analyses.

The normalized event-related pupil response shows a similar
dynamic for QW-L and QW-H arousal trials (Fig. 1E. Supplemen-
tary Fig. 1C). In both conditions, the event-related pupil response
consists of a post-stimulus dilation followed by pupil constriction.
This constriction predominates during QW-L. Still, the similar
shape of the response suggests that the pupil diameter sponta-
neously increases during passive stimuli, similarly for low- and
high-arousal conditions.

High arousal increases the selectivity of spiking
responses during quiet wakefulness
Active behavioral states improve neuronal coding efficiency in
area V1 of primates (Shadlen and Newsome 1998; Mitchell et al.
2007; Cohen and Maunsell 2009; Ecker et al. 2010; Nandy et al.
2017; Denfield et al. 2018) and mice (Niell and Stryker 2010; Keller
et al. 2012; Reimer et al. 2014, 2016; Vinck et al. 2015; Leinweber
et al. 2017), but it is unknown whether encoding improvement
can be observed during quiescence. Therefore, we investigated
whether high- and low-arousal QW states contribute differently
to the coding efficiency of cortical neurons. To answer this
question, we recorded 145 single units from the primary visual

cortex while ferrets passively observed 8 different orientations
of full-contrast gratings for 1 s per trial. From these 145, 110
neurons (75.8% of the total) responded to the presentation of
visual stimuli (see Supplementary Fig. 2A and B for a peri-stimulus
time histogram example for each condition). We checked whether
different QW states change the spike rate of neurons responding
to the stimulus presentation by computing an average spike rate
across the stimulus presentation window. Previous studies have
shown a decrease in the spiking rate of high-arousal quiescent
periods following active locomotion, but the spiking rate within
quiescent periods remains unaffected (McGinley, Vinck, et al.
2015). In agreement with these results, we observed that the spike
rate of striate cortex neurons in different QW states does not
change with passive stimulation (Supplementary Figs. 2A and B,
Fig. 2A, QW-L: 7.9 ± 0.7 Hz, QW-H: 8.2 ± 0.7 Hz, P = 0.86, Wilcoxon
rank-sum test: rank-sum = 2.1 x 104).

We next focused on the correlated variability across neurons.
An increase of correlated variability in a neuronal population
is usually associated with decreased quality of the information
represented in a population response (Shadlen and Newsome
1998; Averbeck and Lee 2006; Mitchell et al. 2009; Cohen and
Kohn 2011; Arbab et al. 2018) (but see Montijn et al. 2016)
and can be modulated by active locomotion and attentional
state (Reynolds et al. 2000; Cohen and Maunsell 2009; Mitchell
et al. 2009; Reimer et al. 2014; Vinck et al. 2015). Therefore, we
evaluated the response variability between the pairs of neurons
during QW states using spike-count correlations (rSC) between
primary visual cortex neurons with an integration window of
0.2 s (Fig. 2B). These correlations reflect the functional state of
neuronal networks across time (Cohen and Kohn 2011). After
stimulus onset, both conditions showed rSC values above the
chance level, indicating significant correlations. In addition, QW-
H showed a transient increase of rSC approximately at 0.1 s
after stimulus onset (P < 0.05, nonparametric randomization test
across neurons). Under both conditions, the rSC slowly rose across
time after 0.1 s post-stimulus onset, decreasing to baseline levels
after stimulus offset. Finally, we controlled for bin size effects
by calculating the rSC centered at 0.1 s post-stimulus onset
with integration windows of different sizes (Fig. 2C). In all these
cases, QW-H showed higher significant spike-count correlations
than QW-L (P < 0.05, nonparametric randomization test across
neurons), indicating that state fluctuations within QW can lead
to different intra-areal spike correlations. Notably, our results
show that the stimulus onset during quiescent states can trigger
an increase of rSC despite high arousal, suggesting, contrary to
earlier findings (Shadlen and Newsome 1998; Averbeck and Lee
2003; Mitchell et al. 2009; Arbab et al. 2018), that a rise in spike-
count correlations might contribute to improving the information
processing efficiency during periods of increased arousal.

