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Abstract

We introduce ChebLieNet, a group-equivariant method on (anisotropic) manifolds.
Surfing on the success of graph- and group-based neural networks, we take advan-
tage of the recent developments in the geometric deep learning field to derive a
new approach to exploit any anisotropies in data. Via discrete approximations of
Lie groups, we develop a graph neural network made of anisotropic convolutional
layers (Chebyshev convolutions), spatial pooling and unpooling layers, and global
pooling layers. Group equivariance is achieved via equivariant and invariant opera-
tors on graphs with anisotropic left-invariant Riemannian distance-based affinities
encoded on the edges. Thanks to its simple form, the Riemannian metric can model
any anisotropies, both in the spatial and orientation domains. This control on
anisotropies of the Riemannian metrics allows to balance equivariance (anisotropic
metric) against invariance (isotropic metric) of the graph convolution layers. Hence
we open the doors to a better understanding of anisotropic properties. Furthermore,
we empirically prove the existence of (data-dependent) sweet spots for anisotropic
parameters on CIFAR10. This crucial result is evidence of the benefice we could
get by exploiting anisotropic properties in data. We also evaluate the scalability of
this approach on STL10 (image data) and ClimateNet (spherical data), showing its
remarkable adaptability to diverse tasks.

1 Introduction

Deep learning is a class of machine learning algorithms inspired by the human brain’s network of
neurons [Goodfellow et al., 2016]. These algorithms use a hierarchical structure of neural layers to
extract higher-level features from the raw input progressively. In the past few years, the growing
computational power of modern GPU-based computers and the availability of large training datasets
in the field of machine learning have made it possible to successfully train neural networks with
many layers and degrees of freedom. Consequently, deep learning has revolutionized many machine
learning tasks in recent years, ranging from image and video processing to speech recognition and
natural language understanding.

Many neuroscientific research results served as focal points in the development of deep learning
algorithms. When Hubel and Wiesel [1962] studied the visual cortex in the brain, they made three
important discoveries. First, they observed a one-to-one correspondence between spatial locations
in the retina and neurons in the brain that fired as a response to line-like visual stimuli. Second,
the activity of the neurons changed depending on the orientation of the line, uncovering a neat
organization based on local orientations. Last, the neurons sometimes fired only when the line was
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moving in a particular direction. Later, Bosking et al. [1997] showed that neurons that are aligned fire
together, indicating the presence of a type of long-range interactions. All these results motivated the
development of a mathematical framework for modeling visual perception based on sub-Riemannian
geometry on the space of positions and orientations, which is typically modeled with the Lie group
SE(2) [Petitot, 2003, Citti and Sarti, 2006, Duits et al., 2014]. Apart from the neurophysiological
inspiration, group equivariance has also been proven to be an excellent inductive bias [Cohen and
Welling, 2016] not only in computer vision (as the translation equivariance property of CNNs as
shown) but also in physics [Finzi et al., 2020] and molecular data analysis [Fuchs et al., 2021, Jumper
et al., 2020]. In this work, we propose to build group equivariant graph neural networks via the same
principle that underlie the sub-Riemannian, neurogeometrical modeling of the visual cortex.

Our work connects the observations by Hubel and Wiesel [1962] and Bosking et al. [1997] on two
levels. First, the organization of visual data based on their location and orientation [Hubel and Wiesel,
1962] is modeled by Lie group convolutions [Bekkers, 2019], in which feature maps encode response
for every position and every orientation. Second, long-range interactions between aligned neurons
[Bosking et al., 1997] are modeled by building graphs with affinity matrices based on (approximate)
sub-Riemannian distances on the Lie groups, inspired by sub-Riemannian image analysis methods
such as [Franken and Duits, 2009, Bekkers et al., 2015, Favali et al., 2016, Mashtakov et al., 2017,
Boscain et al., 2018, Duits et al., 2018, Baspinar et al., 2021].

Defferrard et al. [2020] showed how to construct powerful graph NNs that are faithful to the manifolds
on which they are defined. Nevertheless, the layers themselves are based on rotationally invariant
(Laplacian) convolutions. In order to exploit directional cues in the data, group convolutions are
desirable [Cohen et al., 2018, Kondor and Trivedi, 2018, Cohen and Welling, 2016, Bekkers, 2019].
However, since Laplacian operators are intrinsically isotropic, there is no point applying them to the
lifted feature maps on the group unless we construct anisotropic metrics on the groups. Therefore,
we adopt the Lie group viewpoint by Sanguinetti et al. [2015] to define anisotropic Riemannian
metrics based on left-invariant vector fields on the group. Once an anisotropic Riemannian graph is
constructed, any spectral method can directly be applied to this graph. The resulting graph neural
networks will then, by construction, be equivariant and capable of utilizing directional cues in data.

Before going further into the details, we summarize our main contributions:

• We introduce ChebLieNet, an equivariant graph Laplacian-based neural network based on
Lie groups equipped with an anisotropic Riemannian metric.

• The Riemannian geometry is automatically derived from a standard base space (e.g. R2 or
the sphere), which makes our approach flexible and effective in building group equivariant
graph neural networks for a variety of data structures (e.g. 2D and spherical data).

• We demonstrate the equivariance property of ChebLieNet, both in theory and in practice.
This property guarantees that the neural network’s predictions are robust against given
transformations, which is not necessarily the case with methods based on data augmentation.

• We show that the use of directional information via anisotropic Riemannian spaces could
benefit many tasks.

• We show the flexibility of the method by considering two different problems; we validate on
classification problems with 2D image data and a segmentation problem on spherical data
via the construction of a sub-Riemannian geometry on SE(2) and SO(3) respectively.

2 Related works

2.1 Group equivariant convolutional neural networks

Deep convolutional neural networks [LeCun et al., 1995] have proven to be compelling models
for pattern recognition tasks on images, video, and audio data. Although a robust theory of neural
network design is currently lacking, a large amount of empirical evidence supports the notion that
both convolutional weight sharing, depth, and width are essential for good predictive performance.
Such properties are enabled through the equivariance property of convolutions (convolving a shifted
image is the same as translating its result).

Lenc and Vedaldi [2015] showed that the AlexNet CNN Krizhevsky et al. [2012] trained on ImageNet
learns representations equivariant to flips, scalings, and rotations spontaneously. This supports the
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idea that equivariance is an excellent inductive bias for deep convolutional networks. In the last few
years, a joint effort has been made to build group equivariant networks. By the introduction of group
convolutions in deep learning, Cohen and Welling [2016] generalize the translation equivariance
property to larger groups of symmetries, including rotations and reflections. Kondor and Trivedi
[2018] gave a rigorous, theoretical treatment of convolution and equivariance in neural networks
concerning any compact group’s action. One of the main contributions of that work was to show that,
given some natural constraints, the convolutional structure is not just a sufficient but also a necessary
condition for equivariance to a compact group’s action. In a similar spirit, in [Bekkers, 2019] it
is shown that any bounded linear operator is equivariant to Lie groups if and only if it is a group
convolution. In our work, we propose to build group equivariant neural networks via left-invariant
Laplace operators on Lie groups, which indeed can be seen as group convolutions with kernels
that are the fundamental solutions of the Laplace operator. The result is a Lie group equivariant
Chebyshev-type neural network [Defferrard et al., 2016] that we will refer to as ChebLieNet.

2.2 Graph neural networks

Using the term geometric deep learning, Bronstein et al. [2017, 2021] give an overview of deep
learning methods in the non-Euclidean domain, including graphs and manifolds. They present differ-
ent examples of geometric deep learning problems and available solutions, fundamental difficulties,
applications, and future research directions in this nascent field.

