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Abstract—Federated Learning allows multiple parties to train
a model collaboratively while keeping data locally. Two main
concerns when using Federated Learning are communication
costs and privacy. A technique proposed to significantly reduce
communication costs and increase privacy is Partial Weight
Sharing (PWS). However, this method is insecure due to the
possibility to reconstruct the original data from the partial
gradients, called inversion attacks. In this paper, we propose a
novel method to successfully combine these PWS and Secure
Multi-Party Computation, a method for increasing privacy.
This is done by making clients share the same part of their
gradient, and adding noise to those entries, which are canceled
on aggregation. We show that this method does not decrease the
accuracy compared to existing methods while preserving privacy.

Index Terms—Federated Learning, Security, Privacy, Dis-
tributed systems, IoT, Big Data, Secure Multi-Party Computation

I. INTRODUCTION

More, and differently distributed data often results in a
more general and accurate machine learning model, but the
rise in cyber attacks and leaks [1] and European privacy
laws [2] make it more difficult and irresponsible to freely
centralize medical [3], personal [4], and other sensitive data.
This problem can be dealt with by using Federated Learning
(FL), a method in which multiple parties, e.g. Internet of
Things (IoT) devices, send their gradient or weights to a
central server to update a model over many iterations while
keeping the data locally.

Initial methods [5]–[7] assumed gradient vectors were safe
to send to the central server, but research has shown the
original data can be recovered from them [8]–[11]. In image
analysis, the recovery of images from gradients is called an
inversion attack.

A mechanism that can be used to counter such inversion
attacks is Homomorphic Encryption (HE) [12]. However,
HE significantly increases computational-, and communication
costs, and only one adversary among the clients is needed to
reveal gradients, as a common private key is used [12].

Another method, called Partial Weight Sharing (PWS), is
a way of updating the model by sending only parts of the
gradient [7], [13], [14], which also reduces communication
costs significantly, an important aspect for large models [15].
Further reduction can be reached by quantization in integer
values [16], [17]. A popular PWS method is Topk, where

only the K entries of the largest magnitude of the gradient
are shared. Deep Gradient Compression (DGC) [13] adds
additional tricks but only shares 0.1% of the gradient while
maintaining high accuracy. However, PWS by itself is not
enough to protect against the server since a partially shared
gradient can still be turned into the original image [12].

A different class of protection is the addition of noise to
local gradients, a specific variant of which is Differential
Privacy (DP) [18]. DP adds enough noise to a gradient to be
protected against inversion attacks. DP has the disadvantage
that it deteriorates accuracy [19].

Another method using noise by Bonawitz et al. [20] uses
a secure sum to prevent inversion attacks. One client adds a
noise vector to their gradient, and another client subtracts the
same noise vector, and upon aggregation, these noises cancel
out. This is a form of Secure Multi-Party Computation (S-
MPC) since it reveals only the sum of the gradients and not
the individual gradients. The benefit as compared to DP is
that S-MPC does not deteriorate accuracy. However, it does
not protect the global model against membership interference
attacks [11]. Bonawitz et al. also found an efficient way of
generating the noise vector by using a common seed, generated
by an Elliptic Curve Diffie-Hellman (ECDH) key-exchange
[21], for a pseudo-random number generator.

In this paper, we introduce two novel methods, called
Secure Sparse Gradient Aggregation (SSGA) and a variant
that deploys Deep Gradient Compression (SSGA-DGC).

Our novel Secure Sparse Gradient Aggregation (SSGA) and
SSGA-Deep Gradient Compression (SSGA-DGC) methods
make sparse PWS compatible with S-MPC to prevent direct
inversion attacks and reduce communication costs. They do
so by letting clients send the same part of their gradient and
adding noise to those entries, which cancel on aggregation.
Furthermore, we upgrade the security of the sparse method
by only revealing the sum of the sparse gradients instead of
the individual gradients. Lastly, we make an integer S-MPC
scheme for safe aggregation suitable for real-valued numbers
and analyze efficiency and total training time.

II. METHOD

This section first introduces the necessary preliminaries to
the method. After this, the complete novel method is discussed.
In Section II-A, the basics of FL and Topk algorithm are20
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explained. Section II-B introduces how S-MPC can be used to
hide gradient contributions of clients in FL. Lastly, Subsection
II-C explains the proposed method, which is a combination of
FL, S-MPC, and PWS.

