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1. Introduction
The game theory is a fundamental part of modern-day economics, evolutionary
biology and even political science. The main goal of the theory is to mathemat-
ically represent decision problems faced by real-world agents and by this to find
optimal strategies, that the agents should or rather would take. Game theory
in the classical context studies behavior of agents in a deterministic scenarios.
This means that the players’ payoff is only determined by their actions. In this
context, this payoff if observed by an outside observer, may still apear to be
somehow random because randomization over several possible actions that may
be chosen is most of the times preferential. However, given the players’ strategies
this payoff is considered deterministic.

This assumption is problematic, because in many situations the actual payoff
depends on other factors such as demand on the market or enviroment in which
the game is set. In most of the cases authors overcome this by considering these
parameters as deterministic and setting them to their mean values. But as we
see in the context of stochastic programming this approach may not result in
solutions that are optimal and sometimes these solutions are not even feasible for
the actual problem.

For this reason another way to model those types of games is by modeling
the randomness involved in the game. The most popular model in this context
are the stochastic games, which model the randomness by changing states of
the game and considering the payoff in a given state as deterministic. This is a
generalization of Markov decision process theory.

In our thesis we focus on another approach, that has not yet been considered
by many authors, in which we assume that given the players’ strategies the payoff
is a random variable. We call this type of a game the game with random payoff.

In the second chapter of our thesis we use methods of optimization under
uncertainty to develop optimality conditions for a single stage random payoff
games. In this chapter we develop a generalization of the concept of a Nash
equilibrium, which we call an α-Nash equilibrium, that is based on the idea of
generalized best responses. Another approach is based on the quantile payoff
model, that defines a deterministic equivalent of a game with random payoff,
which was first considered in [14]. Lastly generalizations of the minimax problem
using stochastic programming, which were first used for the case of matrix games
with random payoff in [5], [4],[3] and [6]. We generalize this idea for n-player
non-zero sum games.

In the third chapter of our thesis we further explore properties of deterministic
sequential games that had been developed by multiple authors and are summa-
rized in [11]. Here we define a sequential game, show how to convert sequential
game into a game in the strategic form and consider models with finite and in-
finite number of stages. We also define the concept of information in the game,
behavioral strategies and how they relate to our assumed model with perfect in-
formation. Lastly we more deeply consider possible solution models for repeated
games and their properties with several approaches that were used to refine the
concept of Nash equilibrium for extensive games.

In the fourth chapter of our thesis we discuss the case when randomness is
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involved in a sequential game. We start with the idea of markov decision process
and its properties as were presented in [13] and then discuss the stochastic games
as its generalization with their properties presented in [11]. With this we further
discuss the case for sequential games with random payoff and their connection to
these well known problems. We use criteria developed in the second chapter to
present solution models for both the stepwise choise of strategy model and the
agregate payoff models which are standardly used for deterministic sequential
games. We discuss these approaches more deeply for the cases when the payoff
processes have further properties for example if they are homogenous markov
chains or are ergodic.

In the fifth chapter we consider the Cornout model of duopoly. We show
how to find optimal production for the companies in the standard deterministic
version of this model. We further generalize this model into model with dynamic
demand and develop its optimal solutions for the case if there is no possibility
of risk-free investment for the companies and for the case when the companies
have the same risk-free investment oportunity (valuation of time). With this
we define a stochastic version of the dynamic model, where we assume that the
parameters of the model are random. After that we consider a model scenario of
two internet providers who want to determine their optimal allocation of average
daily capacity of their network for a 7-day period, where the daily average demand
for the network capacity is random. On this model example we compare the
optimal solutions from the deterministic approach that uses expected values of
parameters of the model with the stochastic approach.
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2. Games with random payoff
In this chapter we will take a look at the basic definition and results for mathe-
matical games with random payoff.

2.1 Mathematical games
Definition 1 ([11]). Let I be a set of players, ∀i ∈ I : Xi be a set of strategies
of the player i and ∀i ∈ I : ui :×i∈I

Xi → R be a payoff function of the player i.
The triple (I, {Xi}i∈I , {ui}i∈I) we call a (mathematical) game.

In contrast to games in classical concept of a game, such as sports, board
or computer games, it is notable, that in our definition there is no explicit set
of rules of the game itself. Those rules however, are determined implicitly by
sets of players, strategies and profiles of the payoff functions. In this context
we need to transform explicit rules of a ”game” or rather a conflict situation we
are studying into implicit rules given by our definition. In some situations those
rules may change over time most notably in chess, if we consider one move of a
player a single game in the mathematical sense in each round the ”rules” change,
because the position or number of chess pieces changes by each round and so the
sets of strategies change. In other situations the number of players may differ or
their respective payoffs. As we will see in the next chapter we can overcome this
problem to some extent using methods of sequential games theory.

Let us examine simple example of game of Rock-paper-scissors. This is a game
of two players with following meta rules:

• In the same time both players pick one out of three: rock, paper or scissors.

• Rock always beats scissors.

• Paper always beats rock.

• Scissors always beats paper.

• If both players pick the same item it is a tie.

From this list of rules we can now formalize our mathematical representa-
tion of this game. It is a game of two players therefore without a loss of gen-
erality let I = {1, 2}. Both players have the same available strategies. For
reasons that will be apparent later we will formalize them as X1 = X2 =
Conv({(1, 0, 0)T , (0, 1, 0)T , (0, 0, 1)T }). We will assume that both players have
the same insentive to win and we will write their payoffs given each combination
of strategies in the following table, where rows denote strategies of player 1 and
columns of the player 2 and the first number of each element denotes the payoff
of player 1 and the second of the player 2.

Rock Paper Scissors
Rock 0,0 -1,1 1,-1
Paper 1,-1 0,0 -1,1
Scissors -1,1 1,-1 0,0
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We see that in each situation the sum of payoffs of both players is 0, therefore
we can replace the table with single matrix

A = (aij)3×3 =

⎛⎜⎝ 0 −1 1
1 0 −1

−1 1 0

⎞⎟⎠ ,

that denotes the payoffs of the player 1 and the respective payoffs of player 2 are
then given by −A. With this and our choise of representation of player strategies
we can now clearly write

∀x ∈ X1, ∀y ∈ X2 : u1(x, y) = xT Ay,

∀x ∈ X1, ∀y ∈ X2 : u2(x, y) = xT (−A)y.

2.2 Categorization of games
In a previous example we have seen a special case of a game which is called a
non-cooperative deterministic zero-sum matrix game. However there are many
other different types of games. In this section we will take a closer look at their
basic characterization.

We can differ games based on many properties, but the main are:

1. How many players does the game have?

2. Do players have an incentive to cooperate?

3. Is it a game of finite resources?

4. Does the game have multiple stages?

5. Is the outcome of the game deterministic? (It only depends on players’
strategies.)

In following paragraphs we will discuss first 4 of the 5 possible character-
izations. The distinction between deterministic and stochastic games will be
discussed more deeply in the section corresponding to games with random payoff.

2.2.1 Types of games by the number of players
Based on the number of players the game has we can differ three cases:

Definition 2 ([11]). Let G = (I, {Xi}i∈I , {ui}i∈I) be a game.

1. If |I| = 1, we call it a single-player game.

2. If |I| = 2 we call it a two-player game.

3. If |I| > 2 we call it n-player game or multiple player game, where n = |I|
denotes the number of players that the game has.
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An example of a single-player game might be a problem of finding of an opti-
mal portfolio for an investor. In this case the set of players has only one element
I = {1}. Set of strategies is a set of possible portfolios, i.e. if we consider a ∈ N
assets X1 = {x ∈ Ra : ∑︁a

k=1 xk = 1, hi(x) = 0, ∀i = 1, . . . , N, gj(x) ≤ 0, ∀j =
1, . . . , M}. Where by functions hi and gj we denote any possible requirement the
investor may be constraint by. For example if he does not want to borrow money
(invest without short sales) he would require only such portfolio weights, that
are non-negative. Finally the payoff function might be u1(x) = E ∑︁a

k=1 xkρk =∑︁a
k=1 xkrk, where by ρk we denote the return of the k-th asset and rk the ex-

pected return of the k-th asset. As it is well known from the portfolio theory,
there are many other payoff functions that we may consider and some of them,
for example value at risk, are not linear in x as it was in this case. So in general
those are not by any means ’simpler’ games. But they are representing in general
some non-linear programming problem. This also gives us an intuition that game
theory in some sense generalizes standard optimization problems.

We have already seen a two player game in our Rock-paper-scissors example.
Let us just note that matrix games are in fact an important class of two-player
games as they represent every constant-sum game with finite number of pure
strategies. This is a special case of lemma we will prove later.

2.2.2 Types of games by cooperation
Based on the incentive to cooperate we have three cases:

Definition 3 ([11]). Let G = (I, {Xi}i∈I , {ui}i∈I) be a game.

1. If ∀i ∈ I : Xi = {0, 1} and ∀i ∈ I : ui = v : 2I → R, we call it a cooperative
(or a coalition) game.

2. If ∀i ∈ I : Xi = {0, 1}, we call it a semi-cooperative game.

3. If G is not cooperative or semi-cooperative we call it non-cooperative game.

It is easy to see that every cooperative game is also a semi-cooperative game.
Important distinction is in games for which not all payoff functions are the same.
That means that different players have a different incentive to cooperate with the
rest. It may be that, they even get higher payoff if they do not cooperate with
majority. In cooperative games there is single payoff function for all the players.
In the theory of cooperative games it is studied how to ’fairly’ distribute this
payoff among members of the winning coalition. From the general perspective
however, players want to maximize this payoff. In both types of games players
have only two strategies denoted as 0 and 1, where 0 corresponds to not joining
the coalition and 1 corresponds to joining the coalition.

For the rest of our thesis we will only work with non-cooperative and semi-
cooperative games. Those games are characteristic in that they study behaviour
of individuals rather than coalitions and coalitions occur only ’naturally’, that is
individuals form a coalition only if it is beneficial to them individually and the
coalition is sustainable as long as no one has an incentive to leave it. This kind
of behaviour is present in most of economic or political behaviours. For exam-
ple individuals in market enviroment cooperate only if their personal gain would
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decrease otherwise or voters support a political party only if its policies are ben-
eficial to them individually and in general do not cooperate as the transactional
cost of such cooperation are too high (there is too many players to efficiently
coordinate their strategies).

2.2.3 Types of games by available resources
Definition 4 ([11]). Let G = (I, {Xi}i∈I , {ui}i∈I) be a game.

1. If ∀x ∈ ×i∈I
Xi : ∑︁i∈I ui(x) = c for some constant c ∈ R we call G a

constant-sum or a c-sum game.

2. If G is not a constant-sum game we call it a non-constant-sum game.

In the case of constant-sum games the overall gain of all players is a given
constant. That means that players aim to get majority of given finite amount of
resources and so gain of one player is translated to loss of other players. It is easy
to see that such games are always non-cooperative. As an example of such game
is a competition of companies on a closed market with given number of customers.
For example grossery stores, that sell the same bread may increase their profit
only by increasing the number of customers that buy bread in their store, which
directly translates to decrease in number of customers for their competitors.

In contrast to that in non-constant-sum games players generaly may not lose
payoff proportionally to gain of other player. Example of such game may be com-
petition of companies in a market where by specific strategies they may gain new
customers, that did not use specific product previously. For example technologi-
cal companies may gain new customers and so increase their profit if they make
their technologies more accessible (cheaper, easier to use or better marketed) for
customers. By doing so, profit of their competitors may remain unchanged.

2.2.4 Types of games by the number of stages
Definition 5 ([11]). Let G = (I, {Xi}i∈I , {ui}i∈I) be a game.

1. If there is a T ∈ N∪{∞} such that ∀i ∈ I : Xi =×T

t=1 X t
i and ui = ∑︁T

t=1 ut
i

we call G a sequential, multi-stage or T -stage game.

2. If G is a sequential game and ∀i ∈ I, ∀s, t ≤ T : Xs
i = X t

i and us
i ∝ ut

i we
call G a repeating game.

3. If G is a sequential game and ∀i ∈ I, ∀t ≤ T, ∀x ∈ ×i∈I
X t

i : ut
i(x) =

αi(t)f t
i (x) for some function f t

i :×i∈I
→ R we call G a sequential game

with discounting and {αi(t)}T
t=1 we call a discounting of player i.

4. If G is a sequential game with T = 1 we call it a single-stage game.

5. If G is a T -stage game with T > 1 for t ≤ T we will call
Gt = (I, {×T

τ=t
Xτ

i }i∈I , {∑︁T
τ=t uτ

i }i∈I) a sub-game of G.
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Where f ∝ g means that f = cg for some c ∈ R constant.
It is apparent that every game is a sequential game as it has at least one

stage. However as we will see later there are important distinctions between
games with just one stage and games with multiple stages. Especially if there are
infinite number of stages. The distinction is in the characterization of payoff and
of optimal strategy. Most important feature of games with multiple stages is that
we may allow players’ strategies to be functions of strategies from the previous
stages. This would mean, that players are able to adapt and learn from past
experience. They may include their believes about long-term strategies of other
players to their decision-making. Another important note is that each stage or
subset of stages of multi-stage game may be also thought as a separate game.
Later we will ask a question whether optimal solution of a multi-stage game is
also optimal for its every sub-game?

We further distinguish between multi-stage games by introducing repeating
game and game with discounting. In a repeating game we assume that payoffs of
each stage are proportional to each other. This means, that they are same up to a
multiplicative constant. This allows us to consider the case of repeating game with
discounting as its special case. Repeating games may be thought as single-stage
games that repeat T -times. It is however important to note that optimal solution
of single-stage variant of the game may very much differ from optimal solution
of the multi-stage game. Famously the Prisoner’s dilema may be ’overcomed’ in
the multi-stage variant. For games with discounting the most straightforward
motivation comes from games related to finance, where the payoffs are some
future yields and discounting rate is used to represent that future yields are less
valueable in present time, than current as the future value of money is smaller.
But this concept is well aplicable and usefull also in games that are not related
to finance, as it quantifies believes of players and how much they value future
payoffs in comparison to today’s. Therefore a consistent discounting would satisfy
αi(t) ≤ 1 which means, that every player should value future payoff at most the
same way he values current payoff.

We have seen examples of single-stage games in previous discussion. As an
example for multi-stage game we may consider a competition of companies on a
market, which may occur over a finite or infinite horizont.

For the rest of this chapter we will only consider the case of single-stage games.
We will discuss multi-stage games in the next chapter.

2.3 Strategies
Let us now look at different types of strategies, that players may play. In our
basic example of a game of ’rock-paper-scissors’, both players were able to play
either ’rock’, ’paper’ or ’scissors’. Those are called the pure strategies. They
are the single action players may opt to do at the beginning of the game. But
as it is well known from the investment problem, sometimes it is preferencial to
diversify strategies to minimize the associated risk. Strategies that are composites
of multiple pure strategies will be called mixed strategies.

Definition 6 ([11]). Let I be the set of players. ∀i ∈ I denote Pi the set of
distinct actions that player i can opt to play. We call Pi the set of pure strategies.
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Let ∀i ∈ I : ui : ×i∈I
Pi → R be a payoff function of player i, we call G =

(I, {Pi}i∈I , {ui}i∈I) the game in pure strategies.

Definition 7. Let P be a topological space and B be a Borel σ-algebra over P .
We denote D(P ) = {D : D is a Borel probability measure on (P, B)}.

In general we will consider the set of pure strategies to be a subset of N, if
there is at most countable different actions that the player may choose or a subset
of R, if there is uncountably many of such actions.

If P is a countable set we will consider T = 2P to be the topology on P . If
P is a uncountable set we will use the standard topology on R. In generality a
set of pure strategies may have a higher cardinality than continuum, this would
for example happen in a sequential game with continuous time where in each
sub-game players have a contiuum of pure strategies. Such a game could be used
to represent a price creation on a market. This situation however will not be
discussed in this thesis.

Before we discuss the mixed strategies, first lets take a look on a example of a
game where players have uncountably many pure strategies. This game is called
the ’Keynes beauty contest’. In this game players are asked to choose a number
in inteval [0, 1] such that it is closest to the 2/3 of the mean number selected by
all players. That is let I = {1, . . . , N} be the finite set of players. Each player i
chooses pi ∈ [0, 1] and the winner is given as

arg min
i∈I

|pi − 2
3

1
N

∑︂
j∈I

pj|.

Now we will define mixed strategies as follows.

Definition 8 ([11]). Let I be the set of players. ∀i ∈ I denote Pi the set of pure
strategies of i. We call Xi = D(Pi) the set of mixed strategies. Let ∀i ∈ I : ui :
×i∈I

Xi → R be a payoff function of player i, we call G = (I, {Xi}i∈I , {ui}i∈I) the
game in mixed strategies corresponding to game in pure strategies with {Pi}i∈I .

In our thesis we will use the von Neuman - Morgenstern decision theory ax-
ioms. That is, if we consider G as the game in pure strategies and H the corre-
sponding game in mixed strategies and ûi be the payoff function of player i in the
game G then we will assume that the payoff function of player i in H is given as

ui(x) = E ûi(x) =
∫︂

ûi(p)dx(p),

where x ∈×i∈I
Xi = {⊗i∈Ixi : xi ∈ Xi, ∀i ∈ I} here µ1 ⊗µ2 is a product mea-

sure of µ1 and µ2 and so we assume, that the player strategies are independent. In
more generality we could assume that they form a consistent family of probability
distributions, that is×i∈I

Xi = {x ∈ D(×i∈I
Pi); ∀j ∈ I : x−j ∈ D(×i∈I,i ̸=j

Pi)}
this would be what we call a semi-cooperative game. In a non-cooperative game
it satisfies to assume, that player strategies are independent as we consider play-
ers to have no incentive to cooperate. This means that in a real-world situation,
when agents have some reason to cooperate we consider players of a mathematical
non-cooperative game representation of this conflict to be individuals or already
formed coallitions of individuals with similar goals. Let us notice that by this
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we specifically assume that the payoff function of the game in pure strategies is
B(×i∈I

Pi)-measurable.
If I = {1, . . . , N} is a finite set of players and Pi are countable sets of pure

strategies this may be simplified to

ui(x) =
∑︂

p1∈P1

· · ·
∑︂

pN ∈PN

x1(p1) . . . xN(pN)ûi(p1, . . . , pN).

Futhermore if Pi is a finite set for each player i with |Pi| = Ki we can identify
it with P̂ i = {ek, k = 1, . . . , Ki}, where ek is the k-th standard basis vector of
RKi , that is

ek
m =

⎧⎨⎩ 0, if m ̸= k,

1, if m = k.

In this case Xi can be identified with X̂ i = conv(P̂ i). In such a case we will for
simplicity write Pi and Xi instead of P̂ i and X̂ i as the distinction between those
two representations of strategies will come from the context.

Now we will show that sets of mixed strategies are convex.

Lemma 1 ([11]). Let P be a topological space, then D(P ) is a convex set.

Proof. Let x, y ∈ D(P ) and λ ∈ (0, 1). λx + (1 − λ)y is a measure on (P, B).
Consider B ∈ B then

(λx + (1 − λ)y)(B) = λx(B) + (1 − λ)y(B) ≤ λ + (1 − λ) = 1

and
(λx + (1 − λ)y)(P ) = λ + (1 − λ) = 1.

