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Purpose: The purpose of this study was to develop and validate a deep learning (DL)
framework for the detection and quantification of reticular pseudodrusen (RPD) and
drusen on optical coherence tomography (OCT) scans.

Methods: A DL framework was developed consisting of a classification model and an
out-of-distribution (OOD) detection model for the identification of ungradable scans; a
classification model to identify scans with drusen or RPD; and an image segmentation
model to independently segment lesions as RPD or drusen. Data were obtained from
1284 participants in theUK Biobank (UKBB)with a self-reported diagnosis of age-related
macular degeneration (AMD) and 250 UKBB controls. Drusen and RPD were manually
delineated by five retina specialists. The main outcome measures were sensitivity,
specificity, area under the receiver operating characteristic (ROC) curve (AUC), kappa,
accuracy, intraclass correlation coefficient (ICC), and free-response receiver operating
characteristic (FROC) curves.

Results: The classification models performed strongly at their respective tasks (0.95,
0.93, and 0.99 AUC, respectively, for the ungradable scans classifier, the OODmodel, and
the drusen and RPD classification models). The mean ICC for the drusen and RPD area
versus graders was 0.74 and 0.61, respectively, compared with 0.69 and 0.68 for inter-
grader agreement. FROC curves showed that themodel’s sensitivity was close to human
performance.

Conclusions: The models achieved high classification and segmentation performance,
similar to human performance.

Translational Relevance: Application of this robust framework will further our under-
standing of RPD as a separate entity from drusen in both research and clinical settings.

Copyright 2022 The Authors
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Introduction

Age-related macular degeneration (AMD) is
defined by the presence of drusen, deposits found
under the retinal pigment epithelium (RPE), which
are key to the diagnosis of AMD.1 Recent advances
in multimodal imaging have, however, allowed us
to substantially improve our ability to characterize
the AMD phenotype, revealing information about
a variety of the deposits that occur in AMD, such
as reticular pseudodrusen (RPD).2 RPD have been
associated with late AMD and are considered a critical
AMD phenotype to understand.3–12 To date, most
studies associating AMD risk with RPD have relied
on a binary presence of RPD (i.e. their presence or
absence) with no clear understanding of how the
quantity of RPD plays into the risks posed by their
presence. Understanding associations and risk of RPD
is confounded by the fact that eyes with RPD often
also have drusen, which impose their own risks. To
help improve our understanding of RPD and their
associations, large datasets are essential but to date
most available large datasets are based on cohorts
collected for their AMD status, and few have eyes
with only RPD. This leads to confounder issues when
trying to understand the contribution that RPD
make to any increased risk of vision loss in eyes with
AMD.

Spectral-domain optical coherence tomography
(SD-OCT) has been shown to have a much higher
sensitivity and specificity for both detecting RPD and
separating lesions from drusen compared with the blue
channel of color fundus photographs (CFPs), infrared
reflectance, fundus autofluorescence, near-infrared
fundus autofluorescence, confocal blue reflectance,
and indocyanine green angiography.13,14 In addition,
OCT is the only imaging modality that allows the
confirmation of the subretinal localization of RPD,
which cannot be ascertained by other imaging modali-
ties.2 Given the subtlety of RPD lesions on OCT, even
on the latest generation devices, and more so on early
generation OCT utilized in existing large population
studies, human detection and quantification remain
a challenge.15 Given the importance of being able to
detect and quantify RPD and separate them from
drusen in terms of both our understanding of the
pathogenesis of RPD and the potential implication
of their presence in current and future therapies,16 an
automated approach to classification and quantifica-
tion is needed.

Machine learning (ML) algorithms have been
shown to be powerful tools in the automatic quantifi-
cation of retinal biomarkers identified on OCT,17–19

making them ideal for the detection of RPD and
drusen. To date, there is a large volume of published
studies describing the detection of drusen on OCT
using ML, the majority of which deploy classification
models which do not allow for the quantification of
the lesion area.20–24 Thus far, only two studies explored
ML techniques for the automatic detection of RPD
on OCT. The first was a classifier, thus not allowing
for image quantification,25 and the other was based on
the identification of drusen and RPD by interpolat-
ing retina layer undulations. The latter approach was
only internally validated on a small number of eyes and
has not been shown to perform on images from the
more challenging imaging generated from older SD-
OCT devices used in a number of large population
studies or distinguish between RPD stages.26

We herein present a deep learning (DL) frame-
work for the detection and quantification of drusen
and RPD in the UK Biobank (UKBB), a large-scale
biomedical database and research resource containing
genetic, lifestyle, and health information from a half
million of UK participants.

