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Abstract: NumPy programs can be hard to debug. Due to the dynamic nature
of Python, a bug can manifest itself after a long time of run time. This causes
the computation to crash, ditching all the progress. Existing static analysis tools
can’t detect NumPy-specific errors. We propose a solution that uses data-flow
analysis combined with symbolic execution to detect ndarray shape mismatch
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Chapter 1

Introduction

Python1 is a very popular programming language for data science. However, for
performance reasons, most of the computation isn’t done in pure Python. For
large data manipulation, a library called NumPy2 is usually used.

1.1 What is NumPy
NumPy User Guide [1] describes NumPy as follows.

NumPy is the fundamental package for scientific computing in
Python. It is a Python library that provides a multidimensional array
object, various derived objects (such as masked arrays and matrices),
and an assortment of routines for fast operations on arrays, including
mathematical, logical, shape manipulation, sorting, selecting, I/O,
discrete Fourier transforms, basic linear algebra, basic statistical
operations, random simulation and much more.

This makes NumPy the base library upon which other libraries are built.
It is essential (among other things) for any application requiring data science
such as machine learning. Well-known libraries for machine learning such as
TensorFlow,3 PyTorch,4 and scikit-learn5 are built upon NumPy. Not to mention
other data science libraries such as Pandas,6 SciPy,7 and Matplotlib8. It is essential

1https://www.python.org/
2https://numpy.org/
3https://www.tensorflow.org/
4https://pytorch.org/
5https://scikit-learn.org/
6https://pandas.pydata.org/
7https://scipy.org/
8https://matplotlib.org/
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because it is fast compared to pure Python. This is important for computation-
heavy applications.

The speed is accomplished by providing a multidimensional array object
called ndarray and routines that operate over an ndarray (see sections 1 and 5 in
NumPy Reference [2]), which are implemented in C. Therefore, the computation-
heavy part is not done by Python directly. This improves performance greatly,
but it introduces an interface, which can be quite hard to work with.

1.2 NumPy is hard
There are multiple reasons for this.

• Working in NumPy isn’t the typical programming we are used to. It is a
specific skill, which takes some time to develop and isn’t particularly easy.

• Data manipulation code can be quite dense. A lot of work can be done with
very little code. If programmers don’t adjust and keep the same amount of
code per line or function, the program can be quite difficult to read.

• Since speed is crucial, programmers tend to optimize the code. The program
is then written in an unexpected way, and it can be quite difficult to deduce
what a particular piece of code is supposed to do.

• The programmer has tomake sure that NumPy functions are called correctly.
Namely, the programmer must make sure that the shapes of ndarrays
match up. This is particularly hard to do since the shapes of ndarrays
aren’t explicitly stated in the code and may not be obvious at first glance.
The programmer is expected to keep track of the shapes by himself. This is
hard, and introduces many errors.

1.3 Dynamic analysis debugging
For all the reasons mentioned above, programs which use NumPy can be quite
hard to debug. And it gets even worse.

Python is a very dynamic language. Therefore, most of the errors show up
at runtime. This is fine if the execution time of the programs is low. However,
people usually use NumPy in situations where processing of large amounts of
data is needed. Therefore, many NumPy programs run for minutes, hours or
more. The error can be located at the end of the program, which would only save
the result, plot the data, or aggregate the results. Instead, the program crashes
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and all the computation is lost. This will sound very familiar to most NumPy
programmers.

This makes typical debugging using dynamic analysis (i.e., running the pro-
gram) unfeasible or at least ineffective in many applications as the debugging
cycle is just too long.

Therefore, the need for other means of debugging arises.

1.4 Small test data
One possible solutionwould be to prepare a smaller dataset and debug the program
on that. This is definitely a possible solution. However, it has its downsides.

Preparation of this data is extra work and can be, in some cases, quite time-
consuming.

Even worse, in some cases, this won’t reduce the execution time significantly.
In some applications, the program can run slowly not because of the large amount
of data present. It runs slowly because the number of iterations is so high that,
even with small data, the whole program is slow. In these applications (physics
simulation, iterative training such as stochastic gradient descent), running the
program with smaller data doesn’t improve the situation.

1.5 Notebook workflow
One modern solution is to change the workflow completely and utilize other
properties of data science.

• Data science program is often run only once and only on one dataset.

• Results are then visualized and discussed.

• Data science code is often very linear.

In this approach, the classic development cycle is abandoned and the develop-
ment is done with notebook tools such as the Jupyter notebook.9

Instead of repeatedly editing the code and running it, the work in a notebook
is more continuous. Code is separated into a sequence of blocks (this is possible
for mostly linear programs). When a block of code is written, it is run and the
values are saved. And since the program input isn’t expected to change, variable
values from this block don’t need to be recalculated when they are used by a
subsequent block.

9https://jupyter.org/
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This allows the programmer to quickly experiment and debug in a fast fashion.
Notebooks also allow the programmer to see the code results in the same place
as the code. This also allows for fast inspection of variable content, which aids
the programmer in keeping track of ndarrays’ shapes.

However, this isn’t a one-size-fits-all solution. It works well for linear, top-
level programs. However, when writing a function or nested code, this approach
fails. This is probably the biggest problem with this approach.

This approach also assumes it will be run only once and only on one dataset.
Although it is possible to write the code in a notebook and then transfer it to run
on other inputs, this won’t help with catching bugs that didn’t show up with the
original dataset.

Also, some people just don’t like the notebook approach. It requires a com-
pletely different development environment and may conflict with one’s preferred
and used-to workflow.

1.6 Static analysis
A more traditional approach is to aid the programmer by statically analyzing the
code.

For Python, there are many different tools that can help with static analysis.
These can be enormously helpful. However, these tools can only detect generic
Python errors and not NumPy-specific errors. We elaborate more in chapter 2.

1.7 Scope of this thesis
This is where our bachelor thesis comes in. We try to fill in this gap by creating a
static analysis tool that can detect NumPy-specific errors.

We won’t be trying to detect any errors which other tools can detect. Our
tool doesn’t try to compete with them; it tries to complement them. It is expected
to be used in combination with other tools. This allows us to focus on NumPy
errors better.

This is still quite a big topic as there are many NumPy-specific errors (linear
algebra exceptions—when a matrix should be regular but isn’t, floating point
exceptions, out-of-bounds exceptions and more). Therefore, we will focus only
on one type of exception, and that is a shape mismatch.

This error occurs when an operation requires some condition on the shapes
of the input ndarrays and this requirement isn’t satisfied. For example, when
multiplying two matrices together, it is required that the second dimension of
the first matrix must be equal to the first dimension of the second matrix. When
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this isn’t true, an error occurs. Similarly, when we want to do an arithmetic
operation on two matrices, these matrices must have the same shape, or they
must be convertible into matrices with compatible shapes.10

Therefore, the goal of the thesis is to design and develop a method for analysis
of NumPy programs, and to implement this method. It should detect specific
shape mismatch errors without the necessity to run the programs, thus making
the debug process significantly faster.

1.8 Structure of this thesis
In chapter 2, we discuss existing tools in further detail. In the end, we conclude
that we should start working from scratch instead of extending an existing project.

In chapter 3, we explain basic terms and concepts used throughout the thesis.
We provide links to resources about NumPy and Python AST, define basic terms
for static analysis such as basic block, AST and CFG, and explain the data-flow
analysis and related terms.

In section 4.1, we analyze different methods that could be used for the analysis
of NumPy programs. In section 4.1.5, we arrive at an algorithm that we decided
to use for our problem. In section 4.2 and section 4.3, we shortly discuss what
language and UI we should use.

In chapter 5, we further refine the high-level approach from chapter 4. In
section 5.1, we focus on details about the algorithm described in section 4.1.5. In
section 5.2, we discuss how to use information collected by the algorithm from
section 5.1 to find shape mismatch errors.

In chapter 6, we describe our implementation and provide developer docu-
mentation for it.

In chapter 7, we discuss how our method and implementation perform on
two examples—linreg in section 7.1 and sim in section 7.2. In section 7.3, we
discuss the limitations of our method and implementation.

We conclude with chapter 8.
In appendix A, we provide the user documentation and installation guide. In

appendix B, the structure of the ZIP submitted with this thesis can be found. And
in appendix C, we provide the unmodified code we derived our test case linreg
from.

10This is called broadcasting and is described in section 4.5 of NumPy User Guide [1].
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Chapter 2

Related work

Here is a list of projects we considered most relevant.1

• PyLint2

• PyFlakes3

• MyPy4

• PyRe5

• PySa6

• PyT7

PyLint and PyFlakes seem to do only very trivial analyses like checking line
numbers to detect if a variable is defined. This depth is not enough for our
purpose.

MyPy is a well-known and relatively big project which focuses on type analy-
sis. It closely integrates with Python typing. In the last few years, there was an
effort to add typing info for NumPy functions so MyPy could detect NumPy-type
errors. However, analyzing ndarray shapes requires more detailed information
than what Python type a variable is. So it would be quite a stretch to make MyPy
analyze ndarray shapes.

PyT looks like a great project. Unfortunately, it is unmaintained for a few
years and reviving it would be too much work.

1We found a GitHub site that was very helpful for finding Python static analysis tools.
https://github.com/analysis-tools-dev/static-analysis#python
2https://pylint.org/
3https://github.com/PyCQA/pyflakes
4https://www.mypy-lang.org/
5https://pyre-check.org/
6https://pyre-check.org/docs/pysa-basics/
7https://github.com/python-security/pyt
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PyRe and its subproject PySa look great. Someone even considered extending
it in the exact way we wanted (see GitHub issue8). It seems that it was even
extended to support this kind of analysis (see roadmap9). However, this was in
2019, and we didn’t find any progress on this. We tried contacting the author of
the original issue without any success. However, there would still be problems as
PyRe is written in OCaml, which we don’t know.

Therefore we decided to start working from scratch. It would probably be
easier anyway. Even if a good project existed, getting to know the code base
would take a lot of effort.

8https://github.com/facebook/pyre-check/issues/177
9https://github.com/facebook/pyre-check/blob/main/ROADMAP.md#numerical-stack
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Chapter 3

Definitions and algorithms

3.1 NumPy

Explaining NumPy in detail is way beyond the scope of this thesis. The reader
is encouraged to read the chapter NumPy: the absolute basics for beginners in
NumPy User Guide [1]. Chapter NumPy fundamentals provides a more thorough
explanation of NumPy’s concepts and will be referenced throughout the thesis.

The ultimate source of information about NumPy is the NumPy Reference [2],
which will be referenced in cases more specific information is needed.

3.2 Abstract syntax tree (AST)

An abstract syntax tree is a representation of a program. Representing a program
in a textual form is helpful for human interaction such as editing. However, for
machine interaction with the program, more structural representation is required.
An AST provides this structural representation.

An AST depends on the target language. For Python, it is described by the
grammar in The Python Language Reference [3]. A more concise version is
available in The Python Standard Library Reference [4] in the section about
module ast. This is the module we used for obtaining an AST for the input
program.

An AST consists of AST nodes, which represent different language constructs.
Any Python program is made out of these constructs. The AST nodes form a tree
that represents the structure of the program.