Lastly ∀B ∈ B : λx(B) + (1 − λ)y(B) is a convex combination of non-negative
numbers and therefore it is non-negative. From this we have that λx + (1 − λ)y
is a borel probability measure on P and therefore λx + (1 − λ)y ∈ D(P ).

We see that each conflict situation may be identified as a game in pure or
mixed strategies. Depending on a type of game, the interpretation of mixed
strategies may be different. In cases as is the ’rock-paper-scissors’ game, player
may in one occurence of the game play only a single pure strategy in such a case
the interpretation of mixed strategies as probability distributions is better. On
the other hand if pure strategies are for example possible marketing strategies
for a company, mixed strategies are better interpreted as a convex combination
of pure strategies and therefore as chosen split of funds between the possible
strategies.

Futhermore, we can also consider the case when players are constrained in
possible mixed strategies. For this we will denote the set of possible constrains
for player i with following sets of functionals

C≤
i = {g; g : Xi → R, g is a inequality constraint for player i}

and
C=

i = {h; h : Xi → R, h is a equality constraint for player i}.

11



We then denote XC
i = {xi ∈ Xi : g(xi) ≤ 0, ∀g ∈ C≤

i , h(xi) = 0, ∀h ∈ C=
i }.

Pension funds investmets are example of a case when it is necessary to consider
constrained sets of strategies, as they are required by regulation to have some
minimal portion of their investments put in obligations. If some of players in
a game G play with a set of constrained strategies we will call G a game with
constrained strategies.

Lastly let us note that if I is a countable set of players and ∀i ∈ I : Pi is a
countable set of pure strategies, we will call corresponding games in both mixed
and pure strategies as discrete games. Futhermore, if I is a finite set of players
and ∀i ∈ I : Pi is a finite set of pure strategies, we will call corresponding games
in mixed and pure strategies as finite. In this thesis we will only consider the
case of discrete games.

2.4 Optimal strategies
Before we discuss the case of games with random payoff we will introduce how to
classify optimal strategies in single-stage games. Without a loss of generality in
this thesis we will assume, that all players want to maximize their payoff, that is,
they consider higher payoff preferencial over smaller payoff whenever it is possible
to choose. We will also consider that all players are perfectly rational, that means
we will suppose that all players are able to consider all possible options before
game starts and choose one that benefits them most.

Let us begin by examining our example of Rock-paper-scissors. We have seen
that we can represent this game as a matrix game with matrix

A =

⎛⎜⎝ 0 −1 1
1 0 −1

−1 1 0

⎞⎟⎠ .

In this case we considered as our sets of strategies a convex hull of elements
of standard basis of R3. This would be interpreted as that strategy for a player
is a probability distribution giving probabilities of whether to play ’rock’, ’paper’
or ’scissors’. Such strategies are called a mixed strategy in the context of game
theory. For start let us observe the payoff of player 1 for an arbitrary combination
of such strategies

u1(x, y) = x2y1 − x3y1 − x1y2 + x3y2 + x1y3 − x2y3,

= x1(y3 − y2) + x2(y1 − y3) + x3(y2 − y1), (2.1)
= y1(x2 − x3) + y2(x3 − x1) + y3(x1 − x2). (2.2)

From this rewritting we see that if player 1 prefers x1 that is x1 > x2 and
x1 > x3 to maximize his payoff, player 2 will have incentive to play y3 = 0, since
u2 = −u1. And so player 1 will have payoff

u1(x, y) = x1(−y2) + x2y1 + x3y2 + x3(−y1)
= y2(x3 − x1) + y1(x2 − x3),

12



where the first term is negative as x1 > x3 and so player 1 would increase his
payoff if he would choose x1 = x3. Similiar argument may be made for x2 and x3
as well and from symetry of the perspective, this can be also argued for the player
2. From this both players would benefit in some cases from chosing a different
strategy. We will formalize this in the next definition.

Definition 9 ([11],Definition 4.18). Let G be a non-cooperative game. We will
define the set of best response strategies of player i ∈ I with respect to other
players’ strategies x−i ∈ X−i as

Bi(x−i) = {x ∈ Xi : ∀y ∈ Xi, ui(x, x−i) ≥ ui(y, x−i)}.

The set of best response strategies shows players’ insentives to change their
strategy and its ’direction’. Interesting case is when for every player it contains
their current strategy. In such a case every player is willing to continue to play
the same strategy. This means that with perfectly rational players the strategy
profile will stop in such a equilibrium point.

Definition 10 ([11]). Let G be a non-cooperative game. We will define the Nash
equilibrium of G as such x ∈ X that ∀i ∈ I : xi ∈ Bi(x−i). We will denote the
set of Nash equilibria of G as NE(G).

Nash equlibria of a game were first examined by mathematician John von
Neuman, who managed to prove their existence for every finite two-player game
in mixed strategies. The famous result about existence of Nash equilibria was
done by John Nash Jr., who proved the existence of those equilibria for every finite
game in mixed strategies. We formulate this result in the following theorem.

Theorem 2 (The fundamental theorem of game theory, [11]). Let G be a finite
non-cooperative game in mixed strategies, then NE(G) ̸= ∅.

Proof. For the proof we refer to [11].

This theorem was further generalized for the case of games with constrained
strategies.

Theorem 3 ([11]). Let G = (I, {Xi}i∈I , {ui}i∈I) be a finite game in constraint
strategies, where for each i ∈ I:

• The set Xi is a polytope in Rki.

• Function ui is a multilinear function over the set of pure strategies.

Then G has a Nash equilibrium.

Proof. For the proof we refer to [11].

Lemma 4. Let G = (I, X, {ui}i∈I) be a non-cooperative game. Let ∀i ∈ I : Ki ∈
R, ai > 0 then x∗ ∈ X is a Nash equilibrium of G, if and only if x∗ is a Nash
equilibrium of H = (I, X, {aiui + Ki}i∈I).

13



Proof. To prove this theorem we will show that ∀i ∈ I : ∀x−i ∈ X−i BG
i (x−i) =

BH
i (x−i). Where BG

i (x−i) and BH
i (x−i) are sets of best response strategies for

G and H respectivelly. We have that

∀y ∈ Xi : ui(x, x−i) ≥ ui(y, x−i),

if and only if

∀y ∈ Xi : aiui(x, x−i) + Ki ≥ aiui(y, x−i) + Ki.

This implies that x ∈ BG
i (x−i), if and only if x ∈ BH

i (x−i).

Special case of this lemma says that every constant-sum game may be repre-
sented using zero-sum game.

The main idea of the Nash equilibria is that players will not have a reason
to change their current strategy as they would expect their payoff to decrease.
Another approach to optimality may be to consider methods of multi-objective
programming. That is to find optimal strategies, we want to solve multi-objective
problem

max
x∈X

u(x),

where u = (ui)i∈I is the vector of payoff functions of all players. We will introduce
following notation for vector inequalities, if a ≤ b and a ̸= b we will write a ⪇ b

Definition 11. Let G = (I, X, u) be a non-cooperative game. Strategy profile
x ∈ X is called efficient if there is no x̂ ∈ X such that u(x) ⪇ u(x̂). We will
denote the set of efficient profiles of game G as EF (G).

We can also express the set of ideal strategy profiles as

ID(G) =
⋂︂
i∈I

arg max
x∈X

ui(x).

For most non-trivial games G however, it holds that ID(G) = ∅.
We can as well consider players to defend themselves against the worst possible

outcome of the game. In such a case player i ∈ I would want to solve problem

vL
i = max

xi∈Xi

min
x−i∈X−i

ui(xi, x−i). (2.3)

Here vL
i denotes the lower value of the game for the player i. The lower value

of the game is the lowest feasible payoff of the rational player i in the G. This
means that the rational player is always able to gain at least vL

i . Similiarly we
will define

vU
i = min

x−i∈X−i

max
xi∈Xi

ui(xi, x−i) (2.4)

the upper value of G for the player i.

Lemma 5 ([11], Theorem 5.40). Let G = (I, {Xi}i∈I , {ui}i∈I) be a game, then
∀i ∈ I : vU

i ≥ vL
i .

14



Proof. For the proof of this lemma we refer to [11].

Definition 12. Let G be a non-cooperative game in mixed strategies. Strategy
xi ∈ Xi that solves (2.3) is called the minimax strategy of player i ∈ I. We denote
MMi(G) the set of minimax strategies for the player i and MM(G) = {(xi)i∈I ∈
X : xi ∈ MMi(G)} the set of minimax strategy profiles.

We will say that two mathematical programs M1 and M2 are congruent, if
x∗

1 = x∗
2, where x∗

1 is the optimal solution of M1 and x∗
2 is the optimal solution of

M2 and f1(x∗
1) = f2(x∗

2), where f1 and f2 are objective functions of M1 and M2
respectively. We write M1 ≡ M2.

We propose a following claim.

Theorem 6. Let G be a non-cooperative game in mixed strategies such that
NE(G) ̸= ∅, then

ID(G) ⊆ NE(G), (2.5)
ID(G) ⊆ EF (G). (2.6)

If

∀i ∈ I : Mi = max
xi∈Xi

min
x−i∈X−i

ui(xi, x−i) ≡ Ni = min
x−i∈X−i

max
xi∈Xi

ui(xi, x−i)

then also
MM(G) ⊆ NE(G). (2.7)

Proof. If x ∈ ID(G) then it must be a Nash equilibrium because ∀i ∈ I :
x ∈ arg maxx∈X ui(x). This means that ∀i ∈ I, ∀y ∈ X : ui(y) ≤ ui(x) for which
a special case is ∀i ∈ I, ∀yi ∈ Xi : ui(yi, x−i) ≤ ui(xi, x−i) = ui(x) and this
implies that ∀i ∈ I : xi ∈ BRi(x−i). Therefore x ∈ NE(G) and also x ∈ EF (G).
Now let x ∈ MM(G) and take i ∈ I. Denote (xi, y−i) the optimal solution of
(2.3). From our assumption it is also the optimal solution of the program Ni.
This implies that

∀z−i ∈ X−i, ∀zi ∈ Xi : ui(xi, z−i) ≥ ui(xi, y−i) ≥ max
zi∈Xi

ui(zi, z−i) ≥ ui(zi, z−i).

Which specially holds true for zi = x−i from which we get ∀zi ∈ Xi :
u(xi, x−i) ≥ ui(zi, x−i) or in other words xi ∈ BRi(x−i). Because we chose
an arbitrary i ∈ I it must be that x ∈ NE(G). But there may exist i ∈ I and
x̂−i ∈ X−i such that ui(xi, x̂−i) > ui(xi, x−i), so in general MM(G) ̸= EF (G)
which also implies that MM(G) ̸= NE(G) and EF (G) ̸= NE(G).

2.5 Dominance
Now we will propose two notions of dominance. First is based on dominance in
multi-objective programming and the second one is based on the minimax idea,
that player wants to defend against the worst possible situation.
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Definition 13. Let x, y ∈ X. If u(x) ⪈ u(y) we say that strategy profile x
dominates strategy profile y (or that y is dominated by x) and write x ≫ y.

Definition 14 ([11]). Let xi, yi ∈ Xi, S ⊆ X−i. If ∀s ∈ S : ui(xi, s) ≥ ui(yi, s)
we say that strategy xi (very) weakly dominates strategy yi with respect to S (or
that yi is weakly dominated by xi with respect to S) and write that xi ⪰S yi. If
∀s ∈ S : ui(xi, s) > ui(yi, s) we say that strategy xi strictly dominates strategy
yi with respect to S(or that yi is strongly dominated by xi with respect to S) and
write that xi ≻S yi.

By using the dominance based on strategy profiles we always reduce the set of
strategy profiles to a unique set of undominated profiles, which are called efficient.
Properties of a so-called ’maximal reduction’ under iterated removal of weakly
or strictly dominated strategies had been studied by multiple authors. Existence
and uniqness of such a reduction was discussed for example in [7] or [8] and more
general results about iterative elimination procedures in general choice problems
were shown in [9].

2.6 Random payoff
So far we discussed only the case of deterministic games, that is games for which
only player actions may have resulted in the change of payoff. In this section we
will take a look on the case when randomness is involved. This means that now
given players’ strategy profile the payoff function will be a random variable.

Definition 15. Let (Ω, A,P) be a probability space. Let I be the set of players,
∀i ∈ I let Xi be the set of strategies of player i and ui : ×i∈I

Xi × Ω → R
such that ui(x) is A-measurable for every x ∈ ×i∈I

Xi. We say that the triple
G = (I, {Xi}i∈I , {ui}i∈I) is a game with random payoff. For a given ω ∈ Ω
we will write G(ω) and mean (I, {Xi}i∈I , {ui(ω)}i∈I) the realization of G for
scenario ω. We say that payoff function {ui(x)}i∈I has a distribution Dx, if
Dx(B) = Pu(x)(B) = P(u(x) ∈ B), ∀B ∈ A.

First thing for us to understand is that randomness in the Definition 15 is
different from the randomness that comes from players playing mixed strategies.
Under the Von Neuman - Morgenstern axioms the payoff function of a game
in mixed strategies is the expected payoff from playing each pure strategy with
a given probability, however in reality players observe the outcome for a certain
combination of pure strategies, which is given by a realization of a combination of
mixed strategies played by each player. In a game with random payoff we consider
situation when, even if all players knew strategies of their oponents before the
occurance of game, they would still observe randomness in their payoff. This
randomness may be naturally occuring for example in a competition of companies
on certain market, where the demand for their products is random or it may be
as a result of their incomplete knowlege of the game, i.e. when there are some
unknown players in the game. One interesting statistical question to ask in a game
with random payoff with multiple stages is how to determine whether the change
in payoff distribution observed by players is the result of different distribution of
the payoff function or whether it is the result of other players choosing different
strategy?
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First let us discuss a case of unknown players in the game.
Let G = (I, {Xi}i∈I , {ui}i∈I) be a deterministic game in mixed strategies and

suppose that we are only able to observe game dynamics for J ⊊ I set of players
then Ĝ = (J, {Xj}j∈J , {uj}j∈J) is a game with random payoff. Let Pi be the set of
pure strategies for the player i ∈ I, then we can set Ω =×i∈I\J

Pi, A = B(Ω) and
P = ⨂︁

i∈I\J xi. We need to show that ui(x) =
∫︁
×j∈J Pj

ûi(p)dx(p) is A-measurable
for all x ∈×j∈J

Xj, where ûi is a payoff function from the corresponding game
in pure strategies. We have that ûi is B(×i∈I

Pi)-measurable function and so
it is also measurable with respect to M = σ({B ××j∈J

Pj; B ∈ B(Ω)}) ⊂
B(×i∈I

Pi) from this we get that ui(x) is B(Ω)-measurable for all x ∈×j∈J
Xj.

This motivates us to think about the random elements in the game with random
payoff as ”nature’s” strategy. In this model nature chooses a strategy ω ∈ Ω,
that is unknown to players and then they want to find their optimal strategies.

In games with random payoff we need to find a new way to clasify optimal
strategies. We can consider all of the definitions of optimal strategies to hold
almost surely. That is we could use similiar criteria on optimality with addition
that there is N ⊂ Ω such that those definitions hold for G(ω), ∀ω ∈ Ω \ N and
P(N) = 0. This however in general may be too restricting, especially in the case
of the Nash equilibrium where there is so far no known result about its existence
in a general game with random payoff. Therefore we will require those definitions
to hold on some prescribed level of confidence.

2.6.1 Generalizing Nash equilibria
First approach to optimality we will be discussing is generalizing the idea of Nash
equilibrium as a best response to itself. We will start by defining the set of α-
best response strategies, where α ∈ [0, 1] is a prescribed level of confidence. Using
this we may define an α-Nash equilibrium as a strategy profile, such that it is a
αi-best response to itself in every player’s strategy. The sets of α-best responses
may be defined using individual or joint probabilistic constraints. We will start
by considering the case with individual constraints.

Definition 16. Let G be a game with random payoff and αi ∈ [0, 1]. We define
the set of best response strategies on a confidence level of α for the player i, given
strategy profile of other players x−i ∈ X−i as

Bαi
i (x−i) = {xi ∈ Xi; ∀y ∈ Xi,P(ui(xi, x−i) ≥ ui(y, x−i)) ≥ αi}.

Similiarly we will define a Nash equilibrium.

Definition 17. Let G be a game with random payoff and α = (α1, α2, . . . ) ∈
[0, 1]I . If ∀i ∈ I : xi ∈ Bαi

i (x−i), we say that x ∈ X is a Nash equilibrium of G
on confidence levels α or that it is a α-Nash equilibrium of G. We denote the set
of α-Nash equilibria of G as α-NE(G). Vector α is called the confidence level
vector.

The question we may ask is whether those sets are also convex? This holds
true for a special case of payoff function, which is a standard result of stochastic
programming.
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Lemma 7 (Convexity of sets of best response strategies.). If ∀ω ∈ Ω, ∀y ∈ Xi :
ui(x, x−i, ω) − ui(y, x−i, ω) = fi(x, y) − g(ω), where fi(x, y) is a quasiconcave
function of x ∈ Xi then Bα

i (x−i) is a convex set for all α ∈ [0, 1].

Proof. For the proof of convexity of sets with probabilistic constrains we refer
to [2].

Now lets take a look on how both sets of best response strategies and of Nash
equilibria behave when we change the confidence levels on which we consider the
game.

Lemma 8 (Monotonicity in confidence levels). Let G be a game with random
payoff. Then:

1. ∀i ∈ I : ∀x−i ∈ X−i : Bα
i (x−i) is non-increasing in α. That is ∀α ≥ β :

Bα
i (x−i) ⊆ Bβ

i (x−i).

2. ∀i ∈ I : α-NE(G) is non-increasing in α. That is ∀α ≥ β we have that
α-NE(G) ⊆ β-NE(G).

Proof. 1. Let α ≥ β, x−i ∈ X−i and xi ∈ Bα
i (x−i) then we have that ∀y ∈ Xi :

P(ui(xi, x−i) ≥ ui(y, x−i)) ≥ α ≥ β and so x ∈ Bβ
i (x−i).

2. Let α ≥ β and x ∈ α-NE(G) then ∀i ∈ I : xi ∈ Bαi
i (x−i) and

from the first part of this proof we have that Bαi
i (x−i) ⊆ Bβi

i (x−i) therefore
∀i ∈ I : xi ∈ Bβi

i (x−i) and so x ∈ β-NE(G).

Clearly we have that B0
i (x−i) = Xi and 0-NE(G) = X. By this lemma, if

B1
i (x−i) ̸= ∅ then Bα

i (x−i) ̸= ∅, ∀α ∈ (0, 1). Similiarly, if 1-NE(G) ̸= ∅ then
α-NE(G) ̸= ∅, ∀α ∈ (0, 1)I . This implies that our definition of best response
strategies and set of Nash equilibria is consistent with the almost surely definition
in a sense that if a strategy profile is a Nash equilibrium almost surely, then it is
also α-Nash equilibrium. So far there has been to the best of our knowledge no
results on when there ∃α such that α-NE(G) ̸= ∅.

We propose a following existence theorem which is based on the idea of un-
known players.