Previous studies have shown that active states effectively
increase the orientation selectivity of striate neurons (Niell and
Stryker 2010; Reimer et al. 2014; Vinck et al. 2015). For this
reason, we evaluated whether QW-L and QW-H modulate the
selectivity of the response of visual cortex neurons to drifting
gratings using an OSI, which considers the pooled response
variability from different neurons across preferred and non-
preferred orientations (see Section Methods). We observed that
the spike rate on neurons at their preferred orientation was
modestly but significantly higher during QW-H (Fig. 2D, P < 0.05,
nonparametric randomization test across neurons). Furthermore,
OSI values significantly increased at the population level during
pupil dilation (Fig. 2E, P = 0.023, sign test: sign differences = 48,
z = 2.26). From 142 recorded neurons, 53% showed an increment of
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Fig. 2. Neuronal responses in primary visual cortex during high- and low-arousal quiescent states. (A) Average (± SEM) spike rate in V1 across the
stimulation period (0.8 s post-stimulus onset) across all channels, sessions, and ferrets. Differences are non-significant (QW-L: 7.9 ± 0.7 Hz, QW-H:
8.2 ± 0.7 Hz, P = 0.86 rank-sum = 2.1 x 104, Wilcoxon rank-sum test). (B) Spike-count correlations (rSC) as a function of time. The rSC values were calculated
using an integration window of 0.2 s. The red and blue lines represent the average rSC values ± SEM (ribbon) across recorded neurons for high- and
low-QW arousal conditions, respectively. Gray vertical dashed lines at the beginning and end of the trial represent stimulus onset and offset, respectively.
Black dashed lines represent the average (±SEM) of rSC between neurons, in which the condition labels were randomly shuffled. Gray bar denotes a
P-value < 0.05 in a randomization test, corrected for multiple comparisons across observations. (C) Spike-count correlations calculated at 0.1 s post-
stimulus onset as a function of different temporal integration windows. Gray bar and black dashed line as in panel (B). (D) Normalized spike rate
(average ± SEM) as a function of the preferred orientation angle (in degrees). Gray bar denotes a P-value < 0.05 in a randomization test, corrected for
multiple comparisons across observations. (E) Scatter plot of the OSI values during high- and low-arousal during QW. Each dot represents the average
values of a recorded neuron. During visual stimulation, OSI values significantly increase during high arousal (QW-H) (P = 0.023, z = 2.26, sign = 48; sign
test). (F) Histogram of the OSI differences between high and low QW. Positive values indicate a higher OSI during QW-high. The dashed line represents
the median of the distribution (0.04). The distribution differed significantly from zero (P = 0.03, z = 2.05, rank-sum = 8591; Wilcoxon rank-sum test).

the OSI during QW-H. This increase was observed using an index
of the difference across conditions of very selective neurons with
high OSI values (Fig. 2F). In this analysis, positive index values
indicate an increase in the OSI during high arousal. Furthermore,
the difference index distribution was significantly distinct from
zero (P = 0.03, Wilcoxon rank-sum test: z = 2.05, rank-sum = 8591).

In sum, these results show that high-arousal QW behavioral
states increase the OSI and the spike-count correlation of the
neuronal population. An increase in rSC values implies an increase
in the synchronized activity of neurons due to common input.
Interestingly, high rSC has been interpreted as a decrease in the
quality of information processing (Cohen and Kohn 2011). Here we
showed that, despite high rSC values, QW-H improves the response
selectivity of neurons in V1 during stimulus processing.

High- and low-arousal states during quiet
wakefulness induce amplitude and peak shifts of
the spectral power
The LFP signal is a prime candidate for studying the relationship
between behavioral states and cortical microcircuit function
changes. Rhythmic fluctuations of the LFP across time primarily

reflect synchronized excitatory and inhibitory interactions
among cortical microcircuits neurons (Buzsáki et al. 2012; Pesaran
et al. 2018). Furthermore, these LFP oscillations have been
associated with several cognitive functions and computational
mechanisms (Fries 2009; Bosman et al. 2014; Singer 2018).
Because behavioral states influence the synaptic activity of
cortical microcircuits, we explored LFP power dynamics across
different QW conditions during passive stimulation (Fig. 3). We
recorded the LFP activity of one primary sensory area (V1) and
a hierarchically superior area (area PPc), focusing on the power
changes between high- vs. low-arousal quiescent periods in which
animals passively observed the displayed gratings. We compared
these power fluctuations with those elicited during a baseline
period without stimulation.

We observed several changes in the LFP signal associated with
the animal’s behavioral state (Supplementary Fig. 2C–H, Fig. 3).
As expected (Harris and Thiele 2011; McGinley, Vinck, et al. 2015),
QW-H shows a significant decrease in the power at lower frequen-
cies and a small but significant increase in the power at higher fre-
quencies (Supplementary Fig. 2E–H). During visual stimulation, an
inspection of the individual LFP raw traces also shows an increase
in the faster rhythms during those trials with bigger pupil dilation
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Fig. 3. LFP power estimation in primary visual and posterior parietal cortex during high- and low-arousal trials. (A) Average ± SEM of the pre-stimulus
pupil sizes for each quintile. (B) Raw LFP traces from a representative electrode in V1 (1 s after visual stimulation). Trials were classified according
to the pre-stimulus pupil diameter distribution, separated into quintiles. (C) Average power spectrum (% of the total power, IRASA estimation) for a
representative electrode in V1, classified according to the quintiles of the pre-stimulus pupil diameter distribution. Color code according to panel (A).
The frequency cut-off of the IRASA power estimation was set at 50 Hz. Dashed squares show the frequency bands analyzed in panels (D) and (E).
(D) Average power spectrum estimation (% of the total power, IRASA estimation) for the alpha-frequency band (8–12 Hz) separated across quintiles.
The gray asterisk denotes a significant relationship between the pupil diameter distribution quintiles and the decrease of the alpha-frequency band
power (P = 0.006, t-stat = −2.86, fixed effect regression). (E) Same as (D) but for a beta-frequency band (18–30 Hz). A fixed effect regression does not show
a correlation between the pupil diameter distribution quintiles and the beta power increase (P = 0.56, t-stat = 0.57, fixed effect regression). (F) Average
power spectrum (% of the total power) across all channels, sessions, and ferrets in V1. Black, red, and blue traces (average ± SEM) correspond to the
activity during baseline, high- and low-arousal conditions. (G) Same as (F) but for posterior parietal cortex. The gray bar shows a significant power
decrease at a frequency band between 1 and 4 Hz modulated by arousal (P = 0.036, χ2(2) = 6.65, likelihood ratio test). (H) Individual power peaks of an
8–16 Hz frequency band in V1 for baseline (black), high- (red), and low- (blue) arousal conditions. Power values are normalized to the maximum. Scaled
spectra are shown in dots. (I) A cosine function was fitted to the top third of the power for each condition (R > 0.98 for each curve). Vertical lines represent
the peak of the frequency band. Shaded regions correspond to the 95% CI. The gray asterisk denotes a significant shift change due to arousal (P = 0.009,
χ2(2) = 9.25, likelihood ratio test, frequency peaks: Baseline: 12.76 Hz, high arousal: 11.24 Hz, shift from baseline −1.51 ± 0.47 Hz, low arousal: 10.29 Hz,
shift from baseline −2.47 ± 0.55 Hz). (J) Same as (H) but for posterior parietal cortex. (K) Same as (I) but for the posterior parietal cortex. The GLM analysis
did not show statistical significance (P = 0.07, χ2(2) = 5.61, likelihood ratio test, frequency peaks: baseline: 12.25 Hz, high arousal: 12.51 Hz, shift from
baseline: 0.26 ± 1.13 Hz, low arousal: 11.78 Hz, shift from baseline −0.47 ± 1.19 Hz).
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compared with the trials with smaller ones (Supplementary Fig.
2C and D).

