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NeuralMeshing: Differentiable Meshing
of Implicit Neural Representations

Mathias Vetsch1, Sandro Lombardi1, Marc Pollefeys1,2, and
Martin R. Oswald1,3

1 Department of Computer Science, ETH Zurich, Switzerland
2 Mixed Reality and AI Zurich Lab, Microsoft, Switzerland

3 University of Amsterdam, Netherlands

Abstract. The generation of triangle meshes from point clouds, i.e. mesh-
ing, is a core task in computer graphics and computer vision. Traditional
techniques directly construct a surface mesh using local decision heuris-
tics, while some recent methods based on neural implicit representations
try to leverage data-driven approaches for this meshing process. However,
it is challenging to define a learnable representation for triangle meshes
of unknown topology and size and for this reason, neural implicit repre-
sentations rely on non-differentiable post-processing in order to extract
the final triangle mesh. In this work, we propose a novel differentiable
meshing algorithm for extracting surface meshes from neural implicit
representations. Our method produces the mesh in an iterative fashion,
which makes it applicable to shapes of various scales and adaptive to the
local curvature of the shape. Furthermore, our method produces meshes
with regular tessellation patterns and fewer triangle faces compared to
existing methods. Experiments demonstrate the comparable reconstruc-
tion performance and favorable mesh properties over baselines.

Keywords: Meshing · Deep learning.

1 Introduction

Meshing of 3D point clouds has been studied extensively. Traditional meth-
ods either employ direct approaches based on local neighborhood properties
[21,22,9,2,3,4,1] or use an implicit volumetric representation as an intermediary
step [28,11,37,40,31,51,55,23,35,45,32,33]. While early works perform poorly on
noisy real-world input or exhibit high computational demands, follow-up meth-
ods have addressed several of these shortcoming [41,56,62,10].

In recent years, neural implicit representations (NIRs) [47,42,44,15] have been
used to improve upon traditional implicit-based representations by storing the
implicit function within a deep neural network. Follow-up approaches based on
these have addressed various issues, e.g ., concerning scalability [49,12,30], qual-
ity [20,54,53] or processing of raw data [5,6,24]. However, such methods still rely
on an isosurface extraction method like marching cubes [37,40] in order to gen-
erate the final triangle mesh, usually resulting in unnecessarily high-resolution
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Initialization Iterative Meshing Procedure

Fig. 1: NeuralMeshing. We propose a novel meshing algorithm specifically de-
signed for neural implicit representations (NIRs). Starting from an initial set of
randomly placed seed triangles on the zero level set of the implicit neural rep-
resentation, NeuralMeshing iteratively expands the triangles into all directions
until the full zero level set is covered

triangle meshes. Furthermore, those post-processing steps are often not differ-
entiable, prohibiting end-to-end training of networks.

In this paper, we propose NeuralMeshing (Figure 1), a novel data-driven ap-
proach for directly predicting a triangle-mesh from a NIR. NeuralMeshing aims
to close the gap of a differentiable meshing approach specifically designed for
the usage with NIRs. Starting from a seed of initially placed triangles, Neu-
ralMeshing iteratively extends triangles at boundary edges by predicting new
vertex locations given local geometry information like curvature, SDF and sur-
face normals through queries on the underlying implicit representation. This
allows to adaptively place bigger triangles at surface areas with lower curvature,
i.e. flat surface patches, and smaller triangles at areas with high curvature. The
main contributions of this paper can be summarized as follows: (1) We propose
NeuralMeshing, a novel data-driven meshing approach for NIRs. Our method
iteratively predicts new triangles based on local surface information from the im-
plicit representation. (2) Extensive experiments show that NeuralMeshing better
approximates the surface of NIRs while using considerably fewer triangles than
commonly used iso-surface extraction methods [37].

2 Related Work

Traditional Deterministic Reconstruction Methods. Early works on shape re-
construction from points have proposed deterministic approaches using alpha
shapes [21,22], Delaunay triangulation [9] or ball-pivoting [7]. Such methods
make local decisions to directly triangulate the given input point cloud. Later
works focused on extracting the surface as the crust of a Voronoi diagram [2,3,4,1].
However, these methods do not well handle noise or outliers and thus perform
poorly on real-world data, creating noisy and incomplete output meshes.

Traditional Implicit Reconstruction Approaches. In contrast to triangulation
methods, implicit-based approaches try to represent the surface as an implicit
function. The pioneering work of Hoppe et al . [28] introduced a method for
creating a piecewise smooth surface through implicit modeling of a distance field.
An alternative approach relies on radial basis function methods [11] which try
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to fit implicit functions to a surface. Another line of work focuses on extracting
the iso-surface from signed distance function values (SDF) of a volumetric grid,
the most prominent known as the marching cubes algorithm [40,37]. There has
been a plethora of follow-up work [31,55,51], improving upon marching cubes.
Moving least-squares (MLS) [23,35,45] based techniques locally reconstruct the
surface with local functions approximating the SDF in the local neighborhood.
Poisson surface reconstruction [32,33] reconstructs surfaces from oriented points
via energy optimization. While these methods are able to close larger surface
holes they come with high computational demands.

Neural Implicit Representations. Recently, neural implicit representations are
used as an alternative representation for surface reconstruction. Pioneering works
[15,42,44,47] use coordinate-based deep networks in order to learn a contin-
uous SDF or occupancy function. While the early works have been limited
to objects and low levels of details, follow-up approaches have extended the
representations to scenes of larger scale [12,17,30,39,43,49], proposed learning
on raw data [5,6,18,24], improved details [54] or improved upon the training
scheme [20,53]. In order to obtain the final mesh, all these methods rely on ex-
tracting the surface via an iso-surface extraction approach like marching cubes [40].