Theorem 9. Let G be a game with random payoff in mixed strategies on a prob-
ability space (Ω, A,P). If there is a deterministic game H such that following
holds:

1. the set of pure strategy profiles of H is PH = PG × Ω × PO, where PG is the
set of pure strategy profiles of G and PO is the set of pure strategy profiles
of the uknown players which does not influence the payoffs of players in G
(G is a game with unknown players.),

2. ∀i ∈ IG : Xi is a compact metric space,

3. ∀i ∈ IG : 0 ≤ uG
i (ω) ≤ Ki < ∞ , ∀ω ∈ Ω, where uG

i denotes the payoff
function of player i in G (payoff functions are surely bounded.),
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4. ∀i ∈ IG : uG
i is a constant function of PO (payoff functions are independent

of the orthogonal players),

5. gi(y, ω) = uG
i (y, x−i, ω) is a continuous function of y for every fixed x−i ∈

X−i and ∀ω ∈ Ω (gi is a surely continuous function),

6. there exists a Nash equilibrium of H such that x∗
H = x∗

G ⊗ P ⊗ x∗
O (P is an

optimal strategy profile of uknown players).

Then there exists α ∈ (0, 1]IG confidence levels such that x∗
G is a α-Nash equilib-

rium of G.

Proof. Let IG and IH denote the sets of players in G and H respectivelly.
Because x∗

H is a Nash equilibrium and IG ⊂ IH we have that

∀i ∈ IG, ∀y ∈ Xi : uH
i (xG,P) ≥ uH

i (y, x∗
G,−i,P).

From Von Neuman - Morgenstern axioms and Fubini theorem we have following
inequalities

∀i ∈ IG, ∀y ∈ Xi : uH
i (xG,P) ≥ uH

i (y, x∗
G,−i,P),

∀i ∈ IG, ∀y ∈ Xi :
∫︂

uH
i (pG, ω)d(x∗

G ⊗ P) ≥
∫︂

uH
i (pi, p−i, ω)d(y ⊗ x∗

G,−i ⊗ P),

∀i ∈ IG, ∀y ∈ Xi :
∫︂ ∫︂

uH
i (pG, ω)d(x∗

G)dP ≥
∫︂ ∫︂

uH
i (pi, p−i, ω)d(y ⊗ x∗

G,−i)dP,

∀i ∈ IG, ∀y ∈ Xi :
∫︂

uG
i (x∗

G, ω)dP ≥
∫︂

uG
i (y, x∗

G,−i, ω)dP.

Now denote f(ω) = uG
i (x∗

G, ω) and gi(y, ω) = uG
i (y, x∗

G,−i, ω). From above and
linearity of the Lebesgue integral we have that

∀i ∈ IG, ∀y ∈ Xi :
∫︂

f − gi(y)dP ≥ 0,

which means that

∀i ∈ IG, ∀y ∈ Xi :
∫︂

{f>gi(y)}
f − gi(y)dP ≥

∫︂
{f<gi(y)}

gi(y) − fdP. (2.8)

For the right hand side of ineaquality we get

∀i ∈ IG, ∀y ∈ Xi :
∫︂

{f<gi(y)}
gi(y) − fdP ≥ 0.

Take i ∈ IG, y ∈ Xi and first suppose∫︂
{f<gi(y)}

gi(y) − fdP = 0,

this means that P({f < gi(y)}) = 0 or in other words that P(uG
i (x∗

G) ≥
uG

i (y, x∗
G,−i)) = 1.

Now suppose that ∫︂
{f<gi(y)}

gi(y) − fdP ≥ ci(y) > 0,
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because P is a probability measure there exists ai(y) > ci(y) such that∫︂
{f<gi(y)}

gi(y) − fdP = ai(y)P({f < gi(y)})

and because Xi is a compact set there exists Ki ≥ ai = miny∈Xi
ai(y) > 0,

where we set ai(y) = Ki, if P({f < gi(y)}) = 0. This means that

∀i ∈ IG : ∀y ∈ Xi : ai(y)P({f < gi(y)}) ≥ aiP({f < gi(y)}).
We set Yi = {y ∈ Xi;P(f < gi(y)) > 0}, Yi ⊂ Xi compact, therefore Yi is

relatively compact set, furthermore we show that Yi is closed and therefore it
is compact subset of Xi. Take Cauchy sequence {yn}n∈N ⊂ Yi ⊂ Xi, so there
exists y ∈ Xi such that yn → y, n → ∞. Therefore ∀ϵ > 0, ∃n0 ∈ N : ∀n ≥
n0 : yn ∈ Uϵ(y). Because gi(y) is surely continuous in y, ∀yn : ∃δn > 0 : ∀z ∈
Uδn(yn) : P(f < gi(z)) > 0 and consequently for n ≥ n0 : Uδn(yn) ∩ Uϵ(y) ̸= ∅ and
so ⋃︁n≥n0 Uδn(yn) ∩ Uϵ(y) ̸= ∅ holds for every ϵ > 0, therefore y ∈ ⋃︁

n∈N Uδn(yn)
from which P(f < gi(y)) > 0 and so y ∈ Yi. This means Yi is closed relativelly
compact set in a compact metric space so it is compact.

Now define gi(y∗) = miny∈Yi
gi(y) it holds that P(f < gi(y∗)) > 0 and we get

that

∀y ∈ Yi : P(f < gi(y)) ≥ P(f < gi(y∗)) > 0
Now lets take a look on the left side of (2.8), it holds

∀i ∈ IG, ∀y ∈ Xi :
∫︂

{f>gi(y)}
f − gi(y)dP ≤

∫︂
{f>gi(y)}

fdP ≤

≤
∫︂

{f>gi(y)}
sup
ω∈Ω

fdP = sup
ω∈Ω

fP({f > gi(y)}) ≤ KiP({f ≥ gi(y)})

By comparing the two sides of inequality we get that

∀i ∈ IG, ∀y ∈ Yi : P({f ≥ gi(y)}) ≥ ai

Ki

P({f < gi(y∗)}).

Which gives us that ∀i ∈ IG, ∀y ∈ Xi either P({f < gi(y)}) = 0 and then
P(uG

i (x∗
G) ≥ uG

i (y, x∗
G,−i)) = 1 ≥ αi, ∀αi ∈ [0, 1] or P(uG

i (x∗
G) ≥ uG

i (y, x∗
G,−i)) ≥

ai

Ki
P({f < gi(y∗)}), where 0 < ai

Ki
P({f < gi(y∗)}) ≤ 1 and so for αi = ai

Ki
P({f <

gi(y∗)}), x∗
i ∈ Bαi

i (x∗
G,−i), therefore x∗

G ∈ α-NE(G).

With Lemma 4 we can weaken the condition of surely non-negative and
bounded in Theorem 9 to surely bounded.
Corollary. Let G be a game with random payoff in mixed strategies on a prob-
ability space (Ω, A,P). If there is a deterministic game H such that following
holds:

1. the set of pure strategy profiles of H is PH = PG × Ω × PO, where PG

is the set of pure strategy profiles of G and PO are the pure strategies of
orthogonal players (G is a game with unknown players.),

2. ∀i ∈ I : Xi is a compact metric space,
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3. ∀i ∈ I : |uG
i (ω)| ≤ Ki < ∞ , ∀ω ∈ Ω, where uG

i denotes the payoff function
of player i in G (payoff functions are surely bounded.),

4. ∀i ∈ IG : uG
i is a constant function of PO (payoff functions are independent

of the orthogonal players),

5. gi(y, ω) = uG
i (y, x−i, ω) is a continuous function of y for every fixed x−i ∈

X−i and ∀ω ∈ Ω (gi is a surely continuous function),

6. there exists a Nash equilibrium of H such that x∗
H = x∗

G⊗P (P is an optimal
strategy profile of uknown players).

Then there exists α ∈ (0, 1]IG confidence levels such that x∗
G is a α-Nash equi-

librium of G.

Proof. By variant of lemma 4 for games with random payoff, game G has a Nash
equilibrium, if and only if Ĝ has a Nash equilibrium, where uĜ

i := uG
i + Ki. Such

Ĝ satisfies the assumptions of theorem 9 and therefore there exists α ∈ (0, 1]I
such that x∗

G is a α-Nash equilibrium of Ĝ.

With this we will now show that all of the assumptions of Theorem 9 are
satisfied in the case when we consider a finite game with finite number of realiza-
tions. To do this we have to show that for every such game with random payoff
there exists a game with unknown players with P being the optimal strategy of
the unknown players. To show this we first need to prove following lemma.

Lemma 10. Let Pi be a finite set of pure strategies, then ∀x ∈ Xi mixed strate-
gies, there exists a game G, such that x is a unique Nash equilibrium strategy of
G for the player i.

Proof. We will show that there exists a matrix game such that x is a unique
Nash equilibrium strategy of such a game for the first player. Let |Pi| = n ∈ N
this means that x ∈ Xi may be represented as a vector x = (x1, . . . , xn)T ≥ 0T

such that ∑︁n
k=1 xk = 1. Denote J = {k; xk = 0} and define

B = (bkl)n,n
k=1,l=1,

where

bkl =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, if k ̸= l and k /∈ J,
−
∑︁

m ̸=k
xm

xk
, if k = l and k /∈ J,

0, if k ̸= l and k ∈ J,

−1, if k = l and k ∈ J.

Now let us consider a matrix game with payoff matrix A = BT , so that both
players have n pure strategies. It is a common result that in such a game Nash
equilibrium exists and it is equal to solving the minimax problem (see for example
[10])

max
x̂∈X

min
y∈Y

x̂T Ay,

which is equivalent for the first player to solve
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max
x̂∈X,v∈R

v, (2.9)

s.t. AT x̂ ≥ v1.

Now we will show that our x is a unique optimal solution of (2.9). First notice
that condition AT x̂ ≥ v1 is equivalent with min(AT x̂) ≥ v. Further note that
AT x = Bx = 0 because

(Bx)k =
⎧⎨⎩ −xk = 0, if k ∈ J,

−∑︁
m ̸=k xm +∑︁

m ̸=k xm = 0, if k /∈ J.

and so (xT , 0)T is feasible for (2.9). For the optimality we will show that, ∀x̂ ∈
X, x̂ ̸= x : min(Bx̂) < 0. Let x̂ ̸= x then there exists k ∈ {1, . . . , n} such that
x̂k > xk and so

(Bx̂)k =
⎧⎨⎩ − x̂k

xk

∑︁
m̸=k xm +∑︁

m ̸=k x̂m < 0, if k /∈ J,

−x̂k < 0, if k ∈ J.

where the first case is given by the fact that x̂k

xk
> 1 and ∑︁m ̸=k xm >

∑︁
m ̸=k x̂m and

the second case is given by x̂k > 0. Therefore min(Bx̂) < 0 and so x is optimal
for (2.9) and so it is a unique Nash equilibrium strategy for the first player.

Using the previous lemma we can now weaken the existence criteria to th
following form of a Corollary of the Theorem 9.
Corollary. Let G be a game with random payoff on a probability space (Ω, A,P),
where Ω is a finite set. If ∀i ∈ IG, ∀ω ∈ Ω : u

G(ω)
i is continuous and bounded

and the set of pure strategy profiles of G is finite, then there exists non-trivial
confidence levels α ∈ (0, 1]IG such that α-NE(G) ̸= ∅.

Proof. For the proof of this claim we will show that there exists a game H in
which P = ∑︁

ω∈Ω aωδω, where ∑︁ω∈Ω aω = 1, aω ≥ 0 is an optimal strategy profile
of unknown players. Without a loss of generality assume that Ω = {1, . . . , n}
for some n ∈ N. Define the set of pure strategies of H as PH = PG × Ω and let
IH = IG ∪ {0, −1}, where 0 and −1 are the unknown players of G.

Denote a = (a1, . . . , an)T ∈ Rn the vector of probabilities of each realization
of ω and take uH

0 (xG, â, b) = âT Ab, uH
−1(xG, â, b) = −âT Ab, where A defines a

matrix game from the proof of the Lemma 10 in which a is a Nash equilibrium
strategy. H is a finite deterministic game in mixed strategies, therefore there
exists a Nash equilibrium x∗

G ⊗ P ∗ ⊗ Q∗ ∈ XG × D(Ω) × D(Ω). Now suppose
that P ∗ = ∑︁

ω∈Ω pωδω ̸= P, then p = (p1, . . . , pn)T ̸= (a1, . . . , an)T = a and so
uH

0 (x∗
G, P ∗, Q∗) = pT Aq < aT Aq = uH

0 (x∗
G,P, Q∗), where Q∗ = ∑︁

ω∈Ω qωδω. This
is a contradiction with the Nash equilibrium property. Therefore P ∗ = P. We
have constructed a game H which satisfies the assumptions of the Theorem 9,
therefore ∃α ∈ (0, 1]IG such that x∗

G ∈ α-NE(G).
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In this proof we have also shown a way how to approach finding of such a
equilibrium point in the case of games with random payoff with finite scenarios,
where the probability of all scenarios is known. In this case we want to find the
Nash equilibrium of H as defined above.

Based on the previous results and theorems, we are able to prove following
theorem, which is stochastic equivalent of John Forbes Nash, Jr.’s theorem on
deterministic games.

Theorem 11 (Fundamental theorem of stochastic game theory). Let G be a finite
non-cooperative game with random payoff on a probability space (Ω, A,P), where
Ω is a finite set. Then there exists a non-trivial confidence levels α ∈ (0, 1]IG

such that α-NE(G) ̸= ∅.

Proof. To prove this theorem we will show that every payoff function in such a
game is continuous. We have seen in the Section 3 of this chapter, that in a case
of a finite game, mixed strategies, may be represented as a closed convex hull of
standard basis vectors of a finite vector space over the real numbers. Therefore,
they form a compact metric space. From which we get that continuous functions
are bounded on the set of mixed strategies. Now let P be the set of pure strategy
profiles of G and ûG

i (p, ω) denote the payoff of player i ∈ IG given the pure
strategy profile p ∈ P in the scenario ω ∈ Ω, then for a x ∈ X mixed strategy
we have that

uG
i (x, ω) =

∑︂
p∈P

x(p)ûG
i (p, ω)

and so let {xn}n∈N ⊂ X be an arbitrary sequence convergent to x ∈ X then
for ω ∈ Ω we have

lim
n→∞

uG
i (xn, ω) = lim

n→∞

∑︂
p∈P

xn(p)ûG
i (p, ω) =

∑︂
p∈P

lim
n→∞

xn(p)ûG
i (p, ω) =

=
∑︂
p∈P

x(p)ûG
i (p, ω) = uG

i (x, ω).

Therefore, an arbitrary payoff function is surely continuous in mixed strategies,
which implies that it is surely bounded on the set of mixed strategies and so the
assumptions of Theorem 9 are satisfied and therefore there exists α ∈ (0, 1]IG

such that α-NE(G) ̸= ∅.

Definition 18. We will call a game G with random payoff on a finite probability
space with finite number of pure strategy profiles a finite game with random payoff.
We will denote C(G) = {α ∈ [0, 1]IG : α-NE(G) ̸= ∅} the set of confidence levels
for which G is a Nash-solvable game.

We have shown that in a finite game with random payoff C(G) = [0, λ] :=
[0, λ1]×· · ·× [0, λ|IG|] for some 1 ≥ λ > 0. This motivates us to define the highest
possible confidence level for G and the most probable Nash equilibrium of the
game.
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Definition 19. Let G be a game with random payoff and let λ = sup C(G) be
the highest confidence levels for which G is a Nash-solvable game, we will shortly
write NE(G) := λ-NE(G) and call its elements the most probable Nash-equilibria
of G.

Now the question is how to find the highest confidence levels on which the fi-
nite game with random payoff is Nash-solvable? In our proof of the Fundamental
theorem of stochastic game theory we have shown how to find a game with un-
known players for which a Nash equilibrium exists. From this we may construct
a Nash equilibrium on some α levels of confidence. This means we have a way
how to find a lower estimate for the highest confidence levels of a game.

Definition 20. Let G be a game with random payoff and let λ denote the highest
confidence levels on which G is a Nash-solvable game. If ∀i ∈ IG : λi > 0.5 we
call G a predictable game. Games with random payoff that are not predictable,
we will call unpredictable games.

In this section we discussed the case when every player uses the same confi-
dence level αi for each mixed strategy x ∈ Xi. More generally we could consider
a separate confidence level for each mixed strategy. That is we would consider
αi(x) the confidence level to be a function of the mixed strategy. In such a case,
however, most of the results we have shown in this section may not be possible
to be proven.

Now let us also consider the case for best response strategy sets defined using
joint probabilistic constrains.

Definition 21. Let G be a game with random payoff and αi ∈ [0, 1]. We define
the set of best response strategies on a confidence level of αi for the player i, given
strategy profile of other players x−i ∈ X−i as

Bαi
i = {xi ∈ Xi;P(∀y ∈ Xi : ui(xi, x−i) ≥ ui(y, x−i)) ≥ αi}

Now the condition for best response strategies changes to joint probability of
the strategy to be the best response. This probability is given by the intersection
of all mixed strategies. But we can weaken it to the intersection of pure strategies.

Lemma 12. Let Pi be countable set of pure strategies and Xi be the corresponding
set of mixed strategies. Then

P(∀y ∈ Xi : ui(xi, x−i) ≥ ui(y, x−i)) = P(∀p ∈ Pi : ui(xi, x−i) ≥ ui(p, x−i)).

Proof. Denote A = {ω ∈ Ω; ∀y ∈ Xi : ui(xi, x−i) ≥ ui(y, x−i)} and B = {ω ∈
Ω; ∀p ∈ Pi : ui(xi, x−i) ≥ ui(p, x−i)}. Clearly, A ⊆ B, because ∀p ∈ Pi : δp ∈ Xi.
Let ω ∈ B so that ∀p ∈ Pi : ui(xi, x−i, ω) ≥ ui(p, x−i, ω). Take y ∈ Xi then

ui(y, x−i, ω) =
∫︂

ui(p, x−i, ω)dy(p) ≤
∫︂

ui(xi, x−i, ω)dy(p) = ui(xi, x−i, ω).

Therefore, u(y, x−i, ω) ≤ ui(xi, x−i, ω) and so ω ∈ A. From which we have A = B
and consequently P(A) = P(B).

By this lemma we know that to construct a set of best response strategies it is
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sufficient to use only the pure strategies. Which in most cases will be a finite set
instead of potentionally infinite sets of mixed strategies.

We will now proceed to define the Nash equilibrium as in the previous chapter
using the sets of best response strategies.

Definition 22. Let G be a game with random payoff and α = (α1, α2, . . . ) ∈
[0, 1]IG. If ∀i ∈ IG : xi ∈ Bαi

i (x−i), we say that x ∈ X is a Nash equilibrium of G
on confidence levels α or that it is a α-Nash equilibrium of G. We denote the set
of α-Nash equilibria as α-NE(G). Vector α is called the confidence level vector.

Convexity of those sets is similiarly as in the case of individual constrains
derived by the methods of stochastic programming.

Lemma 13. Let Pi be a finite set and ∀p ∈ Pi : ui(xi, x−i, ω) − ui(p, x−i, ω) =
fi(xi, p) − g(ω), where fi is a concave function of xi and g(ω) has a log-concave
distribution, then Bα

i (x−i) is convex ∀α ∈ [0, 1].