Methods

Study Population

The UKBB study is a large, multisite, community-
based cohort study with the aim of improving the
prevention, detection, and treatment of a wide range of
serious and life-threatening diseases. UKBB’s database
includes data on 500,000 volunteer participants aged
between 40 and 69 years, recruited in 2006 to 2010
from across the United Kingdom. All UK residents
aged 40 to 69 years who were registered with the
National Health Service and living up to 25 miles
from one of 22 study assessment centers were invited
to participate. The North West Multi-centre Research
Ethics Committee approved the study (REC reference
number: 06/MRE08/65), in accordance with the princi-
ples of the Declaration of Helsinki. Detailed informa-
tion about the study is available at the UKBB website
(www.ukbiobank.ac.uk).

Of all participants in the UKBB, 67,687 partici-
pants underwent OCT and CFP imaging, at six UKBB
centers (Sheffield, Liverpool, Hounslow, Croydon,
Birmingham, and Swansea) acquired using the Topcon
3DOCT1000Mark II (Topcon, Japan). Image acquisi-
tion was performed under mesopic conditions, without
pupillary dilation, using the 3-dimensional macular
volume scan (512 horizontal A-scans/B-scan; 128 B-
scans in a 6 × 6-mm raster pattern). Of 2622 partici-
pants with a self-reported diagnosis of AMD identified
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Figure 1. Deep learning framework for the detection and quantification of conventional drusen and reticular pseudodrusen.
A classification algorithm classifies OCT volumes (on a volumetric (i.e. eye) level into gradable or ungradable, and ungradable volumes
are removed (Ungradable Classification Model). A deep ensemble model for out-of-distribution detection identifies volumes with out-of-
distribution scans, which are then removed (Outlier Detection Model). Another classification model, the Drusen/RPD classifier, classifies the
remaining volumes into those with either drusen or RPD versus controls. Controls are removed (Drusen/RPD Classification Model). Finally,
an image segmentation algorithm segments RPD and drusen separately on a B-scan level (Drusen/RPD SegmentationModel). RPD, reticular
pseudodrusen.

in the database, 1284 had OCT volume scans and
CFPs and were used in the study. The UKBB project
ID associated with this paper is 60078. Patients were
excluded from the study if they had withdrawn their
consent.

Deep Learning Framework

Upon visual inspection, a significant number of
OCT scans were found to be of insufficient quality for
this study. Tomitigate this, and to improve the accuracy
of DL, a framework consisting of several separate
DL models was developed (Fig. 1): (a) A classifi-
cation model to detect ungradable scans (Ungrad-
able Classification Model), based on the difference in
signal-to-noise ratio between gradable and ungradable
scans. (b) An out-of-distribution detection model to
further classify ungradable scans (see Model Devel-
opment below), based on the difference between
gradable and ungradable scans resulting from outliers
caused by optical artifacts (Outlier Detection Model).
(c) A classification model to identify scans with
drusen or RPD versus controls (those without these
lesions; Drusen/RPD Classification Model). (d) An
image segmentation model to independently segment

lesions as RPD or drusen, allowing their quantification
(Drusen/RPD Segmentation Model).

Data Selection

Classification Models
To train the classification models, each OCT

volume (eye) was labeled by a single grader (author
R.S.), a retina specialist, as ungradable; containing
drusen/RPD, or both; or control (not containing
drusen or RPD).

Volumes were deemed ungradable if the outer retina
was not clearly seen in a scan in a manner that would
allow to confirm or reject the presence of RPD and
drusen (e.g. due to image noise, shadowing, or clipping
of the outer retina) or in cases where vertically flipped
scans existed in the volume.

Drusen were defined as discrete areas of RPE eleva-
tion with low to medium reflectivity, similar to the
reflectivity of the inner plexiform and ganglion cell
layers. RPD were defined as lesions above the RPE
with medium reflectivity, similar or slightly less than
the reflectivity of the retinal nerve fiber layer. Each
of the previously described stages were also consid-
ered when labeling eyes as RPD2,27: stage 1 - diffuse
deposition of granular hyperreflectivematerial between
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the RPE and the ellipsoid zone (EZ); stage 2 - similar
to stage 1, but the mounds of accumulated material
are sufficient to alter the contour of the EZ, result-
ing in EZ undulations; stage 3 - the material is thicker,
adopts a conical appearance, and breaks through the
EZ; stage 4 - defined by fading of the material because
of re-absorption and, eventually, migration within
the inner retinal layers. Although the above grading
was based on OCT findings, a multimodal approach
was used, when possible (i.e. when image quality was
sufficient), to confirm the presence of OCT findings
using CFP. Of note, the presence of RPD due to
other pathologies was considered in each case, but no
evidence of other pathologies was seen in any of the
cases.

