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A SINGLE-QUBIT POSITION VERIFICATION PROTOCOL THAT IS SECURE

AGAINST MULTI-QUBIT ATTACKS1

ANDREAS BLUHM, MATTHIAS CHRISTANDL, AND FLORIAN SPEELMAN

The position of a device or agent is an important security credential in today’s
society, both online and in the real world. Unless in direct proximity, however, the
secure verification of a position is impossible without further assumptions. This is true
classically [1], but also in any future quantum-equipped communications infrastructure
[2]. We show in this work that minimal quantum resources, in the form of a single qubit,
combined with classical communication are sufficient to thwart quantum adversaries
that pretend to be at a specific position and have the ability to coordinate their action
with entanglement. More precisely, we show that the adversaries using an increasing
amount of entanglement can be combatted solely by increasing the number of classical
bits used in the protocol. The presented protocols are noise-robust and within reach
of current quantum technology.

The difficulty in achieving the verification of a position is best appreciated by considering certain
secure-looking protocols and then understanding how they can be broken. For simplicity of the
presentation we will consider the verification of the position of an untrusted agent being at midpoint
between two verifiers. A protocol for position verification consists of the verifiers each sending
messages to the agent who is asked to send responses back. The verification is successful if the
responses satisfy certain conditions and if the timing of the signals is right (say in accordance with
the speed of light) (see Figure 1).

A first attempt for a secure protocol could consist of a Boolean function f taking the message x
from verifier 0 and y (both n-bit strings) from verifier 1 as input and sending the bit f(x, y) back
to the verifiers. In order for the agent to return the correct answer, clearly (for most functions f)
both x and y are needed, but if the agent was not at midpoint but, say, closer to verifier 0, the
agent could never both receive y and send the answer back to verifier 1 in time. Indeed, breaking
the protocols entails not one attacking agent, but two, one of which is closer to verifier 0 and one
which is closer to verifier 1. Customarily called Alice and Bob, the attacking agents both intercept
the input from the verifier they are closest to. Each keeps a copy and forwards another copy of
the input to the other partner in crime. When they hold both inputs in hand, they compute the
function and return the function value just in time to their respective verifiers (see Figure 1).

This simple attack is indeed the basis of why position verification is not possible in the classical
world. Note, however, that the attack directly uses the copying of information. This opens up
the possibility of devising protocols based on the exchange of quantum information instead, whose
copying is more restricted due to the no-cloning theorem [3, 4]. As Alice and Bob can agree on
an attack strategy prior to the start of the protocol, however, they can also distribute entangled
particles in order to later coordinate their action. Still, has the balance now tipped and position
verification become possible? The plain answer is no [2], as Alice and Bob can immediately upon
receipt of the quantum particles engage in an elaborate scheme of back and forth teleportation
(with only a single round of crossing classical communication), known as instantaneous non-local
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Figure 1. Setup for PV in one spatial dimension (above) and classical
attack (below). The honest agent P is at position z, whereas the verifiers V0, V1
are to her left and right. For an attack, P is replaced by the attackers Alice and Bob,
which are not at z, but in between z and the verifiers. Upon receiving x ∈ {0, 1}n,
Alice copies the string and sends a copy on to Bob while Bob does the same with
y ∈ {0, 1}n. Both attackers compute the function f and send the result back to the
closest verifier. From the verifiers’ point of view, they are indistinguishable from an
honest prover P at z.

computation [5]. In a sense, this means ‘game over’ for position verification — if only the back
and forth teleportation was not so expensive (doubly exponentially many EPR pairs in terms of
the size of the protocol). This bound was brought down to singly exponential by use of port-based
teleportation instead of standard quantum teleportation [6]. Note that carrying out such attacks is
still prohibitively expensive for the attackers. Therefore, such attacks could be seen as unrealistic,
forcing us to ask again whether position verification is after all viable in the quantum world.

We give a partial answer to this question by showing that there are protocols that enhance the
above classical protocol by a single qubit and that withstand attacks involving roughly n qubits.
A specific efficient protocol can withstand attacks of log n qubits. Thereby, we obtain security of
position verification where the ratio of quantum resources required for the attack and of the honest
agent is unbounded.
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This is a qualitative improvement over prior work, which did show some level of security for an
n-qubit protocol inspired by the BB84 protocol [2, 6, 7, 8], but for which an attacker only needs
one EPR pair per qubit involved. Other previous works proposed new protocols [9, 10, 11, 12, 13],
sometimes with the same scaling as BB84 protocol, and sometimes without security proofs showing
how efficient the attacks can be; explicit efficient attacks can be constructed for several of these
[14, 15, 13, 16]. Complementary to our results are works that study other security models [17,
18, 19], and that introduce techniques to increase the robustness to photon loss [20, 21, 22]. For
the security analysis of a different protocol, see the recent independent work by Junge et al. [23];
we compare our results in Section 7 of the Supplementary Information. The routing protocol was
introduced by Kent et al. [3] and studied further by Buhrman et al. [14]. We build on the proof
strategy of the latter work.

We consider in this work two closely related protocols, which we will dub the ‘routing’ and
‘measuring’ protocols, which are direct enhancements of the classical protocols explained. The
protocols are thus specified by a Boolean function f on 2n bits. In addition to the verifiers choosing
random inputs x and y respectively, in both protocols verifier 0 will prepare a qubit chosen randomly
from one of the BB84 states: |0〉 , |1〉 , |+〉 , |−〉 and send it to the agent along with x. This could for
instance be a single polarized photon sent in free space. In the routing protocol, the agent is asked
to return the qubit unchanged to the verifier with number f(x, y). Concretely, if f(x, y) = 1, the
verifier could let the photon pass to verifier 1 and if f(x, y) = 0 use a mirror to reflect the photon
back to verifier 0. The verifier could then measure the qubit and check whether the measurement
result is consistent with the preparation. The protocol is illustrated in Figure 2. In the ‘measuring’
protocol, instead of routing the qubit, the agent is asked to measure in the |0〉 , |1〉 basis in case
f(x, y) = 0 and in the |+〉 , |−〉 basis if f(x, y) = 1 and to return the measurement result to both
verifiers. The protocol is illustrated in Figure 3.

In a sense, the only difference between the protocols is who carries out the measurement. It
turns out that our security arguments therefore only differ in a single place (for more information
see the methods section). As is familiar from the security analysis of quantum key distribution
protocols, the security analysis of the described prepare and measure protocols is equivalent to
their natural entanglement-based versions, which is preferred in formal arguments due to their
conceptual simplicity. Here, verifier 0 prepares an EPR pair and sends half of it to the agent and
holds on to the other half as a reference qubit. The protocol is otherwise unchanged and in order
for the verifier later to compare results, the verifier will measure the reference qubit.

Let us point out that the implementation of the protocols merely requires the honest parties to
be able to prepare and measure BB84 states, a task that is routinely carried out in the context
of quantum key distribution both in laboratories and commercially. Indeed, the least quantum-
technological requirements are demanded from the agent or the agent’s device in the routing pro-
tocol: namely to either to reflect a photon with a mirror or to measure it.

The routing protocol is even simpler than the measuring protocol in the sense that the honest
agent needs to perform no measurements. On the other hand, the reply of the agent in the mea-
suring protocol is completely classical, and here our security proof also applies to the setting where
quantum information travels slowly, meaning that only classical messages travel at the speed of
light. This requirement fits current technology better, where qubits are transmitted using fiber
optics. Thus, both protocols have their pros and cons and it depends on the desired application to
determine which one is better suited.

We can show that for an appropriate function f , both the routing and measuring protocol are
secure if the attackers do not hold more than n/2− 5 qubits each at the beginning of their attack,
when strings x and y of length n are sent by the verifiers. The most general form of the attacks is
depicted in Figure 4. Moreover, the protocols can be repeated sequentially to make the probability
that the attackers go unnoticed exponentially small. While we cannot give a concrete function f ,
we show that a uniformly random Boolean function will work with overwhelming probability.
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Moreover, we consider the effect of noise on both protocols. The noise in the setup causes the
honest agent not to succeed with certainty, but to fail with a 1% chance. In order to deal with the
noise, the verifiers will repeat the protocol sequentially a number of times and accept if the protocol
succeeds more than a fixed number of times. We can show that such protocols are still secure: An
honest prover is rejected with a probability exponentially small in the number of repetitions. On the
other hand, attackers controlling at most n/2−5 qubits at each round will succeed with probability
exponentially small in the number of repetitions. This noise robustness of the single qubit protocols
makes them interesting for near-term experimental implementations: for any reasonable bound on
the number of qubits, i.e., a standard quantum bounded-storage assumption in cryptography, we
have a secure protocol transmitting only a little more classical information as well as a single qubit
over a noisy communication line.

Finally, we give lower bounds for concrete functions f , based on their communication complexity.
For example, routing and measuring protocols using the inner product function are secure against
attackers with at most log(n)/2 − 5 qubits each. While these bounds for concrete functions are
exponentially worse than for random functions, they still exhibit the feature that the ratio of the
quantum resources the attackers need compared to the quantum resources an honest prover needs
is unbounded in the number of classical bits n involved in the protocol, something not achieved in
previous work. Furthermore, this also works in the presence of noise, hence providing us with a

V0 V1

P

V0 V1

x ∈ {0, 1}n

Q if f(x, y) = 1

time

position

qubit Q y ∈ {0, 1}n

Q if f(x, y) = 0

Figure 2. The routing protocol. In the protocol, the verifier V0 prepares a qubit
Q in one of the four BB84 states uniformly at random. Subsequently, V0 sends Q
together with a random n-bit string x to the agent P at position z and V1 sends
a random n-bit string y. All communication happens at the speed of light and the
timing is such that Q, x and y reach position z at the same time. Depending on
the outcome f(x, y) of a previously agreed upon Boolean function f on 2n bits, the
prover has to send the qubit Q received immediately to either verifier V0 or V1. The
qubit Q has to reach the verifiers on time, i.e. the time of arrival at Vf(x,y) has to be
consistent with Q being sent from z at the speed of light right after Q has reached z.
Straight lines correspond to classical information, while undulated lines correspond
to quantum information being sent.
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practical protocol that will provide security position verification under a quantum bounded storage
assumption. We therefore believe that our work provides a blue print to the near-term realiza-
tion of a new cryptographic primitive, which has the possibility to enhance our communication
infrastructure with verified location as an additional security token.

In order to understand the open questions emerging from this work, note that it is important
in our analysis of the random protocol that the Boolean function f we choose in order to run
the protocols has to be truly random. This implies that the classical circuit to compute f is of
exponential size in n. To decrease the classical resources needed for this protocol, it is therefore
highly relevant to know whether it is possible to use pseudo-randomness instead, or whether there
is another way to choose f with a circuit of polynomial size.

