
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

CPU-GPU Layer-Switched Low Latency CNN Inference

Aghapour, E.; Sapra, D.; Pimentel, A.; Pathania, A.
DOI
10.1109/DSD57027.2022.00051
Publication date
2022
Document Version
Final published version
Published in
2022 25th Euromicro Conference on Digital System Design
License
Article 25fa Dutch Copyright Act (https://www.openaccess.nl/en/in-the-netherlands/you-share-
we-take-care)
Link to publication

Citation for published version (APA):
Aghapour, E., Sapra, D., Pimentel, A., & Pathania, A. (2022). CPU-GPU Layer-Switched Low
Latency CNN Inference. In H. Fabelo, S. Ortega, & A. Skavhaug (Eds.), 2022 25th Euromicro
Conference on Digital System Design: DSD 2022 : 31 August-2 September 2022,
Maspalomas, Spain : proceedings (pp. 324-331). IEEE Computer Society.
https://doi.org/10.1109/DSD57027.2022.00051

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:26 Oct 2023

https://doi.org/10.1109/DSD57027.2022.00051
https://dare.uva.nl/personal/pure/en/publications/cpugpu-layerswitched-low-latency-cnn-inference(22fc6a88-fb0b-464b-8e10-b0f8d4b5c0e2).html
https://doi.org/10.1109/DSD57027.2022.00051

CPU-GPU Layer-Switched Low Latency
CNN Inference

Ehsan Aghapour, Dolly Sapra, Andy Pimentel, and Anuj Pathania

University of Amsterdam

e.aghapour@uva.nl, d.sapra@uva.nl, a.d.pimentel@uva.nl, a.pathania@uva.nl

Abstract—Convolutional Neural Networks (CNNs) inference on
Heterogeneous Multi-Processor System-on-Chips (HMPSoCs) in
edge devices represent cutting-edge embedded machine learning.
Embedded CPU and GPU within an HMPSoC can both perform
inference using CNNs. However, common practice is to run a
CNN on the HMPSoC component (CPU or GPU) provides the
best performance (lowest latency) for that CNN. CNNs are not
monolithic and are composed of several layers of different types.
Some of these layers have lower latency on the CPU, while others
execute faster on the GPU. In this work, we investigate the reason
behind this observation. We also propose an execution of CNN that
switches between CPU and GPU at the layer granularity, wherein
a CNN layer executes on the component that provides it with the
lowest latency. Switching between the CPU and the GPU back and
forth mid-inference introduces additional overhead (delay) in the
inference. Regardless of overhead, we show in this work that a
CPU-GPU layer switched execution results in, on average, having
4.72% lower CNN inference latency on the Khadas VIM 3 board
with Amlogic A311D HMPSoC.

Index Terms—On-Chip Inference, Edge Computing

I. INTRODUCTION

Pattern recognition problems originate in many embedded

applications in various domains, such as autonomous driving [14],

intelligent robotics [4], image classification [7], object detec-

tion [15], and semantic segmentation [19]. It is now commonplace

to solve (inference) these problems using Convolutional Neural

Networks (CNNs), known for their high accuracy in differ-

entiating between patterns. The time-sensitive nature of these

applications requires CNN inference to occur on edge devices

that run the embedded applications themselves [16]. Heteroge-

neous Multi-Processor System-on-Chips (HMPSoC) powering the

edge devices make on-device inference possible. However, CNN

kernels within the embedded applications project significant re-

source requirements on the underlying HMPSoCs. Consequently,

HMPSoCs often struggle to provide low latency embedded CNN

inference needed for high-end embedded applications.

An HMPSoC tightly integrates an embedded CPU and a GPU

on a single chip. Figure 1 shows an abstract block diagram for

the state-of-the-art Amlogic A311D HMPSoC within the Khadas
Vim 3 embedded platform. It contains a Hexa-core ARM big.Little
asymmetric multi-core CPU and a dual-core Mali GPU. The ARM
big.Little CPU further consists of two CPU clusters – a high-

performance, high-power quad-core big CPU cluster and a low-

performance, low-power dual-core Little CPU cluster. CPU and

GPU within the HMPSoC can both perform inferencing [22].

It is common in non-embedded platforms for GPUs to signifi-

cantly outperform the CPUs in inference. However, in embedded

platforms, the CPU and GPU performance is comparable. It is

even possible for a CPU to outperform a GPU for some given

CNNs. Consequently, CPUs are still relevant for inference in

embedded platforms [24]. Figure 2 shows the latency of different

A73 Core A73 Core

A73 Core A73 Core

L2 Cache

A53 Core A53 Core

L2 Cache

Core Core

L2 Cache

CCI Bus

DRAM

big CPU Cluster

Little CPU Cluster Mali-G52 MP4 GPU

Fig. 1: An abstract block diagram of Amlogic A311D HMPSoC

in Khadas Vim 3 embedded platform.

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

200

400

600

L
at

en
cy

[m
s]

Little CPU Cluster big CPU Cluster GPU

Fig. 2: The inference latency for different inference capable

components for different CNNs on Khadas Vim 3.

