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Defending OC-SVM based IDS from poisoning
attacks

1*' Lu Zhang
MultiScale Networked Systems (MNS)
University of Amsterdam
Amsterdam, The Netherlands
l.zhang2 @uva.nl

Abstract—Machine learning techniques are widely used to
detect intrusions in the cyber security field. However, most
machine learning models are vulnerable to poisoning attacks, in
which malicious samples are injected into the training dataset
to manipulate the classifier’s performance. In this paper, we
first evaluate the accuracy degradation of OC-SVM classifiers
with 3 different poisoning strategies with the ADLA-FD public
dataset and a real world dataset. Secondly, we propose a saniti-
zation mechanism based on the DBSCAN clustering algorithm.
In addition, we investigate the influences of different distance
metrics and different dimensionality reduction techniques and
evaluate the sensitivity of the DBSCAN parameters. The ex-
perimental results show that the poisoning attacks can degrade
the performance of the OC-SVM classifier to a large degree,
with an accuracy equal to 0.5 in most settings. The proposed
sanitization method can filter out poisoned samples effectively
for both datasets. The accuracy after sanitization is very close or
even higher to the original value.

Index Terms—Intrusion Detection, OC-SVM, Poisoning At-
tacks, DBSCAN, Sanitization

I. INTRODUCTION

Machine learning (ML) techniques are increasingly being
adopted in the security domain, for example, in intrusion
detection systems (IDS) [1]. However, in an adversarial setting,
the adversary may inject specially crafted samples into the
training data which can make the decision boundary severely
deviate and cause classification errors [2]. In the real world,
initial training data is collected from open datasets and there
is the necessity of periodic retraining. This may provide
opportunities for adversaries to carry out attacks by poisoning
this public data.

In our previous work, we have developed a distributed IDS
based on the One Class Support Vector Machine (OC-SVM)
algorithm. Figure 1 shows the architecture of our system.
Specifically, we monitor system calls to detect anomalous
behaviors. In fact, Linux system calls are an interface between
an application and the Linux kernel and they can characterize
the run-time behaviors of a program. The interested reader can
refer to our publication on this [3].

The OC-SVM is widely used in the cyber security domain
and aims to find a decision boundary that separates the normal
and abnormal data points with a maximized geometry margin
[4]. It maps the input data points into a new feature space
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of higher or even infinite dimensions with kernel functions.
Therefore, it can deal with non-linear data patterns.

The work presented here uses this as a basis for further
exploration. Here we ask ourselves the question: How is the
OC-SVM based IDS resistant to the poisoning attacks and how
can we defend against them?
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Fig. 1: The architecture of an OC-SVM based distributed IDS
with system call monitoring.

To answer this question, we first evaluate the performance
degradation caused by 3 poisoning strategies with two syscall
datasets: the public ADFA-LD dataset and a real-world dataset
[5]. We construct tainted training datasets by injecting adver-
sarial samples with different poisoning attack strategies. We
measure the accuracy of the OC-SVM classifiers trained with
the benign dataset and the contaminated dataset respectively.
With our experimental results, we notice that the poisoning
attacks can deteriorate the classifier’s performance to a large
degree even with a small percentage of poisoning samples.

Next, we propose a sanitization process based on the
DBSCAN clustering algorithm because it does not require
any pre-knowledge of the normal data and can separate
clusters of any shape [6]. We evaluate the effectiveness of the
proposed methods and investigate the influences of different
distance metrics and dimensionality reduction techniques. We
demonstrate that the sanitization process achieves very good
performance for all applications in both datasets. The classifier
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trained with the sanitized dataset can obtain an accuracy value
very close or even higher than the original one.

II. BACKGROUND

To apply a ML-based IDS, we first need to train the model
and optimize the hyper-parameters. After this, the trained
model can be used in the real world to predict potential
intrusions with metric observations. In general, adversarial
machine learning attacks can be categorized as either evasion
attacks or poisoning attacks. Evasion attacks occur in the
test stage when the attackers manipulate or modify the test
samples to make the classifier give incorrect predictions.
Poisoning attacks happen instead in the training stage when the
adversaries evade the classifier by tampering with the training
samples. [2]

In poisoning attacks, the attacker adds adversarial samples
to the training data so that the ML model’s decision boundary
can be manipulated. The adversarial samples can be crafted
either by flipping the labels, e.g. inject malicious samples in
the normal training set, or by distorting the training samples,
e.g. adding deliberately calculated noise to the feature vectors.
The latter is commonly applied and is more effective to ML
models that deal with image data. In our work, where we deal
with time series data, we mainly focus on the label flipping
attacks.

