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SPARSE AND STRUCTURED VISUAL ATTENTION

Pedro Henrique MartinsÈ Vlad Niculae Á Zita Marinhoçä André F. T. MartinsÈÉÆ

È Instituto de Telecomunicações Á IvI, University of Amsterdam ç Priberam Labs
äInstitute of Systems and Robotics ÉLUMLIS (Lisbon ELLIS Unit) ÆUnbabel

ABSTRACT

Visual attention mechanisms are widely used in multimodal
tasks, as visual question answering (VQA). One drawback of
softmax-based attention mechanisms is that they assign some
probability mass to all image regions, regardless of their ad-
jacency structure and of their relevance to the text. In this pa-
per, to better link the image structure with the text, we replace
the traditional softmax attention mechanism with two alterna-
tive sparsity-promoting transformations: sparsemax, which is
able to select only the relevant regions (assigning zero weight
to the rest), and a newly proposed Total-Variation Sparse At-
tention (TVMAX), which further encourages the joint selec-
tion of adjacent spatial locations. Experiments in VQA show
gains in accuracy as well as higher similarity to human atten-
tion, which suggests better interpretability.

Index Terms— Attention, Structured Sparsity, Total Vari-
ation

1. INTRODUCTION

Vision-language tasks, as visual question answering (VQA),
require combining natural language understanding with ob-
ject and scene recognition. While general purpose architec-
tures can be powerful [1, 2], the ability to incorporate struc-
tural bias is a desirable feature to better link the language and
vision components and produce more interpretable decisions.
How can we encourage models to look at the relevant objects
only, avoiding distractions?

The current state of the art for these tasks is based on
deep neural networks with visual attention [3, 4, 5, 6, 7].
These models use attention mechanisms to select either grid
features generated by convolutional neural networks (CNNs)
pretrained on image recognition datasets [8], or CNN features
of bounding boxes. While bounding boxes have the advantage
that the attention mechanism can attend to full objects, they
require an external object segmentation model, which has a
computational cost. In this paper, we propose new selective
visual attention mechanisms over grid features, which owe
their ability to select compact objects to the encouragement
of joint selection of neighboring regions.

A key component of attention mechanisms is the transfor-
mation that maps scores into probability values, with softmax

being the standard choice [1]. A downside of softmax is that
it is strictly dense, i.e., it devotes some attention probability
mass to every region in the image. This makes the model less
interpretable and, for complex images, it may lead to a “lack
of focus”. This is visible in the example of Fig. 1: the model
using softmax attends, always, to the entire image and, con-
sequently, wrongly predicts that no one is crossing the bridge.

In this work, we introduce novel selective visual attention
mechanisms by endowing them with a new capability: that of
selecting only the relevant features of the image. To this
end, we first propose replacing softmax with sparsemax [9].
With sparsemax, the attention weights obtained are sparse,
leading to the selection (non-zero attention) of only a few rel-
evant features. While sparsemax has been applied success-
fully to NLP to attend over words [10, 9, 11], its application
to attention over image regions is so far unexplored. However,
as can be seen in the example of Fig. 1, despite leading to an
increased focus on the relevant features, sparsemax selects
discontiguous regions of the image which prevents the model
from attending to full objects and reduces interpretability.

Thus, to further encourage the weights of related adja-
cent spatial locations to be the same (e.g., parts of an object),
we introduce a new attention mechanism: Total-Variation
Sparse Attention (which we dub TVMAX), inspired by prior
work in structured sparsity [12, 13]. Two key results of our
paper (§2.3 and Propositions 1–2) show that TVMAX can be
evaluated by composing a proximal operator with a sparse-
max projection, and that its Jacobian has a closed-form ex-
pression. This leads to an efficient implementation of its for-
ward and backward passes.

With TVMAX, sparsity is allied to the ability of select-
ing compact regions, improving interpretability, as shown in
Fig. 1. Experiments, in VQA, show that TVMAX leads to im-
proved accuracy while having attention maps more similar to
human attention, suggesting higher interpretability.1

2. SELECTIVE ATTENTION

Attention mechanisms [1] have the ability to dynamically at-
tend to relevant input features, such as regions of an image.
To permit end-to-end training with gradient backpropagation,

1Code available at https://github.com/deep-spin/TVmax

https://github.com/deep-spin/TVmax
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Fig. 1: VQA example using softmax (top), sparsemax (middle), and the proposed attention mechanism: TVMAX (bottom).

they require a differentiable mapping from importance scores
z ∈ Rk to a distribution p ∈ 4k, where 4k := {p ∈
Rk |

∑k
i=1 pi = 1,p > 0} denotes the probability simplex.