Each eye was graded according to the follow-
ing scale: (1) no drusen/RPD; (2) one drusen/RPD;
(3) more than one drusen/RPD; (4) questionable
drusen/RPD; and (5) Ungradable. Categories 1 and 3
were used to train the drusen detection classification
model, and category 5 was used to train the ungradable
detection classificationmodel. Category 2 was not used
because the identification of RPD is challenging, and
the presence of a pattern helps to distinguish cases with
genuine RPD versus human variability. Therefore, to
reduce the risk of including false-positive cases, it was
decided to include only cases with more than a single
RPD lesion. For uniformity, the same was applied to
drusen. Category 4 was not used as the inclusion of
questionable lesions might degrade the model’s perfor-
mance.

Of 2622 participants (5199 eyes) with self-reported
AMD, 1284 (2523 eyes) had OCT scans. Four hundred
eighty-nine eyes of 287 participants were classified as
having more than one druse; 57 eyes of 38 partici-
pants were classified as having more than one RPD;
343 eyes of 232 participants were classified as ungrad-
able; and 1182 eyes of 591 participants were identified
as having no drusen/RPD (controls). In addition, to
avoid selection bias that may result from the selection
of controls out of a population of self-reported AMD,
250 control eyes were randomly identified from the
general cohort. Eventually, 500 control eyes, 468 eyes
with any drusen or RPD and 308 eyes with ungradable
scans were included. They were divided into a training,
validation, and test set by a ratio of 60:20:20. Eyes of
a specific participant were not allowed to exist in more
than one set (Fig. 2A).

Semantic Segmentation Model
To train the semantic segmentation model,

additional cases were identified in the UKBB dataset
as an addition to the cohort of participants with a
self-reported diagnosis of AMD, which was used to

train the classifiers. To identify additional cases, we
used an in-house available deep learning approach
developed to detect AMD features in CFPs. It does
so in a hierarchical manner by first detecting drusen.
Of those, it then detects large drusen, and of those it
detects RPD.28 By using this approach and manually
removing low-quality images, an additional 22 eyes
were found to have more than one RPD after visual
inspection (using the same grading methodology on
OCT scans mentioned previously for the self-reported
AMD cases) and included in the training set for the
segmentation model.

As the model was trained on B-scans rather than
OCT volumes, B-scans were classified by a single
grader (author R.S.) into the 3 groups as previously
mentioned: 2834 scans with RPD, 2338 with drusen,
and 4946 controls. Of those, B-scans with RPD were
selected manually for training if they contained at least
one RPD, with or without drusen, from different areas
of the macula, to reflect the variability in RPD appear-
ance. Overall, 334 B-scans (from 37 participants) with
RPD were included. The same number of B-scans
of drusen (from 38 participants) and controls were
randomly selected for training. These were divided into
training, validation, and test sets (using a ratio of
60:20:20). B-scans of a specific participant were not
allowed to exist in more than one set (Fig. 2B).

Annotation

Manual delineation of features (drusen and each
stage of RPD) to train the image segmentation model
was performed by five experienced graders. The train-
ing and validation sets were independently annotated
by two retina specialists (authors R.S. and H.K.) and
the second grader (author H.K.) was used as the
ground truth for training the model. An additional
three retina specialists (authors A.T., S.L., and Y.O.)
independently annotated all the scans in the test set.
Annotation was done using Label Studio version 1.2.29
The graders were provided a list of B-scans, shuffled
to avoid priming bias (i.e. the tendency to annotate
lesions based on previously seen lesions in the same
eye). They had access to the complete OCT volume and
could zoom in for accurate delineation. A document
containing instructions and examples of the correct
annotation of labels of interest was provided to graders
and discussed with them. It included the definitions
mentioned previously for drusen and different stages
of RPD. Each of the lesion types was assigned a label
and a different color. Graders were asked to grade a
standard set of 6 B-scans containing examples of each
label prior to annotating their respective sets and an
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Figure 2. Eye andB-scan selectionflowchart formodel training, validation and testing. (A) Selection of eyes to train, validate, and test
the classifiers. (B) Selection of B-scans to train, validate, and test the semantic segmentationmodel. AMD, age-relatedmacular degeneration;
OCT, optical coherence tomography; RPD, reticular pseudodrusen.

adjudication process took place (author R.S.) to ascer-
tain uniformity among graders.

Model Development

All models were trained on a single server with an
Intel 18 core 4.6 GHz Xeon processor, 256 GB of
RAM, and an Nvidia Quadro RTX8000 card with 48
GB of RAM.