A. PWS in FL

FL [5], [6] is an optimization technique, where multiple
clients having their local data contribute to a model located on
a server. The goal is to find w, the weights of the model, such
that a loss function F (w) has the smallest value. A common
tactic to achieve a minimum is to perform stochastic gradient
descent (SGD) on the data [22], which moves the weights
w towards a minimum of the loss in an iterative process. In
FL, clients produce a gradient for every iteration from a mini-
batch. These gradients are then summed up and used to update
the central model.

Let ∇k,t be the gradient of client k in iteration t. To reach
a minimum of F (w), weights are changed as follows:

wt+1 = wt − η(t)vt. (1)

where η(t) is the learning rate, dependent on the iteration
t, and vt is the momentum given by:

vt+1 = γvt +

N∑
k=1

∇k,t, (2)

State-of-the-art optimizers like ADAM [23] introduce ad-
ditional tricks, such as an adaptable learning rate, which can
enhance the optimization process.

It is beneficial to compress the gradient using PWS, as
communicating the full gradient tends to be a significant bot-
tleneck in training a model. Topk is one way of compressing
the gradient, by replacing the term ∇k,t in Equation 2 with the
K entries largest in magnitude in the gradient [24], denoted
Topk(∇k,t). Topk works because the relevant information of
the gradient is predominantly contained in the components
largest in magnitude.

Whereas the normal Topk algorithm discards the entries of
the gradient which are not sent, a residual can be introduced to
keep track of the entries which are not sent [25]. The residual
at the start of round t is defined by:

Rk,t = Rk,t−1 +∇k,t. (3)

After communication of the TopK(Rk,t−1), the communi-
cated values are removed from the residual. So, in the proposed
methods, instead of sending entries in the gradient which
belong to the Topk entries, the Topk entries in the residual
are chosen.

B. S-MPC and SGA

For the methods, parties require a shared, private key. A
common key between clients-pairs to generate noise vectors
efficiently can be generated using a Diffie-Hellman (DH)
key exchange [21]. The seed for the pseudo-random number
generator is refreshed every round by hashing. The key is

then used to sample the noises ϵki between clients k and i,
sampled uniformly from ZR. R is a parameter that determines
the maximum integer number a client can contribute, RU :

RU = ⌊ R

|C|
⌋ − 1, (4)

where C is the pool of clients and |C| is the size of the
client pool. The noises ϵki are used to create the uniformly
distributed vector message [20]:

Pk,t =

∇k,t +
∑

i∈C,k<i

ϵki −
∑

i∈C,k>i

ϵki

 mod R, (5)

where ∇k,t is assumed to be of integer form. Integer
conversion is addressed later on. Pk,t, is now sent to the server
and the aggregation equals:

∑
k∈C

Pk,t mod R =
∑
k∈C

∇k,t mod R =
∑
k∈C

∇k,t, (6)

We call this way of sending gradients Secure Gradient
Aggregation (SGA). When we refer to SGA as a method, the
difference with SGD is the use of the encrypted and integer-
converted gradients, created with Equation 5.

C. Secure Sparse Gradient Aggregation (SSGA)

To make S-MPC and PWS compatible, all clients have to
send the same entries. This can be done by producing a mask
for the gradient, which all clients have access to. Let M be
such a mask, which is a vector with the same length as the
gradient. Clients only send the gradient values where the mask
has a value of 1. Every client applies it to its gradient and
obtains the following quantity

Pk,t[M ] =
(
∇k,t[M ] +

∑
i∈C,k<i

ϵki[M ]

−
∑

i∈C,k>i

ϵki[M ]
)

mod R,
(7)

where ∇k,t is the gradient of client k in round t, ϵki
is the noise vector generated from a common private key
between two clients, and ∇k,t[M ], ϵki[M ], Pk,t[M ] indicate
the masked versions of ∇k,t, ϵki and Pk,t, respectively. We
can now calculate the sum of Pk,t[M ] over all clients:∑

k∈C

Pk,t[M ] mod R =
∑
k∈C

∇k,t[M ], (8)

which can now be used to update the global model using
Equation 1. The only difference is that the gradient, ∇k,t, is
replaced with a sparse gradient, ∇k,t[M ].

