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Abstract—The GPU programming model is primarily aimed
at the development of applications that run one GPU. However,
this limits the scalability of GPU code to the capabilities of a
single GPU in terms of compute power and memory capacity.
To scale GPU applications further, a great engineering effort is
typically required: work and data must be divided over multiple
GPUs by hand, possibly in multiple nodes, and data must be
manually spilled from GPU memory to higher-level memories.

We present Lightning: a framework that follows the com-
mon GPU programming paradigm but enables scaling to large
problems with ease. Lightning supports multi-GPU execution of
GPU kernels, even across multiple nodes, and seamlessly spills
data to higher-level memories (main memory and disk). Existing
CUDA kernels can easily be adapted for use in Lightning, with
data access annotations on these kernels allowing Lightning to
infer their data requirements and the dependencies between
subsequent kernel launches. Lightning efficiently distributes the
work/data across GPUs and maximizes efficiency by overlapping
scheduling, data movement, and kernel execution when possible.

We present the design and implementation of Lightning,
as well as experimental results on up to 32 GPUs for eight
benchmarks and one real-world application. Evaluation shows
excellent performance and scalability, such as a speedup of 57.2×
over the CPU using Lighting with 16 GPUs over 4 nodes and 80
GB of data, far beyond the memory capacity of one GPU.

Index Terms—GPU, distributed computing, CUDA, program-
ming model

I. INTRODUCTION

Many applications in industry/science are nowadays acceler-

ated by Graphics Processing Units (GPUs) [1]–[4] and GPUs

will likely be used in future exascale systems [5]. A GPU

application consists of GPU-specific functions (called kernels)

that are executed on the GPU by a large number of threads in

parallel. This massive parallelism provides excellent speedups

over the CPU, but a single GPU is limited for large problems

that exceed the GPU capabilities

There are three orthogonal solutions to increase scalability:

1) spill data from GPU memory to host memory (or even disk),

2) use multiple GPUs within one node, or 3) use a cluster

of GPU-accelerated nodes. For all these solutions, the pro-

grammer must manually split the data into smaller pieces and

either stream these pieces through GPU memory, when using a

single GPU, and/or distribute them among different memories,

when using multiple GPUs. Data must be communicated

between GPUs to maintain data consistency and this intra- and

inter-node communication should be overlapped with kernel

execution to avoid idle time [6]. Each kernel launch must

also be split into smaller launches and scheduled onto the

available GPUs while maintaining correctness. Additionally,

GPU kernel code must be heavily modified to change indexing

into data structures and account for offsets in thread indices.

Finally, different tools and libraries must be combined (e.g.,

MPI, threading, serialization, scheduling, etc.). All of this

together is a massive engineering effort that leads to complex

code that is difficult to develop and maintain [7].

Several frameworks have been proposed to aid the de-

velopment of distributed multi-GPU applications either by

facilitating local access to remote GPUs for CUDA [8]–[13]

or OpenCL [12]–[18], by abstracting multiple (remote) GPUs

into a single virtual device [19]–[21], or by offering special

distributed data structures [22]–[24]. However, no framework

alleviate the programmer of all of the above complexities.

In this work, we present Lightning: a framework that enables

programmers to use a GPU-accelerated cluster in a way that is

similar to programming a single GPU, without worrying about

low-level details such as network communication, memory

capacity, and data transfers. Lightning supports distributed
kernel launches, which enable multi-GPU execution of a

single kernel, and distributed arrays, which distribute data

using a user-specified policy. Existing CUDA kernels can be

used in Lightning with only minor modifications. Data access

annotations on kernels allow Lightning’s runtime system to

automatically infer their data requirements, as well as the data

dependencies between subsequent kernel launches. This enable

multi-kernel workflows and complex pipelines.

All in all, Lighting provides many features that alleviate

programmers from the concerns of multi-GPU programming:

• Support for distributed kernel launches that automatically

distribute the work for a single kernel launch across the

available GPUs in a cluster.

• Existing CUDA kernel code can be reused by making

only slight changes and providing data annotations.

• Support for multi-dimensional distributed arrays that

have their data transparently distributed across the cluster.

• Data is automatically spilled to higher-level memory,

enabling datasets that do not fit into GPU memory.

• Data can be (partially) replicated among multiple GPUs

and replications are automatically kept consistent.

• Focus on asynchronous processing to enable overlapping

of scheduling, data movement, and kernel execution.

• Data dependencies between consecutive kernel launches

are automatically detected and tasks are executed in

parallel in a sequentially consistent order [25].
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8×8 threads 2×2 thread blocks 2×2 superblocks

Fig. 1: Example superblock distribution for 8×8 grid.

In this paper, we present the design and implementation

of our framework, as well as experimental results for eight

benchmarks and one real-world application. Evaluation shows

many excellent results, such as 57.2× speedup over the CPU

using Lightning with 16 GPUs for a dataset of 80 GB, which

is far beyond the memory capacity of a single GPU.

II. DESIGN

In this section, we present the abstractions that Lighting of-

fers to distribute work (distributed kernel launches, Sec. II-A)

and distribute data (distributed arrays, Sec. II-B). These two

concepts are united by data annotations (Sec. II-C) that allow

the planner (Sec. II-D) to construct an execution plan.

A. Distributed Kernel Launches

In GPU programming (e.g., CUDA or OpenCL), work

is performed on the GPU by launching a kernel onto the

device. Kernels are GPU-specific functions that are executed

by a large number of GPU threads in parallel. A kernel

launch is initiates an n-d grid of threads (n = 1, 2, 3) where

each thread is assigned a unique n-d index. Additionally, the

threads are grouped into fixed-sized rectangular thread blocks.

Threads within the same thread block can communicate, while

threads from different thread blocks cannot synchronize and

run independently of each other1.