We won’t go into details about the Python AST nodes. They are described
in the documentation of the ast module [4] with many examples. The reader is
encouraged to go through the documentation.
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1 import collections
2
3 def count(text):
4 counter = collections.defaultdict(int)
5 for char in text:
6 counter[char] += 1
7 return counter
8
9 input = input("Enter text: ")

10 freq = count(input)
11 print(freq)

Listing 3.1 Example code

The ast module displays the produced ASTs in a textual form. This gets
unreadable quite quickly. For example, see the program in listing 3.1 and the
corresponding textual representation of AST in listing 3.2. This also serves as an
example of what an AST of an actual program looks like.

We will need to inspect ASTs of even bigger programs. Moreover, some
debugging information from our program can be visualized on the AST as well.
Therefore, a better visualization is needed.

We will visualize ASTs more graphically. See figure 3.1 for visualization of the
example program from listing 3.1. The programwhich generates this visualization
for any Python program is a part of the debugging toolset we wrote for our thesis.

3.3 Control flow graph (CFG)
A control flow graph provides a more high-level view of a program than an AST
does. It represents the control flow through the program.

A program can be split into basic blocks. A basic block is a part of code that is
always executed sequentially. Therefore, a basic block can’t contain any control
flow constructs.

A control flow graph is a graph over the set of all basic blocks of a program.
Nn edge 𝐴 → 𝐵 is part of the CFG if and only if there exists an execution of the
program in which a basic block 𝐵 is executed right after a basic block𝐴. Therefore,
every execution of the program follows the CFG edges.

Representing the program via a CFG isn’t that common in Python.1 How-
ever, we will use this well-established terminology to talk about static analysis
algorithms.

1In comparison to languages like C.
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1 Module(
2 body=[
3 Import(
4 names=[alias(name='collections ')]),
5 FunctionDef(
6 name='count ',
7 args=arguments(
8 posonlyargs=[],
9 args=[arg(arg='text ')],

10 kwonlyargs=[],
11 kw_defaults=[],
12 defaults=[]),
13 body=[
14 Assign(
15 targets=[Name(id='counter ', ctx=Store())],
16 value=Call(
17 func=Attribute(
18 value=Name(id='collections ', ctx=Load()),
19 attr='defaultdict ',
20 ctx=Load()),
21 args=[Name(id='int', ctx=Load())],
22 keywords=[])),
23 For(
24 target=Name(id='char', ctx=Store()),
25 iter=Name(id='text', ctx=Load()),
26 body=[
27 AugAssign(
28 target=Subscript(
29 value=Name(id='counter ', ctx=Load()),
30 slice=Name(id='char', ctx=Load()),
31 ctx=Store()),
32 op=Add(),
33 value=Constant(value=1))],
34 orelse=[]),
35 Return(value=Name(id='counter ', ctx=Load()))],
36 decorator_list=[]),
37 Assign(
38 targets=[Name(id='input ', ctx=Store())],
39 value=Call(
40 func=Name(id='input ', ctx=Load()),
41 args=[Constant(value='Enter text: ')],
42 keywords=[])),
43 Assign(
44 targets=[Name(id='freq', ctx=Store())],
45 value=Call(
46 func=Name(id='count ', ctx=Load()),
47 args=[Name(id='input ', ctx=Load())],
48 keywords=[])),
49 Expr(
50 value=Call(
51 func=Name(id='print ', ctx=Load()),
52 args=[Name(id='freq', ctx=Load())],
53 keywords=[]))],
54 type_ignores=[])

Listing 3.2 AST of the example code
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Figure 3.1 Visualization of the AST of the example code
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⊤

pos0 neg0

pos zero neg

⊥

Figure 3.2 An example lattice

3.4 Data-flow analysis

Data-flow analysis2 is a relaxation3 method used to get information about possible
variable content at CFG nodes. First, we assume we know nothing. Then, the
information is improved with the knowledge we have about the basic blocks (e.g.,
in this basic block, this variable is set to zero), and propagated along the CFG
edges. This repeats until no new information is gained.

A lattice is used to store this information. Lattice is a partially ordered set
where each pair of elements has a unique supremum and a unique infimum.
Each element of the underlying set represents information about the content of a
variable (e.g., it is a positive integer). Ordering relation represents the specificity
of this information (e.g., a positive integer is more specific information than just
an integer).

An example lattice can be seen in figure 3.2. Values pos, pos0, neg, neg0 and
zero represent information that the variable content is positive, non-negative,
negative, non-positive or zero respectively. Value ⊤ is the top of the lattice and
represents a set of all integers. That means we know nothing about the variable.
Value ⊥ is the bottom of the lattice and represents an empty set of integers.
This value is unintuitive but useful. It can be used as a value for uninitialized
variables, values that don’t have other representation in the lattice or values in
an unreachable place (e.g., after an error).

2We used the textbook Static Program Analysis [5] to learn about data-flow analysis. However,
we describe it a little bit differently.

3The relaxation algorithm is a general paradigm for algorithm construction. A suboptimal
solution is first assumed and then iteratively improved. See MIT lecture notes [6] for further
details.
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x y

B B
T T
pos0 pos
neg0 T
pos pos
zero pos
neg neg0

Table 3.1 The update function of y = x + 1

Information collected at each CFG node is represented as a mapping from
the set of all variables to the lattice. This information could, however, change
throughout the basic block which the node represents. One option would be to
have two nodes for each basic block representing information before the basic
block and after the basic block. We will use just one node per basic block that
will represent the information after the basic block.

How to update (i.e., relax) information at a node? If it had only one predecessor,
information from the previous block could be taken and updated with changes
made to variables in the current basic block. This information is target language
dependent and all language constructs must be considered with regard to the
used lattice. In our example, an assignment x = 1 would ignore the old value
of x and set the new values to pos. A basic block consisting of one statement
y = x + 1 would set the value of y based on the value of x. See table 3.1. The
function for updating the values of variables must be constructed for each basic
block. We refer to this function as an update function.

Now, let’s assume a basic block has multiple predecessors. First, the informa-
tion must be combined from all the predecessors. This can be done separately
for each variable. This is the advantage of using lattice to describe the infor-
mation; the supremum of all the possible values in question can be used. Then,
the combined information can be used as if it was the information from an only
predecessor of the basic block.

Now, we can run the relaxation algorithm. The easiest (but not very efficient)
method is to repeatedly relax all nodes. When we stop inferring new information,
we have reached the so-called fixed point and our algorithm finishes.

What should we use as the initial value? In nodes with multiple predecessors—
wewill call them join nodes—this initial value shouldn’t influence any other values
coming from different predecessors. Therefore, we initialize to ⊥ as sup(𝑀) =
sup (𝑀 ∪ {⊥}) for every set 𝑀.
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Chapter 4

Analysis

4.1 Algorithm

In this section, we will examine methods for analyzing NumPy programs with
regard to finding shape mismatch errors.

4.1.1 Mock run

One possible approach is to replace the ndarray with a mock and functions that
work with ndarrays with functions that work with the mocks. The mock doesn’t
hold any data and just remembers its shape. Then, the mock functions only
calculate the new shape for the new mock from the shapes of the input mocks. If
the input shapes mismatch, the user is notified. When asked for any actual data,
the analysis stops.

This approach is, in a way, similar to running the program with smaller data.
The execution time of a single operation with ndarrays is reduced. This, however,
still leaves the problem that many iterations can slow the program. At least, the
need of having to create smaller test data was averted.

On the other hand, it introduces possibly an even bigger problem. Every time
a value is needed from an ndarray, the analysis has to stop, which limits this
analysis technique significantly. Possibly, a separate mock could be used for the
values from an ndarray, which could be returned. The analysis would stop only
after the value is really needed (e.g., when it influences control flow, needs to be
printed, or enters a function we cannot or don’t want to analyze). This can be
helpful when the programmer is doing some simple manipulations with ndarray
values and saves the values right back into the ndarray. However, once this
value leaves the ndarray or a more complicated manipulation with the value is
done, the analysis is stuck.
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The main advantage of this approach is its simplicity. Most of the heavy
lifting is done by the Python interpreter. The only thing needed is to implement
a mock ndarray, operations on the mock, and to replace the NumPy library with
its mock version at the beginning of the analysis.

It would be definitely interesting to see this implemented. However, we
decided to take another approach since this is too weak in our opinion.

4.1.2 Type analysis
Keeping track of different ndarrays and determining if a given combination can
be used as arguments to a given function feels like a type analysis.

What would the types be? A type could be created for each possible ndarray
shape and some standard methods for type analysis could be used.

However, this approach reaches its limits quite quickly. What type should
a function which creates an ndarray (e.g., by loading from a file or converting
from some other means of input) return? In many cases, the shape of the input
array isn’t known.

If it was known, the problem would be well suited for work in a notebook. If
the shape of the input doesn’t change, it is quite rare that there would be a shape
mismatch for different inputs. Such a program could be quite well debugged in a
notebook.

Overall, having a type for each ndarray shape limits the usefulness of such
analysis in similar ways the notebook approach is limited.

4.1.3 Parameterized type analysis
It would be useful to have some sort of notion of 𝑛×𝑚matrix type which would be
different from 𝑚 × 𝑛 matrix type without actually knowing 𝑛 or 𝑚. This naturally
brings in the idea of parameterized types.

We add a set of symbols from which types can be derived. For example, if
symbols 𝑛 and 𝑚 were available, types M(𝑛, 𝑚), M(𝑛, 𝑛), or M(𝑛, 2) would get
introduced. Type M(𝑛, 𝑚) represents a 𝑛 × 𝑚 matrix.

The input function can then simply return M(𝑛, 𝑚). Functions that modify
the ndarray shape could preserve those symbols if possible. Transposition could
expect M(𝑛, 𝑚) as an argument and return M(𝑚, 𝑛).

With these types, how would the addition of M(𝑛, 𝑚) and M(𝑚, 𝑛) go? One
possibility would be to consider all symbols different.1 Addition would then fail.2

This approach is problematic.

1Different symbols cannot have the same value.
2Well, not necessarily. If 𝑛 = 1 matrices could be broadcasted together. This illustrates that

broadcasting is tricky and can sometimes result in unexpected behavior in edge cases.
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Input function then couldn’t return simply M(𝑛, 𝑚). A set of multiple types
would need to be returned.

{M(𝑛, 𝑚), M(𝑛, 𝑛), …}

Construction of this set isn’t clear. For example, if we includeM(𝑛, 𝑚) andM(𝑚, 𝑛),
the transposition of this matrix still includes both elements as well. Therefore,
when we add (arithmetically) a matrix to its transposition, no error is detected.
When we don’t include both, we may miss a valid combination. When multiple
matrices with unknown dimensions are introduced, combinations of even more
symbols need to be considered.

However, there is an even bigger problem. Let’s say a column was added to
M(𝑛, 𝑚). One would be tempted to return M(𝑛, 𝑝). However, this leads to quick
doom. When removing a column from M(𝑛, 𝑝), a new symbol 𝑞 would be created
to form M(𝑛, 𝑞). Then 𝑞 should be equal to 𝑚. This leads to contradiction as we
consider all symbols different. The information that 𝑝 = 𝑚 + 1 cannot be lost.

One option would be to allow types that can be parameterized by an expression
over symbols such as 𝑛 + 1 or 𝑛 − 𝑚. This blows up the number of possible types
even more. Moreover, determining if two expressions are equal is often impossible.
When comparing 𝑛 to 𝑚 + 1, we can never know.