Having combined S-MPC and PWS, a mask M has to
be constructed such that applying the mask to all clients’
gradients still makes the masked gradient contain large entries.
It is constructed using a union I = ∪k∈Cik, where ik is the
set of indices of gradient entries which exceed a threshold
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Fig. 1. Construction process of the masking array. It starts off with all clients
contributing indices, after which the union is taken. From this union, a mask
is constructed. It has the length of the gradient and depending on if the index
is in the union it is set to 1 (in the union) or 0 (not in the union) a value is
kept (1) or removed (0) when the mask is applied.

communicated by client k. The process is displayed in Figure
1. The procedure of obtaining a global mask can also be
made anonymous by the use of S-MPC at the cost of extra
communication. SSGA uses the Topk algorithm to determine
what entries should be sent by a client.

To maintain sparsity, there should be approximately K ≪
N unique indices in the union, where N is the number of
entries in the gradient. To obtain approximately K indices in
the union each client sends ⌊ K

|C|⌋ entries ensuring a maximum
union size of K, and a minimum compression of N

K .
Using the residual as described in Sec. II-A also means

that instead of sending the maximum value for their gradient,
each client sends the maximum value of the residual every
iteration. This way of sharing the local maximum of the
residual is called an adaptive maximum. The quantity shared
among clients is then given by:

Pk,t[M ] =
(
Rk,t[M ] +

∑
i∈C,k<i

ϵki[M ]

−
∑

i∈C,k>i

ϵki[M ]
)

mod R.
(9)

The scheme used by Bonawitz et al. [20] is incompatible
with real-valued numbers, which is exactly what the residual
consists of. By representing real numbers as integers, the
scheme can still be used while being cryptographically secure.
Given the largest magnitude of the residual over all clients,
Rmax, the real-valued numbers of the gradient are projected
on an integer in ZRU+1, where −Rmax maps to 0, and Rmax

maps to RU . After this, the converted-, integer residuals of all
clients are added up. Now the aggregated gradient is converted
back to real numbers. An integer value in the aggregated
gradient |C|RU corresponds to |C|Rmax, whereas a value 0
corresponds to −|C|Rmax.

Lastly, we introduce a local momentum as inspired by DGC
[13] and call this method SSGA-DGC. Local momentum helps
to overcome momentum staleness, a phenomenon that occurs
due to the sparse updates of the momentum [13]. The full
algorithms are displayed in Algorithm 1. Note that terminology
is different from the DGC paper [13].

Having a shared mask provides a communication benefit
because all clients send the same ≈ K entries. In the normal
Topk algorithm the download size increases approximately
linearly with the number of clients [26], [27]. In SSGA,
the download size is a constant maximum as a function of
the number of clients determined by how many indices are
selected per client.

Algorithm 1 Secure Sparse Gradient Aggregation (SSGA)
and SSGA-DGC algorithm. Lines containing □ are specific
to SSGA, while lines containing ■ are specific to SSGA-
DGC. During a number of iterations, a server receives updates
from clients that it uses to update a central model. After every
iteration, the server broadcasts the updated model to all the
clients.

1: Clients C
2: Establish common keys sk,i
3: for t = 1, 2, . . . Niterations do
4: for k = 1, 2, . . . , Nclients in parallel do
5: Calculate local gradient ∇k,t = ∇wf(wt, xc,t)

■6: Update residual Rk,t = Rk,t−1 +∇k,t

□7: Update local momentum uk,t = γuk,t−1 +∇k,t

□8: Update residual Rk,t = Rk,t−1 + uk,t

9: ik,t = Topk indices of Rk,t → server
10: Server broadcast of Ik,t = ∪k∈Cik,t
11: Clients M [i] = 1 if i ∈ Ik,t else 0
12: Generate noises ϵi,k∀i ̸= k; i ∈ C with keys
13: Pk,t = Rk,t[M ] +

∑
i∈C,k<i ϵk,i −

∑
i∈C,k>i ϵk,i

14: Pk,t → server
15: Calculate new residual Rk,t = Rk,t[¬M ]
16: end for
□17: Server momentum mt+1 = γmt +

∑
k∈C Pk,t

□18: Server changes weights wt+1 = wt − ηmt+1’
■19: Server aggregates wt+1 = wt − η

∑
k∈C Pk,t

20: wt+1 → clients
21: end for

III. EXPERIMENTS AND RESULTS

This section describes the soft-, and hardware used in
the project, what benchmarks were performed, and what the
outcomes were.