For Lightning, we exploit the fact that thread blocks are

independent by distributing the thread blocks of a single

kernel launch across multiple GPUs, thus enabling multi-GPU

execution of a single kernel. We call this a distributed kernel
launch. The distribution of work is achieved by grouping

thread blocks into rectangular disjoint subgrids that we call

superblocks. Fig. 1 shows an example. Each superblock is

essentially one job: each is assigned to one GPU in the system

and that subset of thread blocks will be executed on that

specific GPU. The superblock distribution must be passed

explicitly by the programmer for each kernel launch.

Currently, Lightning supports kernels written in CUDA,

although we plan on also supporting other kernel languages.

Small modifications need to be made to the kernel code to

make existing CUDA kernels compatible with our framework,

such as using Lightning-specific data types (see Sec. III-F)

1Recent versions of CUDA added cooperative kernels where synchroniza-
tion across thread blocks is possible, but we focus on conventional kernels.

(a) Tile distribution. (b) Row-wise dist. (c) Column-wise dist.

Fig. 2: A 12×12 array partitioned according to three distri-

butions. The black rectangles indicates chunks. The dashed

rectangle is an example of the access region of a superblock.

B. Multi-Dimensional Distributed Arrays

Besides distributing work, it is also necessary to distribute

data. GPU applications typically use multi-dimensional arrays

(e.g., vectors, matrices, tensors) as their predominant data

structures since they fit the data-parallel model of GPUs.

Therefore, Lighting supports multi-dimensional arrays as its

primary data abstraction. These arrays can be created/deleted

dynamically at runtime, have up to three dimensions, and store

elements of a primitive type (e.g., int, float).

Similar to how the threads of a kernel launch must be

distributed across GPUs, the data elements of an array also

needs to be distributed. In Lighting, the programmer has to

specify the distribution policy for each array. Such a policy

defines a set of rectangular subregions called chunks that

together cover the entire domain of the array (see Fig. 2). Each

chunk is assigned to one GPU in the system. Several common

distributions are included in Lightning (e.g., row/column-wise,

tiled) and custom distributions can also be defined.

Whereas superblocks must be disjoint (i.e., each thread

is assigned to exactly one superblock), the chunks of one

data distribution may overlap (i.e., one data element can be

assigned to multiple chunks). This is useful, for example, for

stencil distributions that add a border of halo cells around

each tile. The replicated data elements are automatically kept

coherent by Lightning’s runtime system.

Although each chunk is assigned to one specific GPU,

Lightning will automatically spill the chunk’s content from

GPU memory to higher-level memories if GPU memory is

full (See Sec. III-D). It is thus recommended to create chunks

with a limited size, allowing the runtime system to overlap

kernel execution with transferring chunks into and out of

GPU memory. We found chunks around ∼0.5GB to give good

performance (see Sec. IV-C).

C. Data Annotations

For each distributed kernel launch, the programmer must

specify the arrays that will be accessed by the launched

threads. To be able to distribute these threads across multi-

ple GPUs, we need some way to determine what parts of

these arrays are accessed by the threads. Typically in GPU

programming, each thread accesses only a few elements, but

this information is normally not encoded into the kernel code.

For Lightning, we define the access region of a superblock

for an array as the n-d dense rectangular area (i.e., lower and
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A[i-1], A[i],
A[i+1]   

Threads

write B[i] 

Array A 

Threads

Array B 

Access region Access region

SuperblockSuperblock

read 

Fig. 3: Example of superblock and associated access regions.

upper bounds along each axis) that will be accessed by the

threads in that superblock. As an example, consider a simple

1D stencil kernel where thread i performs B[i] = A[i− 1] +
A[i] + A[i+ 1]. Fig. 3 demonstrates the access regions on A
and B for one superblock.

To specify these access regions per superblock, Lightning

offers a symbolic notation to describe the access pattern of

each thread. By annotating kernels, Lightning can automat-

ically extract the access regions for each superblock. For

example, we can formalize the above stencil access pattern

by stating that thread i reads elements A[i− 1], . . ., A[i+1]
and writes element B[i]. The data annotation in Lightning

for this example is as follows:

global i => read A[i-1:i+1], write B[i]

This annotation should be interpreted as follows. To the

left side of the arrow are variable bindings that, in this

case, bind the global 1D thread index to variable i. Other

possible bindings are block (thread block index) and local
(local index within block). To the right side of the arrow

are statements that describe, for each argument array, the

indices that are accessed and the access mode. Each index can

either be a single expression or a Fortran-style slice notation

“lower bound : upper bound” (both bounds can be omitted).

Each index expression must be a linear combination of the

bound variables to simplify analysis of the access pattern.

For the access mode, there are four supported options:

• read: Access is read-only. Writes are not permitted.

• write: Access is write-only. Reads are not permitted.

• readwrite: Access is both read and write.

• reduce(f): Similar to write, except ‘conflicting’

writes are reduced (f must be +, *, min, or max).

Another example of an annotation is for a naive matrix

multiplication kernel performing C = AB where thread (i, j)
writes entry Cij , reads row i of A, and reads column j of B.

global [i, j] => read A[i,:], read B[:,j],
write C[i,j]

Yet another example is a reduction of matrix A along the

columns to a vector sum. Thread (i, j) reads Aij , threads

cooperatively reduce values and write their results to sumi.

global [i, j] => read A[i,j], reduce(+) sum[i]

For the reductions, Lightning internally allocates temporary

memory to which the threads can write their local results.

