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Abstract: RNA sequencing allows investigation of expression of singular genes in cells. 
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allows more detailed study of regulatory mechanisms. The main difference between 
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gene have typically larger rate of sequential similarity. In this thesis, we describe 
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Introduction 

The quantification of gene expression, by counting the number of RNA molecules 

transcribed from specific gene, is an important step of many biological studies. It 

allows understanding of processes occurring in given sample cells as well as providing 

important information for studies of regulatory mechanisms. Precise assessment of 

gene expression helps with diagnosis of diseases and treatment decision. While 

quantifying gene expression is the mostly used and most straightforward approach, it 

does not necessary provide the most detailed information available. It is possible to 

measure expression and compare usage of exons or known gene isoforms. The 

advantages and difficulties of measuring expression at different levels will be discussed 

further in this work. 

There are multiple methods designed for measuring expression, but in the scope of 

this thesis, only methods related to sequencing will be considered. The greatest 

difference in measuring expression at different levels using a sequencing technology is 

in data analysis, as the raw data representing amount of RNA molecules present in 

given sample, are the same for each approach. Because of that, a great number of tools 

for such analysis has been developed, each offering a different approach. These tools 

will be presented, described, and compared in further chapters of this thesis. I have also 

tested three of these tools on patient data, which allows direct comparison of results 

yielded by each tool. 
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1 Biological background 

1.1 Gene expression 

Genetic information, stored in the form of nucleic acid is used for synthesis of most of 

biologically active molecules present in cells of any living organism. Despite all cells 

in a body of multicellular organism having the same genetic information, the cells 

themselves and processes that occur inside them are seldom the same. That is because 

of the fact, that not all parts of genome are always active. By being active, it is meant, 

that DNA is being transcribed into RNA, which can act as an active molecule, or serve 

as template for synthesis of a protein. This way, each cell creates only products of 

genes, that are relevant to given cell type. This process is called transcription regulation 

and concerns many different mechanisms and complex pathways. 

The molecules of RNA, derived from specific locus in genome, have nucleotide 

sequence complement to that of the part of DNA that served as template for synthesis 

of given RNA molecule. Thanks to that, it is possible to determine, from which part of 

genome every RNA molecule found in a cell was derived. Measuring the amount of 

identical RNA molecules present in a cell at given time provides quantitative 

information about the scale, at which a gene, or other genomic feature, is being used, 

thus measuring expression of given feature. Measuring expression in a particular set of 

cells can provide us with important information about given sample. Not only can this 

information be used for identification of cells, given prior knowledge about genes, or 

sets of genes that are specifically transcribed for a particular cell type, but information 

from measuring gene expression can help understanding a physiological processes 

undertaking in cells of sample of interest1. This can lead for example to accurate 

determination of disease and applying adequate treatment. Expression analysis is an 

important approach in study of regulation of expression, as inhibition of transcription is 

the most energy efficient way of reducing the rate of synthesis of a specific protein, or 

other active molecule. 

In majority of experiments, it is the expression of genes that is being measured. 

Genes have the advantage of being relatively well defined and well annotated in 

genome and are often provided with description of their function. Also measuring gene 

expression has the advantage, that genes have mostly distinct sequences, allowing 

determining the origin of RNA molecule with low level of uncertainty. Observing 

expression of a whole gene can provide sufficient information e.g. for diagnosis or 

monitoring a gene knockdown2. 

1.2 Subgene level 

The transcribed sequence of an eukaryotic gene is divided into exons and introns, 

where only exons contain genetic information, that is to be used for synthesis of an 

active molecule (RNA or protein). The gene is transcribed as a whole, but the arisen 

mRNA undergoes post-transcriptional modifications. Splicing is one of these 

modifications and it results in removal of parts of the mRNA, that correspond to 

intronic regions, so that only the parts of RNA originated from exons remain in the 
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final transcript. Some exons can be also removed from the transcript during splicing 

resulting in multiple ways, how the original whole-gene transcript can be spliced. This 

mechanism is called alternative splicing. As a result, one gene can serve as a template 

to many distinct mRNA molecules, which than can serve as template for synthesis of 

different proteins. The set of mRNA molecules sharing the same gene as a template is 

then called splice variants, or isoforms of the given gene. In cells the whole process of 

alternative splicing is regulated by complex regulatory pathways. 

Because of the nature of an eukaryotic gene, it is possible to measure 

expression of not only genes, as sum of expression of all exons present in given gene, 

but also other genomic features, such as isoforms of genes, or exons. By measuring 

expression of gene isoforms, it is possible to measure the abundance of particular 

transcripts in given sample, which provides a more detailed information about 

processes occurring in given cells. However, measuring transcript abundance comes at 

the cost of more complex quantification step. The reason is the fact, that transcripts 

originated from the same gene often share common parts of their sequences, making 

the determining of origin of RNA molecules more complex than in case of measuring 

whole gene expression. Finally, it is possible to measure the abundance of exons. This 

approach can be used to increase precision of differential gene, or isoform expression 

analysis3 when the difference between samples is not great. Exon-level approach also 

allows pinpointing the exact differences between multiple transcripts of a single gene. 

This can be helpful in study of regulatory signals and functional domains, that may 

play a role in deciding, which isoform is to be transcribed4, or may have a significant 

impact in development of a disease. 

Each approach carries its own limitations and benefits, which are often related 

to the nature of data, that is mostly being used for expression analyses. Figure 1.1 

illustrates alternative splicing of a single gene. In this case, given gene is composed of 

5 exons and has 3 annotated isoforms, each leading to synthesis of different protein. 