CNNs on different HMPSoC components (CPU or GPU). The

big CPU cluster always provides lower latency than the small
CPU cluster. It is not feasible to use the big and small CPU

clusters simultaneously to reduce latency [21]. Therefore, we limit

ourselves to only the big CPU cluster in this work. When we

mention the CPU again in this work, it refers to the big CPU

cluster. Figure 2 shows that the CPU outperforms the GPU for

MobileNet and ResNet50, while GPU outperforms the CPU for

AlexNet, GoogleNet, and SqueezeNet.
It is common to run CNN kernels in an embedded application

on the HMPSoC component (CPU or GPU) that provides the

lowest latency. However, a CNN is not one monolithic execution

block. A CNN comprises several layers that execute sequentially

to generate an output from a given input. In this work, we observe

that some of these layers execute faster on the CPU while the

other layers execute faster on the GPU. To our knowledge, no one

has made or explained this observation. Reducing the latency for

a CNN inference appears straightforward by executing a given

CNN layer on the HMPSoC component, where it performs the

fastest. CPUs and GPUs, however, have different Instruction Set

Architecture (ISA) and execution models. Therefore, achieving

324

2022 25th Euromicro Conference on Digital System Design (DSD)

2771-2508/22/$31.00 ©2022 IEEE
DOI 10.1109/DSD57027.2022.00051

20
22

 2
5t

h
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n

(D
SD

) |
 9

78
-1

-6
65

4-
74

04
-7

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

DS
D5

70
27

.2
02

2.
00

05
1

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Processing time of AlexNet layers on CPU and GPU.

The last column shows the time with the best component.

Layer CPU (ms) GPU (ms) Best (ms)

1 11.56 9.69 9.69
2 15.05 14.37 14.37
3 5.15 8.62 5.15
4 4.48 5.33 4.48
5 3.41 4.15 3.41
6 38.51 35.89 35.89
7 17.02 10.06 10.06
8 4.19 3.44 3.44

Total 99.38 91.55 86.50

a CPU-GPU layer switch execution in practice is technically

challenging on a real platform.

Motivational Example: AlexNet is a popular CNN used for

image classification. The AlexNet contains 11 layers – five con-

volution, three max-pooling, and three fully connected layers.

Max-pooling layers are too small for us to measure and work

with individually. Therefore, we club them with the preceding

convolution layers to reduce the number of operatable layers in

AlexNet to eight. Table I shows the split of AlexNet latency on

the CPU and the GPU in terms of its layers. Layers 1, 2, 6, 7,

and 8 execute faster on GPU. Layers 3, 4, and 5 execute faster on

the CPU. Table I also shows the hypothetical latency of AlexNet,
assuming we execute each layer on the fastest HMPSoC compo-

nent (CPU or GPU). Latency of AlexNet in such a hypothetical

CPU-GPU layer switched execution is 12.96% and 5.51% lower

than CPU-only and GPU-only execution, respectively. In practice,

a CPU-GPU layer switched execution will also inherently have

additional overheads of switching between CPU and GPU and

vice versa. This overhead will reduce latency gains.

Our Novel Contributions: We make the following novel

contributions within the scope of this work.

• Based on their properties, we provide reasoning for a layer

executing faster on the CPU than GPU and vice versa.

• We show a CPU-GPU layer switched execution can reduce

the latency of CNN in practice on a real-world embedded

platform, even with the overheads involved.

Open Source Contribution: The code for the CPU-GPU

layer switched execution is publicly available for download at

https://github.com/Ehsan-aghapour/ARMCL-pipe-all (”n-pipe-1”
branch) under MIT license.

II. RELATED WORK

In research, there are several optimizations, such as model

architecture search [20], quantization [2], weight compression [3],

and graph pruning [25], to execute CNNs entirely at the edge.

On the other hand, there is research to run CNNs on resource

constraint edge devices in their original form. Authors of [17]

and [13], [23] propose an efficient hardware design for CNN

inference on FPGAs and CGRAs, respectively. However, most

edge devices in practice utilize CPUs and GPUS within of-the-

shelf HMPSoCs for CNN inference [22].

Most current ML frameworks on devices use embedded CPUs

rather than GPUs [21], mainly because previously embedded

GPU performance was insufficient for edge inferencing [24].

However, embedded GPUs have significantly improved perfor-

mance since then, but they are still nowhere near their non-

embedded counterparts. Therefore, several efforts have been made

to synergistically employ both CPUs and GPUs within HMPSoCs

for high-performance edge inference with CNNs [5], [8], [10]–

[12], [18], [24]. The authors of [21] were the first to create

a pipeline between the CPU clusters of an asymmetric multi-

core for CNN inference to improve throughput. Authors of [9]

propose a CNN inference pipeline between the CPU and GPU to

improve throughput. However, a pipeline design can only improve

inference throughput, not latency.

MOSAIC [5] and DeepX [12] propose CNN model partitioning

techniques that map the sliced model shards onto multiple HMP-

SoC components. DeepMon [8] partially offloads computation

for convolution operations to GPU and thereby utilizes both

CPU and GPU to minimize the inference latency. μLayer [11]

intelligently maps ML inference tasks to CPU and GPU on

edge devices, leveraging layer distribution and processor-specific

quantization techniques. The authors of [6] propose a CNN

inference latency prediction model for GPU and design multipath

neural networks, enabling the runtime to choose a path that meets

latency constraints. However, to the best of our knowledge, no
work exists that proposes a CPU-GPU layer switched execution
to reduce the latency of CNN inference.

