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Abstract

In this paper, we propose a simple attention mechanism,
we call Box-Attention. It enables spatial interaction between
grid features, as sampled from boxes of interest, and im-
proves the learning capability of transformers for several
vision tasks. Specifically, we present BoxeR, short for Box
Transformer, which attends to a set of boxes by predicting
their transformation from a reference window on an input
feature map. The BoxeR computes attention weights on these
boxes by considering its grid structure. Notably, BoxeR-2D
naturally reasons about box information within its attention
module, making it suitable for end-to-end instance detection
and segmentation tasks. By learning invariance to rotation
in the box-attention module, BoxeR-3D is capable of gen-
erating discriminative information from a bird’s-eye view
plane for 3D end-to-end object detection. Our experiments
demonstrate that the proposed BoxeR-2D achieves state-of-
the-art results on COCO detection and instance segmenta-
tion. Besides, BoxeR-3D improves over the end-to-end 3D
object detection baseline and already obtains a compelling
performance for the vehicle category of Waymo Open, with-
out any class-specific optimization. Code is available at
https://github.com/kienduynguyen/BoxeR.

1. Introduction
For object detection, instance segmentation, image classi-

fication and many other current computer vision challenges,
it may seem a transformer with multi-head self-attention
is all one needs [40]. After its success in natural language
processing, learning long range feature dependencies has
proven an effective tactic in computer vision too, e.g., [1, 7].
Surprisingly, existing transformers for computer vision do
not explicitly consider the inherent regularities of the vision
modality. Importantly, the image features are vectorized in
exactly the same way as language tokens, resulting in the
loss of local connectivity among pixels. Once fed with suffi-
cient data, a traditional transformer may be powerful enough
to compensate for this loss of spatial structure, but in this
paper we rather prefer to equip the transformer with spatial

Box-Attention

BoxeR-2D

BoxeR-3D

Figure 1. BoxeR with box-attention for object detection and in-
stance segmentation. BoxeR-2D perceives an image and generates
object bounding boxes and pixel masks. Extended from BoxeR-2D,
BoxeR-3D predicts 3D bounding boxes from point cloud input.

image-awareness by design. Recent evidence [5, 39, 47] re-
veals that an inductive bias is of crucial importance in both
natural language processing and computer vision, and the
leading works on image recognition [24] and object detec-
tion [47] all utilize “spatial information”. Furthermore, a
strong and effective inductive bias enables us to converge
faster and generalize better [39].

A solution is to enrich image features with positional
encoding, which explicitly encodes the position informa-
tion at the feature level. This is already common practice
when applying multi-head attention to vision tasks. Both
Carion et al. [1] and Zhu et al. [47] convert absolute 2D
positions, while Ramachandran et al. [29] encode relative
2D positions into vectors and sum them up to image fea-
tures in the attention computation. However, this approach
only acts as a data augmentation to image features. It re-
quires the network to infer the spatial information implicitly
inside its weight, causing a slow convergence rate during
training due to the lack of spatial-awareness in the network
architecture. It is well known that an inductive bias in the
network architecture delivers a strong ability to learn, which
has been proven by well-known architectures such as the
convolutional neural network [19] and the long short-term
memory [13]. In particular, we postulate a better spatial
inductive bias in the transformer’s attention module leads to
a better learned representation of image features.

Motivated by this observation, the first contribution of this
paper is a Box-Attention mechanism for end-to-end vision
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representation learning using transformers that we present in
Section 3. Instead of using image features within a region of
interest, it treats a set of learnable embeddings representing
relative positions in the grid structure as the key vectors
in the attention computation. In our second contribution,
in Section 4, these computations are encapsulated into a
composite network that we call BoxeR-2D, short for Box
transformeR, which enables a better prediction in end-to-
end object detection and instance segmentation tasks. In
Section 5, the BoxeR-2D and box-attention are then extended
into BoxeR-3D to tackle end-to-end 3D object detection
without the requirements for 3D-IoU computation, anchors,
and a heatmap of object centers. This extension to 3D object
detection serves as our third contribution, see Fig. 1.

In Section 6, we show the effectiveness of our contribu-
tions by several experimental results on the COCO dataset
[21], achieving leading results in end-to-end object detection.
The proposed method introduces a simple solution for end-
to-end instance segmentation that outperforms many well-
established and highly-optimized architectures with fewer
number of parameters on the challenging COCO instance
segmentation dataset. By utilizing only data-independent
prior information, our method presents a compelling solu-
tion for end-to-end 3D object detection on the Waymo Open
dataset [35].