Data-driven Direct Meshing Approaches. Recent works have started to adopt
deep learning-based approaches for triangulation and meshing of shapes. Early
approaches used deep networks in order to warp 2D patches onto the point
cloud [25,60]. Such parametric approaches often lead to undesirable holes and
overlapping patches. Some works proposed to utilize grids, e.g . to predict a
signed distance field using random forests [36], to deform and fit a shape [61]
or to extract the surface via a differentiable marching cubes algorithms [38].
However, they come with high computational resource demands. BSP-Net [14]
and CvxNet [19] both build upon the idea of predicting a set of hyperplanes for
creating convex shapes as building blocks of the final shape. The triangulation
is extracted through a non-differentiable post-processing step involving convex
hull computations in the dual domain. However, the number of planes is fixed
which limits the reconstruction to objects of smaller scale. Another line of work
deforms and fits a template mesh to the input point cloud [27,46,58,59]. However,
the topology of the reconstructed shape is usually fixed to the topology of the
provided template mesh. Recently, PointTriNet [52] proposed to directly predict
the connectivity of the given input point cloud. In an iterative procedure, tri-
angle candidates are first proposed and then classified for their suitability to be
part of the final mesh. While the method is local and differentiable, the resulting
meshes often include holes. Similarly, Rakotosaona et al . [50] model the problem
of triangulation locally by predicting a logarithmic map which allows triangula-
tion in 2D using non-differentiable Delaunay triangulation. Finally, some recent
work focus on using the neural implicit representation as the core representation
for differentiable meshing or learning [16,48,26]. Neural Marching Cubes [16] im-
plements a data-driven approach to improve the mesh quality at sharp edges by
defining a learnable representation to differentiate between the topological con-
figurations of marching cubes. They introduce additional vertices inside cells of
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Fig. 2: Overview. Given an input point cloud P (left), we use a neural implicit
representation with added curvature head S (middle) to extract a continuous
SDF field. After placing a set of random triangles on the zero level set of S,
NeuralMeshing then queries S in order to predict a triangular mesh M (right)
in an iterative fashion. Red blocks denote trainable MLPs

the underlying grid and predict the offset of these vertices. However, they use a
3D ResNet and rely on discretized inputs, limiting the resolution and making it
less memory efficient. In contrast, our method operates in continuous space and
therefore on arbitrary resolutions. DeepMesh [26] uses a trick, i.e., an additional
forward pass on all mesh vertex locations for computing gradients with respect to
an underlying implicit representation without the need to make the meshing dif-
ferentiable. They use a non-differentiable marching cubes algorithm to generate
the output and define loss functions directly on the obtained mesh. The recent
work by Peng et al . [48] instead proposes a new shape representation based on
a differentiable Poisson solver. Contrary to those two works, we aim to directly
create a triangle mesh from the underlying neural implicit representation.

3 Method

NeuralMeshing takes as input an oriented point cloud P = {(pi,ni) | pi ∈
R3,ni ∈ R3}Ni=1. Our goal is to compute a surface mesh M = (V,F) defined
as a set of vertices V = {vi ∈ R3} and a set of triangular faces F in order to
approximate the surface of a shape. In a first step, we employ a modified neural
implicit representation S in order to learn a continuous SDF field approximating
the shape’s surface. In a second step, we use the neural representation as input
for our meshing algorithm in order to extract an explicit representationM of the
surface. In order to effectively predict new triangles, our neural representation
S uses an extra branch in addition to the existing SDF branch, which outputs
curvature information. Please refer to Figure 2 for an overview of our method.

3.1 Modified Neural Implicit Representation

Ideally, we aim for small triangles where the curvature is high and larger triangles
at low curvature. To account for this, we extend the neural implicit representa-
tion S with curvature information. In order to learn a NIR, we follow Gropp et
al . [24] and use implicit geometric regularization (IGR) for network training.
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(a) Turning angle. (b) Initialization. (c) Iterative meshing process.

Fig. 3: Meshing procedure. (a) We employ the turning angle for approximating
the curvature, i.e., the signed angle between the tangential lines, defined by query
point p1 and the target point p2, respectively. (b) NeuralMeshing first randomly
places points in space (blue points), which are then projected to the zero surface
of S. The resulting projections (red points) serve as the initialization locations
for new surface triangles. (c) Based on the implicit shape (orange sphere), a set
of initialization triangles (light blue) is placed on the surface of the object. In
an iterative fashion, new faces (green triangles) are added at boundary edges of
the existing faces (blue triangles) until the mesh is complete

Curvature Information. Our method grows the mesh seeds by generating new
triangles in orthogonal direction of unprocessed boundary edges. For generating
new vertices close to the implicit surface, we are interested in the curvature only
along that particular direction, i.e., normal curvature, which we found to provide
more meaningful information than aggregated curvature measures, e.g ., mean
or gauss curvature. The problem of measuring normal curvature on a surface
in 3D can be reduced to a line on a 2D-plane, defined by a query point p1, its
corresponding surface normal n1 and a query direction vector q. To this end,
we employ the turning angle for approximating the curvature, i.e., the signed
angle between the tangential lines, defined by query point p1 and the target
point p2, respectively. For our case, p2 is computed by following the geodesic
path on the discrete mesh along q until a fixed distance l has been covered, as
illustrated in Figure 3a. We define φ1 = π

2 as the angle between the tangential
line and the surface normal at p1, and φ2 as the angle between the tangential
line at p2 and the surface normal n1 at p1. The turning angle is then computed
as κp1,q = φ2 − φ1 = φ2 − π/2 . The resulting value is positive for surfaces
bending away from the surface normal n1, negative for surfaces bending towards
the surface normal n1 and zero for flat surfaces. Furthermore, the distance l
determines the scale of detected curvatures and is fixed to 0.005 for all of our
experiments. Although just an approximation of curvature, we found the turning
angle to be a good indicator for predicting the amount of surface bending.

