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In the medical domain, a systematic review (SR) is a well-structured process aimed to review all available 
literature on a research question. This is however a laborious task, both in terms of money and time. As 
such, the automation of a SR with the aid of technology has received interest in several research communities, 
among which the Information Retrieval community. In this work, we experiment on the possibility of leveraging 
previously conducted systematic reviews to train a classifier/ranker which is later applied to a new SR. We also 
investigate on the possibility of pre-training Deep Learning models and eventually tuning them in an Active 
Learning process. Our results show that the pre-training of these models deliver a good zero-shot (i.e., with no 
fine-tuning) ranking, achieving an improvement of 79% for the MAP metric, with respect to a standard classifier 
trained on few in-domain documents. However, the pre-trained deep learning algorithms fail to deliver consistent 
results when continuously trained in an Active Learning scenario: our analysis shows that using smaller sized 
models and employing adapter modules might enable an effective active learning training.
1. Introduction

A systematic review (SR) is a well-structured process that allows sci-

entists to exhaustively and without bias review all available literature 
on a research question and it constitutes the cornerstone of evidence-

based medicine. Conducting an SR however is a laborious and expensive 
task (Shemilt et al., 2016, Michelson & Reuter, 2019, Tsafnat et al., 
2014), which takes on average 1.72 years to complete (Michelson & 
Reuter, 2019), jeopardizing the quality of healthcare. Automating a sys-

tematic review with the use of technology has received the interest of 
the Information Retrieval community, among others, which contributes 
to the Technology-Assisted Review (TAR) by enhancing the discovery 
of articles to include in the review.

Research effort has been mostly directed towards the query formula-

tion stage of an SR to retrieve the initial set of articles (Scells & Zuccon, 
2018, Scells et al., 2020) or the priority screening stage to re-rank re-

trieved articles (Cormack & Grossman, 2017, Lee & Sun, 2021, 2018). 
Datasets are now freely available1 to further study the problem. In this 
work, we focus on the priority screening stage, i.e., we assume to have 
a set of unlabeled documents 𝐷 as a result of a query issued on one or 
more dedicated scientific article databases and the goal is to prioritize 
them for review.

* Corresponding author.

E-mail addresses: alessio.molinari@phd.unipi.it (A. Molinari), e.kanoulas@uva.nl (E. Kanoulas).

Regarding this second stage, much work has focused on improving 
the relevance feedback (aka active/online learning) process (Cormack 
& Grossman, 2017) that allows to continuously re-rank articles while re-

viewing, or on finding a good stopping criterion (Cormack & Grossman, 
2015, Yang, Lewis, et al., 2021, Li & Kanoulas, 2020) to stop review-

ing. However, to the best of our knowledge, little effort has been made 
towards transferring knowledge from previous and unrelated SR top-

ics to the current one (Cohen et al., 2009, Lagopoulos & Tsoumakas, 
2020). In this work we want to explore the possibility of using previous 
Systematic Reviews in order to pre-train a model, which is later used 
for a zero/few shot classification or ranking of a new, unseen, review 
topic. As a matter of fact, current state-of-the-art TAR frameworks do 
not leverage previous systematic reviews: the motivation behind this 
work is then that of exploring whether using past reviews can be more 
effective than doing no pre-training at all. More specifically, we inves-

tigate two research questions:

RQ1. Can we transfer the knowledge acquired on previous systematic 
reviews, and if so, to which extent?

RQ2. Can we keep training our pre-trained models in the active learn-

ing process?
Available online 9 November 2022
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1 See for instance https://github .com /CLEF -TAR /tar.
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Fig. 1. Diagram of a technology-assisted systematic review process.
The contributions of this paper are:

1. An extensive analysis and comparison between transformer-based 
deep learning models in a zero-shot setup versus traditional ma-

chine learning models with a few-shot setup, demonstrating the 
advantages of out-of-domain pre-training;

2. A method to jump-start the active learning process from the zero-

shot ranking obtained from our models that improves the document 
retrieval, albeit not consistently;

3. An extensive analysis on continual training via active learning of 
deep ranking models, that inform researchers and practitioners on 
which scenarios and techniques might enable the training of these 
models in an active learning process (Section 6.3).

1.1. TAR for systematic reviews: an overview

In evidence-based medicine, a systematic review is conducted by a 
physician in several stages. Given a research question:

1. The physician prepares a query which is issued on one or more 
search engines (for medical literature);

2. An initial pool of documents 𝐷 (based on the search engine rank-

ing) is retrieved;

3. The physician reads (i.e., reviews) 𝐷’s abstracts. Only the subset of 
documents 𝐷𝑟 which are deemed relevant is kept;

4. The 𝐷𝑟 documents are now read and reviewed in their entirety. 
Again, we filter out all the non-relevant documents;

5. Finally, the remaining documents will then form the set of docu-

ments included in the systematic review.

TAR algorithms can assist the physician in step 3 and 4; however, in 
this work we will focus exclusively on step 3. More specifically, the 
2

TAR process is structured in the following manner:
1. An initial set of labeled documents 𝑆 is provided. This set should 
contain at least one positive (and it often consists exclusively of 
this single positive) document;

2. A machine learning algorithm is trained on 𝑆 and outputs scores 
(or probabilities) on the remaining 𝐷 ⧵ 𝑆 documents;

3. An active learning policy (e.g. Continuous Active Learning, see 
Section 2) decides, based on these scores, which and how many 
documents to show to the reviewer (i.e., the physician);

4. The reviewer reads the selected documents abstracts, deciding 
whether they are relevant or not;

5. The seed set 𝑆 is augmented with the new labeled documents and 
the process starts again, until a review budget is exhausted or a 
stopping rule condition is met.2

We give a graphical representation of the process in Fig. 1, and a more 
detailed algorithm in Algorithm 1.

2. Related work

Technology-Assisted Review (TAR) frameworks for systematic re-

views have received an increasing interest by the IR community in 
recent years. Focusing on the article retrieval, prioritization and re-

viewing stage of the SRs, one of the most well-known state of the art 
approaches is the Continuous Active Learning (CAL) algorithm (Cor-

mack & Grossman, 2015). The algorithm starts from a seed positive 
document, trains a machine learning classifier (logistic regression or 
SVM) and iteratively ranks an increasing number of documents; at ev-

ery iteration, it receives assessments on the top ranked documents and 
re-trains the model.