In our work, we use OC-SVM, an unsupervised learning
algorithm where only normal data is required for model
training. The label flipping poisoning attacks for unsupervised
learning algorithms such as OC-SVM can be understood as
the strategies needed to select the malicious samples to inject
under a predefined cost. Nearest first label flipping, furthest
first label flipping and optimization label flipping are three
commonly used poisoning attacks. We must note that the last
one, the optimization label flipping method, tries to find a
combination of malicious samples by solving an optimization
problem. This optimization is required because performing an
exhaustive search for all possible combinations is extremely
computationally intensive and normally not feasible. In the
next section, we will describe only one specific type of
optimization attack, ALFA, because of its popularity.

ITII. POISONING STRATEGIES

To evaluate the performance degradation, we use 3 poi-
soning strategies, nearest first attack, furthest first attack and
adversarial label flip attack (ALFA). All the 3 attacks are
white-box attacks, which means the adversary needs to know
the model parameters and feature extraction methods a-priori.
In practice, it is expected that the adversary’s capability is
bounded, and we assume that the attacker can only inject a
limited number of malicious samples.

A. Nearest first attack

For the nearest first attack, the adversary first injects mali-
cious samples which have the smallest distances to the decision
hyperplane of the OC-SVM classifier in the feature space.
These samples are normally hard to distinguish as they can

occur also in absence of an attack: either they are caused by
incorrect labeling or by the intrinsic classification error rate
present in a ML-based IDS in the scenario of model-retraining.

B. Furthest first attack

For the furthest first attack, the adversary first inserts mali-
cious samples which have the largest distances to the decision
hyperplane in the feature space. This strategy is intuitively
most effective since it aims to shift the decision boundary of an
OC-SVM classifier to a big degree and is also computationally
efficient.

C. Adversarial label flips attack (ALFA)

The adversarial label flips attack (ALFA) poison strategy is
an optimization label flipping attack [7]. It aims to find adver-
sarial samples that jointly deteriorate the accuracy of a classi-
fier to a maximal degree under a given cost. It adopts a relaxed
optimization framework that can achieve near-optimal results
with less computational effort. In ALFA, the optimization
problem is decomposed into two sub problems: a quadratic
programming (QP) program and a linear programming (LP)
program. The QP program is used to compute a decision
boundary of the classier with the latest updated tainted training
dataset. The LP program is used to update the training dataset
with maximal hinge error with respect to the latest decision
boundary. The ALFA algorithm devises an iterative approach
to minimize QP and LP alternatively. The process is repeated
until convergence. However, the proponents of this attack for-
mulated an optimization framework in the supervised setting.
We adapt the framework to unsupervised learning algorithms
by changing the objective functions and the constraints in the
LP program.

IV. THE DATA SANITIZATION WITH DBSCAN
A. The DBSCAN clustering algorithm

DBSCAN is a density-based clustering algorithm. It sep-
arates the data points in the feature space into clusters and
assigns to each point a label. The general idea is to find areas
that reach the minimum density level and are separated by
lower-density areas. [6]

The DBSCAN cluster algorithm is illustrated in Figure 2.
Any data point is assigned one of the 3 labels, which are core
point in red, border point in blue and outlier in green. In a
DBSCAN cluster model there are 2 predefined parameters,
e and minPts. e defines the maximal distance between two
points that can be considered as neighbors. It is the radius
of the circles in the Figure 2. The distance measure can be
arbitrary. minPts defines the threshold of neighbor numbers
that reaches a minimum density level. A point is labeled as a
core point if it has at least min Pts neighboring points within
the radius €. A point is labeled as a border point if it has less
than minPts neighboring points within the radius e, but is
the neighbor of any core point. Other points are labeled as
outliers.

The choice of parameters € and minPts has a direct
influence on the DBSCAN clustering algorithm’s performance,
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especially in high-dimensional data space [8]. We will describe
how we chose parameters in our sanitization process with
details in section I'V-B.