III. EXPERIMENTAL SETUP

We use Khadas Vim 3 embedded platform in this work. An

Amlogic A311D HMPSoC, as shown in Figure 1, powers the

Khadas Vim 3 platform. The platform has a Hexa-core asymmetric

ARM big.Little multi-core CPU with two CPU clusters, big
and Little. This work uses only the big CPU cluster in this

work. The quad-core big CPU cluster contains four A73 cores.

The HMPSoC contains a dual-core Mali G52 MP4 GPU. The

operational (maximum available) frequency for the big CPU

cluster and GPU are 2.2 GHz and 0.8 GHz, respectively. A 4 GB

LPDDR4 is the main memory for the HMPSoC. The platform is

running Android v9.0 with kernel v4.9. On top of that, we use

ARM-CL v21.02 in this work for CNN inference. It is important

to note that even though we presented the results on one specific

board, the proposed methodology can be applied to conventional

embedded devices wherein the embedded GPU has the processing

power comparable to Multi-core CPUs.

We use multiple CNN models, namely AlexNet, GoogleNet,
MobileNet, ResNet50, and Squeezenet, as the application kernels.

These CNNs perform image classification on the ImageNet data-

set for 1000 image classes. The input to these models is an image

of size (224× 224) with three channels (RGB), and the output is

a tensor of size 1000 that predicts the input image class.

IV. INFERENCE WITH ARM-CL

We implement CPU-GPU layer switched inference using the

ARM-CL framework. We first describe the default implementation

of CNN inference in ARM-CL. We then describe the modifications

that enable CPU-GPU layer switched inference.

The ARM-CL Framework: A typical CNN consists of a chain

of hidden layers between the input and output. Each hidden

layer consumes input from the previous layer for the process,

producing an output for the subsequent layer. Convolutional layers

are the most common (and dominant) layers in CNNs [22]. A

convolutional layer has kernels to perform matrix operations with

layer-specific weights and biases on its input data. Figure 3

illustrates the CNN architecture for AlexNet using an abstract

block diagram.

325

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

In
pu

tL
ay

er

224

224

3

C
on

vo
lu

tio
n

(1
)

M
ax

-P
oo

lin
g

(2
)

27

27
96

C
on

vo
lu

tio
n

(3
)

M
ax

-P
oo

lin
g

(4
)

13
13 25

6

C
on

vo
lu

tio
n

(5
)

13

13 38
4

C
on

vo
lu

tio
n

(6
)

13

13 38
4

C
on

vo
lu

tio
n

(7
)

M
ax

-P
oo

lin
g

(8
)

6
6 25

6

C
on

vo
lu

tio
n

(9
)

Fu
lly

-C
on

ne
ct

ed
(1

0)

40
96

Fu
lly

-C
on

ne
ct

ed
(1

1)

40
96

O
ut

pu
tL

ay
er

10
00

Fig. 3: The CNN architecture for Alexnet.

In
pu

tN
od

e

B1

W1

M
ai

n
N

od
e

1

B2

W2
M

ai
n

N
od

e
2

B3

W3

M
ai

n
N

od
e

3

B4

W4

M
ai

n
N

od
e

4

B5

W5

M
ai

n
N

od
e

5

B6

W6

M
ai

n
N

od
e

6

B7

W7

M
ai

n
N

od
e

7

B8

W8

M
ai

n
N

od
e

8

O
ut

pu
tN

od
e

input out1 out2 out3 out4 out5 out6 out7 out8

Fig. 4: The graph for Alexnet in ARM-CL corresponding to its CNN architecture.

CPU Big Cluster GPUGPU

In
pu

tN
od

e

B1

W1

M
ai

n
N

od
e

1

B2

W2

M
ai

n
N

od
e

2

B3

W3

M
ai

n
N

od
e

3

Tr
an

sf
er

N
od

e

input out1 out2 out3
Sync

Trans

R
ec

ei
ve

rN
od

e

B4

W4
M

ai
n

N
od

e
4

B5

W5

M
ai

n
N

od
e

5

Tr
an

sf
er

N
od

e

out3 out4 out5
Sync

Trans

R
ec

ei
ve

rN
od

e

B6

W6

M
ai

n
N

od
e

6

B7

W7

M
ai

n
N

od
e

7

B8

W8

M
ai

n
N

od
e

8

O
ut

pu
t

out5 out6 out7 out8

Fig. 5: The three sub-graphs for Alexnet obtained from partitioning it into three sub-networks, mapped on GPU, CPU Big cluster

and GPU, respectively.

ARM-CL is a collection of low-level Machine Learning (ML)

functions optimized for the ARM Cortex-A CPU and Mali GPU

cores. The library provides ML acceleration on ARM Cortex-
A CPUs through Neon (or SVE) and acceleration on the ARM
Mali GPUs through OpenCL [1]. The ARM-CL represents CNN

as a graph for execution on the underlying hardware. Figure 4

shows the ARM-CL graph corresponding to the Alexnet CNN

architecture. In the ARM-CL graph, an Input and Output node

represents CNN’s input and output layer, respectively. The graph

connects the Input and Output nodes through a series of

sequentially connected Main nodes. There exists a Main node

for each hidden layer in the graph. It is important to note that the

number of Main nodes is not necessarily equal to the number of

layers in the CNN. For instance, the graph in Figure 4 subsumes

max-pooling layers in AlexNet in the Main nodes corresponding

to the preceding convolutional layer. The graph also connects

each Main node with its two exclusive Weight and Bias
nodes. Weight and Bias nodes provide (to the Main node)

the weights and biases input, respectively. The primary input for

the Main node comes from the preceding Main (or Input) node

in the graph. Therefore, the graph binds all nodes in a chain of

consumer-producer relationships.