Directed Curvature Head. We extend the neural implicit representation of
IGR [24] with an additional directed curvature head in order to predict the
curvature κp,q of a surface point p along the tangential direction q. The ex-
tended signed distance function (sp, κp,q) = fκ((p,q); θ; z) returns a tuple of
signed distance and normal curvature at point p. We make the curvature query
optional, such that the extended decoder can be queried for signed distance val-
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ues only. We use the same training losses as in IGR [24]. We train the curvature
head with a supervised L2 loss on top of the existing IGR losses LIGR:

LTotal(θ; z) = LIGR(θ; z) + λCurvEp,q(‖κp,q − κGT‖22), (1)

where κp,q is the curvature prediction and κGT the ground truth curvature,
based on the turning angle approximation. During training, we sample a surface-
tangential direction q uniformly at random for every element in the batch. We
refer to the supplementary material for architectural details.

3.2 Iterative Meshing Procedure

The input to our iterative meshing module are the predictions of our modified
implicit representation S. The resolution of the output mesh M = (V,F) is
defined by the default equilateral triangle with circumradius rd which is pro-
vided as an input parameter. In an initial step, random faces are placed along
the surface defined by S. Further processing then iteratively extends existing
triangles by inserting new faces along boundary edges until completion of the
mesh, as shown in Figure 3c. In order to keep track of boundary edges, we em-
ploy a halfedge data structure, which provides efficient operations for boundary
edge access, vertex insertion and face insertion. To find vertices in a local region
quickly, we use an additional k-d tree to keep track of mesh vertices.

Initialization. As visualized in Figure 3b, the set of initial triangles {Ti}I is
computed by first sampling a set of I points uniformly at random within the
bounding box of the point cloud P. This set of points is then projected onto
the surface using the gradient ∇pf(p; z) of the SDF prediction. For each pro-
jected point, we construct an equilateral triangle on the tangential plane with
circumradius rd and random location of vertices. We enforce a minimum eu-
clidean distances dmin = 3rd to be present between all projected points in order
to avoid overlapping triangles. We use a k-d tree data structure to query candi-
dates within a radius dmin efficiently and filter out overlapping triangles. As the
underlying implicit representation S might exhibit inaccuracies, e.g ., far from
the surface, we employ a simple heuristic in order to accurately place the ini-
tialization triangles. We perform the surface projection P times for k× I points,
each time bringing the initial random samples closer to the surface, similar to
Chibane et al . [18]. Finally, we choose random I non-overlapping points as ini-
tialization locations for the triangles.

Iterative Face Insertion. Given the initial set of triangles {Ti}I , our iterative
meshing module proceeds to iteratively select boundary edges, i.e., edges of exist-
ing triangles which only have one connected face, and predict new vertices until
no boundary edges are left. The process can be accelerated by computing batches
of vertex insertions. To this end, the vertex predictions are computed batchwise
on the GPU. As batch processing introduces the risk of inserting overlapping
triangles, we employ two simple strategies: (1) Only boundary edges with dis-
tances between their mid-points greater than a certain threshold are processed



NeuralMeshing: Differentiable Meshing of Implicit Neural Representations 7

(a) (b) (c) (d) (e) (f)

Fig. 4: Triangle-overlap scenarios during merging. Prior to inserting a prospec-
tive new triangle (green), a series of checks is performed, measuring the overlap
with existing triangles (blue). In overlap cases, the prospective vertex (green)
is replaced with the existing vertex (blue). (a) No overlap. (b) Predicted vertex
inside existing triangle. (c) Existing triangle inside predicted triangle. (d) Tri-
angle edge overlap. (e) No overlap, but close vertical proximity of triangles. (f)
No overlap, but close proximity of vertices

in the same batch and (2) we filter overlapping face insertion candidates be-
fore adding the faces to the mesh. This procedure ensures that no overlapping
triangles are inserted, given a reasonable threshold. Since the sampling of non-
overlapping boundary edges reduces the number of available boundary edges,
we use a simplified procedure in practice where we apply a minimum threshold
of 3rd between the boundary edge centers. Although this reduces the number
of collisions, the absence of overlaps is not guaranteed. We apply a final overlap
check in order to reject candidates with small distances between triangle centers.

3.3 Merging Surface Patches

Naively inserting new faces for every boundary edge leads to overlapping surface
patches. Therefore, we employ a deterministic procedure for merging such faces.
Prior to creating the triangle proposed by the vertex prediction, we replace it
by the existing vertex closest to the center m of the boundary edge, provided
the vertical distance is below a threshold tv = rd

2 and the prospective new
triangle does not overlap with an existing triangle. In order to decide whether two
triangles overlap, we distinguish between several scenarios illustrated in Figure 4.
For the most frequent case 4a where no overlap occurs, the prediction is not
replaced. Case 4b handles geometric intersections between the predicted vertex
and the existing triangle, while 4c addresses the case where an existing triangle is
completely contained in the prospective new triangle. In both cases, the predicted
vertex is projected onto the triangle plane followed by a simple inside-outside
test. Since vertex projection is not sufficient in all cases, we additionally perform
edge intersection tests (4d) and compare the vertical distance between triangle
planes (4e). Finally, we consider vertices in close proximity to the prediction to
be overlapping, as shown in Figure 4f. Please refer to the supplementary material
for more details.
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Fig. 5: Vertex prediction and Feature embedding. In order to predict vertex pd,
we parameterize the prediction with 2 of the available 3 degrees of freedom, i.e.,
the angle rER around the boundary edge (b) and the height rLS of the prospective
triangle (c). Note that we omit the angle around the face normal of the triangle
adjacent to the boundary edge (green) for practical reasons. By default, the
predictor returns the default vector vd, extending the surface along the same
plane as defined by the boundary edge and the corresponding triangle, shown in
(a). Input to the predictor is a 22-dimensional feature vector conditioned on the
given boundary edge (d+e). It contains the SDF values, the gradients of the SDF
values and the curvature predictions from our modified implicit representation
S at the three vertices of the default triangle, i.e., boundary edge end points a
and b, and the vertex at the default location vd. Best viewed digitally

3.4 Vertex Prediction

We introduce a novel vertex prediction module which takes a boundary edge and
a feature vector as input and predicts the location of the next vertex based on
local geometry information. The output of the predictor is a 2-dimensional vector
r =

[
rLS rER

]
. As demonstrated in Figure 5, both target a separate degree of

freedom for transforming the default prediction vd at the center of the boundary
edge m. Note that we define vd such that it is orthogonal to the boundary edge
and the face normal nF and incidentally defines the height of the predicted
triangle. The first component denotes the boundary edge rotation, i.e. the angle
rER ∈

[
−π2 ,

π
2

]
defining the rotation around the boundary edge (Figure 5b). The

length scaling factor rLS ∈ [−1, 1] scales the length of the default vector vd.
Negative values decrease the vector length whereas positive values increase its
length. Note that we intentionally only predict two out of 3 DoF, i.e., we omit
the rotation around the face normal nF belonging to the face of the boundary
edge, since we found no performance improvement in incorporating the 3rd DoF.