2 In this work, we do not focus on budget and/or stopping rules. This means 

in our experiments in Section 6 we review the whole dataset.
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Algorithm 1: TAR process for a systematic review.

Input : Pool of documents 𝐷 to be reviewed; Active learning policy 𝑎;

Initial seed set 𝑆; Batch size 𝑏; Budget 𝑡; threshold value 𝛼;

Output : Relevant labeled documents 𝐷𝑟

1 𝑖 ← 0;

2 𝐿 ← 𝑆;

3 𝜙𝑖 ← train_clf(𝐿);

4 /* We review a batch 𝐵𝑖 of documents and add it to 
the labeled (training) set 𝐿 */

5 𝐵𝑖 ← select_via_policy(𝜙𝑖, 𝑎,𝐷, 𝑏);

6 𝐿 ←𝐿 ∪ 𝐵𝑖;

7 while |𝐿| < 𝑡 do

8 𝑖 ← 𝑖 + 1;

9 𝑈 ←𝐷 ⧵𝐿;

10 𝜙𝑖 ← train_clf(𝐿);

11 𝐵𝑖 ← select_via_policy(𝜙𝑖, 𝑎,𝐷, 𝑏);

12 𝐿 ←𝐿 ∪ 𝐵𝑖 ;

13 end

14 // Gather the relevant documents
15 𝐷𝑟 ← ⟨⟩;
16 foreach 𝑑 ∈𝐷𝑟 do

17 // 𝑦𝑑 is a binary variable which equals 1 when 𝑑
is relevant

18 if 𝑦𝑑 = 1 then

19 append(𝐷𝑟, 𝑑);

20 end

21 end

22 return 𝐷𝑟

Regarding the usage of pre-existing systematic reviews to pretrain 
a model which is later applied to a new SR topic, an interesting work 
(as well as the first one attempting such an experiment, to the best of 
our knowledge) is Cohen et al. (2009). In this study, the authors train 
an SVM algorithm on 23 previously conducted SRs and later apply it 
to one unseen topic, using a Leave-One-Out setup; the experimental 
results show how such an approach is able to consistently deliver bet-

ter results than the baseline. That said, they assume the availability of 
topic-specific training data, which we do not in this work (shifting the 
context to a real zero-shot scenario).

A more recent work where a transfer learning approach is leveraged 
is Lagopoulos and Tsoumakas (2020). Here the pre-training of a model 
on previous SRs is part of a larger framework, which deals with all the 
stages of a systematic review. The experiments conducted are focused 
on the whole pipeline rather than the effectiveness of the training pro-

cedure. Nonetheless, their results show that pre-training can indeed be 
useful and that knowledge can be transferred between different top-

ics. Pickens (2021) conducts several experiments to measure whether 
“portable” models can be trusted (and whether they are effective) in 
TAR applications; however, their experimentation mostly focuses on in-

topic training (i.e., the training set (source) is coming from the same 
distribution of the test (target) set).

Most of these approaches experiment with machine learning algo-

rithms such as SVM or logistic regression: Deep Learning (DL) models 
are usually not considered fit for such a task, as they depend on too 
many parameters (and data is usually scarce) and are easily outper-

formed by classic ML algorithms (Yang, MacAvaney, et al., 2021). That 
said, there has been some work on testing DL models for TAR applica-

tions: Yang, MacAvaney, et al. (2021) tried to use a just-right fine-tuned 
BERT (Devlin et al., 2018) in the active learning process for e-Discovery. 
BERT is first fine-tuned with the masked language task on the avail-

able documents, and later continuously trained for a fixed number of 
epochs during the active learning review process. Their results show 
how in some cases BERT can actually achieve slightly better results than 
linear models, but postpone further experimentation to future works. 
3

Similarly, Zhao et al. (2021) explored whether several models (BERT, 
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Table 1

Size, number of positives and prevalence of the positive class for the test dataset. 
Topic “CD011686” was originally present in the 2019 CLEF-TAR testing collec-

tion, but was removed since it is also present among the training topics.

Topic Size # Positives Prevalence

CD012567 6736 12 0.0018

CD012768 132 46 0.3484

CD011686 9730 65 0.0067

CD012080 6644 78 0.0117

CD012669 1261 72 0.0571

CD012233 473 44 0.0930

CD008874 2383 119 0.0499

CD009044 3170 12 0.0038

Avg. 3816.12 56 0.07155

logistic regression) trained (or fine-tuned) on a given training set can 
perform well on new data not seen during training: they showed how 
pre-training can usually bring to good performances, but the results are 
not consistent across all tested datasets (i.e., the pre-trained models can 
completely fail to transfer knowledge in some cases).

While the different learning architectures that we test (see Sec-

tion 4.1) are first trained/fine-tuned on a set of previous systematic 
reviews topics for which we have the reviewers’ final decisions, they 
are later tested on a previously unseen SR topic. We assume not to have 
any kind of training data for this latter test topic; the reviewer’s opin-

ion is elicited via an active learning approach. As previously mentioned, 
Cormack and Grossman’s Continuous Active Learning (CAL) algorithm 
(Cormack & Grossman, 2015) is the de-facto standard in TAR applica-

tions (both for e-discovery and systematic reviews). Hence, we use the 
CAL algorithm as the main and only active learning approach to emu-

late data annotation in our experiments. As we will see in more details 
in Section 6, the CAL algorithm will be both used as a baseline (using 
a classical logistic regression as its classifier) and as the active learn-

ing methodology to continuously train our transfer-learning models. 
Regarding its implementation, we follow the configuration described 
in Cormack and Grossman (2015) (unless differently stated), where we 
use an exponentially increasing batch size 𝑏, starting from 𝑏 = 1, and 
using the title of the topic as the seed (and only known) positive docu-

ment.