The standard choice is the softmax transformation, defined as
[softmax(z)]i = exp(zi)∑

j exp(zj) . Since softmax is strictly posi-
tive, its output is dense: it always assigns some probability
mass to all image regions, even irrelevant ones. This accumu-
lation of low probabilities may “distract” the model, prevent-
ing it from fully attending to the most relevant parts. This mo-
tivates our proposed selective visual attention mechanisms.

2.1. Sparsemax

To achieve selective capabilities, we propose the use of
sparsemax [9], a sparse mapping consisting in the Eu-
clidean projection of z onto the simplex: sparsemax(z) :=
arg minp∈4k

1
2‖p− z‖22. Sparsemax encourages sparse out-

puts, corresponding to the boundary of4k. This is an attrac-
tive property for visual attention mechanisms, where often
only a few features provide relevant information.

2.2. Sparse and Structured Visual Attention

Since the model, often, needs to identify the full objects
present in the image, the selected regions should be encour-
aged to have a compact structure. However, sparsemax is
unstructured and index-invariant, leading it to select dis-
contiguous regions. To overcome this, we propose a new
visual attention mechanism, TVMAX. TVMAX is a (non-
trivial) generalization of fusedmax [14], a 1D transformation
based on fused lasso, to the 2D case. For ease of exposition,
we first describe how fused lasso is extended to arbitrary
graphs, and then we particularize to the 2D case.

Let w ∈ Rk be a vector of weights, and (V,E) be an
undirected graph, where V = {1, . . . , k} and E ⊆ {(i, j) ∈

V 2 | i < j}. The generalized fused lasso penalty [13] is
defined as ΩE(w) =

∑
(i,j)∈E |wi − wj |. Minimizing ΩE

encourages “fused” solutions, i.e., it encourages wi = wj
for (i, j) ∈ E. In particular, its proximal operator can be
seen as a fused signal approximator, seeking a vector w
that approximates x well and that is encouraged to be fused:

proxλΩE
(x) = arg min

w∈Rd

1

2
‖w − x‖22 + λΩE(w). (1)

Computing the value of proxλΩE
is non-trivial in general [15],

but for certain edge configurations efficient algorithms exist:

• If E forms a chain, the problem is called 1D total
variation and the penalty is defined as ΩTV1D (w) :=∑k−1
i=1 |wi+1−wi|. It can be solved inO(k) time using

the taut string algorithm [16, 17]. We use the quasilin-
ear algorithm of [18], which is very fast in practice.

• If the indices are aligned on a 2D grid, as in an im-
age, the problem is called 2D total variation and the
penalty is defined as ΩTV2D (W ) :=

∑
i ΩTV1D (wi,:) +∑

j ΩTV1D (w:,j), where wi,: and w:,j denote the rows
and columns of W . Unlike the 1D case, exact algo-
rithms are not available. However, for an input of size
a × b, it is possible to split the penalty into a column-
wise and b row-wise 1D problems, and apply iterative
methods, as the proximal Dykstra algorithm [17, 19].

TVMAX combines 2D total variation (TV2D) regulariza-
tion with sparsemax. This way, it promotes sparsity and en-
courages the attention weights of adjacent spatial locations to
be the same, selecting contiguous regions of the image.

Definition 1 (TVMAX). Let z ∈ Rk, such that the indices of
z can be decomposed into rows and columns. The TVMAX
transformation is defined as

TVMAX(z) := arg min
p∈4k

1

2
‖p− z‖22 + λΩTV2D (p), (2)



where λ is a hyper-parameter controlling the amount of fusion
(λ = 0 recovers sparsemax) and ΩTV2D is the 2D TV penalty.

2.3. TVMAX’s Forward and Backward Passes

In order to use the TVMAX transformation as a component in
a neural network, we need efficient forward and backpropa-
gation algorithms. We will now derive these algorithms for a
more general case, the generalized fused sparse attention.
We follow [14] and define

gfusedmaxE(x) := arg min
p∈4k

‖p− x‖22 + λΩE(p). (3)

This can be seen as a constrained fused lasso approximator,
because the solution p must be a probability distribution vec-
tor. While the optimization function is very similar to Eq. 1,
note the additional constraint p ∈ 4k. Fortunately, the fol-
lowing result holds.

Proposition 1. The generalized fusedmax can be expressed
as gfusedmaxE(x) = proj4k

(
proxλΩE

(x)
)
.