Feature Embedding. To effectively predict accurate vertex locations, we provide
the predictor with a feature embedding containing information about the local
geometry. Figure 5e depicts the used feature vector. We consider the 3 points
defined by the default triangle, i.e., the vertex at the default location vd and
the two boundary edge end points, a and b. For each of these 3 points, we query
the implicit representation S for SDF values (spd

, sa and sb), SDF gradients
or normals (npd

, na and nb) and directional curvature values (κpd
, κa and κb)

(Figure 5d). In practice, we use multiple directional curvature queries for each
query point. Additionally, we feed the length of the boundary edge elength =
‖a− b‖2 into the feature vector. Note that the feature embedding can be made
invariant to rotation and translation. Prior to inference, we therefore transform
the normals into a local coordinate system with the boundary edge center m
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as its origin. The network predictions can be readily applied within the world
coordinate system to obtain the new vertex pd. In order to reduce prediction
errors, we apply surface projection once as a post-processing step in the same
way as performed during the initialization phase.

Loss Functions. We introduce a surface distance loss LSD = |spd
|, in order to

penalize any deviation from the zero value for the SDF spd
of the predicted

vertex pd. To encourage the network to predict triangles with default size rd,
we additionally define a length regularization loss LLR = |rLS| which prevents
prediction of degenerate triangles close to the boundary edge and competes with
the surface distance loss. Based on the surface mapping procedure, applied as
a post-processing step, we can compute the ground truth turning angle φGT,
located at the boundary edge. Therefore, the boundary edge rotation loss LER =
|rER − φGT| encourages the network to predict vertices close to the surface and
penalize the predicted boundary angle rER. The final loss then consists of a
weighted sum of those loss terms, i.e., LTotal = λSDLSD + λERLER + λLRLLR.

4 Evaluation

For the experiments, we use a subset of the D-Faust [8] dataset, containing high-
resolution scans of humans in different poses and corresponding triangle meshes,
which we use as ground truth (GT) reference. We train, validate and test on
512, 64 and 32 poses respectively, sampled randomly from the subset used in
IGR [24]. To further evaluate our capability of dealing with sharp corners and
edges, we evaluate on a selected subset of shapes, belonging to the file cabinet
category of the ShapeNet [13] dataset. We use 147 models for training, 32 for
validation and 32 for testing and preprocess the models with ManifoldPlus [29].

4.1 Reconstruction Quality

Reconstruction Error. We evaluate the reconstruction error of the produced
triangle meshes with the Chamfer-L1 distance in Table 1. The Chamfer distance
is reported in two directions, i.e., from the prediction to the ground truth and
the implicit representation, respectively, and vice versa. We report both, the
distance to the ground truth mesh and the distance to the respective implicit
representation, since there is a discrepancy between both, introducing an ad-
ditional error in the reported numbers. We compare our method to the SotA
method PointTriNet [52], however, since PointTriNet directly operates on point
clouds sampled from the ground truth mesh, the reported error appears lower
than methods working directly on implicit representations. We therefore evalu-
ate PointTriNet on both, points sampled on the ground truth mesh, and points
generated from the implicit representation by first sampling surface points on
the ground truth mesh and projecting them to the zero level set of the im-
plicit representation. We further compare our method to a version of marching
cubes [37] implemented by scikit-image [57], which we evaluate on three different
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from Generated mesh GT IGR Bidirectional

to GT[1e-4]↓ IGR[1e-4]↓ Generated Mesh[1e-4]↓ GT[1e-4]↓ IGR[1e-4 ]↓

Ours

rd = 0.02 83.221 14.691 25.434 16.405 54.328 15.548

rd = 0.01 58.686 4.950 20.859 8.264 39.772 6.607

rd = 0.005 44.768 1.096 19.994 5.643 32.381 3.370

MC [37]

res = 128 90.298 68.332 78.490 76.412 84.394 72.372

res = 256 60.221 34.591 43.419 39.869 51.820 37.230

res = 512 46.340 17.380 27.767 21.997 37.053 19.689

PointTriNet GT [52] 6.552 16.626 7.634 17.495 7.093 17.061

PointTriNet IGR [52] 38.156 5.519 23.758 12.747 30.957 9.133

PSR [32] 38.764 2.3667 19.086 4.444 28.925 3.405

DSE [50] 43.021 5.5607 22.892 11.612 32.957 8.586

Table 1: Reconstruction error on D-Faust [8]. We report the distances of closest
point pairs between the generated meshes and the ground truth (GT) or the
implicit representation (IGR) respectively. The distances are evaluated at 20k
randomly sampled surface points. For the implicit representation the sampled
GT points are projected to the zero level set of the implicit representation

resolutions. In the same manner, we evaluate our method for three different tri-
angle sizes rd. Finally, we compare to PSR [32] from Open3D (depth=10), and
DSE [50], with the author-provided model. On the highest resolution, our method
outperforms all baselines, when measured on the implicit representation, while
yielding comparable results on the medium resolution. Compared to marching
cubes, our method improves on every comparable level of resolution. For eval-
uations on the ground truth mesh, NeuralMeshing also outperforms marching
cubes. PointTriNet evaluated on the ground truth sampled points shows com-
paratively better numbers, which is expected because of the error introduced by
the underlying implicit representation.