 

 
Figure 1.1 Alternative splicing. Source: Wikipedia5 
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1.3 Sequencing 

DNA, RNA, and proteins, all of them very important biologically active substances, are 

all polymers, being composed of distinct monomers, connected in a chain. Determining 

sequence of these polymers has been an important task in molecular biology, as such 

information can provide insight into many aspects of ongoing processes in biological 

systems. For example, being able to determine DNA sequence can be useful for 

diagnosing a genetic disorder, understanding of principles of many DNA-related 

diseases and pathogens, or for identification in forensic cases and many other fields. 

Knowing a sequence of amino acids for a given protein can help describing function of 

given protein based on sequence homology, or using the technology of bioengineering, 

to produce such protein in a bacteria.6 

1.3.1 Approaches 

In time, two major approaches for sequencing have been developed. First can be called 

sequencing by fragmentation and second sequencing by synthesis. The first was used 

by Sangers in 1950 to determine the sequence of insulin. The basic idea of this method 

is fragmentation of given polymer, followed by determining sequence of each 

fragment. Based on the overlaps between fragments, it is then possible to reconstruct 

the whole sequence.7 This method often uses electrophoresis to identify the fragments, 

which can be time consuming. Second approach is based on detecting a signal, that is 

related to incorporation of a nucleotide in a chain, that is being synthesized by a 

polymerase8. That means, that in the process of sequencing, a new molecule is being 

created with the original molecule serving as a template. This approach is only usable 

for sequencing of nucleic acids, as synthesis of proteins is much more complicated. 

Sequencing by synthesis is typically being used for sequencing DNA, as RNA can be 

converted to DNA with the reverse transcriptase enzyme. 

Sequencing by synthesis is currently used much more than sequencing by 

fragmentation thanks to development of special technologies allowing higher speed of 

sequencing and sequencing of many DNA fragments in parallel. As current main 

approach to sequencing, DNA sequencing by synthesis deserve to be explained in more 

detail. 

1.3.2 Library preparation 

Prior to the sequencing itself, the sample, that is to be sequenced must be prepared. 

This step is usually referred to as library preparation. The typical workflow of library 

preparation for any current sequencing platform is as follows. First of all, the DNA has 

to be isolated from biological sample. Once pure DNA is obtained, it is often necessary 

to break the DNA into smaller fragments for the sequencing platform. Next specialized 

adapters are added to the fragments. These adapters allow binding of sequenced 

fragments to a flow cell, or other medium used by given sequencing platform. The 

adapters may also serve as binding sites for primers, necessary for activity of DNA 

polymerase. In this step, unique sequences can be added to the sequenced fragments, 

marking fragments, that originate from a single sample. This is called barcoding and 

allows sequencing of multiple libraries at once. Last, optional step of library 
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preparation is clonal amplification of studied DNA. This is mostly done by the 

polymerase chain reaction (PCR) method. 

1.3.3 Methods of sequencing by synthesis 

There are multiple methods, that use this principle of sequencing by synthesis, where 

each method detects a different signal. In pyrosequencing9, the measured unit is 

pyrophosphate, that is being released during the incorporation of nucleotide. The 

pyrophosphate is then processed by enzymes ATP sulfurylase and luciferase, resulting 

in production of light, that is being measured. Ion semiconductor sequencing is another 

method for sequencing, developed by Ion Torrent Systems Inc. (USA, Gilford). The 

method is based on release of hydrogen during incorporation of nucleotide in a chain, 

which results in change in pH of the solution. This change is then recognized by ion 

sensor. The benefit of this approach is, that the change of pH can be detected directly, 

so no other enzymes are needed. The last approach is attaching a fluorescent marker to 

base, that is being added in given step, which acts as a reversible terminator. After the 

base is incorporated, the signal is measured using a laser excitation and fluorescence 

detection and the base is then converted to standard nonterminating nucleotide. This 

approach is known as terminator sequencing. 

1.3.4 Next generation sequencing 

Some of these methods are being used in so called “high throughput”, “next 

generation” or “massively parallel” sequencing (HTS, NGS, MPS), where millions of 

sequences are sequenced in parallel. The fragments of sequenced DNA are attached to 

solid base, where the amplification process takes place. The base can be for example 

flow cell (used in platforms manufactured by the Illumina Inc. company, USA, San 

Diego), or nanobeads (used in SOLiD sequencing, developed by Life Technologies 

Corporation, currently owned by Thermo Fisher Scientific Inc.). The amplification is 

necessary for the fluorescent signal to be detectable. The process of amplification is 

again platform specific, for example on Illumina platform it is done by bridge 

amplification. Adapters, that bind single strand DNA fragments to flow cell are added 

on both ends of the fragments, which leads to bending. DNA polymerase then 

synthesizes the second strand on such fragment. The double stranded fragment is then 

denaturised with each strand remaining bound to the flow cell on a single end and the 

whole process repeats. This way small areas made of identical DNA fragment are 

created, emitting strong signal when a new nucleotide has been incorporated during the 

sequencing.  

After the amplification is done, the sequencing is performed in cycles, where 

either a single type of dNTP is added on the sequencing matrix (pyrosequencing), or a 

mixture all nucleotides is added (fluorescent sequencing). This step and the following 

steps are performed in parallel on millions of template fragment sequences allowing for 

massive amount of sequences being determined in single experiment. In the first two 

methods (pyrosequencing and ion semiconductor sequencing) described, the signal of 

incorporation of a given base is observed directly when the substrate is added, in the 

fluorescent based sequencing method the signal has to be recorded in a separate step. In 

all methods the substrate, that has not been incorporated into the fragments has to be 

washed away before next cycle can start. The number of cycles performed defines the 
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length of reads produced by given sequencing run, for example Illumina NextSeq 550 

System allows maximum read length of 150 base pairs. Most of sequencing platform 

offer so called paired end sequencing, which means, that each fragment of DNA is 

sequenced from both ends, producing a pair of reads, instead of a single read per 

fragment. Having paired-end data allows more precise mapping of reads to reference 

genome, as additional information in form of relative distance from the second read in 

pair is provided. 