A. Experimental Setup

Experiments measuring time were performed on a single
machine, where all clients were simulated with one NVIDIA
GTX 1080 ti, having one Intel® Xeon® Bronze 3104 core
to perform CPU operations. To implement the novel method,
we used Horovod [28], Pytorch [29], and TinyEC1. For the
key establishment, we used the brainpoolP256r1 elliptic curve
[30]. Experiments used the CIFAR-10 dataset [31] with a
Resnet-110 model architecture training 200 epochs unless
indicated that the TinyImagenet dataset [32] was used, which
used a Resnet-50 model with 50 epochs of training. Datasets
were always randomly split among 4 clients while there was

1https://github.com/alexmgr/tinyec/
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Fig. 2. Validation loss curves for the SGD, SGA, DGC, and ADAM
algorithms on CIFAR-10. The curve was taken from a single client in a single
run of the experiment.

a common validation-, and test set. The batch size used was
128. The learning rate for SGD and SSGA was set to 0.02
and for SSGA-DGC 0.1. For TinyImagenet the learning rate
was 0.0125. The learning rate decayed over the epochs to
0 using a cosine scheduler. For CIFAR-10 a weight decay
of 0.01 was used, while for TinyImageNet it was 0.001. A
gradient momentum of 0.9 was used wherever momentum was
involved. The floating point numbers are projected onto 32-bit
integers.

B. DGC

DGC serves as a good baseline for comparison to the
novel methods, since it preserves accuracy while significantly
compressing the gradient. Yet it was unclear what baseline
DGC is compared to in the original paper. It is important
to establish what method was used to see if DGC actually
performs as well as other state-of-the-art gradient-descent
algorithms. We hypothesize that DGC does not have higher
accuracy than state-of-the-art-gradient-descent algorithms on
the CIFAR-10 dataset. We reproduce the results in DGC and
compare them to the SGD, SGA2, and ADAM optimizer [33].
To verify the results in the original paper on DGC, we train
a model using the baselines and DGC and compare it using
accuracy.

Figure 2 shows the validation loss curve as a function of
the number of epochs for the CIFAR-10 dataset. Initially, DGC
converges faster than SGD and ADAM, but in the final epochs,
SGD has a lower value for the loss function.

To further assess the quality of the different optimizers we
looked at the accuracy. Figure 3 shows the accuracy with
the respective standard deviation obtained over 5 experiments
for ADAM, SGD, SGD, and DGC in the FL setting. We
can observe that DGC outperforms ADAM by around 2%,

2Note that the only difference between SGD and SGA is the secure
aggregation

Fig. 3. Test accuracies for ADAM, DGC, SGA, and SGD on CIFAR-10. The
error bar indicates the standard deviation over 5 experiments.

but is outperformed by SGD by 0.6%. Furthermore, SGA
shows no significant decline as compared to SGD. To prove
statistical significance the Welch-t-test is used. The mean of
DGC significantly differed from all other methods (p < 0.01).
When comparing the results to the DGC paper [13] it can be
observed that a similar accuracy is reached as compared to the
paper (93.87% in the paper). In every case a lower test-loss
results in higher accuracy. This establishes that the optimizer
used in the baseline of DGC was a state-of-the-art optimizer,
but that SGA and SGD outperform DGC.

C. Topk and Random Masks

In SSGA and SSGA-SGC masks are used to ensure the same
entries are shared. These masks have to be computed and com-
municated by the clients. Random masks, therefore, reduce
overhead and computation. We hypothesize that random masks
will diverge, and reach a lower accuracy than the use of Topk
masks. To assess the added value of Topk masks, we let one
group use random masks, and another Topk masks (selection
of highest magnitude entries). Using the Topk mechanism,
both SSGA and SSGA-DGC converge, while the mechanism
using random masks diverges. When the learning rate was
lowered the accuracy was stuck around 10%, the amount that
would be correctly guessed randomly. This confirms that for
SSGA and SSGA-DGC, the Topk masks are needed.