Classification Models
The architecture for the Ungradable Classification

Model and the Drusen/RPD Classification Model was
a 3D Inception-V1.30 The 2D convolutions in the
original Inception-V1 model were replaced with 3D
convolutions. Except for the last convolution, a batch
normalization layer31 and rectified linear unit (ReLU)
activation function32 followed each convolution. The
last convolution was followed by a softmax layer. We
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used Adam33 with a learning rate of 10-4, β1 = 0.9,
and β2 = 0.999 as the optimizer. During training,
batches were randomly sampled in a balanced manner
such that samples from each class were chosen equally
often. Cross-entropy was used for the loss function.We
used early stopping with a patience of 10,000 iterations
based on the kappa score on the validation set. Data
augmentation was applied to the training set, which
consisted of random rotations between -20 and +20
degrees, shearing between -10% and +10%, zooming
between -10% and+10%, translations between -10 and
+10 pixels in the B-scan plane, translation between
+2 and -2 pixels in the z-direction, horizontal B-scan
flipping with a probability of 15%, gaussian noise with
a mean of 0, a standard deviation of 0.1 and a proba-
bility of 15%, gamma corrections with γ between 0.75
and 3.0, and a probability of 15%.

The Ungradable Classification Model was trained
on a specific dataset, as mentioned above, which
involved specific types of image aberrations. Because
the data used to train the model represents only
roughly 1.5% of the total UKBB dataset, a model
trained to identify specific types of aberrations might
not generalize well to the whole dataset (or other
datasets). Therefore, as part of the ungradable detec-
tion algorithm, we used deep ensembles34 for out-
of-distribution (OOD) detection in addition to the
previously mentioned classification model. This is a
commonly used technique for uncertainty estimation
and OOD detection that approximates Bayesian neural
networks. Thus, it should detect any deviation from
normal scans, which should in theory also identify
aberrations the previous model was not trained on. In
this work, the deep ensemble consisted of 10 individual
models, each individually trained on the entire train-
ing set with different weight initializations and different
seeds for random sampling. During inference, we used
the mean variance for each class among the models
in the ensemble as a measure for the uncertainty of a
sample. Ungradable cases were then differentiated from
gradable ones based on this uncertainty measure. Of
note, both models were tested on the totality of the test
set.

Semantic Segmentation Model
A 2D U-Net architecture35 was trained using

the nnU-Net framework, which has achieved high-
performance values for various medical segmentation
tasks and has the advantage of automatically adapt-
ing to different biomedical datasets.36 For training,
five-fold cross-validation was used and testing was
performed with an ensemble of the cross-validated
models.

Due to the limited numbers of B-scans for stages
3 and 4 RPD, stages 2, 3, and 4 RPD were grouped
together as a single class. Thus, the model was trained
to distinguish among 3 classes: drusen; stage 1 RPD;
and stages 2, 3, and 4 RPD.

Statistical Analysis

We evaluated the performance of the classification
models using five metrics defined as follows: (a) area
under the receiver operating characteristic (ROC) curve
(AUC) - anROC curve37 displays the trade-off between
the true-positive rate and true-negative rate of a classi-
fication model at different threshold levels. AUC repre-
sents the model’s capability to separate the negative
and positive classes. (b) Accuracy - the percentage
of correctly classified images. (c) Cohen’s kappa38 -
compares the observed accuracy with an expected
accuracy (random chance); (d) sensitivity; (e) speci-
ficity; and (f) area under the precision-recall curve –
a precision-recall curve displays the trade-off between
the positive predictive value and the sensitivity of a
classification model at different threshold levels.

We evaluated the performance of the segmentation
model using the following measures. To measure the
segmentation performance we identified the number
of individual features that were properly detected
(i.e. overlapped with the ground-truth segmentation
of the feature) within each B-scan by using the
Label function of the Scikit Image Python library,
which finds connected components in a binary image.
We analyzed the overlap using free-response receiver
operating characteristic (FROC) curves. Similar to
ROC curves, FROC curves compare the performance
of graders by highlighting the sensitivity for both
graders when operating at varying false-positive rates.
UnlikeROCcurves, the sensitivity is plotted against the
number of average false-positive lesions per instance
(in this case, per B-scan). We also reported the Dice
similarity metric, which is defined as the size of the
intersection of two areas divided by their average
individual size. A Dice score of 1 indicates perfect
agreement and a score of 0 indicates disjoint areas.39

In addition, standard repeatability metrics, includ-
ing the intraclass correlation coefficient (ICC) for
absolute agreement and the Bland-Altman repeatabil-
ity coefficient (RC) were used to measure agreement
in the area of the different lesions between the model
and graders and for interrater reliability analysis. For
model-grader agreement, the mean of the ICC and the
RC between the model’s segmented areas and those
segmented by each grader is presented. Cases with no
segmentation were included as area of zero. The ICC
was calculated using the Pingouin library for Python.40
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ICC values were interpreted as follows41: a value below
0.50 was considered poor; a value between 0.50 and
0.75 was considered moderate; a value between 0.75
and 0.90 was considered good; and a value above 0.90
was considered excellent. RC was calculated using the
technique described by Bland and Altman.42

Results

Classification Models
Metrics obtained by the different models are

presented in Table 1, and ROC curves are presented
in Figure 3. All models achieved a high AUC,
ranging from 0.93 to 0.99, and high accuracy, ranging
from 81.6% to 98.4%. Between the models aimed at
image quality assessment, the Ungradable Classifica-
tion Model achieved a higher sensitivity, while the
Outlier Detection Model achieved high sensitivity. The
Kappa scores ranged from 0.59 to 0.97. Precision-recall
curves for the different models are presented in Supple-
mentary Figure S1. The area under the precision-recall
curve was 0.88, 0.76, and 0.99 for the Ungradable

Classification Model, Outlier Detection Model, and
Drusen/RPD Classification models, respectively.