1.3.5 Third generation sequencing 

Not all methods rely on amplification of the sequenced molecule. These methods, often 

called “third generation sequencing” are able to determine the sequence from a single 

DNA molecule. Apart from methods based on synthesis, this group of methods 

contains also approaches based on a different principle. For example, nanopore 

sequencing10 is a technology, that does not rely on synthesis, or labelling bases. The 

sequencing unit consists of a membrane with nanopores, through which the sequenced 

DNA molecule is being pulled. As the molecule transverses through the pore, the 

change in ionic current passing through the pore is being measured. The nature of the 

difference is characteristic for each base, allowing the sequence to be determined. 

Each sequencing platform has its own strengths and weaknesses, that are to be 

considered before selecting one for a particular experiment. Currently, the most 

frequently used is Illumina platform7, producing millions of short reads of length in 

lower hundreds of bases with 99,99% accuracy. In order to reconstruct the original 

sequence from short sequenced reads, further data processing and analysis is necessary. 

The steps of this process will be described further in this work. 

1.3.6 Applications of NGS 

Obtaining the sequence of DNA was a very important step in modern biology, as it can 

be used in great number of fields of study. It is theoretically possible to obtain the 

sequence of whole genome of any species. Comparison of genomes can help with 

building phylogenetic trees of species and solving systematic and evolutionary biology 

questions. Such whole-genome sequencing (WGS) can be also used to study intra-

species diversity, polymorphisms and detect mutations and other genetic aberrations. 

WGS also has the potential to be used as a diagnosis tool by sequencing genomes of 

microorganisms responsible for disease11. The main challenge of WGS is the correct 

reconstruction of genome from short reads provided by sequencing platform. 

Compared to WGS, other approaches limit the width of sequencing to only a 

portion of the genome. Such approaches are be called amplicon sequencing as sum of 

selected amplified regions are sequenced. One special case is whole-exome sequencing 

(WES), where only the parts of genome corresponding to exons of protein-coding 

genes are being sequenced. The method can be extended to also capture exons of genes 

coding other nonprotein functional elements12. The first step of this method is 

selectively capturing only target fragments from the DNA obtained for given sample. 

This is done by hybridizing the fragments containing exons to oligonucleotide probes, 

which are bind to magnetic probes, allowing selective filtering. WES has similar 
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applications as WGS, but the amount of material sequenced is greatly reduced, 

reducing cost and time needed for the experiment. 

Sequencing can be used in study of binding sites used by DNA-binding 

proteins. Chromatin immunoprecipitation followed by sequencing (ChIP-Seq)13 is the 

method used for this type of analysis. It consists of reinforcement of the protein-DNA 

bond, fragmenting of the DNA and then selective filtering using antibodies targeting 

specific proteins. Finally, the bond is undone and the resulting DNA is sequenced. 

DNA-binding proteins have an important role in gene expression, as the effect of 

binding of specific protein may affect not only adjacent genes, but also genes located 

further in the sequence. 

Another method for studying regulatory elements is DNase-seq, where sites, 

that are hypersensitive to ligation by enzyme DNase I are sequenced14. In normal 

conditions, DNA in eukaryotic cell is wrapped around histone proteins, the complex of 

DNA and histone is called nucleosome. Nucleosomes form a higher structure called 

chromatin, which is formed into chromosomes. This hierarchical structure allows 

compaction of long DNA molecule into very limited space inside the nucleus. DNA in 

nucleosomes is less accessible to transcriptional factors and enzymes such as DNase I, 

so when the enzyme is added in solution containing DNA, only nucleosome-depleted 

DNA is fragmented. Nucleosome-depleted DNA is most likely targeted by 

transcriptional factors and serve as active regulatory elements. In DNase-seq the parts 

of DNA, that have been digested by DNase I are amplified and sequenced by a NGS 

platform. This way the position of regulatory sequencies can be determined allowing 

better understanding of the regulatory pathway. A less time-consuming alternative to 

DNase-seq is ATAC-seq (Assay for Transposase-Accessible Chromatin with high-

throughput sequencing)15. The difference is that instead of digesting DNA by adding 

DNase I enzyme, the DNA is cut by hyperactive Tn5 transposase, which 

simultaneously cuts DNA and ligates adapters to the ends of arisen fragment. These 

adapters are then used for sequencing. It is then again possible to sequence the shorter 

fragments, which are derived from DNA that was not bound in a nucleosome. It is also 

possible to sequence the DNA originally protected by nucleosome and determine 

nucleosome positions in genome. The data can be separated, as the fragments arisen 

from unprotected DNA are shorter than fragments of “nucleosomal” DNA. 

Last of the major types of analysis using sequencing method is analysis of 

transcriptome by RNA-seq, which will be introduced in next chapter, as it is closely 

related to rest of this thesis. 