Previous studies have suggested that this shift between brain
states reflects a functional continuum rather than qualitative
differences between states. For instance, these studies have
shown that membrane potential depolarization (and spike rate
increases) follows parametric pupil diameter enlargements
(McGinley, David, et al. 2015; Neske et al. 2019). We wondered
whether we could observe a similar relationship between
spectral power and spontaneous pupil fluctuation during
visual stimulation. We sorted the LFP trials according to the
quintile values of the pre-stimulus pupil diameter distribution
(Figs. 1D, 3A and B). Then, we calculated the sustained power
spectrum across all visual channels during a time window of
1 s. We considered an analysis window starting at 0.3 s post-
stimulus presentation to avoid power induced by event-related
changes. In the visual cortex, we found that passive stimulation
induced a decrease of the power amplitude at the alpha-
frequency band (8–12 Hz) (Fig. 3C shows the power spectrum
of a representative channel for all quintiles. The dashed squares
highlight an 8–12 and 18–30 Hz frequency band, respectively.
Fig. 3F shows the average power spectrum across channels,
sessions, and ferrets during baseline and visual stimulation for
the 1st and 5th quintile distribution). We found a significant
correlation between the average pre-stimulus pupil diameter
and the reduced stimulus-induced power in the alpha-frequency
band (Fig. 3D, P = 0.006, t-stat = −2.86, fixed effect regression). The
same analysis revealed a non-significant correlation between a
beta-frequency band (18–30 Hz) and arousal (Fig. 3E, P = 0.56,
t-stat = 0.57, fixed effect regression). In conclusion, we show a
parametric decrease in alpha power as a function of the pre-
stimulus pupil increase, supporting the notion that changes
in neural dynamics are part of a functional continuum within
arousal states.

In area PPc, we also observed a power decrease between 1 and
4 Hz after the presentation of a stimulus. Notably, the power
amplitude at the peak of this frequency band shows a modest
but significant decrease by about 2 ± 0.7% of the total power in
area PPc during QW-H (Fig. 3G, P = 0.036, χ2(2) = 6.65, likelihood
ratio test), indicating that the state of arousal can also modulate
stimulus-induced power changes at PPc during quiescent wake-
fulness.

We also observed a peak shift within an 8–16 Hz frequency
band as a function of the arousal state in V1 but not in area PPc
(Fig. 3H–K). To estimate the peak value for each condition and
area, we scaled the spectra and fitted a cosine to the upper third
of the band (Fig. 3I and K, all R values > 0.99). We used a mixed
model with the arousal conditions as a predictor to evaluate
the statistical significance of this spectral shift. In V1, visual
stimulation induced a significant shift of the power peak towards
lower frequencies. In addition, QW-L shifted the peak towards
lower frequencies compared with high arousal (see Fig. 3H for
the entire power spectrum comparison and Fig. 3I for the peak
differences; χ2(2) = 9.25 P = 0.009, likelihood ratio test. Frequency
peaks per group: baseline: 12.76 Hz; high arousal: 11.24 Hz, shift
from baseline: −1.51 ± 0.47 Hz; low arousal: 10.29 Hz, shift from
baseline: −2.47 ± 0.55 Hz). In contrast, neither visual stimulation
nor QW states induced significant power peak changes in area
PPc (Fig. 3J and K; χ2(2) = 5.61 P = 0.07, likelihood ratio test. Fre-
quency peaks: baseline: 12.25 Hz, high arousal: 12.51 Hz, shift
from baseline: 0.26 ± 1.13 Hz, low arousal: 11.78 Hz, shift from
baseline −0.47 ± 1.19 Hz).