Reconstruction Accuracy and Completeness. We report further quantitative
results in Table 2. Specifically, we report the accuracy, completeness and the
F-score for 3 different inlier thresholds, evaluated on both implicit surface rep-
resentation and ground truth mesh. The accuracy is computed as the ratio of
inlier points, i.e. sampled points on the predicted mesh which are within inlier
distance of the ground truth mesh, and total number of sampled points. The
completeness is computed similarly in the opposite direction. Our method again
outperforms marching cubes on implicit surface evaluations while PointTriNet
performs better when evaluated on the ground truth mesh, presumably because
of reconstruction errors inherent in the implicit surface representation.

Qualitative Results. Figure 6 shows the meshes of all methods on one example.
NeuralMeshing yields well behaved triangle meshes with regularly shaped and
sized triangles, reconstructing high-level details in accordance to the chosen tri-
angle size rd. While marching cubes on comparable resolution levels reconstructs
a similar level of detail, their generated triangle sizes cannot become bigger than
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IGR / GT dinlier = 0.001(0.05%) dinlier = 0.005(0.25%) dinlier = 0.01(0.5%)

Acc. ↑ Com. ↑ F1 ↑ Acc. ↑ Com. ↑ F1 ↑ Acc. ↑ Com. ↑ F1 ↑

Ours

rd = 0.02 0.406 / 0.136 0.535 / 0.317 0.453 / 0.180 0.620 / 0.339 0.839 / 0.793 0.700 / 0.447 0.660 / 0.369 0.863 / 0.851 0.732 / 0.484

rd = 0.01 0.975 / 0.479 0.787 / 0.393 0.870 / 0.431 1.000 / 0.953 0.830 / 0.802 0.906 / 0.870 1.000 / 0.982 0.851 / 0.845 0.919 / 0.907

rd = 0.005 0.971 / 0.452 0.968 / 0.475 0.969 / 0.463 0.989 / 0.898 0.985 / 0.947 0.987 / 0.922 0.999 / 0.932 0.988 / 0.979 0.993 / 0.954

MC [37]

res = 128 0.072 / 0.068 0.067 / 0.067 0.069 / 0.068 0.362 / 0.346 0.339 / 0.341 0.350 / 0.343 0.763 / 0.724 0.720 / 0.713 0.741 / 0.718

res = 256 0.140 / 0.133 0.133 / 0.134 0.136 / 0.134 0.756 / 0.689 0.723 / 0.694 0.739 / 0.691 1.000 / 0.947 0.986 / 0.965 0.993 / 0.956

res = 512 0.279 / 0.262 0.268 / 0.266 0.274 / 0.264 1.000 / 0.893 0.983 / 0.913 0.991 / 0.902 1.000 / 0.955 0.987 / 0.976 0.994 / 0.965

PointTriNet [52] GT 0.445 / 0.831 0.425 / 0.793 0.435 / 0.811 0.957 / 0.990 0.947 / 0.982 0.952 / 0.986 0.990 / 0.997 0.991 / 0.998 0.991 / 0.997

PointTriNet [52] IGR 0.849 / 0.430 0.777 / 0.407 0.811 / 0.418 0.998 / 0.922 0.965 / 0.924 0.981 / 0.923 1.000 / 0.959 0.984 / 0.973 0.992 / 0.966

IGR / GT dinlier = 0.001(0.05%) dinlier = 0.005(0.25%) dinlier = 0.01(0.5%)

Acc. ↑ Com. ↑ F1 ↑ Acc. ↑ Com. ↑ F1 ↑ Acc. ↑ Com. ↑ F1 ↑

Ours

rd = 0.02 0.848 / 0.630 0.807 / 0.613 0.826 / 0.620 0.902 / 0.778 0.850 / 0.758 0.874 / 0.766 0.936 / 0.815 0.871 / 0.792 0.901 / 0.801

rd = 0.01 0.982 / 0.706 0.852 / 0.620 0.911 / 0.659 0.999 / 0.855 0.876 / 0.755 0.933 / 0.801 1.000 / 0.874 0.884 / 0.775 0.937 / 0.820

rd = 0.005 0.981 / 0.719 0.881 / 0.656 0.927 / 0.685 0.998 / 0.857 0.903 / 0.783 0.947 / 0.817 1.000 / 0.874 0.909 / 0.803 0.951 / 0.836

MC [37]

res = 128 0.007 / 0.013 0.004 / 0.011 0.004 / 0.012 0.206 / 0.174 0.163 / 0.144 0.181 / 0.158 0.635 / 0.624 0.524 / 0.529 0.573 / 0.572

res = 256 0.008 / 0.013 0.005 / 0.010 0.006 / 0.011 0.633 / 0.576 0.538 / 0.495 0.581 / 0.532 1.000 / 0.922 0.872 / 0.806 0.931 / 0.859

res = 512 0.084 / 0.055 0.070 / 0.046 0.075 / 0.050 1.000 / 0.863 0.873 / 0.753 0.932 / 0.803 1.000 / 0.907 0.880 / 0.796 0.935 / 0.847

PointTriNet [52] GT 0.667 / 0.928 0.615 / 0.845 0.640 / 0.884 0.889 / 0.980 0.859 / 0.935 0.873 / 0.957 0.920 /0.997 0.917 / 0.980 0.918 / 0.988

PointTriNet [52] IGR 0.945 / 0.605 0.807 / 0.512 0.870 / 0.554 0.984 / 0.877 0.884 / 0.782 0.931 / 0.826 0.997 / 0.896 0.924 / 0.822 0.959 / 0.857

Table 2: Reconstruction accuracy and completeness on D-Faust [8] (top) and
ShapeNet [13] (bottom). We report accuracy, completeness and F1-score for 3
different inlier thresholds when evaluated on the implicit representation or the
ground truth mesh respectively

F[1e3] V[1e3] Area[1e6] Time[s]

Ours

rd = 0.02 4.93 2.52 381.28 14.28

rd = 0.01 41.73 20.97 42.82 226.64

rd = 0.005 81.95 41.13 22.27 182.47

MC [37]

res = 128 21.15 10.60 83.59 3.42

res = 256 86.26 43.19 20.95 23.42

res = 512 347.55 173.91 5.24 187.29

PointTriNet GT [52] 18.88 10.00 88.51 1530.35

PointTriNet IGR [52] 18.93 10.00 90.03 1862.27

Table 3: Mesh metrics. We report
number of faces (#F), number of
vertices (#V), the average trian-
gle area and the run-time in sec-
onds. Where appropriate, values are
scaled for better readability. Point-
TriNet roughly generated similar-
ily sized meshes as NeuralMeshing
with rd = 0.02. Likewise, marching
cubes with a resolution of 128 pro-
duces comparably sized meshes as
ours with rd = 0.01

the underlying voxel size. PointTriNet reconstructs the full shape with some level
of detail but introduces many visible holes and overlapping faces.