1.3.7 RNA-seq 

RNA-seq16, or RNA sequencing is sequencing of RNA molecules. The method can be 

potentially used on any kind of RNA, but is mostly used on mRNA, with the goal of 

measuring abundance of transcripts present in given sample, as this can provide 

information about gene regulation and mutations in given sample. The process follows 

the same steps as typical DNA sequencing experiment, which are library preparation, 

sequencing and further analysis with quality control. The only different step, compared 

to DNA sequencing, is library preparation, as the final product of this step is a DNA 

library, that is presented to a sequencing platform. The first step of library preparation 

for an RNA-seq experiment is RNA isolation. After the RNA has been isolated, it is 
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often necessary to filter out unwanted RNA molecules, typically removing ribosomal 

RNA, as rRNA is the most abundant type of RNA present in a cell and sequencing it 

could waste resources and reduce the detection rate of less abundant RNA species. One 

way of depletion of ribosomal RNA is degrading it by a specific enzyme. Another 

possibility17 is hybridizing rRNA molecules to a substrate, such as magnetic beads, and 

then separating the hybridized and unhybridized molecules. It is also possible to use 

probes targeting mRNA molecules, instead of rRNA molecules. After obtaining a 

sample containing only the RNA species of interest, the molecules are fragmented to be 

of appropriate length for chosen sequencing platform. This step is not necessary in 

experiments regarding micro-RNA, as these molecules are typically shorter than 200 

nucleotides, so no further fragmenting is needed. The last step of RNA-seq library 

preparation is converting RNA molecules to DNA. This is done by attaching short 

DNA primers of random sequencies to the RNA molecules. These primers serve as 

starting point for reverse transcription, transcription of RNA to DNA, using a reverse-

transcriptase enzyme. 
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2 Expression analysis 

In recent years, RNA-seq is the most popular technology for measuring gene 

expression18, allowing rapid and accurate evaluation of mRNA in given sample. Even 

though the technology of this process measures directly the transcript-level expression, 

it is often used to describe gene-level expression. That is because of the grater 

complexity of quantification at transcript-level resolution, as was described in previous 

section. Even despite this limitation, many tools for accurate transcript quantification 

have been created. In this section I am going to describe a standard workflow for 

measuring gene-level expression using RNA-seq as described in1 and then I will 

introduce some tools, that perform similar task on a subgene-level resolution. 

2.1 Data types used in expression analysis 

In the process of expression analysis files containing distinct information are being 

used and produced19. For many types of information, special file formats have been 

designed, allowing more efficient storage and usage of given data. Each of these file 

formats has its own set of rules, which will be discussed shortly. 

2.1.1 FASTA 

FASTA format is a file format for storing nucleotide, or amino acid sequences. The 

format name is derived from a sequence alignment software package. Each sequence is 

stored on two lines in plain text format. The first line starts with ‘>’ symbol and 

contains information about the sequence, such as ID and description. The second line 

than contains the sequence itself. Multiple sequences can be present in single FASTA 

file. These files are often used for reference sequences, or for storing known sequences 

in a database. 

2.1.2 FASTQ 

FASTQ format is a simple extension of FASTA format. It is also a text file format, but 

in addition to information contained in header and sequence, PHRED quality score for 

each single base is also stored. PHRED quality score of a base call is stored in a single 

ASCII symbol, as each ASCII symbol is associated with a single numeric value. It is 

computed as decadic logarithm of probability, that given base call was an error, 

multiplied by -10. ( QPHRED = -10 * log10(Pe) ) As such, a single sequence in FASTQ 

file is stored on four lines, first two lines are the same as in corresponding FASTA file, 

third line contains only a single character ‘+’ and on the fourth line, the sequence of 

ASCII symbols denoting quality of corresponding base is stored. The FASTQ file 

format has become the standard output format for most sequencing platforms, which 

typically output a single FASTQ file containing millions of short reads with 

corresponding base quality. However, the value of PHRED quality score is dependent 

on the given sequencing platform19. 
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2.1.3 SAM/BAM 

SAM (Sequence Alignment/Map format) is a file format for storing reads aligned to 

reference sequence. A SAM file is a tab-delimited file, that consists of two sections, a 

header section and alignment section. The header section may contain four types of 

information, each stored in a single line starting with the ‘@’ symbol. The information 

is stored in the form of tag : value pairs. The description of each section and possible 

values can be found on the SAMtools website (20, http://www.htslib.org/). The header 

contains information such as name of the reference, ID of the sequence, sequencing 

platform used etc. The alignment section contains sequences (for example all 

sequences from a single FASTQ file). Each sequence is stored on a single line with 11 

or more tab-delimited sections. The eleven mandatory sections include the actual 

sequence that has been aligned, its name (often id of the read from FASTQ file), 

leftmost position in reference, where the read has been mapped, sequence of the read, 

CIGAR string and other fields. A CIGAR string is a compressed notation of match 

status of each base in given read, marking which bases have been matched, or 

mismatched and where were detected insertions and deletions. In order to reduce the 

size of SAM files, a binary version, BAM has been introduced. These files contain the 

exact same information, only in compressed, binary form. SAM/BAM files are typical 

output format of most tools performing alignment of reads to a reference. 

2.1.4 GFF/GTF 

GFF (General Feature Format) and GTF (General Transfer Format) -files are used for 

storing genomic annotation information, typically for reference genomes. GTF format 

is an extension to version 2 of GFF format. While both GFF2/GTF are widely used, 

they are deprecated and Currently GFF version 3 is used the most. All formats are text-

based, tab-delimited files, where each line describes one feature (e.g. gene, exon…) of 

the reference. Each feature has 9 columns, that have to be filled with a value, or with 

the ‘.’ symbol. These values describe: name of chromosome, or scaffold in a form, that 

is used by Ensembl21, source, type of the feature, positions, where the given feature 

starts and ends, relative to the reference, score of the feature, strand, defined as ‘+’ for 

forward strand and ‘-’ for reverse strand, reading frame and attributes in form of tag-

value pairs. 