Afterward, Lightning performs a multi-level reduction.

combine

copy $138 $2

reduce $142 $9
combine

combine

execute

execute

copy $2 $1

copy $2 $133

copy $150 $6

send $133

recv $138

recv $141

execute
copy $146 $7

execute

copy $5 $6

reduce $154 $9
combine

combine

execute

execute

reduce $143 $144

copy $6 $5

copy $6 $145

copy $162 $2

send $145

recv $146

recv $150

recv $153

execute

reduce $147 $148

copy $7 $149

copy $7 $8

copy $158 $3

combine

send $149

execute

reduce $151 $152

copy $8 $7

send $148

copy $1 $2
reduce $155 $156

copy $2 $1

copy $2 $157
send $157

recv $158

recv $162

recv $165

reduce $159 $160

copy $3 $161

copy $3 $4

combine

send $161

execute

reduce $163 $164

copy $4 $3

send $160

combinereduce $175 $176 send $172

Fig. 4: DAG created for stencil kernel (Fig. 9). Shows four

iterations on two nodes with two GPUs per node. Large boxes

represent distributed kernel launches and smaller colored

boxes represent individual tasks (color indicates the node).

D. Execution Planner

For each distributed kernel launch, Lightning will construct

an execution plan. Such a plan consists of a directed acyclic
graph (DAG) for each node in the system containing the tasks

for that node and the dependencies between tasks. Examples

of DAG tasks are Execute a kernel, Create/Delete a

chunk, Copy data between chunks and Send/Recv chunks

between nodes. Fig. 4 shows an example of an execution plan.

Execution plan construction is performed by the planner.

First, the planner divides the kernel launch into superblocks.

For each superblock, the planner processes each argument

array. For each argument, the planner first evaluates the data

annotation to determine the access region and then queries the

array’s data distribution to determine which chunks intersect

the access region. In the common case, data is distributed such

that there will be at least one chunk enclosing this access

region (see Figs. 2a and 2b). If that chunk is assigned to

the superblock’s GPU, then the chunk can be used directly.

Otherwise, it must be copied between GPUs, or even between

nodes, by inserting Copy/Send/Recv tasks into the DAG. For

write accesses, the planner also inserts proper data transfers

to update replicated data elements.

In exceptional cases, the access region might intersect

with multiple chunks (Fig. 2c). For read access, the plan-

ner assembles a temporary chunk from the contents of the

intersected chunks. For write access, the planner creates

a temporary uninitialized chunk and afterward scatters its

content. While this procedure might be inefficient, it means

data distributions only affect the performance of an application

and not the correctness. This provides separation of concerns:

programmers can first develop the application and later tune

the work/data distributions to maximize performance.

The planner handles reduce accesses separately. For each

superblock, a temporary chunk is created to hold the block-

level partial results. Afterward, the planner inserts reduction

tasks to hierarchically reduce the partial results: first the results

for one superblock, then for one GPU, then for each node, and

finally reducing the results across all nodes.
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Fig. 5: Overview of Lightning’s runtime system.

After the execution plan for one distributed kernel launch

has been constructed, the DAGs are immediately submitted

to the nodes in the system. Execution on the host continues,

allowing additional kernels to be launched. This increases effi-

ciency since it overlaps plan construction with kernel execution

and data movement on the nodes. However, this means that

tasks from the previously submitted DAGs might not have

finished when the next kernel is already being planned. To

solve this problem, the planner analyzes the dependencies

between consecutive distributed kernel launches and inserts

dependencies from previously submitted tasks when there are

data conflicts on chunks (i.e., read-write/write-write/write-read

conflicts). Essentially, the planner incrementally builds a large

DAG from many smaller DAGs.

E. Scope and Limitations

While the design of Lightning is versatile, there are limi-

tations. First, while the data annotations are simple and ex-

pressive, they require the data access pattern to be predictable

and derivable from the thread/block indices. This is the case

for regular algorithms, for example those from linear alge-

bra. However, data-dependent problems generally cannot be

expressed. In some cases, they can be described imprecisely,

resulting in a performance penalty. For example, sparse matrix-

vector multiplication (SpMV) performs unstructured reads on

the input vector, but can be still be expressed by overestimating

the access region to be the entire vector (see Sec. IV-B).

Second, Lightning supports multi-dimensional arrays since

they fit well into the data-parallel model of GPUs. Irregular

data structures, such as linked lists or graphs, are unsupported.

Additionally, the data access patterns on the arrays must be

dense and rectangular, other patterns cannot be expressed for

now (e.g., triangular, diagonals, indirection).

Third, users must manually annotate their code. Automatic

extract of data annotations using static code analysis, while

interesting, is out of scope for this manuscript.

III. IMPLEMENTATION

In this section, we discuss the implementation of Lightning.

A. Overview

Fig. 5 shows the software architecture of Lightning. Our

system runs on a cluster of worker nodes which are managed

by one central driver program. The driver acts as the cen-

tralized component in the system: it coordinates the workers,

maintains bookkeeping of the distributed arrays, and builds the

execution plans. Each worker node is equipped with one or

more GPUs and the workers execute the commands submitted

by the driver. In our implementation, the driver program also

runs on the first worker node, meaning there is no network

overhead when using just a single node.

The driver also runs the user’s application and each call

made by the application into the system is handled by the

driver. For instance, when the application creates an array,

the driver maintains the associated metadata and requests

the workers to allocate the chunks in memory. When the

application launches a kernel, the driver builds the execution

plan and submits the resulting DAGs to the workers. The

rationale behind this choice is that it matches the conventional

model of GPU programming where a central host offloads

compute-intensive tasks to a discrete GPU.

B. Communication & Data Movement

Lightning uses MPI for the network layer. We use a simple

RPC protocol on top of MPI for the communication between

the driver and the workers, since this traffic consists solely

of small control messages. For communication between the

workers themselves, we use non-blocking MPI point-to-point

primitives, since this network traffic consists of bulk data

exchanges. We assume workers are connected through a fast

interconnect (e.g., InfiniBand), although any MPI implemen-

tation is compatible with Lightning.

Data transfers between host memory and GPU memory

are performed using asynchronous memory copies to allow

overlapping data movement with kernel execution. Data trans-

fers between two GPUs on the same node are performed

using asynchronous peer-to-peer copies, which uses DMA

(direct memory access) to directly copy between GPUs. For

transfers between GPUs on different nodes, data is staged in

host memory and transferred using MPI. This gives sufficient

performance since Lighting effectively exploits asynchronous

processing to overlap data movement with kernel execution.