@® cCorePoints

© Border Points

Outliers

Fig. 2: The DBSCAN clustering algorithm.

B. Sanitization flowchart

There are multiple reasons for the adoption of the DBSCAN
clustering algorithm for sanitizing the training dataset against
poisoning attacks. Firstly, it deals well with nonlinear data. It
can find non-linearly separable clusters of any shape, while
KNN and k-means cannot do this well. Secondly, the DB-
SCAN algorithm does not require a priori knowledge of the
normal data. On the one hand, we do not need to specify the
number of clusters as needed in other clustering mechanisms.
On the other hand, we do not require normal data as for other
outlier detection mechanisms. It is not a trivial task to get
quality-guaranteed normal data, especially for the initial IDS
training.

syscall traces parameters
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Fig. 3: The flowchart of the sanitization process.

Figure 3 shows the flowchart of the sanitization process. The
syscall traces and parameters are inputs of the sanitization
process. To select proper parameters ¢ and minPts, we
conduct a grid search if any normal data is available. As
the feature vectors are normalized frequency distributions, the
pairwise distances normally lie in the interval between 0 and
1 for most popular distance metrics, such as cross entropy and
euclidean. The parameter min Pts also reaches an upper limit
of the total number of available normal data points. We iterate

combinations of € and minPts. Among all the combinations
where the input normal points end with a single cluster, we
select the one with a relatively small ¢ value and a moderate
manPts value. We also investigate the parameter sensitivity
over different applications and distance metrics in section VII.

In the preprocessing module, the syscall traces are mapped
to data points in the feature space. Each trace is parsed and
vectorized as the frequency distribution of the system call
symbols. The algorithm performs dimensionality reduction, if
necessary, and computes pair-wise distances with the given
distance metric. In the DBSCAN clustering module, the algo-
rithm separates the clusters and labels each data point, either in
the original feature space or in the space of lower dimension.
The sanitization process first checks the number of clusters.
If there is more than one cluster, the process sets an alarm
and expert effort would be required. Otherwise, the process
removes all the outliers and generates the sanitized samples in
the original feature space.

V. EXPERIMENTS AND DATASET

We design experiments to investigate the performance
degradation of the OC-SVM classifier due to poisoned training
data and the effectiveness of the proposed DBSCAN-based
sanitization algorithm.

A. Dataset

To perform the experiments we adopt two datasets of
system call traces: a public dataset and a real world dataset.
The ADFA-LD dataset is a benchmark dataset for evaluating
anomaly detection systems of system call traces. It was
released recently and it incorporates the characteristics of
modern attacks [5]. In the ADFA-LD dataset, the normal
system call traces are collected from a contemporary Linux
server and abnormal traces are generated by 6 types of modern
attacks. In our experimental evaluation, we choose 3 attacks,
web shell, java interpreter and add user. We also run the
experiments with a real world dataset, the DLALD use case.
We run two dynamic applications with Docker containers:
CouchDB and MongoDB. To emulate the dynamic behaviors
of real-world database users, we send requests to the container
with Apache JMeter, an open-source workload generation
tool. We craft attacks with exploitation tools, e.g Nmap and
Metasploit, to generate abnormal traces. Table I describes the
detailed information of our two datasets: the corresponding
applications, the crafted attacks and the associated number
of traces. In the real world dataset, the monitored streaming
traces are segmented with a fixed window size of 30000 syscall
symbols, which was determined to be the optimal choice in
our previous work [3].

B. Experimental Design

There are two goals in our experiments. On the one hand,
we aim to investigate the performance degradation of the OC-
SVM based IDS with the poisoned training dataset. We also
compare different poisoning strategies described in section III.
On the other hand, we try to explore the effectiveness of our
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TABLE I: Applications and attacks of the public dataset and the real world dataset.

Number of traces

Dataset Name Application Attacks
Normal  Attack
Add user 91
ADFA-LD public dataset ~ Linux web server  Java meterpreter 833 125
Web shell 118
CouchDB Container escalation 248 173
The real world dataset MongoDB Brute force 1348 148

proposed defense mechanisms with various distance metrics
and dimensionality reduction methodologies.