Proof. This result is an extension of Proposition 2 in [14],
and also follows from Corolary 4 of [20]. By taking f = ι4,2

and noting that ι4 is symmetric: if p ∈ 4, then any vector
p′ obtained by permuting p is also in 4, because its values
remain non-negative and sum to 1.

Proposition 1 shows that gfusedmax’s forward pass can
be computed simply by composing the proximal step of fused
lasso with the forward pass of sparsemax. It also provides a
shortcut for deriving the Jacobian of gfusedmax via the chain
rule. Denoting by JF the Jacobian of proxλΩE

, we have:

∂ gfusedmax

∂z
= J sparsemax(proxλΩE

(z))JF (z). (4)

J sparsemax has been derived by [9]: J sparsemax(z) = diag s −
1
‖s‖1 ss

>, where sj = 1 if sparsemax(z)j > 0 and sj = 0

otherwise. The next proposition completes the puzzle, giving
a full characterization of JF .

Proposition 2 (Group-wise characterization of proxλΩE
). Let

w? := proxλΩE
(z), and denote by Gi the set of indices fused

to wi in the solution, defined recursively:

1. i ∈ Gi for all i, and

2. j ∈ Gi ∃m ∈ Gi such that edge (m, j) ∈ E and
w?m = w?j .

Define sij = sign(w?i − w?j ). Then, we have

w?i =
1

|Gi|
∑
j∈Gi

zj +
∑

(m,j)∈E,
m 6∈Gi

λsmj −
∑

(j,m)∈E,
m 6∈Gi

λsjm

 .

(5)
2ι4 is the indicator function of set 4.

Proof. The subgradient optimality conditions of Eq. 1 are
[21]:

w?i −zi+
∑

(i,k)∈E

λtik−
∑

(k,i)∈E

λtki = 0 1 ≤ i ≤ d. (6)

where tij = sij if w?i 6= w?j , otherwise tij is a free variable in
[−1, 1]. We focus on a single group G = Gi. Within a fused
group, the solution is constant, i.e., w?j = w for j ∈ G. We
separate the sums in Eq. 6 according to whether k ∈ G or not,
and move the “constant” terms to the right hand side, yielding

w +
∑

(j,k)∈E
k∈G

λtjk −
∑

(k,j)∈E
k∈G

λtkj =zj −
∑

(j,k)∈E
k 6∈G

λsjk +
∑

(k,j)∈E
k 6∈G

λskj ,

(7)

for j ∈ G. Summing up the Eq. 7 over all j ∈ G, we observe
that for any edge (i, j) ∈ E with i, j ∈ G, the term λtjk
appears twice with opposite signs (as in Eq. 9 in [22]). Thus,

∑
j∈G

w =
∑
j∈G

zj +
∑

(k,j)∈E
k 6∈G

λskj −
∑

(j,k)∈E
k 6∈G

λsjk

 . (8)

Dividing by |G| gives exactly Eq. 5. This reasoning applies
to any group Gi.

Proposition 2 enables easy computation of a generalized
Jacobian of gfusedmax: since small perturbations in z never
change the groups Gi nor the signs of across-group differ-
ences sij , differentiating Eq. 5 yields

(JF )i,j =
∂w?i
∂zj

=

{
1
|Gi| , j ∈ Gi,
0, j 6∈ Gi.

(9)

This generalizes Lemma 1 of [14] to arbitrary graphs.

Computation. As we show in Proposition 1, computing
TVMAX’s forward pass can be done by chaining efficient al-
gorithms for TV2D and sparsemax. From Eq. 4 we have that
TVMAX’s Jacobian can be computed by composing JF and
J sparsemax. As derived in Proposition 2, (JF )i,j = 1/nij if i
and j are fused in a group with nij elements, and 0 otherwise.
Thus, the backward pass intuitively involves “spreading” the
credit assigned to one region across all regions fused with it.
This can be implemented by Alg. 1 inO(Ng log k) where Ng
is the number of groups of fused regions. In the worst case,
when there are no fused regions, the complexity isO(k log k).
This algorithm is inspired by flood filling algorithms [23].

3. EXPERIMENTS

To compare the attention mechanisms in VQA, we use the
encoder-decoder version of modular co-attention networks



Test-Dev Test-Standard

Y/N Numb. Other Overall Y/N Numb. Other Overall

bounding boxes
softmax 85.14 49.59 58.72 68.57 85.56 49.54 59.11 69.04
sparsemax 85.41 50.29 58.62 68.71 85.80 50.18 59.08 69.19

grid
softmax 86.88 52.61 60.15 70.31 86.94 52.88 60.36 70.56
sparsemax 86.61 52.28 60.04 70.11 86.77 52.66 60.14 70.40
TVMAX 86.92 53.19 60.22 70.42 86.98 53.08 60.56 70.70

Table 1: VQA accuracy (per-type and overall) on VQA-2.0 dataset using bounding box features or grid features as input.