2.2 Gene expression analysis 

2.2.1 Quality assessment and trimming 

As was mentioned previously, the sequencing using a NGS platform yields a large 

amount of data in form of short reads stored typically in FASTQ files. Each base of 

each sequence obtained has assigned quality score by the sequencing platform. Based 

on these values, the quality of the whole sequence can be assessed and sequences with 

score lower than selected threshold are removed.22 The term “trimming” refers to 

removal of adapter, and other technical sequences, that are not the aim of the 

sequencing experiment. Multiple tools are available for this task, such as 

Trimmomatic23, or fastp24. FASTQ25 is another popular software for FASTA file quality 

http://www.htslib.org/
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control, however it does not perform the removal of low-quality reads and artificial 

sequences. The information provided by FASTQ can be used by another tool to remove 

sequences selected by FASTQ. 

2.2.2 Mapping 

The next step of the analysis is mapping reads to a specific locus in genome, from 

which the particular read is most likely derived from1, based on a provided reference. 

The reference is most often the reference genome of given species in GTF/GFF format, 

but mapping to reference transcriptome is also possible. Reference transcriptome is 

usually represented by a single FASTA file containing all annotated transcripts for 

given species. There are many tools for read alignment/mapping of reads (for example 

TopHat226, STAR27 or BowTie28), each having a slightly different approach, but in all 

of them, an index of either the reference, or the reads is built in order to quickly 

determine a set of positions, where the read most probably is originated from. After this 

a more specific algorithm finds the locus with best alignment to the read. The mapping 

step is typically the biggest bottleneck of every expression analysis in terms of time, as 

finding the ideal alignment for each read is computationally demanding. Also, the 

whole process is complicated by technical noise produced during sequencing and 

biological variability in form of insertions and deletions. Apart from this, present-day 

alignment tools for RNA-seq data are expected to be able to process both single-end 

and paired-end data. Another factor, increasing the complexity of mapping RNA-seq 

reads is the fact, that the DNA, that is being sequenced is derived from mRNA, that has 

already undergone post-transcriptional modifications. Because of that, many alignment 

tools have to be splice-aware to be able to correctly determine the origin of reads, that 

span two different exons, that do not form a linear sequence in reference genome. 

Another possibility is mapping reads to reference transcriptome. This way, the reads 

can be mapped by a splice-unaware tool, as the sequences in reference are also post-

splicing sequences. This approach however introduces more uncertainty because of 

high degree of sequence overlap between transcripts, that are formed from same exons. 

After the mapping is done, the data is usually stored in SAM or BAM files, which 

contain not only the sequence of given read and position of its origin in reference 

genome, but also the information about the alignment and its quality. 

2.2.3 Quantification of reads 

Next step of the analysis is quantifying the amount of reads, that map to each gene. The 

mostly used approach for this task is taking in account every read, that has the same 

sequence as any exon of given gene. This approach however omits reads, which are 

mapped outside of annotated exons. Other approach is taking into account all reads, 

that are sequentially similar to any part of given gene. Both approaches have to 

however deal with reads, that can be mapped to multiple locations, this phenomenon 

occurs mainly with repetitive sequences. These reads are commonly referred to as 

multireads. One approach how to deal with these reads is discarding them and counting 

only reads, that are mapped uniquely. However, this method leads to information loss 

and underestimation of expression of genes containing repetitive sequences. An 

alternative approach is estimating the coverage based on uniquely mapped reads and 

assigning multireads based on such estimation. 
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After counting the reads the results are typically saved in tab delimited files 

containing ids of genes with corresponding counts. After this step a normalization of 

the data typically follows, as raw numbers of reads are biased by multiple factors such 

as length of given gene, or sampling depth of given sample, when performing 

differential analysis. For these reasons, the data is quantified in the form of reads per 

kilobase per million mapped reads (RPKM). To obtain RPKM for a single gene first 

the “per million” scaling factor is computed by summing the total number of reads 

provided for given sample and dividing that number by one million. Next the number 

of reads mapped to given gene is divided by the “per million” scaling factor. This step 

normalizes for sequencing depth of the sample. Finally, the value is divided by length 

of given gene in kilobases, normalizing the read count for gene length.  

 

2.3 Subgene level expression analysis 

When performing the analysis with the goal of quantifying exons, or gene isoforms 

instead of genes, most of the steps are identical to analysis on gene-level resolution. 

The main difference is in the step quantifying reads. In the case of measuring exon 

expression, the task is less complicated, as exons are non-overlapping segments. 

However alternative spice sites and boundaries are often present, which increases the 

variability. This issue is often resolved by dividing such exons into parts and each part 

is then quantified separately4. This approach however can lead to uncertainty, similar to 

that of assigning reads spanning exons present in multiple isoforms to a single 

transcript. 

For transcript expression quantification, multiple tools with different 

approaches have been developed. Many of those implement EM (Expectation-

Maximization) algorithm to decide the transcript of origin for each read29. EM 

algorithm is an algorithm for estimating unknown parameter in given model. In case of 

transcript expression analysis, the unknown parameter is the origin of given read. The 

algorithm is a repetitive procedure, in which the parameter is assigned with a set 

probability, which is then iteratively improved by computing the probabilities of 

observing given data assuming the set value of the parameter30. 

According to an article from Charlotte Soneson31 gene-level expression estimates 

are more accurate than transcript-level. In this article, the Salmon32 tool was used to 

estimate transcript expression and featureCounts33 tool was used to obtain gene-level 

expression estimates. On top of that, gene level expression was estimated by summing 

the transcript expression estimates for all transcripts of a single gene. A dataset with 

known true expression values was used, allowing to measure accuracy of each 

approach. In the end it seems, that deriving gene level expression from transcript 

expression estimates is the most accurate possibility. Measuring the expression of 

transcripts however yields different type of information than measuring gene 

expression. 
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3 Tools 

In this part, I will introduce current tools, that are available for performing expression 

analysis on subgene level. The tools can be categorized based on multiple parameters. 