3. The dataset

For our experiments, we use the 2019 CLEF-TAR collection.3 We 
keep the training/testing splitting as given in the GitHub repository for 
Task 2. More precisely, we have 53 topics (i.e., systematic reviews) for 
training and 8 topics for testing. However, one of the testing topics, 
more specifically topic “CD011686” is also present in the training sets, 
and as a result we remove it from our test set, reducing it to 7 topics. In 
order to retrieve documents’ abstracts we used the HTTP API available 
at https://eutils .ncbi .nlm .nih .gov /entrez /eutils /efetch .fcgi, download-

ing abstracts via PUBMED.4 Due to issues with the API or the availabil-

ity of the documents, we were able to retrieve most but not all of the 
documents. For each topic in the training data, the minimum amount of 
documents we have is 65 (123 for testing data), whereas the maximum 
is 79, 783 (9, 730 for testing data). On average, we have a prevalence of 
the positive class of 0.04 (0.07 for testing data): that is, the dataset is 
strongly unbalanced in favor of the negative class, as it is often the case 
in TAR tasks. We present more in-detail information about the test top-

ics in Table 1. Moreover, we show a few examples from our dataset in 
Tables 2 and 3 (for training and testing topics, respectively).

3 Available at https://github .com /CLEF -TAR /tar /tree /master /2019 -TAR.

4 https://pubmed .ncbi .nlm .nih .gov/.

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi
https://github.com/CLEF-TAR/tar/tree/master/2019-TAR
https://pubmed.ncbi.nlm.nih.gov/
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Table 2

Three samples from our training data. We can see the research question (i.e. what we are looking for) on the left, and parts of a 
random picked abstract on the right.

Training data

RQ Abstract

Rapid diagnostic tests for diagnosing uncomplicated non-

falciparum or Plasmodium vivax malaria in endemic coun-

tries

To determine the competence of community health workers (CHWs) 
to correctly assess, classify and treat malaria and pneumonia among 
under-five children after training [...]

Combination of the non-invasive tests for the diagnosis of en-

dometriosis

It has been suggested that histologic subtype of ovarian cancer is a 
factor that determines the chemoresponsiveness of tumor. In this study, 
we wanted to clarify the prognostic significance of histologic subtype 
and its correlation to expression of chemoresistance-related proteins 
(CRPs) in ovarian cancer. [...]

Molecular assays for the diagnosis of sepsis in neonates One of the leading causes of severe childhood gastroenteritis are group 
A rotaviruses, and they have been found to be associated with ∼40% of 
the annual gastroenteritis-associated hospitalizations in young Danish 
children < 5 years of age (Fischer et al., 2011) [...]

Table 3

Three samples from our testing data. We can see the research question (i.e. what we are looking for) on the left, and parts of a 
random picked abstract on the right.

Testing data

RQ Abstract

Non-invasive diagnostic tests for Helicobacter pylori infection To describe and explore the natural history of Helicobacter pylori in-

fection and chronic gastritis in terms of gastric mucosal atrophy and 
ulcer development over time in a population-based cohort. [...]

Point-of-care ultrasonography for diagnosing thoracoabdominal 
injuries in patients with blunt trauma

Bedside lung ultrasound (LUS) is useful in detecting radio-occult 
pleural-pulmonary lesions. The aim of our study is to compare the 
value of LUS with other conventional routine diagnostic tools in the 
emergency department (ED) evaluation of patients with pleuritic pain 
and silent chest radiography (CXR). [...]

Triage tools for detecting cervical spine injury in pediatric trauma 
patients

We reviewed published radiographic and cadaver series describing the 
incidence of the anatomical anomaly ponticulus posticus and discuss 
its relevance to C1 lateral mass screw (C1LMS) insertion. [...]
4. Methodology and experimental design

4.1. Learning algorithms

With the goal of understanding whether we can transfer information 
between different systematic review topics, we explore and employ dif-

ferent learning architectures:

• a classical Logistic Regression (LR) classifier, which is one of the 
well-established standard learning models used in TAR for system-

atic reviews literature;

• the BioBERT architecture (Lee et al., 2020), a BERT (Devlin et al., 
2018) based model specifically trained on scientific and medical 
data which could thus be expected to achieve good performances 
on our task. We fine-tune it with a pairwise loss;

• a deep learning model based on the transformer architecture 
(Vaswani et al., 2017) where the self-attention mechanism is ac-

tually computed between documents and not between tokens. This 
model was first proposed in Pobrotyn et al. (2020); we refer the 
reader to the original work for a more thorough and in-depth expla-

nation of this model. We test the model by maximizing the NDCG 
metric, more specifically we implement the deterministic Neural-

NDCG (Pobrotyn & Białobrzeski, 2021). We call this model the DL 
Ranker or Ranker;

• we also test the same architecture with a cross-entropy loss; we call 
this model the DL Classifier or Classifier;

The reasons behind our choice to test another deep learning architec-

ture other than BioBERT are strongly tied to the learning setting we are 
4

confronted with in systematic reviews: firstly, despite having a decently 
sized training set when we merge together past systematic reviews, the 
testing and fine-tuning of our models is done on single topics, whose 
sizes may be very small (i.e., few hundreds of documents, with a very 
low positive prevalence); we believe that having less parameters to 
learn might ease the learning/fine-tuning of models when continuously 
trained in an active learning process. The second reason that motivates 
us in using the ranker model of Pobrotyn et al. (2020) is that we would 
also like to compare the more traditional classification and/or pairwise 
approaches (i.e., the logistic regression and BioBERT) to a list-wise ca-

pable architecture.

4.2. Data preprocessing

As explained in Section 4.1 we experiment with different architec-

tures, which require different data representation and organization:

• The Logistic Regression, the DL Ranker and the DL Classifier are 
trained with the same data representation. We see this in detail in 
Section 4.2.1;

• We train the BioBERT model with a pairwise loss, where the aim 
of the model is that of correctly prioritizing one of the documents 
in the pair. For this reason we merge together pairs of documents 
as explained in Section 4.2.2;

• Since we compare with the CAL baseline (as implemented in Cor-

mack and Grossman (2015)), we also need a representation suited 
to its logistic regression; we simply default to a standard TF-IDF

representation.