Let’s get back to the question of adding M(𝑛, 𝑚) and M(𝑚, 𝑛). This time, we
allow symbols to be equal.

The addition implies that 𝑛 = 𝑚. We need to somehow keep track of this
information. In this example, it could be enough to somehow unify 𝑛 and 𝑚.
However, there can be a more complex relationship between 𝑛 and𝑚. For example,
if we analyze broadcasting more thoroughly, we see that

𝑛 = 1 ∨ 𝑚 = 1 ∨ 𝑛 = 𝑚.

It seems that the most straightforward solution is to track this information
directly. This would also solve the column adding and removing problem since it
would be possible to track information that 𝑝 = 𝑚 + 1 directly.

4.1.4 Symbolic execution
Having a set of symbols and tracking constraints built over this set of symbols
resembles symbolic execution. We will now analyze this approach.

Its traditional form as described by King [7] has a big problem. It tries to
construct a tree of all possible execution paths. This is alright for mostly linear
programs. However, for more complicated programs, the number of possible
execution paths explodes. This needs to be solved.

21



We take inspiration from data-flow analysis. Let’s imagine for a while that
data-flow analysis worked on a tree of all possible execution paths. The required
information would just propagate through the tree towards leaves. If we then
combined information from all instances of the same point in code, we would
arrive at similar information as data-flow analysis can provide. In this combination
process, some information would be lost (such as from which branch a value
came) but that information isn’t available in data-flow analysis as well.

Data-flow analysis eliminates the explosion problem by basically executing
all branches simultaneously. Instead of storing a single value for each execution
of the program, it stores the set of all possible values from all executions and
propagates them simultaneously.

We will do the same thing with symbolic execution.

4.1.5 Combined approach
In data-flow analysis, we stored and updated the mapping of variables to elements
of lattice for every CFG node. Here, furthermore, we need some symbols and
constraints over this set of symbols.

Let 𝑆 be a global3 set of symbols. Elements of the lattice now contain named
references to this set of symbols. For each node, we store a mapping from variables
to lattice elements and a logic expression built over 𝑆. This information is now
the subject of relaxation. We refer to the mapping as just the mapping or the type
mapping in case the term mapping would be ambiguous. We refer to the logic
expression as constraints.

Wewill illustrate this approachwith the following example from listing 4.1 and
lattice from figure 4.1. The matrix lattice element contains two named references
shape0 and shape1, which correspond to the dimensions of the matrix. The
number lattice element contains one named reference value which corresponds
to its value.

Information we would like to have in the exit node could be expressed in two
ways.

The first variant uses a set of symbols 𝑆 = {x, y, z}, the mapping in listing 4.2
and the following constraints.

𝑧 = 𝑥 + 1

The second variant uses a set of symbols 𝑆 = {a, b, c, d, e}, the mapping in
listing 4.3 and the following constraints.

𝑏 = 𝑐 ∧ 𝑎 = 𝑑 ∧ 𝑒 = 𝑏 + 1

3We will explain why we decided to have the set global in section 6.6.
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⊤

matrix number

⊥

Figure 4.1 An example lattice

1 import numpy as np
2
3 # Loads data from file
4 A = np.loadtxt("input.csv")
5
6 # Save the second dimension to variable `c`
7 n = A.shape[1]
8
9 # Create a new matrix full of ones

10 # which has one more column than `A`
11 B = np.ones((A.shape[0], n + 1))

Listing 4.1 Example code

1 A -> matrix(
2 shape0 -> x,
3 shape1 -> y)
4 n -> number(
5 value -> y)
6 B -> matrix(
7 shape0 -> x,
8 shape1 -> z)

Listing 4.2 First variant of the mapping
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1 A -> matrix(
2 shape0 -> a,
3 shape1 -> b)
4 n -> number(
5 value -> c)
6 B -> matrix(
7 shape0 -> d,
8 shape1 -> e)

Listing 4.3 Second variant of the mapping

Note, that the two variants are equivalent.
This is the high-level approach we decided to go with.

4.2 Implementation language
We wanted to avoid an object-oriented programming language because it doesn’t
provide enough flexibility for working on a complex problem like static analysis.
We would have to bend the paradigm to fit our needs instead of it helping us.

From languages we feel comfortable working with, we considered Haskell for
a while because it is a good language for working with programming languages
and a functional paradigm seems suitable for this problem. However, we decided
to go with Python in the end for multiple reasons.

• Python AST would need to be converted from Python to Haskell.
• Python has support for most external libraries if we needed to use one.4

• Analyzing Python in Python is a nice thing. Understanding Python in depth
for static analysis makes us more comfortable using it.

• Python doesn’t enforce any paradigm and is, in many ways, close to Haskell.

4.3 UI
We want to keep the UI simple and portable. Therefore, we went with a terminal
application. The program, which is about to be analyzed, is passed as an argument,
and errors are printed to stdout. When the relevant node is found in the AST
acquired by the ast module, the module provides enough tools to print the
location of the error.

However, locating the relevant AST node should be enough to extend this
tool. It could then work, for example, in IDEs.

4In the end, we used Z3. https://pypi.org/project/z3-solver/
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Chapter 5

Solution

We split our solution into two parts—gathering information with the algorithm
described in section 4.1.5 and using this information to find shape mismatch
errors.

5.1 Algorithm details
We will now describe this approach in further detail.

5.1.1 Mutability
When we described our approach, we were talking about tracking variables.
However, ndarrays are objects and variables only hold a reference to these
objects. This brings in the problem of aliasing. The properties of an object in one
variable could be changed by manipulating the object through another variable.

Because of this, we would have to track all the references to an object. Keep-
ing track of changes made through references would be almost impossible as
references can travel through lists, dictionaries or even user-defined objects. And
once we lose track of a reference, almost any code can change the properties of
the object without us knowing.

Of course, we don’t have to do this perfectly. We could track references only
so far. Once the reference is passed somewhere we don’t understand (saved to
a list, a dictionary, an object or passed as an argument to a function we don’t
analyze), we just give up.

Even this would be really hard as we would need to analyze operations in a
much bigger context than we do when only tracking variables.1

1We still didn’t cover every possible problem (such as accessing free variables from nested
functions) but this was enough to discourage us from going this way.
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Fortunately, the information we want to track is mostly immutable. This
means we don’t have to distinguish between objects and references. We can treat
references as if it was the object directly. So, when we copy a reference, we can
think of it as copying the whole object.

Writing to the shape property

The only exception is writing to the shape attribute of an ndarray directly. This
is described in the NumPy Reference [2].

The shape property is usually used to get the current shape of an
array, but may also be used to reshape the array in-place by assigning
a tuple of array dimensions to it. […] Reshaping an array in-place
will fail if a copy is required.

Warning: Setting arr.shape is discouraged and may be deprecated
in the future. Using ndarray.reshape is the preferred approach.

However, we decided to just reduce our scope to programs that don’t use this
feature as it is not worth the hassle to consider shape a mutable property. This
seemed appropriate since operating with ndarrays in this way is discouraged
anyway.

5.1.2 Lattice
As we stated in the high-level description of the algorithm, we use a lattice to track
information about variables. This information consists of the type information
and references to symbols that represent dimensions of ndarrays.

Primarily, we want to track ndarrays. However, other objects can store the
dimension information as well. Shape information is usually represented by a
tuple of ints and a single dimension is represented by an int. These objects
aren’t stored in variables that often. It usually shows up more as an intermediate
result. However, being able to track intermediate results using the lattice will
turn out to be useful.

Other intermediate results include tuples of ndarrays. These are used as
input for stack functions (see section 2.3.2 in NumPy User Guide [1] or section
5.2.6 in NumPy Reference [2]). Slices are used when indexing into an ndarray.
The dimensions of the resulting ndarray are determined by the slice, and should
be, therefore, tracked as well. And since slices often come in tuples for indexing,
tuples of slices should be represented as well. Mixed tuples of slices and ints
should be tracked for the same reason.

26



However, the lattice can track other information that can be useful in the
analysis. As we will discuss in section 5.1.6, it is helpful to be able to track the
information that a name (i.e., a variable) is a function or a module. Moreover, we
will need to track which function it is. Therefore, a lattice element is needed for
each function name we know.

Remember, as we discussed in section 5.1.1, we can’t track any mutable
information. Specifically, we cannot track lists, which are often used for the
creation of ndarrays and for indexing. This is unfortunate as it would be quite
useful.

This leaves us with this list of information to track.

• ndarray
• int
• tuples of ints
• slice
• tuples of slices
• mixed tuples of slices and ints
• tuples of ndarrays
• module
• function

Note, that this listed information hardly ever comes in combination (e.g., a
variable would rarely be an ndarray and a function in the same program). Also,
having this information wouldn’t help us much in our analysis anyway. Therefore,
a very simple flat lattice is sufficient. This simplifies many things.

What makes our analysis powerful isn’t the lattice anyway. Most of the shape
information is kept in the constraints.

The lattice could then look something like this (see figure 5.1).
However, there are some problems. How should we represent tuples of

different lengths? And how should we represent mixed tuples?
With heterogeneous tuples, one option is to have a lattice element for all

the combinations. This is an infinite amount theoretically. In reality, only small
tuples are used. We could represent all the small tuples with their own lattice
elements.

Another option would be to introduce a lattice element for “slice or int”. This
breaks the flatness of the lattice but allows us to convert heterogeneous tuples to
homogeneous ones.

As for the homogeneous tuples, we would intuitively say we solve it the
same way we treat ndarrays. Storing shape information about ndarrays and
storing information about tuples of ints—which are used to carry ndarray shape
information—should be the same thing. We will address this problem in sec-
tion 5.1.7 when we have details about other components of the algorithm.
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ndarray int shape ... function

⊥

Figure 5.1 Lattice

5.1.3 Relaxation graph
Our algorithm tracks information in multiple points in the program (i.e., nodes)
and updates information between them. The selection of these nodes is important
for the whole algorithm and will determine how we construct the update function.
When we described the data-flow analysis, we were operating on a CFG. We
didn’t specify what graph we are operating on when we described our algorithm.2

Traditional approach

Data-flow analysis is usually done over basic blocks. The effects of a basic block
on the mapping are summarized in the update function. When doing an analysis
of something simple such as liveness analysis in a language like C, this could be
as simple as going through the basic block, finding all assignments and uses of a
variable.

However, the analysis needs to be much deeper in our case. We need to detect
operations that can change the value of the variable (which is harder in Python
than it is in C), and analyze the input of those operations to deduce what the new
value will be. The input may depend on the mapping or on the results of other
operations. Then, we need to combine this information together.

More fine-grained approach

Instead of summarizing information from the whole basic block, we could make
the graph more fine-grained by introducing more nodes. The update function

2However, since we just expanded the data-flow analysis from section 3.4, having a CFG in
mind as a rough image was reasonable.
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between them could then be derived directly instead of combining multiple
operations together. This could simplify the implementation enormously by
cutting out the middleman.

One option would be to make a node for every statement. This would sim-
plify some things but would still require some aggregation. Python has named
expressions3 and a variable can be changed by a function call when the function
is nested, and a variable is declared as nonlocal. Also, operations can be nested
(like f(g(x))). Having only a single operation per update function (edge in the
graph) would be really nice. The natural granularity is then the AST node.