One option is to divide the tools to those, that perform quantification on already 

aligned reads (alignment-based) and those, that perform analysis on raw, unaligned 

reads (alignment-free). This classification has been used further in this work, but only 

tools, that have their own method for alignment incorporated are considered alignment-

free, as some tools offer wrapper functions to perform alignment, which actually use a 

separate tool for this task. Another way of classification is to divide the tools based on 

the scope at which the expression is being quantified. Most of the tools measure either 

exon expression, or transcript/isoform abundance. Apart from these two categories, 

some tools measure the usage of splice sites, or alternative splicing events, that can be 

derived from the sequenced reads. These tools will be further referenced as event-

based. 

Majority of tools presented here are designed for carrying out differential analysis on 

data, identifying exons, or transcripts, that are significantly more, or less expressed 

between groups of samples. For the purpose of this thesis, the approaches in methods 

for differential expression will not be described in detail, more detail will be provided 

regarding estimating expression of transcripts, or exons, as there lies the greatest 

difference between different scopes of measuring expression. In Table 3.1 summary of 

basic information for each tool is provided. 

3.1 Alignment-based tools 

These tools are not designed to perform the mapping step of the analysis. As such, 

typical input for these tools is aligned reads in SAM/BAM format. 

3.1.1 DEXSeq 

DEXSeq4 is a R/Bioconductor package (current version 1.46.0) for testing for 

differential exon usage in RNA-seq data. As input, DEXSeq requires aligned reads in 

SAM/BAM format aligned using a splice-aware alignment tool. Also, DEXSeq needs a 

file containing the transcript reference in GTF format compatible with genome 

reference used for alignment. The first step of the analysis is “flattening” the reference. 

Based on the provided GTF file, exon counting bins are defined. Each counting bin 

refers to a single exon, or a part of exon, if there are alternative boundaries present. 

Alternative boundaries is a form of alternative splicing, where only a part of exon 

spliced this way may be present in some transcripts, whereas other transcripts contain 

the whole exon. Using these counting bins, expression of each exon is quantified with a 

function from GenomicAlignments34 package or by HTSeq python script provided with 

DEXSeq. In both cases, the reads are associated with an exon bin based on positional 

information stored in the read and counting bin. If the position of the read spans the 

position of a particular counting bin, such read is counted towards this counting bin. 

Different options allow different approaches towards counting reads, that span more 

counting bins. These results are then stored in a table, containing the number of reads 
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aligned to each counting bin. On top of this structure, DEXSeq allows further 

normalization and analysis. It uses generalized linear models to model read counts and 

assumes, that the number of reads for each counting bin is a realization of random 

variable, that follows negative binomial distribution, which can be seen as 

generalization of Poisson distribution. These models are then used in the differential 

analysis. 

3.1.2 JunctionSeq 

JunctionSeq35 is a R/Bioconductor package (current version 1.4.0) for detecting 

differential alternative isoform regulation between samples, that builds on statistical 

methods used in DEXSeq. On top of that, JunctionSeq also detects usage of splice 

junctions and based on these, it is able to detect unannotated isoforms. In order for that 

to be possible, the data has to be processed by a splice-aware alignment tool, that aligns 

reads across novel splice sites, such as RNA-Star27, GSNAP36 or TopHat226. Thanks to 

this property, JunctionSeq is said to perform better, than tools, that do not detect 

unannotated transcripts, as such transcripts can influence the estimation of abundance 

of known transcripts. Based on this principle, accurate measuring expression levels of 

transcripts with incomplete annotation is very difficult and JunctionSeq should perform 

better in such cases than ordinary tools. For input, JunctionSeq requires aligned reads 

in SAM/BAM format and a reference transcript annotation file in GTF format. It is 

recommended to use the same reference, that was used for read alignment. To obtain 

counts, JunctionSeq uses a separate tool QoRTs37, which returns coverage count on 

gene-level, as well as on exon-level and splice junction loci-level resolution. QoRTs 

also calculates variety of quality control metrics on top of all BAM files presented. 

According to QoRTs vignette38, the processing of 1 million read pairs takes around 4-7 

minutes. The methods for detecting differentialy expressed splice junctions are similar 

to those, that are used in DEXSeq for exons. In the default setting, JunctionSeq makes 

use of both junction-level and exon-level counts for differential analysis. 

  Finally, JunctionSeq also offers a robust visualization toolset to make result 

interpretation easier. Visualization may allow estimation of the processes occurring in 

the sample cells, that lead to the observed differential expression. The basic 

Coverage/Expression plots describe expression levels of a single gene between 

condition. In this plot, the coverage of all subunits (exons and splice junctions) is 

described, together with whole gene expression estimation. Visible is also set of known 

exons in the reference, which allows specification of location of each splice junction. 