Finally, the most important open question is the following: When considering the dependence
on the number of classical bits n, our lower bound implies that a number of qubits proportional to
the number of classical bits sent by the verifiers is needed to attack the scheme. However, the best
construction for a general attack takes 2n EPR pairs [6, 14]. This leaves open the possibility that
it could be even harder for attackers to break the security. Can we improve the lower bound to be
exponential in n?

V0 V1

P

V0 V1

x ∈ {0, 1}n

b ∈ {0, 1}

time

qubit Q y ∈ {0, 1}n

b ∈ {0, 1}

position

Figure 3. The measuring protocol. In the protocol, the verifiers V0 and V1
choose two random bit strings x, y of length n. If f(x, y) = 0, V0 prepares a qubit
Q in one of the computational basis states with equal probability, otherwise, V0
prepares Q in one of the Hadamard basis states. Then, V0 sends Q and x to P , V1
sends y, and the timing is such that Q, x and y reach position z at the same time.
If f(x, y) = 0, the prover measures Q in the computational basis, otherwise in the
Hadamard basis. The outcome bit b of the measurement is subsequently sent back
to both verifiers. It has to reach the verifiers on time, i.e. the time of arrival of b
has to be consistent with b being sent from z at the speed of light right after Q has
reached z. Straight lines correspond to classical information, while undulated lines
correspond to quantum information being sent.
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Alice Bob

A Ã Ac x Bc B̃ By

A Ã Bc x, y Ac B̃ Bx, y

Ux V y

Lxy{Σxy, I − Σxy}Kxy {Πxy, I −Πxy}

time

Figure 4. Attack strategies for the routing and the measuring protocol.
The parts in black are the same for both protocols, while cyan belongs to the routing
protocol and brown to the measuring protocol. Straight lines correspond to clas-
sical information, while undulated lines correspond to quantum information being
sent. We assume that Alice and Bob each have a qubit system A and B, respec-
tively. Moreover, Alice and Bob have local quantum registers Ã and B̃. Due to the
constraints imposed by special relativity, Alice and Bob are allowed one round of
quantum communication, during which they can exchange systems Ac and Bc. We
assume that both Alice and Bob have the same number of qubits. At the beginning
of the protocol, Alice intercepts x and stores the qubit Q in A, while Bob intercepts
y. The most general attacks are as follows: (1) Alice applies Ux on AÃAc, Bob

applies V y to BB̃Bc. (2) Alice sends Ac and x to Bob, Bob sends Bc and y to Alice.

Routing protocol: (3) Alice applies Kxy on AÃBc and Bob applies Lxy on BB̃Ac.
(4) If f(x, y) = 0, Alice returns A to verifier V0, if f(x, y) = 1, Bob returns B to

verifier V1. Measuring protocol: (3) Alice measures {Πxy, I−Πxy} on AÃBc and

Bob measures {Σxy, I − Σxy} on BB̃Ac. (4) Alice sends her measurement outcome
to verifier 0, Bob sends his measurement outcome to verifier 1. Here, we take all
operators to be unitaries and the superscript indicates which classical strings the
unitaries might depend on.

Methods

To prove our main result, we build on the proof strategy used in [14], overcoming both conceptual
and technical difficulties. For simplicity, we will describe the security proof of the routing protocol
first and comment on the differences for the measuring protocol at the end of the section. First, we
observe that the joint quantum state of the attackers before their mutual communication arrives
already suffices to determine where the qubit will be routed to in the given attack. We subsequently
discretize the possible quantum strategies of the attackers with the help of ε-nets. Since the number
of qubits of the attackers is bounded, the size of the ε-nets is limited. From there, we construct
classical rounding functions which capture the essentials of the quantum strategies. In particular,
an (ε, q)-classical rounding gives rise to a Boolean function for each attack Alice and Bob could
do controlling at most q qubits each. These functions agree with the Boolean function f used in
the routing protocol on all pairs of classical bit strings (x, y) on which the attackers succeed with
probability at least 1 − ε2. In this sense, the classical rounding captures the information where
the qubit is routed to during an attack. The ε-net construction shows that for ε small enough and
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q ∈ N, there exists an (ε, q)-classical rounding of size exponential in q. For the exact definition of
an (ε, q)-classical rounding and the details of the proofs, we refer the reader to the Supplementary
Information (see Section 3 for the routing protocol and Section 4 for the measuring protocol).

A counting argument that compares the number of (ε, q)-classical roundings to the number
of Boolean functions f (on 2n bits) used to define the protocol then shows that most Boolean
functions are far from any functions produced from classical roundings. More precisely, we show
that for q ≤ n/2 − 5, there exists a function f : {0, 1}2n → {0, 1} that agrees with any function
produced from the (ε, q)-classical rounding constructed previously on less than 3/4 of the possible
input pairs (x, y). Moreover, a uniformly random function f has this property with probability at
least 1− 2−2n .

Picking f as above, the main result can then be proven by contradiction from the properties
of an (ε, q)-classical rounding. Indeed, the counting argument implies that attackers controlling
at most n/2 − 5 qubits each have to be detected with probability greater than ε2 on at least 1/4
of all possible pairs of bit strings (x, y). This shows that cheaters will be detected with constant
probability for a random function.

For the measuring protocol, we can show that similarly the attackers have to decide in which
basis to measure the qubit Q already before their mutual communication. The argument is based
on an entropic uncertainty relation relative to quantum side information [24, 25]. The rest of the
proof proceeds as for the routing protocol.

To obtain lower bounds for concrete functions, we consider the distributional communication
complexity in the simultaneous message passing model. Here, Alice and Bob receive inputs x and y
and send each a message of equal length to a referee. The latter is supposed to compute the value of
the function with probability at least 3/4 if the inputs are drawn from the uniform distribution. The
aforementioned communication complexity is the number of bits Alice (or Bob) has to send. We
prove that the routing and the measuring protocols are secure for a function with communication
complexity at least k against attackers that control at most log(k)/2 − 3 qubits each. The key
insight is that any (ε, q)-classical rounding can be converted into a protocol in the communication
complexity setting. Since successful attack strategies lead to (ε, q)-classical roundings, the number
of qubits q of the attackers cannot be too small, since otherwise very efficient communication
protocols would exist, contradicting the lower bound on the communication complexity.
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Supplementary material

1. Main results

In this supplementary material, we provide proofs for all results mentioned in the main text. In
particular, we prove the following theorems, which are our main results:

Our first result is that the routing protocol P̃ V
f

route is secure if Alice and Bob control less than
n/2− 5 qubits, where 2n classical bits are being sent.

Theorem 1.1. Let n ≥ 10. Let us assume that the verifiers choose the bit strings x, y of length n
uniformly at random. Then there exists a function f : {0, 1}2n → {0, 1} with the property that, if
the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
n− 5,

the attackers are caught during P̃ V
f

route with probability at least 2 · 10−2. Moreover, a uniformly
random function f will have this property (except with exponentially small probability).

Theorem 1.1 follows from Corollary 3.18 in this supplementary material. Already in the original
publication of Kent, Munro, and Spiller [1] which proposed the routing protocol, it was shown that
it is possible to attack this scheme if attackers share 2n EPR pairs. Buhrman, Fehr, Schaffner, and
Speelman [2] studied this class of protocols further, introducing the garden-hose model of commu-
nication complexity, which captures attacks relying on teleportation, and showed that an attack
exists on the routing protocol using at most GH(f) EPR pairs. Here, GH(f) is the garden-hose
complexity of the function f , a measure which is at most polynomial if the function is computable
by a log-space Turing machine, but is exponential for a random function.

Our second result is that the measuring protocol PV f
meas is also secure if Alice and Bob control

less than n/2− 5 qubits, where 2n classical bits are being sent.

Theorem 1.2. Let n ≥ 10. Let us assume that the verifiers choose the bit strings x, y of length n
uniformly at random. Then there exists a function f : {0, 1}2n → {0, 1} with the property that, if
the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
n− 5,

the attackers are caught during PV f
meas with probability at least 2 · 10−2. Moreover, a uniformly

random function f will have this property (except with exponentially small probability).

Theorem 1.2 follows from Theorem 4.10. The results of [2] can be adapted to construct attacks

on PV f
meas for which the entanglement required is given by the garden-hose complexity of f (a

measure that is polynomial for log-space functions, but can be exponential in general). Thus, a

general attack on PV f
meas is possible when attackers share 2n EPR pairs for any function f . As

an aside, we do note that, despite the fact that these specific attacks can be translated, we do

not know in general whether an attack on PV f
route can be translated into an attack on PV f

meas or
vice-versa.

Finally, we consider concrete instead of random functions f . In particular, for the binary inner
product function

(1) IP (x, y) =

n∑

i=1

xiyi (mod 2) ,

we can prove the following:
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Theorem 1.3. Let n ≥ 10. Let us assume that the verifiers choose the bit strings x, y of length n
uniformly at random. If the number q of qubits each of the attackers controls satisfies

q ≤ 1

2
log n− 5,

the attackers are caught during P̃ V
IP

route and PV IP
meas with probability at least 2 · 10−2, respectively.

The statement follows from Theorem 6.2. The supplementary material is organized as follows:
Section 2 contains some preliminaries concerning communication matrices and the purified distance
between quantum states. Our results concerning the routing protocol appear in Section 3. Sub-
sequently, we consider the measuring protocol in Section 4, before we prove both protocols to be
noise robust in Section 5. Lower bounds for concrete instead of random functions for both protocols
are proven in Section 6. In Section 7 we discuss the importance of the attack model in results on
quantum position verification and compare our results to previous and independent work. Finally,
we conclude in Section 8 with some technical results which are needed in the proofs.

2. Preliminaries

2.1. Communication matrix. Let dH : {0, 1}n × {0, 1}n → N be the Hamming distance. Let us
define for a, n ∈ N,

V (n, a) =
a∑

l=0

(
n

l

)
.

That is the cardinality of the ball of Hamming distance a. Let λ ∈ (0, 1/2) be such that λn ∈ N.
In [3, p.310], we find the useful bound

(2) V (n, λn) ≤ 2nh(λ),

where h(p) := −p log p− (1− p) log(1− p) is the binary entropy function. The function log will be
the logarithm with respect to base 2 in this paper.

Let f : {0, 1}n × {0, 1}n → {0, 1}. The communication matrix of f is defined as

(Mf )x,y = f(x, y).

It is thus a 2n × 2n matrix. The Hamming distance dH(Mf ,Mg) therefore tells you, for how many
pairs of bit strings (x, y) the value g(x, y) differs from f(x, y). Note that here we interpret Mf , Mg

as strings of length 22n.

2.2. Fidelity and purified distance. Let us define the fidelity between two quantum states as

(3) F (ρ, σ) := tr

[√√
σρ

√
σ

]
.