Proof. Just realize that Bα
i (x−i) = {xi ∈ Xi;P(∀p ∈ Pi : fi(xi, p) ≥ g(ω)) ≥ α}.

For the proof of convexity of such sets with joint probabilistic constrains we refer
to [2].

Lemma 14. Let G be a game with random payoff. Then:

1. ∀i ∈ IG : ∀x−i ∈ X−i : Bαi
i is non-increasing in αi. That is ∀αi ≥ βi :

Bαi
i (x−i) ⊆ Bβi

i (x−i).

2. α-NE(G) is non-increasing in α. That is ∀α ≥ β we have that α-
NE(G) ⊆ β-NE(G).

Proof. 1. Let αi ≥ βi, x−i ∈ X−i and xi ∈ Bαi
i (x−i) then we have that

P(∀y ∈ Xi : ui(xi, x−i) ≥ ui(y, x−i)) ≥ αi ≥ βi and so xi ∈ Bβi
i (x−i).

2. Let α ≥ β and x ∈ α-NE(G) then ∀i ∈ IG : xi ∈ Bαi
i (x−i) and by the first

part of this proof we have that xi ∈ Bβi
i (x−i), therefore ∀i ∈ IG : xi ∈ Bβi

i (x−i)
and so x ∈ β-NE(G).

Similiarly to the previous subsection we have that B0
i (x−i) = Xi and 0-

NE(G) = X and by this lemma, if B1
i (x−i) ̸= ∅ then Bα

i (x−i) ̸= ∅, ∀α ∈ (0, 1)
and as a consequence, if 1-NE(G) ̸= ∅ then α-NE(G) ̸= ∅, ∀α ∈ (0, 1)IG . So
far there are no results for existence of Nash equilibrium with joint probabilistic
constrains in general games with random payoff. There are only some results for
the zero-sum games of two players.

Definition 23. Let (Ω, A,P) be a probability space. We say that a family of
events {An}n∈N ⊂ A satisfies the condition of positivity, if ∀n ∈ N : P(An) >
0 ⇒ P(⋂︁n∈N An) > 0.

Theorem 15. Let G be a finite game with random payoff and ∀i ∈ IG let Ap(x) =
{ω ∈ Ω; ui(xi, x−i, ω) ≥ ui(p, x−i, ω)} satisfy the condition of positivity ∀x ∈ X
given, then there exists α ∈ (0, 1]IG, such that α-NE(G) ̸= ∅.
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Proof. Let G be a finite game with random payoff. By the Theorem 11 there
exists an β ∈ (0, 1]IG such that β-NE(G) with individual constrains is not empty.
This means that there exists x ∈ X such that ∀i ∈ IG : xi ∈ Bβi

i (x−i) with indi-
vidual constrains for some βi > 0 and so ∀p ∈ Pi : P(ui(xi, x−i) ≥ ui(p, x−i)) ≥
βi > 0. Since Ap(x) satisfy the condition of positivity it holds that

P(∀p ∈ Pi : ui(xi, x−i) ≥ ui(p, x−i)) ≥ αi > 0.

Therefore xi ∈ Bαi
i (x−i) with joint constraints, from which x ∈ α-NE(G) with

joint constraints.

Now the question is when Ap(x) satisfy the condition of positivity? Clearly
when ∀p ∈ P : ui(p, ω) are independent random variables, then also Ap(x) are
indenpendent random events. In such a trivial case the joint and individual
probabilistic constrains are equivalent.

2.6.2 Deterministic equivalent games
Different approach to optimality was published in [14]. In this model players want
to play a so-called deterministic equivalent game on a α levels of confidenece.
Definition 24 (Deterministic equivalent game). Let G be a game with random
payoff and let α be a confidence level vector. We define vαi

i : X → R as vαi
i (x) =

sup{δ;P(ui(x) ≥ δ) ≥ αi} and say that Γα = (I, X, {vαi
i }i∈I) is a deterministic

equivalent of G on a confidence levels α.
Theorem 16 ([14]). Let G be a game with random payoff in mixed strategies with
finite set of players. Denote ûi the payoff function of player i in a corresponding
game in pure strategies. If P =×i∈I

Pi is a finite set of pure strategy profiles and
∀i ∈ I vector (uî(p))p∈P has an elliptically symmetric distribution with location
parameter (µi(p))p∈P and possitivelly definite scale matrix Σi, then there exists a
Nash equilibrium of the deterministic equivalent of G for all α ∈ (0.5, 1]|I|.

Proof. For the proof of this theorem we refer to [14].

Family of elliptically symmetric distributions is quite large and contains for
example multivariate Normal distribution, multivariate Cauchy distribution, mul-
tivariate Student’s t-distribution or logistic distribution.

However, problem with deterministic equivalent games is that even, if G is a
game with random payoff and finite number of pure strategies the corresponding
deterministic equivalent game Γα on a confidence levels α generally is a game
with infinite number of pure strategies and therefore we do not know whether it
has a Nash equilibrium. This means that after transition from the game with
random payoff to its deterministic equivalent form we lose the von Neuman -
Morgenstern property that the mixed strategy payoff is given as a expected payoff
from pure strategies given the distribution of the mixed strategy. With the fact,
that quantiles of distribution are generally hard to express and the resulting
payoff function is not convex it makes it hard to prove the existence of an optimal
solution in this model.
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2.6.3 Generalizing the minimax program
We have seen that one possible approach to optimality in the case of determin-
istic games is by considering the minimax problem where players want to defend
themselves against the worst possible case scenario. In this model the player i ∈ I
wants to solve program

max
xi∈Xi

min
x−i∈X−i

ui(xi, x−i). (2.10)

We have two possible options how to rewrite this program for the stochastic
case. First is to let player i ∈ I choose a confidence level αi ∈ (0, 1) and let them
defend against the worst outcome of the game on this confidence level. That is

max
xi∈Xi,δ∈R

δ (2.11)

s.t. P[ min
x−i∈X−i

ui(xi, x−i) ≥ δ] ≥ αi.

We will refer to this approach the worst payoff method.
Second possible approach is by maximizing the minimal payoff subject to the

minimal probability of it happening being at least αi. This corresponds to a
program

max
xi∈Xi,δ∈R

δ (2.12)

s.t. min
x−i∈X−i

P[ui(xi, x−i) ≥ δ] ≥ αi.

We will refer to this approach as the least likely payoff method.
Since we have no definite proof of the existence of α-Nash equilibria in general

case game, it is better suited for us to consider these programs as our optimality
criteria for the further work. Those generalizations were originally considered for
the case of a matrix games with random payoff in [5], [4],[3] and [6].

2.7 Stochastic dominance in games with ran-
dom payoff

In previous sections we have seen an approach to finding optimal solutions of the
game with random payoff based on stochastic programs, hereby we distinguished
two models based on the common type of a stochastic program they relate to.
We have seen that our assumptions may be further generelized, especially in the
case of the model with individual constrains. Now let us take a look on a different
approach to finding equilibria of the game. In Subection 2.5 of this chapter we
have seen a notion of dominance for deterministic games. In the context of games
with random payoff it is natural to generelize this idea using methods of stochastic
dominance, which serves to compare two different probability distributions. Let
us briefly discuss this idea.
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Definition 25 (Stochastic dominance). Let G be a set of (utility) functions. We
say that the distribution X weakly stochasticaly dominates distribution Y with
respect to the generator G, if E f(X) ≥ E f(Y ), ∀f ∈ G, we will write X ⪰G Y .
We say that the distribution X strictly stochasticaly dominates distribution Y with
respect to the generator G, if X ⪰G Y and ∃f ∈ G : E f(X) > E f(Y ), we will
write X ≻G Y .

This basic concept of stochastic dominance is based on the utility theory
under uncertainty, where we want to compare two random possibilities based on
some class of utility functions. This is so usefull in practice because it is generaly
hard to specify a utility function of a person, however we can quite easily find a
sufficient class of utility functions in which at least approximatelly lies the utility
function of our agent. The most commonly used is the N -th order stochastic
dominance or NSD. This class dominance is generated by following class of
utility functions.

Definition 26. We define the set of N-order utility functions as UN = {f : R →
R; (−1)n−1f ′ ≥ 0, n = 1, . . . , N}.

Definition 27 (NSD). We say that the random variable X weakly stochastically
dominates Y under NSD, if E f(X) ≥ E f(Y ), ∀f ∈ UN . We write X ⪰NSD Y .
We say that X strictly dominates Y under NSD, if X ⪰NSD Y and ∃f ∈ UN :
E f(X) > E f(Y ). We will write X ≻NSD Y .

Since ∀K ≥ N, UK ⊆ UN it clearly follows that

X ⪰NSD Y =⇒ X ⪰KSD Y.

The most common is to use first or second order stochastic dominance, which
have following properties.

Theorem 17 (1SD characterization). Let X and Y be real random variables.
The following statements are equivalent:

1. X ⪰1SD Y ,

2. FX(x) ≤ FY (x), ∀x ∈ R,

3. F −1
X (α) ≥ F −1

Y (α), ∀α ∈ [0, 1].

Similiarly for the strict stochastic dominance following statements are equivalent:

1. X ≻1SD Y ,

2. FX(x) ≤ FY (x), ∀x ∈ R and ∃x0 ∈ R : FX(x0) < FY (x0),

3. F −1
X (α) ≥ F −1

Y (α), ∀α ∈ [0, 1] and ∃α0 ∈ [0, 1] : F −1
X (α0) > F −1

Y (α0).

Where FX and F −1
X denote the cummulative distribution function and quantile

function of X respectively.
If we further define the integrated cummulative distribution function and in-

tegrated quantile function as
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F
(2)
X (x) =

∫︂ x

−∞
FX(t)dt, x ∈ R,

F
(−2)
X (α) =

∫︂ α

0
F −1

X (θ)dθ, α ∈ [0, 1],

we may obtain similiar results for the second order stochastic dominance.

Theorem 18 (2SD characterization). Let X and Y be real random variables.
The following statements are equivalent:

1. X ⪰2SD Y ,

2. F
(2)
X (x) ≤ F

(2)
Y (x), ∀x ∈ R,

3. F
(−2)
X (α) ≥ F

(−2)
Y (α), ∀α ∈ [0, 1].

Similarly for the strict stochastic dominance following statements are equiva-
lent:

1. X ≻2SD Y ,

2. F
(2)
X (x) ≤ F

(2)
Y (x), ∀x ∈ R and ∃x0 ∈ R : F

(2)
X (x0) < F

(2)
Y (x0),

3. F
(−2)
X (α) ≥ F

(−2)
Y (α), ∀α ∈ [0, 1] and ∃α0 ∈ [0, 1] : F

(−2)
X (α0) > F

(−2)
Y (α0).

In the context of game with random payoff we may use the stochastic dominace
to compare two strategy profiles as follows.

Definition 28. Let x, y ∈ X be strategy profiles. We say that x weakly dominates
y under NSD, if

∀i ∈ I : ui(x) ⪰NSD ui(y).
We say that x strictly dominates y under NSD, if

∀i ∈ I : ui(x) ≻NSD ui(y).

As the strategy profiles determine the distribution of the payoff function we
will for simplicity write that x ⪰NSD y or x ≻NSD y and mean that x weakly
dominates y under NSD or x strictly dominates y under NSD respectivelly.

Definition 29. Let x ∈ X if ∄y ∈ X such that y ≻NSD x, we say that strategy
profile x is NSD efficient. Let us denote the set of NSD efficient strategy profiles
of the game with random payoff G as

EFNSD(G) = {x ∈ X; x is NSD efficient}.

By this we may then restrict ourselves on the set of NSD efficient strategy
profiles. However, there are to the best of our knowlege no results on properties
of these strategy sets.
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3. Sequential games
In this chapter we will take a look on deterministic sequential games in more
details. In the second chapter of this thesis we mostly focused on games in
’normal’ or ’strategic’ form. This means that for games with multiple stages we
considered a pure strategy of the player to be a combination of possible actions
in every stage of the game. To ilustrate this lets consider a repeated game G
with 3 stages. Let player i ∈ I have at each stage two possible actions At =
{A, B}, t = 1, 2, 3 then in the normal form of game G the set of pure strategies is
in the form Pi = {a1 × a2 × a3; a1 ∈ A1, a2 ∈ A2, a3 ∈ A3}. Now we will also take
a look on an extensive form of the game, which is given by an oriented game tree
TG = (VG, EG), where each vertex v ∈ VG defines a stage of the game. Based on
the actions played in the corresponding stage game moves to the following vertex
of the game tree. This form of the game is more suitable for study of a case when
players are able to play their strategies in current stage based on the outcome of
the previous stage of the game.

Let us formalize this idea in a following definitions. First we will define several
graph theory terms that we will use in this chapter. For this we use definitions
based on [12].

Definition 30 ([12]). Let V be the set of verticies and E ⊆
(︂

V
2

)︂
(the set of 2

element subsets of the set of verticies) be the set of edges. The touple G = (V, E)
is called an undirected graph. If E ⊆ {(u, v); u, v ∈ V } (the set of touples of
verticies), we call G = (V, E) a directed graph. Directed graph with the property
that if (u, v) ∈ E then (v, u) /∈ E is called an oriented graph.

Definition 31 ([12]). Let G be a graph we will define function d : V → N such
that d(v) = |{e ∈ E; v ∈ e}| and call it a degree of the vertex.

In more general for directed graphs there are considered two types of degrees
of a vertex. There is an outcoming and incoming degree of the vertex, where
the outcoming degree is defined as number of edges starting in the vertex and
incoming is defined as number of edges ending in the vertex. However, for the
purposes of our thesis we will consider only the total number of edges that either
start or end in the vertex as the vertex’s degree.

Definition 32 ([12]). Sequence of verticies {vn}K
n=1 such that (vj, vj+1) ∈ E, j =

1, . . . , K − 1 is called a path in the graph G. Verticies u, v ∈ V are connected via
path from u to v, if there exists a path {vn}K

n=1 such that v1 = u and vK = v, we
will denote this u → v.

Definition 33 ([12]). Let G be a graph, if ∀u, v ∈ V there exists a path from u
to v or v to u, G is called a connected graph.

Definition 34 ([12]). Connected graph T = (V, E) in which for any two verticies
u and v there exists at most single path from u to v is called a tree. If T is an
oriented graph, we call it an oriented tree and vertex u ∈ V such that ∀v ∈ V
there exists a path from u to v is called a root of the tree T . We define L = {v ∈
V ; d(v) = 1} and call it the set of leafs of the tree T . Elements of L are called
leafs of the tree.
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Definition 35 ([12]). Let T (v) = (V (v), E(v)) be a oriented tree with root in v
and let u be an arbitrary vertex in T . We define T (u) = (V (u), E(u)) such that
V (u) = {x ∈ V (v); u → x} and E(u) = E(v) ∩ {(u, v); u, v ∈ V (v)} and call it a
subtree (or a branch) of tree T (v) starting at u.
Definition 36 ([11]). Let I be a set of players, T (v0) = (V (v0), E(v0)) be a
directed tree with the root v0. Let ∀v ∈ V (v0) : Gv = (I, {Xv

i }i∈I , {uv
i }i∈I) be

a game and sv : Xv → V (v0) be an associated successor function, that fullfills
for a subtree T (v) with the root in the vertix v, ∀x ∈ Xv : sv(x) ∈ V (v) and
(v, sv(x)) ∈ E(v). Then the triple Γ = (T (v0), {Gv}v∈V (v0), {sv}v∈V (v0)) is called
a game in the extensive form.

Further, notice that, if we consider only some branch of the game tree as
defined above it is once again a game in the extensive form. This motivates us
to define a subgame of a extensive form game.
Definition 37 ([11]). Let Γ be a game in the extensive form and let u be a stage
of Γ. Extensive form game defined as Γ(v) = (T (v), {Gu}u∈V (v), {su}u∈V (v)) is
called a subgame of Γ starting at stage v.

For repeated games this tree is a linear with trivial successor function. If
the number of repeatings of such a game is some finite T ∈ N then it may be
simplified to a form V = {1, . . . , T} and E = {(n, n + 1) ∈ N × N; n + 1 ≤ T}
with

∀x ∈ X : st(x) =
⎧⎨⎩ t + 1, if t < T ,

END, if t = T .

In a case when T = ∞, then ∀t ∈ V : st(x) = t + 1. Whatsmore, we can think
of two cases of representation of the payoff in cases when the number of stages
is finite. Either it may occur at each stage of the game as it is assumed by our
definition or it may be allocated at the leaf of the game tree. In the later case we
will just consider all previous stage’s payoff functions as trivial 0. Another com-
monly used representation in practice is that players can only strategize during
some stages and take turns when they can influence the outcome. That is in ev-
ery stage exactly one player may influence the payoff and the successor function.
This is also a special case of our definition, when we will consider stages in which
each player makes a move and let both the payoff and successor functions to be
constant with respect to the given player’s strategy outside of those stages. We
decided to use our more general definition so that we have a more easily inter-
pretable form of the game in a case when there are actuall payoffs allocated for
each player in each stage and as it is more straigt-forward to generalize the case
of a game with finite time into a game with infinite time.
Definition 38. Lenght of a path from the root of the game tree to a given stage
v ∈ V is called a time of the stage. If time of all stages of the game is finite, we
call it a game with finite number of stages or finite time. If game is not a game
with finite time, we call it a game with infinite time or infinite number of stages.

3.1 Games with finite number of stages
Let us first discuss the case when the set of stages V is finite. This means that
every stage has a finite time. This game may be easily transformed into its
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strategic form. In this form consequently every player has a finite number of
pure strategies and therefore by the Fundamental theorem of game theory there
exists a mixed strategy Nash equilibrium of such a game.

We will start by showing how to transform an extensive form game into its
strategic form and how to interpret mixed strategies from the strategic form of
the game in the sense of extensive form.

Definition 39. Let Γ be a game in the extensive form. Let Pi(v) denote the set of
pure strategies of the player i in the stage v and its elements as pv

i and similiarly
P (v) = ∏︁

i∈I Pi(v) the set of pure strategy profiles in the stage v and its elements
as pv. We define a transformation S from the extensive form into the strategic
form of the game as follows:

• The set of players I of the game S(Γ) is defined as the set of players of any
stage v of Γ.

• Let L be the set of leafs of the game tree T .For ∀l ∈ L denote p(l) =
(v0, v1, . . . , vK , l) the path from the root v0 of T to l and consider s−1

u (v) =
{p ∈ P (u); su(p) = v}. Now we may consider the set of pure strategy
profiles generating outcome l ∈ L as P l = s−1

v0 (v1) × s−1
v1 (v2) × · · · × s−1

vK
(l).

We define the pure strategy of the player i in S(Γ) as the unique sequence
of the i-th coordinate of elements of P l for some l ∈ L and Pi the set of
such sequences is called the set of pure strategies of the player i in S(Γ).
The set of pure strategy profiles of S(Γ) is defined as P = ⋃︁

l∈L P l.

• ui the payoff function of the player i in the game S(Γ) is defined as ui(p) =∑︁
v∈p(l) uv

i (pv) for a p ∈ P l.