For reference, a graph from JunctionSeq vignette is presented in Figure 3.1. The graph 

in figure contains expression estimates for each sample, rather than only for each 

condition. 
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Figure 3.1. JunctionSeq graph of normalized counts across all samples. Source: 

JunctionSeq Package User Manual39 

 

3.1.3 DiffSplice 

DiffSplice40 is another tool for detecting differential transcription. The software is 

possibly no longer available, as its website does not exist. However, I included the tool 

in the thesis, because the approach, that was implemented according to the research 

paper is distinct from majority of other tools. Unlike other tools, DiffSplice does not 

quantify annotated isoforms, but compares the expression of alternative splicing 

modules (ASM). The whole analysis starts with construction of a splice graph. This is 

an oriented acyclic graph, where nodes represent an exonic region and two regions are 

connected by an edge if there are any reads, that span both of these regions. This graph 

is build based on reads mapped to reference genome, or it can be built de novo only 

from raw RNA-Seq reads. In this graph, the ASMs are defined as subgraphs with a 

single-entry node, single exit node and multiple possible paths between these two. Each 

ASM represents an observed alternative isoform present in given samples. After all 

ASMs have been found, the expression of each alternative path in ASMs is estimated 
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for each sample. A generalized model, that takes into account not only expression of 

whole exons but takes into account also observed splice junction. For the estimation, it 

is presumed, that the total number of reads originated from a given transcript, that fall 

in a particular segment of the transcript, follows a binomial distribution. Based on the 

estimated expression of ASMs, the estimated expression of the whole gene is computed 

as mean of expression of all ASMs derived from the given gene. 

3.1.4 BitSeq 

BitSeq41 allows estimation of transcript expression and differential analysis using 

Bayesian approach. It was available as R/Bioconductor package (most recent version 

1.40.0, removed from Bioconductor version 3.17). BitSeq expects aligned reads in 

SAM or BAM format and reference transcriptome in FASTA format. For alignment, 

Bowtie28 software is recommended. For estimation of transcript expression levels, a 

generative model is defined, that models the data as independent observations of 

individual reads. The observation depends on a noise parameter and on the relative 

abundance of transcripts fragments. The noise parameter determines the probability of 

a read being regarded as noise and therefore not considered in the analysis. For all 

reads, that are considered valid, the sequencing process is being modelled. In this 

model, another variable assigns reads to transcripts and then the probability of 

alignment of given read to transcript, or transcripts, it was mapped to, is computed. 

These probabilities are then used for computing relative expression of each transcript, 

but also serve as a measure of confidence, which can be used in further analysis. For 

quantifying transcript expression, BitSeq offers two methods. First uses Markov chain 

Monte Carlo algorithm, which uses a collapsed Gibbs sampler and assesses abundance 

of individual transcript based on samples produced this way. The second approach uses 

a variational Bayesian method to approximate the distribution of relative transcript 

abundance. The second approach is said to be much faster and more suitable, when the 

main goal of the analysis is estimating transcript abundance, whereas the first, slower 

method provides better measure of uncertainty, which is useful in differential 

expression analysis. 

3.1.5 rSeqDiff 

rSeqDiff42 is a R package for differential transcript expression analysis. It is built on 

top of rSeq, a set of tools for analyzing RNA-seq data. For estimating expression of 

transcripts, a Poisson model as described in43 is being solved. The model represents the 

sequencing process as sampling of reads independently and uniformly from each 

possible nucleotide. This way, the probability of a read coming from a specific 

transcript is based on length of the given transcript and number of copies of the 

transcript in given sample. The latter parameter has to be estimated. Based on the 

model, the number of reads coming from a specific region of an isoform follows 

binomial distribution, which can be approximated by Poisson distribution. For this 

Poisson model, a likelihood function for computing the likelihood of exons in a single 

gene having a specific expression is defined. This way, the problem, that is being 

solved is maximum likelihood estimation problem, for which numerical methods, that 

have not been further explained in the paper, are being used. RSeq offers quantification 

of reads on both gene and isoform level, both based on a list of transcripts, that serves 

as reference. It contains a mapping tool SeqMap, which allows performing whole 
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analysis of RNA-seq data with only this set of tools. RSeqDiff have not been updated 

since 2015 and official website states, it is still in beta version. 

3.1.6 eXpress 

EXpress44 is a tool for efficient quantification of expression. It attempts to assign 

ambiguously mapping reads to a single sequence. These target sequences can be genes, 

gene-isoforms, or any other type of sequences. EXpress takes aligned reads in 

SAM/BAM format and a FASTA file containing the reference sequences. As such, it 

can be used for other experiments, where the origin of short reads is not certain, such as 

ChIP-Seq, or metagenomic experiments. To estimate expression of targets, an online 

version of Expectation Maximization algorithm is introduced. An online algorithm is 

such algorithm, that processes only a small part of data at given time, before taking a 

next part. In the context of RNA-seq data, this version of algorithm takes only a single 

read, based on which the parameters of the assignment likelihood functions are 

updated. This way the assignment of a single read depends only on the already 

processed reads. The main advantage of this approach lies in the possibility of 

processing a large amount of data without the need of keeping the whole dataset 

approachable in machine memory. As reference, eXpress takes a list of sequences, to 

which the fragments are to be aligned, typically a set of transcripts. Development of 

eXpress has however been stopped in 2017. 

3.1.7 Cufflinks 

Cufflinks45 is a suite of tools for analyzing RNA-Seq data, which does not rely on 

existing gene annotation. One of the steps of Cufflinks is assembly of transcriptome 

directly from presented reads. The input data are fragments aligned by another tool, 

preferably by a splice-aware aligner, where one fragment represents one single-end 

read, or a pair of paired-end reads. These fragments are used to construct an overlap 

graph, based on which the transcripts present in given sample are going to be defined. 