With this level of granularity, tracking inputs and intermediate results of
operations becomes easy. If a node is an expression, we can just track the value
of the expression in terms of a lattice element. Since this is the same information
we store in the mapping, we can update the information about the value of the
expression with the same relaxation method. We refer to the information about
the value of the expression kept and updated in the node as the node’s return
value.4

Recipes

We call this new graph a recipe graph. We call an update function in the recipe
graph a recipe. The nodes required to compute a recipe are called ingredients. An
oriented edge in the recipe graph connects an ingredient with the node it is used
to update (it originates in the ingredient).

Although this new terminology isn’t strictly necessary, it helps to avoid
confusion with the CFG and provides plenty of unique names to use as variable
names in an implementation. And since we used them in our implementation,
we use them in our thesis as well to avoid confusion.

We will demonstrate the recipe graph with the following example. See source
code in listing 5.1 and visualization of AST in figure 5.2. Solid edges in the figure
represent AST edges. There will still be some unexplained details, which we will
address later.

All AST nodes (e.g., Call0, Attr0 and Name2) are also nodes in the recipe
graph. Edges of the recipe graph are dashed in the figure. Four recipes were
constructed.

3Basically, assignments that are expressions instead of statements.
4This name was chosen because return is a keyword in Python. And since we decided to

keep the return value in the mapping in our implementation, this is helpful because it won’t
interfere with any variable name.
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1 # Create an `ndarray` of the same shape as `b`
2 # and save it to `a`
3 a = ones(b.shape)

Listing 5.1 Example code

Figure 5.2 AST of the example code

30



1. The first recipe updates node Name2 and has a single ingredient X (not
visualized). This ingredient represents the previous point of execution.5

2. The second recipe updates node Attr0 and has a single ingredient Name2.
3. The third recipe updates node Call0 and has two ingredients Attr0 and

Name1.
4. The fourth recipe updates node Assign0 and has two ingredients Call0

and Name0.

Each node has a mapping, return value and constraints. At the start, the
mapping looks like this for every node.

a → ⊥ b → ⊥

All return values are set to ⊥ as well.

1. Let’s say the information that b is an ndarray reaches this part of the recipe
graph. To be more precise, it reaches a node X. The first recipe updates the
mapping of node Name2. It propagates the information about b and works
out that the return value of Name2 should be the same as b.

2. The second recipe updates the mapping of node Attr0. It propagates the
information about b and works out that the return value of Attr0 should
be a tuple of ints because the return value of Name2 is an ndarray and the
attribute in question is the shape attribute.

3. The third recipe updates the mapping of node Call0. It propagates the
information about b and works out that the return value of Call0 should be
an ndarray because it somehow6 got the information about which function
it represents. This function creates an ndarray of a given shape.

4. The fourth recipe updates the mapping of node Assign0. It propagates the
information about b and works out that a should be an ndarray because
the return value of Call0 is an ndarray.

Recipe construction

The elephant in the room is the construction of these recipes. This will be the
subject of the subsequent sections. We will not describe all the details about the
construction of every recipe. Instead, we will describe how we handled some
bigger problems we encountered. After that, the construction of all the recipes
should be straightforward.

5We will discuss this more in section 5.1.4.
6This will be answered in section 5.1.6.
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Figure 5.3 Visualization of conversion

5.1.4 Recipes for control flow

A very important task of recipes is to propagate information through the recipe
graph in the direction of control flow. Some recipes’ sole purpose is to propagate
information. And even for some of the more sophisticated recipes, most infor-
mation is just copied from the node which represents the previous step of the
program execution. Therefore, most recipes have an ingredient that serves as the
source of context. This ingredient provides the mapping and constraints to be
updated with the action done in the next step of execution.

We refer to these ingredients as control flow ingredients. We refer to the
respective edges as control flow edges. We refer to an incoming control flow edge
of a node an as entry edge. We refer to an outgoing control flow edge of a node an
as exit edge. Terms entry and exit edges intuitively generalize for other structures
such as subtrees.

In most cases, there is only one control flow ingredient. We refer to it as the
pred7 ingredient.

In some situations, there are two control flow ingredients. We call them
pred and join. In these situations, control flow joins, and two contexts need to
be joined together. A typical example of this situation is the point after an if
statement—a join node.

We avoid more than two control flow ingredients. This can happen, for
example, when there are multiple break statements in a while loop. We convert
this situation to the previous case by adding some auxiliary nodes.

Let there be 𝑛 > 2 control flow ingredients. We add 𝑛 − 2 auxiliary nodes and
link them with pred edges to form a chain with the original node. One control
flow ingredient can be connected as the pred ingredient to the first auxiliary
node of the chain. This leaves us with 𝑛 − 1 join ingredients in other nodes for
connecting the rest of the control flow ingredients. See figure 5.3.

7This stands for predecessor.
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Basic block

We will start simple with a basic block. The order of evaluation in Python is
defined very simply in the Python Reference [3].

6.16 Evaluation order
Python evaluates expressions from left to right. Notice that while
evaluating an assignment, the right-hand side is evaluated before the
left-hand side.

In the following lines, expressions will be evaluated in the arithmetic
order of their suffixes:

expr1, expr2, expr3, expr4
(expr1, expr2, expr3, expr4)
{expr1: expr2, expr3: expr4}
expr1 + expr2 * (expr3 - expr4)
expr1(expr2, expr3, *expr4, **expr5)
expr3, expr4 = expr1, expr2

There are exceptions to this rule. For example, a star argument is always
evaluated before keyword arguments (see 6.3.4 in the Python Reference [3]).
Unfortunately, we don’t know how many exceptions there are. They are scattered
through the Python Reference.

This order is the post-order of running DFS over the AST when the children
of each node are visited in the order specified by the _fields attribute of the
node. This even explains the anomaly with the star arguments.

Identification of the pred ingredients can therefore be done by running DFS.
See figure 5.4 for the result. The entry edge of the basic block is represented
by the arrow going from the top to the bottom. The exit edge is represented
by the arrow going up from the root of the subtree. We use this representation
throughout this section.

if statement

First, we will tackle the elif clause. This is just syntax sugar for an if statement
inside the else branch of another if statement. Therefore, an if statement has
only three AST child nodes—test, body and orelse.8

The control flow goes as follows. First, the test subtree is executed. Then,
body or orelse is executed. After that, the control flow is joined and leaves the
if statement. See figure 5.5 for visualization.

8The else branch of an if statement is called orelse in Python AST. This is because else is
a keyword and would be hard to work with inside Python. We follow the Python terminology.
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Figure 5.4 Control flow in a basic block

test body orelse

Figure 5.5 Construction of an if statement
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test body orelse

continue break

Figure 5.6 Construction of a while statement

while statement

The control flow in a while statement is very similar to the if statement. The
only difference is that after body is executed, the control goes to test again. See
figure 5.6 for visualization.

for statement

This can be done analogously to the while statement. The only difference is that
target is executed before everything else and iter is called instead of test.

break and continue statements

Anywhere inside the while and for statement body, there can be a break and
continue statements. This just transfers control to the end of thewhole statement
or test respectively. See figure 5.6 for visualization.

Linking of constructs

These described constructs need to be linked together. This works quite naturally
because of the recursive nature of the problem. When encountering a more
complicated construct, it can be treated as a simple node with entry and exit
edges from the point of the outer structure. The inner construct can be recursively
resolved and presented to the outside world through its entry and exit edges.

Other control flow

We ignored all the other control flow constructs. We don’t support

• pattern matching,
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• with statements,
• and try-except statements,
• raise statements,
• and return statement.

The first four constructs are not that common in NumPy programs. The
return statement would be really nice to implement if we want to analyze
functions.

5.1.5 Recipes for working with variables
Setting variables

The question of which constructs change variables (i.e., bind names) is nicely
answered in the Python Reference [3].

4.2.1 Binding of names

The following constructs bind names:

• formal parameters to functions,
• class definitions,
• function definitions,
• assignment expressions,
• targets that are identifiers if occurring in an assignment:

– for loop header,
– after as in a with statement, except clause, except* clause,

or in the as-pattern in structural pattern matching,
– in a capture pattern in structural pattern matching

• import statements.

Of course, since Python is a very dynamic language, there are special ways to
change variable content that we won’t account for (see listing 5.2).

1 vars()["a"] = 42
2 print(a) # Prints 42

Listing 5.2 Dynamic variable change

As for the listed constructs, these can be dealt with in the respective recipes.
The mapping can be updated with the required lattice element for the target
variable name.
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Nested scopes

A variable can also change from a nested function when it is marked as global
or nonlocal. We don’t support these constructs. These constructs are not that
common in NumPy programs.

Using variables

This is also very simple. The recipe can just set the return value of the node to
the value found in the mapping for the target variable name.

5.1.6 Recipes for functions
Identifying functions

In Python, functions are treated as first-class objects. They can be therefore
identified in the same way ndarrays are. A function call is represented with a
Call AST node. This node references another expression node. This expression is
used as the callable. It would be natural to use the callable node’s return value to
identify the function. This is why we added the function lattice element. This
lattice element internally stores the name of the function. From the perspective
of the lattice, there is, technically, a lattice element for each possible name.

NumPy functions are introduced through an import statement which does
the relevant name binding. Therefore, the respective import recipe should then
bind the relevant name to the function lattice element. This works for functions
introduced by an import statement like from numpy import transpose.

The other way to introduce NumPy functions is to import the whole NumPy
as a single name via import numpy as np. Since a module is, once again, a
first-class object, we can just add another lattice element for it as well. This time,
only one lattice element is needed since we track only the NumPy module.

Functions from a module are then accessed through the standard attribute
construct (e.g., np.transpose). The Attribute AST node is an expression there-
fore its return value can be just set to the needed lattice element which represents
the given function.

Representing functions

Let’s say we have identified a function recipe—a recipe that actually does some
computation. Now, we need to decide how to update the mapping and the return
value.

As we mentioned earlier, we don’t support nonlocal and global variables.
Therefore, no immutable properties of any variable can change. So, only the return
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value of the expression needs to be computed. For this, we need to know what the
function does with regard to the information we store in the lattice. Therefore,
some sort of description of this function is needed. We call this description a
function stub.

Python has positional arguments and keyword arguments. Arguments of
the call map to the parameters of the function. Parameters are of five types—
positional-or-keyword, positional-only, keyword-only, var-positional and var-
keyword. When a function call is made, arguments must be mapped to the
parameters. This is not trivial. As NumPy uses mostly positional arguments
for shape manipulation operations, we decided to completely ignore keyword
arguments. This simplifies things tremendously. Arguments and parameters can,
then, be thought of simply as a tuple.

An early idea was that each stub would be a Python function that would output
the return value based on the mappings and return values of the ingredients.
This felt too powerful and too much work as there are lots of functions we
need to construct a stub for. This would also make it harder to generate stubs
programmatically for user-defined functions.9

Another idea was to simply describe a stub with lattice elements and con-
straints. Arguments would be described with a tuple of lattice elements, the
return value (of the function) would be described with a single lattice element
and the logic of the function would be described simply with a constraint over
the symbols from the arguments and the return value.

When applying this stub, arguments (return values of the argument ingredi-
ents) would be mapped to the stub’s arguments, symbols in the stub’s constraint
would be replaced with symbols from arguments, and the return value of the
recipe’s node would be set to the return value of the stub. It may be needed to
generate new symbols for the return value.

The stub’s constraints can then be just conjuncted to constraints from the
pred ingredient.