4.2 Triangle Mesh Properties

In this section, we evaluate several mesh properties and triangle metrics.

Mesh Metrics. To demonstrate the capability of producing detail-preserving,
low-memory triangle meshes, we report typical mesh metrics in Table 3, i.e.,
number of triangles, number of vertices and the average triangle area. We also
list the inference time for speed comparisons. Our method produces less but
bigger triangles than marching cubes for comparable levels of detail.

Distribution of Face Area, Triangle Angles and Holes. To demonstrate the reg-
ularity of the generated faces, Figure 7a shows the angle distribution observed
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Fig. 6: Qualitative results. Result meshes of various baselines from a single sam-
ple. The level of detail reconstructed on the face heavily depends on the resolu-
tion and method. IGR artifacts were manually removed. Best viewed digitally

in generated meshes of each method. Compared to marching cubes and Point-
TriNet, our method produces triangle angles closer to the equilateral triangle,
containing very few triangles with tiny angles. Figure 7b provides similar insights
by comparing the triangle area distribution. It can be observed that our method
produces more similarly sized faces while still allowing some variation in order
to adapt to more complex surface patches. In Figure 7c, we plot the number of
holes vs. the hole size and compare it with both baselines, illustrating that the
vast majority of holes produced by NeuralMeshing are very small. We refer to
the supplementary material for more quantitative metrics and ablation studies.

Limitations. NeuralMeshing does not guarantee watertightness, but typically
produces meshes with fewer holes than comparable methods. Sharp edges are
sometimes problematic which we attribute to the performance of the prediction
network. Like marching cubes, NeuralMeshing does not provide a manifoldness
guarantee. However, our mesh growing strategy can effectively avoid the insertion
of non-manifold edges, while marching cubes requires expensive post-processing.
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(a) (b) (c)

Fig. 7: Distribution analysis. We compare the distribution of triangle angles in
radians (a), triangle areas (b) and average number of holes (c) between our
method, PointTriNet [52] and marching cubes [37] on the D-Faust [8] dataset

5 Conclusion

We introduced NeuralMeshing, a novel meshing algorithm for neural implicit
representations. We exploit curvature information learned as part of the neural
implicit representation in order to guide the predictions of new triangles. Our
iterative, curvature-based processing of boundary edges allows us to generate
triangle sizes in accordance to the underlying curvature, yielding preferable mesh
properties. Experiments demonstrate that NeuralMeshing outperforms existing
meshing algorithms, producing meshes with lower triangle counts.

Acknowledgments. This work has been supported by Innosuisse funding (Grant
No. 100.567 IP-ICT).
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Appendix
In this supplementary material, we provide more details on overlap checks

(Sec. A), the curvature head of the modified neural implicit representation
(Sec. B) and the vertex prediction module (Sec. C). The data preprocessing
used for the experiments is explained in Sec. D. In Sec. E and Sec. F, we provide
additional quantitative and qualitative results, respectively. We provide ablation
studies in Sec. G and further quantitative results regarding the watertightness
property in Sec H. Finally, we discuss sharp features and highlight a few more
limitations in Sec. I.

A Details on Overlap Checks

The size of the triangles inserted into the mesh is controlled by the circumradius
rd of the default triangle while the height of a triangle is upper bounded by
two times the height of the default triangle. It is therefore sufficient to apply
the overlap check only on a local subset of nearby mesh faces. For a triangle
candidate fc, we define this set of relevant local faces as

Ffc = {f ∈ F | d(f, c(fc)) ≤ 2rd}, (2)

where c(fc) is the centroid of the triangle and d(f, c(fc)) denotes the smallest
euclidean distance among the face vertices in f and the triangle center of fc.
Ffc can be efficiently constructed by first collecting all relevant vertices through
a radius search on the centroid c(fc) with radius 2rd using the vertex k-d-tree.
The half-edge data structure allows us to access all the triangles involved with
these vertices.

Vertex Proximity Test. Vertex insertions very close to existing vertices are
undesirable (Figure 4f) since it requires the insertion of very small faces at
subsequent prediction steps. We therefore consider triangle candidates close to
an existing triangle as overlapping. The threshold tv = rd

2 is applied along the
axis defined by the face normal and on the distance to the triangle edges on the
triangle plane. More formally, we define the test for whether point p overlaps
with triangle f as

PIT(p, f) = dvertical < tnear ∧min{se0 , se1 , se2} > −tnear (3)

where dvertical is the smallest distance between p and the triangle plane and se
denotes the signed distance of p projected onto the triangle plane, to the lines
defined by the triangle edges. Note that these values are positive if the point lies
on the same site of the line as the triangle and negative otherwise.

Segment Intersection Test. Consider two edges e1 and e2, both belonging to
different triangles. Let ve1,a and ve1,b denote the vertices of e1 and ve2,a and
ve2,b denote the vertices belonging to e2. Furthermore, let p1 and p2 be the
points on edge e1 and edge e2, respectively, belonging to the shortest line segment
which connects these two lines. The points can be expressed as

p1 = ve1,a + d1(ve1,b − ve1,a)

p2 = ve2,a + d2(ve2,b − ve2,a),
(4)
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with p1 and p2 being on the triangle edge if d1 ∈ [0, 1] and d2 ∈ [0, 1], respec-
tively. Therefore, we consider two edges intersecting, if the two points p1 and
p2 are located on the respective edges and the euclidean distance between the
points is within a defined threshold, i.e. d1, d2 ∈ [0, 1] and ‖p2 − p1‖ ≤ tnear.