C. Scheduling

For each distributed kernel launch submitted by the applica-

tion, the driver requests the execution planner to construct an

execution plan, consisting of a DAG of tasks for each worker.

The driver submits these DAGs to the workers and each worker

has its own scheduler to schedules these tasks onto the local

resources. The actual scheduling of the DAG is thus done

by the workers themselves, while the driver only plans the

DAG. This is important since DAG tasks can be small (in

the order of milliseconds) and centralized scheduling would

quickly become a bottleneck.

Initially, each task must wait until its predecessor tasks

finish. Once a task’s dependencies (i.e., predecessor tasks)

complete, the task is ready to be executed. First, the scheduler

submits the task to the memory manager for staging. Each

task is associated with several chunks it will access and

staging entails that these chunks must be materialized in the

requested memory space (see Sec. III-D). Next, after staging

completes, the scheduler queues the task at the appropriate

executor (i.e., CPU, GPU, or network). Finally, once the task
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1 __global__ void stencil(
2
3 int n,
4 float *output,
5 const float *input
6 ) {
7 int i = blockDim.x * blockIdx.x + threadIdx.x;
8 if (i >= n) return;
9

10 float left = i-1 >= 0 ? input[i-1] : 0;
11 float mid = input[i];
12 float right = i+1 < n ? input[i+1] : 0;
13 float new_val = (left + mid + right) / 3.0;
14
15 output[i] = new_val;
16 }

Fig. 6: Original CUDA source code.

1 __device__ void stencil(
2 dim3 virtBlockIdx,
3 int n,
4 lightning::Vector<float> output,
5 const lightning::Vector<float> input
6 ) {
7 int i = blockDim.x * virtBlockIdx.x + threadIdx.x;
8 if (i >= n) return;
9

10 float left = i-1 >= 0 ? input[i-1] : 0;
11 float mid = input[i];
12 float right = i+1 < n ? input[i+1] : 0;
13 float new_val = (left + mid + right) / 3.0;
14
15 output[i] = new_val;
16 }

Fig. 7: Modified code from Fig. 6 (Changes in red).

finishes execution, the scheduler requests the memory manager

to unstage the tasks (i.e., release the task’s chunks) and checks

which successor tasks are not ready for execution.

When multiple tasks become ready simultaneously, the

scheduler selects one arbitrary task without further considera-

tions. We found that this performs adequately in practice since

Lightning effectively exploits asynchronous processing. For

future work, we will explore more complex scheduling policies

that consider, for example, data locality or task priority.

D. Memory Management

Every worker has its own memory manager that maintains

the bookkeeping of all local chunks and where they are

allocated. Each chunk can be allocated in host memory, GPU

memory, or disk. The memory manager automatically moves

chunks between these different memory spaces when required.

For each task that gets staged, the memory manager’s

responsibility is to materialize the chunks associated with the

task. First, memory must be allocated for chunks that are

currently not allocated in the requested memory space. The

memory manager uses pre-allocated memory pools because

we found allocations of device memory and page-locked host

memory to be expensive. It is important that all the task’s

chunks are allocated in one action to prevent deadlocks. If

memory is full, previously allocated unused chunks are evicted

in least-recently used fashion to higher-level memory (i.e.,

GPU to RAM, RAM to disk).

Second, if a the data in the allocated chunk was previously

evicted, data must be copied back from the higher-level

memory. All data transfers performed by the memory manager

are asynchronous. It is important that a sufficient number of

tasks is being staged concurrently to enable overlapping work

performed by the executors with the staging of future work

by the memory manager.

The scheduler must throttle the number of tasks that are

staged simultaneously at any moment in time since this

number presents a trade-off. On the one hand, allowing too few

concurrently staged tasks prohibits overlapping data transfers

with task execution. However, on the other hand, allowing too

many leads to contention where tasks are staged too far ahead

of time. Our current implementation uses a simple heuristic

to throttle the number of concurrently staged tasks: the total

memory footprint of tasks that are staged onto one resource

simultaneously cannot exceed some predefined threshold. We

found a threshold of 2 GB to work well in practice.

E. Runtime Kernel Compilation

Lightning supports existing GPU kernels written in CUDA,

with minor modifications. To illustrate these changes that one

must make, we use an example of a simple stencil operation

(see Fig. 6). Three changes must be made by the user (see

Fig. 7) before this kernel can be used within Lightning:

• Change the declaration from __global__ (kernel func-

tion) to __device__ (device function).

• Explicitly take the block index as a parameter. This

is required since this index will be virtualized, so the

physical block index (blockIdx in CUDA) is incorrect.

• Change arguments from raw data pointers to Lightning-

specific data types (Scalar, Vector, Matrix,

Tensor for 0, 1, 2, or 3-D arrays). These types overload

several operators and can be accessed like regular arrays

without changing their indexing.

The system performs runtime compilation, meaning that

the source code of a CUDA kernel must be provided at

runtime; each worker in the system compiles a local version
of the code and loads the resulting kernel into the GPU at

runtime. The regular NVIDIA CUDA compiler is used at

runtime for compilation. The advantage of runtime over ahead-

of-time compilation is that any runtime constant (for index

calculations) can be inserted into the kernel code at compile-

time to minimize the overhead of our framework. In Sec. IV-F,

we show that runtime compilation means the overhead of

Lightning over directly using CUDA is small.

The user’s kernel is not called directly, but instead, Light-

ning generates a wrapper kernel that performs some steps

before calling the user’s kernel. First, an offset is added to

the physical block index and the user’s kernel is called with

this virtual block index as its first argument. This solves

the problem that CUDA always numbers thread blocks from

zero. Second, the wrapper is passed chunks that correspond

to subregions of larger arrays and, to give the illusion that

496

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on September 07,2023 at 14:27:08 UTC from IEEE Xplore.  Restrictions apply. 