2. Related Work
We briefly review recent developments in computer vision

with focus on attention mechanisms for backbones, object
detection, instance segmentation and 3D object detection.
Attention for Vision Backbones. With the advance-
ment of attention mechanisms, there are several approaches
to create and use attention in convolutional networks,
e.g., [14, 29, 34, 42]. It was recently shown in the Vi-
sion Transformer (ViT) [7] that an attention-only network
achieves comparable performance in image recognition, and
outperforms convolutional neural networks in the setting of
more data and longer training time. As the ViT becomes
computationally more expensive with high resolution images,
while only producing a single-scale feature map, several
works [8, 24] have focused on speeding up the self-attention
computation and generating multi-scale feature maps for
object detection and segmentation. In this paper, we in-
stead focus on the prediction module which takes features
extracted from vision backbones as inputs and provides a
prediction for several vision tasks.
Attention for Object Detection. Modern two-stage object
detection methods [23] (i.e., Faster R-CNN [31]) utilize a
region proposal network (RPN) and a prediction module
on top of a pretrained backbone to predict a set of pre-
defined objects. The attention mechanism is then consid-
ered as an addition of the RPN and prediction modules to
further improve performance in [3, 37]. Alternatively, one-

stage object detection methods [30, 41] remove the need
for RPN and predict objects directly from convolutional
feature maps. While the detection performance improves
considerably, these convolution-based architectures still rely
on many hand-crafted components. Recently, Carion et
al. introduced a transformer-based prediction model, called
DETR [1], which gave the prediction in an end-to-end man-
ner. Pointing out the slow convergence and high computa-
tional cost of self-attention on image features, Zhu et al. [47]
introduced multi-head deformable attention, replacing the
dot-product in the attention computation with two linear
projections for sampling points and computing their atten-
tion weights. While improving in both the convergence rate
and accuracy, the strategy of sampling positions around a
reference point prevents it to efficiently capture object in-
formation like object size and location. As sampled points
on the image feature maps are separated, the module is un-
aware of the local connectivity of the attended region. Our
BoxeR closely follows the overall framework of end-to-end
object detection by Carion et al. [1], but differs at its core by
the use of the spatial prior and the multi-head box-attention
mechanism. Our multi-head box-attention is inspired by
the standard multi-head attention and convolution operation,
which have both been shown to learn robust image repre-
sentation. The box-attention considers a box region by only
predicting its center and size, which is more efficient and al-
lows us to extract structured information within the predicted
region.

Attention for Instance Segmentation. A method for tack-
ling instance segmentation is required to locate objects and
segment the pixels belonging to the object at the same time.
Inspired by modern object detectors, earlier studies [2, 27]
predict segment proposals in a first stage; the segment pro-
posals are then classified in a second stage. He et al. [11]
proposed to train object detection and instance segmentation
simultaneously in a multitask setting to boost the perfor-
mance of both tasks. Different from modern segmentation
models, which predict bounding boxes and masks from the
same set of features (i.e., ResNet features), DETR relies on
transformer features for object detection and ResNet features
augmented with attention maps from the transformer for seg-
mentation. This causes a mismatch in information level since
these two tasks are highly related. Dong et al. [6] suggested
to learn unified queries for both object detection and instance
segmentation by taking advantage of deformable attention.
However, this approach still lags behind convolution-based
architectures by a large margin. We introduce box-attention
which naturally extends to both object detection and instance
segmentation in a single BoxeR-2D architecture achieving
state-of-the-art performance on both tasks.

Attention for 3D Object Detection. The main challenge
in 3D object detection is to deal with rotated bounding
boxes from bird’s-eye view image features. Many meth-
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Figure 2. Box-Attention. Left: attention computation in Box-Attention with a reference window (denoted in yellow) without any
transformation. Given a query vector, the Box-Attention computes an attention map over 3×3 grid features with the query position as
its center. The attention weights are generated by a matrix multiplication between query and relative position encodings as key. Right:
Box-Attention without and with transformations. The Box-Attention with transformations is able to focus on a dynamic region in the image.