To compute the scalars d1 and d2, we make use of the constraint that the
line segment is perpendicular to the edges. Hence, the dot product must be zero,
i.e. (vei,b − vei,a)>(p2 − p1) = 0 for i ∈ {0, 1}. By rewriting the vector p2 − p1

with Eq. 4, we are able to solve for the scalars d1 and d2.

Existing Vertex Selection. If one of the above tests indicates that the predicted
vertex overlaps with existing triangles, the predicted vertex is replaced with an
existing vertex vA. Only vertices returned from the radius search used to build
the triangle set Ffc (Sec. A) are considered as candidates. Among the available
candidate vertices, we choose the candidate with the smallest euclidean distance
to the center of the boundary edge, provided the triangle defined by the vertex
candidate does not overlap with the existing mesh. We therefore perform an
additional overlap check for all candidate vertices. Note that vertex proximity
test must not be applied to faces containing the vertex candidate, since the two
faces always intersect at the vertex candidate.

B Curvature Head Details

As shown in Figure 8, we attach the curvature head at the layer after the skip
connection. The head consists of three fully connected layers of width 512 with
ReLU activations, except for the output layer where we use tanh as the activa-
tion function. The directional curvature query q is exclusively provided to the
curvature head and doesn’t get used for standard SDF queries. The decoupled
curvature head allows us to use pretrained decoder weights from models trained
without a curvature head. During training, the query direction q is randomly
sampled on the tangential plane of each query point, defined by the surface
normal.

C Vertex Prediction Details

Architecture. The MLP in the vertex prediction module, shown in Figure 9,
consists of five fully connected layers of width 512. We use ReLU as activation
function and tanh for the output layer. The angular value in the result vector is
scaled by π

2 .

Training. We use the Adam optimizer [34] with an initial learning rate of 0.001
without any learning rate scheduling. The MLP is trained iteratively with new
batches (of 32 shapes) of triangle insertions. Each shape is initialized with 1024
initialization triangles. A training step consists of a mini batch containing 512
boundary edges per shape. For every batch of 32 shapes, 50 training steps are
computed. Currently, we train a model for every mesh resolution, defined by rd.
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Fig. 8: Curvature head architecture. The curvature head consists of 3 fully con-
nected layers with ReLU activation functions. We attach the curvature head at
the layer after the skip connection of the original IGR decoder. The directional
curvature query is only provided to the curvature head

D Data Preprocessing

Data Normalization. We normalize meshes and point clouds by centering them
to the mean and scaling them to the unit cube, i.e. to [−1, 1] for every dimen-
sion. We perform this normalization for the training of the modified implicit
representation and for all evaluations.

Artifact Removal. The implicit neural representation (IGR) used by marching
cubes and our method introduces several shape artifacts. An example of such
artifacts is visualized in Figure 10. Furthermore, as the implicit representation
is an approximation of the ground-truth mesh, it might differ slightly in some
surface areas, smoothing sharp features or providing explanations for parts of the
shape where no input data was provided. In order to compare our method with
approaches which do not use an implicit representation, e.g . PointTriNet [52],
we remove such artifacts automatically. The removal process first discards all
triangles in the lowest five percent of the bounding box, i.e. we cut of the feet of
humans in the DFaust dataset since the artifacts often are connected with the
scans through the ground and the feet. We then split the mesh into connected
components and keep only the component closest to the center of the bounding
box. The distance from a mesh component to the center of the bounding box
is computed by measuring the euclidean distance between the center of the
bounding box and the mean of all mesh-vertices.
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Fig. 9: Vertex prediction architecture. The MLP for the vertex prediction module
consists of 5 fully connected layers with ReLU activation functions. The angular
value in the result vector is scaled by π

2

NC on GT ↑ NC on IGR ↑

Ours
rd = 0.02 0.466 0.942
rd = 0.01 0.479 0.967
rd = 0.005 0.485 0.980

MC [37]
res = 128 0.475 0.953
res = 256 0.483 0.973
res = 512 0.486 0.981

PointTriNet GT [52] 0.490 0.968
PointTriNet IGR [52] 0.483 0.971

Table 4: Normal consistency. The normal consistency of generated meshes is
measured against the implicit representation (IGR) and the ground-truth (GT)

E More Quantitative Results

Impact of Inlier Threshold on F1-score. To provide a better picture on the
impact of the threshold on the F1-score, Figure 11 visualizes the change of the
F1-score with growing tinlier. Compared to marching cubes, our method achieves
a better F1 score for similar resolutions with tight inlier thresholds. PointTriNet
meshes are closer to the ground truth mesh, which we attribute to the artifacts
and differences in the implicit representation.

Normal Consistency. To further evaluate the consistency of the orientation
of the generated faces, we employ the normal consistency metric (NC). The
corresponding results are reported in Table 4. The quality of the face orientation
are within the same range for marching cubes and our method when evaluated
on the implicit representation.

Interaction with Implicit Representation. Marching cubes and NeuralMeshing
rely on querying the underlying implicit representation. In Table 5 we report
the average number of queries performed in the evaluated meshing procedures
on the D-Faust dataset. We can observe that the extensive querying performed
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Fig. 10: Artifacts of implicit representations. The original scan contains the hu-
man only (green). IGR introduces artifacts such as volumetric objects (red)
around the body and a curtain in front of the person (blue). For evaluations, we
remove such artifacts

by our algorithm is cheaper than the grid-based queries employed by marching
cubes.

F More Qualitative Results

In Figure 12 and Figure 13, we provide additional qualitative results. We can
observe that our meshes are more complete than those from PointTriNet, while
still providing the same level of detail as marching cubes.