Environment Setup: ARM-CL begins by generating a graph

corresponding to the user-defined CNN to initialize the execution

environment. It then sets up the back-end context on the target

component (CPU and GPU). The setup for the CPU includes

generating worker threads either automatically based on the num-

ber of CPU cores or as per a user-defined number of requested

threads. For the GPU, it extracts details such as the number of

cores and the model number. It creates an OpenCL context with

a CLScheduler optimized for the detected GPU device.

As the next step, the ARM-CL determines the features of

tensors (such as their shape and data types) based on layer inputs.

ARM-CL provides a highly optimized implementation of kernel

functions to support its execution for each Main node type.

Finding the optimal implementation and configuration for each

node is based on specifications of the underlying hardware and

dimensions of the operands. Consequently, it assigns memory

to the tensors corresponding to the weights and biases. It loads

them with values, serializes the kernels, and prepares them for

execution in the correct sequence on the target processor.
Running the Graph: The ARM-CL sends the frame (initial

input) to the Input node to trigger graph processing. After the

frame is loaded, the kernels start processing the data. When the

target processor is a CPU, the ARM-CL partitions the compu-

tations within the matrix operation and distributes them between

the CPU worker threads. On completion of the computation, these

threads fill in the results to the corresponding output tensor. The

process continues until all kernels (Main nodes) have finished

execution. When the target processor is the GPU, ARM-CL pushes

the kernels to the OpenCL queue instead of the CPU worker

threads. The OpenCL takes over the task of kernel executions on

the GPU cores. The ARM-CL puts the output from the last Main
node in the input tensor of the Output node.

Partitioning the Graph: We split the original ARM-CL graph

into sub-graphs to enable CPU-GPU layer-switched execution.

We create a sub-graph for each set of consecutive layers that ex-

ecute on the same component. New Transfer and Receiver
nodes perform synchronized data transfer between sub-graphs

to enable component switching mid-inference. The Receiver
node waits on the Transfer node of the preceding sub-graph

using the wait queue and releasing the computing resources.

As soon as a subgraph’s process finishes, its Transfer node

326

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

interrupts the corresponding Receiver node and transfers the

data. Figure 5 shows one possible sub-graph formulation for

AlexNet. The formulation allows inference to begin on the GPU,

which then switches to the CPU for a few layers before switching

back to the GPU for the remaining layers.

V. LAYER LATENCY ANALYSIS

A CNN is a sequence of layers that process a given input

consecutively to generate an output. Each layer of the neural

network processes the input from the preceding layer in the form

of a tensor. Layers have associated trainable parameters (weights

and biases) that remain unchanged during the inference and load

at the set-up time to process this data. The output of the layers

is a tensor, computed by the multiplication operation between its

input and weight tensors, followed by an addition operation with

the bias matrix. Each layer loads its input data into the memory

of the target processor (CPU or GPU) and produces the output

tensor for the next layer.

There are four types of layers in a CNN – convolution, pooling,

normalization, and fully connected. There are two main parts in

a CNN wherein these different layers exist. The first part consists

of convolution, pooling, and normalization layers that extract the

features from the input and then feed these feature maps into the

second part. The second part consists of fully connected layers

that predict the output based on the feature maps. The amount

of computation within a layer and the communication between

layers depend on the layer parameters’ type and size.

We start by providing a brief introduction to layer-specific

parameters, paying particular attention to the size and dimensions

of the data involved during the layer operations. We then analyze

the impact of the size of the parameters on the layer’s execution

time on CPU and GPU. We then reason why a given layer

executes faster on the CPU than GPU and vice versa based on

the size of the layer parameters.

A. CNN Layers

Convolution Layer. In a convolution layer, the first input (from

the preceding layer) is a tensor of the shape: (input height) ×
(input width)× (input channels). The second input is a filter

consisting of kernels with the same number of input channels. All

filters independently operate on the input data. Since every kernel

has an identical shape within a layer, a filter is a tensor with the

shape: (kernel height)× (kernel width)× (input channels).
A filter performs the convolution operation and generates a

middle tensor with the shape: (output height)×(output width)
for each input channel. Subsequently, these middle tensors are

combined to generate the final output tensor of the shape:

(output height) × (output width) × (number of filters =
output channels).

Figure 6 illustrates the input data structure and filters for a

convolution layer. This layer has two filters and generates two

channels for the output tensor. The number of kernels in each

filter equals the number of input channels and is three for this

example layer. The shape of each output channel (output height

and output width) depends on the shape of the input and kernel,

stride, and padding.

Normalization Layer. These layers normalize their output

using a moving average of the mean and standard deviation of the

batches they have seen during training. This layer is non-trainable,

and its input and output sizes are the same.