In particular, F (|ψ〉 , |ϕ〉) = | 〈ψ|ϕ〉 |. Here, we write F (|ψ〉 , |ϕ〉) for pure states |ψ〉, |ϕ〉 to mean
F (|ψ〉〈ψ| , |ϕ〉〈ϕ|) for brevity. Note that sometimes the fidelity is defined as the square of (3). The
fidelity can be used to define the purified distance on the set of density matrices [4, Definition 3.8].
For quantum states ρ, σ, it is defined as

P(ρ, σ) :=
√

1− F (ρ, σ)2.

Again, we often write P(|ψ〉 , |ϕ〉) for pure states |ψ〉, |ϕ〉 instead of P(|ψ〉〈ψ| , |ϕ〉〈ϕ|). Unlike the
fidelity, the purified distance is a metric on the set of states, which makes it easier to work with
(see e.g. [4, Proposition 3.3]). In particular, it satisfies the triangle ineguality.
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3. The qubit routing protocol

3.1. Qubit routing. Let f : {0, 1}2n → {0, 1}. We consider PV in one spatial dimension. We will
start by considering a modified version of the routing protocol which uses a maximally entangled
pair. Our main result will follow by realizing in Section 3.3 that the entangled and unentangled
qubit routing protocols are essentially equivalent. The general setup for the entangled qubit routing

protocol PV f
route is the following: The prover P claims to be at position z on a line. To the left

and right of z are the verifiers V0 and V1. All communication happens at the speed of light. The

protocol PV f
route considered in [2] is the following (see Figure 2 of that paper):

(1) V0 randomly chooses two n-bit strings x, y, computes f(x, y) and sends y on to V1. Moreover,
V0 prepares a maximally entangled 2-qubit state |Ω〉 = 1√

2
(|00〉 + |11〉). If f(x, y) = 0, V0

does nothing, if f(x, y) = 1, V0 sends one qubit R of |Ω〉 to V1.
(2) V0 sends the other qubit Q of |Ω〉 together with x to P . V1 sends y such that it arrives at

z at the same time as x and Q sent by V0.
(3) P sends the qubit Q on to Vf(x,y).
(4) V0 and V1 accept if the qubit arrives at the correct time at the correct verifier and a Bell

measurement of both qubits yields the correct outcome.

The timing of the response from P is deemed correct if it is compatible with the qubit Q originating
from z right after it reached that point. An illustration of the protocol can be found in Figure 2 in
the main text.

The advantage of this protocol compared to others is that the honest prover only needs to handle
one qubit. Note that this qubit could even be presented as a logical qubit in an error-correcting
code to combat noise in the communication line. Since the protocol only requires routing this qubit
and no further processing of it, any error correcting code (even without fault-tolerant properties) is
fine. Errors in creating the qubit states and verifying it on the side of the verifiers, however, need
to be carried out in a fault-tolerant manner.

We will now give the form of the most general attack on PV f
route . Note that we can restrict our

attention to unitaries by considering the Stinespring dilation of the quantum channels the attackers
might wish to perform. There are two attackers Alice and Bob, where Alice is between V0 and z
and Bob is between z and V1. However, neither of the attackers is actually at z. As explained in
Section 1, the verifiers hold a qubit system R, while Alice holds a qubit system A, a local quantum
system Ã and a quantum system used for communication Ac. Bob has similar systems B, B̃ and
Bc.

Definition 3.1 (q-qubit strategy for PV f
route ). Fix a partition into systems RAÃAcBB̃Bc. Both

Alice’s and Bob’s registers each consist of q qubits. Let d be the combined dimension of this sys-

tem, therefore d = 22q+1. A q-qubit strategy for PV f
route consists of the starting state |ψ〉 on

RAÃAcBB̃Bc and of unitaries Ux
AÃAc

, V y

BB̃Bc
, Kxy

AÃBc
and Lxy

BB̃Ac
for all x, y ∈ {0, 1}n. The su-

perscripts indicate whether the unitaries may depend on the message x that V0 sends, the message
y that V1 sends or on both messages.

Note that Alice and Bob only hold equally many qubits at the beginning of the strategy, after the
communication phase the numbers can be different. An illustration of the above can be found in
Figure 4 in the main text.

Remark 3.2. From the description of the protocol, it is clear that we only need consider strategies
for which |ψ〉 = |Ω〉AR ⊗ |ψ′〉ÃAcBB̃Bc

to prove the protocol secure. However, it is advantageous to

consider more general starting states: In reality, photon signals over fiber travel at around (2/3)c,
where c is the speed of light, while we want to allow our attackers to signal at speed c. If our proof
can quantify over all pre-shared states between RAÃAcBB̃Bc, then conceptually the input message
can be ‘slow’. We could even imagine the state being available long before the protocol, with Alice
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and Bob distributing the state amongst themselves however they want. The input timing is then
only on the classical messages. Alternatively, they could start computing locally before the classical
messages x and y are available. All these scenarios lead to a starting state not of the form |Ω〉⊗|ψ′〉,
which is why considering general states |ψ〉 within the q-qubit strategies for PV f

route only makes the
security notion stronger.

Remark 3.3. It can easily be seen that shared randomness between Alice and Bob does not help
them for a fixed function f . Indeed, if ρ is the reduced state at the end of the protocol on RA if
f(x, y) = 0 or RB if f(x, y) = 1, the probability that Alice and Bob are not caught by the verifiers is
〈Ω| ρ |Ω〉. Note that the objective function 〈Ω| ρ |Ω〉 is linear in ρ and the partial trace is a linear map.
Thus, the maximum over convex combinations of strategies is achieved at deterministic strategies
{Ux, V y,Kxy, Lxy}xy.

The main lower-bound result of [2] concerning the entangled qubit routing protocol PV f
route is the

following:

Theorem 3.4 ([2, Theorem E.4]). Let q, n ∈ N. For any q-qubit starting state |ψ〉 on RAÃAcBB̃Bc,

there exists a Boolean function on inputs x, y ∈ {0, 1}n such that any perfect attack on PV f
route re-

quires q to be linear in n.

On the one hand, this theorem proves that PV f
route is secure in some sense if the number of qubits

the attackers control is at most linear in n. On the other hand, it has several features which make

it unsuitable to derive any limits for actual attacks on the PV f
route -scheme from it. Firstly, it only

discusses perfect attacks, while actual attackers would still be practically successful if they have
a small probability of being caught. Secondly, the theorem fixes the state before quantifying over
the functions, while actual attackers would be able to choose their entanglement after knowing the
function f . This can be interpreted as a violation of Kerkhoffs’s principle, since the function f must
not be known to the attackers beforehand. Finally, the theorem only shows that there exist an input
pair x, y for which the attackers will be detectable, but does not say anything about how many
such pairs exist, leaving the possibility that these pairs might only be asked with exponentially
small probability. These severe drawbacks make Theorem 3.4 unsuitable for practical applications.

The aim of this work is therefore to improve upon Theorem 3.4 and to provide a version that
solves all three problems, thus recovering the statement under a more realistic class of attacks.

3.2. Lower bounds on the entangled qubit routing protocol. We start our analysis of the
entangled qubit routing protocol by defining an (ε, l)-perfect q-qubit strategy as one which has
a high chance of being accepted by the verifiers at the end of the protocol. In [2], only perfect
strategies were considered, i.e. ε = 0, l = 22n. Moreover, we want to allow that the attackers only
succeed on l of the 22n pairs of bit strings (x, y) that the verifiers might send.

Definition 3.5 ((ε, l)-perfect q-qubit strategy for PV f
route ). Let ε > 0, l ∈ N. A q-qubit strategy

for PV f
route as in Definition 3.1 is (ε, l)-perfect if on l pairs of strings (x, y), Alice and Bob are

caught by the verifiers with probability at most ε2.

Remark 3.6. Note that Alice and Bob are caught by the verfiers on input (x, y) with probability

at most ε2 if and only if Alice and Bob produce a state |ψ̃〉 at the end of the protocol such that
P(ρRA, |Ω〉〈Ω|RA) ≤ ε if f(x, y) = 0 and P(ρRB , |Ω〉〈Ω|RB) ≤ ε if f(x, y) = 1, where ρ is the

corresponding reduced state of |ψ̃〉.
The following proposition relates the above definition to the purified distance with respect to the

state |ψ̃〉 as in [2, Appendix E]. It is a direct consequence of Uhlmann’s theorem [5, Theorem 3.22].
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Proposition 3.7. For a state |ψ̃〉RAÃAcBB̃Bc
, it holds that

inf
|ϕ〉

P(|ψ̃〉RAÃAcBB̃Bc
, |Ω〉RA ⊗ |ϕ〉ÃAcBB̃Bc

) = P(ρRA, |Ω〉〈Ω|RA)

and
inf
|ϕ〉

P(|ψ̃〉RAÃAcBB̃Bc
, |Ω〉RB ⊗ |ϕ〉AÃAcB̃Bc

) = P(ρRB , |Ω〉〈Ω|RB),

where ρRA and ρRB are the corresponding reduced density matrices of |ψ̃〉RAÃAcBB̃Bc
.

Before we go on, we define the sets of states from which the routed qubit can be recovered by
attacker Alice or Bob, to be returned to V0 or V1 respectively. Note that we will always write AX

instead AX ⊗ IXc for ease of notation, where X is a system with complement Xc, A an operator
and I the identity operator.

Definition 3.8. Let ε ∈ [0, 1]. We define Sε,route
0 as the set of states |ϕ〉RAÃAcBB̃Bc

for which

there exists a unitary KAÃBc
such that P(ρRA, |Ω〉〈Ω|RA) ≤ ε, where ρ is the reduced state of K |ϕ〉.

Moreover, we define Sε,route
1 as the set of states |ϕ′〉RAÃAcBB̃Bc

for which there exists a unitary

LBB̃Ac
such that P(ρ′RB , |Ω〉〈Ω|RB) ≤ ε, where ρ′ is the reduced state of L |ϕ′〉.

Now, we consider a state that can be used to reveal the qubit at V0 in the last step of a q-qubit
strategy and a state that can be used to reveal the qubit at V1 in the last step of the strategy. We
prove a proposition which formalizes the idea that these two such states have to differ by at least a
certain amount. This shows that the sets we just defined are disjoint if we choose ε small enough.
This proposition can be seen as a robust version of [2, Lemma E.1].

Proposition 3.9. Let 0 ≤ ε ≤ 0.41 and let |ψ0〉RAÃAcBB̃Bc
∈ Sε,route

0 , |ψ1〉RAÃAcBB̃Bc
∈ Sε,route

1 .
Then,

P(|ψ0〉 , |ψ1〉) > 0.046.