This idea was then refined in some technical details but is roughly the idea we
went with. Also, it is quite universal and can be used in many other situations—
operators, indexing, slicing or attributes—not only for the Call AST node.

Polymorphic functions

In some cases, a function or an operation works for multiple input types. We will
use addition as an example. When we add two ints, we get an int. When we

9In our implementation, we don’t support user-defined functions anyway. But an extension in
this direction would be really helpful as we could then analyze the use of libraries, which use
NumPy internally, and not only the use of NumPy directly.
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add two ndarrays together, we get an ndarray with the shape of the two input
ndarrays broadcasted together. The function recipe should support this.

We solve this issue by having multiple stubs for such a function and then just
choosing the one where arguments fit on the spot.

In case multiple stubs fit, we could construct the set of possible outputs and
then choose the supremum of this set in the lattice. This leaves the issue of
correctly setting the constraints. However, the fitting of multiple stubs is usually
caused by at least one gotten argument being ⊤. Therefore, we can just solve
these situations by returning ⊤ without deeper analysis and we won’t lose much
information.

Attributes

Attributes are a bit more complicated than polymorphic functions. Polymorphism
is not done only over the input types but over the attribute name aswell. Therefore,
an attribute recipe first checks what the return value of the target is. With this
information, we then search for the right stub.

5.1.7 Number of dimensions problem
The number of dimensions is variable in an ndarray and needs to be represented.
The same problem arises for representing tuples of ints or tuples of slices—their
length needs to be represented.

Number of dimensions as a symbol

The first option would be to have a single ndarray lattice element and represent
the number of dimensions with a symbol. Other symbols would then represent
the shape information. This is possible, but there are some problems.

Number of symbols We would like to have the set of symbols for each lattice
element static. However, this approach requires a dynamic number of symbols.
This could be solved by having a set of symbols large enough and then just using
some of them. This brings in the question of how to set this “large enough”
number of symbols.

We tried to find if NumPy has a maximum number of dimensions. NumPy
has the NPY_MAXDIMS constant which specifies this. We didn’t find any particular
value in the NumPy Reference [2]. However, a quick experiment (see listing 5.3)
shows this value is set to 32 in our version of NumPy.

So, it seems it would be safe to set this value to 32. However, a smaller value
should be sufficient for most applications.
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1 >>> np.ones([2 for _ in range(100)])
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 File "/usr/lib/python3.11/site-packages/numpy/core/
5 numeric.py", line 191, in ones
6 a = empty(shape, dtype, order)
7 ^^^^^^^^^^^^^^^^^^^^^^^^^^
8 ValueError: maximum supported dimension for an ndarray
9 is 32, found 100

Listing 5.3 Maximum dimension

Stubs What would the stubs look like with this approach? We will demonstrate
this on the np.transpose function. Let x.y refer to the symbol y of an argument
or a return value—the lattice element x.

arg0.ndim = rv.ndim

∧ (arg0.ndim = 1 ⇒ arg0.shape0 = rv.shape0)

∧ (arg0.ndim = 2 ⇒ (arg0.shape0 = rv.shape1 ∧ arg0.shape1 = rv.shape0))

∧…

Basically, this is a case analysis anyway. Not particularly nice.
To make this approach with symbols nicer, our logic would need to support

indirect referencing of symbols. This would make the logic really powerful and it
would be really hard to find any tools for working with it.

It seems we are stuck with case analysis. However, case analysis can be done
at the lattice level.

Number of dimensions as lattice information

This would mean introducing a new lattice element for each possible number of
dimensions of an ndarray. Case analysis would then be done using polymorphic
functions. This is the approach we decided to go with as it was nicer to implement.

Likewise, we introduced a new lattice element for every length of a tuple. For
mixed tuples of ints and slices, we introduced a new lattice element for every
combination.

It could be also helpful to have a universal ndarray10 lattice element rep-
resenting an ndarray of an unknown number of dimensions. This breaks the
flatness of our lattice as a universal ndarray is more specific than ⊤ and less

10A better name would probably be a general ndarray but we use this term for something else
later.
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specific than any lattice element representing an ndarray of a specific number
of dimensions.

However, this problem can be solved by having the universal ndarray at the
same level of specificity as ndarrays with specific dimensions. This would mean
that some situations would be resolved inaccurately but soundly. The supremum
of any pair of ndarrays (specific or universal) would be resolved as ⊤.

We decided to ignore the universal ndarray completely in our implementation.

5.1.8 Recipes for joins
So far, every recipe had only one control flow ingredient. However, contexts
from multiple edges need to join sometimes. We already reduced the problem to
having only two entry edges in section 5.1.4. These edges come from the pred
and join ingredients. We will now describe how to join the contexts.

Join happens at the statement level. Therefore, no return values are present.
Only the mapping and the constraints need to be joined.

Constraints

Joining constraints is simple. The resulting constraint should simply be the
disjunction of the two original constraints. This is intuitive since we came from
one branch or the other.

Mapping

Every variable of the mapping can be joined independently.

• In the simplest case, both variables map to the same lattice element, and the
references of these lattice elements point to the same symbols. In this case,
the resulting lattice element can just be copied from one of the sources.

• In the other extreme, the variables map to different lattice elements. Since
the lattice is flat, only four combinations are possible.

– Combination ⊤ and ⊥ is resolved as ⊤.
– Combination ⊤ and 𝑋 is resolved as ⊤.
– Combination ⊥ and 𝑋 is resolved as 𝑋.
– Combination 𝑋 and 𝑌 is resolved as ⊤.

• In the last case, the two variables map to the same lattice element, but
different symbols are referenced. The resulting lattice element should be
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the same as well. However, it is unclear what the new referenced symbols
should be. This can’t be expressed through the mapping alone.

We used the following approach. Each mismatched reference can be joined
independently. Let 𝑥 and 𝑦 be the two original symbols for the mismatching
reference. We introduce a new symbol 𝑧 and set the resulting reference to
it. We add a new constraint.

𝑧 = 𝑥 ∨ 𝑧 = 𝑦

This constraint can be conjuncted to the joined constraints.

5.1.9 Calling the recipes
In the previous sections, we described the construction of recipes. These are used
in the relaxation algorithm to update the information about nodes in the recipe
graph. In this section, we describe more thoroughly how these recipes are called
and tackle some problems related to relaxation.

Relaxation

Usually, in the relaxation algorithm, nodes that need to be relaxed are kept in
a data structure. When a node 𝑉 is relaxed, all the nodes that depend on the
information from 𝑉 are added to the structure. The algorithm then just repeatedly
takes a node from the structure and relaxes it.

However, a much simpler approach is possible when we notice that we can
relax a node that doesn’t need relaxation. Then, we can just sequentially relax all
nodes and repeat. When we do this in the pred-order of the DFS, the relaxation
happens in the direction of control flow and is quite effective. There is another
advantage—the algorithm doesn’t get trapped in an infinite loop. Only in some
cases, the information won’t be fully relaxed.

We decided to implement the simpler approach. However, we need to detect
the fixed point manually. Therefore, after each pass, we check if some information
in the mapping or constraints has changed.

Fixed point detection

Detecting a fixed point in the mapping is simple. When the mapping hasn’t
changed and all the lattice elements reference the same symbols, we have reached
a fixed point.

Originally, we were hoping we could detect a fixed point in constraints just
by syntactically comparing them. Unfortunately, in the end, we had to compare
them semantically.
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Figure 5.7 Infinite loop situation

To be more precise, we implemented semantic checks, so a new syntactic ver-
sion of the same constraints isn’t generated. In the join recipes, before we update
the last constraints with the new constraints, we check if they are equivalent. If
they are, we don’t change them.

This was done mainly to stop accumulating constraints that looked like this.

𝜑 ∨ 𝜑 ∨ 𝜑 ∨ …

Creating new symbols

In the function and join recipes, we sometimes create a new symbol. Since we are
relaxing nodes that don’t need relaxation, we need to make sure that we introduce
new symbols only when it is needed. Otherwise, all nodes would be flooded every
pass with new symbols before there was any chance to arrive at some conclusion
with the last wave of symbols.

The introduction of new symbols is needed when the referenced symbols,
which the new symbols depend on, change. In the function recipes, this is when
the arguments change; in the join recipes, this is when the mismatched symbols
change.

Infinite loop problem

The creation of new symbols could, however, lead to an infinite loop.
Assume, there is a cycle consisting of control flow edges. See figure 5.7. There

is a join recipe in the cycle at a node 𝑋. We denote 𝑃 the pred ingredient of 𝑋
and 𝐽 the join ingredient of 𝑋. The node 𝐽 is part of the cycle; the node 𝑃 is not.
Also, there is a series of recipes that load a variable v, create new symbols, and
store the resulting lattice element back to v. This could be something simple as
v = np.transpose(v).

Assume, the node 𝑃 has a mapping in which v is stable in time. In the first
application of the join recipe, the mapping in 𝑋 just propagates the information
from 𝑃. The information then propagates through the cycle and symbols are
created. The mapping in 𝐽 now contains a new set of symbols for v. The following
will repeat forever. The join recipe constructs a new set of symbols for v. This
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1 # Start with a 3x2 matrix
2 a = np.ones((3, 2))
3
4 while ...:
5 # Append a column to `a`
6 a = np.hstack((a, np.ones((3, 1))))

Listing 5.4 Column adding loop

new set of symbols forces a regeneration of symbols in the function recipe. It
then propagates through the cycle and 𝐽 now contains a new set of symbols for v.

This isn’t necessarily a bad thing. Consider the example in listing 5.4, where
we gradually build a matrix column by column.

In every iteration of the loop in our analysis, new information is acquired about
the possible number of columns. Namely, in each iteration, we find out that the
matrix a can have the number of columns one bigger than in the previous iteration.
However, it takes an infinite amount of iteration to arrive at the conclusion that
a can have any number of columns.11

At some point, the analysis has to stop.

Widening

When we stop the analysis, we still need to update the information, so it is sound.
We call this widening.

In the example with adding columns, we cannot simply state that the possible
number of columns is in the range 2–something. This information is accumulated
in the join recipe and is created by the disjunction of constraints from the control
flow ingredients.

Some approximation is needed. Instead of producing a new symbol that is set
to be equal to one symbol or another symbol, a new symbol is created which can
be anything—it isn’t part of any constraint. In other words, we just omit to add
constraints when combining mismatching symbols. We also stop creating new
symbols even if the mismatched symbols changed. This way, we have soundly
concluded that the value can be anything. It may be inaccurate, but it is sound.

Every cycle contains at least one join recipe. And since all join recipes will
produce stable information from now on, a fixed point will eventually be reached.

11This is similar to a data-flow analysis with a lattice of an infinite height.
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Major and minor passes

If we do widening too early, some information that could reach a fixed point
may be resolved pessimistically. On the other hand, every pass introduces new
symbols which creates bigger constraints that take longer to solve.

To address these problems, we introduced major and minor passes. In a minor
pass, join recipes are not used for relaxation. This allows us to still propagate
information without creating a lot of new symbols. We can keep the number
of major passes low, creating a reasonable amount of constraints, while also
sufficiently propagating information throughout the recipe graph.

5.2 Analysis of the collected information
In the previous chapters, we described how we collect information about ndarray
dimensions in the analyzed program. For every point in the program, we have
information about what is stored in each variable. This is expressed with a
mapping from the variable names to lattice elements, and with constraints over a
set of symbols. These symbols are referenced from lattice elements.