Algorithm 1 TVMAX backward pass

Input: p = TVMAX(x), dp ∈ Rk.
Output: dx = J>

TVMAX(dp) ∈ Rk

Initialize: N ← ∅, V ← ∅, G← ∅, s = 0
dw ← (J sparsemax)

> dp
while |V | < k do

pick (i0, j0) 6∈ V , push (i0, j0) to N
while N not empty do

pop (i, j) from N
if pi,j = pi0,j0 then

G← G∪{(i, j)}, V ← V ∪{(i, j)}, s← s+(dw)i,j
for all neighbours (i′, j′) ∼ (i, j) do

if (i′, j′) 6∈ V then
push (i′, j′) to N

if G not empty then
(dx)i,j ← s/|G| for all (i, j) ∈ G,G← ∅, s = 0

[5]. To represent the image we use grid features pre-trained
by [7] on Visual Genome [8] with a ResNet-152 as backbone
(“grid” in Table 1) or bounding box features extracted with
Faster R-CNN [24] pretrained on Visual Genome (“bound-
ing boxes” in Table 1). The different attention mechanisms,
softmax, sparsemax, and TVMAX, are used in the output
attention layer. All models were trained on VQA-v2 dataset
[25] for 15 epochs using Adam [26] with a learning rate of
min(2.5t · 10−5, 1 · 10−4) when using bounding boxes and
min(2.5t · 10−5, 5 · 10−5) for grid features, where t is the
epoch number. After 10 epochs, the learning rate is multiplied
by 1/5 every 2 epochs. We set λ = 0.01 for TVMAX.

Results. When using bounding box features, sparsemax out-
performs softmax, suggesting that a sparse selection of rele-
vant bounding boxes leads to more accurate answers. When
using grid features as input, the model using TVMAX atten-
tion outperforms all other models. This shows that having
sparse attention in conjunction to encouraging the selection
of contiguous regions, not only improves interpretability but
also leads to an accuracy improvement in VQA. Moreover,
the superior result of TVMAX when compared to sparsemax
corroborates our premise that selecting contiguous regions of
the image is beneficial. We can also see that, as stated in [7],
grid features outperform bounding box features.

Human attention. Finally, to understand if TVMAX leads
to higher interpretability, we compared the attention distri-
butions obtained using the different transformations with hu-
man attention. To do so, we used the VQA-HAT dataset [27],
where human attention is obtained by having annotators un-
blurring the relevant regions of the images. To compare the
attention distributions with the human attention we used the
Spearman’s rank correlation and the Jensen-Shannon diver-
gence (JS). As shown in Table 2, the attention distributions

Spearman JS divergence

softmax 0.33 0.64
sparsemax 0.32 0.66
TVMAX 0.37 0.62

Table 2: Spearman correlation and JS divergence between attention
distributions obtained with the different models and human attention.

obtained with TVMAX are more similar to human attention
than with softmax and sparsemax. This indicates that TV-
MAX leads to more interpretable attention distributions.

4. CONCLUSIONS

We propose using sparse and structured visual attention to
improve the process of selecting the relevant features. For
that, we used sparsemax and introduced TVMAX. By se-
lecting only relevant compact groups of features, TVMAX
leads to more interpretable attention distributions, as shown
by the higher similarity to human attention. Our experiments
in VQA show improvements in accuracy when replacing soft-
max by sparsemax to attend over bounding boxes and when
using TVMAX to attend over grid features.
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[17] Álvaro Barbero and Suvrit Sra, “Modular proximal op-
timization for multidimensional total-variation regular-
ization,” 2014.

[18] Laurent Condat, “A direct algorithm for 1-d total varia-
tion denoising,” IEEE Signal Processing Letters, 2013.

[19] Gideon Dresdner Fabian Pedregosa, Geoffrey Negiar,
“http://openopt.github.io/copt/,” 2020.

[20] Yaoliang Yu, “On decomposing the proximal map,” in
Proc. NeurIPS, 2013.

[21] Jerome Friedman, Trevor Hastie, Holger Höfling, and
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Höfling, and Franck Picard, “Adaptive Generalized
Fused-Lasso: Asymptotic Properties and Applications,”
2013.

[23] Sergei Burtsev and Ye.P. Kuzmin, “An efficient flood-
filling algorithm,” Computers & Graphics, 1993.

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian
Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in Proc. NIPS, 2015.