1 2 9 6 1 6

9 0 3 2 8 4

6 6 5 0 3 1

3 6 4 1 4 5

3 9 0 6 1 9

4 5 8 9 0 2

3 6 0 6 2 3

8 8 3 4 4 6

4 7 3 6 7 5

7 4 7 0 9 9

0 1 9 8 6 2

7 8 6 7 0 1

8 8 4 1 8 5

2 8 0 0 4 9

6 6 6 3 6 8

4 4 1 7 2 5

6 1 1 7 0 5

5 2 0 0 4 8
C = 3

W = 6

H
=

6

6 × 6 × 3

Input

*

6 6 6

3 8 2

7 8 7

8 3 8

4 7 4

9 8 7

8 6 6

2 7 7

6 8 6

3 × 3 × 3

Filter 1

=

2 3 2

1 9 3

7 0 7

8 5 4

2 1 1

4 2 3

8 4 5

7 3 1

3 1 8

3 × 3 × 3

Filter 2

=

4 × 4

4 × 4

Output

4 × 4 × 2

Fig. 6: Data structure for a convolution layer. This layer has an

input tensor with three channels. It has two filters processing the

input tensor, producing two channels of the output tensor.

f 1 2 9 6 1 6 9 0 3

1 × 9

Input Vector
.

2 8 4 6

6 5 0 3

1 3 6 4

1 4 5 3

9 0 6 1

9 4 5 8

9 0 2 3

6 0 6 2

3 8 8 3

9 × 4

Weights Matrix

= A B C D

1 × 4

Output Vector

Fig. 7: Data structure for a fully-connected layer. This layer has a

flattened input tensor (one dimension). The weight tensor is a 2D

tensor with the shape: (input size) × (number of neurons).
The output is a flat tensor with a size of (number of neurons).

Pooling Layer. The pooling layers reduce the dimensions of

the feature maps obtained from convolutions. This layer computes

(and replaces) the maximum/average of neighboring neurons for

neurons in a feature map, reducing the total number of inputs

into subsequent layers. These layers also do not have trainable

parameters. The output size is always smaller than its input size,

depending on how many points in the input frame are replaced

by one value.

Fully-Connected Layers. The output of the last convolution

layer is flattened and sent to the first fully-connected layer. So

the input tensor to the fully-connected layer is a flattened tensor

with the size: (input height×input width×input channels).
The input tensor connects to all neurons of the fully-connected

layer with a weight parameter. For each neuron, the output is the

weighted sum of all inputs, and the shape of the weight tensor is

(input size)× (number of neurons).
Figure 7 illustrates a fully connected layer’s input, weight, and

output. This structure is a significantly dense connection. The

number of mathematical operations in a fully-connected layer is

much more than in a convolution layer, even though the input

and output tensors are much smaller than in a convolution layer.

B. Effect of Parameters Size on Latency

This work observes that some layers within a CNN execute

faster on the CPU while other layers perform better on the GPU.

We aim to find the reason behind the best HMPSoC component

(CPU or GPU) for layers considering their operation types and

the size of their parameters. For this purpose, we compare the

CPU and GPU layer processing time with different parameter

327

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

7 14 28 56 112 224
0

1

2

Input Shape

T
C

P
U
/
G

P
U

Convolution Normalization Pooling Total

(a) Filters=32

7 14 28 56 112 224

0

1

2

3

Input Shape

T
C

P
U
/
G

P
U

(b) Filters=64

7 14 28 56 112 224
0

2

4

Input Shape

T
C

P
U
/
G

P
U

(c) Filters=128

7 14 28 56 112 224

0

2

4

Input Shape

T
C

P
U
/
G

P
U

(d) Filters=256

Fig. 8: Exploring the relation of tCPU/GPU with different input

shapes and the number of filters. Input channels and kernel shapes

are 64 and 3, respectively.

TABLE II: The explored values for convolution, normalization,

and pooling layer size variables.

Size Variable Explored Values
Input Shape 7, 14, 28, 56, 112, 224

Input Channels 1, 2, 32, 64, 128, 256, 512, 1024
Number of Filters 16, 32, 64, 128, 256, 512, 1024

Kernel Shape 3, 5, 7

sizes. First, we measure the layer processing time with the CPU

(TCPU) and the GPU (TGPU). Then, we use the measurements

to calculate the ratio of TCPU to TGPU (TCPU/GPU). When the

value of this ratio is less than one, the CPU is faster than GPU

in processing the layer. When it is bigger than one, GPU is faster

than the CPU.

GPU is always a more efficient processor regardless of
the size of tensors for fully-connected layers. However, for

other layers, the more efficient processor depends on the size

of the tensors involved in the processing. Therefore, we limit our

analysis of TCPU/GPU to different parameter sizes in convolution,

3 5 7

1

2

3

4

Kernel Shape

T
C

P
U
/
G

P
U

Convolution Normalization Pooling Total

(a) Filters=64

3 5 7

1

2

3

4

Kernel Shape

T
C

P
U
/
G

P
U

(b) Filters=128

Fig. 9: Exploring the relation of TCPU/GPU with kernel shape for

first convolution layer with input shape 224 and three channels.