High- and low arousal conditions are
differentially coupled to frequency-dependent
interareal coherence
Behavioral states are considered global phenomena (Harris and
Thiele 2011) with uniform neural underpinnings across differ-
ent brain areas. However, previous studies have stressed that
functional connectivity at macroscopic and microscopic levels
depends on anatomical connectivity and behavioral state (Cro-
chet and Petersen 2006; Poulet and Petersen 2008; Olcese et al.
2016, 2018; Poulet and Crochet 2019). Our power amplitude analy-
ses suggest low- and high-arousal states during QW elicit different
power frequency band signatures in visual and parietal cortices.
Therefore, we wondered whether visual and parietal cortices show
similar or different functional connectivity profiles during QW.
We used the WPLI index, which measures the phase consistency
across 2 oscillatory signals, correcting for volume conduction (see
Section Methods), as an estimate of the functional communica-
tion within and between visual and parietal channels (Fig. 4, all
significant results obtained with P < 0.05 using a nonparametric
randomization test corrected by multiple comparisons, see Sec-
tion Methods).

The average WPLI spectrum across channels within the visual
cortex showed a significantly increased narrow band centered
at 40 Hz during high arousal relative to low arousal (Fig. 4A).
Conversely, we observed a significant increase of the WPLI at 4–
8 Hz in the parietal cortex during high arousal (Fig. 4B). When we
evaluated the WPLI spectrum across areas, we observed that a
similar 4–8 Hz increase during high arousal dominated functional
connectivity between areas (Fig. 4C).

Our WPLI results suggest that functional connectivity increases
during high arousal but with a different spectral profile depending
on the area. Enhanced low-frequency WPLI is observed within and
between PPC and the visual cortex. In contrast, WPLI within V1
showed an increase in gamma-band synchronization. Our results
show that the functional connectivity between brain areas in
the ferret resembles that observed in the visual cortical system
of non-human primates (van Kerkoerle et al. 2014; Bastos et al.
2015), possibly reflecting hierarchical relationships between brain
regions (Markov et al. 2014).

Simulation of functional connectivity patterns by
a computational model
Inter- and intra-area anatomical connections carry feedback (FB)
and feedforward (FF) information targeting specific laminar com-
partments, depending on the hierarchical level of sending and
receiving areas (Markov et al. 2013). Therefore, we wondered
whether the observed differences in connectivity between high-
and low-arousal states during QW can be simulated by differen-
tially modulating the activity of the cortical laminae. We modified
a previously developed large-scale computational model con-
strained by weighted connectivity data derived from the macaque
cortex (Mejias et al. 2016), testing different FB connectivity profiles
between V1 and PPc (Supplementary Figs. 3 and 4; Figs. 5A and 6,
see Section Methods for a model description).

We produced 680 LFP epochs of 2 s duration organized in 4
“channels” (2 channels in area V1 and 2 in area PPc, Supple-
mentary Fig. 3A). The power spectrum obtained from the model
shows 2 well-defined peaks at alpha- and gamma-frequency
bands for both conditions (Supplementary Fig. 3C and D). Fig. 5B
shows the WPLI index estimation obtained from the model
architecture depicted in Fig. 5A. Supplementary Fig. 3D–F shows
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Fig. 4. Intra- and inter-areal coherence between primary visual and parietal cortices during visual stimulation increases during a high-arousal quiescent
state. (A) WPLI (squared WPLI debiased, a measure for LFP–LFP phase-locking connectivity, see Section Methods) for all channel combinations in V1
(average ± SEM) and high- (red) and low- (blue) arousal conditions. The gray bar shows a P < 0.05 level corrected for multiple comparisons across
frequencies (nonparametric randomization test across site pairs; see Section Methods). A significant increase of the WPLI index, centered at a narrow
gamma-frequency band (40–50 Hz), is observed during high-arousal quiescent states. (B) Same as (A) but for channel pairs within the posterior parietal
cortex. (C) Same as (A) but for channel pairs between V1 and posterior parietal cortex. In (B) and (C), a significant increase of the WPLI, centered around
a theta-frequency band (4–8 Hz), is observed during high-arousal quiescent states.

Fig. 5. A computational model that resembles the WPLI coherence observed between V1 and PPc. (A) Schema of the interlaminar circuit used to
model the results observed in Fig. 4. A simplified, minimal model, or a cortical column that describes the laminar-specific interactions between V1
and PPc and the influence of FB signals on them. In green, top–down projections carry arousal signals to the supragranular compartment of V1 and the
infragranular compartment of PPc. (B) Computational prediction of the functional connectivity, measured as WPLI-debiased index, within area V1 (left
panel), within area PPc (middle panel), and between area V1 and PPc (right panel). Color codes are the same as in Fig. 4. The configuration depicted in
Fig. 5A approximates the results observed in Fig. 4 (see Table 1 for the model parameters).

the coherence spectra estimates of the model. These coherence
results constitute a model prediction for future studies, while
results from WPLI can be directly compared with our existing
data. We assumed that arousal signals are conveyed by excitatory
FB projections targeting the infragranular layers of PPc and supra-
granular layers of V1, thus allowing the replication of the above-
mentioned functional connectivity results. Our model estab-
lishes layer-specific FB modulations as a potential mechanistic
implementation of arousal signals to the visual and parietal
cortex during different quiescent states. Importantly, the model
does not inform us about the origin of such modulatory signals,
which can be traced back to subcortical neuromodulatory signals

or cortico-cortical FB projections, for example (see Section
Discussion).