One of the main challenges when working with graph data it to deal with the inter-dependencies
between points. Indeed, the derivations of most standard machine learning models firmly base on
an independence assumption. For this reason, transferring existing methods on a graph appears
doomed to failure, and it seems necessary to build models acting directly on graphs. Due to its
success on Euclidean data, the development of a convolution-like operator on graphs has been largely
studied. Because the notion of space is not naturally defined on a graph, we lack a straightforward
generalization of the convolutional operator from grid data to graphs [Scarselli et al., 2008, Bruna
et al., 2013, Henaff et al., 2015, Defferrard et al., 2016, Kipf and Welling, 2016, Masci et al., 2015,
Boscaini et al., 2016, Monti et al., 2017].

Spectral approaches have a solid mathematical foundation in graph signal processing. Rather than
using the traditional spatial definition of the convolution, it proposes to see this operation from a
spectral perspective. Based on the convolution theorem, it defines the convolution operator from the
graph spectral domain via the eigendecomposition of the graph Laplacian (see App. A.3).

Definition 2.1 (Spectral graph convolution) Let G = (V, E ,W ) be a graph with Laplacian ∆̂ and
let f and g be two functions defined on V . We define the G-convolution ∗G of f and g as:

f ∗G g = Φ(ĝ � f̂) = Φ(Φ>g �Φ>f), (1)

with eigenvectors Φ obtained through the unique eigendecomposition ∆̂ = ΦΛΦT .

While this definition alleviates the difficulty of deriving a convolution operator in the spatial domain,
other difficulties arise. First of all, because the Laplacian of a graph is an intrinsic operator, it
is domain-dependent, and the spectral-convolution is too. It implies that a model built on this
framework cannot be easily transferred from a graph to another as expressed in a different "language".
Nevertheless, this is not a problem for us since we are focusing on fixed manifold graphs. Next, there
is no guarantee that filters represented in the spectral domain are spatially localized. Henaff et al.
[2015] successfully bypassed this problem by defining smooth spectral filter coefficients, arguing
that if spectral filters are smooth, they are spatially localized. Last but not least, the Laplacian’s
eigendecomposition makes the method expensive in terms of memory and time. Indeed, the forward
and inverse graph Fourier transforms (via ΦT and Φ) incur expensive multiplications as no FFT-like
algorithm exists on general graphs. Defferrard et al. [2016] alleviated the cost of explicitly computing
the graph Laplacian using spatially-localized filters with Chebyshev polynomials.

Definition 2.2 (Chebyshev convolutional layer) Let G = (V, E ,W ) be a graph with rescaled
Laplacian1 ∆̃, x ∈ R|V|×di be an input features’ vector and Θj ∈ Rdi×do learnable filters. The

1Because Chebyshev polynomials are defined in the range [−1, 1], it is necessary to rescale the graph
Laplacian with ∆̃ = 2λ−1

max∆̂− I where λmax is the largest eigenvalue of ∆̂.
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output features’ vector y ∈ R|V|×do is computed as:

y =

R−1∑
j=0

zjΘj with z0 = x, z1 = ∆̃x and zj = 2∆̃zj−1 − zj−2. ∀j ≥ 2. (2)

Kipf and Welling [2016] simplified this formulation a bit by considering the construction of single-
parametric filters that are linear with relation to ∆̃. They further approximate λmax ' 2 as they
expect that neural network parameters will adapt to this change in scale during training.

3 Method

Our method can be seen as an extension of the original ChebNet [Defferrard et al., 2016, Perraudin
et al., 2019]. Instead of directly working on a homogeneous base space, we first extend it to a higher
dimensional space (Lie group). The goal of this extension is to convert the previously invariant
spectral convolutional layers into equivariant layers.2

3.1 Anisotropic manifold graph

In order to define the anisotropic manifold graphs we have to consider two types of manifolds. The
base manifoldM and a Lie group G that acts transitively onM. The latter implies thatM is a
homogeneous space of G, which means that any two points m1,m2 ∈ M can be mapped to each
other via the action of a group element g ∈ G via m2 = g · m1. E.g., the plane M = R2 is a
homogeneous space of the special Euclidean motion group G = SE(2) as any two points can be
mapped to each other through a rotation and a translation. Such groups G, which have M as a
homogeneous space, can always be split in two parts via the semi-direct product G =MoH , with
H a sub-group of G that leaves some reference point m0 ∈M invariant, i.e., ∀h∈H : m0 = h ·m0.
E.g., rotations leave the zero vector inM = R2 invariant, and thus H = SO(2) in the SE(2) case.
Conversely, any homogenous space can be modeled with a group quotientM = G/H .

We define an anisotropic manifold graph to be a discretization of a Lie group G of whichM is a
homogeneous space. It consists of a finite set of vertices corresponding to a random sampling of
group elements, and a finite set of similarity-based edges that are constructed via a left-invariant
Riemannian metric on G. In our work we consider two anisotropic manifold graphs: one associated
with the base manifoldM = R2 which we extend with an additional orientation/rotation dimension
H = SO(2) to come to the Lie group G = SE(2) = R2 o SO(2), and the other associated with
the sphereM = S2 which we similarly "lift" to the Lie group G = SO(3) by adding an additional
rotation dimension. Considering the similarity between the two cases (the sphere locally looks like
R2) we will refer toM as the "spatial" part, and H as the "orientation" part of the group.

Uniform sampling of the vertices. The first step to construct an anisotropic manifold graph is to
sample elements on the group uniformly or as uniformly as possible if the manifold does not permit a
uniform grid. We split the grid construction in two parts, a grid onM which is sampled with |Vs|
points and a grid on H that is sampled with |Vo| points, leading to a total of |V| = |Vs||Vo| vertices.

Left-invariant anisotropic Riemannian distance. Once vertices have been uniformly sampled
on the group manifold, a similarity measure between vertices is computed. This measure is based
on a Riemannian distance between points in G. The only thing one needs in our algorithm is the
implementation of the logarithmic map on the Lie group (see e.g. [Bekkers, 2019]), and a diagonal
Riemannian metric tensor (see e.g. [Sanguinetti et al., 2015] and [Mashtakov et al., 2017] for the
SE(2) and SO(3) case respectively). In the following we provide the essential idea and intuition
behind the construction of the similarity measure and provide a more extensive treatment in App. B.

In Riemannian geometry on Lie groups it is common to express tangent vectors of curves in a basis
of left-invariant vector fields as it allows to measure their lengths with a single Riemannian metric
tensor that is shared over the entire group. This works as follows. Consider curve γ : [0, 1] → G

with its tangent vectors γ̇(t) =
∑d
i=1 u

i(t)Ai|γ(t) expressed in a basis/moving frame of reference

2Because spectral graph NNs are able to capture the geometry of the space, which in this work we equip with
anisotropic metrics, any spectral method could be made equivariant using our method.
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{Ai|γ(t)}di=1, in which Ai are left-invariant vector fields. The length of these tangent vectors
is then measured by a Riemannian metric tensor that we denote with ‖γ̇(t)‖2R := u(t)TRu(t),
with R a symmetric positive definite matrix defined relative to the basis {Ai|γ(t)}di=1, and with
u(t) = (u0(t), u1(t), . . . )T . The Ai are left-invariant vector fields and the notation Ai|g means the
vector in the vector field Ai at location g. The vector fields are constructed by choosing a vector Ai
in the tangent space at origin (the Lie algebra) which then defines a complete vector field on G via
the push-forward of left-multiplication. In less technical terms this means that if we pick a direction
vector at the origin, and we move it to another point in, e.g. G = SE(2), via a roto-translation, this
vector will move and rotate along. By defining everything in terms of these left-invariant vector fields,
every tangent space Tg(G) at each g ∈ G can be identified with the tangent space at the origin, and
a single Riemannian metric tensor R can be shared over the entire space. Moreover, the induced
Riemannian distance d(g, h) between any two points g, h ∈ G is then by construction left-invariant,
i.e., ∀g,h,i∈G : d(g · h, g · i) = d(h, i).