ods [20,33,35] adapted Faster R-CNN by generating anchors
of different angles as object proposals, followed by classifi-
cation and regression. As anchor-based methods generate a
high number of overlapping proposals, which requires non-
maximum suppression to be tuned for each of the classes,
approaches in [10, 44] focused on predicting a heat-map of
object centers in a scene. While the number of overlapping
proposals is reduced, predicting a heat-map leads to the loss
of prior information compared to anchors and still relies
on non-maximum suppression to filter out object proposals.
A transformer with self-attention was also adopted for 3D
object detection in [25, 32]. Unfortunately, they exhibit the
same problems as traditional detectors since their methods
require initial object predictions from previous methods. The
recent work of Misra et al. [26] introduced 3DETR for indoor
3D object detection. This method utilizes self-attention in
both the encoder and decoder with object queries generated
by a Farthest Point Sampling algorithm on point clouds [28].
Instead, BoxeR presents a solution for end-to-end 3D object
detection on outdoor scenes that simply uses bird’s-eye view
features to predict objects without non-maximum suppres-
sion, 3D rotated IoU, or a complicated initialization method.

3. Box-Attention
Box-attention is a multi-head attention mechanism de-

signed to attend to boxes of interest in an image feature map.
To do so, it samples a grid within each box and computes
attention weights on sampled features from the grid structure,
making the module easy to generalize to 2D or 3D object de-
tection as well as instance segmentation. In each head of the
attention computation, a box of interest is generated by pre-
dicting geometric transformations (i.e., translation, scaling,
and rotation) from a pre-defined reference window. The box-
attention design allows the network to attend to dynamic

regions of image features with reasonable computational
cost.
Multi-Head Self-Attention. We start by briefly summa-
rizing the standard multi-head self-attention in the Trans-
former [40]. The multi-head self-attention of l attention
heads generates output features of the queries (Q) by cal-
culating weighted average vectors of the value features (V )
corresponding to the key vectors (K):

MultiHead(Q,K, V ) = Concat(h1, . . . , hl)W
O , (1)

where hi= Attention(QWQ
i ,KW

K
i , V W

V
i ). The self-

attention module computes an attention map in each head
using the dot-scale product of features between Q and K,
in which the computation increases quadratically with the
matrix size.

Attention(Q,K, V ) = softmax

(
QK>√
dk

)
V , (2)

where dk is the dimension of the key feature in one head.
Multi-Head Box-Attention. Box-attention adopts the
multi-head attention computation in Eq. (1) with the same
feature aggregation of multiple heads and a learnable projec-
tion matrix WO. In the attention computation stage, given a
box of interest bi of query vector q ∈ Rd in the ith attention
head, box-attention extracts a grid feature map vi of size
m×m from bi using bilinear interpolation as illustrated in
Fig. 2. The use of bilinear interpolation to compute the exact
values of the grid features reduces the quantization error of
the box-attention in box regression and pixel segmentation.
This differs from deformable attention [47], which predicts
unstructured points causing ambiguity in capturing object
information. Instead, our attention mechanism inherits the
spirit of RoIAlign [11] that precisely samples a grid struc-
ture within a region of interest (i.e., bounding box proposals)
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to obtain accurate pixel-level information which has been
found to be important for pixel-accurate masks.

During the ith head attention computation, we treat the
grid feature map vi ∈ Rm×m×dh as a set of value features
corresponding to the query q ∈ Rd. The m×m attention
scores are then generated by computing the dot-product be-
tween q and m×m learnable key vectors Ki, where each
vector represents a relative position in the grid structure, fol-
lowed by a softmax function. Thus, we share the same set
of keys across queries. By treating Ki as relative location
embedding of the sampled grid, box-attention can efficiently
capture spatial information regarding the region. In the im-
plementation, the attention map generation can be performed
efficiently via a simple linear projection (Rd → Rm×m) that
is equivalent to the dot-product with learnable key vectors.
The final hi ∈ Rdh is the weighted average of the m×m
vectors in vi with attention weights.

hi = BoxAttention(Q,Ki, Vi)

=
∑
m×m

softmax
(
QK>i

)
∗ Vi , (3)

where Q ∈ RN×d, Ki ∈ R(m×m)×d, Vi ∈ RN×(m×m)×dh ,
and dh is the dimension of features in one head.