We have also studied the predictions of our model when other
types of laminar FB projections are considered. Figure 6 com-
pares 5 different connectivity patterns between infra- and supra-
granular layers and the estimated WPLI spectra for intra- and
inter-area connectivity. Figure 6A duplicates the model from Fig. 5.
It compares it with 4 alternative scenarios with different ratios for
infra/supra granular FB intensities (Fig. 6B–E, see Supplementary
Fig. 3 for the coherence spectra estimates of the same models).
These alternative models resemble some but not all features of
the observed data. For example, the alternative model offered in
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Fig. 6. Inter- and intra-area coherence estimates vary according to the pattern of interlaminar projections. (A–E) Left: variations in interlaminar FB
projection patterns used to test the functional connectivity model. Right: WPLI spectra of the functional connectivity within and between the primary
visual cortex and PPc (plotting conventions as in Fig. 4). Panel A is the same as used in Fig. 5.

Fig. 6B (i.e. FB preferentially targeting deep layers of both corti-
cal areas) provides a plausible alternative that shows a reduced
gamma peak in V1-PPC interactions under low-arousal condi-
tions (in line with experimental data), but at the expense of an
increased alpha peak for V1, which we did not find in the data.
Alternative models are shown in Fig. 6C (FB to superficial layers),
Fig. 6D (FB to superficial layers of PPC and deep layers of V1), and
Fig. 6E (simultaneous FB to supra and infragranular layers). Inter-
estingly, the simultaneous FB towards supra and infragranular

layers qualitatively reproduces some of the features observed in
our original model. However, this FB configuration does not con-
sider the anatomical asymmetry of top–down projections across
different brain regions (Markov et al. 2014). Thus, these models
cannot reproduce the observed results or the anatomical con-
figuration of top–down projections and are therefore less plau-
sible explanations. A balanced FB modulation through excitatory
projections to supragranular and infragranular layers in primary
visual and PPc cortices, respectively, is thus best consistent with
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our experimental findings on functional connectivity during high-
and low-arousal quiescent.

In sum, our model establishes layer-specific FB as a possible
mechanistic implementation of arousal latter signals to the visual
and parietal cortex. Furthermore, the FB structure considered
in this model is compatible with current hypotheses about the
hierarchical distance of FB generation signals and targeting down-
stream areas (Markov et al. 2013, 2014; Harris et al. 2019), suggest-
ing potential parallelisms between FB modulations in ferrets and
macaques.

Narrow and broad spiking V1 cells phase-lock to
different frequency bands during quiescent
high-arousal conditions
Because excitatory and inhibitory neurons entrain to local
rhythms at distinct phases of the oscillatory period, with
functional implications for cortical microcircuits (Hasenstaub
et al. 2005; Siegle et al. 2014; McGinley, Vinck, et al. 2015; Vinck
et al. 2016), we evaluated whether different neuronal populations
specifically phase-lock to the observed LFP rhythms during
high and low QW conditions. First, we sorted the 110 visually
responsive neurons in V1 using the peak-to-trough duration of
their waveform (Fig. 7A) (Mitchell et al. 2007; Lansink et al. 2010;
Vinck et al. 2016; Arbab et al. 2018). The distribution of peak-to-
trough values was significantly bimodal (P = 0.03, Hartigan’s dip
test: dip = 0.04). Then, we selected narrow-spiking and broad-
spiking cells using 350 μs of the peak-to-trough duration as
a criterion for separation. Using this procedure, we obtained
17 narrow-spiking and 84 broad-spiking cells. Nine neurons
remained unclassified (Fig. 7B).

Next, we quantified the phase-locking consistency of the spikes
from these 2 populations to the underlying LFP rhythm using
the pairwise phase consistency (PPC) index across frequencies
(Vinck et al. 2012). We observed that narrow and broad-spiking
cells significantly increased their phase locking to different brain
rhythms during QW-H. Narrow-spiking cells are simultaneously
locked to an alpha (11–15 Hz) and a gamma- (60–70 Hz) frequency
band (Fig. 7C, 11–15 Hz and 60–70 Hz, P < 0.05 permutation test). In
contrast, broad-spiking cells are only phase-locked to the 60–70 Hz
gamma-frequency band (Fig. 7E, 60–70 Hz, P < 0.05 permutation
test). Figure 7D and F shows the PPC average across the population
of cells to these bands (Fig. 7D, exact Mann–Whitney U test:
narrow-spiking population: alpha-frequency band: P = 0.003,
U = 2989; gamma-frequency band: P = 0.001, U = 3030; broad-
spiking population: alpha-frequency band: P = 0.95, U = 53,920;
gamma-frequency band: P = 0.005, U = 62,179). These results
suggest that high- and low-frequency brain rhythms distinctively
influence the activity of visual cortex neurons during high-
arousal states, with low-frequency phase locking reflecting the
engagement of narrow-spiking cells to an alpha rhythm that is
likely associated with top–down modulation (Arnal et al. 2011;
van Kerkoerle et al. 2014; Bastos et al. 2015).