Proof. By the definition of the sets in Definition 3.8, there exist unitaries KAÃBc
and LBB̃Ac

such

that P(ρ0, |Ω〉〈Ω|RA) ≤ ε and P(ρ1, |Ω〉〈Ω|RB) ≤ ε for ρ0 the reduced state on RA of KAÃBc
|ψ0〉,

ρ1 the reduced state on RB of LBB̃Ac
|ψ1〉. By Proposition 3.7 and compactness, we can find states

|ϕ0〉ÃAcBB̃Bc
and |ϕ1〉AÃAcB̃Bc

such that

P(KAÃBc
|ψ0〉RAÃAcBB̃Bc

, |Ω〉RA ⊗ |ϕ0〉ÃAcBB̃Bc
) = P(ρ0, |Ω〉〈Ω|RA),

P(LBB̃Ac
|ψ1〉RAÃAcBB̃Bc

, |Ω〉RB ⊗ |ϕ1〉AÃAcB̃Bc
) = P(ρ1, |Ω〉〈Ω|RB).

Applying the triangle inequality twice and using the fact that P(U |ϕ〉 , U |ψ〉) = P(|ϕ〉 , |ψ〉) for
any unitary U and any states |ϕ〉, |ψ〉, we obtain

P(|ψ0〉 , |ψ1〉) ≥ P(K∗ |Ω〉 ⊗ |ϕ0〉 , L∗ |Ω〉 ⊗ |ϕ1〉)−P(K |ψ0〉 , |Ω〉 ⊗ |ϕ0〉)− P(L |ψ1〉 , |Ω〉 ⊗ |ϕ1〉).
We can estimate the last two terms on the right hand side as

P(K |ψ0〉 , |Ω〉 ⊗ |ϕ0〉) ≤ ε,

P(L |ψ1〉 , |Ω〉 ⊗ |ϕ1〉) ≤ ε.

These inequalities hold by assumption. By the computations of [2, Lemma E.1] (repeated as Lemma
8.1 for completeness), we can estimate the first term as

P(K∗ |Ω〉 ⊗ |ϕ0〉 , L∗ |Ω〉 ⊗ |ϕ1〉) ≥
√
3

2
.

Thus,

P(|ψ0〉 , |ψ1〉) ≥
√
3

2
− 2ε

and the assertion follows using the assumption ε ≤ 0.41. �
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We will need a final easy lemma to convert between Euclidean distance and purified distance. It
is a direct consequence of the fact that 1− x2 = (1− x)(1 + x) ≤ 2(1 − x) for x ∈ [0, 1].

Lemma 3.10. Let |x〉, |y〉 ∈ Cd be two unit vectors. Then,

P(|x〉 , |y〉) ≤ ‖ |x〉 − |y〉 ‖2.
We observe that Proposition 3.9 implies that the attackers in some sense already decide before

their communication step where the qubit can end up at the end of the protocol. Therefore, if the
dimension of the state they share is small enough, a classical description of the first part of their
strategy yields a compression of f . The classical compression is captured in the following notion of
classical roundings:

Definition 3.11 ((ε, q)-classical rounding). Let q, k, n ∈ N, ε > 0. Then,

g : {0, 1}3k → {0, 1}
is an (ε, q)-classical rounding of size k if for all f : {0, 1}2n → {0, 1}, for all states |ψ〉 on

2q + 1 qubits, for all l ∈ {1, . . . , 22n} and for all (ε, l)-perfect q-qubit strategies for PV f
route ,

there are functions fA : {0, 1}n → {0, 1}k, fB : {0, 1}n → {0, 1}k and λ ∈ {0, 1}k such that
g(fA(x), fB(y), λ) = f(x, y) on at least l pairs (x, y).

The function f̃ defined as

(4) f̃(x, y) := g(fA(x), fB(y), λ) ∀x, y ∈ {0, 1}n

in a classical rounding hence measures how good the q-qubit strategy Alice and Bob use performs
for the qubit routing specified by the function f . For example, if the strategy is an (ε, 22n)-perfect

q-qubit strategy, then f = f̃ .
Since the following statement holds for both the routing and the measure protocol, which we

consider in the next section, we prove it here for both protocols, although the sets Sε,meas
i are only

defined in Definition 4.4.

Lemma 3.12. Let # ∈ {route,meas}, q ∈ N. Furthermore, let 0 ≤ ε ≤ ε0, where ε0 is such that

|ϕi〉 ∈ Sε,#
i , i ∈ {1, 2} implies P(|ϕ0〉 , |ϕ1〉) > 0.013. Then, there is an (ε, q)-classical rounding of

size log(927)22q+2.

Proof. We consider δ = 0.00216. Let us choose a δ-net NS in Euclidean norm for the set of pure
states on 2q+1 qubits, where the net has cardinality at most 2k. Likewise, let us choose δ-nets NA

and NB in operator norm for the set of unitaries in dimension 2q, where the nets have cardinalities
at most 2k each. We will show at the end of the proof that we can choose k as in the assertion.

Let us now construct the (ε, d)-classical rounding g as in Definition 3.11. Let x′ ∈ {0, 1}k ,
y′ ∈ {0, 1}k and λ ∈ {0, 1}k and let U ∈ NA be the element with index x′, V ∈ NB be the
element with index y′ and |ϕ〉 ∈ NS be the element with index λ. Then, we define g(x′, y′, λ) = 0

if UAÃAc
⊗ VBB̃Bc

|ϕ〉 is closer to Sε,#
0 than to Sε,#

1 in purified distance and g(x′, y′, λ) = 1 if

UAÃAc
⊗ VBB̃Bc

|ϕ〉 is closer to Sε,#
1 than to Sε,#

0 in purified distance. If neither is the case, we

make the arbitrary choice g(x′, y′, λ) = 1. Since the assumption on ε0 implies that Sε,#
0 ∩Sε,#

1 = ∅,
this is a well-defined function.

It remains to show that g is indeed an (ε, q)-classical rounding. We consider an arbitrary f :
{0, 1}2n → {0, 1} and an arbitrary state on 2q + 1 qubits |ψ〉. Let |ψ〉 and {Ux, V y}xy be from

a q-qubit strategy for PV f
#. We choose λ as the index of the closest element from NS to |ψ〉 in

Euclidean norm. Moreover, we choose fA(x) to be the closest element from NA to Ux in operator
norm and fB(y) to be the closest element from NB to V y in operator norm. If the closest element

is not unique, we make an arbitrary choice. We claim that if Ux ⊗ V y |ψ〉 ∈ Sε,#
0 , then U ⊗ V |ϕ〉
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is closer to Sε,#
0 than to Sε,#

1 , where (U, V, |ϕ〉) are the elements from the nets corresponding to
(fA(x), fB(y), λ). In particular, we will show that for δ as chosen above,

(5) P(Ux ⊗ V y |ψ〉 , U ⊗ V |ϕ〉) < 0.0065.

Since P(|ψ0〉 , |ψ1〉) > 0.013 for |ψ0〉 ∈ Sε,#
0 and |ψ1〉 ∈ Sε,#

1 , the claim then follows by the triangle
inequality for the purified distance. Thus, we now prove (5). Let ∆A := Ux − U , ∆B := V y − V
and |∆S〉 = |ψ〉 − |ϕ〉. Note that ‖∆A‖∞ ≤ δ, ‖∆B‖∞ ≤ δ and ‖ |∆S〉 ‖2 ≤ δ. Indeed, using
Lemma 3.10,

P(Ux ⊗ V y |ψ〉 , U ⊗ V |ϕ〉) ≤ ‖Ux ⊗ V y |ψ〉 − U ⊗ V |ϕ〉 ‖2
≤ ‖(U +∆A)⊗ (V +∆B)(|ϕ〉 + |∆S〉)− U ⊗ V |ϕ〉 ‖2
≤ 3δ + 3δ2 + δ3.

In the last line, we have used the triangle inequality together with ‖X⊗Y |η〉 ‖2 ≤ ‖X‖∞‖Y ‖∞‖ |η〉 ‖2.
For δ = 0.00216, we can compute 3δ + 3δ2 + δ3 < 0.0065 and (5) follows.

Finally, consider an (ε, l)-perfect strategy for PV f
# and let (x, y) be such that the attack-

ers are caught with probability at most ε2. Without loss of generality, let (x, y) be such that

f(x, y) = 0. Then, it holds in particular that Ux ⊗ V y |ψ〉 ∈ Sε,#
0 . Thus, using (5), it follows

that g(fA(x), fB(y), λ) = f(x, y) on such a pair (x, y). Since there are at least l pairs (x, y) which
achieve low detection probability for an (ε, l)-perfect q-qubit strategy, g(fA(x), fB(y), λ) = f(x, y)
on at least l pairs (x, y). Hence, g is an (ε, q)-classical rounding.

In order to conclude the proof, we must estimate k. Lemma 9.5 of [6] implies that NA, NB, NS

can be chosen to have cardinality at most

|NA| ≤ (927)2
2q+1

, |NB| ≤ (927)2
2q+1

and |NS | ≤ (927)2
2q+2

.

Taking the logarithm, the desired bounds on the size of the classical rounding follow. �

The next statement says that if we fix a number of qubits q and an error ε, the attackers will
get a large fraction of the inputs (x, y) wrong in any q-qubit strategy if we choose f to be random
and if the number of qubits of the state |ψ〉 in the strategy is not too large.

Lemma 3.13. Let ε ∈ [0, 1] n, k, q ∈ N, n ≥ 10. Moreover, fix an (ε, q)-classical rounding g of
size k with k = log(927)22q+2. Let

q ≤ 1

2
n− 5.

Then, a uniformly random f : {0, 1}2n → {0, 1} fulfills the following with probability at least
1 − 2−2n : For any fA : {0, 1}n → {0, 1}k, fB : {0, 1}n → {0, 1}k, λ ∈ {0, 1}k, the equality
g(fA(x), fB(y), λ) = f(x, y) holds on less than 3/4 of all pairs (x, y).