It has been shown in [22] that multi-scale feature maps
lead to large improvements in both object detection and
instance segmentation. Our box-attention can be simply
extended to work on multi-scale features. Given a set of
boxes {b1i , . . . , bti} of the query vector q in an attention head,
each of which belongs to each of t multi-scale feature maps,
we sample a grid of features from each box, resulting in
vi ∈ R(t×m×m)×dh . The t×m×m attention scores are com-
puted in the same way with t×m×m learnable key vectors
Ki ∈ R(t×m×m)×d, where each vector represents a relative
position in t grid structures, followed by a softmax normal-
ization. The h(1,...,l) ∈ Rdh feature now is the weighted
average of t×m×m vectors in v(1,...,l) as in Eq. (3).
Multi-Head Instance-Attention. Instance-attention is a
simple extension of box-attention without any extra param-
eters. Our goal is to generate an accurate mask from the
box of interest for instance segmentation. In the ith attention
head, it generates two outputs, hi ∈ Rdh for object detection
and hmask

i ∈ Rm×m×dh for instance segmentation. While
weighted-averaging the t×m×m features in vi to create hi,
we collapse vi in the first dimension (which contains the
number of multi-scale features) for hmask

i . To do this, we nor-
malize the first dimension of the t×m×m attention scores
using the softmax function which are then applied to vi.
Note that we share all parameters of the attention module
in generating h(1,...,l) and hmask

(1,...,l), including the learnable
projection matrix WO.
Where-to-attend. Where-to-attend is a key component of
our box-attention, it refers to an operation for predicting a

…

Box-Attention

Feed Forward

Add & Norm

Add & Norm

…

Class

…

Self-Attention

Instance-Attention

Add & Norm

Add & Norm

Feed Forward

Add & Norm

Bounding Box Mask

Encoder Decoder

Object Proposals

Object QueriesImage Features

S × S ×

Prediction

Prediction

Figure 3. BoxeR structure. The BoxeR-2D takes encoder features
corresponding to object proposals as its object queries. The object
queries are then decoded into bounding boxes and pixel masks
using instance-attention.

box of interest in the attention computation. Specifically, the
module learns to transform a reference window of query q on
a feature map into an attended region via simple geometric
transformations, such as translation and scaling (see Fig. 2).

To be specific, we denote the reference window of query q
by bq=[x, y, wx, wy] ∈ [0, 1]4 where x, y indicate its center
position, wx, wy are width and height of the window in
normalized coordinates. The translation function, Ft, takes
q and bq as its inputs and performs translation, which outputs
b′q as follows:

Ft(bq, q) = b′q = [x+ ∆x, y + ∆y, wx, wy] , (4)

where ∆x and ∆y are offsets relative to the center of the
reference window. Similarly, the scaling function, Fs, takes
the same inputs and adjusts the size of bq

Fs(bq, q) = b′q = [x, y, wx + ∆wx
, wy + ∆wy

] , (5)

where ∆wx
and ∆wy

are offsets for the reference window
size. The offset parameters (i.e., ∆x,∆y,∆wx

,∆wy
) are

predicted using a linear projection on q for efficiency. In
the multi-head attention setting of l heads and t multi-scale
feature maps, we use l×t transformation functions where
each function predicts a box of interest bji for ith head and
jth feature map.

Where-to-attend is a combination of transformations and
allows our box-attention to effectively attend to necessary
regions with a small number of parameters and low compu-
tational overhead. It can also be seen as a pseudo prediction
step since it provides the network spatial information to
predict a region of interest within the attention module.

4. BoxeR-2D: A Box Transformer
To demonstrate the effectiveness of our approach, we

present BoxeR, a Transformer-based network with box-
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Figure 4. BoxeR-2D behavior. We show the behavior of BoxeR-2D by tracing back its prediction. Box-Attention in the encoder is able to
capture regions of multiple aspect ratios from the reference window (denoted in purple), while Instance-Attention in the decoder plays a role
to refine the object proposal. The BoxeR-2D predicts an object proposal which highly overlaps with the final prediction.

attention in its architecture; see Fig. 3. BoxeR consists of
an encoder for encoding multi-scale feature maps extracted
from a backbone and a decoder for predicting instance bound-
ing boxes and pixel masks. Our approach follows the spirit
of end-to-end object detection frameworks (i.e., DETR [1]),
that reduce the need for hand-crafted modules, like non-
maximum suppression and anchor-groundtruth matching.

BoxeR Encoder. As in Transformer, each BoxeR encoder
layer contains box-attention and feed forward sub-layers,
each of which is followed by a LayerNorm [15] with resid-
ual connection. Following [47], the encoder takes multi-
scale image feature maps {xj}t−1j=1(t=4) extracted from C3

through C5 of a ResNet backbone [12] (transformed by a
1×1 convolution to the hidden dimension) as its inputs. The
tth feature map xt is obtained by applying a 3×3 convolu-
tion layer with stride 2 on the final C5 feature. The BoxeR
encoder will transform multi-scale inputs into multi-scale
contextual representations {ej}tj=1. Note that the multi-
scale contextual representations {ej}tj=1 are in the same
resolution as the inputs {xj}tj=1.