1) Dataset split: We use the metric accuracy to evaluate the
performance of a classifier. Accuracy describes the proportion
of correct predictions. It is computed as:

Nr. correct predictions
accuracy = — (1
Nr. total predictions

Figure 4 illustrates how we split the dataset to perform our
evaluation. First of all, each system call trace is vectorized
to a fixed length vector with the frequency distribution of all
system call symbols. We call those feature vectors samples. As
shown in Table I, a dataset includes normal and attack traces
for each application. Secondly, we split the normal samples
into a train normal dataset and a test normal dataset with
a given ratio. In our experiment we set this to 0.9. Thirdly,
we randomly select attack samples to construct the test attack
dataset. To construct a balanced untainted test dataset, the
number of samples in the fest attack dataset is equal to that
of the test normal dataset. This means the worst performance
of the classifier is 50% consistent with a random guess. With
different poisoning strategies, the training normal dataset
is tainted with a number of deliberately selected malicious
samples. We call the poisoned dataset the fainted training
dataset.

We limit the attacker’s capability so that they can only inject
a specific portion of malicious samples. Here we define the
metric poison portion as the fraction of the number of the
malicious samples over the number of the benign samples:

. . Nr. malicious training samples
poison portion = : — (2)
Nr. benign training samples

In our experiment, we choose the poison portion in the range
0.05 - 0.2

2) Performance degradation and improvement: To evaluate
the performance degradation, we first train the OC-SVM clas-
sifier with the train normal dataset and compute the accuracy
with the untainted test dataset. This indicates the original
performance of the OC-SVM based syscall IDS. Secondly, we
train the OC-SVM classifier with the tainted training dataset
and test its performance also with the untainted test dataset.
By comparing the accuracy values achieved by the above
two settings, we can numerically determine the performance
degradation.

To demonstrate the effectiveness of our proposed sanitiza-
tion process, we train the OC-SVM model with the filtered
training dataset and test the classifier again with the untainted
test dataset.

3) Distance metrics: We also investigate the influence of
different distance metrics on the performance of the sani-
tization process. We adopt various distance metrics in the
DBSCAN clustering module in Figure 3 and compare the
performance improvement.

4) Dimensionality reduction: Dimensionality reduction is
conducted in the preprocessing module in Figure 3. The
technique transforms data from a high-dimensional space into
a low-dimensional space so that the low-dimensional repre-
sentation retains some meaningful properties of the original
data. We adopt two dimensionality reduction techniques in our
experiment: principal component analysis (PCA) and truncated
singular value decomposition (SVD). Then we compute the
accuracy.

VI. RESULTS ANALYSIS OF PERFORMANCE DEGRADATION
AND IMPROVEMENT AFTER SANITIZATION

We investigate the performance degradation of the classifier
with different poisoning strategies and the effectiveness of the
sanitization process for both datasets. We conduct experiments
with the procedures explained in the section V-B. We use the
Gaussian kernel to train the OC-SVM classifiers with two
different datasets [9]. In the DBSCAN clustering algorithm,
we compute pairwise distances between data points with
Euclidean distance metric in the original feature space without
any dimensionality reduction techniques. With the parameter
calculation method described in Section IV-B, we chose € as
0.3 and minPts as 100 for both datasets.

Figure 5 and Figure 6 show the performances of the OC-
SVM classifier trained with the original dataset (in blue), the
tainted training dataset (in orange) and the filtered training
dataset (in green) with different poison portion for the public
ADFA-LD dataset and the real world dataset respectively.

A. Performance degradation

We first focus on the blue and orange lines in Figure 5 and
Figure 6 to investigate the performance degradation. It is not
surprising to notice that the accuracy value decreases as the
poison portion increases.