We will now look more in details to the different techniques we use to 

preprocess our data before feeding it to the models.
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4.2.1. Document embeddings and list-wise structure

For the LR, the DL Ranker and DL Classifier models, we preprocess 
data by tokenizing each document and transforming it into a fixed-

dimensional vector of features. The title of the topic (i.e., the research 
question of the SR) is prepended to the text of each document. More 
precisely, for each document we have a feature vector 𝑣 of size 𝐸 = 768. 
This vector 𝑣 is the average of the non-finetuned BioBERT embeddings 
for the tokens of a document 𝑑 ∈𝐷.

The architecture used for the DL Ranker and Classifier requires a 
matrix 𝑠 × 𝐸 of document embeddings as input (where 𝑠 stands for se-

quence). Ideally, 𝑠 should be equal to the number of documents we need 
to rank (i.e., |𝐷{tr,te}|, where with overscript “tr” or “te” we indicate the 
training or test split of 𝐷) but the computational costs would be unsus-

tainable when we have thousands of documents to rank. We have thus 
to pick a value of 𝑠 < |𝐷{tr,te}|. Due to hardware constraints, we choose 
𝑠 = 1000 in our experiments. Moreover, we also fix a batch size 𝑏 = 512
such that the DL Ranker and Classifier are finally fed a 𝑏 × 𝑠 ×𝐸 matrix 
as input, and return a 𝑏 × 𝑠 × 𝑜 matrix as output, where 𝑜 is the number 
of neurons in the output layer (this is always 2 for the Classifier and we 
set it at 100 for the Ranker, see also Pobrotyn et al. (2020), Pobrotyn 
and Białobrzeski (2021) for the original implementation). For the DL 
Ranker, we then take the average on the third dimension, such that we 
have a matrix 𝑏 × 𝑠 of scores for each document. For the DL Classifier, 
we also “augment” the training set 𝐷tr with a pre-defined number of 
documents randomly sampled from other topics (we sample a number 
equal to 20% of |𝐷tr | size): this should help the classifier to generalize 
better over the different topics; clearly, this cannot be done with the 
DL Ranker, as it would not make sense to rank documents for a topic 𝑡𝑖
higher than a topic 𝑡𝑗 or vice versa.

Finally, each sequence 𝑠 is built by randomly sampling 𝑠 examples 
from the dataset without replacement. Notice that since we only elab-

orate a sequence 𝑠 of documents for every batch, when applying the 
model to the test topics we first classify/rank all batches and then ag-

gregate the scores together to obtain the ranking/classification output 
for each 𝑑te ∈𝐷te.

4.2.2. Pairwise document representation

We use this pairwise representation for the BioBERT fine-tuning. For 
𝑛 times, we randomly pick a relevant and an irrelevant example and we 
combine them together: a “new” document is then formed, where we 
have the title of the SR topic separated by a [SEP] token from the text of 
the first document, which is in turn separated by another [SEP] token 
from the text of the second document. Whether the relevant document 
is first or last is decided by a fair coin flip. Since BioBERT needs many 
data points to be fine-tuned, for any 𝐷tr , we set 𝑛 = 1.2 ⋅ |𝐷tr |, creating 
a training set which is 20% larger than the original size of 𝐷tr .

4.2.3. TF-IDF

The classical TF-IDF representation is only used for the logistic re-

gression trained in the CAL algorithm used as a baseline. This repre-

sentation is built using the TFIDFVECTORIZER class exposed by SCIKIT-

LEARN5 API.

4.3. Rankings and evaluation measures

As explained in Section 2, we use the CAL algorithm as a baseline 
in our experiments. We use a standard non-pretrained logistic regres-

sion (which we call NP Logistic) as the CAL’s learner. Notice that, 
clearly, comparing CAL’s performances with the zero-shot rankings is 
not a fair comparison since the NP Logistic has access to and is contin-

uously trained on in-topic data.

Furthermore, throughout our experiments, we will report metrics 
and results on two different types of ranking:

5 https://scikit -learn .org /stable /modules /generated /sklearn .feature _
5

extraction .text .TfidfVectorizer .html.
Intelligent Systems with Applications 16 (2022) 200150

• A ranking which is the output of a model (be it a set of probabilities 
or a vector of scores) on the set of all documents to be ranked. We 
call this full reranking;

• The ordering of the documents resulting from the CAL process, that 
we call the CAL ordering. More precisely: at every iteration of CAL, 
we take the top 𝑘 documents and have a reviewer annotating them. 
What we call CAL ordering is then the order in which the reviewer 
annotates the documents throughout the process.

4.3.1. Evaluation metrics

In order to evaluate the models rankings or the CAL ordering, we 
use two of the most well-known metrics in TAR literature: Mean Aver-

age Precision (MAP) and Work Saved Over Sampling (WSS). Average 
Precision (AP) is computed as:

AP = 1
𝑟𝑒𝑙

∑
𝑗

Precision(𝑗), (1)

where 𝑟𝑒𝑙 is the number of relevant documents and Precision(𝑗) is the 
precision at the 𝑗th item. We take the average of this metric over all the 
testing topics, calling it MAP.

On the other hand, with WSS we want to measure how beneficial is 
our ranking with respect to a random ordering of the documents. More 
precisely, WSS at a threshold 𝑡 is computed as:

WSS@t = (TN+ FN)∕𝑁(1 − 𝑡) (2)

In our experiments we show WSS at the 85%, 95% and 100% thresholds 
(WSS@{85, 95, 100}%).

5. Implementation details

The aim of our experimentation is to answer research questions 
RQ1 and RQ2 (see Section 1). Unless otherwise stated, we train our 
DL Ranker and DL Classifier models for 500 epochs, using the Adam 
optimizer (Kingma & Ba, 2014). BioBERT6 is instead fine-tuned with 
a classification head with two output neurons for a maximum of 10
epochs. However, we employ a typical early stopping strategy with pa-

tience on the loss set to 10 update steps, which in practice usually stops 
the training set before reaching 10 epochs. The DL models (except for 
BioBERT) are implemented using the PyTorch Python library,7 whereas 
for the Logistic Regression we use the standard scikit-learn library8 im-

plementation (code will be made available in the near future).