Expressing tangent vectors in such left-invariant vector fields allows us to reason in terms of the gener-
ators of the group and even design learnable equivariant differential operators for the construction of
deep NNs [Smets et al., 2020]. Consider the G = SE(2) case. As a basis we pick the 3 generators of
the group: a forward motion represented by a vector A1 pointing in the forward direction within the
plane, a side-ways motion represented by a perpendicular planar vector A2, and a rotation/change of
orientation represented by a vector A3 that points vertically in along the H-dimension. We then work
with diagonal Riemannian metric tensors R = diag(1, ε−2, ξ2), which penalize each type of motion
(represented by the vector components) differently. When ε→ 0 one arrives at the sub-Riemannian
geometry which forms the basis for the mathematical modeling of visual perception. It quantifies
a notion of alignment through the sub-Riemannian distance; the length of a distance-minimizing
geodesic that connects two local orientations that lie in the extend of each other will be much smaller
that that of a geodesic connecting two local orientations parallel to each other. An analogy can be
found with the example of a car in a parking lot where it can move forward/backward (A1) and
change orientation (A3) [Reeds and Shepp, 1990]. It will be easier to move it to the more aligned
spot directly ahead then it will to the spot next to the car, as sideways motion (A2) is impossible.

Parameters ε and ξ will respectively be referred to as spatial and orientation anisotropy parameters.
With ε = 1 the metric is isotropic and there will be no distinction between different orientations.
When ε < 1, ξ determines the flexibilty/curvature of the geodesics as it balances spatial motion
against angular motion. In a sense it defines how easily one connects local orientations that are
not optimally aligned. In Figure 1 this behavior is visualized by running a diffusion process on the
anisotropic manifold graph. In the anisotropic case (ε < 1) diffusion is faster along the forward
direction within a θ-plane. From a graph NN perspective this suggests that information is propagated
more quickly between vertices that are aligned, nevertheless, Chow’s theorem (see e.g. [Montgomery,
2006]) guarantees that any point pair in the (sub-)Riemannian manfiold can interact with one another.

The exact computation of the (sub-)Riemannian distances is challenging and can generally not be done
in closed form, but can be done numerically via method such as [Bekkers et al., 2015, Sanguinetti
et al., 2015, Mashtakov et al., 2017]. In order to keep our graph construction algorithm efficient
though, we will approximate the Riemannian distances via an efficient analytic formula based on
those in [Bekkers et al., 2018] that only involves the Lie group’s logarithmic map log : G→ Te(G)
and the Riemannian metric tensor R. We then approximate the distance between points g, h ∈ G by

d(g, h) = d(e, g−1 · h) ' || log(g−1 · h)||R. (3)

Similarity measure. Encoding a similarity measure in the edges of a graph requires defining a
weighting scheme. It is common to use a Gaussian kernel and set the weights via

w(vi, vj) =

{
exp

(
−d

2(vi,vj)
4t

)
if e(vi, vj) ∈ E

0 otherwise
. (4)

The choice for kernel bandwidth t is essentially arbitrary, but good heuristics exist. Perraudin et al.
[2019] set it to half the average squared distance between connected vertices. Defferrard et al. [2020],
however, showed that this heuristic has the tendency to overestimate it and preferred to choose it as
the minimizer of the mean equivariance error. Following this overestimation observation, we fix the
kernel bandwidth as 20% of the average squared Riemannian distance between connected vertices.
As such, the weights diversely cover values in the whole range [0, 1]. The most similar vertices are
connected with close-to-one weighted edges whereas the lowest connections are close to zero.
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Quality of the approximation. In theory, we would like our approximation to be as precise as
possible. In practice, a high-resolution approximation leads to computational issues in time and
memory. Hence, tuning of the graph parameters becomes a trade-off between theoretical consistency
and practical feasibility. First of all, the graph resolution (or the number of vertices we sample)
is directly related to the quality of the approximation. While the spatial resolution |V|s is usually
determined by the data (up to up- and down-samplings), the orientation resolution |V|o is a design
choice. An important remark is to notice that a large orientation resolution does not necessarily help
if two different orientations are not distinguishable because of a poor spatial resolution [Weiler et al.,
2018, Bekkers, 2019]. Secondly, the connectivity of the graph is also a crucial parameter. A fully
connected graph is theoretically the best approximation. Nevertheless, for computational reasons, we
use K-NN graphs3 to sparsify the graph Laplacians.

(a) Base space M with an
isotropic Riemannian metric

(b) Lie group extensionG with an
isotropic Riemannian metric

(c) Lie group extension G with an
anisotropic Riemannian metric

Figure 1: Isotropic diffusion applied to an impulse signal on Riemannian manifolds onM = R2 and
G = SE(2).

Theoretical group equivariance of the graph Laplacian. Due to the success of machine learning
algorithms based on graph Laplacian, the theoretical convergence of the graph Laplacian to its
continuous analogue has been largely studied [Hein et al., 2005, Singer, 2006]. Belkin and Niyogi
[2006] noticed that in many graph-based algorithms, a central role is played by the graph Laplacian’s
eigenvectors. Thus, they focused on proving convergence in eigenmaps as it is sufficient in this case.
They proved that if the graph’s vertices are sampled uniformly from an unknown submanifoldM∈
Rd, then the eigenvectors of a suitably constructed graph Laplacian converges to the eigenfunctions
of the Laplace-Beltrami operator onM. Consequently, as the latter operator is left-invariant, as we
show in theorem A.1, the graph Laplacian is asymptotically 4 group equivariant.

Empirical group equivariance of the graph Laplacian. We empirically confirm the group equiv-
ariance property of the graph Laplacian applied to our anisotropic manifold graphs. By checking
P>∆̃P = ∆̃ where P is a permutation matrix, we can verify that the graph Laplacian is invariant
under a given permutation of vertices corresponding to a group transformation (e.g. a rotation of
the graph). Moreover, we can also compare the eigenmaps of a graph Laplacian and its continuous
counterpart if it is well-known. For a further discussion about this, see App. E.

3.2 ChebLieNet

Chebyshev convolutional layer. As introduced in Defferrard et al. [2016], a Chebyshev convolu-
tional layer is a spectral layer based on a continuous kernel parametrization with graph Laplacians.
This parameterization makes such layers highly suitable for our method, as they intrinsically cap-
ture the Riemannian geometry of the graphs on G. Moreover, the Chebyshev convolutions on
the anisotropic manifold graphs are equivariant by construction because the graph Laplacians are
equivariant operators (see Figure 2).

3Note that in our implementation, a K-NN graphs does not mean that each vertex has K neighbors but at
most K neighbors. Indeed, if the graph domain has boundaries, using exactly K neighbors for each vertex could
lead to asymmetries that may introduce biases and harm the permutation invariances in the graph.

4The asymptotic case corresponds to |V| → ∞ and a Gaussian weight kernel with kernel bandwidth t→ 0.