Discussion
Our results indicate that the spontaneous arousal levels, gauged
via pre-stimulus pupil variability, affect post-stimulus neuronal
processing during quiescence in head-fixed ferrets passively
observing visual stimuli. The pupil size of these ferrets showed
spontaneous fluctuations over time (Fig. 1), which seemed to cor-
relate with different levels of arousal (Reimer et al. 2014; McGinley,
David, et al. 2015; McGinley, Vinck, et al. 2015; Vinck et al. 2015;
Einstein et al. 2017; Neske et al. 2019). When trials were grouped

according to pre-stimulus pupil dilation, we observed that
neurons in V1 increased their firing rate at their preferred
orientation during high-arousal states (Fig. 2). Also, the LFP
power amplitude shifted from a preeminence of low-frequency
bands to higher frequencies. Stimulus onset shifted the peak
of an alpha band (∼12 Hz) towards lower frequencies, but the
magnitude of the peak shift depended on the arousal state
(Fig. 3). High arousal increased LFP–LFP phase relationships at
lower frequencies within and between the visual and parietal
cortices (Fig. 4). A computational model mimicking a laminar
architecture receiving FB from emulating arousal signals between
V1 and PPC showed that this spectral signature is compatible
with FB from higher cortical areas targeting infragranular
layers in PPc and supragranular layers in V1 (Figs. 5 and 6).
Finally, we observed narrow and broad-spiking neurons phase-
locking to different LFP rhythms when stimulated during high
arousal. Broad-spiking neurons entrained to high-frequency
oscillations (>60 Hz), whereas narrow-spiking neurons phase-
locked to low- (12–18 Hz) and high-frequency (50–80 Hz) rhythms
(Fig. 7C and E).

Inactive to active states follow incremental
changes in the variability and sensitivity of
neuronal responses
Neuronal correlates of wakefulness have been studied in well-
defined behavioral states of the sleep–wake cycle and during
physical activity such as locomotion (Harris and Thiele 2011;
McGinley, Vinck, et al. 2015; Olcese et al. 2016; Poulet and Crochet
2019). Active behavioral states produce a cortical desynchro-
nization with a predominance of high-frequency oscillations, an
increase in the variability of the neuronal activity, and an increase
in the sensitivity of neurons in responding to sensory stimuli
(Crochet and Petersen 2006; Gentet et al. 2010; Zagha et al. 2013;
Reimer et al. 2014; McGinley, David, et al. 2015; Vinck et al. 2015,
2016; Poulet and Crochet 2019). Conversely, low-arousal states
correlate with a general cortical synchronization, a prevalence of
low-frequency rhythms, and decreased spike variability (Steriade
et al. 1993, 2001; Amzica and Steriade 1997; Vyazovskiy et al. 2011;
McCormick et al. 2014; Sanchez-Vives et al. 2017). QW shows sim-
ilar but dampened features as those observed during locomotion
or attention (Reimer et al. 2014; McGinley, Vinck, et al. 2015; Neske
et al. 2019; Poulet and Crochet 2019), and recent studies have
proposed that transitions from inactive to active states follow
incremental changes in the variability and sensitivity of neuronal
responses (McGinley, David, et al. 2015; Neske et al. 2019). This
monotonic increase with arousal suggests the existence of a
continuum between the range of neuronal responses and wake-
fulness states. For example, in humans, recent studies have used
pupil size to characterize brain signatures of arousal fluctuations
during the waking states during task performance or rest (de
Gee et al. 2021; Mäki-Marttunen 2021; Wainstein et al. 2021; Lee
et al. 2022) showing that these arousal fluctuations correlate
with similar brain’s functional integration changes. In agreement
with these findings, we found that the alpha-frequency band
power elicited during visual stimulation parametrically decreases
as a function of arousal. Altogether, these results support the
notion that pre-stimulus wakefulness affects neuronal responses
to stimuli processing.

Our study focused on the trials with the smallest and largest
pupil diameter size during QW and determined that these 2
conditions unveil quantitative differences in neuronal sensitivity
as a function of arousal in the ferret. High-arousal QW increased
stimulus selectivity in orientation-selective neurons in line with
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Fig. 7. Spike-LFP phase coherence in primary visual cortex. Narrow- and broad-spiking cells increase their phase locking to alpha- and gamma-frequency
band during high-arousal quiescent states. (A) Normalized spike waveform amplitude as a function of time (ms) for action potentials of neurons sorted
by peak-to-trough-duration. Narrow (cyan), broad (violet), and unclassified (dashed line) spiking cells. Thick lines and ribbon area correspond to the
average ± SEM, respectively. (B) Beeswarm plot of the neuronal cell types, with the horizontal line representing the median of each group. The observed
distribution of the dots was bimodal (P = 0.03, dip = 0.04, Hartigan’s dip test). (C) PPC spectrum of narrow-spiking cells sorted across high- (red) and
low-QW (blue) arousal conditions. Average across V1 channels and narrow-spiking neurons ± SEM (ribbon). Gray bars denote P < 0.05 corrected for
multiple comparisons across frequencies, nonparametric randomization test. (D) Box plot of PPC differences of narrow-spiking cells per band (alpha
and gamma, based on the differences observed in panel (C) as a function of the high- and low-arousal conditions (significance threshold: P < 0.05,
Wilcoxon’s rank-sum test). (E) Same as (C) but for broad-spiking cells. (F) Same as (D) but for broad-spiking cells.