In this section, we will use this information to find shape mismatch errors in
the input program.

5.2.1 Validation vs. bug hunting

Finding all errors and only errors in an arbitrary program is an undecidable
problem. However, this doesn’t mean we can’t detect anything. We can run an
analysis, but there will be situations in which we won’t be sure if there is an error.
In those situations, we have two options.

Either, we can report this situation as a possible error. We call this approach
validation. In validation, all errors from a given class of errors, shape mismatch
errors in our case, are found. On the other hand, some errors will be false positives.
The user can then decide how to handle the reported errors. He can ignore them,
or he can provide additional information to the validation program to convince it
that the program is correct. There is a big advantage to this approach. When the
validation tool doesn’t report any error, the user can be sure that the program
won’t crash with a shape mismatch error. This is helpful when the program is
supposed to run for several hours.

Or, we can report errors only when we are completely sure there is one. We
call this approach bug hunting. In this case, our program doesn’t guarantee that
there aren’t any errors when it successfully finishes. However, when it reports
an error, the user can be sure that the error is genuine.
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Both approaches have their advantages and disadvantages, and it is ultimately
up to the user what he prefers. We prefer the bug-hunting approach. The tool
can be just part of a pipeline when we debug, and we know about it only when
there is a problem.

There is another reason why we decided to go with bug hunting. When we
were starting, we didn’t have much confidence in our program. Therefore, we
assumed there will be a lot of situations where our program won’t be sure. And
being bothered with too many false positives would render our program useless.
On the other hand, a silent tool, which is run automatically before every run
of the program, and only sometimes reports an error, can be useful even if it is
relatively weak.

Looking back at this issue, it may have been better to go with the validation
approach. There is often a sneaky degenerated input matrix12 for which the
program works. And because of this input, our program can’t be sure if there is
an error. Therefore, in those uncertain situations, it would probably be beneficial
to report the error. Unfortunately, we discovered those degenerated input matrices
too late.

5.2.2 Bug hunting as a decision problem
With the information we collected, it is actually quite simple to decide if there is
a shape mismatch in the program. We can just simply take the exit node13 of the
program and determine if the constraints are satisfiable. The constraints are in a
form that could be solved by an SMT solver.

This is great, but it doesn’t provide much information to the user.

5.2.3 Locating an error
If we want to provide any useful information to the user, we need to find the
error.

Two sets of constraints approach

One option would be to have two sets of constraints for every stub. The first
set would be always satisfiable; it would only describe the return value. The
other set would describe constraints that must be satisfied for the operation not

12As an example, try to find an ndarray m such that m.ndim = 2, m.shape[0] ≠ m.shape[1]
and m + m.T doesn’t produce an error.

13An exit node is the “last” node of the program. More formally, it is the origin of the exit edge
of the whole AST. Analogously, an entry node is the destination of the entry edge of the whole
AST. There is always only one entry and only one exit node.
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to fail. When running the relaxation algorithm, only the first set would be used.
Then, when the relaxation algorithm finished, the satisfiability of the second set
would be tested in each node, given the constraints collected from running the
algorithm.

Border node approach

However, the location of the error can be found even if the constraints aren’t sep-
arated into two sets. For brevity, we call a node whose constraints are satisfiable
sat. We call it unsat otherwise.

When the exit node is unsat, every control flow path from the entry node to
the exit node must contain an unsat node whose predecessor is sat, and every
successor on the path is unsat. We call this node a border node.

Note that a border node cannot be a join node. When a join node is unsat,
all its control flow ingredients must be unsat. If at least one set of constraints is
satisfiable, then the disjunction, which contains the satisfiable set of constraints
as a disjunct, is satisfiable. Constraints conjuncted for the mismatching symbols
are satisfiable trivially.

In all other recipes, we only conjunct to the constraints. Most conjuncts are
trivially satisfiable. Only function recipes are an exception. We can remove the
part of constraints that only describes the return value; it is trivially satisfiable.
This leaves us with the part which checks the operation doesn’t fail. Therefore, a
border node is always a function recipe node that represents an operation that
fails.

Therefore, to locate an error, we can just locate a border node. This can be
done simply by following the pred ingredients from the exit node. If multiple
border nodes exist, we just pick the one found by this approach.

This approach has another advantage. Consider the example in listing 5.5.

1 A = np.ones((..., 2))
2 B = np.ones((..., x))
3 C = np.ones((..., 3))
4
5 np.vstack((A, B))
6 np.vstack((B, C))

Listing 5.5 Combined error

In this example, there isn’t a single function which is wrong. However, an
error will definitely occur since the number of columns of B cannot be two and
three at the same time.

This approach detects errors like this. From the set of operations that contains
an error, it will report the latest one. In other words, it uses the information “if
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the previous operation didn’t fail, constraints for the input must be satisfied”.
We decided to go with this approach as it is the more powerful one.

5.2.4 General matrices
When testing, sometimes, an error we expected our program to find remained
unnoticed. After long hours of debugging, we realized that there actually isn’t
any error because there is an unexpected input for which the program works.

For example, with a square matrix, many errors remain undiscovered. For
example

• Using the .shape[0] attribute instead of .shape[1] and vice versa.
• Forgetting to transpose the matrix.
• Swapping the slices when indexing.
• Multiplying the matrices in the wrong order.

Similarly, when some dimensions are equal to one, unexpected broadcasts
can happen.14

In these cases, the constraints are satisfiable, and no error is reported. However,
this hides a lot of genuine errors. It would be really helpful to inform our program
that we want to ignore these degenerated cases.

This is an unfortunate problem because it is impossible to reliably determine
if the degenerated case is intended or not. This isn’t information that is expressed
in the source code. This is something the programmer knows.

Detecting general matrices

Ideally, the user would tell us which matrices can be degenerated. But we don’t
like this. We wanted our program to be sitting quietly in the background and,
once upon a time, report an error that the programmer didn’t notice.

Ultimately, this is a UI problem we don’t really want to get into.
Our best bet is to use a heuristic. When the matrix is loaded from a file, it

probably isn’t intended to be degenerated. In other words, matrices that are
returned by a function that reads input from a file are tagged as general matrices.
The list of these functions was made by hand.

Using general matrices information

The information that a matrix is general can be used when analyzing the con-
straints. Most straightforwardly, a new constraint can be added that represents

14Consider this a hint to the problem stated in the footnote in section 5.2.1.
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the information that these matrices are general. Degenerated matrices are then
not considered by the SMT solver when evaluating satisfiability.

Simple constraints What should this constraint look like? We went with two
conditions.

1. No dimension of a general matrix should be equal to one.

2. A general matrix shouldn’t be square.

This can be accomplished with this set of constraints for a 2D matrix m.

m.shape0 ≠ 1 ∧ m.shape1 ≠ 1 ∧ m.shape0 ≠ m.shape1

With this simple approach, the information about general matrices is pre-
served as long as the matrix doesn’t change shape. If such a derived matrix needed
to be square, constraints would force the original matrix to be square leading to a
contradiction. Therefore, all the constraints would be unsatisfiable.

However, once a shape is modified (e.g., by adding a column), this generality
information is lost. This is quite common, for example, in machine learning where
a column of biases is often added.

More robust definition of generality Therefore, we would like to express the
idea of a general matrix a bit more robustly than with the previously mentioned
conditions.

We would like to express that one dimension of the matrix shouldn’t be
determined by the other. We didn’t find a way how to express this directly using
constraints. Therefore, we went with a more complicated approach.

When checking if constraints are satisfiable, one dimension of a general matrix
is fixed to an arbitrary value. If this makes the constraints unsatisfiable, then the
matrix isn’t considered general.15 Then, a model of the constraints is acquired—an
evaluation of the symbols. Then, a new constraint is added. It states that the other
dimension cannot be equal to the value it was assigned in the model. The new
set of constraints is checked again for the satisfiability of these new constraints.
If it became unsatisfiable, the matrix isn’t general.

In other words, for an arbitrary value of one dimension, there should be at
least two possible values for the other dimension.

This works reasonably well in practice when used in combination with the
first previously mentioned condition (shapeX ≠ 1). When columns or rows are
added, and the derived matrix would be a square, the original matrix is forced
into a non-general case where one dimension is fully determined by the other.
This approach detects these scenarios.

15This was added later as a new condition for generality.
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Non-general cases Of course, there are many situations when the program
isn’t expected to work on general input. Therefore, this feature should be optional
and the user should be able to turn it on and off.

Multiple input matrices

A similar situation was observed for multiple input matrices. An operation
between matrices from different inputs was expected to fail. However, an input
combination was found that works (e.g., the number of rows in one matrix is one
bigger than the number of columns in the second matrix).

It would be nice to introduce a similar heuristic for this case as well. However,
expressing this relationship between multiple matrices is significantly harder. In
many cases, the input is expected to match in one dimension (e.g., number of
columns). We couldn’t figure out one simple heuristic which could be turned on
and off. Multiple possible scenarios would have to be introduced.

We decided to ignore this in our implementation.
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Chapter 6

Documentation

6.1 Overview

Each function is processed separately. Inter-procedural analysis would be desir-
able but isn’t part of this thesis. However, some information is still propagated
from the module scope to functions. If a variable content is consistent throughout
the module scope and is a function or a module, this information is propagated to
functions.1

See figure 6.1 to get an overview of what is done for each function.
In our implementation, the algorithm is separated into two parts. Propagation

of type information and constraints is done separately.
First, the AST is acquired from the ast module and split into functions. Then,

for each function separately, preparation for the main algorithm begins. Ingredi-
ents are identified with an algorithm based on DFS. Then, recipes are constructed
for each node. Because the ingredients were already identified, recipe construction
can be done separately for each node. Then, the main algorithm begins.

First, only the mapping is updated. When the mapping reaches a fixed point, or
the maximum number of passes (specified with the MAX_TYPE_PASSES argument),
we continue to the next phase.

Then, only constraints are updated. This is done with major and minor passes.
After each major pass, the minor passes are repeated until a fixed point or the
maximum number of passes (specified with the MAX_MINOR_PASSES argument)
is reached. Major passes are repeated until a fixed point or the maximum number
of passes (specified with the MAX_MAJOR_PASSES argument) is reached. Then, we
do the widening. This is, again, followed by a series of minor passes (this time, it
propagates constraints through the join nodes but doesn’t create new symbols).

1To be more precise, this information is set to the mapping in the entry node.
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ast.parse
Source code → AST

Done in bulk for all function together

ingredients.find_ingredients
Constructs the recipe graph (locate ingredients only)

recipes.add_recipes
Constructs `type_pass` and `cstr_pass` functions for each node

self.type_pass
Dataflow – propagate type info

self.cstr_pass
          Data-flow-like algorithm – propagates constraints

Major pass
Only for join nodes

Minor pass
Not for join nodes

self.cstr_pass(widening=True)
Stops creating new snapshots in joins and only propagates

self.type_pass
Dataflow – propagate type info

self.type_pass
Data-flow – propagates type info

analyzer.analyze
Analyzes constraintsr and finds a border node

Figure 6.1 Process diagram
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In the end, collected information is analyzed using the Z3 solver, and errors
are reported.