6



Figure 2: Rotation equiv-
ariance of a randomly ini-
tialized SE(2) Chebyshev
convolutional layer. From
left to right shows differ-
ent rotations of an input
(top row) and the activa-
tions for different slices of
θ ∈ [0, π] in the graph (bot-
tom 6 rows). A rotation of
an input image followed by
Chebyshev convolution is
equivalent to first convolu-
tion followed by a planar ro-
tation in each θ slice and a
roll in the θ-axis.

Spatial pooling and unpooling layers. Graph pooling is a central component in a myriad of
graph neural network architectures. Producing coarsened graphs from a finer graph have two main
advantages: first, it reduces the computational cost, and second, it could improve performance by
reducing the overfitting effect and adding a multiscale perspective. As an inheritance from traditional
CNNs, most approaches formulate graph pooling as a cluster assignment problem, extending local
patches’ idea in regular grids to graphs [Dhillon et al., 2007, Ying et al., 2018, Khasahmadi et al.,
2020, Mesquita et al., 2020]. We propose similar operations on the base space (spatial domain) and
involving two steps (see Figure 3). First, each sample is assigned to a cluster that will correspond to
the output sample; this is the down- (resp. up-) sampling phase. With a well designed method, this
change of data-resolution can be made equivariant to any group transformation.5 Then, each cluster is
reduced (resp. expanded) according to a given scheme (e.g. maximum, average or random); this is the
reduction (resp. expansion) phase. When the reduction and expansion steps are permutation-invariant
operations, such layers are automatically invariant under any transformation in the group.

(a) R2RandPool (b) S2MaxPool

(c) R2RandUnpool (d) S2AvgUnpool

Figure 3: Spatial pooling and unpooling layers on the 2D grid and the sphere.

Global pooling (projection) layer and point-wise operations. When the neural network does
not need to be equivariant but invariant (e.g. classification task), it is common to rely on a global
pooling layer (or simply projection layer). This layer reduces the d-dimensional signal on the graph’s
vertices to a d-dimensional vector of features derived from information on the whole graph. As a
permutation-invariant operation, such a layer does not break the equivariance property of the neural
network. Finally, point-wise operations do not affect the equivariance of a neural network.

5Altough down- and up-samplings are naturally defined on the Euclidean grid, this task is more complicated
on the sphere. However, using an icosahedron decomposition of the sphere, we make it more natural as down-
and up-sampling consists of decreasing or increasing the subdivision level.
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4 Experiments

In this section, we show the benefits of working on the anisotropic manifold graphs compared to the
base manifold graphs. We believe that further improvements could be achieved through tuning and
hyper-parameter optimization of the models [Yu and Zhu, 2020], using high-capacity networks, or via
a more advanced training process, but this is not the goal of our work. We here intent to illustrate the
adaptability of our approach to different tasks such as classification and segmentation in 2D images or
spherical data. In the first couple of experiments, we motive the use of anisotropic spaces. By varying
the anisotropies, we show the existence of sweet spots, both for the spatial anisotropy parameter ε
and the orientation anisotropy parameter ξ. In the second couple of experiments, we show that even
if we add a new orientation dimension, our method remains scalable using a proper implementation.

Our implementation is fully PyTorch [Paszke et al., 2019] and available at https://github.com/
haguettaz/ChebLieNet. We perform all the experiments on a single GeForce GTX 1080 Ti gpu
and track them with the Weights & Biases library [Biewald, 2020]. The details of the experiments are
given in the App. C.

4.1 Why using tunable anisotropic kernels?

As introduced in Section 3.1, the anisotropies are tunable via the parameters ε and ξ of the Riemannian
metric, respectively responsible for the spatial and orientation anisotropies. As the ξ parameter should
depend on the spatial and orientation resolutions, we use the following parameterisation: ξ2 = α |Vo||Vs| .
Setting α = 1 yields a 40/60 ratio of neighbors within versus outside the orientation plane. We
ran different experiments with a Wide Residual architecture [Zagoruyko and Komodakis, 2016] on
CIFAR10 [Krizhevsky et al., 2009], varying the spatial and orientation anisotropic parameters.
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Figure 4: Empirical proof of existence of sweet spots for data-dependent anisotropic parameters.

Orientation anisotropy. The orientation anisotropy ξ controls how strongly orientation layers are
connected. At the limit ξ →∞, orientation layers are decoupled. It is like test-time augmentation
with rotations: running a CNN working with one anisotropic Laplacian (e.g., only vertically aligned
filters) and testing the network for different input rotations before averaging the output. The other
extreme ξ → 0 keeps all layers equally close to each other, and features are essentially identified with
just a spatial coordinate. This would then correspond to a WideResNet with isotropic Chebyshev
convolutions. For reasonable values of ξ, interactions between orientation layers take place. Figure
4a is evidence of the existence of a sweet spot for this parameter in the range of reasonable values. At
the moment, we expect with no certainty that this parameter could be set a priori of the data, only
considering the data resolution. As a rule of thumb, we set ξ such that each vertex has approximately
40% of its neighbors in the same orientation layer and 60% on others.

Spatial anisotropy. The spatial anisotropy ε regulates the anisotropy of the space on the spatial
domain. For ε = 1, the Riemannian metric is spatially isotropic; all directions are treated equally
and the resulting model would effectively be a WideResNet with isotropic Chebyshev convolutions.
At the limit ε→ 0, the main direction has a minimal cost, and the resulting space is highly spatially
anisotropic. In figure 4a we observe that using anisotropic spaces instead of isotropic ones is relevant,
as we almost get an 8% test-accuracy improvement. Unlike the orientation anisotropic parameter,
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in our opinion, this parameter is task/data-dependent; different datasets could benefit in different
degrees from the utilization of directional information through different spatial anisotropy settings.

4.2 How scalable is the method?

Scalability is often an important limitation of graph- and group-based neural networks. By adding
an orientation dimension, we do not run from this rule as we necessarily increase the number of
vertices of the anisotropic manifold graphs. To permit experiments on larger images, it becomes
crucial to pre-compute anisotropic manifold graphs and their Laplacians. Dedicated librairies like
PyKeops [Charlier et al., 2020] enable this without memory issues. Nevertheless, the graph operations
(convolutions, pooling or unpooling) still scale with the size of the graph. Fortunately, PyTorch
provides sparse operations that increase efficiency in terms of time and memory compared to dense
operations in cases of sufficiently sparse graph Laplacians (typically a sparsity S(∆̃) ≥ 98.5%).

We evaluate our models on an image classification task on STL10 [Coates et al., 2011] and an image
segmentation task on ClimateNet [Kashinath et al., 2021]. We show the adaptability of our method by
using a Wide Residual architecture [Zagoruyko and Komodakis, 2016] on STL10 and a U-Net-like
network [Ronneberger et al., 2015] on ClimateNet. We also demonstrate the potential of our approach
and the benefits of using anisotropic spaces. Indeed, while on ClimateNet the use of anisotropies is
neither beneficial nor detrimental, the difference in performance on STL10 is significant.

Table 1: Mean of test performance and training duration on ClimateNet and STL10. Errorbars are 1
standard deviation computed over 5 trials.

ClimateNet STL10
ε Test F1 Duration Test accuracy Duration

1 (invariant) 85.62 ± 0.09% ∼ 2 d 68.98± 0.56% ∼ 9 h
0.1 (equivariant) 85.25± 0.19% ∼ 7 d 74.02 ± 1.10% ∼ 16 h

5 Conclusion

Scope. With our method, geometric graph NNs are made equivariant to Lie groups. Via the groups
SE(2) and SE(3), we can construct roto-translation equivariant networks for 2D image data and 3D
volumetric data. Based on the group SO(3), our method can deal with meteorological or cosmological
data while preserving rotation equivariance. We believe that our flexible approach is ideal for further
explorations on the relevance of group equivariance in tasks not considered in this work.