Proof. Let f̃ be as in (4). Definition 3.11 states that given q ∈ N and ε > 0, the number of

functions f̃ that Alice and Bob can implement only depends on the number of choices for fA, fB,
λ (since g is fixed given ε and q). Thus, for an (ε, q)-classical rounding of size k ∈ N, they can

implement 2(2
n+1+1)k possible functions. Therefore, we want to estimate the probability that for

a randomly chosen f , we can find fA and fB such that the corresponding function f̃ lies within
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Hamming distance 1/4 · 22n of f . Hence,

P(f : ∃fA, fB , λ s.t. dH(Mf ,Mf̃ ) ≤ 22n−2)

=
|{f : ∃fA, fB , λ s.t. dH(Mf ,Mf̃ ) ≤ 22n−2}|

|{f : {0, 1}2n → {0, 1}}|

≤ |{f : ∃fA, fB , λ s.t. f = f̃}| · |V (22n, 22n−2)|
|{f : {0, 1}2n → {0, 1}}|

≤ 2(2
n+1+1)k22

2nh(1/4)2−22n

For the first equality, we use the fact that the function f is drawn uniformly at random. For
the first inequality, we estimate the numerator by considering a ball in Hamming distance around
every function f̃ we can express by suitable fA, fB , λ. In the last line, we have used (2). Using
k = log(927)22q+2 and q ≤ n/2 − 5, we infer that P(f : ∃fA, fB , λ s.t. dH(Mf ,Mf̃ ) ≤ 22n−2) is

strictly bounded from above by 2−2n . �

In Lemma 3.13, we have shown that for any state |ψ〉, a random function f has large Hamming

distance to any f̃ if the dimension of the state is small enough. In particular, this means that any
(ε, 3/4 · 22n)-perfect q-qubit strategy needs a number of qubits which is linear in the number of
classical bits. The following proposition makes this precise.

Proposition 3.14. Let 0 ≤ ε ≤ 0.41 and n ≥ 10, q, n ∈ N. Then, a uniformly random function
f : {0, 1}2n → {0, 1} has the following property with probability at least 1− 2−2n : Any (ε, 34 · 22n)-
perfect q-qubit strategy for PV f

route requires

(6) q >
1

2
n− 5,

where |ψ〉 is a state on 2q + 1 qubits.

Proof. We prove the statement by contradiction. Let g be the (ε, q)-classical rounding of size k,
where k = log(927)22q+2, which is guaranteed to exist by Proposition 3.9 and Lemma 3.12. Assume
that q ≤ 1

2n − 5. Pick a function f : {0, 1}2n → {0, 1} such that for any fA : {0, 1}n → {0, 1}k ,
fB : {0, 1}n → {0, 1}k , λ ∈ {0, 1}k and f̃ as in (4), the equality f(x, y) = f̃(x, y) holds on less
than 3/4 of all pairs (x, y). By Lemma 3.13, a uniformly random f will have this property with
probability at least 1− 2−2n .

Let |ψ〉 be a state on 2q+1 qubits and assume that there is a (ε, 34 · 22n)-perfect q-qubit strategy
for PV f

route . Then, the corresponding fA, fB , λ satisfy g(fA(x), fB(y), λ) = f(x, y) on at least
3
4 · 22n pairs (x, y). However, this is a contradiction to the choice of f . �

Finally, we can rephrase the previous theorem as a statement about the probability that Alice
and Bob are caught by the verifiers.

Theorem 3.15. Let f : {0, 1}2n → {0, 1}, n ≥ 10 and let

q ≤ 1

2
n− 5.

Let us assume that the verifiers choose a function f uniformly at random before the protocol and
that they choose x, y uniformly at random during the protocol. Moreover, let us assume that Alice
and Bob control at most q qubits each at the beginning of the protocol. Then, the attackers are

caught during PV f
route with probability at least 4 · 10−2.

Proof. Let 0 < ε ≤ 0.41. By Proposition 3.14, with probability at least 1− 2−2n the function f is

such that there are no (ε, 3/4 ·22n)-perfect q-qubit strategies for PV f
route . That means that for any

strategy Alice and Bob can implement with their state, on a fraction at least 1/4 of the possible bit
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strings (x, y), the final reduced state will be at least ε away in purified distance from the maximally
entangled state.

That means, that the measurement {|Ω〉〈Ω| , I4 − |Ω〉〈Ω|} on such an input pair catches them
cheating with probability at least

1− F (ρ, |Ω〉〈Ω|)2 > ε2.

Multiplying all these probabilities and using that n ≥ 10, we obtain the bound in the assertion. �

In order to increase the probability with which the attackers are caught, it is possible to repeat
the protocol sequentially several times, as the following proposition shows. It is important to note
that Alice and Bob are not allowed to go to z, the position of the honest prover, during the time
the protocol runs. The implicit assumption of PBC is that z is in some secure zone like a bank, for
example, that attackers do not have access to.

Proposition 3.16. Let f : {0, 1}2n → {0, 1}, n ≥ 10, r, q, n ∈ N and let

q ≤ 1

2
n− 5.

Let us assume that the verifiers choose a function f uniformly at random at the beginning and that

they run the protocol PV f
route sequentially r-times, choosing x, y uniformly at random each time.

Moreover, let us assume that Alice and Bob control at most q qubits each at the beginning of each

iteration of PV f
route . Then, the attackers are caught with probability at least 1− 0.96r.

Proof. Let Xi ∈ {0, 1} be random variables where i ∈ {1, . . . , r}. We set Xi = 0 if the attackers
are detected in round i and Xi = 1 if they are not detected. First, we observe that Theorem 3.15
still holds if the state Alice and Bob share is mixed, because it is equivalent to a random mixture
of pure states. Thus, the strategy for a mixed state is a random mixture of strategies for pure
states. By Remark 3.3, shared randomness does not increase the probability of the attackers to
avoid detecion. Between the repetitions, it can happen that the state Alice and Bob share depends
on previous iterations. However, the qubit of the maximally entangled pair at the beginning of
each round is uncorrelated with that state and the pair (x, y) in each round does not depend
on previous rounds. Moreover, the attackers are assumed to control at most q qubits at the
beginning of each round. Thus, the probability that the attackers are not detected is at most
P(Xi = 1|Xi−1 = xi−1, . . . ,X1 = x1) ≤ 0.96 for any i ∈ {1, . . . , r} by Theorem 3.15. Since there
are r rounds, the probability to escape detection in all rounds is

P(Xr = 1, . . . ,X1 = 1) =

r∏

i=1

P(Xi = 1|Xi−1 = 1, . . . ,X1 = 1) ≤ 0.96r .

This proves the assertion. �

3.3. The qubit routing protocol. For ease of analysis, we have been considering a protocol where
the verifiers hold a reference qubit, but an almost-equivalent protocol exists where the verifiers only
need to store classical information. This is the qubit routing protocol considered in the main text.
Let |±〉 = 1√

2
(|0〉 ± |1〉). As known from the context of the BB84 protocol [7], we can replace the

final measurement {|Ω〉〈Ω| , I4 − |Ω〉〈Ω|} by the following measurement: With probability 1
2 each,

measure either {|++〉〈++|+ |−−〉〈−−| , I4 − (|++〉〈++|+ |−−〉〈−−|)} or {|00〉〈00|+ |11〉〈11| , I4 −
(|00〉〈00| + |11〉〈11|)}. We denote this measurement by M2. Let us therefore consider the slightly

altered protocol P̃ V
f

route :

(1) V0 chooses an n-bit string x uniformly at random, V1 chooses an n-bit string y uniformly
at random. Moreover, V0 prepares one of the states |0〉, |1〉, |+〉, |−〉 uniformly at random.
Let this state be the qubit Q.
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(2) V0 sends qubit Q together with x to P . V1 sends y such that it arrives at z at the same
time as x and Q sent by V0.

(3) P sends the qubit Q on to Vf(x,y).
(4) If Q was |0〉 or |1〉 at step (1), Vf(x,y) measures Q in the computational basis. Otherwise,

Vf(x,y) measures Q in the Hadamard basis. V0 and V1 accept if the qubit arrives at the
correct time at the correct verifier and if the measurement returns the outcome consistent
with the state of Q at step (1).

The following proposition implies that PV f
route and P̃ V

f

route are essentially equivalent.

Proposition 3.17. Let p ∈ [0, 1]. If the attackers are caught with probability at least p during

PV f
route , then the attackers are caught with probability at least 1

2p during P̃ V
f

route . Conversely, if

the attackers are caught with probability at least p during P̃ V
f

route , they are caught with probability

at least p during PV f
route .

Proof. We begin by noting that preparing |0〉, |1〉, |+〉, |−〉 with equal probability is equivalent to
preparing |Ω〉 and measuring one qubit R with probability 1/2 in the computational basis and with
probability 1/2 in the Hadamard basis. Moreover, the other qubit Q is measured in the same basis

in step (4) and any action on R during PV f
route commutes with all the operations the honest prover

or the attackers can do. Thus, P̃ V
f

route is equivalent to PV f
route except for the final measurement,

which is M2 instead of {|Ω〉〈Ω| , I4− |Ω〉〈Ω|}. Hence, the assertions follow from Proposition 8.2. �

In particular, P̃ V
f

route is secure for an adequate function f since PV f
route is. Indeed, the following

corollary is an immediate consequence of Propositions 3.16 and 3.17:

Corollary 3.18. Let f : {0, 1}2n → {0, 1}, n ≥ 10, r, q, n ∈ N and let

q ≤ 1

2
n− 5.

Let us assume that the verifiers choose a function f uniformly at random at the beginning and that

they run the protocol P̃ V
f

route sequentially r-times, choosing x, y uniformly at random each time.
Moreover, let us assume that Alice and Bob control at most q qubits each at the beginning of each

iteration of P̃ V
f

route . Then, the attackers are caught with probability at least 1− 0.98r.

4. The measuring protocol

4.1. The measuring protocol. In this section, we consider the measuring protocol. It turns out
that we can prove similar security guarantees as for the qubit routing protocol, using essentially
the same proof techniques. For the sake of analysis, we consider again a modified protocol in which
V0 sends half of an EPR pair, and measures the other half in the correct basis at the end of the
protocol. In this case, the modified protocol is completely equivalent to the original and we will

refer to both as PV f
meas . For a Boolean function f on 2n classical bits, n ∈ N, the modified protocol

is defined as follows:

(1) V0 randomly chooses two n-bit strings x, y, computes f(x, y) and sends y on to V1. Moreover,
V0 prepares a maximally entangled 2-qubit state |Ω〉 = 1√

2
(|00〉+ |11〉).

(2) V0 sends one qubit Q of |Ω〉 together with x to P . V1 sends y such that it arrives at z at
the same time as x and Q sent by V0.

(3) P measures Q in the computational basis if f(x, y) = 0 and in the Hadamard basis if
f(x, y) = 1. Subsequently, P broadcasts the measurement outcome b ∈ {0, 1} to both V0
and V1.
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(4) V0 and V1 accept if the classical bit b arrives at the correct time and if a measurement
on their qubit (in the computational basis if f(x, y) = 0 and in the Hadamard basis if
f(x, y) = 1) yields the outcome b.

The timing of the response from P is deemed correct if it is compatible with bit b originating from
z right after the qubit Q reached that point. An illustration of the protocol can be found in Figure
3 in the main text.

Now, we define attack strategies for the protocol.