6.2 Nodes
A node is the basic building block of our analysis. Together with recipes, they
form a recipe graph.

Most nodes are monkey-patched AST nodes generated by the ast module.2

If not, the node is an auxiliary (aux) node. Every aux node has a parent node. The
parent node cannot be an aux node. This allows me to still work with the nodes
in a tree-like way. The AST with aux nodes is referred to as the tree.

The vast majority of data is saved directly in the nodes. This means that the
tree is the main state of the program. For exceptions, see “Reset global state” in
main.py. The data stored in a node is visualized in figure 6.2.

Dictionary vars contains the mapping as a dictionary. The keys for this
dictionary are obtained from the symtable module. The return value of a node is
stored in vars as well under the key return.3

Variable cstr contains a logic expression that expresses the constraints.

6.3 Lattice elements
Lattice elements (abbreviated as latels in code) form the lattice. They are custom
objects, which inherit from the Latel class. Most lattice elements are then simply
defined with a list of symbols they contain.

Lattice elements are shared across nodes.

6.3.1 Lattice elements types
An ndarray is represented by the Matrix and the Array classes. Each class
represents a different possible number of dimensions.

Function lattice elements are represented by a single Function class which
contains the name of the function as a string.

Tuples are represented by multiple classes. Each represents a combination
of elementary lattice elements (e.g., tuple (int, slice) has its own class). Not
all combinations were implemented. While nested tuples could be theoretically

2We tried to monkey-patch the whole module, so the nodes don’t have to be monkey-patched
individually. Unfortunately, this is not possible because the ast module is filled with internal
Python magic, and the creation of the nodes seems to be done by the Python interpreter itself.

3The name return is a keyword in Python a won’t interfere with variable names.
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Figure 6.2 Node diagram
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implemented with this approach up to some depth, they are currently not. This
approach is unsustainable if the number of allowed dimensions or the number of
elementary lattice elements grows. Only lengths one and two are implemented.

Slices are represented by a class. It contains a symbol that determines if a
boundary is a number or not. This symbol is set to a one or a zero.

Values ⊤ and ⊥ are represented with a class. The value ⊤ contains the union of
all other symbol names. This allows to us have the information that an unknown
variable has the same value throughout the program even if we don’t know what
type is it.

6.3.2 Symbols in lattice elements

Symbols shouldn’t be changed in a lattice element from outside. The creation
of new symbols in join and function recipes is handled by the lattice element.
It also stores the old ones using LatelSnapshot.4 When symbols are recreated
(see method repopulate) the version number is incremented.

This way, the comparison of lattice elements (by the is operator) and the
versions is enough to determine if symbols have changed.

6.4 Recipes
Recipes are represented with functions. Python treats functions as first-class
objects. The recipe is created based on the node the recipe will update. The recipe
function5 binds the scope it was created in and is saved to the node.

Separate recipe functions exist for type and constraint passes.
The function recipe was used for the implementation of many constructs.

Some other recipes wrap a call to the function recipe.

6.4.1 Ingredients

Ingredients are identified before the recipe is created. An algorithm based on DFS
is used. The code for the algorithm is quite dense and is separated for readability.

Warning: The ingredients don’t provide a complete list of dependencies for the
relaxation of a node. This information was available in another form. Therefore,
this invariant wasn’t enforced. It could be helpful to enforce this invariant in the
future.

4This code is ugly. We never expected we would need to access old symbols. If there is an
opportunity in the future to rewrite this, do it.

5Don’t confuse with a function recipe.
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6.5 Stubs
Each function is represented with a stub. Each stub is a list of stub variants. Each
variant is a tuple of the following.

• list of arguments expressed with lattice element types (!)
• return value expressed with a lattice element type (!)
• constraints represented with unparsed and unbound logic

If an argument is ⊤, the argument will match everything. If the list of argu-
ments is None, the list of arguments will match everything.

Constraints of the stub reference the lattice elements of the arguments and
return values indirectly (e.g., with string “arg0”, “rv”).

When a stub is applied, the right variant is selected based on the actual argu-
ments. Then, the indirect references are bound to the actual symbols referenced
from the actual arguments. The resulting constraints are used.

6.6 Constraints
Constraints (abbreviated as cstr in code) are represented with logic. Logic
expresses relationships between symbols and constants (e.g., if symbol 𝐴 is not
equal to one then symbol 𝐵 must be equal to symbol 𝐶).

Symbols are global. This simplifies things as the references to symbols can
just be copied from one node to another. Therefore, the constraints of a node can
use symbols that aren’t even referenced from the node.

Z3 is used for working with constraints. Every symbol is of the z3.Int type.

6.7 Logic
Manipulating Z3 expressions turned out to be unfeasible. Therefore, we created
our own representation, which allows easy manipulation. We refer to it as logic.

Logic can exist in different forms.

• Unparsed logic is represented with a string.
• Parsed logic is represented with a tree of objects. Tree nodes are of types
inherited from the Logic class.

• In an unbound logic, all symbols are referenced indirectly with a string that
describes their role (e.g., arg0_val, rv_s0).

• In a bound logic, all symbols (z3.Int objects) are referenced directly.

The figure 6.3 describes how these forms are transitioned between.
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Unparsed, unbound
“arg0_s0 == 3”

process_logic

Parsed, unbound
Op(z3.Eq, 

[Ref(“arg0”, “s0”), Const(3)])

bind

Parsed, bound
Op(z3.Eq, 

[Ref(Call0rvMs0_v1), Const(3)])

get

z3.AstRef
Call0rvMs0_v1 == 3

Figure 6.3 Logic diagram
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6.7.1 Mainstream logic path
Unparsed logic is usually taken from the stub definition. When the stub needs to
be applied, it is parsed and bound to the context of the current recipe. In this state,
it goes through the program. It can still be manipulated—conjuncted or disjuncted
with other logic, manually created (e.g., when processing a Constant AST node).
When the constraints need to be evaluated, it is converted to z3.AstRef and
passed to Z3.

6.7.2 Logic parsing
Unparsed logic is just modified Python. Tokenization is done fully by Python.
When parsing, tokens with an underscore are replaced with a Ref(Logic) object.
Numbers and some other constants are replaced with Const(Logic) objects.
Some operators are replaced with others. The resulting expression is then evalu-
ated with eval.

The Logic class redefines some operators. These operators are used to con-
struct a tree from Logic objects.

Python operator precedence was cumbersome for our needs. The operators
were therefore replaced in a way to introduce better operator precedence. The
new operator precedence goes as follows.

• arithmetic
• == and !=
• &
• |
• -> (z3.Implies)6

6.8 IDs
We use IDs to identify stubs, nodes, latels and symbols throughout the program.

• Each stub has its descriptive ID. This ID is used to search the dictionary of
all stubs for the right one.

• Each AST node type has its unique name. This is determined by a big
dictionary in id_map.py.

• Each node has its ID. It is the name of the underlying AST node type (or
“Aux” otherwise) with a sequential number (counted separately for each
AST node type).

6Yes, Python tokenizes this as an arrow operator.
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• Each latel has its ID. It usually consists of the node ID it was created by, a
tag that specifies where in the source code it was created (these tags don’t
have a system), and the ID of the lattice element type.

• Each symbol has its ID. It consists of the lattice element ID it was created
by, the name of the symbols reference (e.g., s07) and a version number.

6.9 Analysis

The job of the analysis is to determine if there is an error and find it. There
are two methods to determine if a node is sat or unsat. We implemented each
method as a judge. Each judge is a function.

One method uses heuristics to find general matrices. The other doesn’t.
By default, general matrix detection is on. To switch between the judges, the
--no_general flag is used.

To locate an error, a border node needs to be found. This is just a simple
iterative following of a linked list. In each node, a judge is called.

To locate the border node, a judge must be called many times. Judges are
usually slow. Therefore, it is possible to turn off the location finder with the
--no_location flag. In the future, a more effective algorithm should be used.

6.10 Python and NumPy subset

Our implementation doesn’t support the full Python and NumPy specifications.
To see what Python constructs are supported, refer to recipe.py. It lists

all the AST nodes which are supported. Other constructs are resolved with
a simple recipe that just propagates all information from the pred ingredient.
But ultimately, it is undefined behavior. To fail on undefined behavior, raise a
NotImplementedError in the default branch of the match statement.

To see what NumPy functions are supported, refer to stubs.py. Function
names are used as stub IDs. Not supported functions shouldn’t result in an
error. However, information about ndarrays may be lost as it will be resolved
pessimistically.

7Throughout this thesis, we used shape0 as an example of symbol reference. In our imple-
mentation, this is shortened even more to s0.
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6.11 Debugging tools

6.11.1 Inspector
Inspector allows inspecting the state of the tree between passes and interactive
browsing between states and nodes. It takes a long time to gather all the required
information.

6.11.2 Visualization
Produces visualization of the recipe graph. See figure 6.4 for an example.

6.12 Module structure
• main.py contains a high-level algorithm.

• ingredients.py contains an algorithm to find ingredients.
• recipes.py contains an algorithm to add recipes.
• recipe_func.py contains the function recipe. This is used in recipes.py.
• analyzer.py contains an algorithm for the analysis of the results.

• node_class.py defines the monkey-patched node class.
• lattice.py defines the Latel class and lattice elements.
• logic.py defines the Logic class, and contains the logic parser.
• stubs.py defines all stubs.

• inspector.py contains the Inspector tool used for debugging. It is used
to browse the state of the program in time.

• vizualization.py contains the visualization tool for debugging. It creates
a visual of all nodes and ingredients.

• id_map.py contains the map used for creating node IDs.
• util.py contains helper functions.
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Chapter 7

Results

7.1 Test case linreg

We took code that was written for a machine learning course. It was written
well before we started working on our thesis. It implements a linear regression,
the well-known basic algorithm for machine learning. This code was slightly
modified in the following way. The original can be found in appendix C for
comparison. The resulting code can be found in listing 7.1.

• Input was loaded from a file instead of using the sklearn example dataset.
• The function concatenate was replaced with the function hstack. They
do the same thing, but a stub for concatenate isn’t implemented because
it uses keyword arguments.

• Splitting was done manually without the help of sklearn functions.
• Extra code outside the main function (for testing, argument parsing, etc.)
was removed.

Our program didn’t report any errors in this program. Then, we started
introducing artificial errors to this program. These are typical NumPy errors.

1. Use vstack instead of hstack (lines 10 and 20).

This error was successfully detected and located.

2. Forget to add .T (i.e., transposition) (lines 15 and 16).

This error was successfully detected. The program pointed to the next
matrix multiplication as the point of error. Similarly, when running the
program, this error would manifest itself only in the matrix multiplication.
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1 import numpy as np
2
3 # In practice , these would be different
4 train = np.loadtxt("data.csv")
5 test = np.loadtxt("data.csv")
6 train_data , train_target = train[:,:-1], train[:,-1:]
7 test_data , test_target = test[:,:-1], test[:,-1:]
8
9 # Append biases

10 train_data = np.hstack((train_data ,
11 np.ones((train_data.shape[0], 1))))
12
13 # Training
14 weights = (
15 np.linalg.inv(train_data.T @ train_data)
16 @ train_data.T
17 @ train_target
18 )
19
20 test_data = np.hstack((test_data ,
21 np.ones((test_data.shape[0], 1))))
22
23 # Testing
24 predictions = test_data @ weights
25 squares = (predictions - test_target)**2
26 print(sum(squares) / len(squares))

Listing 7.1 Test code linreg
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3. Use .shape[1] instead of .shape[0] (lines 11 and 21).