what was previously observed during locomotion compared with
rest (Niell and Stryker 2010; Vinck et al. 2015) and QW compared
with anesthesia (Ecker et al. 2014; Reimer et al. 2014). This sen-
sitivity change of neurons in the primary visual cortex is not
induced by a general increase in the spike rate (Fig. 2A), a finding
also observed in previous reports (Vinck et al. 2015; Poulet and
Crochet 2019). Instead, we observed that these changes are asso-
ciated with spike-count correlation differences among neurons
(Fig. 2B and C), together with changes in power amplitude and
phase synchrony of the LFP signal.

The spike-count correlation accounts for the shared variability
between pairs of 2 recorded neurons (Cohen and Kohn 2011).
In the ferret primary visual cortex, we found that the shared
variability across neurons transiently increases immediately
after stimulus onset during high-arousal trials. This contrasts
with previous studies showing a decrease in shared variability
of spiking responses after stimulus onset (Renart et al. 2010;
Renart and Machens 2014; Neske et al. 2019; Waschke et al.
2021). However, spike-count correlations can also change as a
function of wakefulness state, attention, or anesthesia (Reimer
et al. 2014; Ruff and Cohen 2014; Snyder et al. 2014; Denfield
et al. 2018), depending on the heterogeneity of the population
under examination (Ecker et al. 2011; Arbab et al. 2018). Because
neurons with similar orientation properties tend to have a higher
degree of shared variability (Pachitariu et al. 2015), the transient
high-arousal post-stimulus increase in spike-count correlations

might reflect neurons with similar tuning properties. Moreover,
we confirmed previous observations in V1 that describe a shift
of the LFP power with increasing arousal levels (Crochet and
Petersen 2006; Gentet et al. 2010; Bennett et al. 2013; Polack et al.
2013; Zagha et al. 2013; Reimer et al. 2014; Schneider et al. 2014;
McGinley, David, et al. 2015; Vinck et al. 2015; Einstein et al. 2017;
Fernandez et al. 2017; Stitt et al. 2018). After stimulus onset, we
detected a peak shift of the alpha-frequency band (∼11–15 Hz)
towards lower frequencies in the primary visual cortex (Fig. 3).
The magnitude of the shift depended on the wakefulness state
of the animal (Fig. 3H and I). The occipital alpha peak increases
the frequency when subjects switch from passive viewing to an
active cognitive task (Haegens et al. 2014). We found that while
visual stimulation reduces the frequency peak of alpha power
(Fig. 3I), QW-H shows consistently higher alpha peaks than QW-
L. Previous studies on gamma oscillations have found that this
peak variability might reflect rapid cyclic changes in synaptic
excitation (and a proportional inhibitory counterbalance) within
a cortical microcircuit (Atallah and Scanziani 2009; Spyropoulos
et al. 2022). Our results show that this variability can also affect
low-frequency oscillatory components of the LFP.

Earlier studies have identified the activity of infragranular
cortical layers and their thalamic modulation as the probable
cortical source of alpha rhythms (Lopes da Silva and Leeuwen
1977; Lopes da Silva et al. 1980). This thalamic modulation
sustains cortical connectivity during attentional states in
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primates and rodents (Saalmann et al. 2012; Schmitt et al.
2017). In ferrets, theta and alpha rhythms modulate the
communication between the thalamus and area PPc depending
on the wakefulness state of the animal (Stitt et al. 2018). We did
not observe such parietal modulations, but unaltered responses in
other cortical layers may have masked them. Future studies using
brain-wide recording techniques might elucidate these questions.