Definition 4.1 (q-qubit strategy for PV f
meas ). Fix a partition into systems RAÃAcBB̃Bc. Both

Alice’s and Bob’s registers each consist of q qubits. Let d be the combined dimension of this sys-

tem, therefore d = 22q+1. A q-qubit strategy for PV f
meas consists of the starting state |ψ〉 on

RAÃAcBB̃Bc, unitaries U
x
AÃAc

, V y

BB̃Bc
, and Alice’s and Bob’s local two-outcome POVMs {Πxy

AÃBc
,

I − Πxy

AÃBc
} and {Σxy

BB̃Ac
, I − Σxy

BB̃Ac
}, for all x, y ∈ {0, 1}n. The superscripts indicate whether

the operators may depend on the message x that V0 sends, the message y that V1 sends, or on both
messages.

See Figure 4 in the main text for an illustration. We interpret the strategy as follows: First Alice
applies U as a function of x and Bob applies V as function of y. Then, Alice and Bob exchange
registers Ac and Bc. Finally, Alice (with full knowledge of both x and y) measures her local registers
using a POVM given by {Π, I − Π}, responding to V0 with her outcome. Similarly, Bob measures
his local registers using {Σ, I−Σ} to determine his response to V1. Any unitary on Alice’s or Bob’s
side after the communication phase, which may depend on x, y, can be absorbed into the POVMs.
The same holds for any classical post-processing. The definition of an (ε, l)-perfect q-qubit strategy

is the same as for PV f
route :

Definition 4.2 ((ε, l)-perfect q-qubit strategy for PV f
meas ). Let ε > 0, l ∈ N. A q-qubit strategy

for PV f
meas as in Definition 3.1 is (ε, l)-perfect if on l pairs of strings (x, y), Alice and Bob are

caught by the verifiers with probability at most ε2.

4.2. Lower bounds. Our main task is to find a proposition which plays the role of Proposition
3.9. We will use entropic uncertainty relations to achieve this task.

Buhrman et al. [8] used an entropic uncertainty principle called the strong complementary in-
formation tradeoff (CIT) from [9, 10] to bound the attack probability on the basic BB84 quantum
PV scheme against unentangled attackers. The following version is also used in [8, Theorem 2.4],
where we have relabeled registers and instantiated with n = 1.

Theorem 4.3 (CIT). Let |ψREF 〉 ∈ HR⊗HE⊗HF be an arbitrary tri-partite state, where HR = C
2.

Let the hybrid state ρZEF be obtained by measuring R in basis θ ∈ {0, 1}, and let the hybrid state
σZEF be obtained by measuring R (of the original state |ψREF 〉) in the complementary basis θ̄.
Then, using conditional quantum entropy,

H(ρZE|E) +H(σZF |F ) ≥ 1.

We start by defining sets of states from which, if they arise after the communication phase, the
attackers can successfully attack the protocol.

Definition 4.4. Let ε ∈ [0, 1]. We define Sε,meas
0 as the set of states |ϕ〉RAÃAcBB̃Bc

such that

there exists a measurement on AÃBc and a measurement on BB̃Ac which each allow to guess
the outcome of a measurement performed on R in the computational basis with probability at least
1 − ε2. Moreover, we define Sε,meas

1 as the set of states |ϕ′〉RAÃAcBB̃Bc
such that there exists a

measurement on AÃBc and a measurement on BB̃Ac which each allow to guess the outcome of a
measurement performed on R in the Hadamard basis with probability at least 1− ε2.
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Now, note that having a successful attack on PV f
meas for some x, y implies that the corresponding

entropy is low:

Lemma 4.5. Let ε ∈ [0, 1] and let δ = h(ε2). Let |ϕ0〉RAÃAcBB̃Bc
∈ Sε,meas

0 and |ϕ1〉RAÃAcBB̃Bc
∈

Sε,meas
1 . Moreover, let ρZAÃAcBB̃Bc

be the state that results after measuring register R of |ϕ0〉 in

the computational basis and σZAÃAcBB̃Bc
the state that results after measuring register R of |ϕ1〉

in the Hadamard basis. Then H(ρZAÃBc
|AÃBc) ≤ δ and H(ρZBB̃Ac

|BB̃Ac) ≤ δ. Likewise, we find

that H(σZAÃBc
|AÃBc) ≤ δ and H(σZBB̃Ac

|BB̃Ac) ≤ δ.

Proof. First consider |ϕ0〉 and Alice’s registers AÃBc. Abusing notation slightly, we denote by Z
the random variable obtained by measuring register R of |ϕ0〉 in the computational basis, thus
transforming |ϕ0〉 into ρZAÃAcBB̃Bc

. Let W be the random variable denoting Alice’s outcome of

the POVM measurement on local registers AÃBc which allows to guess Z. This measurement is
guaranteed to exist from the definition of Sε,meas

0 in Definition 4.4. It transforms ρZAÃAcBB̃Bc
into

ρZWAcBB̃ . For a probability of error P(Z 6=W ) ≤ ε2, by Fano’s inequality it holds that H(Z|W ) ≤
h(ε2). Since we have that H(ρZAÃBc

|AÃBc) ≤ H(Z|W ) by the data processing inequality for the
relative entropy, applied to the mutual information, the statement follows directly. The other three
cases can be shown analogously. �

To proceed, we need to recall the continuity of conditional quantum entropy:

Proposition 4.6. Let R be such that dimR = 2, and let the dimensions of the systems E, F be
arbitrary. If P(ρREF , σREF ) ≤ 0.013, then |H(ρRE |E)−H(σRE |E)| ≤ 0.127.

Proof. Let ∆ = 0.013. The purified distance is an upper bound on the trace distance 1
2‖·‖1, see

e.g. [4, Lemma 3.17]. Thus, 1
2‖ρRE − σRE‖1 ≤ ∆, where we have used data-processing for the

trace distance. The assertion follows then from the Alicki-Fannes-Winter inequality [11, Lemma
2], which yields

|H(ρRE |E)−H(σRE |E)| ≤ 2∆ + (1 + ∆)h

(
1

1 + ∆

)
.

The assertion follows inserting the numerical value for ∆. �

To show security, we can follow a similar strategy as for the entangled routing protocol. A key
result is the following proposition:

Lemma 4.7. Let δ ≤ h[(0.3)2]. Moreover, let |ϕ0〉RAÃAcBB̃Bc
be such that H(ρ0

ZAÃBc
|AÃBc) ≤ δ,

where ρ0
ZAÃAcBB̃Bc

is the state resulting from measuring the R register of |ϕ0〉 in the computational

basis. Similarly, let |ϕ1〉RAÃAcBB̃Bc
be such that H(σ1

ZBB̃Ac
|BB̃Ac) ≤ δ, where σ1

ZAÃAcBB̃Ac
is the

state resulting from measuring the R register of |ϕ1〉 in the Hadamard basis. Then,

P(|ϕ0〉 , |ϕ1〉) > 0.013.

Proof. Define σ0
ZAÃAcBB̃Bc

analogously to ρ0
ZAÃAcBB̃Bc

, except that the R register of |ϕ0〉 is mea-

sured in the Hadamard basis instead of the computational basis. Then, we can fill in the CIT state-
ment Theorem 4.3 to obtain the inequality we combine with our assumption of H(ρ0

ZAÃBc
|AÃBc) ≤

δ to get

H(σ0
ZBB̃Ac

|BB̃Ac) ≥ 1− δ .

Recall now that we assumed H(σ1
ZBB̃Ac

|BB̃Ac) ≤ δ and that therefore

|H(σ0
ZBB̃Ac

|BB̃Ac)−H(σ1
ZBB̃Ac

|BB̃Ac)| ≥ 1− 2δ > 0.127 .
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By the contrapositive of Proposition 4.6, this implies

P(σ0
ZBB̃Ac

, σ1
ZBB̃Ac

) > 0.013 .

Recall σ0
ZBB̃Ac

was obtained from |ϕ0〉 by tracing out AÃBc and measuring R in the Hadamard

basis. Similarly, σ1
ZBB̃Ac

was obtained by applying precisely the same operation to |ϕ1〉. Therefore,
the lower bound on the distance P(σ0

ZBB̃Ac
, σ1

ZBB̃Ac
) implies the same lower bound for P(|ϕ0〉 , |ϕ1〉).

This follows from data-processing for the fidelity (e.g. [4, Proposition 3.2]). �

Now we are ready to state our replacement for Proposition 3.9.

Proposition 4.8. Let 0 ≤ ε ≤ 0.3 and let |ϕ0〉RAÃAcBB̃Bc
∈ Sε,meas

0 , |ϕ1〉RAÃAcBB̃Bc
∈ Sε,meas

1 .
Then,

P(|ϕ0〉 , |ϕ1〉) > 0.013.

Proof. This follows from combining Lemma 4.5 and Lemma 4.7. �

We can now proceed to proving security of the measuring protocol.

Proposition 4.9. Let 0 ≤ ε ≤ 0.3 and n ≥ 10, q, n ∈ N. Then, a uniformly random function
f : {0, 1}2n → {0, 1} has the following property with probability at least 1− 2−2n : Any (ε, 34 · 22n)-
perfect q-qubit strategy for PV f

meas requires

q >
1

2
n− 5,

where |ψ〉 is a state on 2q + 1 qubits.

Proof. The statement follows from Proposition 4.8, Lemma 3.12 and Lemma 3.13 in the same way
as in the proof of Proposition 3.14. �

Theorem 4.10. Let f : {0, 1}2n → {0, 1}, n ≥ 10, r, q, n ∈ N and let

q ≤ 1

2
n− 5.

Let us assume that the verifiers choose a function f uniformly at random at the beginning and that

they run the protocol PV f
meas sequentially r-times, choosing x, y uniformly at random each time.

Moreover, let us assume that Alice and Bob control at most q qubits each at the beginning of each

iteration of PV f
meas . Then, the attackers are caught with probability at least 1− 0.98r.

Proof. The assertion follows from Proposition 4.9 along the lines of the proofs of Theorem 3.15 and
Proposition 3.16. �

Remark 4.11. Note that PV f
meas would still be secure if we replaced the requirement that the honest

prover needs to send the bit b to both verifiers at the end of the protocol by requiring that P sends
b only to Vf(x,y). This can be seen from the proof of Lemma 4.7.

5. Resistance to noise

Finally, we consider the effect of noise on P̃ V
f

route and PV
f
meas . Let us now assume that the noise

in the experiment causes the honest prover to be rejected with probability at most η. In order to
deal with the noise, the verifiers will repeat the protocol independently r-times and accept if the

individual rounds accept more than 0.996(1 − η)r times. We will call such protocols PV f
noisy,#(r)

with noise level η, where # ∈ {route,meas}. The next theorem shows that such protocols are still
secure.
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Theorem 5.1. Let r, q, n ∈ N, n ≥ 10, 0 ≤ η ≤ 10−2. Assume that a function f : {0, 1}2n → {0, 1}
is chosen uniformly at random. Then, an honest prover succeeds in PV f

noisy,#(r) with noise level η

with probability at least

1− cr,

where # ∈ {route,meas}. Attackers controlling at most q ≤ 1
2n − 5 qubits each round will succeed

with probability at most

c′r,

where c, c′ < 1 are universal constants. In particular, we can choose c = c′ = exp
(
−8 · 10−6

)
.