G Ablation Study

To understand the impact of different elements of our meshing algorithm on the
reconstruction quality, we perform an ablation study and report the results in
Table 6. For a given triangle size of rd = 0.005, we retrain the vertex predictor
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(a) (b)

Fig. 11: Impact of the inlier threshold on the F1-score. (a) F1-score of the gen-
erated meshes measured on the implicit representation. (b) F1-score of the gen-
erated meshes measured on the ground-truth meshes

# SDF queries

Ours
rd = 0.02 264’534.06
rd = 0.01 1’059’887.04
rd = 0.005 3’488’435.31

MC [37]
res = 128 2’097’152.00
res = 256 16’777’216.00
res = 512 134’217’728.00

Table 5: Number of SDF queries. We report the number of SDF queries used by
marching cubes [37] and our method. NeuralMeshing uses significantly less SDF
queries than marching cubes

with different components disabled, while using a similar experiment setup as
before. We run all ablations with a disabled surface projection post-processing
step, as it otherwise skews the results, as differences between the ablations get
tiny. For the no length scaling experiment, we use the default triangle size rd
instead of the predicted length, while for the no edge rotation experiment, we use
a predicted angle of zero, corresponding to an extension of the mesh along the
plane defined by the existing triangle adjacent to the boundary edge. For the no
prediction experiment, we do not use either prediction. The next 4 experiments
test the effectiveness of each embedded feature. We alternatingly either omit the
features at the default vertex (no p-queries) or at the boundary edge end points
(p-queries only), use only 1 directional curvature feature queries instead of the
original 3 (1 direction) or use no curvature features at all (no curvature).

H Watertightness

We report the boundary edge to total edge ratio in Table 7 as a metric for
watertightness. Since some shapes intersect the bounding box, marching cubes
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Fig. 12: More qualitative results on D-Faust. We show 2 subjects in 2 different
poses, respectively, and compare our version with rd = 0.005 with marching
cubes [37] at 512 resolution and PointTriNet [52]

also introduces boundary edges at these locations. NeuralMeshing exhibits fewer
and smaller holes than PointTriNet while marching cubes does not generate any.

I Limitations

Sharp features The subset of the ShapeNet dataset used for evaluation contains
features such as corners and sharp edges. NeuralMeshing naturally extends to
sharp edges and corners, as visible in Figure 14. However, due to the limited
information provided to the vertex prediction module and the smoothing effects
of the underlying implicit representation, the meshing procedure reconstructs
smoother corners and can lead to irregularities along sharp edges.

Holes. Holes occur mostly at surface locations with high curvature, illustrated
in Figure 15a, 15b and 15c. In such cases, the edge rotation prediction does
not bend the triangle sufficiently towards the real surface, leading to a scenario
where no existing vertices are found, and the mesh therefore remains unclosed.
Holes in flat surfaces can occur, but are rare and almost unnoticeable, as shown
Figure 15d.

Supervision. The current method requires an explicit mesh for computation of
the supervision signal of the curvature head. Future work would address this by
incorporating self-supervision in order to preserve training on raw scans only.

Initialization Triangles. A single initialization triangle is sufficient for recon-
structing a single connected component, but will fail for shapes containing mul-
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Fig. 13: More qualitative results on D-Faust. We show 4 subjects in different
poses, respectively, and compare our version with rd = 0.005 with marching
cubes [37] at 512 resolution and PointTriNet [52]

tiple disconnected surface components. The procedure must therefore sample
enough points in order to catch all surface components with high probability.
Such cases can easily be reduced by using the grid points of an initialisation grid
instead of random points in space.

Furthermore, initialization triangles placed on a surface region with high cur-
vature might introduce inaccurate faces in the mesh. Future work could improve
upon this by adapting the size of the initialization triangle to the curvature.
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from Generated mesh GT IGR Bidirectional

to 1e-4 GT ↓ 1e-4 IGR ↓ 1e-4 Generated Mesh ↓ 1e-4 GT ↓ 1e-4 IGR ↓

No Edge Rotation 24.943 16.154 143.354 138.992 84.149 77.573

No Length Scaling 54.467 15.809 21.797 13.979 38.132 14.894

No Prediction 25.222 16.121 150.392 146.241 87.807 81.181

No p-queries 53.427 18.129 21.022 13.237 37.225 15.683

1-direction 55.127 17.551 21.587 14.170 38.357 15.861

p-queries only 146.458 17.804 23.749 16.784 85.103 17.294

No Curvature 148.378 16.097 22.172 14.335 85.275 15.216

Ours rd = 0.005, w/o proj. 55.720 15.318 21.971 13.847 38.846 14.583

Ours rd = 0.005, w/ proj. 44.763 1.093 19.967 5.627 32.365 3.360

Table 6: Ablation. In order to better distinguish the individual contributions
of each component, we run all ablations without the surface projection post-
processing step, except for the last line. The evaluations are performed in the
same manner as in Table 1

Ratio ↓ #Holes ↓ Radius ↓ #Edges ↓

Ours
rd = 0.02 0.022 12.438 0.005 15.447
rd = 0.01 0.004 14.344 0.002 16.749
rd = 0.005 0.003 19.125 0.001 19.574

MC [37]
res = 128 0.002 1.781 0.010 35.965
res = 256 0.001 1.812 0.011 73.983
res = 512 0.001 1.781 0.011 151.754

PointTriNet GT [52] 0.130 682.281 0.002 31.194
PSR [32] 0.000 0.406 0.001 9.077

Table 7: Quantitative metrics of observed holes. We report the ratio of boundary
edges to total edges, the average number of holes per shape, the average radius of
the minimum enclosing sphere of holes and the average number of edges involved
in a hole
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Fig. 14: Sharp features. NeuralMeshing naturally extends to sharp edges and
corners but smooths them due to the smoothing effects of the underlying implicit
representation. Example belongs to the ShapeNet dataset
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(a) (b)

(c) (d)

Fig. 15: Holes. NeuralMeshing does not guarantee watertightness and therefore,
holes may occur on very complex surfaces such as ears (a), nearly parallel surface
patches (b) or in places with large differences in orientation (c). Flat surfaces
can lead to barely noticeable holes (d). Green edges indicate boundary edges
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