In the encoder, both Q and V are features from multi-
scale feature maps. We assign a reference window to each
query vector where the window is centered at the query
spatial position. The sizes of the sliding windows are
{322, 642, 1282, 2562} pixels on multi-scale feature maps
{x1, x2, x3, x4}(t=4) (or 42 features on each of the multi-
scale feature maps), as suggested in [22]. Because l parallel
attention heads of box-attention are able to implicitly cap-
ture boxes of multiple aspect ratios at each feature level, we
found that it is not necessary to have reference windows of
multiple aspect ratios (see Fig. 4). Beside augmenting each
query with a position embedding, we add a size embedding,
which represents the size of the reference window corre-
sponding to each query. The size embedding only differs
between query vectors of different levels. Both embeddings
are normalized and encoded with sinusoid encodings.

Since two-stage networks indicate a significant improve-
ment in object detection [31, 47], we show that the BoxeR
encoder is able to produce high-quality object proposals as
inputs for the decoder. In the object proposal stage, features
from the last encoder layer are fed into a prediction head to
predict object proposals w.r.t. their reference windows. In-
stead of treating the sinusoid embedding of bounding boxes
predicted in the object proposal stage as object queries [47],
we simply take the encoder features (transformed by a linear
projection) with the highest classification scores as input fea-
tures for the decoder. This provides richer information to the
BoxeR decoder as encoder features contain both spatial and
contextual information. The predicted bounding boxes are
treated as reference windows for its corresponding proposals
in the decoder.
BoxeR Decoder. In each BoxeR decoder layer, the
cross-attention sub-layer is our multi-head instance-attention,
while the self-attention and feed forward sub-layers are left
unchanged. The features of the object proposals from the
encoder are the inputs of BoxeR decoder. The reference
windows of the object proposals are refined in this stage in
order to give accurate predictions.

To be specific, we denote the inputs to the (s + 1)th de-
coder layer by xs ∈ RN×d. The (s+ 1)th decoder layer then
outputs xs+1 ∈ RN×d and xmask

s+1 ∈ RN×m×m×d. The feed
forward sub-layer is the same for both outputs. The output
features xS ∈ RN×d are then decoded into box coordinates
and class labels as in [47], while xmask

S ∈ RN×m×m×d are
used to generate instance masks. We follow the training
strategy in Mask R-CNN [11] to predict instance masks with
a per-pixel sigmoid and a binary loss.

Since the where-to-attend module in the attention module
predicts regions of interest based on reference windows, we
design the detection head to predict a bounding box as a
relative offset w.r.t. its reference window size and position.
The reference window serves as an initial guess of its object
proposal feature in the prediction stage. The auxiliary de-
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coding losses for other decoder layers are also effective in
our case. All prediction heads in the BoxeR decoder share
their parameters. We found that it is not necessary to add a
mask cost into the Hungarian matcher [17], which results in
a more efficient training. More details are provided in the
supplementary document.

5. BoxeR-3D: End-to-end 3D Object Detection
We enable end-to-end 3D object detection by extending

our box-attention and BoxeR to work with point cloud input.
Box-Attention for 3D Object Detection. Along with trans-
lation and scaling in the where-to-attend module, we add
rotation transformation in the bird’s-eye view plane to model
the angle of objects. We denote the reference window of q by
bq=[x, y, wx, wy, θ] ∈ [0, 1]5 where x, y indicate its center
position, wx, wy are width and height of the window, and
θ is the rotation angle of bq around its center in normalized
coordinates. The final rotation function, Fr, predicts an off-
set of the window rotation angle. It then applies a rotation
matrix on the m×m grid coordinates sampled from bq

Fr(bq, q) = b′q = [x, y, wx, wy, θ + ∆θ] , (6)

where ∆θ is an offset w.r.t. the reference window angle.
Again, we use a linear projection on q to predict ∆θ.
BoxeR for 3D Object Detection. To better capture ob-
jects of different angles, we assign reference windows of
multiple angles to each query vector of BoxeR encoder fea-
tures. At each sliding position, based on the 2D object detec-
tion setting, we use three reference windows of 42 features
on each of the multi-scale feature maps with three angles
{−2π3 , 0, 2π3 }. Each attention head will be assigned a refer-
ence window of one angle. By doing so, features generated
from our box-attention are strong for rotation prediction (see
Fig. 5). In the object proposal stage, for each of the encoder
features, we predict class scores and bounding boxes for the
three proposals w.r.t. their reference windows of three angles.
The 3D Hungarian matcher is used during training. More
details are provided in the supplementary document.