As anticipated, for the DL Ranker and Classifier we experiment with 
two different losses: we use (i) a Cross-Entropy loss for the DL Classi-

fier model; given the extremely unbalanced datasets (see Section 3), we 
also use fixed class weights of 0.2 and 0.8 for the negative and posi-

tive class respectively. Furthermore, for all of our experiments with the 
DL models, we use only one transformer encoder layer; we leave exper-

imentation with different number of encoders and attention heads to 
future works. (ii) For the ranking loss function, we directly maximize 
an approximation of the NDCG metric, more precisely the determinis-

tic Neural-NDCG (Pobrotyn & Białobrzeski, 2021). While we refer the 
reader to Pobrotyn and Białobrzeski (2021) for implementation details, 
we notice that in order to approximate the permutation matrix that 
would sort the input, we have a temperature parameter 𝜏 which we can 
use to control the degree of approximation (when 𝜏 = 0 we get the exact 
permutation matrix): we found this parameter to be highly susceptible 
to the size of the data fed to the model, but we postpone any precise 
analysis on this to future works.

For the fine-tuning of the BioBERT model, we use a pairwise loss 
function usually known as the Margin (or Margin Ranking) loss. That 

6 The pre-trained model is downloaded from the HuggingFace Hub, available 
at https://huggingface .co /models.

7 https://pytorch .org/.

8 https://scikit -learn .org /stable/.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
https://huggingface.co/models
https://pytorch.org/
https://scikit-learn.org/stable/
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Table 4

MAP for the zero-shot rankings. We show the CAL ordering and CAL’s NP Logistic full reranking after 
10 documents have been annotated for comparison. Best result overall is in bold, whereas the best 
result among the zero-shot rankings is underlined.

CAL ordering NP Logistic Zero-shot rankings

(no pre-training) DL Rank. DL Class. BioBERT LR

MAP 0.240 ±0.178 0.126 ± 0.132 0.211 ± 0.168 0.185 ± 0.163 0.226 ±0.162 0.219 ± 0.166

Table 5

Recall@10 (R@10) for the different pre-trained models and the NP Logistic baseline after 
annotating 10 documents. Notice the recall is measured on what we called the full reranking 
and not on the CAL ordering. All the pre-trained zero-shot models obtain a higher Recall@10.

NP Logistic DL Rank. DL Class. BioBERT LR

R@10 0.012 ± 0.017 0.028 ± 0.022 0.029 ± 0.040 0.069 ±0.055 0.046 ± 0.032
is, given two scores 𝑥𝑖 and 𝑥𝑗 , and a label 𝑦 = 1 when 𝑥𝑖 should be 
higher than 𝑥𝑗 and 𝑦 = −1 vice versa, the loss is computed as:

𝐿(𝑥𝑖, 𝑥𝑗 , 𝑦) = max(0,−𝑦 ⋅ (𝑥𝑖 − 𝑥𝑗 ) +𝑚) (3)

where 𝑚 is the margin, which we actually set to 0, following the Py-

Torch implementation default9 as of version 1.10.1.

All of our experiments are run on a maximum of two NVIDIA Tesla 
T4 GPU (with 16 GB of RAM each) on a multi-processor machine (kindly 
made available by the Computer Science department of the University 
of Pisa). Training times are not particularly demanding, as the BioBERT 
fine-tuning took around 36 hours, whereas 20 minutes were enough for 
the DL models and as little as 28 seconds for the logistic regression.

6. Results

We show in this section the experiment results both for our first 
and second research questions (RQ1 and RQ2, see Section 1). We also 
present the results of a hyperparameter search for the DL models (Sec-

tion 6.3): this last section should serve as a basis for further research, 
in order to understand how and where future works might focus to suc-

cessfully continuously train DL models in active learning scenarios.

6.1. RQ1: Can we transfer knowledge?

In order to answer this first question, we train our models on our 
training topics and apply them to the testing topics without any further 
training, to see whether we can actually obtain a good zero-shot ranking 
of the documents.

Evaluating the zero-shot ranking As stated in Section 4.3, we compare 
our results (full reranking) with the document ordering coming from 
Cormack’s CAL classical implementation (what we called the CAL or-

dering). We show the Mean Average Precision (MAP) of the zero-shot 
rankings in Table 4; we also show the MAP for the CAL ordering and 
the CAL’s NP Logistic ranking after 10 documents have been annotated 
(which we might call a few-shots NP Logistic). Notice how all the zero-

shot models achieve rather good performances, obtaining a better MAP 
than the few-shots NP Logistic. BioBERT seems to be the best model, 
closely followed by the Logistic Regression (LR). As expected, the CAL 
baseline is able to achieve a stronger MAP than the zero-shot rankings’ 
(since its logistic regression is being trained on in-topic data). Nonethe-

less, this shows that the pre-trained models are able to successfully 
transfer knowledge between topics.

9 https://pytorch .org /docs /stable /generated /torch .nn .MarginRankingLoss .
6

html.
Jump-starting the CAL algorithm To test if our zero-shot rankings are 
beneficial to the reviewing process (i.e., if we can achieve a higher 
recall earlier), we propose to jump-start the CAL algorithm from the 
top-10 documents coming from our zero-shot rankings. With “jump-

starting” CAL we mean:

1. we pre-train a model on the training topics;

2. we rank the current new (and unseen) topic and take the model 
top-10 documents;

3. we obtain the labels for these 10 documents;

4. we train CAL’s logistic regression on these 10 documents (using

TF-IDF features) and start the CAL algorithm from there, following 
Cormack and Grossman (2015) thereafter.