The kernel shape has no significant effect on the value of

TCPU/GPU for convolution layer (blue line).

normalization, and pooling layers. The normalization and pooling

layers follow a convolution layer and must execute on the same

component (to avoid significant data switching overhead) as the

convolution layer. Therefore, we are most interested in changes in

the total execution time (the sum of convolution, normalization,

and pooling layer execution) with changes in the parameter sizes.

There are four size variables of interest for a convolution,

normalization, and pooling layer: input shape, input channels,

kernel shape, and the number of filters. Table II indicates the

size variable values we explored in this work. We determined

these values based on the layers’ parameters in real-world CNNs.

On this account, we limit our exploration to realistic values of

the size of the layer parameters. We computed TCPU/GPU for

different values of various size variables to analyze their effect

on execution latency.

Input Shape Analysis. In conventional CNNs, the input of

the first layer (image shape) is a tensor with shape 224 or

227 and decreases as we go deeper in the network. Figure 8

shows the value of TCPU/GPU by changing the input shape

for a different number of filters. The input channels and the

kernel shape are 64 and 3, respectively. We analyze it for other

values of input channels and kernel shapes and observe similar

behavior. Experiments demonstrate that by increasing the input

shape, the TCPU/GPU also increases. Therefore, increasing input
shape makes the convolution, pooling, and normalization layers
execute faster on the GPU than on the CPU.

Kernel Shape Analysis. Most layers in CNNs have a kernel

shape of 3. Although the kernel’s shape in the initial layers may

be more extensive (5 or 7). We explore the effect of changing

the kernel shape for the first layer with input shape 224 and

three input channels. Figure 9 shows the value of TCPU/GPU

for convolution, pooling, normalization, and total timing by

increasing the kernel shape for the different number of filters.

The value of TCPU/GPU for pooling and normalization layers is

much higher than one (GPU is preferred), and for a convolution

328

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

1 3 5 7

0.2

0.4

0.6

Kernel Shape

T
C

P
U
/
G

P
U

(a) Input Shape = 7

1 3 5 7

0.2

0.3

0.4

0.5

Kernel Shape

T
C

P
U
/
G

P
U

Convolution Normalization Pooling Total

(b) Input Shape = 14

1 3 5 7

0.5

1

Kernel Shape

T
C

P
U
/
G

P
U

(c) Input Shape = 28

1 3 5 7

1

2

Kernel Shape

T
C

P
U
/
G

P
U

(d) Input Shape = 56

1 3 5 7

1

2

3

4

Kernel Shape

T
C

P
U
/
G

P
U

(e) Input Shape = 112

1 3 5 7

1

2

3

4

Kernel Shape

T
C

P
U
/
G

P
U

(f) Input Shape = 224

Fig. 10: Exploring the relation of tCPU/GPU with kernel shape. We show this exploration for different input shapes. The number of

filters and input channels is 128 and 64, respectively.

1 3 32 64 128 256

0.2

0.4

Input Channels

T
C

P
U
/
G

P
U

(a) Input Shape = 7

1 3 32 64 128 256

0.2

0.4

0.6

0.8

Input Channels

T
C

P
U
/
G

P
U

Convolution Normalization Pooling Total

(b) Input Shape = 14

1 3 32 64 128 256

0.5

1

1.5

2

Input Channels

T
C

P
U
/
G

P
U

(c) Input Shape = 28

1 3 32 64 128 256

1

2

3

4

Input Channels

T
C

P
U
/
G

P
U

(d) Input Shape = 56

1 3 32 64 128 256

1

2

3

4

Input Channels

T
C

P
U
/
G

P
U

(e) Input Shape = 112

1 3 32 64 128 256

2

4

Input Channels

T
C

P
U
/
G

P
U

(f) Input Shape = 224

Fig. 11: Exploring the relation of TCPU/GPU with the number of input channels. We show this exploration for different input shapes.

The number of filters and kernel shapes are 256 and 3, respectively.

layer, it is close to one. For smaller kernels, the contribution

of normalization and pooling layers towards the total time is

higher. We ascribe this observation to the fact that small kernels

result in fewer operations in the convolution layer but do not help

reduce them in the normalization and pooling layer. The input and

output sizes for layers remain almost the same as the kernel shape

increases or decreases. We observe that the value of TCPU/GPU

for convolution is not changing significantly by increasing kernel

shape. However, an increase in the kernel shape increases the

contribution of the convolution layer in the total time, so the

total time is close to the convolution time. Our analysis shows

that the value of TCPU/GPU is always larger than one (GPU is

preferred) for the first convolution layer.