To obtain an equivalent of the Definition 5 with this transformation into
strategic form, we require for all the paths in the extensive form game to have
the same lenghts of some T ∈ N. This is done by considering the maximum
length of all paths in the game tree and defining trivial (idle) stages along the
shorter paths. This formally means that we select T = maxl∈L |p(l)| and for
l ∈ L such that Tl = |p(l)| < T define new stages lt, t = 1, . . . , T − Tl with X lt =
{I}, t = 1, . . . , T −Tl, ult

i (I) = 0 and the successor function ∀x ∈ X l : sl(x) = l1,
slt(I) = lt+1, t = 1, . . . , T − Tl − 1. By I we denote the single idle (or trivial)
strategy profile, which formally has no effect on the game’s outcome.

It is easy to see that if T is a finite tree then also L is a finite set and if in
every stage the set of pure strategy profiles is finite then consequently the set of
pure strategy profiles of the transformed game S(Γ) must be also finite, therefore
it is a finite game in the strategic form as was considered in the Chapter 1 of this
thesis and from the Fundamental theorem of game theory (Theorem 2), there
exists a Nash equilibrium of such a game.

Interpretation of mixed strategies of the strategic form of the game in the sense
of the extensive form is that they measure probability of choosing a given path
in such a game. This is a viable approach to strategizing in the sense of games
with perfect information. That is in games when all players know exact possible
strategies of all the other players and their respective outcomes and consider all
of them to be perfectly rational and strategize accordingly.

As we mentioned before, in many applications of finite games in the extensive
form it is considered for the payoff of each player in every non-leaf stage to be
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trivial 0 and in the leaf that there is only a single possible outcome, which defines
the overall payoff for the player and so the players are trying to control the
successor function in such a way the game will end up in the leaf that is most
profitable for them. This idea was considered by John von Neuman for the case
of two players, where he considered a game where the only possible outcomes of
the game are O = {Player 1 wins, Draw, Player 2 wins}. In our representation
it would correspond to stating that our game in extensive form Γ has ∀i ∈ I =
{1, 2}, ∀v /∈ L, ∀x ∈ Xv : uv

i (x) = 0 and ∀i ∈ I, ∀l ∈ L : X l = {I}, ul
i(I) ∈

{−1, 0, 1} and that S(Γ) the game in its strategic form is a zero-sum game. Here
we assume that the payoff from the game is given at the leafs of the game tree
and that the leaf is a trivial game where there is outcome always given by the
results of the previous stages. So players want to optimize their path allong the
game tree to end in a leaf with highest possible payoff. In such a game we will call
a pure strategy p1 ∈ P1 that yields u1(p1, p2) = 1, ∀p2 ∈ P2 a winning strategy of
the Player 1. Pure strategy p1 ∈ P1 that yields u1(p1, p2) ≥ 0, ∀p2 ∈ P2 will be
called a strategy guarateeing at least draw. Similiarly for the Player 2. In such a
case, von Neumann managed to prove a following theorem.

Theorem 19 (Theorem 3.13, [11]). In every two-player game with the perfect
information where the set of outcomes is defined as above, one and only one of
the following alternatives holds:

1. Player 1 has a winning strategy.

2. Player 2 has a winning strategy.

3. Each of the two players has a strategy guaranteeing at least a draw.

3.2 Games with infinite number of stages
The theory for games with infinite time is somewhat different from the theory of
games with finite time. One important distinction comes from the type of players
that may be involved in a game with infinite time.

Definition 40. Let Γ be a game in extensive form with infinite time. Player
i ∈ I is called a finite player, if for every path {vt}∞

t=1 in the game tree and any
x ∈ ∏︁∞

t=1 Xvt : ∑︁∞
t=1 |uvt

i (xvt)| < ∞. Player that is not finite is called an infinite
player.

The main difference between behaviour of finite and infinite players is given
by the fact that for finite players there exists a time T < ∞ such that they can
gain (or lose) at most some arbitrary small ε > 0 after T . This means that for
such players it is satisfactory to strategize only until the time T based on their
sensitivity to optimality. That is in the case of a finite player with some ε > 0
sensitivity to the payoff, they want to find T < ∞ such that their payoff will differ
by at most ε after T and solve the corresponding T -stage game. On the other
hand infinite players may opt to lose any finite payoff as long as they are able to
get higher payoffs in the future. Interesting game dynamics occurs in a situation
when a finite player faces infinite player. In such a game a viable strategy for
the infinite player is to bankrupt the finite player by deliberatelly decreasing
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their own payoff for some finite time in return for the game continuing in a path
where the finite player may not control further evolution of the game (they are
bankrupt). Example of such a behaviour may be seen, if a new company tries
to enter an unregulated market where there exists a monopoly. The monopoly
may deliberately decrease the price of goods in the market such that it is not
profitable to produce them until the smaller company bankrupts.

Therefore, for a finite player it is important to know whether they play against
finite or infinite players and strategize acordingly.

Games with infinite number of stages may be similiarly as the games with
finite number of stages represented in their strategic form. Now however the
definition of a viable transformation is a little bit more tricky, as we can no
longer identify all the possible paths in a infinite tree with leafs of the tree. Now
instead we would consider a set of all the possible paths from the root of the
tree and as a pure strategy of the player in the strategic form of the game we
would consider a unique sequence of pure strategies in each stage of the game
corresponding to this path.

This representation of game would however result in a game which is not
finite, therefore there are no general results on existence of a Nash equilibrium in
such a game.

3.3 Games with imperfect information
So far we have discussed the case when all the players knew exactly what stage
they are in. However in most of the real world scenarios this is not true. In fact,
it is more common for the players to know only that they are in certain class of
stages. In this class player knows what are the actions he can take, but has no
knowledge of what will be the successor vertex uppon playing them. So that the
player recognizes that he is in some information set, but has no prior knowledge
in which exact stage. For example the player may know that in certain stages
he can influence the outcome, but does not know where exactly in the game tree
those stages are located, e.g. he does not know how many stages are there.

Let us formalize this idea in the following definition.

Definition 41 ([11]). Let Γ be a game in the extensive form a subset Ui of V is
called the information set of the player i, if ∀v, u ∈ Ui : Xv

i = Xu
i and uv

i = uu
i .

Partition (Uk
i )Ki

k=1 of the set V , where each Uk
i is an information set is called the

player i’s information about the Γ. Player i is called a player with the perfect
information, if each of his information sets contains only a single vertex. Γ is
called a game with the perfect information, if every player in Γ is a player with
the perfect information. If Γ is not a game with perfect information we call it a
game with imperfect information.

3.3.1 Behavior strategies
So far we considered strategies as of Definition 6 and 8, those in the extensive form
of the game correspond to paths and probability distributions over the set of those
paths. In the sense of an extensive form of the game with imperfect information
one may ask what would change for our results, if we would consider more natural
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definition of strategies for the extensive form games with imperfect information,
where we would consider a probability distributions over pure strategies of a
certain information set? Such strategies are called the behavior strategies.

Definition 42 (Definition 6.2., [11]). A behavior strategy of a player in a game
in the extensive form is a function mapping each information set of the game
to a probabillity distribution over the set of pure strategies of that player in that
information set.

To ilustrate this consider a two-stage game of two players I and II. In the
first stage player I has two possible pure strategies A and B and in the second
stage he has two pure strategies C and D. The second player in the first stage
has the single idle strategy I and in the second stage he has pure strategies E
and F . This means that he makes move only in the second stage of the game
and in the first stage he observes the outcome based on the action of the first
player. If in the first stage player I plays strategy A both players get payoff of 0
and the game proceeds to second stage. If the player I plays in the first stage B
the game ends and u1

I(B, I) = 2, u1
II(B, I) = 1. In the second stage of the game

the outcome is given by the following payoff table.

E F
C 3,2 1,1
D 0,2 4,2

In this example the pure strategies of the first player in the strategic form
of the game are PI = {(A, C), (A, D), (B, I)} and of the second player PII =
{(I, E), (I, F )} and so the mixed strategies are given as probability distribu-
tions over those sets. For example mixed strategy xI of the player I is gives
x((A, C)) = 1/4, x((A, D)) = 1/2 and x((B, I)) = 1/4. On the other hand the
behavior strategy maps stage of the game to a given probability distribution over
the pure strategies available in that given stage so for example τI(1)(A) = 1/2,
τI(1)(B) = 1/2, τI(2)(E) = 1/3 and τI(2)(F ) = 2/3 is a behavior strategy of
the first player. From this example we may deduce that in the case when the
information sets are trivially just single verticies of the game tree (it is a game
with perfect information) we may to every behavior strategy find an equivalent
mixed strategy. This idea is formalized in the following discussion.

Definition 43 (Definition 6.3., [11]). A mixed/behavior strategy profile is a vector
of strategies σ = (σi)i∈I where σi is either behavior or mixed strategy of the player
i. Denote the set of all mixed/behavior strategy profiles as Σ. Let ρ(v, σ) denote
the probability that vertex v ∈ V will be visited given mixed/behavior strategy
profile σ.

Definition 44 (Definition 6.5., [11]). A mixed strategy xi and behavior strategy
σi are called equivalent, if ∀v ∈ V, ∀σ−i ∈ Σ−i : ρ(v, xi, σ−i) = ρ(v, σi, σ−i).

Theorem 20 (Theorem 6.6., [11]). If a mixed strategy xi of the player i is equiv-
alent to a behavior strategy bi, then for every mixed/behavior strategy profile of
the other players σ−i and every player j ∈ I it holds,

uj(xi, σ−i) = uj(bi, σ−i)
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where uj denotes the payoff function of the player j in the strategic form of the
game.

This theorem says that, if strategies are equivalent in the sense of the Defini-
tion 44 then they are also equivalent in the allocated payoff. This is something
we would expect to happen as the payoff in the strategic form of the game is
uniquely determined by the payoffs in each stage and the probability of visiting
that stage.

Notice that for a mixed/behavior strategy profile σ and a vertex v ∈ V it
holds that ρ(v, σ) =

∫︁
I(∃u ∈ V : v = su(pu))dσ(p). From which it is simple

to deduce that behavior and mixed strategies are in the context of games with
perfect information equivalent. This is formalized in the following theorem.

Theorem 21 (Theorem 6.11.,[11]). Let Γ be a game in the extensive form that
satisfies that at every vertex there are at least two pure strategies. Every behavior
strategy of player i has an equivalent mixed strategy if and only if each information
set of player i intersects every path from the root of the game tree at most once.

As a consequence of this theorem, in every game with perfect information
the behavior strategies are equivalent to the mixed strategies and therefore the
existence of a Nash equilibrium in such games is equivalent to the existence of a
Nash equilibrium in the strategic form of the game.

Theory of behavior strategies may be further developed to answer the question
when do Nash equilibria in games with imperfect information exist. However in
this thesis we will further consider only games with perfect information. This
result also means that in the case of games with perfect information, there is no
formal difference between players strategizing at the begining of the game for its
whole duration and by strategizing at each stage of the game, a perfectly rational
player with perfect information about the game will always end up with the same
strategy. This may not be the best model for many real-world situations, but due
to its simplicity it is better aplicable in practice.

3.4 Repeated games
Now lets examine an important model for sequential games called a repeated
game. The repeated game is based upon a game in the strategic form, that is
repeated for some finite or infinite number of stages. In this type of game players
have a full knowlege about what happened in past stages and may strategize
according to it. This sometime yield different optimal strategies as in the single
occurence of the base game. We will ilustrate this on the famous example of the
prisoner’s dilema.

Definition 45 ([11]). Let G be a game in the strategic form. The repeated version
of G (or repeated G) is an extensive form game Γ = (T, {Gv}v∈V , {sv}v∈V ), where
V = {1, . . . , N} for some N ∈ N ∪ {∞}, ∀v ∈ V : Gv = G and ∀v ∈ V, v <
N, ∀x ∈ Xv : sv(x) = v + 1.

In repeated games we can think of multiple ways to represent the overall payoff
ui that the player would optimize against, that is his payoff in the strategic form
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of the game. First way is to consider the overall payoff from the game as a sum
of payoffs from each stage of the game, that is

ui =
N∑︂

v=1
uv

i

in the case of a finite number of stages N this will always result in a standard
game with finite players, however in the case when N is infinite every player
whose payoff function is not a trivial 0 would be considered as a infinite player.
This would be problematic, since infinite players would consider any strategy,
that yields infinite payoff as optimal and will not distinguish between them. This
model is suited for the case, if the main problem that players want to solve is how
to survive. To model different situation it is better to consider the contribution
of the payoff in a certain stage to the overall payoff of the player to be dependent
on the time in which it will be gained. The most common way to do this is by
considering a discounting for each player.

Definition 46. A sequence of numbers {βv
i }v∈V is called a discounting of the

player i ∈ I. If discounting of the player i satisfies βv
i ≤ βv+1

i and ∑︁v∈V βv
i < ∞

we call it a consistent discounting. If ui = ∑︁
v∈V βv

i uv
i we call i a player with

discounting or a discounting player.

Disciunting is a measure of how player values future game. Consistent dis-
counting says that he considers later payoff less than the earlier. The idea of
discounting comes from the financial mathematics, where discouned payment
represents current value of future payments. That is, if player may ensure having
return rs,t between time s and the future time t, the value of payoff in time t as
represented in the time s is βs,t

i ut
i = 1

1+rs,t
ut

i. In many applications it is usefull
to think that the return, that the player may ensure without playing the game
between two separate stages remains constant, that is rt,t+1 = r in such a case
the corresponding discounting is given as βt = (β)t = ( 1

1+r
)t.

However in some non-financially related situations it may be hard to know
exactly how players value their future payoffs. It may be uknown for the players
themselves. In those cases we may consider the overall payoff as na average payoff
from each individual stage. That is, if N is finite we would consider

ui = 1
N

N∑︂
v=1

uv
i .

In the case of infinitelly repeated game a natural extension is to consider a
limit of the former expression

ui = lim
N→∞

1
N

N∑︂
v=1

uv
i .

In the case of a finite repeated game it is clear that the overall mixed strategies
are still equivalent with the product of mixed strategies in each occurence of the
game because

ui(x) = E x
1
N

N∑︂
v=1

uv
i = 1

N

N∑︂
v=1

E x uv
i .
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In the case of a infinitelly repeated game we have that

ui(x) = E x lim
N→∞

1
N

N∑︂
v=1

uv
i

Futhermore from the Lebesgue theorem it holds that, if there exists g ∈ L(x)
such that ∀N ∈ N : | 1

N

∑︁N
v=1 uv

i | ≤ g, x − a.s. then

ui(x) = E x lim
N→∞

1
N

N∑︂
v=1

uv
i = lim

N→∞

1
N

N∑︂
v=1

E x uv
i .

The Lebesgue condition in the context of Game theory means that, if the
average payoff until the stage N for all such N is bounded by some dominant
function for every pure strategy profile that is played with non-zero probability
in the mixed strategy profile x, then this strategy profile may be represented as a
product of mixed strategies from each stage of the game. And the corresponding
payoff fullfils the von Neuman - Morgensterns axioms, that it is a linear functional.
This holds true, if the payoff functions of the base game are bounded, which means
that if the base game is finite, then this holds true. In such a case from the proof
of the existence of the Nash Equilibrium, (see [11]) it follows that the payoff
function in such a game is always bounded and continuous in mixed strategies.

Let us first consider the case for repeated games with average payoff. Inter-
esting question is to ask how does an equilibrium of the base game relate to the
equilibria of its repeated version? This is stated in the following theorem.

Theorem 22 (Theorem 13.6, [11]). Let Γ be the repeated version of G with
N < ∞ stages. Let x1, . . . , xN be Nash equilibria of G. Then the strategy profile
x = x1 × · · · × xN is a Nash equilibrium of Γ.

Proof. For the proof of this theorem we refer to [11].

Lets now recall the definition of upper value vU
i of the player i as

vU
i = min

x−i∈X−i

max
xi∈Xi

ui(xi, x−i).

Theorem 23 (Theorem 13.8, [11]). Let x∗ be an equilibrium of the finitelly
repeated version of G. Let vU

i be the upper value of the player i in the base game
G, then ui(x∗) ≥ vU

i , where ui is the average payoff of the player i.

Proof. For the proof we refer to [11].

Definition 47 ([11]). Set V = {u ∈ RI ; ∀i ∈ I : ui ≥ vU
i } is called the set

of individually rational payoffs. Let P be the set of pure strategy profiles in the
strategic form of the game G we define F = conv({u(p); p ∈ P}) the set of
feasible payoffs.

Theorem 24 (The Folk theorem, [11]). The set of equilibrium payoffs (payoffs
that correspond to some Nash equilibrium x∗) in a infinitelly repeated game G
with average payoffs is the set F ∩ V .
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3.4.1 Repeated prisoner’s dilema
So far we have thought about non-cooperative games as games in which players
have no incentive for cooperation. However a better way of understending them
would be to think of them as games in which players have no means of coordi-
nation of their actions. In some cases it is possible for players to coordinate just
trough their self-interest.

Let us examine this idea in the famous example of Prisoner’s dilema. This is
a game of two players with two possible pure strategies ’cooperate’ (denoted C)
or ’defect’ (denoted D) and a following payoff matrix

D C
D a1, a2 c1, b2
C b1, c2 d1, d2

where c1 > d1 > a1 > b1 and c2 > d2 > a2 > b2. In such a game it is apparent
that the most beneficial strategy profile for both players would be to cooperate,
however, if it is a single-stage game the Nash equilibrium of the game is for both
players to defect. Now suppose this same payoff matrix describes the proportional
payoff at each stage of the repeated game with infinite time, where the first player
discounts their payoff by a consistent valuation of future gains α = {αt}∞

t=1 and
the second player by a consistent valuation of future gains β = {βt}∞

t=1. So
that both players are finite. At each time t both players may decide whether
to continue cooperating or to defect. Now each player from the perspective of
strategic form game has infinite number of pure strategies in the form {pt; pt ∈
{C, D}}∞

t=1, this means that the existence of the Nash equilibrium of such game
is not guaranteed by the Fundamental theorem of game theory and computing
the possible Nash equilibrium in such a form is problematic. If we look at the
game in its extensive form, we can much clearly see the dynamics that will follow,
if both players are rational. Both players may observe the strategy of the other
player at each given stage of the game and strategize according to the past. Both
players know, that they have higher payoff, if they both decide to cooperate.

If neither of the players defects at any given time their payoff is given as

u1(x, y) =
∞∑︂

t=1
αtd1

and

u2(x, y) =
∞∑︂

t=1
βtd2.

If we suppose that αt = αt for α ∈ (0, 1) and βt = βt for β ∈ (0, 1) this simlifies
to

u1(x, y) = d1α

1 − α

and

u2(x, y) = d2β

1 − β
.
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If the first player decides to defect from time τ ∈ N, the second player decidedes
to react by always defecting from time τ +1 by this he ensures he will get at least
a2 > b2 at each following round of the game. This will result in payoffs

u1(x, y) = d1α(1 − ατ−1)
1 − α

+ ατ c1 + a1α
τ+1

1 − α

and

u2(x, y) = d2β(1 − βτ−1)
1 − β

+ βτ b2 + a2β
τ+1

1 − β
.