Notice that, for some topics, the pre-trained models failed to retrieve 
any positive instance in the top-10 documents: the DL Classifier failed 
on 3 topics out of 7, of which the DL Ranker failed on 2 and BioBERT 
and the LR failed on 1; hence, we show results averaged on 4 topics 
out of 7. We first show the Recall@10 (on the full reranking) in Ta-

ble 5: notice how the zero-shot rankings effectively jump-start the CAL 
process from a higher recall; BioBERT proves to be the most effective 
algorithm to jump-start with. We show the WSS@{85, 95, 100}% and 
the MAP averaged across the topics in Table 6. Notice that the “rank-

ing” here is actually the ordering of the documents collected at the end 
of the CAL process (CAL ordering). The results show how the higher ini-

tial recall translates to better performances on the average WSS scores 
with respect to the NP Logistic baseline, even though they are not con-

sistently in line with the metrics taken on the zero-shot setup and the 
Recall@10: i.e., the top-10 documents coming from the DL Classifier or 
the pre-trained LR seem to be able to better jump-start the CAL process, 
despite BioBERT was the best model in terms of MAP (Table 4) and Re-

call@10 (Table 5). Furthermore, the DL Classifier was the worst of the 
three pre-trained models in both Tables 4 and 5, but the CAL process 
jumpstarted from its top-10 documents shows better WSS performances 
at the 95% thresholds than the other models. Regarding the MAP, the 
pre-trained models can effectively jump-start the CAL algorithm as seen 
for the WSS; notice that the top-10 documents from BioBERT manage to 
keep the advantage we saw in Table 4 for the MAP metric. From these 
results, overall, we conclude that the pre-training can actually improve 
on the baseline performances both in terms of MAP and WSS; however, 
as reported by Zhao et al. (2021) as well, knowledge transfer can fail in 
some cases.

6.2. RQ2: Can we keep training our DL models in the active learning 
process?

In our experiments so far, we have showed results on the zero-shot 
rankings from our models, or when using them to jump-start the CAL 

process. We did not, however, leverage the pre-trained DL models in the 

https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.MarginRankingLoss.html
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Table 6

WSS@{85, 95, 100}% and MAP for the jump-started CAL. The NP Logistic is the classical 
CAL implementation, starting from a seed document. The other columns indicate from which 
ranking we take the top-10 documents that jump-start the CAL algorithm. Average is on 4 
out of 7 topics.

CAL ordering

NP Logistic DL Rank. DL Class. BioBERT LR

WSS@85% 0.494 ± 0.241 0.501 ± 0.245 0.499 ± 0.243 0.501 ± 0.243 0.508 ±0.254
WSS@95% 0.475 ± 0.304 0.466 ± 0.205 0.480 ±0.159 0.457 ± 0.328 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.371 ± 0.297 0.373 ± 0.304 0.369 ± 0.307 0.378 ±0.304
MAP 0.357 ± 0.134 0.378 ± 0.151 0.387 ± 0.136 0.468 ±0.124 0.399 ± 0.133
Table 7

WSS@{85, 95, 100}% and MAP for the CAL orderings where we keep training 
the DL models inside the CAL process. Notice that the LR is not continuously 
trained and results are the same as reported in Table 6. Average is still on 4 
topics out of 7.

CAL ordering

NP Logistic DL Rank. DL Class. LR

WSS@85% 0.494 ± 0.241 0.504 ± 0.242 0.468 ± 0.234 0.508 ±0.254
WSS@95% 0.475 ±0.304 0.460 ± 0.321 0.475 ±0.204 0.460 ± 0.334
WSS@100% 0.372 ± 0.306 0.249 ± 0.207 0.297 ± 0.131 0.378 ±0.304
MAP 0.357 ± 0.134 0.351 ± 0.120 0.368 ± 0.138 0.399 ±0.133

active learning process: can these models actually be trained in such a 
scenario? To understand this, we run another set of experiments with 
the same setup as before, but where we actually keep training our DL 
models during the active learning review process. Training a DL model 
in such a scenario is not a trivial task, since many hyperparameters 
have to be taken into account: epochs, cross-entropy class weights (to 
counteract class imbalance) and learning rate are just some of the hy-

perparameters we deal with. Regarding epochs, Yang, MacAvaney, et al. 
(2021) fine-tune BERT in the AL process for 10 and 30 epochs (based 
on the dataset), albeit with no clear rationale behind the choice of the 
number of epochs; however, they also point out how crucial it is to have 
“just-right” tuning of the model.

Lacking a validation set, however, we run a first batch of experi-

ments where we arbitrarily set these hyperparameters. Due to the high 
computational costs of fine-tuning BioBERT at every iteration, we de-

cided against using it in this part of the experiments for RQ2; moreover, 
we argue that these very large language models are impractical to fine-

tune in such a scenario, both due to their computational costs and to 
the disproportion between the high number of parameters to fine-tune 
and the size of training data. Regarding the DL Ranker and Classifier, 
we:

• train the models for 50 epochs at each CAL iteration;

• keep the class weights in the Cross-entropy loss at 0.2 and 0.8 for 
the negative and positive class respectively;

• use a learning rate of 0.001.

We show the results of such experiments in terms of WSS and MAP on 
the CAL ordering (Table 7). As we can clearly see from the table, con-

tinuously training these models during the CAL process has inconsistent 
effects on the metrics: with respect to the jump-started CAL results (Ta-

ble 6), the DL Ranker only improves for the WSS@85% metric, showing 
slight to substantial decrease in performances for all other metrics. The 
DL Classifier is no different and exhibits a consistent loss of perfor-

mances for all metrics. In summary, fine-tuning these models in an 
active learning process seems unadvisable: we think this might be due to 
(i) the small number of documents we usually have for fine-tuning (es-

pecially in the first CAL iterations), (ii) the training set size constantly 
changing (possibly too slowly), (iii) a number of parameters to update 
which is too large with respect to the training data, (iv) many hyperpa-
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rameters which might need better adjustment in such a scenario.
We believe that a much better solution in this case might be to em-

ploy Adapter modules (Houlsby et al., 2019), freezing the rest of the 
network. This also allows us, in terms of computational costs, to fine-

tune BioBERT.

Notice Given the amount of hyperparameters involved, the absence of 
a validation set, and the small set of training topics, we have decided 
to show the impact of different hyperparameters directly on the testing 
topics, when using (and not using) adapter layers. These results should 
serve as a basis for further research on the matter and as a mean to 
better understand whether it is possible at all to properly train such big 
models (especially in BioBERT case) in a CAL setting, where the overall 
number of documents span from a few hundreds to a few thousands.