Proof. Let Xi be random variables which are 1 if the honest prover succeeds at round i and 0 if

she fails. Let X :=
∑r

i=1Xi. Then, the probability that the honest prover succeeds at PV f
noisy,#(r)

with noise level η is P[X > 0.996(1 − η)r]. Since in each round the honest prover accepts with
probability at least 0.99, this implies that P(Xi = 1|Xi−1 = xi−1, . . . ,X1 = x1) ≥ 0.99 for any
xj ∈ {0, 1}, j ∈ {1, . . . , r}.

Let X ′
i be i.i.d. random variables which are 1 with probability 0.99 and 0 with probability 10−2.

Let X ′ =
∑r

i=1X
′
i. Then, the probability that the honest prover succeeds can be bounded using

the random variable X ′ as P[X ′ > 0.996(1 − η)r] by Lemma 8.3. We estimate

P[X ′ > 0.996(1 − η)r] = 1− P[X ′ ≤ 0.996(1 − η)r]

≥ 1− e−
r(1−η)16·10−6

2 ,

where we have used the Chernoff bound. Inserting the bound on η, the first assertion follows.
Likewise, let Yi be a random variable which is 1 if the attackers succeed in round i and 0 if

they do not, i ∈ {1, . . . r}. Let Y =
∑r

i=1 Yi. Then, the probability that the attackers succeed is
P[Y > 0.996(1−η)r]. Using the same argument as in Proposition 3.16, Corollary 3.18 and Theorem
4.10, respectively, yields that P(Yi = 1|Yi−1 = yi−1, . . . , Y1 = y1) ≤ 0.98 for any yj ∈ {0, 1},
j ∈ {1, . . . , r}.

Moreover, let Y ′
i be i.i.d. random variables which are 1 with probability 0.98 and 0 with prob-

ability 2 · 10−2. Additionally, let Y ′ =
∑r

i=1 Y
′
i . Then, by Lemma 8.3, the probability that the

attackers succeed is at most P[Y ′ > 0.996(1−η)r]. Let us define η′ = 2 ·10−2. Solving the equation

0.996(1 − η) = (1 + δ′)(1 − η′)

for δ′, we obtain δ′ ≥ 0.99 · 996
980 − 1 > 0. We make a similar estimate as before,

P[Y ′ > 0.996(1 − η)r] = P[Y ′ > (1 + δ′)(1− η′)r]

≤ e−
r(1−η′)(δ′)2

3 ,

where we have used the Chernoff bound again. Inserting the expressions for η′ and bounding
δ′ ≥ 5 · 10−3, the second assertion follows. �

6. Lower bound for concrete functions

In this section, we will finally consider concrete functions f instead of uniformly random ones

and prove that P̃ V
f

route and PV
f
meas are still secure against bounded attackers, although the bounds

are weaker than for random functions f . The proofs use a connection of classical roundings to the
communication complexity of f .

Let us fix some function f : {0, 1}n × {0, 1}n → {0, 1}. We define D1,µ
ε (f) as the one-way

distributional communication complexity of the function f under some distribution µ (see [12,
Definition 3.19] for the (two-way) distributional communication complexity Dµ

ε (f)). This represents
the amount of (classical) bits Alice needs to send for Bob in a deterministic protocol, for Bob to be
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able to compute f(x, y) correctly with probability 1− ε, where the probability is taken over (x, y)
pairs drawn from the input distribution µ.

Similarly, let D
‖,µ
ε (f) be the distributional communication complexity of a function f in the

simultaneous message passing (SMP) model. Here Alice and Bob both are allowed to send a single
message to a third party, the referee, who has to output the function value given these messages.
We take the distributional communication complexity in the SMP model as the length of the longest
message, not the sum of the length of both messages. Several lower bounds for this model are given

for D1,µ
ε (f), but it’s easy to see that D

‖,µ
ε (f) ≥ D1,µ

ε (f).
In the other lower bounds of this work, we have restricted our analysis to the case of a uniform

distribution over the input pairs. The following analysis holds for any input distribution, but for
simplicity we will only consider the uniform distribution. Let u denote the uniform distribution
over all pairs of n-bit strings (where n will be clear from context). For example, for the inner

product function (1), we have that D1,u
1/2−ε(IP ) ≥ n/2 − log(1/ε) − 1 [12, Example 3.29], since

Dµ
ε (f) ≤ D1,µ

ε (f) + 1.

By using the classical roundings developed for PV f
route and PV

f
meas, we can show that for a wide

range of explicit functions, the attackers need to manipulate a number of qubits that is logarithmic
in the number of bits n. This bound is exponentially worse than the one we obtain for random
functions f , but already holds for explicitly-defined easily-computable functions, such as the inner-
product function1. So, for an explicit easily-computable function, the ratio of entanglement that
attackers need also grows unboundedly with the classical information involved (but with a worse
bound on the dependence of the number of classical bits n than we obtained for a random function),
while the honest parties only need to manipulate a single qubit.

This can be viewed as a robust version of [2, Theorem E.3], which showed that perfect attacks
on any injective function (which were effectively functions with maximal deterministic one-way
communication complexity) need at least Ω(log(n)) qubits.

Proposition 6.1. Let ε ≤ ε0, where ε0 is chosen according to the requirements of Lemma 3.12.

Moreover, let f be such that D
‖,u
1/4(f) ≥ k, where u is the uniform distribution. Then there exists

no (ε, 34 · 22n)-perfect q-qubit strategy for either PV f
meas or PV

f
route , with

log(927)22q+2 < k ,

implying no such strategy exists for

q ≤ 1

2
log k − 3 .

Proof. We prove the statement by contradiction: Any assumed strategy on a low number of qubits
can be directly converted into a classical communication protocol for solving f . The only required
observation is that the classical compression of f that we get as a result of Lemma 3.12 not only
encodes a full description of the function f , but its parts can also be evaluated on specific x and y
to get a communication protocol for f in the required simple form.

Assume, for a contradiction, that a (ε, 34 ·22n)-perfect q-qubit strategy exists. Then, Lemma 3.12

implies the existence of an (ε, q)-classical rounding of f of size k = log(927)22q+2. Therefore, by
Definition 3.11, there exists a function g : {0, 1}3k → {0, 1}, functions fA : {0, 1}n → {0, 1}k ,
fB : {0, 1}n → {0, 1}k, and a constant λ ∈ {0, 1}k such that for at least 3

4 of the input pairs (x, y)
it holds that

f(x, y) = g(fA(x), fB(y), λ) .

Given that the function f and the strategy are known beforehand, all parties can precompute these
objects in the communication complexity setting.

1Recall that for the example of the inner-product function, it is not hard to construct an attack that uses n EPR
pairs [2].
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The simultaneous-message passing protocol now simply proceeds as follows: Alice sends the k-bit
string s = fA(x) to the referee, and Bob sends the k-bit string t = fB(y). The referee computes
g(s, t, λ) and outputs this as function value. �

Theorem 6.2. Let f be such that D
‖,u
1/4(f) ≥ k, where u is the uniform distribution, and let

q ≤ 1

2
log k − 3.

If x, y are chosen uniformly at random during the protocols, then attackers controlling at most q

qubits each are detected during P̃ V
f

route and PV f
meas with probabilities at least 2 · 10−2, respectively.

Proof. Using Proposition 6.1, this follows from Propositions 3.9 and 4.8 in a similar way as Theorem
3.15. �

For the inner product function, this implies Theorem 1.3.

Remark 6.3. Replacing the upper bound on q by q ≤ 1
2 log k− 3 for f be such that D

‖,u
1/4(f) ≥ k in

Proposition 3.16, Theorem 4.10 and Theorem 5.1, we can derive the corresponding statements on
repetition and noise robustness for a concrete function by following the exact same proof strategies.

Moreover, we could consider P̃ V
f

route instead of PV f
route , decreasing the detection probability by a

factor 1/2.

7. Attack model and comparison to previous work

When analyzing protocols for quantum PV in a resource-bounded setting, care has to be taken
with respect to what is counted exactly. A fair comparison will involve weighing the resources
required of an honest party compared to those of the attackers, proving hopefully that any attack
is much harder to perform than executing the protocol. Which resources are important, and how
to weigh them, is not trivial and there are several choices to be made in how to count the resources
involved. These choices include:

• Do we only count quantum information manipulated by the attackers and the honest parties,
or do we also quantify classical information?

• Do we look at the size of all quantum resources required, or do we just want to limit the
pre-shared state of the attackers?

• Do we allow quantum communication between the attackers, or do we assume this com-
munication to be classical and subsume these messages in the entanglement by way of
teleportation?

• Would it be possible to bound the resources using something else than the number of qubits,
such as entanglement entropy?

How the strength of attack resource lower bounds should be interpreted, depends on which choices
are made here.

In this work, we only count the quantum information: x and y are distributed amongst the
attackers for free2, and we bound the total number of qubits each of the attackers utilize.

Counting in such a way, Theorems 1.1 and 1.2 imply that the amount of quantum resources used
by the attackers is unbounded3 as a function of the quantum information manipulated by the honest
party. Indeed, our bounds show that the number of qubits manipulated by the attackers grows
linearly as the amount of classical information grows while the honest party only manipulates a
single qubit.

2I.e., the first step of the attack lets Alice see x and Bob see y, and after the messages are exchanged both attackers
know (x, y).

3This comparison is at most exponential if all information is counted, via the attack of Beigi and König [13], but
has no a-priori bound if classical communication is considered free.
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Note that there still is a gap between the best known attack (needing 2n EPR pairs, for an
honest protocol with n classical bits and one single qubit) and our lower bounds, when we look at
how the requirement itself grows as function of n. This gap is not evident when only looking at
how the respective quantum requirements relate as a function of each other.

The choices made in the attack model also influence the comparison to other results. The
independent recent work by Junge, Kubicki, Palazuelos, and Pérez-Garćıa [14] uses an attack
model which is very close to ours. The authors do not count classical communication either, but
only compare the quantum resources needed by the honest prover compared to the attackers. In
the case that the honest prover has to manipulate quantum systems with 2 log n qubits, the authors
can show that the attackers need a quantum system of Ω(nα) qubits for some α > 0, provided that
the attack being used is smooth. The classical information that the honest prover has to manipulate
during this protocol is n2 bits. The smoothness requirement covers all known attacks. Furthermore,
the authors put forward a conjecture in Banach space theory that, if true, would allow to remove
the smoothness assumption, and give evidence for it.