For both datasets, the furthest first attack always degrades
the classifier performance to the largest degree. It can dete-
riorate the accuracy to a value as low as 0.5 already from
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Fig. 5: The plot of accuracy vs poison portion for the public dataset. Each column corresponds to a specific poisoning
attack strategy: furthest first, nearest first and ALFA. Each row corresponds to a specific attack in the dataset: Add user, Java

meterpreter and Web shell.

a poison portion percentage of less than 0.1. The nearest
first attack shows performance degradation when the poison
portion exceeds a threshold, which depends on concrete appli-
cations and attacks. The accuracy for the ALFA attack shows
a decreasing trend but fluctuates. This behaviour is because the
algorithm computes a combination of adversarial samples with
sub-optimal choices. In fact, adversarial samples that were
selected with a smaller poison portion and that contributed to a
big decision boundary shift may actually not be selected again
with a larger poison portion. According to our experimental
results, the ALFA attack strategy is not so good as expected
when it is used in the unsupervised learning scenario. A second
reason is that this method is not well suited for the data
distribution of system call traces.

In short, the performance of an OC-SVM classifier can be
significantly affected by deliberately crafted malicious samples
even when the poison portion is very small. This can be

considered as a serious vulnerability when applying the OC-
SVM based IDS in real world settings. From the attacker’s
perspective, the furthest first attack seems to be the optimal
choice because it leads to a larger accuracy degradation level
with a lower computational effort.

B. The effectiveness of the sanitization process

Observing Figure 5 and Figure 6, we can conclude that the
accuracy after the sanitization process (green line) is pretty
close the original accuracy of the OC-SVM classifier (blue
line) for all applications in both datasets. This indicates that
the tainted samples can be easily filtered out by the DBSCAN
clustering algorithm and that our method is effective regardless
of the underlying data distribution patterns of applications and
attacks.

We can also make a number of interesting and more specific
observations. First when there is a good separation between
normal and abnormal data points in the feature space of the
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attack strategy: furthest first, nearest first and ALFA. Each row corresponds to a specific application in the dataset: CouchDB
and MongoDB. The blue and green lines are overlapping since they have equal accuracy.

syscall traces the original accuracy and the one after sanitiza-
tion are essentially the same, as seen in Figure 6 where the blue
and green line overlap. Second, it can occur that the accuracy
after sanitization is even slightly better than the original one.
We see this for the Web shell attack in the public ADFA-LD
dataset, in the 3rd row in Figure 5. One possible explanation is
that the sanitation process can also filter out noisy points that
do not follow the distribution pattern of the general dataset.
Third, we observe that different data distribution patterns have
a larger impact on the performance of the sanitization process
than the poisoning strategies themselves. This is visible in
Figure 5 where the accuracy after sanitization is very similar
on the same row, ie the same application, more than in the
same column, ie the same method. Finally, we can observe
that the accuracy of the OC-SVM classifier remains almost
constant when the poison portion increases for all settings in
both datasets.

VII. INFLUENCES OF DISTANCE METRICS AND
DIMENSIONALITY REDUCTION TECHNIQUES

We evaluate the influence of different distance metrics and
dimensionality reduction techniques in the sanitization process
and try to find the optimal choice for the underlying data
patterns for the system call traces.

With the strategies described before, the parameters of
different distance metrics are shown in Table II. We observe
that the optimal parameters ¢ and min Pts vary over different
distance metrics along the row but are the same among
different applications and attacks. This indicates that we can
adopt the historical parameters of the same distance metric
and expect good performance even if there is not any normal
training data available for a new specific application.

In Figure 7, we show the comparison results with 6 distance
metrics for the Add user attack in the ADFA-LD dataset. Due
to the page limitation, we attach the experimental results for
other applications in our project repository .

Among all the distance metrics, Euclidean distance (blue)
has the best performance for all 3 label flipping strategies. The
accuracy has a constant value of 0.84 as the poison portion
increases, which is very close to the original value of 0.85. The
cosine distance (brown) and Manhattan distance (pink) have
similar performance but contribute to lower accuracy values,
which are about 0.84 and 0.76 respectively. This means those
3 distance metrics can represent the similarities of data points,
mapped by frequency distributions of syscall symbol, in the
feature space well. In addition they provide good separation
between normal and abnormal traces, with the Euclidean
distance having the best capability to distinguish between
similar ones. The 3rd order Minkowski distance (grey) can
filter out samples that are far from the decision boundary.
It leads to an accuracy even higher than the original value
when the poison portion is smaller than 0.1 for the furthest
first attack and 0.075 for the ALFA attack. This is because
the 3rd order polynomial over-stretches the larger values and
over-shrinks the lower values. The square distance (purple)
and cross entropy(red) do not work well and fail to extract the
similarity information from the feature vector.