1 extern "C" __global__ void stencil_wrapper_ftpyotpf8VofcBIdGGEfxrlOdmfpzbWY(
2 int32_t n,
3 float *const output_ptr,
4 const float *const input_ptr
5 ) {
6 // Worker-specific constants
7 const uint32_t block_offset_x = 1024, block_offset_y = 0, block_offset_z = 0;
8 const size_t input_offset_0 = 1023, input_strides_0 = 1;
9 const size_t output_offset_0 = 1024, output_strides_0 = 1;

10
11 // Prepare arguments
12 dim3 virtual_block_index(block_offset_x + blockIdx.x, block_offset_y + blockIdx.y, block_offset_z + blockIdx.z);
13 ::lightning::Array<float, 1> output(output_ptr - output_offset_0 * output_strides_0, {output_strides_0});
14 const ::lightning::Array<float, 1> input(input_ptr - input_offset_0 * input_strides_0, {input_strides_0});
15
16 // Call user kernel
17 stencil(virtual_block_index, n, max_diff, output, input);
18 }

Fig. 8: Example of the generated wrapper kernel used internally by Lightning at runtime for Fig. 7.

1 let stencil = CudaKernelDef::from_file("stencil.cu")
2 .param_value("n", DTYPE_INT)
3 .param_array("output", DTYPE_FLOAT)
4 .param_array("input", DTYPE_FLOAT)
5 .annotate("global i => read input[i-1:i+1],
6 write output[i]")
7 .compile(context)?;
8
9 let devices = context.system().devices();

10 let n = 1_000_000;
11 let data_dist = StencilDist::new(64_000, 1, devices);
12 let input = context.ones(n, data_dist)?;
13 let output = context.zeros(n, data_dist)?;
14
15 let work_dist = BlockDist::new(64_000, devices);
16 for _ in 0..10 {
17 stencil.launch(n, 16, work_dist, (n, output, input))?;
18 swap(input, output);
19 }
20
21 context.synchronize()?;

Fig. 9: Host code sample for the stencil kernel (Fig. 7).

the full array can be indexed, offsets must be subtracted from

the global array indices to obtain the local chunk indices. To

solve this, Lightning uses special data types that subtract an

offset from the chunk’s memory address. These data types

subtract this offset once on construction, meaning that there

is no performance cost on element access.

Fig. 8 shows the wrapper kernel generated by Lightning

internally at runtime for Fig. 7. This code is shown here for

academic purposes, it is not intended to be seen by the end-

user. Lines 7-9 show generated constants that are specific for

one worker. Lines 12-14 show how the virtual block indices

(add offsets) and data types (subtracts offsets) are constructed.

Line 17 calls the user’s kernel with the correct arguments.

F. Host Code Sample

Fig. 9 shows an example of the host application for the

stencil kernel from Fig. 7. Lightning’s runtime system is

implemented in the Rust programming language. For now,

host code also needs to be Rust, but library bindings for other

programming languages are part of future work.

First, the kernel source code must be loaded for runtime

compilation. Line 1 loads the CUDA kernel code from a

separate file stencil.cu (shown in Fig. 7), lines 2-6

provide the definition of the kernel’s signature (i.e., parameters

and data annotations), and line 7 submits the kernel code to

the workers for compilation.

Next, the data distributions and arrays must be defined.

Line 11 defines the data distribution to be used: a stencil

distribution with a chunk size of 64 000 (256kB) distributed

round-robin across all GPUs. Lines 12-13 define two vectors

of size n having the above data distribution.

Finally, distributed kernels launches can be submitted.

Line 16 defines the superblock distribution to be used: a block

distribution having 64 000 threads per superblock. Line 17

launches the stencil kernel 10 times with the provided su-

perblock distribution. Kernel launches are asynchronous to the

driver, so line 21 blocks the driver until work completes.

IV. EXPERIMENTAL EVALUATION

In this section, we present performance results for Light-

ning. Sec. IV-A describes the experimental setup. Secs. IV-B

to IV-E present eight benchmarks on three platforms: one node

with one GPU, one node with 4 GPUs, and a cluster with

32 GPUs. Sec. IV-F presents a full application for geospatial

cluster analysis that was ported to Lightning

A. Experimental Setup

We performed experiments at Microsoft Azure US East

on nodes of type NC24rsV2. Each node contains an Intel

E5-2690 CPU with 24 cores, 448 GB of memory, 3TB of

temporary SSD storage, and 4 NVIDIA Tesla P100 GPUs

with 16 GB memory each. The GPUs likely utilize PCIe 3.0

x16 (indicated by bandwidth benchmarks [6]) and nodes are

connected to each other by InfiniBand FDR, providing high

bandwidth. The software used was Ubuntu 20.04, Rust 1.56,

CUDA 11.4, and OpenMPI 4.0.3.

Presented execution times are the average over 5 runs. One

initial untimed run is always performed to warm up the system.

Each run is measured from the moment that the first distributed

kernel launch is submitted until the moment that the driver
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signals the application that all workers finished. This timing

thus includes the overhead for execution plan construction. We

emphasize that the code is not changed when moving between

different platforms.

B. Benchmarks

To evaluate the performance of Lightning in different sce-

narios, we selected eight CUDA kernels representing different

workloads. The kernels were taken from various sources and

adapted to make them suitable for Lightning (similar to the

example in Fig. 7). The first four benchmarks are compute-

intensive (i.e., high arithmetic intensity), while the latter four

are data-intensive. For each benchmark, we define a parameter

n (the problem size) such that the amount of work scales

linearly with n. However, it is important to note that the

amount of data need not necessarily scale linearly with n.

• MD5 (from SHOC [2]) calculates n MD5 hashes in

parallel. Work is divided into superblocks of 5B threads

each. No data is involved (except one search hash), thus

this is a purely compute-oriented benchmark.