D. Fixed global maximum

In SSGA, as well as SSGA-DGC clients share the maximum
value of their residual entries every iteration. By doing this,
the quantization error is minimized. However, this conversion
might potentially reveal something about the distribution of the
clients residual. Therefore, it may be desirable if the clients
had a fixed maximum value that can be contributed every
round. This can be achieved by setting a maximum value
before the algorithm starts and letting clients send values no
larger than this value, by use of clipping.
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Fig. 4. Distribution of the residual at three different steps of the training
process obtained on CIFAR-10. The x in Rx indicates the residual was
obtained in iteration x.

One problem with a fixed maximum is that the distribution
of residuals changes over the training process. At the start of
training, residuals often have a larger standard deviation (see
Figure 4), whereas later in the process the standard deviation
becomes smaller. Furthermore, it is known that for different
models gradient distributions are also different, and therefore
it can be difficult to set a maximum value by hand. Lastly,
the compression impacts the distribution of the residual. The
higher the compression, the more the values will add up while
not being sent, making the distribution wider.

To assess the impact of using a fixed value for the maximum
residual value, different maximum values were used and the
accuracy was measured. It is expected that the accuracy
reached using a fixed value is significantly lower than the
original SSGA, and SSGA-DGC with adaptive maximum

Fig. 5. Final accuracy for SSGA, and SSGA-DGC using no fixed maximum
value, and using different fixed maximum values. 4 clients were simulated on
the CIFAR-10 dataset with a ResNet-110 and 400× compression. The bars
having 10% accuracy did not converge.

values.
Figure 5 displays the final accuracy for the baselines using

the adaptive maximum (left), SSGA using different maximum
values (middle), and SSGA-DGC using different maximum
values (right). We can see that in cases where an unsuited
maximum value is chosen, there is a significant decline in
accuracy and that there are two areas of decline. One where
the maximum integer is too large, and one where it is too
small.

The graph shows that there is an optimal global maximum
that reaches a similar accuracy as compared to the adaptive
maximum strategy. We can conclude that fixing the global
maximum harms accuracy when the wrong maximum value is
chosen. The security risk introduced by the adaptive minimum
is minimal, as a single value cannot possibly reveal a lot of
information about the data.

E. SSGA Accuracy

To assess the quality of the SSGA, and SSG-DGC optimiz-
ers we train on CIFAR-10 for different compression ratios.
To evaluate the accuracy, the methods are compared to the
baselines established in Sec. III-B. We hypothesize that SSGA
and SSGA-DGC have similar accuracy to DGC with a com-
parable compression ratio and that a higher compression ratio
decreases the accuracy of both SSGA and SSGA-DGC. SSGA
and SSGA-DGC with a 200× compression ratio are compared
to DGC because the communication costs are similar. Figure
6 shows the accuracy for the baselines and novel methods. To
indicate compression of 200×, we add the suffix 200 to the
method, e.g. SSGA-200. First, there is no significant decline in
accuracy for both SSGA-200 and SSGA-DGC-200 compared
to DGC. Furthermore, we can see that both methods show
a decline as a function of the compression rate. At 400×
compression, SSGA seems to decline but, although SSGA-

Fig. 6. Test accuracies for baseline methods, SSGA, and SSGA-DGC in the
FL setting using 4 clients on the CIFAR-10 data-set. Baselines are repeated
for easier comparison. The error in the mean is given by the standard deviation
obtained over 5 experiments.
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Fig. 7. Test accuracies for baseline methods, SSGA, and SSGA-DGC in the
FL setting using 4 clients on the TinyImageNet data-set. k here stands for
1.000 e.g. 100k = 100.000.

DGC-400 is much more efficient than DGC, its accuracy does
not decline significantly.