We note that only minimal prior knowledge about spe-
cific object classes, such as the typical size of a vehicle
is embedded in our system due to the uniform distribution
of the reference window. This is different from previous
methods [33, 35, 36, 44] which use different anchor sizes,
heat-maps, or backbones for each class. Our network also
removes the need for hand crafted modules such as rotated
non-maximum suppression or 3D IoU computation.

6. Experiments
6.1. Datasets, Tasks and Implementation Details

MS-COCO 2017. For 2D object detection and instance
segmentation, we use the MS-COCO 2017 dataset [21] con-

Figure 5. BoxeR-3D prediction. Left: BoxeR-3D prediction in
an intersection (ground-truth boxes denoted in blue; vehicle and
pedestrian predictions denoted in green and red). Right: Visualiza-
tion of Box-Attention behavior corresponding to one object query.
Multiple attention heads of the object query in Box-Attention cap-
ture boxes of different angles where the best attended region is
well-aligned with BoxeR-3D prediction.

sisting of 118,000 training images and 5,000 validation im-
ages. The instance is categorized based on its size: small,
medium and large. We report the standard COCO metrics
for bounding boxes and masks. We use the train split for
training and report ablations on the val split. We also report
results on the test-dev set.

We use the Adam optimizer [16] with α=0.0002, and
weight decay set to 0.0001. The learning rate of our back-
bone and transformation functions in the attention module
is multiplied by a factor of 0.1. We find that dropout is not
necessary for BoxeR and makes the training slower. Thus,
we remove it from the BoxeR architecture. We train our net-
work for 50 epochs with a batch size of 32, the learning rate
is decayed at the 40th epoch by a factor of 0.1. Other hyper-
parameter settings follow Deformable DETR [47]. During
the training procedure, the same data augmentation is used
as in [1]. For a better comparison, we also report BoxeR-2D
trained with a 3× schedule as in [43].
Waymo Open. For 3D object detection, we use the Waymo
Open dataset [35], which contains 798 training sequences
and 202 validation sequences. Each sequence consists of
200 frames where each frame captures the full 360 degrees
around a vehicle. We report the official 3D detection evalua-
tion metrics including the standard 3D bounding box mean
average precision (mAP) and mAP weighted by heading
accuracy (mAPH) in three categories: vehicle, pedestrian,
and cyclist.

FLOPs↓ AP↑ APS ↑ APM ↑ APL ↑
Self-Attention [40] 187G 36.2 16.3 39.2 53.9
Deformable-Attention† [47] 173G 46.9 29.6 50.1 61.6
Dynamic-Attention [4] - 47.2 28.6 49.3 59.1
Box-Attention (Ours) 167G 48.7 31.6 52.3 63.2
w/o (Ft and Fs) 164G 46.4 29.6 49.8 59.7

† Based on author-provided github, which is higher than in their original paper.

Table 1. Box-Attention vs. alternatives in end-to-end object
detection on the COCO val set using a R-50 backbone pretrained
on ImageNet. Box-Attention performs best with the least FLOPs.
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AP↑ APS↑ APM↑ APL↑
Box-Attention 48.7 31.6 52.3 63.2
w/ proposal refinement 47.2 30.4 50.7 62.2

(a) Object Proposals.

AP↑ APS↑ APM↑ APL↑ APm↑ APm
S↑ APm

M↑ APm
L↑

Box-Attention only 48.7 31.6 52.3 63.2 - - - -
w/ Instance-Attention 50.0 32.4 53.3 64.5 42.7 22.7 45.9 61.5

(b) Instance-Attention.

Table 2. BoxeR-2D ablation on the COCO val set using a R-50 backbone pretrained on ImageNet. (a) Our reference windows improve
the quality of the object proposals and removes the need for the refinement stage of [47]. (b) BoxeR-2D shows strong results when training
on both 2D object detection and instance segmentation simultaneously.

We use the Adam optimizer with weight decay set to
0.0001. Following previous works [36], we use cosine learn-
ing rate decay with the initial learning rate set to 5e-4, 5000
warm-up steps starting at 5e-7, and 140K iterations in to-
tal. The learning rate of the transformation functions in
the attention module is multiplied by a factor of 0.1. We
train our network on BEV image features extracted from
PointPillar [18] with a grid size of (0.32m, 0.32m). The
detection range is [−75.0m, 75.0m] for the x and y axis, and
[−4m, 8m] for the z axis. For ablation studies, we train our
network on only 20% of the training data.