This is only beneficial for the first player only if

d1α(1 − ατ−1)
1 − α

+ ατ c1 + a1α
τ+1

1 − α
>

d1α

1 − α
,

ατ c1 + a1α
τ+1

1 − α
>

d1α
τ

1 − α
.

Which implies that

−ατ+1c1 + a1α
τ+1 > d1α

τ − c1α
τ

(a1 − c1)ατ+1 > (d1 − c1)ατ

α <
d1 − c1

a1 − c1
.

Similiarly, the second player will decide to defect at some time τ only if

β <
d2 − c2

a2 − c2
.

In this example the players decide to defect only if their discounting factor is
smaller than the reward from both cooperating adjusted for the reward from be-
traying the other player proportional to the reward from both defecting adjusted
for the reward from betraying the other player.Strategy, that generates this out-
come is called the Grim trigger strategy. This strategy is based on enforcing the
cooperation by the prospect of ”mutual destruction”. It is however discutable
how aplicable in reality such strategies are? In a sense real-world agents outside
of finance has no real reason to apply the discounting factor way of thinking as
in every iteration of the game they would recalculate the future strategy based
on the current prospect of future payoff and generarly in situations as is foreign
relations it is not so reasonable to assume, that they will for some reason also
account for past benefits of the cooperation. Because for the most part those are
hard to quantify in such a way. For such situation the model without discounting
may be better suited and the question is to compare finite and infinite players
instead of their potential payoffs and future valuations.
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3.5 Subgame perfect, perfect and uniform equi-
libria

In the context of extensive form of a game, authors tried to refine the concept of
Nash equilibrium. In the context of a sequential game it is only natural to assume
that players strategize in each stage only with respect to the possition they are
currently in. As we discussed in the previous section for a perfectly rational player
with perfect information there should be no difference in this perspective, but let
us formalize this idea. For this reason Reinhard Selten in 1965 introduced the
idea of a subgame perfect Nash equilibrium.

Definition 48 ([11]). Let Γ be a game in extensive form. A strategy profile x∗

is called a subgame perfect equilibrium, if for every subgame Γ(v) of Γ is a Nash
equilibrium of Γ(v).

As Γ is a trivial subgame of itself this immidiatelly yields, that x∗ must be a
Nash equilibrium of Γ.

Theorem 25 (Theorem 7.4., [11]). Let Γ be a game in the extensive form without
nontrivial subgames, that is subgames that not end in leafs, then every Nash
equilibrium of Γ is a subgame perfect equilibrium.

Theorem 26 (Theorem 7.5, [11]). Let Γ be an extensive form game and let x∗

be its Nash equilibrium. If ρ(v, x∗) > 0 for some v ∈ V , then x∗ restricted to the
subgame Γ(v) is a Nash equilibrium of Γ(v).

Proof. For the proof of those theorems we refer to [11].

Theorem 27 (Theorem 7.9., [11]). Every finite extensive-form game with perfect
information has a subgame perfect equilibrium in pure strategies.

Another possible refinement of the Nash equilibrium proposed by Selten in
1975 is related to the strategic form representation of the game, however moti-
vation for it came from a extensive form of a game. This concept is based on
the idea that players should consider also the possibility, that the other players
can make mistakes in their strategizing with some small probability and defend
against them. Therefore they may consider a perturbed version of the game where
even dominated strategies may be played with some small probability.

Definition 49 (Definition 7.9., [11]). Let G be a finite game in the strategic
form. A perturbation vector of player i ∈ I is a vector εi = {εi(pi)}pi∈Pi

satisfying
εi(pi) > 0, pi ∈ Pi and ∑︂

pi∈Pi

εi(pi) ≤ 1.

ε = {εi}i∈I is called a perturbation vector, where εi is a perturbation vector of the
player i ∈ I. For a perturbation vector ε we define a ε-perturbed game G(ε) as a
game in constrained strategies with constrained sets of strategies

Xi(εi) = {xi ∈ Xi; xi(pi) ≥ εi(pi), pi ∈ Pi}, i ∈ I.
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Theorem 28 (Theorem 7.20, [11]). Every finite G(ε) perturbed game has an
equilibrium.

Denote M(ε) = maxi∈I,pi∈Pi
εi(pi) and m(ε) = mini∈I,pi∈Pi

εi(pi).

Theorem 29 (Theorem 7.22, [11]). If pi is a weakly dominated strategy, then
every equilibrium of the ε-perturbed game fullfils

xi(pi) = εi(pi).

Theorem 30 (Theorem 7.23, [11]). Let {εk}k∈N be a sequence of perturbation
vectors satisfying limk→∞ M(εk) = 0. For every mixed strategy xi ∈ Xi, there
exists a sequence {xk

i }k∈N of mixed strategies of the player i satisfying:

• xk
i ∈ Xi(εk

i ) for each k ∈ N.

• limk→∞ xk
i = xi.

Theorem 31 (Theorem 7.24, [11]). Let G be a game in the strategic form. For
k ∈ N let εk be a perturbation vector, and let xk be an equilibrium of G(ε), If

1. limk→∞ M(εk) = 0,

2. limk→∞ xk = x ∈ X,

then x is a Nash equilibrium of the game G.

Definition 50 (Definition 7.25, [11]). A mixed strategy profile x is called a per-
fect equilibrium of game G in the strategic form, if there exists a sequence of
perturbation vectors {εk}k∈N with limk→∞ M(εk) = 0 and for each k ∈ N there
exists an equilibrium xk of G(εk) such that

lim
k→∞

xk = x.

As a direct consquence of the previous discussion every perfect equilibrium is
a Nash equilibrium.

Theorem 32 (Theorem 7.27, [11]). Every finite game G in the strategic form
has at least one perfect equilibrium.

Lastly in the repeated game with discounting we may consider a so-called
uniform equilibrium that has the property, that the strategy profile remains an
equilibrium as the valuation of the future by the players increases to the point,
where they value future gains same as the current.

Definition 51 ([11]). Strategy profile x∗ ∈ X is called a uniform equilibrium for
games with discounting, if limβ→1 uβ(x∗) exists and there exists β0 ∈ [0, 1), such
that x∗ is a Nash equilibrium for every game with uβ(x) = ∑︁∞

t=1 βt−1ut(x) with
β ∈ [β0, 1).

Theorem 33 (The Folk theorem for discounted games, [11]). Let G be a base
game in which there exists û ∈ F ∩ V , such that ûi > vU

i , ∀i ∈ I. Then ∀ε > 0
there exists β0 ∈ [0, 1) such that ∀β ∈ [β0, 1) and ∀u ∈ V ∩ F , there exists an
equilibrium x∗ of the repeated version of G with discounting β, such that

max
i∈I

|uβ
i (x∗) − ui| < ε.
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4. Sequential games with random
payoff
In this chapter we will more closely examine the case of sequential games with
random payoff. We will first start with the special case of a Markov decision
process and its generalization in the form of a stochastic game as a motivation
for the further generalization. As we will show, those two models are a special
case of what we call a sequential game with random payoff. Then we will take
a look at special forms of sequential game with random payoff with Markov and
martingale payoffs and possible solution models for those types of games, lastly
we will propose a solution model for the sequential game with random payoff with
general ergodic payoff.

4.1 Markov decision process
The basic idea of the Markov decision process theory comes from the theory of
Markov chains. A Markov decision process is a single player multi-stage game
in which the player (called the decision maker) wants to maximize the expected
payoff (reward) he will get based on his strategies (decisions). This reward is
influenced by a current state of the system for which there exists non-deterministic
transitions influenced by decisions taken in the preceeding stage of the game by
the player. This may be represented as a collection of Markov chains, that are
controled by the decision maker, this means that the decision maker chooses
which of the Markov chains’ transition matricies is used in the current stage to
transit to a different state in the following stage. Decision maker in such a model
wants to find an optimal control, which is a series of decisions that maximize the
expected reward from the process.

Definition 52 ([13]). Let T = {1, 2, . . . } be a finite or countably infinite set of
stages. Let for t ∈ T : St be a finite or countably infinite set of possible states of
the system in the time t and let At,s be the set of possible actions at the time t if the
system is in the state s ∈ St. Denote rt(s, a, j) the immediate reward at the stage
t if the system is in the state s and the decision maker choses action a and the
system will be in the state j in the stage t + 1 and denote pt(j|s, a) the probability
that the system will be in the state j in the time t + 1 given it is in the state
s at the time t and the decision maker choses an action a. A markov decision
process is the collection (T, {St}t∈T , {At,s}t∈T,s∈St , {rt(s, a, j)}t∈T,s∈St,a∈At,s,j∈St+1 ,
{pt(j|s, a)}t∈T,s∈St,a∈At,s,j∈St+1).

For simplicity in further discussion we will omit index sets. We will further
assume that ∑︁j∈St+1 pt(j|s, a) = 1 and that As,t = At the set of actions does not
depend on the current state of the system.

The expected reward in the stage t may be computed as

rt(s, a) =
∑︂

j∈St+1

rt(s, a, j)pt(j|s, a).

Further notice that for a given t ∈ T and a given a ∈ At
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(p(j|s, a))s∈St,j∈St+1

is a transition matrix of some Markov chain.

Definition 53 ([13]). A function dt : St → At is called a (Markovian) decision
rule. The set of allowed decision rules is denoted as Dt. Decision rule is called a
randomized decision rule if for each state it is a probability distribution over the
set of actions. A collection of decision rules for each t ∈ T , i.e. π = (d1, d2, . . . )
is called a policy. The set of policies is denoted by Π. If π = (dt)t∈T , where
∀t ∈ T : dt = d, then policy π is called stationary.

As stated in [13], each policy π specifies a stochastic process {Xπ
t }t∈T with

state space {St}t∈T . Markov policy specifies a Markov chain and stationary pol-
icy specifies stationary Markov chain. This Markov process further induces a
stochastic process of rewards {r(Xπ

t , dt(Xπ
t ))}t∈T which is called the Markov re-

ward process.
For each policy we have a corresponding reward process and now the question

is how to optimize this process in a way that we can consider it optimal.

4.1.1 Finite horizont
One way is to consider a finite horizont N and maximize the expected inflow of
rewards until N . This is described as

vπ
N(s) = E [

N∑︂
t=1

rt(Xπ
t , dt(Xπ

t )) + rN+1(Xπ
N+1)|Xπ

1 = s],

given that the initial state of the system was s and the decision maker chose
policy π. This value exists and it is bounded, if rt(s, a) are bounded functions.
Policy that maximizes the expected inflow is called the optimal policy. If the set
of stages is finite, then the time horizont is naturally selected as the number of
stages. If the number of stages is infinite, there may be multiple ways of selecting
appropriate time horizont. If

vπ(s) = E
∞∑︂

t=1
rt(Xπ

t , dt(Xπ
t )) < ∞

for all possible choises of policy π ∈ Π, then the decision-maker may select an
ε > 0 and consider some N such that

∀π ∈ Π : E
∞∑︂

t=N+1
rt(Xπ

t , dt(Xπ
t )) < ε.

The benefit of choosing a finite time horizont in such a situation is that, if both
the state and action spaces are finite, then it is easy to recurently compute the
expected value until the time N and the corresponding optimal policy. Optimal
policy πN found in this way for the finite horizont N would correspond to a ε-
optimal policy π = (πN , dN+1, . . . ), where dt, t ≥ N + 1 may be chosen arbitrarly.
In the case that for some of the policy choises the expected reward income is
infinite, the choise of N is not so straight-forward, but the decision maker may
still consider a finite time horizont he values the most and solve program
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max
π∈Π

vπ
N(s),

s.t. vπ(s) = ∞.

That is they consider only policies with infinite inflow and select such that it
maximizes the rewards until the time N .

Now lets consider the exact algorithm for solving the finite time horizont
problem. First let us define a history of the decision process.

Definition 54 ([13]). History of the Markov decision process until stage t is
defined as Ht = {S1, A1, . . . , At−1, St} for t = 2, . . . , N + 1. Elements of the
history set may be inductivelly constructed as ht = (ht−1, at−1, st) for ht−1 ∈ Ht−1.

We will define the expected value from time n onward, given history hn as

uπ
n(hn) = E

N+1∑︂
t=n

rt(Xπ
t , dt(Xπ

t ))

The finite horizont policy evaluation algorithm as proposed in [13] for a given
policy hN+1 = (hN , aN , sN+1) ∈ HN+1 is of the form

1. Set t = N + 1 and compute uπ
N+1(hN+1) = r(sN+1).

2. Lower t by 1 and compute uπ
t (ht) for every ht ∈ Ht as

uπ
t (ht) = rt(st, dt(st)) +

∑︂
j∈St+1

p(j|st, d(st))uπ
t+1(ht, d(st), j)

3. If t = 1 stop, otherwise repeat 2.

In [13] Theorem 4.2. shows that policy that maximizes valuation by this
algorithm is an optimal policy for the finite horizont problem and that to find
such a policy we can use the backward induction algorithm defined as follows

1. Set t = N + 1 and compute ut(st) = rt(st) for each st ∈ St.

2. Lower t by 1 and compute ut(st) for each st ∈ St as

ut(st) = max
a∈At

[rt(a, st) +
∑︂

st+1∈St+1

p(st+1|st, a)ut+1(st+1)].

3. If t = 1 stop, otherwise repeat 2.

Where the optimal policy’s decision rule dt at the time t takes only values
of the argument maxima of the equation from the step 2 of the algorithm. This
algorithm allows us to immediately compute both the optimal policies and the
corresponding expected inflow of rewards.
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4.1.2 Infinite horizont
In the case when T is infinite we can consider similiar approaches as in the case
of repeated games in the Chapter 3 of this thesis. First case is when

∀π ∈ Π, ∀s ∈ S1 : vπ(s) = E
∞∑︂

t=1
rt(Xπ

t , dt(Xπ
t )) < ∞.

In this case we want to find π∗ ∈ Π such that

∀π ∈ Π, ∀s ∈ S1 : v∗(s) := vπ∗(s) ≥ vπ(s)
The second possible approach is to consider a discounting factor 0 < λ < 1

and compute

vπ
λ(s) = E

∞∑︂
t=1

λt−1rt(Xπ
t , dt(Xπ

t )).

In the case when ∀t ∈ T : supa∈At
sups∈St

|rt(s, a)| ≤ M < ∞ it holds that
∀s ∈ S1, ∀π ∈ Π : |vπ

λ(s)| ≤ M
1−λ

< ∞.
The last approach is to consider the mean average reward given as

vπ(s) = lim
N→∞

1
N

vπ
N(s)

where vπ
N(s) is the finite horizont valuation as defined above.

4.2 Stochastic game
The idea of stochastic games is based on the generalization of the Markov deci-
sion process for multiple players, who have their own payoff functions and their
strategies influence the transitions between possible states.
Definition 55 ([11]). Let T = {1, . . . , N} be a set of stages for N ≤ ∞ and I be a
set of players. Let for each stage t St denote the set of states in the time t and Ai,s,t

be the set of pure strategies available to the player i, if the game is in the stage
t at the state s, denote As,t = ×i∈I

Ai,s,t. Let Pt(j|at, st, at−1, st−1, . . . , a1, s1)
denote the probability, that the game will be in a state j in the stage t + 1 given
the history of the game at the time t was ht = (s1, a1, . . . , at−1, st) for sk ∈ Sk

and ak ∈ Ask,k, k = 1, . . . , t. Denote the set of histories until the time t as Ht.
Let ut

i : St ××s∈St
As,t → R be the payoff function of the player i in the stage t.

We define a stochastic game as a collection Σ = (T, {St}t∈T , {Pt(·|ht)}t∈T,ht∈Ht , I,
{Ai,s,t}t∈T,s∈St,i∈I , {ut

i}t∈T,i∈I).
In the stochastic game model it is very natural to use behavior strategies as

were first described in the Chapter 3 of this thesis. However the definition of
behavior strategies is in this case somewhat different and takes a more natural
form of assigning a distribution over pure strategies to every history of the game.
Definition 56 ([11]). Let Ht be a set of histories until time t and H = ⋃︁

t∈T Ht

be the set of histories. Function τi assigning a history h = (s1, a1, . . . , at−1, st)
a probability distribution over pure strategies available to the player i in the time
t is called a behavior strategy. Vector τ = {τi}i∈I is called a behavior strategy
profile.
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It is possible to show that in the case of a stochastic game the behavior
strategies are equivalent to mixed strategies as was described in Chapter 3. We
just have to realize that the game may be rewritten in an extensive form as a
tree determined by unique combinations of stages and states. In this tree the
information sets are single verticies and therefore every behavior strategy has an
equivalent mixed strategy.

Behavior strategy profiles together with probabilities of transition between
the states of the game induce a probability distribution over the sets of histories
for a history h = (s1, a1, . . . ) given as

Ps1,τ (h) = (
N∏︂

t=1

∏︂
i∈I

τi(at
i|s1, a1, . . . , st−1, at−1, st))(

N−1∏︂
t−1

Pt(st+1|at, st, . . . , a1, s1)),

where at
i denotes the action of the player i in the time t.

4.2.1 Finite horizont
Let us again begin by considering the case for stochastic games with finite hori-
zont, that is N < ∞.

In this case commonly considered approach is to consider the game in the
strategic form with the payoff defined as an expected average payoff with respect
to Ps1,τ , that is

γN
i (s1, τ) = E s1,τ [ 1

N

N∑︂
t=1

ut
i].

This is an analogue of the approach seen in the Markov decision processes,
where the player (decision maker) wants to maximize his expected reward.

If we denote XN
i the set of behavior strategies of the player i in the stochastic

game Σ we can define the strategic form of the game Σ with initial state s1 as
G(s1) = (I, {Xi}i∈I , {γi(s1)}i∈I)

Definition 57 ([11]). Let s1 ∈ S1 be the initial state of the game. Behavior
strategy profile τ ∗ is called a Nash equilibrium of the stochastic game Σ with the
initial state s1, if it is a Nash equilibrium of G(s1).

Definition 58 ([11]). Behavior strategy profile τ ∗ is called a Nash equilibrium of
the stochastic game Σ, if it is a Nash equilibrium for every initial state s1 ∈ S1.

Theorem 34 ([11]). Every finite stochastic game has a Nash equilibrium.

The stochastic game the game is described using a (controled) stochastic pro-
cess with values in the sets of states of the game. If this process reaches the same
state by different paths the question is whether the player would or should react
differently. If the state process is homogenous Markov, that is

∀t ∈ T : Pt(.|at, st, . . . , a1, s1) = P (.|at, st)
we may consider the following definition.

Definition 59 ([11]). Behavior strategy τi of the player i ∈ I is called Markov, if
∀t ∈ T, ∀h, ĥ ∈ Ht such that h = (s1, a1, . . . , st) and ĥ = (ŝ1, â1, . . . , st) it holds
τi(h) = τi(ĥ).
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Theorem 35 ([11]). Every N-stage stochastic game has a Nash equilibrium in
Markov strategies.

This means that the natural approach to react in the same situation in the
same manner does not constrain us from reaching an optimal solution for the
game.

4.2.2 Infinite horizont
In the case of a infinite horizont we need to make sure that the game has a finite
expected payoff. For this reason discounting is used for each stage of the game
in the standard way as it was used in the case of a Markov decision processes.