• N-Body (from CUDA samples [26]) performs 10 itera-

tions of an all-pair gravitational simulation. The bench-

mark generates
√
n bodies, so the number of pair-wise

interactions (i.e., workload) equals n. The data is repli-

cated (data size is small) and the work is divided equally.

• Correlator (from van Nieuwpoort et al. [3]) calculates

the correlation between each pair of 256 radio antennas

for n frequency channels. The data/work is partitioned

with 64 frequency channels per chunk. Note that the

original code used a 2D grid of threads and mapped each

2D thread index to a 3D index. This access pattern could

not be expressed using Lightning’s annotations, thus the

code was simplified to use a 3D thread grid instead.

• K-Means (from Rodinia [1]) is an iterative clustering

algorithm commonly used in data mining. The benchmark

uses n records (each having 4 features), finds k=40
clusters, and performs 5 iterations. The distribution uses

25M records per chunk. The original code performed the

center calculation on the CPU, but our code utilizes the

GPU thanks to Lightning’s support for reductions.

• HotSpot (from Rodinia [1]) models thermal simulation

of an integrated circuit by performing 10 iterations of a

3×3 stencil. The benchmark uses a
√
n×√n grid (total

of n grid points) with a column-wise distribution such

that each chunk contains 50M points. Halo elements are

exchanged in each iteration.

• GEMM (handwritten, based on Volkov et al. [27]) per-

forms a dense matrix-matrix multiplication C = AB.

Matrices A, B, and C have size 3
√
n× 3

√
n to ensure the

total workload is n (cubic time complexity). The matrices

are partitioned row-wise with 250M elements per chunk.

The work partitioned in the same way, meaning that the

data for A and C is available locally, but the entire matrix

B must be exchanged between GPUs, making this a very

communication-intensive benchmark.

• SpMV (from SHOC [2]) performs repeated multiplica-

tion of a sparse
√
n × √n matrix with a dense vector

of size
√
n. Ten iterations are performed, where the

output of each operation is used as the input for the

next iteration. The vector is broadcast after each iteration.

The matrix is stored in ELL format and its density is

0.1% (i.e., the fraction of non-zeros). The vectors are

replicated while the matrix is row-wise distributed with

100M elements per chunk.

• Black-Scholes (from CUDA samples [26]) computes

call-put prices of n financial options using the Black-

Scholes model. This problem is embarrassingly parallel

since n models can be calculated in parallel. Each chunk

contains 100M options.

C. Single GPU

In this section, we present results when using a single GPU.

To understand the sensitivity of performance to the chunk

size, we evaluated the K-means application for different

chunk sizes for a problem size that just exceeds GPU memory

(n=109). The results in Fig. 10 show that the chunk size

should not be too small (i.e., <50MB, leads to scheduling

overhead) or too big (i.e., >5GB, prohibits overlapping data

transfers and kernel execution). However, a wide range of

chunk sizes gives similar performance indicating that perfor-

mance is not sensitive to the chunk size.

Next, we consider different problem sizes. For example,

Fig. 11 shows the execution time versus the problem size for

K-Means. As anticipated, the run time scales linearly with the

problem size n. To ease further analysis, we define throughput
as the problem size divided by the execution time (i.e., number

of items processed per second). Note that the definition of the

problem size differs per benchmark, thus throughputs are not

comparable across benchmarks.

Fig. 12 shows this throughput metric for different problem

sizes for each of the eight benchmarks. Nearly all benchmarks

show that the throughput is roughly consistent across different

problem sizes as long as data fits into GPU memory. This is

expected since the workload of each benchmark scales linearly

with n. One exception is SpMV which performs better for

smaller problem sizes. Further examination revealed that this

is due to cache behavior since this benchmark involves random

accesses and data fits better into caches for smaller n.
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Fig. 12: Throughput versus problem size when using a single GPU. Two vertical lines indicate the largest problem that fits

into GPU memory and host memory (N-Body and MD5 always fit). The bottom axis shows problem size (n) while the top

axis shows the corresponding memory footprint. Note the logarithmic scale on the x-axis.

Each plot also shows vertical bars indicating the largest

problem that fits into GPU memory (first bar) and host

memory (second bar). MD5 and N-Body always fit into GPU

memory. For large problems, Lightning must spill chunks to

host memory (or even disk) and transfer them back to GPU

memory as needed, which incurs a performance hit. We see

that spilling to disk is never worthwhile due to limited disk

bandwidth. It is possible that faster non-volatile storage could

make this useful over the regular SSDs in this node.

Spilling to host memory, on the other hand, is beneficial

for three benchmarks: Correlator, K-means, GEMM. For

these benchmarks, Lightning can overlap kernel execution

with the data transfers between GPU and host memory. For

example, for Correlator, throughput drops by just 8.8%
from n = 16384 (8.6 GB) to n = 32768 (17.2 GB). However,

for the three data-intensive benchmarks (HotSpot, SpMV,

BlackScholes), overlapping kernel execution with data

transfers is not possible since these applications do not perform

sufficient work per byte transferred of the PCIe bus. For

example, for BlackScholes with n = 0.5×109, the dataset

of 10.7 GB is processed in 20.2 ms, meaning that PCIe should

provide a bandwidth of 530 GB/s to keep up, over an order

of magnitude more than what PCIe 3.0 x16 is capable of.

We conclude spilling to host memory is beneficial for

compute-intensive applications. For data-intensive applica-

tions, the PCIe bus provides insufficient bandwidth to overlap

data transfers. We can avoid spilling by using multiple GPUs

since this provides more (combined) GPU memory.

D. Multiple GPUs

Next, we present results when using multiple GPUs on a

single node. Fig. 13 shows the throughput for up to 4 GPUs for

different problem sizes. Ideally, the throughput should p times

higher for p GPUs (i.e., speedup of p). To give an indication

of speedup, the labels on the right indicate multiples of the

baseline throughput (i.e., throughput obtained using one GPU

for the largest problem size that still fits into GPU memory).