This error was successfully detected. The program pointed to the hstack
function as the point of error. Similarly, when running the program, this
error would manifest itself at the hstack function.

4. Switch the order of matrix multiplication operands.

This error was successfully detected and located when it introduced a shape
mismatch error (on line 24). In the input of the inv function (line 15), this
wouldn’t cause an error but produce an incorrect result (of the correct
shape). This cannot be detected with our tool.

5. Forget a minus in a slice (twice at line 6 and twice at line 7).

There were two cases.

• The first minus (for construction of *_data variable) was missing.
This error wasn’t detected even though there is an error (matrix
multiplication in the computation of predictions fails). The program
is run with inputs where target and test have the same number of
columns. However, our program doesn’t know this information. If
the number of columns in one input was different from the number
of columns in the other input in just the right way, there would be no
error. And since our program is conservative, no error is reported.

• The second minus (for construction of *_target variable) was miss-
ing.
This error wasn’t detected because there is no error. This results in
an ndarray, which contains more than one value. This is logically
wrong, but our tool isn’t supposed to detect logical errors—only shape
mismatch errors.
If the user introduced a check that the result is a single number, or
the result would be used further, then it could be detected by our tool.
However, our current subset of Python doesn’t support asserts or
raise statements.

6. Use the wrong variable name. Use test instead of test_data (line 24).

In this case, these variables have the same shape, which we didn’t expect.
Therefore, this wouldn’t cause an error, but produce an incorrect result (of
the right shape). This cannot be detected with our tool.

If the variable was mistaken for a variable with a different shape, an error
could be possibly detected.
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Overall, many errors were detected in this test case. This is our tool working
at its best. There are several reasons why it performed this well.

• Only supported Python and NumPy constructs were used.
• No external libraries were used.
• Our heuristic successfully detected general matrices and utilized informa-
tion about them.

• Most logic was in a single function.

This is because, in the late stages of the implementation, the subset of NumPy
used in these examples was prioritized to be well-covered with the stubs. There-
fore, this test case doesn’t show how well our program works on average NumPy
code. We are not trying to claim that it works well on average NumPy code
anyway. This test case shows that our program works well on code that uses
covered NumPy and Python constructs, and where our heuristics is successful.

7.2 Test case sim

To demonstrate the time efficiency of using our tool compared to dynamic analysis
debugging, we wrote a long-running program in NumPy. It simulates a particle
movement in a homogeneous field using the Euler method. See listing 7.2.

At our machine, the simulation ran for 92 seconds. Our tool finished in under
a second for an error in the plot function and in under two seconds for an error
outside a function.

When writing and testing this program, we naturally made the error of using
vstack instead of hstack. Our tool detected this error. This was really nice. This
error would manifest itself only after 90 seconds of runtime.

Multiple other arbitrarily introduced errors were detected, but we won’t
describe them in detail here. They are in the attached files.

7.3 Shortcomings

7.3.1 Python and NumPy subset
Currently, the biggest limitation of our tool is the subset of supported Python and
NumPy constructs. We don’t see any problems or boundaries, which would stop
us from implementing the rest of these constructs. It is just time-consuming.

Some things like the representation of tuples and dimensions could be rewrit-
ten in a more general way, which could potentially save time when implementing
the details.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3
4 ITERATION = 100
5
6 def plot(m):
7
8 # Prepare the color gradient
9 size = m.shape[1]

10 color = np.zeros((size, 3))
11 gradient = np.arange(0, size) / size
12 color = np.hstack((color, np.reshape(gradient , (size, 1))))
13
14 # Add new particle
15 plt.scatter(m[0,:], m[1,:], c=color)
16
17 def step(a):
18 dt = 0.0000005
19 for _ in range(200000):
20
21 # Apply acceleration on particles
22 a += dt * np.array([0,-1, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0])
23
24 # Apply speed on particles
25 for i in range(6):
26 a[2*i] += a[2*i + 1] * dt
27 return a
28
29 # Prepare
30 values = np.empty((12, ITERATION + 1))
31 values[:,0] = np.array([2, 1, 2, 2, 5, -1, 6, 2, 1, 8, 8, 3])
32
33 # Calculate
34 for i in range(ITERATION):
35 values[:, i+1] = step(values[:, i])
36
37 # Plot
38 plot(np.vstack((values[0,:], values[2,:])))
39 plot(np.vstack((values[4,:], values[6,:])))
40 plot(np.vstack((values[8,:], values[10,:])))
41 plt.show()

Listing 7.2 Test code sim
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7.3.2 Efficiency
Our implementation is quite slow. This is because we usually chose the most
straightforward way of solving the problem. Some algorithms could be improved.

Namely, the border node search algorithm could use binary search to limit
the number of queries to a judge.

Also, the algorithm which calls the recipes could be improved. It now gener-
ates way too many symbols which flood the recipe graph and generate a lot of
unneeded constraints. By selecting more carefully which recipes should be called,
this problem could be improved.

7.3.3 External libraries
Currently, only NumPy functions are modeled using stubs. However, NumPy
is very often used with other libraries which extend NumPy. Covering other
libraries with stubs could improve the analysis significantly.

7.3.4 Intra-procedural analysis
Currently, analysis is done in every function separately. By an inter-procedural
analysis, information from outer scopes could be used to evaluate in which
contexts a function is called. This could be used to determine argument types and,
possibly, their number of dimensions or their shape. Similarly, the information
on how a function manipulates its arguments and what it returns could be used
to strengthen the analysis in outer scopes.

Possibly, this could be used to analyze external libraries.

7.3.5 Type hints
Type hints are part of Python language specification and could be used as an
additional source of information. Even now, some code bases have type hints—
some are just for documentation purposes; some are used by external tools like
MyPy. Information that a variable or an argument is an ndarray could be present
and used.

Moreover, more detailed information could be passed through the type hints
if there was a specification describing how to express it in type hints. Then, the
user could, for example, directly specify the number of dimensions or a shape.

7.3.6 General matrix heuristics
Currently, we support only one function (i.e., loadtxt) which returns a general
matrix. Unfortunately, ndarrays are hardly ever created by NumPy directly.
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They usually come from external libraries. This hinders better general matrix
detection.

However, other means could be used to detect general matrices. Parameters
of functions are good candidates, and information provided by the user could be
used. This information would probably come through the means of type hints.
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Chapter 8

Conclusion

We designed and implemented a static analysis tool for detecting shape mismatch
errors in NumPy.

We combined data-flow analysis and symbolic execution. We track and update
information about variable content, symbols that represent ndarray dimensions,
and constraints over these symbols which arose from operations in the analyzed
program. The analysis is done over a graph constructed from AST nodes. This
method has proven to be very effective at collecting the required information.

Collected constraints are then evaluated with an SMT solver—Z3. Constraints
are evaluated in multiple nodes to find a node where constraints become unsatis-
fiable. This means an error occurred at this node.

Surprisingly, very often, there exists a solution to these constraints that
wouldn’t occur in practice. This solution prevents us from being completely
conservative at reporting errors—very few errors would be found. Therefore, we
employed a heuristic to detect these unexpected solutions.

Our implementation of this method supports a subset of Python and NumPy
constructs. It successfully detected errors in programs that use the supported
subset. A lot of work is still needed for this implementation to reliably detect
errors in typical code bases which use NumPy—the subset needs to be expanded
and more effective algorithms should be used so our program runs faster on bigger
inputs. However, we don’t think there are any fundamental problems other than
time constraints that would stop us from extending our implementation.

Furthermore, this tool could be expanded to support inter-procedural analysis
and type hints. This could improve the accuracy of the analysis. Specifically on
programs that use libraries that use NumPy internally.
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Appendix A

User manual

The tool was tested with Python 3.11.3. It will probably work with some older
versions as well. Install package z3-solver from PyPI. Run with the command
python numpy-check/main.py -h.

1 usage: numpy -check [-h] [-t MAX_TYPE_PASSES] [-m MAX_MINOR_PASSES]
2 [-M MAX_MAJOR_PASSES] [-v] [-l] [-g] [-I] [-D] [-V]
3 filename
4
5 Finds `ndarray ` shape mismatch in NumPy programs. Analyzes each function
6 separately. Reports the location of the first error that is certain to happen.
7 Works only for 1D and 2D `ndarray `. Supports only subset of Python and NumPy.
8
9 positional arguments:

10 filename file to analyze
11
12 options:
13 -h, --help show this help message and exit
14 -t MAX_TYPE_PASSES , --max_type_passes MAX_TYPE_PASSES
15 maximum number of type passes (if fixed point is not found)
16 -m MAX_MINOR_PASSES , --max_minor_passes MAX_MINOR_PASSES
17 maximum number of minor logic passes
18 (if fixed point is not found)
19 -M MAX_MAJOR_PASSES , --max_major_passes MAX_MAJOR_PASSES
20 maximum number of major logic passes (controls how much
21 information can be reached by joining before widening)
22 -v, --verbose verbosity
23 -l, --no_location don't print location of error (finding location can be slow)
24 -g, --no_general don't try to find errors for general input matrix
25 -I, --inspector debug - collect data in passes and browse internal logic
26 -D, --debug debug - enter PDB on unhandled exception
27 (used for debug prints as well)
28 -V, --vizualize debug - produce files vizualizing the graph built
29 over the AST
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Appendix B

Structure of the attached ZIP file

1 examples
2 data.csv
3 linreg
4 correct.py
5 error-forgot_minus_1.py
6 error-forgot_minus_2.py
7 error-forgot_transpose_1.py
8 error-forgot_transpose_2.py
9 error-vstack_instead_hstack.py

10 error-wrong_matmul_order.py
11 error-wrong_shape_index.py
12 error-wrong_variable.py
13 sim
14 correct.py
15 error-vstack_instead_hstack.py
16 error-wrong_index_order.py
17 error-wrong_shape_order.py
18 simple-add_biases.py
19 simple-force_square -gen_matrix.py
20 simple-force_square -known_shape.py
21 numpy-check
22 analyzer.py
23 id_map.py
24 ingredients.py
25 inspector.py
26 lattice.py
27 logic.py
28 main.py
29 node_class.py
30 recipe_func.py
31 recipes.py
32 stubs.py
33 util.py
34 vizualization.py
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Appendix C

Original linreg code

1 def main(args: argparse.Namespace) -> float:
2 # Load the Diabetes dataset
3 dataset = sklearn.datasets.load_diabetes()
4
5 # Append a new feature to all input data, with value "1"
6 data = dataset.data
7 target = dataset.target
8 data = np.concatenate((data,
9 np.ones((data.shape[0], 1))), axis=1)

10
11 # Split the dataset into a train set and a test set.
12 data_train , data_test , target_train , target_test = \
13 sklearn.model_selection.train_test_split(
14 data, target,
15 test_size=args.test_size ,
16 random_state=args.seed
17 )
18
19 # Solve the linear regression
20 weights = (
21 np.linalg.inv(data_train.transpose() @ data_train)
22 @ data_train.transpose()
23 @ target_train
24 )
25
26 # Predict target values on the test set.
27 prediction = data_test @ weights
28
29 # Compute root mean square error
30 # on the test set predictions.
31 squares = (prediction - target_test)**2
32 rmse = math.sqrt(sum(squares) / len(squares))
33
34 return rmse
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