Limitations. The main weakness of our method is its relatively high memory requirement. Al-
though all experiments ran on a single gpu, by adding an orientation axis, we significantly enlarge the
feature maps. As a result, anisotropic graph manifolds are memory-heavier than isotropic ones and
prone to a slowdown during the forward- and backward-pass. Nevertheless, with the emergence of ge-
ometric deep learning, we expect improvement in the hardware and implementation of graph-oriented
operations. Another challenge is the increased number of hyper-parameters for which we only have
derived rules of thumb. The graph connectivity and resolutions require a tradeoff between efficiency
and quality of the manifold approximation. The anisotropic parameters require an analysis of the
dataset and some intuition about the amount of anisotropy to set. With systematic hyper-parameter
optimization, we can find an optimal combination, but requires more computational resources.

Potential and future research. Thanks to its easy-to-tune anisotropic properties, our model can be
used to better understand anisotropic properties in data. In particular, one could explore the effect of
using anisotropic spaces instead of isotropic ones on many tasks and conclude when such anisotropic
information is relevant. In this vein, it could also be interesting to derive anisotropic pooling and
unpooling layers based on anisotropic spaces instead of isotropic ones as it is usually done. More
generally, our method is simple enough to be extended to shapes/surfaces with a Riemannian manifold
structure [Cohen et al., 2019], following the framework of coordinate independent convolutions
[Weiler et al., 2021]. In this work, we focused on 2D images and spherical data on, but the method
is readily extendable to higher dimensional Lie groups such as the SE(3) group to obtain 3D roto-
translation equivariant ChebLieNets. Moreover, our method for constructing anisotropic geometries
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could directly improve other successful Euclidean distance-based graph NNs such as [Satorras et al.,
2021] by making them fully equivariant. Last but not least, despite graph-based algorithms being
computationally sub-optimal compared to CNNs, their flexibility is a real asset. We see high potential
in the exploration of graph sparsification to reduce computational complexity.
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A Background

A.1 Riemannian geometry

Riemannian geometry is a part of differential geometry that studies Riemannian manifolds, smooth
manifolds equipped with a Riemannian metric. A manifoldM is a generalization and abstraction
of the notion of a curved surface. It is a topological set that is modeled closely on Euclidean space
locally but may vary widely in global properties. It means for each p ∈ M, one can associate a
tangent space Tp(M) ⊆ Rd, corresponding to the union of all tangent vectors of differentiable curves
passing through p. Consequently, at any point p ∈ M, the tangent space Tp(M) is spanned by a
basis {∂xi,p}Ni=1:

Tp(M) = {γ̇(0)|γ : R→M ∈ C1and γ(0) = p} = span{∂xi,p}Ni=1. (5)

A Riemannian manifold is a differentiable manifoldM with a Riemannian metricR, a 2-tensor field,
such that at each p ∈M, we have a functionR|p : Tp(M)× Tp(M)→ R which is symmetric and
positive definite. At each g ∈ G, the Riemannian metric can be expressed by its local representation,
a symmetric positive definite matrix Rp whose components are given by:

rij(p) = R|p(∂xi,p, ∂xj ,p). (6)

In the following we consider Riemannian metric with diagonal local representation at the origin e,
that is:

rij(e) =

{
ri if i = j
0 otherwise . (7)

The Riemannian metric induces an inner product, such that for any u = ui∂xi,e and v = vi∂xi,e,
we have 〈u, v〉R(e) = uiriv

i and ||u||2R(e) = uiriu
i. Between each pair of points p and q of

a Riemannian manifold, we define their Riemannian distance as the length of the shortest curve
connecting the two points (a.k.a. geodesic). More formally, we have:

d(p, q) = inf
γ∈C∞p,q

∫ 1

0

||γ̇(τ)||Rγ(τ)dτ, (8)

where C∞p,q = {γ : [0, 1] →M|γ ∈ C∞, γ(0) = p, γ(1) = q}. An more convenient way to define
the Riemannian between two points is via the exponential and logarithmic Riemannian maps (Figure
5). The Riemannian exponential map expp Tp(M)→M is defined as:

expp(v) = γp,v(1), (and by extension expp(tv) = γp,v(t)), (9)

where γp,v(1) is the unique Riemannian geodesic starting at p ∈M with initial velocity v ∈ Tp(M).
We can interpret the exponential map as follows. Let’s choose any direction in our tangent space
and follow it with a step forward. We make sure to take the shortest path and end up at a new
point. This process is what we called the exponential map.7 The inverse mapping of the exponential
map, the logarithmic map logp :M→ Tp(M) will map an element p ∈ M to the smallest vector
v = logp q ∈ Tp(M) as measured by the Riemannian metric such that q = expp v ∈M.

A.2 Group theory

A group (G, ·) is a set G equipped with a binary operation · : G→ G called group product, satisfying
the four group axioms (closure, associativity, identity element and inverse elements). To map the
structure of the group to some mathematical object, one requires a representation. We define H as
the vector space to which our mathematical object belongs and B(H) the space of bounded linear
invertible operators H → H . A representation V : G→ B(H) maps a group element to an operator
such that the identity element, the group product and the group inverse are preserved. We define the
left-regular representation Lg on the (infinite-dimensional) vector space of functions G→ Rd via:

(Lg ◦ f)(h) = f(g−1h), (10)

with f : G → Rd a function on the group G and g, h elements of the group G. Using this group
representation, we can formally define the left-invariance (a.k.a. equivariance).

7It comes from the fact that all these tiny steps magically resemble the series expansion of the exponential
function.
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Figure 5: Riemannian exponential map expp : Tp(M) → M and Riemannian logarithmic map
logp :M→ Tp(M).

Definition A.1 (Equivariance) An operator Φ : X → Y from one vector space to the other is
equivariant (or left-invariant under group transformation) if it satisfies the following property:

L′g ◦ Φ = Φ ◦ Lg, ∀g ∈ G. (11)

Equivariance can be realized in many ways, and in particular, the group representations Lg and L′g
need not be the same, as they act on different spaces X and Y . Note that the familiar concept of
invariance is a special kind of equivariance where L′g is the identity transformation for all element g
of the group G.

A Lie group is a continuous group whose group elements are parameterized by a finite-dimensional
differentiable manifold. In essence, this means that a Lie group is a group to which we can apply
differential geometry. From now on, we also assume the group manifold is equipped with a Rieman-
nian metric, that is it is Riemannian manifold. To each element g of G, we can associate a tangent
space Tg(G), which is spanned by a basis of left-invariant vectors denoted by {Ai|g}ni=1. We write
Tg(G) = span{A1|g, . . . ,An|g} and we can express tangent vectors γ̇(t) of Tg(G) in this basis via
γ̇(t) = ci(t)Ai|γ(t).