There are convolution layers with a kernel shape of 1 in

some models. We explored the effect of kernel size on the value

of TCPU/GPU for these layers. Figure 10 shows the value of

TCPU/GPU by increasing the kernel shape for different input

sizes. The number of input channels and filters is 64 and 128,

respectively. This figure shows that for smaller input shapes (7

and 14), the value of TCPU/GPU for total time increases with

increasing kernel shape. On the contrary, for larger input shapes

(56, 112, and 224), the value of TCPU/GPU does not increase

significantly. We analyze it for other values for the number of

329

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

1 2 32 64 128 256
0

0.1

0.2

0.3

0.4

Filters

T
C

P
U
/
G

P
U

(a) Input Shape = 7

1 2 32 64 128 256

0

0.2

0.4

0.6

0.8

Filters

T
C

P
U
/
G

P
U

Convolution Normalization Pooling Total

(b) Input Shape = 14

1 2 32 64 128 256

0

0.5

1

1.5

Filters

T
C

P
U
/
G

P
U

(c) Input Shape = 28

1 2 32 64 128 256
0

2

4

Filters

T
C

P
U
/
G

P
U

(d) Input Shape = 56

1 2 32 64 128 256
0

2

4

Filters

T
C

P
U
/
G

P
U

(e) Input Shape = 112

1 2 32 64 128 256
0

2

4

Filters

T
C

P
U
/
G

P
U

(f) Input Shape = 224

Fig. 12: Exploring the relation of tCPU/GPU with the number of filters. The figure shows this relation for different input shapes.

The number of input channels and kernel shape is 64 and 3, respectively.

TABLE III: The preferred processing component based on size variables.

Input Shape 224 112 56 28 14 7

Input Channels 3 32 64-128 32 64 128-256 96-512 384-1024

Filters 32-96 32 64 32-64 128-256 128 256 96-512 384-1024 512-1024

Preferred Component GPU CPU GPU CPU GPU CPU GPU CPU CPU CPU

input channels and filters and see similar behavior. Therefore, the
effect of kernel shape on the value of TCPU/GPU depends on the
other variables such as input shape and number of filters.

Input Channels Analysis. The input tensor of CNNs starts

with three channels, and the number increases by going deeper.

Figure 11 shows the value of TCPU/GPU by changing the number

of input channels for different input sizes. The number of filters

and kernel size are 256 and 3, respectively. The analysis for

other values of kernel size and the number of filters exhibits the

same behavior as here. Our experiments show that for small input

shapes (less than 28), the increase in the number of input channels

increases the values of TCPU/GPU . On the other hand, for large

input shapes (larger than 28), an increase in input channels

decreases TCPU/GPU . Therefore, the effect of the number of input
channels on TCPU/GPU depends on the input shape.

Filters Analysis. The filters in a layer construct the input

channels for the subsequent layer, and the number of filters

usually increases as we go deeper into the network. Figure 12

shows the changes in the value of TCPU/GPU by changing the

number of filters for different input sizes. The number of input

channels and the kernel shape are 64 and 3, respectively. The

analysis for other values of kernel size and the number of input

channels demonstrate similar behavior. Our experiments show that

by increasing the number of filters, the TCPU/GPU also increases.

Therefore, increasing the number of filters moves the latency in
support of the GPU over the CPU.

Summary: There are many noteworthy observations in these

experiments. We observe an inconsistent relationship between

the number of channels and kernel shape with the value of

TCPU/GPU for the convolution, normalization, and pooling lay-

ers. However, there is a consistent relation between the input

shape and the number of filters with the TCPU/GPU ; The input

shape decreases (CPU is preferred), and the number of filters

increases (GPU is preferred) as we go deeper into the networks.

Table III shows the preferred component for layers based on

the size variables. The table shows that for the first layer with

input shape 224, layers (with different number of filters) prefer

the GPU, and for deeper layers, with input shapes of 28, 14, and

7, layers prefer the CPU. However, for middle layers with input

shapes 112 and 56, the preference depends on the other variables:

the number of input channels and filters.

VI. RESULTS

We evaluate the inference latency by finding the best mapping

of layers to components compared to running the entire network

with only the CPU or GPU. First, we measure the processing time

of each layer with both the CPU and the GPU. Second, we use

the best HMPSoC component for each layer and switch between

CPU and GPU. However, each switch comes with an overhead

that increases latency. Therefore, we only switch if we expect to

improve the latency while considering the switching overhead. We

use a regression model to estimate switching overhead between

the components based on the involved data transfer size.

We measure the inference latency for different CNNs with the

CPU-GPU layer-switched execution on the Khadas VIM 3 board.

This measurement implicitly includes the switching overhead.

Figure 13 shows the latency of different CNNs with CPU-GPU

330

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

AlexNet GoogleNet MobileNet ResNet50 SqueezeNet
0

50

100

L
at

en
cy

[m
s]

GPU CPU Big Cluster CPU-GPU Layer-Switched

Fig. 13: Inference latency for CPU-GPU layer-switched execution

compared to running the whole network with the CPU or GPU.

layer-switched execution compared to running the CNNs on only

the CPU or GPU. The results show that the layer-switched

execution reduces the latency, on average, by 14.40% and 9.58%

compared to CPU-only and GPU-only execution, respectively.

The layer-switch execution reduces the latency by 4.72% on

average compared to the minimum CPU- or GPU-only execution.

VII. CONCLUSION

We observe that within a CNN, some layers execute faster on

the CPU than on the GPU, while others execute faster on the

GPU than on the CPU. We present an analysis explaining this

observation based on different size variables that define a layer.

Furthermore, we exploit the observation to present the first-of-

its-kind concept of CPU-GPU layer-switched execution wherein

a CNN layer preferably executes on the component (CPU or

GPU) where it runs the fastest. We implement the layer-switched

execution on Amlogic A311D HMPSoC within Khadas VIM 3
board. Results show the CPU-GPU layer-switched execution can

reduce the latency of CNN inference compared to a CPU-only

or GPU-only execution regardless of the additional overhead

introduced due to switching between the CPU and GPU within an

inference. In the future, we aim to extend this work to consider

the trade-off between latency and total energy consumption. The

total energy consumption can be computed by analyzing CNN

layers for each processing element at different frequency levels

and the required energy for switching among processing elements.