The plots show that Lightning obtains excellent speedups for

all benchmarks. For example, for Correlator, K-means
and MD5, speedups are nearly perfect: these benchmarks are

compute-intensive and thus scale well. For other benchmarks,

such as GEMM and N-Body, speedups are good except for

smaller problem sizes. These benchmarks involve communi-

cation, leading to synchronization overhead for small inputs.

Multiple GPUs mean more (combined) GPU memory, indi-

cate in Fig. 13 by the vertical bars that move further to the right

as more GPUs are utilized. Larger problems can be processed

before data is spilled to host memory. The benchmarks for

which spilling was not beneficial in the previous section

(HotSpot, SpMV, and BlackScholes) can now scale to

larger problems sizes.

However, we also observe that for Correlator and

K-means, for which spilling was beneficial on one GPU in

the previous section, spilling is no longer beneficial when us-

ing multiple GPUs. For example, for K-Means, the through-

put on 1 GPU and 2 GPUs is identical for large problems. This

happens because GPUs share the PCIe bus, thus using multiple

GPUs reduces the effective PCIe bandwidth per GPU. Using

multiple nodes circumvents this issue, allowing benchmarks

to scale even further.

E. Multiple Nodes

Now, we present the results when using multiple nodes.

Fig. 14 shows the throughput for up to 4 nodes with one GPU

per node. This figure looks similar to Fig. 13 since both use

up to 4 GPUs, except here the GPUs are located on different

nodes instead of one node. The most notable difference is that

Correlator and K-means can now scale to larger problem

sizes that no longer fit into GPU memory since using multiple

nodes means that GPUs no longer share the PCIe bus. These

benchmarks are not affected by the network overhead since
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Fig. 13: Throughput versus problem size when using a multi-GPU node. The left labels indicate throughput, bottom labels

indicate problem size (n), top labels indicate memory footprint, right labels indicate multiples of the baseline throughput.
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Fig. 14: Throughput versus problem size when using multiple nodes (one GPU per node).
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Fig. 15: Weak scaling experiment. Speedup versus number of GPUs (p) for 1, 2, or 4 GPUs per node.
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Fig. 16: Performance of application for NumPy, CUDA, and

Lightning on three datasets. Throughput is measured as time

per iteration divided by matrix size. Notation “n×m GPUs”

means n nodes with m GPUs each. OoM is “out of memory”.

InfiniBand FDR provides high bandwidth (∼7 GB/s) in the

same order as PCIe 3.0 x16 (∼16 GB/s) and Lightning is able

to overlap network communication with kernel execution.

Next, we scale to more than 4 GPUs. Fig. 15 shows the

speedups up to 32 GPUs using 1, 2, or 4 GPUs per node.

For these experiments, we focus on weak scaling, where the

problem size n scales according to the number of GPUs p,

to emphasize that our framework handles large problems far

beyond the capabilities of a single GPU. The results show

that MD5 and N-Body scale excellently, which is expected

since these benchmarks are compute-intensive and involve

little data and communication. Correlator, K-Means, and

HotSpot also scale near perfectly, these benchmarks do

involve data but there is little communication since GPUs

work on their local data. GEMM and SpMV involve much

communication and are more difficult to scale to more nodes.

GEMM appears to hit the network bandwidth limit at around

16 GPUs. Black-Scholes’ short run times make scaling

difficult. For example, the run time on one GPU is 10.2 ms,

while for a 32× larger problem with 32 GPUs the runtime is

just 10.8 ms.

F. Full Application

In the previous sections, we considered benchmarks that

are simple pipelines of one or two kernels. To evaluate the

performance of Lighting for a more complex workflow, we

consider the co-clustering algorithm from CGC [28]: a library

for geospatial cluster analysis. Co-clustering is an iterative

algorithm that clusters the rows and columns of a matrix

where these dimensions correspond to space and time. This

algorithm can be used, for example, to study the impact of

climate change based on the onset of spring in Europe [29].

Each iteration involves three reductions (reduction along the

rows, along the columns, and along all entries), leading to a

communication-intensive workload on multiple GPUs.

The original code was implemented in Python and acceler-

ated by NumPy. We manually reimplemented this algorithm

in CUDA and tuned the resulting 10 CUDA kernels using

Kernel Tuner [30], resulting in 635 lines of CUDA code. Next,

these kernels were adapted for use in Lightning by modifying

44 lines of code. Fig. 16 shows the performance for NumPy,

CUDA, and Lightning for three input matrices: 5 GB (fits into

memory of 1 GPU), 20 GB (fits into 4 GPUs), and 80 GB (fits

into 16 GPUs). Performance is measured as throughput, i.e.,

matrix size divided by iteration time.

The results show that for the smallest matrix, the CUDA

version is 4.42× faster than the CPU version. Lightning is

4.35× faster, meaning an overhead of just 1.6% over using

CUDA directly. This is anticipated since both use the same

kernel code, on the same device, for the same dataset. The

plots also show that the CUDA version cannot scale to handle

the larger datasets that exceed GPU memory. For the largest

matrix (80 GB), the CUDA version on one GPU fails while

Lightning on 16 GPUs still works and is 57.2× faster than

NumPy on the CPU (0.31 sec versus 17.1 sec per iteration).

V. RELATED WORK

GPU programmers have a wide range of options available

for creating distributed multi-GPU applications. In general,

creating these applications can be achieved by 1) switching to

a different programming paradigm or a combination thereof, or

2) using a system that extends the capabilities of the existing

GPU programming paradigm.