To further investigate the methods, the accuracy is assessed
on TinyImagenet. The model is only finetuned, meaning that
only the last fully connected layer is trained and the rest of the
layers are frozen. This last layer consists of (512× 4)× 200
weights. Figure 7 shows that SSGA and SSGA-DGC reach
a similar accuracy to each other at every compression ratio.
A Welch-t-test shows that SSGA-DGC outperforms SSGA at
50, 100, and 400× compression. It also shows that there is no
significant decline as compared to SGD at 100×-, and 1.000×
compression. As compared to DGC, SSGA and SSGA-DGC
perform significantly better at 1.000× compression, and worst
at 100.000× compression. From this first experiment in Sec.
III-E we can conclude that SSGA and SSGA-DGC perform
similar to or better than DGC and that the accuracy declines
as the compression ratio increases. Furthermore, SSGA and
SSGA-DGC can withstand higher compression ratios than
DGC before a significant decline in accuracy is observed.

F. Effect of Residual

The next experiment measures the effect of the residual. We
compare SSGA to SSGA without a residual, measuring the
effect of the residual on the accuracy. We hypothesize that a

TABLE I
ACCURACY FOR THE BASELINE OPTIMIZERS ON THE CIFAR-10 DATASET

USING A RESNET-110 WITH 4 CLIENTS.

Method Accuracy [%]
SGD 94.72± 0.27

SSGA-DGC-400 94.31± 0.32
SSGA-DGC-200 94.22± 0.25

DGC 94.10± 0.18
SSGA-200 93.89± 0.24

SSGA-200-no-residual 82.00± 0.39

Fig. 8. Accuracy on the CIFAR-10 dataset of SSGA, and SSGA-DGC using
different integer types to project the real numbers onto. We can see that the
accuracy is not significantly impacted when different integer types are used.

residual is important to maintain accuracy. To assess the effect
of the residual on the accuracy in SSGA an experiment is
performed without the residual. The experiment uses CIFAR-
10 with 200× compression. The result is shown in Table I
under the name SSGA-200-no-residual. Removing the residual
from SSGA-200 results in a negative effect on the accuracy.
There was a 12.2% decline in accuracy as compared to SSGA-
200. Therefore, we conclude that the residual mechanism plays
an important part in the preservation of accuracy.

G. Quantization on Different Data-Types

As SSGA and SSGA-DGC use integers to project the real
numbers onto, different integer types can be used. In the
standard SSGA and SSGA-DGC signed int-32 is used. Using
integer types with more bits results in higher accuracy in
calculating the sum of the residual, but also increases com-
munication costs. Therefore, we are interested in establishing
the effect of using smaller integer values on the accuracy
of a model. The value that changes is RU in Equation 4
since R is determined by the number of bits in the integer.
We expect unsigned int-16, and unsigned int-8 to result in a
lower accuracy when training a model. Different data types
are used on CIFAR-10 with 400× compression. Note that the
outcome of this experiment may be different when using more
than 4 clients. As unsigned int-16, and unsigned int-8 are not
supported by Nvidia NCCL operations, we simply use signed
int-32, but restrict the maximum value to simulate integers
having a smaller number of bits.

Figure 8 shows the results for the two methods for different
integer types (int-32, uint-16, uint-8). A Welch-t-test revealed
that there was no significant impact on the accuracy of using
different integers. Therefore, it would be beneficial to work
with uint-16 or uint-8, when the NCCL allreduce operations
are available in NCCL.
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TABLE II
ENERGY USE AND TRAINING TIME OF DIFFERENT METHODS ON

CIFAR-10. THE ERROR ON THE GPU ENERGY USAGE AND TOTAL
TRAINING TIME IS GIVEN BY THE STANDARD DEVIATION OVER 3 RUNS.

Method GPU Energy Usage (kWh) Total Training time (s)
SGD 0.8433± 0.0022 4502± 10
DGC 1.108± 0.029 5405± 19