Intra- and inter-areal phase synchronization
fluctuates during quiescent wakefulness.
Consistent local and long-range LFP–LFP phase relationships
between areas associated with cognitive tasks have been
described in several species (Bosman et al. 2014; Fries 2015;
Vinck et al. 2016). This study found that a low-frequency band
component dominates the intraparietal (Fig. 4B) and parietal–
visual LFP–LFP phase relationships (Fig. 4C). This increase of low-
frequency synchronization strength in periods of high arousal
is in line with previous findings (Vyazovskiy et al. 2011; Olcese
et al. 2016, 2018; Fernandez et al. 2017), but in addition to
that, we observed in V1 an increase in coherence (WPLI) in
a narrow gamma-frequency band. This narrow gamma band
(between 40 and 60 Hz) might represent the functional interaction
between the primary visual cortex and the lateral geniculate
nucleus, which also depends on the arousal state of the animal
(Saleem et al. 2017; Schneider et al. 2021). Our results reveal
frequency-specific influences between areas depending on the
wakefulness state of the animal. In the primate cortex, gamma
influences have been reported to be systematically stronger in
the feedforward direction. In contrast, alpha and beta typically
dominate in the FB direction, and this organization is consistent
with anatomical projection patterns (Bastos et al. 2015, see
Schneider et al. 2021 for an alternative explanation). We used a
model that mimicked these frequency-specific interactions across
areas. Our model suggests that frequency-specific interactions,
and the effects of different arousal levels on such interactions,
can be captured by straightforward firing-rate models with
laminar connectivity (Mejias et al. 2016). The model predicts
that top–down arousal signals target deep layers of PPc and
superficial layers of V1. The modeling results are consistent
with existing neuroanatomical connectivity patterns of the
macaque cortex (Markov et al. 2013, 2014): specific layers
receiving top–down FB projections depend on the hierarchical
distance between source and target, with short/long hierarchical
distances corresponding to deep/superficial layers, respectively.
This cortical organization successfully explains the observed local
and long-range functional connectivity interactions.

Besides modeling a probable mechanistic origin of the observed
frequency-dependent interactions between visual and parietal
areas, our computational model provides additional information
regarding arousal signals. Assuming that the influence of high-
arousal states on visual and parietal areas is conveyed via top–
down signals from higher cortical areas, subcortical structures
(e.g. thalamus), or neuromodulatory signals (Herrero et al.
2008), we have studied frequency-specific patterns emerging for
different FB configurations. Anatomical projections from higher
to lower brain areas tend to be diffuse and unspecific (Markov
et al. 2014). A computational model like this one facilitates
the exploration of specific projections that might play a role
in the emergence of the observed dynamics. Of the 5 FB types
considered (Fig. 6), FB targeting deep layers of proximal areas
(here: PPc) and superficial layers on distal areas (here: V1)
can replicate the most notable features of the data, except for

overestimating gamma oscillations in visual–parietal influences
during high arousal. Both connectivity patterns include FB to
deep layers (Fig. 6E). FB connections targeting deep layers for
both proximal and distal areas can correct this overestimation
at the expense of deviating from the data in the low-frequency
range for interactions within visual neurons (Fig. 6B). Previous
models have shown the importance of these FB signals during
top–down inhibition (Mejias et al. 2016), and realistic distributed
representations during working memory (Mejías and Wang 2022),
both being essential concepts for predictive coding principles
(Pennartz et al. 2019). Interestingly, these 2 FB patterns are in
line with the ones observed in FB projections in the macaque
cortex (Markov et al. 2014) and mice (Harris et al. 2019),
respectively. Our modeling results point to the hypothesis that
cortical FB in ferrets can include both scenarios, supporting a
body of literature highlighting features that the ferret cortex
share with that of macaques and mice (Kaschube et al. 2010;
Kaschube 2014).

Neuronal entrainment to the low- and
high-frequency LFP components during
quiescent high-arousal reveals different
modulatory effects over cortical microcircuits
Finally, we characterized the entrainment of primary visual cortex
cell types, sorted according to their spike waveforms, to the
observed cortical rhythms. We showed that putative excitatory
and inhibitory neurons increase their entrainment to the LFP
during high arousal (Polack et al. 2013; Vinck et al. 2015). In
addition, while broad-spiking cells (putative pyramidal neurons)
phase-locked to high-frequency oscillations, narrow-spiking cells
(putative interneurons) interacted with both high- (60–70 Hz)
and low-frequency (10–15 Hz) oscillations. This phase-locking
pattern is consistent with the role of narrow-spiking interneurons
controlling cortical microcircuit computations (Isaacson and
Scanziani 2011) and the generation of high-frequency oscillations
(Cardin et al. 2009; Sohal et al. 2009; Veit et al. 2017). It has
recently been observed that specific parvalbumin-expressing
interneurons’ action might mediate cholinergic modulations
within a cortical microcircuit (Garcia-Junco-Clemente et al. 2019).
A subset of GABergic interneurons expressing the neuro-derived
neurotrophic factor L1 receive cortico-cortical projections from
neighboring microcircuits and control the gain of excitatory
cells. These interneurons directly inhibit the apical dendrite
of excitatory neurons while disinhibiting their somata via
parvalbumin-expressing interneurons (Cohen-Kashi-Malina et al.
2021). We hypothesize that the low-frequency entrainment of
narrow-spiking cells observed in our data might reflect the
mediation of several cortical and subcortical influences that
arousal exerts over cortical microcircuits (Harris and Thiele
2011). Future studies must elucidate the role of the interneurons
during QW.

In conclusion, our results show that the variability and sensi-
tivity of cortical responses to a stimulus critically depend on the
animal’s behavioral state before stimulus onset. Arousal states
modulate intra- and inter-areal coherence among circuits, engag-
ing local circuits with different LFP rhythms. Our analysis of high-
and low-arousal QW states supports the notion that behavioral
states are associated with continuous changes in neuronal activ-
ity and dynamics across time and provide further evidence that
the variability observed during visual processing depends on the
behavioral state before the stimulation.
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