Figure 8 shows the accuracy with 2 dimensionality re-
duction techniques, PCA and trucatedSVD, applied in the
sanitization process for the Add user attack in the ADFA-
LD dataset. We adopt the Euclidean distance metric as it is

Uhttps://github.com/kelsey- 1015/DL4LD/blob/master/experimental_results.
pdf
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TABLE II: The chosen parameters (e and minPts) of the sanitization process with different distance metrics and applications.

Euclidean  Cross Entropy ~ Square Cosine Manhanttan ~ Minkowski (order =3)
ADFA-LD dataset (0.3, 100)  (0.81, 60) (0.21, 100) ~ (0.41, 100)  (0.71, 60) (0.31, 100)
The real world dataset (0.3, 100)  (0.81, 60) (0.21, 100)  (0.41, 100)  (0.71, 60) (0.31, 100)
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Fig. 7: Performance improvement with different distance metrics for the public dataset with Add user attack.

demonstrated as optimal and the reduced dimension is set to 10
with grid search and correlation analysis. Same as our previous
observation, the accuracy is constant at 0.84 over different
poison portion values. The accuracy values fluctuate slightly
with dimensionality techniques, ranging from 0.8 to 0.86 for
truncatedSVD (in red) and from 0.8 to 0.89 for PCA (in
purple). We observe that performing dimensionality reduction
does not increase the effectiveness of the sanitization process
obviously.

VIII. RELATED WORK

There are plenty of recent works investigating the perfor-
mance degradation of ML-based IDS caused by poisoning
attacks. [10] investigated the influences of the poisoning
attacks for PDF malware detectors using deep learning models.
But the PDF files, same as image data, require the adversarial
samples to have the same functionality as the normal data. The
work in [11], [12] and [13] studied the impact of poisoning
attacks on the network IDS with public dataset of network
traffics, which are also time-series. However, all those IDS
adopt deep learning models, which have different label flipping
strategies from classic machine learning models. To the best
of our knowledge, we are the first to evaluate the sensitivity of
host-based IDS with the monitoring metric of syscall traces.
In the research area of defending adversarial machine learning
attacks, some works aim to make the training algorithms
more resistant. [14] used nonlinear data projections and game
theory to improve the resilience of SVMs against adversarial

samples. The work in [15] proposed an adversarial SVM
model, which can gain higher robustness with a modified loss
function. However, these approaches sacrifice the performance
of the classifiers and are not general. [16] proposed to reduce
the influence of the adversarial samples by measuring the
impact of each sample, but the method is very computationally
expensive. [17] used KNN to filter out poisoned samples but
it has limited effect for high dimensional data. [18] proposed
to use weight initialization to remove the adversarial samples
in the training set, but it assumes a small untainted dataset is
available.

IX. CONCLUSIONS AND FUTURE WORK

We evaluate and compare the performance degradation of
OC-SVM caused by 3 different poisoning attacks: furthest
first attack, nearest first attack and ALFA. From the attacker’s
perspective, the furthest first attack is optimal with a higher
degradation level and lower computational effort. From the
defender’s perspective, we notice that even a small portion
of injected malicious samples can deteriorate the classifier’s
performance dramatically.

We propose a sanitization process to filter out malicious
samples before training. DBSCAN is used to separate clusters
and label outliers according to the density. The sanitization
process automatically removes all outliers if the output cluster
number is 1. Our experimental results demonstrate the saniti-
zation process is effective for all applications and poisoning
strategies we considered. We compare the performance of 6
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Fig. 8: Performance improvement with different dimensionality reduction techniques for the public dataset with Add user

attack.

distance metrics and observe that the Euclidean distance is
optimal since it fits best to the data patterns of the system call
traces. Dimensionality reduction techniques do not contribute
to an obvious performance improvement even with properly
selected dimension numbers. DBSCAN parameters are sen-
sitive to distance metrics but not applications and parameter
reuse is therefore feasible.

In the future, we will try to increase the robustness of the
OC-SVM algorithm itself and make it more resilient to noise
and adversarial samples. In addition, we aim to further explore
the influences and defense mechanisms of the evasion attacks,
in which the adversary tries to fool the IDS classifier in the
test phase by manipulating the observations.
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