[25] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv
Batra, and Devi Parikh, “Making the V in VQA mat-
ter: Elevating the role of image understanding in Visual
Question Answering,” in Proc. CVPR, 2017.

[26] Diederik P. Kingma and Jimmy Ba, “Adam: A Method
for Stochastic Optimization.,” 2014.

[27] Abhishek Das, Harsh Agrawal, C. Lawrence Zitnick,
Devi Parikh, and Dhruv Batra, “Human Attention in
Visual Question Answering: Do Humans and Deep Net-
works Look at the Same Regions?,” in Proc. EMNLP,
2016.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1706.03762
http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1163.pdf
http://openaccess.thecvf.com/content_cvpr_2018/CameraReady/1163.pdf
https://arxiv.org/pdf/1908.07490.pdf
https://arxiv.org/pdf/1908.07490.pdf
https://arxiv.org/pdf/1908.07490.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Yu_Deep_Modular_Co-Attention_Networks_for_Visual_Question_Answering_CVPR_2019_paper.pdf
http://openaccess.thecvf.com/content_CVPR_2019/papers/Yu_Deep_Modular_Co-Attention_Networks_for_Visual_Question_Answering_CVPR_2019_paper.pdf
https://arxiv.org/pdf/1909.11740v3.pdf
https://arxiv.org/pdf/1909.11740v3.pdf
https://arxiv.org/pdf/1602.07332.pdf
https://arxiv.org/pdf/1602.07332.pdf
https://arxiv.org/pdf/1602.07332.pdf
http://proceedings.mlr.press/v48/martins16.pdf
http://proceedings.mlr.press/v48/martins16.pdf
http://proceedings.mlr.press/v48/martins16.pdf
https://www.aclweb.org/anthology/P18-2059.pdf
https://www.aclweb.org/anthology/P18-2059.pdf
https://www.aclweb.org/anthology/P19-1146.pdf
https://web.stanford.edu/group/SOL/papers/fused-lasso-JRSSB.pdf
https://web.stanford.edu/group/SOL/papers/fused-lasso-JRSSB.pdf
https://arxiv.org/pdf/1705.07704.pdf
https://arxiv.org/pdf/1705.07704.pdf
http://doi.acm.org/10.1145/2847421
http://doi.acm.org/10.1145/2847421
https://projecteuclid.org/euclid.aos/996986501
https://projecteuclid.org/euclid.aos/996986501
http://arxiv.org/abs/1411.0589
http://arxiv.org/abs/1411.0589
http://arxiv.org/abs/1411.0589
http://ieeexplore.ieee.org/document/6579659/
http://ieeexplore.ieee.org/document/6579659/
copt: composite optimization in Python
https://papers.nips.cc/paper/4863-on-decomposing-the-proximal-map.pdf
https://arxiv.org/abs/0708.1485
https://hal.archives-ouvertes.fr/hal-00813281/file/VLHP13_1.5.pdf
https://hal.archives-ouvertes.fr/hal-00813281/file/VLHP13_1.5.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf
https://arxiv.org/pdf/1612.00837.pdf
https://arxiv.org/pdf/1612.00837.pdf
https://arxiv.org/pdf/1612.00837.pdf
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://arxiv.org/pdf/1606.03556.pdf
https://arxiv.org/pdf/1606.03556.pdf
https://arxiv.org/pdf/1606.03556.pdf


A. EXAMPLES

Additional VQA examples, using the softmax, sparsemax, and TVMAX attention, are presented in Figures 2, 3, 4, and 5.
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Fig. 2: VQA using softmax (top), sparsemax (middle) and TVMAX attention (bottom). Shading denotes the attention weight, with white for
zero attention.
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Fig. 3: VQA using softmax (top), sparsemax (middle) and TVMAX attention (bottom). Shading denotes the attention weight, with white for
zero attention.
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Fig. 4: VQA using softmax (top), sparsemax (middle) and TVMAX attention (bottom). Shading denotes the attention weight, with white for
zero attention.
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Fig. 5: VQA using softmax (top), sparsemax (middle) and TVMAX attention (bottom). Shading denotes the attention weight, with white for
zero attention.

B. HUMAN ATTENTION EXAMPLES

We present in Figure 6 some images of the VQA-v2 validation set with the corresponding human attention from the VQA-HAT
dataset and the attention distributions obtained with the different attention mechanisms: softmax, sparsemax, and TVMAX.
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Fig. 6: Examples of human attention and the attention distributions obtained with the different attention mechanisms. The original image in
the left, followed by human attention, softmax attention, sparsemax attention, and TVMAX attention.
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