Moreover, because this frame of basis vector is left-invariant, the coefficients ci(t) remain unchanged
if the curve is moved by applying left group product. The tangent space at the origin Te(G) is spanned
by a basis {Ai}ni=1 where Ai = Ai|e. We make a subtle difference in notation between A and A,
where A represents a whole vector field and A|g represents the vector at location g. The straight A
is used to indicate a vector in the Lie algebra, the tangent space at the origin. Via the push-forward
(Lg)∗, we can generate a whole vector space by picking a vector in the Lie algebra and transporting
tangent vectors from γ̇(0) ∈ Te(G) to g · γ̇(0) ∈ Tg(G) using:

Ai|g = (Lg)∗Ai, ∀g ∈ G. (12)

The left-invariant frame of basis vectors could also be interpreted as the directional derivative of
functions defined on the group G. At any element g, the value of the directional derivative of a
function f defined on G can be computed using the push-forward operation:

Ai|gf = (Lg)∗Ai|ef := Ai|e(f ◦ Lg−1), (13)

so Ai|gf represents the directional derivative along the vector field at location g, which can be
defined by translating the function back to the origin via Lg−1 and compute the derivative at the
origin along the direction specified by Ai|e. In the above Lgh := gh.
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The Laplace-Beltrami operator, the generalization to Riemannian manifold of the Laplace operator8

is defined below.

Definition A.2 (Laplace-Beltrami operator) Let g be an element of the Lie group (M, ·). The
Laplace-Beltrami operator on the Riemannian manifoldM is defined as

∆R(g) = div(∇R(g)) (14)

Using the left-invariant frame of basis vectors as directional differential operators, we can define the
gradient, expressed as a vector relative to the basis Ai|g , of a function f : G→ G:

∇R(g)f = R−1g (A1|gf, . . . ,An|gf)>, (15)

where Rg is the Riemannian metric tensor defined relative to the basis Ai, that corrects for local
scaling and shrinking of the manifold as measured by the metric tensor. The divergence of a vector
field F : G→ Rn is the operator:

div(F ) =

n∑
i=1

Ai|gFi. (16)

The Laplace-Beltrami operator depends on a Riemannian metric tensor, which describes how lengths
of vectors should be measured in different directions, and in the Laplace-Beltrami operator, it rescales
the derivates accordingly. While the usual Laplacian is isotropic (derivatives are threated the same in
each direction), the Laplace-Beltrami operator can be anisotropic due to the Riemannian metric that
is used.

Theorem A.1 (Left-invariance of the Laplace-Beltrami operator) The Laplace-Beltrami opera-
tor ∆R(g) is left-invariant and satisfies:

∆R(g) = (Lg)∗∆R(e). (17)

A Lie algebra g is a vector space (here the tangent space at the identity element Te(G)) that is
endowed with a binary operator called the Lie bracket or commutator [·, ·] : Te(G)×Te(G)→ Te(G)
that is bilinear, alternative and satisfies the Jacobi identity. Conceptually, the Lie bracket [A,B] of
two vector fields A,B is the derivative of B along the flow generated by A.9 In the following, we
take {Ai}ni=1 with Ai = Ai|e as Lie Algebra and get left-invariant vector fields via the push-forward
operation.

The Lie group exponential and logarithmic maps define the mappings between the group and the
tangent space. The exponential map on a Lie group can be thought of as picking a vector A in the
Lie algebra, construct a left-invariant vector field A via the push-forward operator, and follow this
vector field by taking infinitesimal steps along the direction indicated by the vector field. Integrating
along the vector field defined by A for unit time brings to some point g ∈ G. So g = expA, where
exp : g→ G.10

8Another equivalent definition in local coordinates exists too. It explicitly takes into account the Riemannian
metric tensor fieldR previously defined. Here we use a more compact definition but using the subscriptR(g)
to indicate that the Laplace-Beltrami operator depends on the location on the Riemannian manifold and the
Riemannian metric tensor field.

9Two vector fields are commutative (zero Lie bracket) if and only if its flows are too, in the sense that there is
no difference starting at one point p, traveling a time ta over the flow of A and then a time tb over the flow of B,
or, instead, traveling first tb over the flow of B and then ta over the flow of A.

10Note that Riemannian and Lie group exponential maps are different. For the general Riemannian exponential
map, the vector field along which we compute the path integral is defined by the Riemannian metric. In the
Lie group exponential map, the vector field is defined by the push forward of left-multiplication. The curves
defined by the path integrals in the Riemannian exponential are known to be geodesics. The exponential curves
in the Lie group case are "straight curves" with respect to a moving frame of reference but are not necessarily
geodesics. The Riemannian and Lie group exponential maps only coincide when the Riemannian metric is both
left and right invariant (see Section 4.5 in Bekkers [2017]).
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A.3 Graph theory

Graphs are generic data representation forms that are useful for describing the geometric structure
of data domains [West et al., 1996]. More formally, we define a graph G as a structure modeling
a finite set of interactions called edges E between a finite set of objects called vertices V . In the
following, we denote by |V| the number of vertices and by |E| the number of edges. We denote vi
the i-th vertex and e(vi, vj) the potential edge from vi to vj . We call the neighborhood of the vertex
vi the set of vertices connected to vi by an edge and denote it by N (vi). More generally, we write
N k(vi) for the k-hops neighborhood of vertex vi, that is, the set of vertices connected to vi with a
path of at most k edges. In some cases, it can be useful to add weights on graph edges. In general,
the weights can take any value. Nevertheless, in this thesis, we assume weights in the range [0, 1)
and measuring the similarity rather than the distance. When the edges’ weights are not naturally
defined by an application, a common way to define them is to apply a kernel K : R+ → [0, 1) on
the distance between connected vertices. For theoretical convergence results, we use a Gaussian
weighting scheme:

w(vi, vj) =

{
exp

(
−d

2(vi,vj)
4t

)
if e(vi, vj) ∈ E

0 otherwise
, (18)

where d(vi, vj) denotes the (Riemannian) distance between vertices vi and vj and t is a positive real
number called bandwidth of the Gaussian kernel. From now on, we furthermore assume that the
graphs are undirected and without self-loop.

The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with
computational harmonic analysis to process such signals on graphs [Shuman et al., 2013]. A signal
on a graph is a function f : V → Rd, mapping each vertex of the graph to a d-dimensional real
valued vector. In matrix form, this signal is a |V| × d real valued matrix f whose rows are given by
f i = f(vi) ∈ Rd.

An essential object in graph signal processing is the Laplacian operator. Under some specific
conditions that we will state later, it can be interpreted as a discrete version of the Laplace-Beltrami
operator.

Definition A.3 (Symmetric normalized Laplacian) Let G be an undirected weighted graph without
self-loops. The symmetric normalized Laplacian ∆ is the |V| × |V| real valued matrix whose
components are given by:

∆i,j =


1 if i = j and deg(vi) > 0

− w(vi,vj)√
deg(vi) deg(vj)

if i 6= j and deg(vi) > 0

0 otherwise
. (19)

Assuming a function f defined on the graph vertices V , by inspection on the components of ∆kf , we
remark that the Laplacian acts as a k-op neighborhood operator. We can prove that ∆ is a symmetric
positive definite matrix. Hence it admits a unique eigendecomposition of the form ∆ = ΦΛΦ>

where the j-th column of Φ correponds to the eigenvector φj associated with real positive eigenvalue
λj . In these settings, the eigenvalues are in the range [0, 2] [Chung and Graham, 1997]. By analogy
with the Euclidean case where the Laplacian’s eigenfunctions correspond to the Fourier basis, we can
construct a graph Fourier basis from the eigendecomposition of the graph Laplacian, and define the
graph Fourier transform and its inverse.11

Definition A.4 (Graph Fourier transform) Let G = (V, E) be a graph with Laplacian ∆ and let
f : V → R be a signal defined on the graph’s vertices. The graph Fourier transform f̂ of f is given
by:

f̂(λj) = f̂j = {Φ>f}j =
∑
i

φijfi =
∑
vi

φ(vi, λj)f(vi), (20)

and its inverse transform by:

f(vi) = fi = {Φf̂}i =
∑
j

φij f̂j =
∑
λj

φ(vi, λj)f̂(λj). (21)

11The existence of an inverse transform is a direct consequence of the orthonormality of the eigenvectors.