Segmentation Model

Quantitative results for the ICC for each feature
are presented in Table 2. The ICC for the model’s
performance against all graders was averaged and is
presented alongside themodel-grader performances. In
addition, the intergrader agreement among all three
graders is presented. When considering the test set, for
drusen, the model and graders both achieved moder-
ate agreement, with higher agreement achieved by the
model compared to the intergrader agreement. For
stage 1 RPD, both the model and human graders
achieved poor agreement, again with the model exceed-
ing human agreement. The agreement of both humans
and model was again poor for stages 2, 3, and 4
RPD, this time with intergrader agreement exceed-
ing the model agreement. When the RPD area of
all RPD stages combined was considered, both the
intergrader agreement and the model’s agreement with
the ground truth were moderate, with the intergrader

Table 1. Metrics Obtained by the Different Classification Models on the Test Set

Model
Sensitivity (%)

[95% CI]
Specificity (%)

[95% CI] AUC [95% CI] Kappa [95% CI]
Accuracy (%)
[95% CI]

Ungradable
Classification
Model

78.3 [68.8, 89.7] 93.7 [89.9, 96.9] 0.95 [0.91, 0.97] 0.72 [0.64, 0.83] 90 [86.8, 93.6]

Outlier
Detection
Model

96.7 [91.8, 100] 76.8 [71.0, 82.7] 0.93 [0.90, 0.96] 0.59 [0.49, 0.69] 81.6 [76.8, 86.4]

Drusen/RPD
Classification
Model

97.8 [94.1, 100] 99.0 [96.6, 100] 0.99 [0.98, 1.00] 0.97 [0.93, 1.00] 98.4 [96.3, 100]

95% CI - The 95% confidence interval, obtained by bootstrapping using 1000 bootstrap samples; AUC – Area under the
receiver operating characteristic (ROC) curve.

Figure 3. Receiver operating characteristic (ROC) curves for the three classification models. From left to right, the curves apply to
the RPD/drusen vs. controls model, the Ungradable Classification Model, and the Outlier Detection Model. The orange line represents the
models’ sensitivity at different thresholds with the shaded area representing the 95% confidence interval.
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Table 2. ICC Scores on the Test Set for the Model and Graders

Parameter

ICC Model
Versus Grader 1

(95% CI)

ICC Model
Versus Grader 2

(95% CI)

ICC Model
Versus Grader 3

(95% CI)

Mean ICC
Model Versus
Graders (95%

CI)
ICC Intergrader

(95% CI)

Drusen area 0.68 (0.54, 0.77) 0.71 (0.62, 0.77) 0.82 (0.76, 0.86) 0.74 (0.65, 0.82) 0.69 (0.55, 0.78)
RPD area - all
stages

0.62 (0.5, 0.71) 0.51 (0.24, 0.68) 0.69 (0.52, 0.8) 0.61 (0.50, 0.71) 0.68 (0.61, 0.74)

RPD stage 1
area

0.51 (0.4, 0.61) 0.25 (0.12, 0.38) 0.49 (0.38, 0.59) 0.42 (0.25, 0.58) 0.27 (0.18, 0.37)

RPD stages 2,
3, and 4 area

0.55 (0.37, 0.68) 0.22 (−0.06, 0.46) 0.43 (0.17, 0.61) 0.4 (0.21, 0.59) 0.48 (0.29, 0.62)

Table 3. Bland-Altman Repeatability Coefficient Scores (in μm2) on the Test Set for the Model and Graders

Parameter

RC Model
Versus
Grader 1

RC Model
Versus
Grader 2

RC Model
Versus
Grader 3

Mean RC Model Versus Graders
(95% CI)

RC Inter-
grader

Drusen area 56,107.8 75,405.3 47,324.4 59,612.5 (43,354.5 to 75,870.4) 64,459.7
RPD area - all
stages

121,150.4 154,964.3 119,041.1 131,718.6 (108,905.6 to 154,531.7) 117,981.0

RPD stage 1 area 102,967.0 109,435.6 98,834.9 103,745.9 (97,699.1 to 109.792.6) 109,987.3
RPD stages 2, 3,
and 4 area

63,896.0 155,710.7 94,432.4 104,676.1 (51,770.2 to 157,592.9) 115,006.3

CI, confidence interval; RC, repeatability coefficient.

agreement exceeding themodel’s agreement. RC results
are presented in Table 3.