6.3. Hyperparameter search

As mentioned, we conduct a hyperparameter search study where we 
analyze the variation in Mean Average Precision due to the learning 
rate, the number of epochs and the percentage of documents assessed 
at every CAL iteration. We conduct this hyperparameter search directly 
on the testing topics: these experiments should be taken as an effort to 
understand why the DL models failed when continuously trained (see 
Section 6.2) and, possibly, where to look for a solution in future works; 
in other words, the aim of these experiments is not to compete with a 
baseline (which would not be fair, since we are testing hyperparameters 
directly on the test set), but rather to show the most promising direc-

tions to take in order to enable DL models to be actively trained. For 
this reason, we sometimes omit results when they are not particularly 
interesting (i.e., not exhibiting a pattern that we might exploit in the 
future) as to avoid cluttering the paper with too many figures.

That said, we evaluate the effect of these hyperparameters both 
when training the whole neural network and when using adapter lay-

ers. For the former case, we show results for the DL Ranker only, as it 
was the best DL zero-shot model (not considering BioBERT). For the lat-

ter case, we also show BioBERT results where we vary the learning rate. 
We test with different configurations:

• the learning rate values range from the default value used in train-

ing of 1 × 10−3, to 1 × 10−5. Being BioBERT a completely different 
model, we test here with the default learning rate10 of 5 × 10−5
and the value suggested by the AdapterHub library11 of 1 × 10−4. 
Epochs are fixed at 60 for the Ranker and at 5 for BioBERT;

• for the DL Ranker only, we also test the model by training for 10, 
30, 60 and an adaptive number of epochs (see below) at every CAL 
iteration. Learning rate is fixed at 1 × 10−4;

• finally, we also train the DL Ranker annotating 5% and 20% of 
the documents at every CAL iteration. We indicate the percentage 
of documents we take at every iteration with Δ𝑑 . BioBERT is fine-

tuned with Δ𝑑 = 5% only.

10 This was one of the learning rates used in Devlin et al. (2018) and is the 
default in the HuggingFace library.

11 https://docs .adapterhub .ml /training .html.

https://docs.adapterhub.ml/training.html
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Fig. 2. Variation of Mean Average Precision with different learning rates, annotating 5% (left) and 20% (right) of the documents at each iteration.
By “adaptive number of epochs” we mean that the number of epochs 
change at every active learning iteration, as a function of the number 
of training documents we have collected so far. For these experiments, 
we have empirically defined this as:

epochs = min(|𝑖| ⋅ 0.3,500) (4)

where with |𝑖| we indicate the size of the available training documents 
at a given iteration 𝑖. That is, the number of epochs is equal to 30% of 
the training documents, with an upper bound set at 500 (the number of 
epochs used during the pre-training of the models).

For the DL Ranker without adapter layers, we show the MAP for 
the different learning rate setups; we also show the NP Logistic as a 
baseline. The average is on all testing topics (as opposed to results in 
Section 6.1 and 6.2). More precisely, we continuously train and evaluate 
the models with the following procedure:

1. At iteration 𝑖 = 0 (i.e., no document has been reviewed yet), all 
documents are ranked according to the pre-trained model zero-shot 
ranking;

2. We compute the AP of this ranking;

3. We review the top Δ𝑑 documents and re-train the model;

4. We re-rank the whole pool of documents again and re-compute AP;

5. We repeat this process until all documents have been reviewed.

Clearly, the NP logistic is an exception, using the systematic review 
topic query as the initial seed document and following Cormack and 
Grossman (2015) procedure (as it did so far in our experiments, un-

less otherwise stated). In other words, at each iteration we take the full 
reranking (not the CAL ordering) and evaluate it. This is useful to un-

derstand whether the models under examination can indeed learn and 
improve on the previous iteration. Since we cannot exactly take 5% or 
20% of the documents for all topics, we bin the results by number of 
annotated documents and plot the average of the bins. The results are 
plotted in Fig. 2. When Δ𝑑 = 5%, we notice how the default learning 
rate of 1 × 10−3 causes instability for the Mean Average Precision as the 
training set grows. The other two learning rates seem to be much more 
stable across CAL iterations, and a learning rate of 1 × 10−4 is capable 
of achieving MAP values close to the baseline’s at later stages of the 
reviewing process. That said, the NP Logistic baseline is clearly the bet-

ter algorithm, achieving and keeping a higher MAP across all iterations. 
Moreover, Fig. 2b shows that reviewing 20% of the documents at every 
iteration is suboptimal, leading to much lower values of MAP across all 
iterations.

Regarding adapter layers, we show the results in Fig. 3 for the DL 
Ranker. The plots show how, when using adapters and Δ𝑑 = 5%, a 
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higher learning rate is able to achieve better performances. As a matter 
of fact, a learning rate of 1 × 10−3 obtains greater values of MAP than 
the baseline, at later stages of the CAL process. Overall, adapter layers 
seem to bring greater stability to the learning capability of the model 
(which is expected, having less parameters to learn). Finally, we notice 
once again how using Δ𝑑 = 20% brings to overall worse performances 
than with Δ𝑑 = 5%.

We will now analyze the effect of the number of epochs on the per-

formances of the DL Ranker. As mentioned before, we test with 10, 30, 
60 and an empirically defined adaptive strategy (see Equation (4)), that 
we call “Adaptive” in the plots. Since results for the DL Ranker with-

out adapters were, similarly to the learning rate ones, not particularly 
interesting, we show the variation of MAP when using adapters only 
(Fig. 4). As we have seen for the learning rate figures, using adapter 
layers can indeed bring to a substantial improvement on the average 
precision metric. As a matter of fact, the adaptive number of epochs 
can, at later stages, achieve a better MAP than the NP Logistic baseline; 
again, we notice that overall the gain in performance is much more 
consistent with the growth in training set size when using adapters.12

In conclusion, we could say that, especially when using adapters, the 
number of epochs is a particularly sensitive hyperparameter (with re-

spect to learning rate) which must be correctly adapted to the growing 
size of the training set; we believe future research on this topic might 
give new and interesting prospectives on the trainability of DL models 
in active learning scenarios.