In the first category, we consider the combination of CU-

DA/OpenCL with, for example, MPI and OpenMP. We also

consider extensions that have been proposed to support GPUs

within Big Data frameworks (e.g., Hadoop [23], Spark [24],

Dask [22]) or GPU support in common HPC frameworks

(e.g., Chapel [31], Charm++ [32], Legion [33], OmpSs [34],

PARSeC [35], Global Arrays [36]). The downside of these

frameworks is that GPU developers have to learn a new pro-

gramming paradigm that is different from what they are used

to. In addition, while these frameworks give the programmer

more control, they also make the programmer responsible

for writing complex code to, for example, manage GPU

memory, move data, split work into smaller jobs, and overlap

computation and communication. Instead, Lightning allows

GPU programmers to interact with a multi-GPU cluster as

if there existed a single large virtual GPU. In Lightning,

programmers can create arrays and launch kernels as they are

used to, while the work/data is automatically distributed.

There have been previous studies that also propose ex-

tensions to existing GPU programming models (CUDA and

OpenCL) to facilitate the creation of distributed or multi-GPU

applications. Here, we distinguish two different approaches

in the literature: A) Frameworks give explicit control over

remote GPUs, and B) frameworks that implicitly distribute

work across multiple GPUs.

A. Explicit control over multiple/remote GPUs

There have been several projects that allow remote GPUs to

be used as though there were local. Some projects aim at the

virtualization of remote GPUs in the context of cloud comput-

ing, examples are GridCUDA [9], rCUDA [8], gVirtuS [10],

and DS-CUDA [11]. Strengert et al. [37] propose an interesting

extension to the CUDA model that extends CUDA’s three-

level parallelism hierarchy (thread, block, grid) with additional
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levels (bus, network, application levels). For OpenCL, there

have also been several attempts to provide access to remote

devices, for example, SnuCL/SnuCL-D [12], [14], Distributed

OpenCL (dOpenCL) [13], clOpenCL [15], LibWater [16],

HybridOpenCL [17], EngineCL [18], and dOCAL [38].

However, all the above solutions purposely do not offer

any abstraction over the direct CUDA/OpenCL API, meaning

programmers must manually divide the work, partition the

data, and perform data transfers between GPUs. Lightning,

on the other hand, allows programmers to use a cluster of

GPUs in a way that resembles single GPU programming.

B. Implicitly scaling to multiple/remote GPUs

There have been a few previous works that attempt to

abstract multiple physical GPUs into a single virtual GPU.

Kim et al. [19] present a framework that offers multiple GPUs

in one node as a single virtual OpenCL device. Launching a

kernel onto this virtual device will automatically distribute the

workload and transfer the data between host and GPU memory.

There are four key aspects in which this work differs from

Lighting: 1) only a single node is supported; 2) each array is

entirely allocated in host memory which limits scalability; 3)

workload is automatically partitioned using heuristics which

forbids performance tuning and takes away control from

the programmer; 4) access patterns are determined by using

runtime sampling which has a runtime overhead, and can lead

to misclassification, whereas Lightning’s data annotations have

no runtime overhead and ask programmers to consider the

access pattern of their kernels.

DistCL [20] is another framework that offers multiple GPUs

as a single virtual OpenCL device, while also supporting

clusters of GPUs. There are three key differences between

DistCL and Lightning: 1) each array is entirely allocated in

the GPU memory of each device which limits scalability; 2)

workloads are always partitioned along the most significant

dimension, whereas Lightning allows custom workload distri-

bution policies; 3) DistCL requires the programmer to write

special meta-functions that indicate intervals accessed by each

kernel, whereas Lightning’s data annotations present a more

intuitive declarative approach.

MAPS-Multi [21] is most closely related to Lightning.

MAPS-Multi is a multi-GPU programming system that fa-

cilitates workload distribution across multiple GPUs in a

single node using a set of predefined data access patterns.

Lightning is more flexible, allowing any linear data access

pattern. MAPS-Multi requires substantial modifications to

CUDA kernel code, for example, for-loops are replaced with

custom macros and data needs to be explicitly committed to

memory. Lightning, on the other hand, allows for existing

CUDA kernels to be reused. MAPS-Multi makes program-

mers responsible for data synchronization, whereas Lightning

automatically takes care of this and overlaps inter-/intra-

node communication and GPU computations. Lightning also

supports distributed computing over GPUs in multiple nodes,

while MAPS-Multi does not.

VI. CONCLUSIONS & FUTURE WORK

In this work, we presented Lighting: a framework that

enables GPU kernels to run on any amount of data and run

on any number of GPUs, even across different nodes. Our

solution offers abstractions for distributed kernel launches
and distributed arrays that enable transparent distribution

of work and data across multiple GPUs. Data annotations

allow the framework to infer data requirements and data de-

pendencies. Lightning obtains excellent performance through

asynchronous processing by overlapping plan construction,

scheduling, data movement, and kernel execution. Lightning

is available online as open source software [39]2.

Evaluation shows great results. We observe that spilling to

host memory allows data-intensive applications to work on

massive data sets. Experiments on four GPUs on a single

node show excellent speedups, except spilling becomes less

beneficial since GPUs on one node share PCIe bandwidth,

which can be overcome by using multiple nodes. Spilling to

disk appears to be not beneficial due to limited disk bandwidth,

it is possible that faster non-volatile memory (NVM) could

provide a solution here. The geospatial clustering application

shows that our framework can handle large datasets, for

example, processing 80 GB with 16 GPUs is 57.2× faster than

the CPU-version. Processing this dataset using one GPU would

be impractical in terms of memory and processing power.

There are several avenues for future work. Lightning’s

model is language-agnostic and support for other languages

besides CUDA is in progress (e.g., OpenCL). Additionally,

Lightning currently requires manual selection of work/data

distributions. We are working on assistance in this selection

(e.g., via profiling) or even automatic selection (i.e., more

intelligent planner). There are also various interesting future

topics that we did not touch upon, such as load-balancing,

heterogeneous platforms, and fault-tolerance.
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