FROC curves comparing the model’s performance
against each grader are presented in Figure 4. The
most experienced grader for this task was chosen as
a reference standard against model performance and
against other graders. This figure highlights the sensi-
tivity for both the graders and the model when operat-
ing at varying false-positive rates, with confidence inter-
vals (CIs) obtained by bootstrapping (1000 bootstrap
samples). For drusen, stage 1 RPD, stages 2, 3, and 4
RPD, and all stages RPD, the 95% CI of the model
overlaps with the CI of the grader marked in blue,
and only for drusen with both graders. For drusen, for
stages 2, 3, and 4 RPD, and for all stages RPD, the
model obtained a sensitivity that is lower than both
graders when operating at the same false-positive rate,
whereas for RPD stage 1 it was higher than one grader
and lower than the other.

The Dice scores between the model and graders
and between grader pairs are presented in Supplemen-
tary Table S1. Qualitative results of the output of the
segmentation model are shown in Figures 5, 6, and 7.

Discussion

We present a DL framework that is robust in the
presence of ungradable scans, and accurately classi-
fies and segments drusen and RPD. To the best of
our knowledge, this is the first framework handling
different aspects of lesion analysis in AMD, including
automated image quality assessment and lesion detec-
tion, and this is the first DL model to allow accurate
quantification of these lesions.

Our two classifiers for image quality assessment
were designed to perform two different tasks: the first,
quality assessment, achieved by detecting the differ-
ence in signal-to-noise ratio between gradable and
ungradable scans; and the second assessment was for
the detection of outliers caused by optical artifacts
by OOD detection. Both classifiers achieved high
performance in detecting poor quality scans (AUC
of 0.95 and 0.93 for the Ungradable Classification
Model and the Outlier Detection Model, respectively).
They both serve as steps in automated data curation.
Image quality control is essential to ensure optimal
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Figure 4. Free response receiver operating characteristic (FROC) curves for drusen, stage 1 reticular pseudodrusen (RPD), stages 2, 3, and
4 RPD, and all RPD stages combined, comparing the model to the ground truth graders. The line represents model sensitivity at different
thresholds, with the shaded area representing the 95% confidence interval, obtained by bootstrapping. The dots represent the two other
graders, one represented in blue and the other in yellow, with error bars representing 95% confidence intervals.

performance by a DL algorithm designed to be
deployed on real-world data.43 Unlike research and
development environments, where such models are
often trained on carefully curated datasets, real-world
data may be more challenging, as evidenced by a
recent attempt by Google Health to deploy a diabetic
retinopathy model in a clinic setting, where its perfor-
mance was worse than in the laboratory setting.44 To
date, only a small number of publications described
the use of ML for image quality assessment on OCT
scans. For example, Kauer et al. developed an ML
classifier (AQuA), which was trained on OCT images
acquired on the Spectralis SD-OCT device (Heidelberg
Engineering) to identify poor quality scans.45 Later,
another neural network termed AQuANet was devel-
oped to allow AQuA to be adapted to OCT devices
from other vendors. It was shown to transfer well
to the Cirrus HD-OCT device (Carl Zeiss Meditec
AG).46 However, both devices are characterized by
high-quality scans which are often lacking in existing
large population studies’ datasets acquired on older

devices. To the best of our knowledge, our framework
is the first published to classify poor quality scans on
such devices, making it useful for research involving
similar large datasets. It is also the first to utilize image
quality control as part of a detection and quantification
framework, a fact which should increase its accuracy
when deployed on target datasets. The use of out-of-
distribution detection alongside a classifier trained on
specific examples of ungradable volumes allows the
model to be more generalizable to previously unseen
image artifacts.

The Drusen/RPD Classification Model achieved an
AUC of 0.99. However, it is important to note that
it was tested on a subset of the dataset that did
not contain ungradable scans, as mentioned in the
Methods section, and these results do not reflect possi-
ble degradation of performance under such circum-
stances. Despite this limitation, and to the best of our
knowledge, this is the first classifier that can detect
both drusen and RPD. Numerous studies previously
reported on classification algorithms for the detection
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Figure 5. Comparison ofmodel and grader output, reticular pseudodrusen (RPD) stage 2, 3, or 4. The green color represents stage 2,
3, or 4 RPD. Grader 1 was used as a reference standard against model performance and against other graders, presented in the FROC curves.