6.2. Ablation Study

Box-Attention vs. Alternatives. We first compare Box-
Attention with Self-Attention [40], Deformable-Attention
[47] and Dynamic-Attention [4] in end-to-end object de-
tection. Results in Table 1 indicate an improvement for
Box-Attention on all metrics, with the highest gain from
small objects (APS) (up to 2 points). Furthermore, the Box-
Attention requires a smaller number of FLOPs compared to
other attention mechanisms. We also report Box-Attention
without the where-to-attend module that adopts the reference
window but not the transformation functions (translation and
scaling). It can be seen in Table 1 that the where-to-attend
module contributes more than 2 points in all categories. This
shows the importance of translation and scaling functions in
learning to attend to the relevant region.
BoxeR-2D Ablation. As BoxeR-2D utilizes multi-scale
reference windows in its encoder for predicting object pro-
posals, these proposals serve as reference windows in the
decoder. In Table 2a, we evaluate the quality of our ob-
ject proposals by adding object proposal refinement in the
decoder layers. While such refinement proved beneficial
in [47], we observe more than 1 point drop in AP. This sug-
gests that when object proposals are generated by the BoxeR-
2D encoder with reference windows, they are sufficient for
the BoxeR-2D decoder to predict objects without the need

Vehicle Pedestrian Cyclist
AP↑ APH↑ AP↑ APH↑ AP↑ APH↑

Fr + multi-angle 70.4 70.0 64.7 53.5 50.2 48.9
w/o Fr 69.4 68.7 63.3 52.8 47.4 46.1
w/o multi-angle 70.0 69.3 64.7 53.7 48.2 47.0

Table 3. BoxeR-3D ablation on the Waymo val set (LEVEL 1
difficulty). Adding Fr gives better performance for detecting 3D
bounding boxes. Multi-angle reference windows further improve
results by taking advantage of an explicit angle prior.

for a refinement in each step (see Fig. 4). Our BoxeR-2D
is flexible, as we can easily plug Instance-Attention into its
decoder in order to predict both the object location and its
overlay. Table 2b shows BoxeR-2D benefits from multi-task
training (object detection and instance segmentation). Note
that this is not the case for DETR [1]. In our setting, the
multi-task training does not require more parameters except
for a small mask prediction head. The training is also stable
without any change in hyper-parameters.
BoxeR-3D Ablation. We ablate the effectiveness of our
BoxeR-3D design on 3D object detection in Table 3. The ta-
ble indicates the role of rotation transformation in the where-
to-attend module, which contributes more than 1 point in
all categories at the expense of a small amount of compu-
tation. Specifically, we found rotation transformation is
most effective when added to box-attention in the decoder
layers. Table 3 also shows the comparison between multi-
angle vs. single-angle reference window in the BoxeR-3D
encoder layers. Using a multi-angle reference window yields
an improvement for the vehicle and cyclist category, while
remaining stable for pedestrians. This suggests that each
head in multi-head attention is able to effectively capture the
information of different rotation angles.

6.3. Comparison with Existing Methods

2D Object Detection. Table 4 lists the performance of pre-
vious methods and BoxeR-2D using ResNet-50 and ResNet-
101 backbones. The first part contains convolution-based
object detectors while the second part focuses on transformer-
based methods. Across backbones BoxeR-2D achieves bet-
ter results on all metrics. Notably, BoxeR-2D outperforms
other methods in detecting small objects, with more than 2
APS points improvement compared to Deformable DETR.
In addition, our network is able to converge quickly with
the standard 3× schedule setting [43]. It is further worth