19



B Lie groups

At the moment, all the group’s elements we are interested in are in 1-1 correspondence with elements
of the 3-dimensional general linear group GL(3), the group of 3× 3 real matrices. We will use this
representation since working with matrices is more convenient. Indeed, in this case the group product,
group inverse, group exponential and group logarithm respectively coincide with the matrix product,
matrix inverse, matrix exponential and matrix logarithm.

For the roto-translation group SE(2), the spatial part corresponds to the planar translations and the
orientation part to the rotation angles. Group elements g ∈ SE(2) are given in matrix formulation
by:

g = (x, y, θ)↔ Gg =

(
cos θ − sin θ x
sin θ cos θ y

0 0 1

)
, (22)

hence the group is 3 dimensional with two parameters x, y coming from the spatial space R2 and one
orientation parameter coming from [−π, π).

The Lie algebra se(2) is the set of 3× 3 matrices:

A1 =

(
0 0 1
0 0 0
0 0 0

)
, A2 =

(
0 0 0
0 0 1
0 0 0

)
, and A3 =

(
0 −1 0
1 0 0
0 0 0

)
(23)

Naturally, it is impossible to uniformly sample elements on this group because the R2 space is infinite.
Adding boundaries to the euclidean space, we get the [0, 1)2 space, which is not homogeneous
anymore, but on which it is possible to uniformly sample |Vs| elements. Because we are considering
anisotropic Laplace-Beltrami operators which are symmetric under reflections, it is sufficient to
sample the rotation angles θ in the range [−π/2, π/2).

As defined by its Lie algebra, the matrix logarithm related to an element of the SE(2) group has the
form:

logeGg =

(
0 −c3 c1
c3 0 c2
0 0 0

)
(24)

It results that the logarithmic map loge : SE(2)→ se(2) admits a closed form expression loge g =
(c1, c2, c3)> with12:

c1 =
θ

2

(
y + x cot

θ

2

)
, c2 =

θ

2

(
−x+ y cot

θ

2

)
, and c3 = θ. (25)

The group SO(3) of all rotations about the origin of 3-dimensional Euclidean space can be split into a
"spatial" part which is the sphere, and a rotation part, which is a rotation around a particular reference
axis. Using ZY Z representation, group elements g ∈ SO(3) are given in matrix formulation by:

g = (α, β, γ)↔ Gg = Rγ,zRβ,yRα,z, (26)

where α ∈ [−π, π], β ∈ [−π/2, π/2] and γ ∈ [−π, π]. We view the sphere S2 as the spatial part,
just like we view our Earth as locally flat. S2 is parametrized with Euler angles β and γ, which are
independent of α. The rotation part is then parametrized by α.

The Lie algebra so(3) is the set of antisymmetric 3× 3 matrices:

A1 =

(
0 0 1
0 0 0
−1 0 0

)
, A2 =

(
0 −1 0
1 0 0
0 0 0

)
, and A3 =

(
0 0 0
0 0 −1
0 1 0

)
. (27)

To uniformly sample on the group SO(3) is quite challenging because a perfectly uniform sampling
on the sphere does not exist. Fortunately, this task has been largely studied, and many algorithms

12In the isotropic case, corresponding to the 2-d Euclidean space, one can check that using the exact same
expression of the logarithmic map with θ = 0 gives the Euclidean distance.
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have been proposed: equiangular13 [Driscoll and Healy, 1994], HEALPix [Gorski et al., 2005], and
icosahedral [Baumgardner and Frederickson, 1985] samplings. As before, due to the same symmetry
argument, it is sufficient to restrict the orientation range to [−π/2, π/2) and to sample |Vo| elements
on this restricted range.

The matrix logarithm related to an element of the SO(3) group has the form:

logeGg =

(
0 −c3 c2
c3 0 −c1
−c2 c1 0

)
. (28)

Using the Rodrigues’ rotation formula [Rodrigues, 1840], we derive a closed form expression for the
logarithmic map loge : SO(3)→ so(3), with notation loge g = (c1, c2, c3)>. We get14:

c1 =
θ

2 sin θ
(Gg,3,2−Gg,2,3), c2 =

θ

2 sin θ
(Gg,2,1−Gg,1,2), and c3 =

θ

2 sin θ
(Gg,1,3−Gg,3,1).

(29)

Due to the π periodicity of the orientation axis, the π-periodic Riemannian distance between two
elements of the groups is the minimal distance between:

• the original distance without offset;

• the original distance with a negative offset −π on the orientation axis;

• the original distance with a positive offset +π on the orientation axis.

C Experiment details

Empirical evidence showed that deep and wide neural networks are keys to good performances. To
help going deeper we use residual convolutional layers [He et al., 2016] and batch normalization
[Ioffe and Szegedy, 2015]. To avoid tuning of the learning rate, we use ADAM optimizers [Kingma
and Ba, 2014] for all our experiments. Last, we initialise our models’ parameters via the Kaiming
method [He et al., 2015].

Stability test on MNIST. In these experiments, we used a Wide Residual ChebNet with three
convolutional residual layers with rectified linear units and kernel of size 4. As we do not pool at all,
we only define one SE(2) 16-NN graph with 28× 28× 6 = 4704 vertices. We use extreme spatial
anisotropy with ε2 = 0.1 and reach the 40/60 ratio by setting ξ accordingly. The residual layers are
followed by a projective global max pooling layer and a fully connected with LogSoftMax output
layer.

Orientation anisotropic test on CIFAR10. In these experiments, we used a Wide Residual Cheb-
Net with three residual layers with rectified linear units and kernel of size 4. We use two R2RandPool
layers. Hence we define three SE(2) 16-NN graphs with 32× 32× 6 = 6144, 16× 16× 6 = 1536,
and 8× 8× 6 = 384 vertices. We use extreme spatial anisotropy with ε2 = 0.1. The residual layers
are followed by a projective global max pooling layer and a fully connected with LogSoftMax output
layer.

Spatial anisotropic test on CIFAR10. In these experiments, we used a Wide Residual ChebNet
with 3 residual layers with rectified linear units and kernel of size 4. We use two R2RandPool layers.
Hence we define three SE(2) 16-NN graphs with 32× 32× 6 = 6144, 16× 16× 6 = 1536, and
8× 8× 6 = 384 vertices. We use moderate orientation anisotropies to reach the 40/60 ratio on each
graphs by setting ξ accordingly. The isotropic case is constructed using ε2 = ξ2 = 1 on three R2

13Equiangular is far from uniform, but it has a sampling theorem.
14To compute the logarithmic map in the isotropic case corresponding to S2, we must use a slightly modified

version such that c3 = 0, which via the exponential map generate torsion free exponential curves. The
logarithmic of any rotation matrix defined by (−γ, β, γ) yields this results [Bekkers, 2019, Portegies et al.,
2015].
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8-NN graphs with 32× 32× 1 = 784, 16× 16× 1 = 256, and 8× 8× 1 = 64 vertices. The residual
layers are followed by a projective global max pooling layer and a fully connected with LogSoftMax
output layer.