Definition 60 ([11]). Let {βt}t∈N be a discounting such that βt = βt−1 for β ∈
[0, 1). We define the β-discounted payoff for a behavioral strategy profile τ ∈ X
as

γβ
i (s1, τ ) = E s1,τ

∞∑︂
t=1

βtu
t
i.

Definition 61 ([11]). The β-discounted infinite stochastic game with initial state
s1 is the strategic form game G(s1) = (I, X, {γβ

i }i∈I).

Similarly as previous we define the Nash equilibria.

Definition 62 ([11]). Strategy profile τ ∈ X is a β-discounted equilibrium for
the initial state s1, if it is a Nash equilibrium of G(s1). Strategy profile τ ∈ X
is a β-discounted equilibrium, if it is a β-discounted equilibrium for every initial
state s1.

Here we define a stationary strategy in a similiar way than Markovian strate-
gies from the previous section.

Definition 63 ([11]). A behavior strategy τi of player i in an infinite stochastic
game is a stationary strategy if for every finite history h = (s1, a1, . . . , st−1, at−1, st)
the mixed action τi(h) depends only on the state st.

That is stationary strategies react only to the current state of the game and
do not consider past of the game relevant.

Theorem 36 (Fink, [11]). For every discount factor β ∈ [0, 1), every β - dis-
counted stochastic game has an equilibrium in stationary strategies.

For the proof of this theorem we refer to [11].

4.3 Sequential game with random payoff
Now let us define a more general version of game with randomness.

Definition 64. Let Γ = (T, {Gv}v∈V , {sv}v∈V ) be a game in the extensive form,
where Gv is a game with random payoff for some v ∈ V , then Γ is called a
sequential game with random payoff.
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By definition the information sets of this game are equal to individual verticies
of the game tree and therefore we will not distinguish between notation for mixed
and behavioral strategies. As the behavior strategies are better imagined we will
mostly use them when speaking about strategies in the sequential game with
random payoff.

Definition 65. We will say that two games in extensive form G and H are
equivalent in the payoff, if (VG, EG) = TG = TH = (VH , EH), where TG and
TH are the game trees of G and H respectivelly and for every mixed or behavior
strategy profile x it holds that uv

G(x) = uv
H(x), a.s. for every v ∈ VG = VH .

Theorem 37. Let Σ be a stochastic game, then there exists a payoff equivalent
sequential game with random payoff.

Proof. Let Σ be a stochastic game. This means that the game tree of Σ is given
as V = T = {1, . . . , N} for some N ≤ ∞ and E = {(n, n + 1); n ∈ T, n + 1 ∈ T}.
Denote S1 the distribution of the initial states of the game. As we have discussed
earlier in the case of a stochastic game the behavior and mixed strategies are
equivalent, therefore we just need to show that there exists a game with random
payoff such that for every behavior strategy profile τ ∈ X the distribution of
payoff in the stochastic game is the same as in the game with random payoff. In
the stochastic game the distribution of the payoff is given by the transformation
of the distribution of the state of the game. We can express this distribution
in the stage v ∈ V given behavior strategy τ as Sτ

v (hv) =
∫︁

Ps1,τ (hv)S1(ds1),
where hv is the history of the game Σ until the stage v ∈ V . Let (Ωv, Av,Pv)
be a probability space and Sτ

v be a random variable with values in the set of
states of the stochastic game in the stage v with the distribution Sτ

v . If we
denote uv

i (τ) = uv
i (Sτ

v , τ) the random payoff of the stage v ∈ V , then clearly
uv

i (τ) ∼ uv
i (Sτ

v , τ), ∀τ ∈ X. Denote Gv = (I, Xv, {uv
i }i∈I) the game with ran-

dom payoff uv
i (τ), then Γ = (T, {Gv}v∈V , {sv}v∈V ) is payoff-equivalent game with

random payoff to the stochastic game Σ, where sv(τ) = v + 1 is the successor
function in the extensive form of the game.

This theorem states that there is no difference in considering the random tran-
sitions between states of the game and the randomness in the payoff itself. The
advantage of random payoff model is that in reality we may not be able to observe
the states of the game but only the resulting payoffs. As we have seen in previous
section in the model of stochastic game the main goal is to optimize the expected
payoff in the game. In the model of a game with random payoff we want to use
optimality criteria as described in the second chapter of this thesis.

4.3.1 Optimality in sequential games with random payoff
In further discussion we will consider the case of sequential games with ran-
dom payoff, which have only a single branch. That is we will assume that V =
{1, . . . , N} and E = {(n, n + 1); n ∈ V, n + 1 ∈ V } and st(x) = t + 1 if t + 1 ∈ V .
In this situation given mixed or behavior strategy profile x = (x1, x2, . . . ) ∈ X
yields for the player i a payoff process {ut

i(x)}t∈N, where we use the notation
ut

i(x) = ut
i(xt|ut−1

i (xt−1), . . . , u1
i (x1)), a.s..
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Definition 66. Let Γ be a sequential game with random payoff. We will say that
the payoff of the player i in the Γ has property the P if ∀x ∈ X mixed or behavior
strategy profile the associated payoff process {ut

i(x)}t∈T has the property P. We
will say, that the payoff in the game Γ has the property P if for every player i ∈ I
the payoff of the player i has the property P.

First let us consider the stepwise approach, where the player i wants to
construct a behavioral strategy by finding the optimal strategy at the time t
given the history of the game until time t was ht. This means the players want
to optimize their payoff at the time t given as ut

i(xt|ht) = ut
i(xt|ut−1

i (xt−1) =
ut−1

i , . . . , u1
i (x1) = u1

i ) where ht = (x1, u1
i , x2, u2

i , . . . , xt−1, ut−1
i ). Here ut

i(xt|ht)
is a conditional payoff under the condition that the history of the game was ht.
Notice here the history ht is no longer described by the states and actions but by
strategies and their respective realizations of payoff. Let us start by considering
that the players want to maximize their immediate reward in a given time t. In
this case we may consider the generalizations of the minimax program to the
stochastic case as was presented in the Chapter 2. First we will write the least
likely payoff program.

max
xt

i∈Xt
i ,δ∈R

δ (4.1)

s.t. P[ut
i(xt

i, xt
−i|ht) ≥ δ] ≥ αt

i, xt
−i ∈ X t

−i,

where αt
i ∈ (0, 1) is a given confidence level of the player i for the time t. X t

−i

is usually a infinite set of strategies of the other players, which means that (4.1)
is a program with infinite number of bounds each corresponding to a given mixed
strategy of the other players. This can be overcome if we are able to compute
infx−i∈X−i

P[ut
i(xt

i, xt
−i|ht) ≥ δ]. This however, may be complicated and so in

practice we would use a relaxed form of this program, where the player i wants
to defend himself only against particular actions (pure strategies) of the other
players this yields a program

max
xt

i∈Xt
i ,δ∈R

δ (4.2)

s.t. P[ut
i(xt

i, pt
−i|ht) ≥ δ] ≥ αi, pt

−i ∈ P t
−i.

Where pt
−i denotes a profile of pure strategies the other players at the time

t and P t
−i denotes the set of pure strategies available to the other players at the

time t.
The second generalization of the minimax program as was discussed in the

Chapter 2 is the worst payoff method, where players want to solve a program

max
xt

i∈Xt
i ,δ∈R

δ (4.3)

s.t. P[∀xt
−i ∈ X t

−i : ut
i(xt

i, xt
i|ht) ≥ δ] ≥ αt

i.

With this the player choses strategy x∗
i ∈ X t

i for the time t so that he is
guaranted to gain at least δ∗ with probability higher than αt

i given the history of
the game was ht.
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In a sequential game with random payoff we may also consider using prediction
of the payoff and optimize with respect to the predicted payoff function at the
time t. This means that we construct ût

i|ht the predicted payoff function, given
the history of the game until time t was ht. In a standard manner we want to
minimize the prediction error given as

e2
ûi

(x) = E |ut
i(x) − ût

i(x)|2.
Where ût

i(x) we want to be σ(ut−1
i (x), . . . , u1

i (x))-measurable random variable.
We know that for a given x ∈ X mixed or behavioral strategy this is mini-
mized by the conditional mean value E [ut

i(x)|ut−1
i (x), . . . , u1

i (x)]. As ut−k
i (x), k =

1, . . . , t − 1 are known at the time t this yields a deterministic game Ĝt =
(I, X t, {ûi}i∈I) with the predicted payoff functions. So that the player wants
to construct his strategy with as follows

• At t = 1 compute optimal strategy x1
i with respect to the game with deter-

ministic payoff E P u.

• At t ≥ 2 given the history until time t was ht = (x1, u1, . . . , xt−1, ut−1)
compute optimal strategy xt

i with respect to the deterministic game û(ht) =
E [u|ht].

Another approach is based on considering an aggregated payoff from the game.
Either we may consider some finite horizont T of the game and optimize with
respect to

ui(x) =
T∑︂

t=1
ut

i(x), a.s.

or infinite horizont with

ui(x) =
∞∑︂

t=1
ut

i(x), a.s.

where we define ∑︁∞
t=1 ut

i(x) = limT →∞
∑︁T

t=1 ut
i(x) by the convergence almost

surely. If ui(x) < ∞, a.s. we may consider the optimality conditions for strategic
form of the game as were presented in the second chapter. Disadvantage of this
approach is that especially in the case with infinite horizont it may be difficult
to find a closed form representation of the payoff and of the sets of strategies
of the strategic form of the game. For that reason we may prefer to use finite
horizont instead. To do this we can use a similiar approach as was presented in
the Chapter 3, where we choose an ε > 0 and find T = T (ε) ∈ N such that

∀i ∈ I, ∀x ∈ X : |
T∑︂

t=1
ut

i(x) −
∞∑︂

t=1
ut

i(x)| < ε, a.s..

With this we may now consider the ε-version of the original sequential game
with random payoff in the strategic form as was described in the second chapter.

In some cases it may happen that P[∑︁∞
t=1 ut

i(x) = ∞] > 0. In such a case
we need to regularize the game so that it is possible to consider it as a strategic
form game. To do this we may use the standard techniques as were presented in
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the Chapter 3. First way is to consider a discounting {βt}t∈T and optimize with
respect to the discounted overall payoff given as

ui(x) =
∞∑︂

t=1
βtu

t
i(x), a.s..

Here we assume that ∀i ∈ I, ∀x ∈ X : ui(x) < ∞, a.s. and we have the same
possible optimality conditions as for a standard game in the strategic form. If
the discounting factors are not suitable for the scenario (for example if there is
no clear discounting factor to use), we may consider the average payoff model,
where players want to optimize the average payoff function given as

ūi(x) = lim inf
N→∞

1
N

N∑︂
t=1

ut
i(x), a.s..

Let us now take a closer look on the case when the associated payoff processes
have some additional properties.

4.3.2 Sequential markov game
We will start with a repeated sequential game with random payoff where the
payoff process has the Markov property. This means that given mixed or be-
havior strategy profile x ∈ X it holds that ∀i ∈ I : P[ut

i(x) ∈ A|ut−1
i (x) =

ut−1, . . . , u0
i (x) = u0] = P[ut

i(x) ∈ A|ut−1
i (x) = ut−1] for A ∈ B(R).

The corresponding Markov transition kernell of the player i is given as

P t
i (xt, u, A) = P[ut

i(x) ∈ A|ut−1
i (x) = u]

Further we will assume that ∀t ∈ T : P t
i = Pi, or that the payoff process has

homogenous transitions.
For a given mixed strategies profile x ∈ X and given distribution of the payoff

of the player i in the time t − 1 : U t−1
i (x) we can express the distribution of the

payoff at the time t as

U t
i (x)(A) =

∫︂
Pi(xt, ut−1, A)U t−1

i (x)(dut−1).

In the case of the Markov game the distribution U t
i may be described by ut−1

i ,
which is known in the time t and Pi. Here ut−1

i is a realization of the payoff
function at the time t − 1. And so, if we denote the strategy profile played at
time t − 1 as xt−1 the payoff was ut−1

i (xt−1).
And so the program (4.1) may be reformulated in the form

max
xt

i∈Xt
i ,δ∈R

δ, (4.4)

s.t. Pi(xt
i, xt

−i, ut−1
i (xt−1), [ut

i(xt
i, xt

−i) ≥ δ]) ≥ αt
i, xt

−i ∈ X t
−i.

Where Pi denotes the Markov transition kernell of the game.
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4.3.3 Sequential martingale game
Another interesting case is when for a given mixed or behavioral strategy profile
x ∈ X the resulting payoff process is a martingale. This means that we assume
∀i ∈ I, ∀x ∈ X, ∀t ∈ N : E ut

i(x) < ∞ and that E [ut
i(xt)|ut−1

i (x), . . . , u1
i (x)] =

ut−1
i (xt), a.s.. For this type of a game it is natural to consider the model with

predicted payoff. As we have discussed earlier the L2 optimal predicted payoff
function with respect to the payoff process σ-algebra Ht = σ(ut−1

i (x), . . . , u1
i (x))

is the conditional expected payoff function. In the case of a martingale game
this is exactly the realization of the payoff function at the stage t − 1. In this
model the player i would want to construct his strategy so that x1

i is optimal with
respect to the expected payoff function E u1

i and then for a t ≥ 2 the strategy xt
i

is optimal with respect to the realization of the payoff function ut−1
i at the time

t − 1, which is known for the player at the time of the decision.

4.3.4 Sequential game with ergodic payoff
Lastly let us consider the case when the payoff process is ergodic for every possible
mixed or behavioral strategy. For the purposes of our thesis we will define an
ergodic process in the following way.

Definition 67. Let X = {Xt}t∈T be a random process. We say that X is ergodic
if

• ∀t ∈ T : E Xt = µ ∈ R and var(Xt) = σ2 > 0.

• X̄n = 1
n

∑︁n
t=1 Xt

a.s.−−→ µ.

•
√

n(X̄n − µ) D−→ N(0, aσ2) for some a > 0

That is we call process ergodic if it follows the strong law of large numbers and
satisfies the requirements of some version of the Central limit theorem. For our
payoff processes we assume that ∀i ∈ I : ∀x ∈ X the associated payoff process
{ut

i(x)}t∈T is ergodic.
In this case it follows that the average payoff function is of the form

ūi(x) = lim inf
N→∞

1
N

N∑︂
t=1

ui(x) = lim
N→∞

1
N

N∑︂
t=1

ui(x) = E ui(x), a.s..

Therefore in this type of a game the players with the average payoff want to
maximize the mean (or expected) payoff function E ui. Let us denote σ2

i (x) =
var(ui(x)) and assume that

√
N(ūi(x) − E ui(x)) D−→ N(0, ai(x)σ2

i (x))
for some ai(x) > 0. We can also express the approximate 1 − α confidence

interval for the payoff after N rounds of the game as

(E ui(x) −
q1−α/2

√︂
ai(x)σi(x)

√
N

, E ui(x) +
q1−α/2

√︂
ai(x)σi(x)

√
N

),

where q1−α/2 is a (1 − α/2)-quantile of the normal distribution.
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5. Numerical analysis

5.1 Cornout model of duopoly

5.1.1 Static model of demand
The Cornout model was developed by french mathematician Antoine Augustin
Cornout in 1838. This model describes behaviour of duopoly situation on a closed
market with homogenous good. Example of such situation may be the competi-
tion of companies such as Coca-cola and Pepsi, who produce very similar products
and have a dominant position on the market. The main assumptions of this model
are that the goods are homogenous (or that they are perfect substitutes), demand
for the products is linear, there is no cost of production and companies want to
maximize their profit independetly of one another.

Let us formalize this mathematically in the following way. Let I and II
be companies (players). Let QI , QII be the quantity produced by I and II
respectivelly. Q = QI + QII be the total quantity of goods produced on the
market.

The demand for the goods is given as D(Q) = a − bQ for some a > 0, b > 0
such that a − bQ ≥ 0, ∀Q, where a denotes the market cap and b is the market
saturation rate. Without the loss of generality we can use D(Q) = a − Q, where
a denotes the relative market cap with respect to the saturation rate. Here D
describes the price of the goods as a function of available quantity of goods Q. It
is further assumed that a − Q ≥ 0 for all possible values of Q.

Each company respectivelly wants to maximize its payoff given as
ui(QI , QII) = D(Q)Qi = aQi − QQi, i = I, II.

This is clearly a concave function of Qi and so the optimal solution is given
by a system of equations

∂uI(QI , QII)
∂QI

= 0, (5.1)

∂uII(QI , QII)
∂QII

= 0, (5.2)

a − QII − 2QI = 0, (5.3)
a − QI − 2QII = 0. (5.4)

Which yields Q∗
I = Q∗

II = a
3 .

Another variation of this model describes the demand as a hyperbolic function
of quantity given as D(Q) = a

bQ
, where a > 0, b > 0 and Q > 0. Again we may

without the loss of generality assume that D(Q) = a
Q

, where a > 0 and Q > 0.
In this case the payoff function is given as

ui(QI , QII) = D(Q)Qi = a

Q
Qi, i = I, II.

In this case the resulting game is a constant-sum game because

uI(QI , QII) + uII(QI , QII) = a

Q
QI + a

Q
QII = a.
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5.1.2 Dynamic model of demand
Let T = {1, . . . } be the set of time. Denote Qt

I , Qt
II the quantity of goods

produced by I and II respectivelly at time t ∈ T . Let Qt = Qt
I +Qt

II be the total
quantity of goods produced on the market at the time t ∈ T .

The demand for the goods at time t is given as Dt(Qt) = a0 −a1(Qt −Qt−1)−
bQt, where Q0 = 0 (or in more general Q0 = q0 ∈ R) and a0 > 0, a1 > 0, b > 0
such that a0 − a1(Qt − Qt−1) − bQt ≥ 0, ∀Qt, Qt−1. Which can again be simplified
to just a0 − a1(Qt − Qt−1) − Qt. Here a0 denotes the relative market cap and a1
the change of the market cap with respect to the change of supply. With this the
payoff function at the time t is given as

ut
i(Qt

I , Qt
II) = Dt(Qt)Qt

i, i = I, II.

We can derive the optimal solution at the time t given the quantity produced
at time t − 1 was Qt−1 as before by solving

∂uI(Qt
I , Qt

II)
∂Qt

I

= 0, (5.5)

∂uII(Qt
I , Qt

II)
∂Qt

II

= 0, (5.6)

a0 − 2a1Q
t
I − a1Q

t
II + a1Qt−1 − 2Qt

I − Qt
II = 0, (5.7)

a0 − 2a1Q
t
II − a1Q

t
I + a1Qt−1 − 2Qt

II − Qt
I = 0. (5.8)

This results in the optimal solution

Qt
I = a0 + a1Qt−1

3(a1 + 1) ,

Qt
II = a0 + a1Qt−1

3(a1 + 1) .

Which means that the recurent expression for overal quantity produced by
duopolists at time t is Qt = 2(a0+a1Qt−1)

3(a1+1) . This may be expressed in a finite
geometric sum

Qt = 2
3

a0

a1 + 1

t∑︂
n=0

(︃2
3

a1

a1 + 1

)︃n

with closed form

Qt = a0

a1 + 1
2
3

⎛⎝1 − ( 2a1
3(a1+1))

t

1 − (2
3

a1
a1+1)

⎞⎠ .