Figure 6. Comparison of model and grader output, reticular pseudodrusen (RPD) stage 1 and RPD stages 2, 3, or 4. Stage 1 RPD is
represented in white and stage 2, 3, and 4 are represented in green. Grader 1 was used as a reference standard against model performance
and against other graders, presented in the FROC curves.

of drusen only.20–22,47 The ability to detect RPD as
well as drusen can be used both for screening high-risk
patients and for research into the latter, in addition to
its role in the current framework.

For the Drusen/RPD Segmentation model, the
model’s agreement with human graders, as reflected
by ICC scores, was better than the intergrader agree-
ment for drusen. In regard to RPD, it was better for
stage 1 RPD. Stage 1 RPD, as reflected by the very
low intergrader agreement for segmentation of this
lesion, is an exceptionally challenging lesion to grade
because it only presents as amedium reflectivity change
between the RPE and EZ with the additional loss of
the normal anatomy between these layers. With older
devices, the loss of anatomy is harder to appreciate,
making their annotation a more challenging task. In

addition, it seems that distinguishing between stage 1
and other stages of RPD presented a challenge for
both humans and the model, as reflected by the better
agreement (moderate vs. poor) when RPD lesions of
all stages are considered, and as reflected in the qualita-
tive examples (see Figs. 5, 6). Despite the difficulty this
dataset presents, the model achieved performance that
is either beyond human performance (drusen, stage 1
RPD) or close to human performance (RPD stages 2,
3, and 4; all RPD stages combined).

Of note, it is possible that the test set, chosen
randomly, was challenging to annotate. For compari-
son, the intergrader agreement between the two graders
who segmented the training and validation set was also
calculated and was higher than that achieved for the
test set. It was 0.94 (95% CI = 0.91 to 0.95) for the
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Figure 7. Comparison of model and grader output, conventional drusen, reticular pseudodrusen (RPD) stage 1 and RPD stages 2,
3, or 4.Drusen are represented in blue, stage 1 RPD inwhite, and stage 2, 3, and 4 are represented in green. Grader 1 was used as a reference
standard against model performance and against other graders, presented in the FROC curves.

drusen area, 0.67 (95% CI = 0.6 to 0.73) for the RPD
area when all stages were considered, 0.34 (95% CI
= 0.2 to 0.45) for stage 1 RPD, and 0.72 (95% CI
= 0.67 to 0.76) for stages 2, 3, and 4 RPD. If the
test set was more challenging for humans, it can be
implied that it was more challenging for a DL model,
and better performance is expected on less challeng-
ing datasets. However, the difference in ICC scores may
have resulted from higher consistency among the two
graders who annotated the training and validation set
separately from the three who graded the test set.

Similar findings were seen in the FROC curves.
The model achieved sensitivity that is close to human
performance, and, in fact, is similar to a senior retina
expert, as evidenced by the overlapping CIs seen in the
plot. Given the complexity of grading these lesions,
it is possible that more graders, especially with less
experience, would have fared worse than the model.
Of note is the improved sensitivity of the model with
the increased number of average false-positive lesions
per B-scan, the importance of which depends on the
settings under which the model is used. For example,
we intend to use it to identify participants in theUKBB
with RPD for further research, including genetic analy-
sis, where quantification is key. To that end, a small
number of false-positive results (i.e., high specificity)
is required. Other settings might emphasize sensitivity
over specificity, for example, when the identification of
patients with RPD is required for screening purposes.
In such cases, a higher number of false-positive results
might be allowed (especially if human validation is

involved), enabling higher sensitivities for the model
(almost 100% for drusen and 80% for RPD).

Another point to consider is the fact that the
segmentation model was tested on a B-scan level. The
FROC curves present an average number of false-
positive results per scan. As with any average, some B-
scans will fare better than others. When the model is
deployed to whole volumes (eyes) to quantify RPD and
drusen on a volumetric level, such inaccuracies may be
less prominent.

The Dice scores (presented in Supplementary Table
S1) reflect slightly better intergrader performance than
model performance for all features (ranging from 0.06
for stage 1 RPD to 0.16 for all-stage RPD). Of note,
both human and model performance as reflected in the
Dice score were poor. Aswas shown in a recent publica-
tion by an international consortium of medical image
analysis experts, Dice score is not an appropriatemetric
for small structures in images, because a single-pixel
difference between two predictions can have a large
impact on the metric difference.48 Given the small size
of the lesions graded in our work we utilized FROC
as the primary metric to assess the performance of the
segmentation model.

Thus far, only two studies have described the use of
ML solutions for the automatic detection of RPD on
OCT. In the first, by Saha et al.,25 the authors trained
several DL models to detect RPD, intraretinal hyper-
reflective foci, and hyporeflective foci within drusen.
Although the model’s performance was good for the
detection of RPD (sensitivity = 79–96%, specificity =
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65–92%, AUC = 0.91–0.94, and accuracy = 80–86%)
all models were classifiers. Therefore, the output was
binary, and quantification of the lesion area was not
possible.