Figure 6. Qualitative results for instance detection and segmenta-
tion in the COCO 2017 test-dev set generated by BoxeR-2D
(More qualitative results are in the supplementary document).
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Method Backbone Epochs end-to-end AP↑ AP50↑ AP75↑ APS↑ APM↑ APL↑
Faster RCNN-FPN [31] R-101 36 7 36.2 59.1 39.0 18.2 39.0 48.2
ATSS [46] R-101 24 7 43.6 62.1 47.4 26.1 47.0 53.6
Sparse RCNN [37] X-101 36 3 46.9 66.3 51.2 28.6 49.2 58.7
VFNet [45] R-101 24 7 46.7 64.9 50.8 28.4 50.2 57.6
Deformable DETR [47] R-50 50 3 46.9 66.4 50.8 27.7 49.7 59.9
Deformable DETR [47] R-101 50 3 48.7 68.1 52.9 29.1 51.5 62.0
Dynamic DETR [4] R-50 50 3 47.2 65.9 51.1 28.6 49.3 59.1
TSP-RCNN [38] R-101 96 3 46.6 66.2 51.3 28.4 49.0 58.5
BoxeR-2D R-50 50 3 50.0 67.9 54.7 30.9 52.8 62.6
BoxeR-2D (3× schedule) R-50 36 3 49.9 68.0 54.4 30.9 52.6 62.5
BoxeR-2D (3× schedule) R-101 36 3 51.1 68.5 55.8 31.5 54.1 64.6

Table 4. Comparison of BoxeR-2D in object detection on the COCO 2017 test-dev set with various backbone networks. BoxeR-2D
outperforms other methods including transformer-based object detectors with a faster training schedule.

Epoch end-to-end AP↑ APS↑ APM↑ APL↑ APm↑ APm
S ↑ APm

M↑ APm
L↑

Mask R-CNN [11] 36 7 43.1 25.1 46.0 54.3 38.8 21.8 41.4 50.5
QueryInst [9] 36 7 48.1 - - - 42.8 24.6 45.0 55.5
SOLQ [6] 50 3 48.7 28.6 51.7 63.1 40.9 22.5 43.8 54.6
BoxeR-2D (3× schedule) 36 3 51.1 31.5 54.1 64.6 43.8 25.0 46.5 57.9

Table 5. Comparison of BoxeR-2D in instance segmentation on the COCO 2017 test-dev set using a R-101 backbone. BoxeR-2D
shows better results in both detection and instance segmentation.

to point out that BoxeR-2D trained with the 3× schedule
reaches competitive results.
2D Instance Segmentation. We compare BoxeR-2D with
other instance segmentation methods. In Table 5, the 3×
schedule is used in the training of our network. BoxeR-
2D improves on all of the metrics for bounding boxes and
instance masks against QueryInst [9]. Furthermore, our
method outperforms SOLQ [6], a transformer-based method,
by around 2 points on all categories. The visualization of the
BoxeR-2D prediction can be seen in Fig. 6.
3D Object Detection. Table 6 shows the performance of
BoxeR-3D and other 3D object detectors along with a naive
implementation of Deformable DETR [47] as our baseline.
It can be seen that BoxeR-3D consistently improves over the
baseline on all metrics, specially for small objects like pedes-
trians. Our network reaches a competitive result compared to
highly optimized methods in the vehicle category. However,
there is still a gap between BoxeR-3D and previous methods
in the pedestrian category. It should be noted that compared
to others we only use minimal prior knowledge per category.

7. Conclusion and Limitations

In this paper, we presented a transformer-based detector
for end-to-end object detection and instance segmentation
named BoxeR. The core of the network is the box-attention,
which is designed to attend to an image region by learning the
transformations from an initial reference window. Because
of its flexibility, BoxeR can perform both 2D and 3D end-
to-end object detection along with instance segmentation
without hand-crafted modules. Experiments on the COCO
and Waymo Open datasets confirm the effectiveness of the

end-to-end
Vehicle Pedestrian

AP↑ APH↑ AP↑ APH↑
PointPillar [18] 7 55.2 54.7 60.0 49.1
PV-RCNN [33] 7 65.4 64.8 - -
RSN S 1f [36] 7 63.0 62.6 65.4 60.7
Deformable DETR [47] 3 59.6 59.2 45.8 36.2
BoxeR-3D 3 63.9 63.7 61.5 53.7

Table 6. Comparison of BoxeR-3D in 3D object detection on the
Waymo Open val set (LEVEL 2 difficulty). Despite the lack of
any class-specific optimization, BoxeR-3D is surprisingly effective
and even competitive on the Vehicle category.

proposed architecture.
Similar to other transformer-based architectures, we ob-

served a larger memory footprint during the training of our
networks compared to convolution-based architectures such
as Faster R-CNN or Mask R-CNN. This results in the need of
more advanced GPUs and higher energy consumption. More-
over, under the same FLOPs, our box-attention is slower
than a convolution operation. The reasons may come from
the unordered memory access of the grid sampling in our
box-attention and the highly-optimized hardware and im-
plementation for the traditional convolution. We expect to
mitigate some of these problems with a more optimized
implementation.
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