Regarding the fine-tuning with adapters of the BioBERT algorithm, 
we only experimented with two different learning rates: (i) the default 
BioBERT learning rate in the HuggingFace library, i.e. 5e-5; (ii) the 
default learning rate in the AdapterHub library, i.e. 1e-4. The num-

ber of epochs, on the other hand, is fixed at 5 and Δ𝑑 = 5%. This was 
done mainly for computational reasons, since, even with adapter lay-

ers, fine-tuning BioBERT can be a very expensive operation. Moreover, 
the results we were seeing from this initial set of experiments were 
not promising enough, and we decided against running further experi-

mentation. As a matter of fact, looking at BioBERT results in Fig. 5 we 
notice very poor performances, raising the question whether it is actu-

ally possible at all to train large language models when the dataset is 
relatively small and the update is done in a continual fashion: indeed, 
despite testing with two very different learning rates, the results seem 
to be just slightly affected, with 5 × 10−5 being the better of the two, 
even though not significantly. That said, further experimentation with 
different number of epochs might give more promising results.

Finally, so far we have shown metrics on the full reranking, but we 
have not shown their CAL’s ordering (which is what a reviewer would 

12 We also point out that this setup can achieve WSS@95% close to the base-
line, albeit not as consistently as the baseline can.
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Fig. 3. Variation of the Average Precision with different learning rates, annotating 5% (left) and 20% (right) of the documents at each iteration. We only train 
Adapter layers and freeze the rest of the network.

Fig. 4. Variation of the Average Precision with different epochs, annotating 5% (left) and 20% (right) of the documents at each iteration. We only train Adapter 
layers and freeze the rest of the network.
Fig. 5. Variation of the Mean Average Precision with different learning rates 
for BioBERT, annotating 5% of the documents at each iteration. We only train 
Adapter layers and freeze the rest of the network.

actually see). We plot how these orderings change as a function of the 
number of epochs (or learning rate, in BioBERT case) when Δ𝑑 = 5%
and using adapter layers, to keep the number of plots to a minimum. 
We can see these orderings in Fig. 6. Unsurprisingly, these plots show 
similar results to the previous ones, with the adaptive epochs obtaining 
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the best results. That said, differences between the several epoch values 
tested are much smaller.13 Furthermore, as we were seeing for the plots 
on BioBERT rankings, its CAL’s ordering is also showing rather poor 
performances.

Finally, one critical aspect to consider when further studying the 
applicability of large language models to TAR is also the unavoidable 
increase in training times: at each active learning iteration we need to 
re-train the model, whose cost, when dealing with so many parame-

ters, can be non-negligible. Indeed, even when only training adapters 
as we did here, training times can substantially increase: for complet-

ing the experiments (on all the testing topics), BioBERT with adapters 
took about 20 hours; the DL ranker with adapters needed less than 7 
minutes and the LR just 20 seconds.

In conclusion, this hyperparameter search can help us give a first 
tentative picture of what works and what does not, as well as finding 
directions for future works:

1. deep learning models, be them very large models or tinier ones, 
cannot be simply updated in an active learning process. Despite 
starting from a more or less good zero-shot capability, their perfor-

mances quickly deteriorate when trained in these scenarios;

13 This is somehow expected, since, at every iteration, the updated model can 
only have an impact on the top-k documents reviewed in the next batch, and 

not on the previous ones.
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Fig. 6. Variation on recall vs percentage of assessed documents due to different learning rates. Models have been trained with Δ𝑑 = 5%. We show the CAL ordering 
of the different continuously trained models.
2. adapter layers can be a good solution for fine-tuning, except when 
the underlying frozen model is excessively large (especially com-

pared to the size of the dataset). Indeed, models such as BioBERT 
are rather good at transfer learning, but cannot seemingly be fine-

tuned in the CAL process;

3. some of the hyperparameters can be of key importance to the 
success of the models fine-tuning. Understanding how to adapt hy-

perparameters such as the learning rate and the number of epochs 
to the increasing training set size, as well as being able to assess 
how many documents are reviewed at each iteration, can make the 
difference between a decent model that can compete with current 
state of the art and a rather poor one.

Regarding our bullet point 2, it would be interesting to explore, in fu-

ture works, which type of adapter layers (e.g., Houlsby et al. (2019), 
Pfeiffer et al. (2020), He et al. (2021)) can bring about the most promis-

ing increase in performances and if the peculiar active learning scenario 
might require further adaptations or modifications of these techniques 
to fully leverage the zero-shot knowledge that we were seeing in Ta-

bles 4 and 5.

Finally, for bullet point 3, the correct choice of hyperparameters 
can be truly problematic since we lack a validation set. It could in-

deed be possible to extract a validation set before starting the review 
process, but this seems to make sense only when the dataset is large 
enough, and should be compared to a baseline which is also taking into 
account the presence of such a validation set. That said, it would be in-

teresting to explore whether a more or less empirical solution can be 
found, which could allow selecting and/or adapting the hyperparame-

ters without necessarily looking at a validation set; to this end, adapting 
the number of epochs to the size of the current training set seems to be 
particularly effective and should be further explored.

7. Conclusion

In this work, we explored whether using previous Systematic Re-

views (SR) to pre-train machine learning models can actually bring 
better performances for a new SR topic, compared to doing no pre-

training at all. Specifically, we also investigated whether deep learning 
models such as BioBERT or other transformer-like architectures can be 
effective, and to which extent. We conducted experiments on the CLEF 
TAR 2019 Task 2 dataset, and the results clearly show that pre-trained 
models can obtain good zero-shot rankings on both the Mean Average 
Precision and Work Saved over Sampling metrics (Section 6.1). When 
used with the CAL algorithm, we also see that jump-starting the active 
learning process from these zero-shot rankings can actually bring to a 
higher recall earlier in the assessment process (Section 6.2). Finally, 
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we also noticed how continuously training our deep learning models 
brings to inconsistent performances (usually, with a detrimental effects 
on the evaluation metrics): we then conducted an extensive analysis on 
a hyperparameter search (Section 6.3). The aim of this latter experi-

mentation was to understand how and what we would need to change 
(or further research) to effectively train deep learning models in an ac-

tive learning process. Our results show that future works should focus 
on finding and (at least empirically) define a set of rules to adapt hy-

perparameters (e.g. epochs and learning rate) to the growing training 
set size; more specifically, we believe that using smaller models and im-

plementing adapter modules can bring substantial improvements over 
the standard non-pre trained logistic regression, if paired with a proper 
adaptation of the number of epochs to the training set size.
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