Scalability test on STL10. In these experiments, we used a Wide Residual ChebNet with three
residual layers with rectified linear units and kernel of size 4. We use two R2RandPool layers. Hence
we define three SE(2) 16-NN graphs with 96 × 96 × 6 = 55296, 48 × 48 × 6 = 13824, and
8× 8× 6 = 3456 vertices. We use extreme spatial anisotropy with ε2 = 0.1 and reach the 40/60 ratio
on each graphs by setting ξ accordingly. The isotropic case is constructed using ε = ξ = 1 on three
R2 8-NN graphs with 96× 96× 1 = 9216, 48× 48× 1 = 2304, and 24× 24× 1 = 576 vertices.
The residual layers are followed by a projective global max pooling layer and a fully connected with
LogSoftMax output layer. The residual layers are followed by a projective global max pooling layer
and a fully connected with LogSoftMax output layer.

Scalability test on ClimateNet. In these experiments, we used a U-ChebNet with three residual
layers with rectified linear units and kernel of size 3. We use five S2MaxPool (encoding) and five
S2AvgUnpool (decoding) layers. Hence we define six SO(3) 16-NN graphs with 10242×6 = 61452,
2562× 6 = 15372, 642× 6 = 3852, 162× 6 = 972, 42× 6 = 252, and 12× 6 = 72 vertices. We
use extreme spatial anisotropy with ε2 = 0.1 and reach the 40/60 ratio on each graphs by setting ξ
accordingly. The residual layers are followed by a projective global max pooling layer and a fully
connected with LogSoftMax output layer.

D Stability under random perturbations

In sensitive domains, the stability of a neural network to random perturbation is a desired property.
We aim at demonstrate the high stability of our approach, as random perturbations are added to graphs
during the training. We introduce two methods, both consisting in randomly pruning the original
graph to construct a random sub-graph (see Figure 6). At test time, random perturbations are removed
in order to evaluate a perturbation-free model.
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(a) One constructs a random sub-graph by randomly
sampling a rate κE of edges of the complete graph
based on their weight. As a direct consequence of the
work of Keriven et al. [2020], the Laplacian of a quasi-
sparse graph with randomly sampled edges remains
consistent. Then, the unsampled edges are pruned by
setting their weight to zero. One must be aware that
this process could lead to isolated vertices or cluster
of vertices. It is not necessarily a problem, but it is
important to be mindful of this potential effect.
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(b) This method based on vertices sampling consists
of creating a random sub-graph by randomly sampling
a rate κV of vertices from the complete graph. The
edges between one or mode unsampled vertices are
discarded too. This method is more drastic and should
be used carefully, as such a vertices pruning leads to a
violation of the uniform distribution of vertices.

Figure 6: Edge- and vertex-based sampling methods.

We run a bunch of experiments with a Wide Residual architecture on MNIST [LeCun and Cortes,
2010], varying the rates of edges or vertices to sample. The objective of these experiments is twofold.
First, we would like to test the stability of the model under random perturbations. Second, this
experiment is also a good manner to demonstrate the equivariance property of our method. In this
purpose, we train our model on the original training set of MNIST, adding some perturbations. At
test time, we evaluate the perturbation-free model on the test set with and without random rotations.
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Figure 7: Stability and group equivariance under random perturbations.

Equivariance. With these experiments, we empirically demonstrated the rotation-equivariance
of a ChebLieNet. An extrinsic equivariance error can explain the slight difference in performance
between the original test set and the randomly rotated one. This error is not related to the model but
the evaluation’s method and can be semantic (e.g. is it always possible to differentiate a six from a
nine without orientation information) or numerical (e.g., how to rotate a low-resolution image by 10
degrees without alteration).

Robustness. While in this specific case, our dropout-like method does not help to improve our
model on the test set, we expect it could help to reduce the over-fitting on other tasks. In addition, one
could notice that even at middle-low sampling rates, the models remain stable. First of all, it supports
the idea that there is no point using a fully connected graph; more edges capture the geometry better
but with diminishing returns. Secondly, the model is robustly able to catch the semantic information
in an image, even with partial alterations.

E Empirical convergence in eigenmaps of the graph Laplacians

As it has been proven by Belkin and Niyogi [2006], assuming a suitably constructed graph, the
graph Laplacian converges in eigenmaps to its continuous counterpart, the Laplace-Beltrami operator.
Hence, a good sanity check is to compare the eigenmaps of the discrete and continuous Laplace
operators.

Firstly, we recall the eigenvalues of symmetric normalized graph Laplacians satisfies 0 ≤ λk ≤ 2 for
all k. As the eigenvalues can be interpreted as frequency components, the eigenvector associated to
an high eigenvalue would correspond to an high frequency signal on the graph. To finish with, we
propose a detailed analysis of the eigenmaps of our spaces of interest in terms of the Fourier basis
and the spherical harmonics.

Isotropic 2-dimensional grid. The eigenmaps of the [0, 1)2 space are shown in figure 8. It is a
well-known fact that the 2-dimensional grid with periodic boundaries can be spanned by the Fourier
basis. Consequently, the eigenvectors of this space corresponds to the sine and cosine trigonometric
functions. In this case, the eigenvalues have multiplicity two (excepted the first one associated with a
constant eigenvector), one for the sine and the other for the cosine. When the periodic condition at
the boundaries are relaxed, the space is not homogeneous anymore, and the symmetries of the space
change a little bit. The [0, 1)2 space is such a space where periodic condition does not hold. Hence,
the eigenmaps of this space are not equal to the Fourier basis, but very close.

Anisotropic 2-dimensional grid. The eigenmaps of the [0, 1)2 × [−π/2, π/2) space are shown
in figure 10. We can extend the discussion we add in the isotropic case to justify the fact that the
eigenmaps of the [0, 1)2 × [−π/2, π/2) is close to the Fourier basis. Moreover, we an additional
orientation dimension, the rotation of the [0, 1)2 induces a torsion all along the orientation axis
because of the anisotropic Riemannian metric.

Isotropic 2-dimensional sphere. The eigenmaps of the S2 space are shown in figure 9. It is a
well-known fact that the 2-dimensional sphere is spanned by the spherical harmonics. The eigenvalues
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associated to this eigenvectors have increasing multiplicities of the form 2m+ 1 where m is the order
of the spherical harmonic.

Anisotropic 2-dimensional sphere. The eigenmaps of the S2 × [−π/2, π/2) space are shown
in figure 11. We can extend the discussion we add in the isotropic case to justify the fact that the
eigenmaps of the S2 × [−π/2, π/2) are close to the spherical harmonics. Nevertheless, the role of
the orientation dimension is not easily interpretable. Indeed the notion of orientation is arduous to
understand, as the kernel’s orientation depends on the path, and not on this orientation location.

0 10 20 30 40 50
0

0.1

0.2

k

λ
k

(a) Eigenvalues of the [0, 1]2 space, from λ0 to λ49.

(b) Eigenvectors of the [0, 1]2 space, from φ0 (left) to φ9 (right).

Figure 8: Eigenmaps of the [0, 1]2 space.
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(a) Eigenvalues of the S2 space, from λ0 to λ49.

(b) Eigenvectors of the S2 space, from φ0 (left) to φ9 (right).

Figure 9: Eigenmaps of the S2 space.
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(a) Eigenvalues of the [0, 1]2 × [−π/2, π/2) space, from λ0 to λ49.

(b) Eigenvectors of the [0, 1]2 × [−π/2, π/2) space, from φ0 (left) to φ9 (right).

Figure 10: Eigenmaps of the [0, 1]2 × [−π/2, π/2) space.
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(a) Eigenvalues of the S2 × [−π/2, π/2) space, from λ0 to λ49.

(b) Eigenvectors of the S2 × [−π/2, π/2) space, from φ0 (left) to φ9 (right).

Figure 11: Eigenmaps of the S2 × [−π/2, π/2) space.
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