When only comparing quantum resources, our bounds are stronger in the sense that while the
ratio of quantum resources in [14] is exponential, the ratio in the qubit routing and measuring
protocols is unbounded. The trade-off between the classical information sent and the number of
qubits needed by the attackers is similar in all cases. On the other hand, [14] establishes the link to
geometric functional analysis, which could allow to tackle the ultimate goal, i.e., showing that the
quantum resources the attackers need are exponential in all the resources the honest party needs.

When it comes to previous protocols for quantum PV, the best studied is the BB84-type protocol
[1, 15, 8, 13, 16, 17], which was the inspiration for our measuring protocol. All the bounds for this
protocol are linear in the sense that the honest prover needs to manipulate n qubits while the
attackers need Ω(n) qubits to break the protocol. The improvement of [16] over [13] is that only
single qubit measurements are necessary. Our routing protocol is simpler in the sense that the honest
party only needs to route one qubit instead of measuring n qubits separately. On the other hand,
the BB84-type protocol needs the honest prover to send back merely classical information, whereas
the qubit routing protocol requires to send back quantum information. The measuring protocol
remedies this fact while the honest prover still needs to manipulate a single qubit. However, the
detection probability of attackers can be made arbitrarily large using parallel repetition of the
BB84-type protocol as shown in [16], while we can increase the probability in both our protocols
only through sequential repetition.

An essential difference with respect to the proof technique is that [13] showed that bounds on
the success probability of the attackers without entanglement can be lifted to bound the success
probability with pre-shared entanglement. In our case, this technique no longer works and we have
to resort to different methods.

Finally, [18] also proves linear lower bounds for protocols based on non-local quantum computa-
tion (the BB84-type protocol is of the same type). However, the authors bound the entanglement
entropy of the attackers instead of the dimension of their quantum systems. As a downside, their
attack model does not allow for quantum communication of the attackers. For the BB84-type
protocol, the latter restriction was removed in [16] compared to [13] (but again present in the
assumptions of [17]).

8. Technical results

First, we restate and prove [2, Lemma E.1] in order to make the main argument self-contained.
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Lemma 8.1. Let |ψ0〉, |ψ1〉 be states on RAÃAcBB̃Bc and such that there are unitaries KAÃBc
,

LBB̃Ac
and states |ϕ0〉ÃAcBB̃Bc

, |ϕ1〉AÃAcB̃Bc
which satisfy

KAÃBc
|ψ0〉RAÃAcBB̃Bc

= |Ω〉RA ⊗ |ϕ0〉ÃAcBB̃Bc

LBB̃Ac
|ψ1〉RAÃAcBB̃Bc

= |Ω〉RB ⊗ |ϕ1〉AÃAcB̃Bc
.

Then,

|〈ψ0|ψ1〉| ≤
1

2
.

Proof. Note that K and L commute. We find that

|〈ψ0|ψ1〉| = | 〈Ω|RA ⊗ 〈ϕ0|L∗K |Ω〉RB ⊗ |ϕ1〉 |
= | 〈Ω|RA ⊗ 〈ϕ′

0| |Ω〉RB ⊗ |ϕ′
1〉 |,

where |ϕ′
0〉ÃAcBB̃Bc

= LBB̃Ac
|ϕ0〉ÃAcBB̃Bc

and |ϕ′
1〉AÃAcB̃Bc

= KAÃBc
|ϕ1〉AÃAcB̃Bc

. Now,

〈Ω|RA |Ω〉RB =
1

2
(|0〉B 〈0|A + |1〉B 〈1|A)

Note that |0〉B 〈0|A + |1〉B 〈1|A is a unitary operator from A to B, which transfers a qubit from A
to B. Writing

|ϕ′′
1〉ÃAcBB̃Bc

= (|0〉B 〈0|A + |1〉B 〈1|A) |ϕ′
1〉AÃAcB̃Bc

,

we infer

|〈ψ0|ψ1〉| =
1

2
|〈ϕ′

0|ϕ′′
1〉|

≤ 1

2
,

since both |ϕ′
0〉 and |ϕ′′

1〉 are states on ÃAcBB̃Bc. �

We now show that the measurement of the verifiers at the end of PV f
route can be replaced by

a measurement implemented via local measurements and classical post-processing which performs
almost as good. This implies in particular that the verifiers need not store their qubit until the end
of the protocol but can measure it right away. This fact is well-known in the context of the BB84
protocol [7]. We give a proof here for convenience.

We compare the two measurement procedures for some state ρ on C
2 ⊗ C

2.

• M1: Measure {|Ω〉〈Ω| , I4 − |Ω〉〈Ω|}
• M2: With probability 1

2 each, either measure each qubit in the computational or Hadamard
basis and check whether the measurement outcomes are equal. In other words, measure
either {|++〉〈++| + |−−〉〈−−| , I4 − (|++〉〈++| + |−−〉〈−−|)} or {|00〉〈00| + |11〉〈11| , I4 −
(|00〉〈00|+ |11〉〈11|)}, where the choice is uniformly random.

The two measurements are equivalent in the following sense:

Proposition 8.2. Let ρ be a quantum state on two qubits and let δ > 0.

(1) If M1 accepts with probability at least 1− δ, then M2 accepts with probability at least 1− δ.
(2) If M2 accepts with probability at least 1− δ, then M1 accepts with probability at least 1−2δ.

Proof. Let

|ϕ1〉 :=
1√
2
(|01〉+ |10〉) and |ϕ2〉 :=

1√
2
(|00〉 − |11〉).

It can be verified that

|Ω〉 = 1√
2
(|++〉+ |−−〉) and |ϕ1〉 =

1√
2
(|++〉 − |−−〉).
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Thus, |++〉〈++| + |−−〉〈−−| = |Ω〉〈Ω| + |ϕ1〉〈ϕ1|. Likewise, |00〉〈00| + |11〉〈11| = |Ω〉〈Ω| + |ϕ2〉〈ϕ2|
and |Ω〉, |ϕ1〉, |ϕ2〉 are orthogonal.

Let pΩ = 〈Ω| ρ |Ω〉 and pi = 〈ϕi| ρ |ϕi〉 for i ∈ {1, 2}. Then, the probability that M1 accepts is
pΩ, whereas the probability that M2 accepts is pΩ + 1

2p1 +
1
2p2. Thus, the first assertion follows

straightforwardly. For the second assertion, note that

pΩ + p1 + p2 ≤ 1,

since the corresponding states are orthogonal. Thus, rearranging this inequality and combining it
with the assumption that M2 accepts with probability at least 1− δ,

1

2
+

1

2
pΩ ≥ 1− δ.

The second assertion thus follows by rearranging the inequality. �

We conclude with a small lemma concerning discrete-time stochastic processes.

Lemma 8.3. Let t ∈ R, r ∈ N, Y :=
∑r

i=1 Yi, where Y1, . . . , Yr is a discrete-time stochastic process,
and Yi ∈ {0, 1}. Let p ∈ [0, 1] and Y ′ =

∑r
i=1 Y

′
i , where Y

′
i := 1 with probability p and Y ′

i = 0 with
probability 1− p. It holds that

(1) If p(Yi = 1|Yi−1 = yi−1, . . . , Y1 = y1) ≤ p for all yj ∈ {0, 1}, j ∈ {1, . . . , i − 1} and all
i ∈ {1, . . . , r}, then P(Y ′ ≥ t) ≥ P(Y ≥ t)

(2) If p(Yi = 1|Yi−1 = yi−1, . . . , Y1 = y1) ≥ p for all yj ∈ {0, 1}, j ∈ {1, . . . , i − 1} and all
i ∈ {1, . . . , r}, then P(Y ′ ≥ t) ≤ P(Y ≥ t)

Proof. We will only show the first assertion, since the second follows in a similar manner. Let X :=∑r
i=1Xi, where X1, . . . ,Xr is a discrete-time stochastic process and Xi ∈ {0, 1}. Set xi ∈ {0, 1},

i ∈ {0, . . . , r} and x̄ := (x1, . . . , xr). Moreover, let |x̄| := x1 + . . .+ xr. We write

P(xr, . . . x1) := P(Xr = xr, . . . ,X1 = x1)

and use a similar notation for conditional expectations. Fix j ∈ N and let us assume that
p(xi|xi−1, . . . , x1) = p(xi) for any i ≥ j + 1 and that p(1|xj−1, . . . , x1) ≤ p. We claim that
P(X ≥ t) ≤ P(X ′ ≥ t), where X ′ := X ′

j +
∑

i∈{1,...,r}\{j}Xi and X ′
j is a random variable inde-

pendent of X1, . . . ,Xr such that P(X ′
j = 1) = p, P(X ′

j = 0) = 1− p. We have thus replaced Xj in

X by X ′
j to obtain X ′. The first assertion then follows from an iterated application of the claim.

We now prove the claim. Let X̌ :=
∑r

i=1,i 6=j Xi. Then,

P(X ′ ≥ t) = pP(X̌ ≥ t) + (1− p)P(X̌ ≥ t) + pP(X̌ = t− 1)

= P(X̌ ≥ t) + pP(X̌ = t− 1),(7)

since the order of the random variables Xi for i > j does not matter and we can put X ′
j last.

Likewise,

P(X ≥ t) =
∑

x̄:|x̄|≥t

P(x1, . . . , xr)

=
∑

x̄: |x̄|−xj≥t

P(x1, . . . , xr) +
∑

x̄: |x̄|−xj=t−1,
xj=1

P(x1, . . . , xr)(8)
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For the first term, we compute
∑

x̄: |x̄|−xj≥t

P(x1, . . . , xr)

=
∑

x̄: |x̄|−xj≥t

r∏

k=j+1

P(xk)

j∏

i=1

P(xi|xi−1, . . . , x1)

=
∑

x̄\{xj}: |x̄|−xj≥t

r∏

k=j+1

P(xk)[P(1|xj−1, . . . , x1) + P(0|xj−1, . . . , x1)]

j−1∏

i=1

P(xi|xi−1, . . . , x1)

= P(X̌ ≥ t),

where we have used that P(1|xj−1, . . . , x1) + P(0|xj−1, . . . , x1) = 1. For the second term,

∑

x̄: |x̄|−xj=t−1,
xj=1

P(x1, . . . , xr) =
∑

x̄: |x̄|−xj=t−1,
xj=1

r∏

k=j+1

P(xk)P(1|xj−1, . . . , x1)

j−1∏

i=1

P(xi|xi−1, . . . , x1)

≤ pP(X̌ = t− 1)

Thus, inserting the expressions into (8) and using (7),

P(X ≥ t) ≤ P(X̌ ≥ t) + pP(X̌ = t− 1) = P(X ′ ≥ t).

�
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