REFERENCES

[1] ARM. Arm compute library. https://developer.arm.com/ip-products/
processors/machine-learning/compute-library, 2021. Accessed: May 16,
2021.

[2] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Binarized neural networks: Training deep neural networks
with weights and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[3] Caiwen Ding, Siyu Liao, Yanzhi Wang, Zhe Li, Ning Liu, Youwei Zhuo,
Chao Wang, Xuehai Qian, Yu Bai, Geng Yuan, et al. Circnn: accelerating and
compressing deep neural networks using block-circulant weight matrices.
In Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 395–408, 2017.

[4] Jonatan S Dyrstad and John Reidar Mathiassen. Grasping virtual fish: A
step towards robotic deep learning from demonstration in virtual reality. In
2017 IEEE International Conference on Robotics and Biomimetics (ROBIO),
pages 1181–1187. IEEE, 2017.

[5] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and Woongki
Baek. Mosaic: Heterogeneity-, communication-, and constraint-aware model
slicing and execution for accurate and efficient inference. In 2019 28th Inter-
national Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 165–177. IEEE, 2019.

[6] Seonyeong Heo, Sungjun Cho, Youngsok Kim, and Hanjun Kim. Real-time
object detection system with multi-path neural networks. In 2020 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 174–187. IEEE, 2020.

[7] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[8] Loc N Huynh, Youngki Lee, and Rajesh Krishna Balan. Deepmon: Mobile
gpu-based deep learning framework for continuous vision applications. In
Proceedings of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, pages 82–95, 2017.

[9] Duseok Kang, Jinwoo Oh, Jongwoo Choi, Youngmin Yi, and Soonhoi Ha.
Scheduling of deep learning applications onto heterogeneous processors in
an embedded device. IEEE Access, 8:43980–43991, 2020.

[10] Woosung Kang, Kilho Lee, Jinkyu Lee, Insik Shin, and Hoon Sung Chwa.
Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-time dnn tasks.
In 2021 IEEE Real-Time Systems Symposium (RTSS), pages 329–341. IEEE,
2021.

[11] Youngsok Kim, Joonsung Kim, Dongju Chae, Daehyun Kim, and Jangwoo
Kim. μlayer: Low latency on-device inference using cooperative single-
layer acceleration and processor-friendly quantization. In Proceedings of
the Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[12] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi,
Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator
for low-power deep learning inference on mobile devices. In 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 1–12. IEEE, 2016.

[13] Zhaoying Li, Dhananjaya Wijerathne, Xianzhang Chen, Anuj Pathania, and
Tulika Mitra. Chordmap: Automated mapping of streaming applications onto
cgra. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2021.

[14] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque,
Lingjia Tang, and Jason Mars. The architectural implications of autonomous
driving: Constraints and acceleration. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 751–766, 2018.

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott
Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox
detector. In European conference on computer vision, pages 21–37. Springer,
2016.

[16] Gopinath Mahale, Pramod Udupa, Kiran Kolar Chandrasekharan, and Se-
hwan Lee. Windconv: A fused datapath cnn accelerator for power-efficient
edge devices. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(11):4278–4289, 2020.

[17] Yuan Meng, Sanmukh Kuppannagari, Rajgopal Kannan, and Viktor
Prasanna. Dynamap: Dynamic algorithm mapping framework for low latency
cnn inference. In The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 183–193, 2021.

[18] Svetlana Minakova, Erqian Tang, and Todor Stefanov. Combining task-and
data-level parallelism for high-throughput cnn inference on embedded cpus-
gpus mpsocs. In International Conference on Embedded Computer Systems,
pages 18–35. Springer, 2020.

[19] Tobias Pohlen, Alexander Hermans, Markus Mathias, and Bastian Leibe.
Full-resolution residual networks for semantic segmentation in street scenes.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4151–4160, 2017.

[20] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[21] Siqi Wang, Gayathri Ananthanarayanan, Yifan Zeng, Neeraj Goel, Anuj
Pathania, and Tulika Mitra. High-throughput cnn inference on embedded
arm big. little multicore processors. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(10):2254–2267, 2019.

[22] Siqi Wang, Anuj Pathania, and Tulika Mitra. Neural network inference on
mobile socs. IEEE Design & Test, 37(5):50–57, 2020.

[23] Dhananjaya Wijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, and
Lothar Thiele. Himap: Fast and scalable high-quality mapping on cgra via
hierarchical abstraction. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[24] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choudhury,
Marat Dukhan, Kim Hazelwood, Eldad Isaac, qing Jia, Bill Jia, et al.
Machine learning at facebook: Understanding inference at the edge. In 2019
IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 331–344. IEEE, 2019.

[25] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna
Das, and Scott Mahlke. Scalpel: Customizing dnn pruning to the under-
lying hardware parallelism. ACM SIGARCH Computer Architecture News,
45(2):548–560, 2017.

331

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 04,2023 at 15:24:58 UTC from IEEE Xplore. Restrictions apply.