With t → ∞ this expression converges to

Q = 2a0

a1 + 3 .

Notice that as a1 → 0 we get exatly the solution from the static model. The
resulting optimal strategy is a behavioral strategy assigning each time t ∈ T an
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action Qt. If we were to assume that the players are not perfectly rational, that
is that they can make an error the optimal strategy of the player i would be to
use the recurent formula. However, under our assumptions from the Chapter 2,
there is no difference between the recurent and closed form of the strategy. In
this approach we considered the reaction of the player in a given round of the
game and computed the optimal strategy.

Now let us consider different approaches as presented in the Chapter 3. We
will start by assuming that T = N and that both players have an oportunity to
invest their assets with a risk-free interest rate 0 < r. This means that their time
value of payoff is described by a discounting factor β = 1

1+r
and so they want to

play a game with discounting {βt}t∈T , where βt = βt−1. Since we assume that
0 < r it is clear that {βt}t∈T is a consistent valuation of time (βt ≥ βt+1 and
β1 = 1). Denote QI = (Q1

I , Q2
I , . . . ) and similarly Q2 = (Q1

II , Q2
II , . . . ). This

means that the players want to maximize the payoff function given as

ui(QI , QII) =
∑︂
t∈T

βtu
t
i(Qt

I , Qt
II), i = I, II.

We can get the optimal solution by computing

∂ui(QI , QII)
∂Qi

= 0, i = I, II

which yields two systems of equations (each for a given player).

βt
∂ut

I(Qt
I , Qt

II)
∂Qt

I

+ βt+1
∂ut+1

I (Qt+1
I , Qt+1

II )
∂Qt

I

= 0, t = 1, 2, . . . , (5.9)

βt
∂ut

II(Qt
I , Qt

II)
∂Qt

II

+ βt+1
∂ut+1

II (Qt+1
I , Qt+1

II )
∂Qt

II

= 0, t = 1, 2, . . . . (5.10)

Notice that now the value Qt
II is present in both the payoff in the round t and

t + 1. We can again get the recurent formula by computing

a0 − 2a1Q
t
I − a1Q

t
II + a1Qt−1 − 2Qt

I − Qt
II + βa1Q

t
I = 0, (5.11)

a0 − 2a1Q
t
II − a1Q

t
I + a1Qt−1 − 2Qt

II − Qt
I + βa1Q

t
II = 0. (5.12)

Which has a solution

Qt
I = a0 + a1Qt−1

(3 − β)a1 + 3 ,

Qt
II = a0 + a1Qt−1

(3 − β)a1 + 3 .

This yields that the overal demand Qt = 2(a0+a1Qt−1)
(3−β)a1+3 . Denote q = 2

(3−β)a1+3
then we can express the overall quantity on the market at the time t using geo-
metric sum

Qt = a0q
t∑︂

n=0
(a1q)n.
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Since we assume that r > 0 which implies β < 1 it holds that a1q < 1,
therefore this is a well defined geometric sum with closed form

Qt = a0q

(︄
1 − (a1q)t

1 − a1q

)︄
.

With t → ∞ this converges to

Q = 2a0

(1 − β)a1 + 3 .

Another possible approach is to evaluate

γi(QI , QII) = lim inf
t→∞

1
t

t∑︂
n=1

un
i (Qn

I , Qn
II), i = I, II,

this is however possible only numerically.

5.1.3 Stochastic model of demand
Now let us discuss the stochastic version of the Cornout model. In this case
we will assume that both the relative market cap At

0 at the time t is a random
variable such that At

0 > 0, a.s.. We also assume that the demand is non-negative,
that is Dt(Qt) ≥ 0, a.s.. The reaction to the change in quantity produced will
be assumed to be known constant at

1. We will futher assume that {At
0}t∈T is

independent and identically distributed. This means we will consider Dt(Qt) =
max(At

0 − at
1(Qt − Qt−1) − Qt, 0). This results in a sequential game with random

payoff

ut
i(Qt

I , Qt
II) = Dt(Qt)Qt

i, i = I, II.

For this payoff we may use techniques as were discussed in the previous chap-
ter. In the following example we will consider, that the players want to maximize
the agregate payoff for a given time horizont.

5.2 Competition of internet providers
Now let us discuss this model for an example of a duopoly. Here we will consider
the case of two internet providers on a single street. We will assume that both
providers I and II are approximatelly similar in size and each day they want to
decide the average daily internet network speed limit (capacity) for a given street
in a city in Gigabites per second (Gb/s). The providers want to find an optimal
amount to supply each day for a given 7-day period.

We will assume that the price of the service is linear with respect to the total
daily speed limit provided by both companies and that, if the supplied amount is
higher than demand the resulting price of the network is 0. Let the base demand
for the network on the street in a given day be random with two scenarios

1. high demand D + L with probability p.

2. Standard demand D with probability 1 − p.
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If the demand is higher than the quantity suplied this means that the individ-
ual network speed for the customer will be slower than he requires for a higher
cost. On the other hand, if the demand is significantly lower the customers may
use a higher speed network than they required for a cheeper cost.

We will assume that the reaction of customers is exact to the change in the
supplied capacity and so at

1 = 1. Further assume that the base demand each day
is independent from the previous day.

With this the overall price at which providers sell the service at day t is given
by

Dt(Qt) = D + XtL − (Qt − Qt−1) − Qt,

where Xt ∼ Alt(p).
Further we will consider D = 20 Gb/s, L = 5 Gb/s, p = 0.4. We will also

consider that the providers may provide the capacity up to maximum of M =
10 Gb/s. We can check that with this it follows that E Dt(Qt) ≥ 0, ∀Qt, Qt−1 ∈
[0, 2M ].

This motivates us to consider the model for a finite agregate payoff

ui(QI , QII) =
7∑︂

t=1
ui(Qt

I , Qt
II), i = I, II.

Here Qi = (Q1
i , Q2

i , Q3
i , Q4

i , Q5
i , Q6

i , Q7
i )T ∈ [0, M ]7 are the respective daily quanti-

ties for each day supplied by company i. We will assume that the providers want
to defend themselves from the worst outcome, that is they want to solve

max
Qi∈[0,M ]7,δ∈R

δ, (5.13)

s.t. P[∀Q−i ∈ [0, M ]7 : ui(Qi, Q−i) ≥ δ] ≥ αi.

Here we assume that the two companies use the same confidence of αI =
αII = 0.95 for their worst payoff scenario.

In this setting we have K = 27 = 128 different scenarios for the 7-day period.
Denote them ωk with respective probabilities pk, k = 1, . . . , 128. We can rewrite
this program in the form of a mixed-integer non-linear program (MINLP) as

max
Qt

i,δ,zk

δ, (5.14)

s.t. δ − ui(Qi, Q−i)(ωk) ≤ B(1 − zk), ∀Qτ
−i ∈ [0, M ], τ = 1, . . . , 7, k = 1, . . . , K

K∑︂
k=1

pkzk ≥ αi,

Qt
i ∈ [0, M ], t = 1, . . . , 7,

δ ∈ R, zk ∈ {0, 1}, k = 1, . . . , K.

Where

ui(Qi, Q−i)(ωk) =
7∑︂

t=1
max(D+Xt(ωk)L−(Qt

i+Qt
−i−Qt−1

i −Qt−1
−i )−Qt

i−Qt
−i, 0)Qt

i
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and B is a sufficiently big constant such that the bound is always satisfied when-
ever zk = 0. Notice that the k-th bound of the program is satisfied whenever it
is satisfied for a δ − minQ−i∈[0,M ]7 ui(Qi, Q−i)(ωk).

For a given k = 1, . . . , K the gradient of ui(Qi, Q−i)(ωk) with respect to Q−i

is

−Qt
i, t = 1, . . . , 7.

Since Qt
i ≥ 0 the resulting gradient is always non-positive and therefore the

minimum for each scenario is when the other supplier always supplies the maximal
amount M each day.

With this we can simplify the program into the form

max
Qt

i,δ,zk

δ, (5.15)

s.t. δ − f(Qi, ωk) ≤ B(1 − zk), k = 1, . . . , K
K∑︂

k=1
pkzk ≥ αi,

Qt
i ∈ [0, M ], t = 1, . . . , 7,

δ ∈ R, zk ∈ {0, 1}, k = 1, . . . , K.

Where

f(Qi, ωk) =
7∑︂

t=1
max(D + Xt(ωk)L − 2M − (Qt

i − Qt−1
i ) − Qt

i, 0)Qt
i.

We also have to rewrite the maxima in the bounds using integer variables ct
k

and variables representing the maximum mt
k in the following form

max
Qt

i,δ,zk,mt
k

,ct
k

δ, (5.16)

s.t. δ −
7∑︂

t=1
mt

kQt
i ≤ B(1 − zk), k = 1, . . . , K

mt
k ≤ (1 − ct

k)g(Qi, ωk), k = 1, . . . , K, t = 1, . . . , 7
K∑︂

k=1
pkzk ≥ αi,

Qt
i ∈ [0, M ], t = 1, . . . , 7,

δ ∈ R, zk ∈ {0, 1}, k = 1, . . . , K.

mt
k ∈ R, ct

k ∈ {0, 1}, k = 1, . . . , K, t = 1, . . . , 7,

where g(Qi, ωk) = D+Xt(ωk)L−2M −(Qt
i −Qt−1

i )−Qt
i. To solve this program we

use the APOPT solver of Python GEKKO package for optimization introduced
in [1].

In its implementation GEKKO requires string lenght of equations less than
15000 characters, which is not satisfied for our probability bound. Therefore we
use the adjusted version of our program in the form
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max
Qt

i,δ,zk,Pj

δ, (5.17)

s.t. δ −
7∑︂

t=1
mt

kQt
i ≤ B(1 − zk), k = 1, . . . , K

mt
k ≤ (1 − ct

k)g(Qi, ωk), k = 1, . . . , K, t = 1, . . . , 7

Pj =
jK/4∑︂

k=1+K/4(j−1)
pkzk, j = 1, . . . , 4

P1 + P2 + P3 + P4 ≥ αi,

Qt
i ∈ [0, M ], t = 1, . . . , 7,

δ ∈ R, zk ∈ {0, 1}, k = 1, . . . , K,

Pj ∈ [0, 1], j = 1, . . . , 4.

mt
k ∈ R, ct

k ∈ {0, 1}, k = 1, . . . , K, t = 1, . . . , 7,

The computed optimal strategy is

Q∗
I = Q∗

II = (5.28, 5.28, 5.28, 5.28, 5.28, 5.28, 5.28)T

with optimal δ∗ = 250.69.
We evaluated this strategy on 100 000 simulations of the demand process

parameters and compared it with the optimal strategy as based on the static
model, the dynamic model behavior strategy and the expected strategy from
the dynamic model which is a limit of the behavior strategy. The deterministic
strategies are computed with respect to the expected value of the parameters of
the model. That is with at

0 = E At
1 = D + pL and at

1 = 1. We will refer to those
as

Qstatic = (7.33, 7.33, 7.33, 7.33, 7.33, 7.33, 7.33)T ,

Qexp = (4.40, 4.40, 4.40, 4.40, 4.40, 4.40, 4.40)T

and
Qbeh = (2.44, 3.53, 4.01, 4.23, 4.33, 4.36, 4.38)T

and to the optimal strategy from our program as Qopt = Q∗
I all rounded up to two

decimal points. We consider also two model cases. In the first both companies
use the same above mentioned strategy and in the second only the first company
uses the optimal strategy and the other company uses the most harmful strategy

Qworst = (M, M, M, M, M, M, M).

In the following table we show the characteristics of the payoff distribution
computed from the simulations for the standard case.
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Strategy Minimal payoff Maximal payoff Mean payoff
Qopt 299.07 533.64 386.32

Qstatic 234.67 530.44 338.87
Qbeh 300.34 462.93 362.95
Qexp 306.24 498.96 379.50

Table 5.1: Total 7-day payoff characteristics computed from the simulations. In
the standard strategy case. Rounded up to two decimal units.

We see that the optimal and the dynamic strategies all three performed simi-
larly well in this situation. The static model strategy was by far the most volatile
as would be expected. The optimal strategy also has the highest mean payoff.
The number of simulations in which the optimal strategy yielded payoff higher
than δ∗ = 250.69 was in all 100 000 simulations.

In the following table we show the characteristics of the payoff distribution
computed from the simulations for the case when the other player plays the most
harmful strategy.

Strategy Minimal payoff Maximal payoff Mean payoff
Qopt 93.83 359.18 191.96

Qstatic 9.78 393.56 150.65
Qbeh 125.72 299.70 191.68
Qexp 109.12 326.48 189.77

Table 5.2: Total 7-day payoff characteristics computed from the simulations. In
the most harmful strategy case. Rounded up to two decimal units.

Here we may see that the gap is bit bigger between the three strategies based
on the dynamic models. We see that the optimal and dynamic strategies had
very similar mean payoffs, but differ in the minimal payoff which is slightly lower
for the optimal strategy.

To ilustrate the payoff processes we sample 5 random simulation runs of our
strategies and plot the resulting demands and payoffs in the following figures.

(a) Five simulations of the demand process
for the optimal strategy Qopt

(b) Five simulations of the payoff process
for the optimal strategy Qopt
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(a) Five simulations of the demand process
for the static strategy Qstatic

(b) Five simulations of the payoff process
for the optimal strategy Qstatic

(a) Five simulations of the demand process
for the dynamic strategy Qbeh

(b) Five simulations of the payoff process
for the dynamic strategy Qbeh

(a) Five simulations of the demand process
for the expected strategy Qexp

(b) Five simulations of the payoff process
for the expected strategy Qexp
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From this figure we may see that the reaction to the change is in the case of
the dynamic strategy less drastic in the first stage as it gradually grows. This
may explain the difference in the minimal payoffs from the simulations. Also
in this small time window the effect of change in the first day of the week is
more dramatic as it goes from theoretical 0. The possible refinment would be to
compute the reaction at the first day as change from the expected supply level of
the static model, which would be more realistic.

In the following figures we may see the resulting distributions of payoffs using
each strategy and their respective probabilities.

(a) Histogram of the total 7-day payoff
from the optimal strategy Qopt

(b) Histogram of the total 7-day payoff
from the dynamic strategy Qbeh

(c) Histogram of the total 7-day payoff
from the expected strategy Qexp

(d) Histogram of the total 7-day payoff
from the static strategy Qstatic

In the three cases when the chosen strategy is constant we see that the payoff
distribution takes only discrete steps which correspond to the number of realiza-
tions of the higher demand. Therefore the effect of a change in supply is only
present in the first day.

5.2.1 Discussion of the results
From our numerical analysis of the modeled scenario we may conclude that the
behavior deterministic and expected dynamic strategies performed very well. In
the comparison with our base optimal strategy from the worst payoff model they
scored similar in some of the metrics. This is probably due to the fact that the
dependence of the payoffs in our model is very low and therefore it has ergodic
payoff for which we know that the optimal strategy is the strategy with expected
parameters. This is well approximated by the behavior deterministic strategy
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and therefore both strategies are well suited for this model. We also can conclude
that the optimal solutions based on the dynamic and stochastic models supply
less than the optimal solution from the static model. Possible refinement of this
model would be to manage the higher change effect in the first day by assuming
that the reaction in the first day is only given by the change from the expected
strategy of the static model.

64



6. Conclusion
In our thesis we studied sequential games or games in the extensive form. We
focused primarly on the case when the payoff from the game is a random variable.
First we discussed the general results of the game theory for games in the strategic
form, which both apply to single-stage games and may be used to represent
sequential games (or in other words games in the extensive form). In the second
chapter we proposed several criteria for optimality in the games with random
payoff in the strategic form. Here we considered the deterministic equivalent
game approach discussed by earlier authors as well as new approach based on
the generalization of the concept of Nash equilibria. In the third chapter we
discussed the known theory for games in the extensive form with deterministic
payoff. Based on those results we proposed possible approaches to the games in
extensive form with random payoff in the fourth chapter. In the fifth chapter we
developed Cornout model of oligopoly for dynamic and stochastic demand and
used this model on an example of a game in the telecomunications industry where
companies want to allocate their network capacity for a given day in a week. For
this example we considered 7-day decision period and used the model with total
worst payoff to compute optimal allocation of capacity for each day. We compared
this solution with the deterministic strategies based on the expected values of the
parameters.

6.1 Main results of our thesis
The main theoretical result of our thesis is the concept of α-Nash equilibria that
we developed in the second chapter of this thesis. Here we generalized the idea of
best response for games with random payoff and by that we were able to define an
equivalent of the concept of Nash equilibrium for a game with random payoff. We
proved several properties of those equilibria in the following discussion. Mainly
we created existence criteria for the non-trivial α-Nash equilibria for the case
with individual probabilistic constraints in the Theorem 9. Then we considered
the case when there is only finitely many realizations of the payoff function and
managed to prove that those criteria are always satisfied with which we were
able to formulate the stochastic equivalent of the Fundamental theorem of game
theory in the Theorem 11. We used this theorem to provide existence criteria for
the non-trivial α-Nash equilibria with the join constrains. In this chapter we also
formulated the generalized versions of minimax problem, which were considered
as optimality criteria for matrix games with random payoff by previous authors.

In the third chapter we introduced the concept of a sequential game and
showed how it may be transformed from the extensive form into strategic form.
In this chapter we summarized results for these types of games and provided an
example in the form of a repeated Prisoner’s dilema with discounting. On this
example we showed how the results change from a single stage to a repeated form
of a game.

In the fourth chapter we summarized results on the theory of Markov decision
processes and their generalizations in the form of a stochastic game. Mainly in this
chapter we introduced the sequential games with random payoff and showed how
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they relate to the stochastic games. We considered several possible approaches
to the optimality that were based on the approaches standardly used for the
deterministic games. In more detail we examined cases when the payoff process
is either Markov chain, martingale or an ergodic process.

In the fifth chapter we discussed the Cornout model of duopoly and extended
standard results to the case when the demand is dynamic and stochastic. We then
applied this model on a model example of a competition of two internet network
providers that have to optimize allocation of their network capacity over a 7-day
period. In this example we used the worst payoff model to find optimal solutions
and derived its equivalent in the form of a mixed-integer non-linear program. We
then compared the results of our optimal strategy with strategies derived by the
deterministic model.

6.2 Potential for further development
Main potential in developing of this thesis in studying the properties of α-Nash
equilibria and their application in the case of a extensive form of a game. So
far we lack the proof of their existence in a game with general payoff. Also we
need to develop a good way to approximate the maximal confidence levels on
which the game has a α-Nash equilibrium and methods to find those equilibria
efficently. Our proof provides only very rought estimate of the confidence levels.
We could further focus on the case when the payoff has infinite number of real-
izations. For the case with joint probability constrains a better existence criteria
would be required. The conection of optimal strategy profiles in the different con-
cepts of optimality such as the stochastic domination or the generalized minimax
programs and of the α-Nash equilibria will require further development as well.

In the stochastic Cornout model of duopoly we could use the techniques of
probability theory to deduce more theoretical results on the existence of optimal
solutions and consider other approaches to the optimality than the worst payoff
model.
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