In the second study, by Mishra et al.,26 the authors
chose a different approach, whereby retinal layers
associated with drusen and RPD were automatically
segmented in SD-OCT images along with other retinal
layers. The methodology involved a combination of a
graph-based approach based on the Deep Learning -
Shortest Path (DL-SP) algorithm on 2D OCT B-scan
images. In that regard, drusen and RPD were consid-
ered types of layers – the former where the RPE layer
is undulating, and the latter with undulation of the
EZ. This technique presents several problems. First,
undulations of these layers are not specific to drusen
and RPD and may result from other pathologies. The
extent to which this model can handle other patholo-
gies and differentiate between them and the aforemen-
tioned lesions is unclear since the model was trained on
16 eyes with AMD only, and it is not clear if patholo-
gies other than drusen (such as choroidal neovascular-
ization) were included. In addition, although quantifi-
cation of the lesions may be possible by calculating the
inter-layer area for each of the lesions, this was not
done in the study and it is unclear how accurate such a
methodology would be.

Our group previously published a DL model
for the segmentation of 13 features associated with
neovascular and atrophic AMD. It achieved a lower
ICC for drusen compared to the current study
(0.381 ± 0.055, compared with 0.74 [95% CI =
0.65 to 0.82]) and lower sensitivity of under 40%
for one average false-positive RPD (in comparison
with 52% for the current model).17 That is despite
the former model being trained on a newer, higher
resolution device (Topcon 3D OCT-2000; Topcon,
Tokyo, Japan). That can be explained by the higher
number of B-scans for both drusen and RPD used
in the development of the current model, different
DL architectures, and/or the quality of ground-truth
annotations.

Previously published models are not quantitative,
have limited accuracy, or cannot perform on the
more challenging features of early generation SD-OCT
devices. All three issues need to be addressed to accel-
erate our understanding of how RPD influence the
pathogenesis of non-neovascular AMD, for which no
licensed treatment exists. We are currently using trans-
fer learning techniques to develop models for newer
generation devices. Development of such models is
less challenging given the higher resolution and easier
delineation of small lesions, for both humans and
algorithms. These models can then be utilized in large

clinical trials where different, newer, devices may be
used for data acquisition.

In addition, this framework includes the only model
that can accurately differentiate between drusen and
RPD. Detection of both lesion types is needed to
achieve an understanding of risk factors for RPD and
drusen load by separating patients with RPD, RPD
and drusen, drusen, and normal controls in future
studies.

Our framework can be used in the future in treat-
ment trials. For example, in the Laser Intervention
in Early Stages of Age-Related Macular Degenera-
tion (LEAD) study, aimed to evaluate the safety and
efficacy of subthreshold nanosecond laser in interme-
diate AMD, it was found that such treatment may
be inappropriate in patients with RPD compared to
those without.15 This suggests that treatments for those
with RPD might need to be different from those with
drusen, and as such it will be important to be able to
accurately and quickly identify patients with orwithout
RPD.

Our study has several limitations. (a) It was trained
on data from the UKBB. In the UKBB cohort, 94.6%
of participants were of White ethnicity. This is similar
to the national population of the same age range in the
2001UKCensus (94.5%) but slightly higher than in the
2011 Census (91.3%).49 Whereas these figures point at
generalizability of the model to the UK population, it
might not be generalizable to other populations with
different ethnic and sociodemographic compositions.
(b) The performance of the different models was not
evaluated in an external dataset, and might not gener-
alize to datasets other than UKBB. (c) We used differ-
ent reference standards for the training and the test set.
(d) We evaluated each model within the suggested
framework as separate steps and not as part of a
continuous pipeline. (e) We did not use end-to-end
training for this project, meaning that each model was
optimized independently. (f) The framework steps were
trained on training data excluding questionable lesions.
The ill-definition of this category, as well as the associ-
ated large intra- and intergrader variability, prevent the
definition of a reliable reference standard for training.
This, however, might result in unpredictable behavior
during inference if questionable lesions are present.
Contingency strategies, such as uncertainty estima-
tion or runtime failure detection, might help dimin-
ish a performance drop. (g) We selected an experienced
grader to serve as ground truth. However, as the results
show, ground truth is difficult to determine as human
agreement on this problem is low. (h) The framework
can only be used on OCT scans. Although OCT has
been shown to have high sensitivity and specificity for
the detection of RPD, a multimodal imaging approach
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to their diagnosis may be preferred in difficult cases, or
in cases where the lesions extend beyond the scanning
area.

In conclusion, we present the first DL framework
encompassing image quality assessment, differentia-
tion of drusen and RPD from controls, and individ-
ual segmentation of these two phenotypes, with near-
human performance. The application of this model in
research settings and possibly in clinical settings will
help further our understanding of RPD as a separate
entity from drusen.
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