SSGA-200 1.027± 0.003 6062± 16
SSGA-DGC-200 0.9502± 0.0011 5338± 3

H. Energy- and Time-Efficiency

Lastly, we assess the communication and computational
costs of the novel methods in two experiments. This is relevant
because the algorithm should either be more efficient com-
putationally, more accurate, or more secure (while preserving
accuracy as compared to other methods) than other optimizers.
In the first experiment the training time and GPU energy usage
are measured for a full training cycle for SGD, SSGA, SSGA-
DGC, and DGC, to determine the efficiency of the different
methods. As communication time will be negligible in the
following experiment due to an extremely fast network, our hy-
pothesis of energy use and computation has to be based on the
computational side. The computational efficiency is measured
by training the different methods on CIFAR-10 on an 82 Gbps
network, measured using the OSU microbenchmark (OSU-
Micro-Benchmarks/5.7.1-gompi-2021a-CUDA-11.3.1), taking
the highest average result over 100 runs as the network
speed. During the training process, the GPU usage is sampled
using WandB [34] to measure how active the GPUs are
during training. The curve is then integrated to obtain energy
usage. The total training time is the complete runtime of
the algorithm, including key establishment, training, test, and
validation. Table II shows the total training time and GPU
energy usage for the different methods. The most efficient
method is SGD, which uses significantly less energy and takes
significantly less time to train the model. Lower training time
is caused by an extremely low communication time, as a single
machine was used to simulate all 4 clients. When comparing
the energy use of the sparse methods, we can observe that
DGC uses the most energy, SSGA-200× comes after that with
a 7% decrease as compared to DGC, and SSGA-DGC is the
most efficient with a 14% decrease as compared to DGC.
Therefore we can conclude that SSGA-200×, and SSGA-
DGC-200× use significantly less GPU energy than DGC.
When comparing total training times, SSGA-DGC-200× is
also significantly faster than DGC. On the other hand, SSGA-
200× has a larger training time than DGC.

The second experiment models the training times for SSGA,
SSGA-DGC, and SGD for different network speeds. In this
case, we expect SSGA, and SSGA-DGC to outperform SGD
in total training time on slow networks. The reason for this
is that in slower networks communication takes longer, and
since SSGA and SSGA-DGC compress the communicated
information, communication takes significantly less time on
slow networks for the methods as compared to methods that
do not compress the gradient, like SGD. To determine on

what kind of networks SSGA and SSGA-DGC start getting
useful we model the time it takes to complete training on
different networks. This is done using two assumptions. First
of all, we assume that all clients have the same computational
power. Secondly, we assume only the NCCL Allgather and
NCCL Allreduce operations in the Horovod logging files scale
linearly with the network speed (e.g. a 2× slower network
takes 2× as long). We performed a measurement on SSGA
and SSGA-DGC on CIFAR-10 with an 82 Gbps network.
The modeled training time as a function of the network
speed is displayed in Figure 9. SGD has a lower computation
time than SSGA, but SSGA and SSGA-DGC have a lower
communication time. In slow networks, this means that SSGA
and SSGA-DGC outperform SGD in total training time. The
total training time is lower for SSGA and SSGA-DGC in
networks having a speed of 1Gbps. We can conclude that
for network bandwidth smaller than 1 Gbps, SSGA-DGC
and SSGA both outperform SGD in training time using this
specific setting.

IV. CONCLUSION AND FUTURE WORK

Our novel SSGA and SSGA-DGC methods make PWS
compatible with secure S-MPC to prevent direct inversion
attacks and significantly reduce communication costs. They
do so by making clients share the same part of their gradient
and adding noise to those entries, which cancel each other
out on aggregation. The novel methods reveal only the sum
of the sent sparse residuals, while individual residuals are
protected. Our method uses a residual mechanism with a Topk

mask construction mechanism to reach optimal accuracy, while
reducing vulnerabilities and communication costs by using
quantization on integers. Using our method, communication
costs are significantly lowered while accuracy is preserved
or even improved compared to the SGD and ADAM opti-
mizers. We show that the novel method can handle 1.000×

Fig. 9. modeled training time for the two different methods using different
network speeds. SGD has a lower training time for high network speeds,
whereas SSGA has a lower training time for slower networks. The gradient
was compressed 200×. The error in the communication time was negligible.
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compression without a significant decline in accuracy for
finetuning. The method is useful compared to SGD on 1Gbps
networks or slower, when the increased computation time
of SSGA and SSGA-DGC is overtaken by the increased
communication time. The proposed method has a constant
download size as a function of the number of clients, whereas
other methods scale approximately linearly with the number of
clients. Future work could include experimentally determining
whether SSGA and SSGA-DGC hold up against inversion
attacks, and benchmarking the methods on different datasets. It
would also be helpful to further improve the current approach
with the possibility of dropouts, by additional secret sharing
[20].
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