In this graph, each node represents a single fragment, and two nodes are connected, 

when their alignment overlaps in the genome. This way, distinct compatibility classes 

of fragments are defined, each class representing a transcript represented by a path in 

the overlap graph. This allows Cufflinks to estimate abundance of only transcripts, that 

are viable for given sample, as the set of transcripts derived from the overlap graph is 

the minimal set of transcripts needed to “explain” all fragments present. Another 

benefit is the ability to detect novel gene isoforms, or splice-variants, that haven’t been 

yet annotated, but quantification based on existing reference is also supported. After 

assembling the set of possible transcripts, the abundance is estimated using a statistical 

model of the RNA-Seq experiment, similar to BitSeq and other methods. Based on the 

model, likelihood function for computing likelihood of transcript abundance is defined 

and maximum of this function is calculated using a numerical optimization procedure. 

Cufflinks is the name of suite of several specialized tools, that perform the whole 

expression analysis, as well as name of one of the tools used. The tools, that form the 

whole pipeline are Cufflinks, which assembles transcriptomes from RNA-Seq data, 

Cuffmerge, which combines transcriptomes from different libraries (transcriptomes 

created by Cufflinks), for quantifying gene and transcript expression, Cuffquant is 

used, Cuffnorm than performs normalization on the expression estimates and Cuffdiff 

tests for differential expression. 
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3.1.8 QuasR 

QuasR46 is a R/Bioconductor package, that performs analysis of sequencing data 

covering read preprocessing, alignment, and quantification, allowing performing the 

whole analysis with a single R script. The alignment step is performed by the Bowtie28 

tool, but processing of pre-aligned reads by another tool is also supported. For the 

quantification step, QuasR allows specification of different genomic intervals, such as 

genes or exons, which are specified as list of query sequencies. The number of 

alignments, that overlap a given query region is then quantified. Quantification of 

individual transcript abundance is not recommended, as QuasR offers only two basic 

options to resolve ambiguously mapping reads. The first option is counting the read 

once for each region it aligns to, the second option is based on the list of query regions, 

where the order of regions defines their hierarchy and each read is counted only 

towards the first region it aligns to. When performing quantification of genes, by 

default the second approach is used, as the final expression level is computed as sum of 

expression levels of all exons of given gene. For quantification of exon expression 

levels, the first approach is used, which can lead to overestimating expression of exons 

with common sequence. Apart from alignment and quantification, QuasR also contains 

qQCReport function, that creates various diagnostic plots, that can be used for 

estimating the quality of present data. It is possible to visualise quality of alignment, 

but also to measure properties of raw reads, such as nucleotide frequency and read 

quality score. 

3.1.9 featureCount 

FeatureCounts33 is a program for summarizing aligned reads. It is possible to count 

genes, but also other genomic features, such as exons, or promotor regions. Overall 

featureCounts is mainly useful for counting of features, that have low rate of sequential 

similarity, which makes it unsuitable for estimating expression of gene isoforms, but 

useful for measuring exon expression. As input, featureCounts expects aligned read in 

form of SAM/BAM file and a GFF file containing the reference sequence, or multiple 

reference sequences. The workflow starts with creating a hash table with names of the 

reference sequences, for fast determining, which sequence is to be used based on the 

annotation of the read. Then, each reference sequence is divided into 128kb long bins, 

which are further divided into blocks based on the number of features present in the 

particular bin. Each block contains the same number of features and the number of 

blocks in one bin should be nearly equal to the number of features present in these 

blocks. For better understanding, one reference sequence can represent one 

chromosome of the given species and a feature can be a single exon. This data structure 

allows fast localization of the feature, to which given read corresponds. Reads, that 

correspond to multiple features are either ignored, or counted once towards each 

feature, they map to. The whole software is written in C++ programming language, 

which is more time and memory efficient than R or Python. FeatureCounts is available 

as function in R package Rsubreads, or in UNIX package Subreads. 
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3.2 Alignment-free tools 

Some tools choose to avoid the time-consuming step of aligning each read and try to 

quantify expression directly from unaligned reads without pinpointing the exact 

position of their origin. These tools have their own lightweight methods for estimating 

the origin of reads, so the term “alignment-free methods” can be misleading. These 

tools tend to be much faster than alignment-based tools while keeping comparable 

precision47. However, these methods apparently tend to have lesser precision when it 

comes to quantification of small RNA molecules, or RNA molecules, that are 

expressed only in a small quantity48. 

3.2.1 Kallisto 

Kallisto49 is a quantification tool for RNA-seq data, which aims for a high speed and 

quality quantification. The idea is obtaining list of transcripts, that are compatible with 

given reads without mapping each individual base to a specific position. For this task 

Kallisto uses structure called de Bruijn graph. De Bruijn graph is a directed graph, 

where each vertex represents a sequence of symbols of length k. Two vertices are 

connected by a directed edge if the sequence of the first vertex starting at second 

position is the same as the sequence of the second vertex starting on first position and 

ending at position k-1. Each transcript is then represented as a path in de Bruijn graph 

constructed from reference transcriptome. 

Inevitably, some k-mers are going to be associated with multiple transcripts. 

This leads to colouring of the de Bruijn graph, this means, that nodes are assigned 

colours where each colour corresponds to a specific transcript. Number of colours of a 

specific k-mer is then called k-compatibility class and a linear set of connected nodes 

with identical colouring is called a contig. Kallisto then creates a hash table, that maps 

each k-mer to the contig, where the given k-mer is present, along with position inside 

the contig. This structure is called kallisto index. 

Reads are then pseudoaligned by taking the intersection of k-compatibility 

classes of each k-mer in the read and of the corresponding entries in kallisto index. To 

further reduce the time needed for this step, kallisto index also stores the position of 

end of each contig. This way when a k-mer is contained in a contig, Kallisto can check, 

if the last k-mer of the given contig is also present in the read that is being processed. If 

it is, Kallisto presumes that the k-mers between the first hit and the last k-mer of the 

contig are also present in the read and does not perform hash-lookups on these k-mers. 

For quantification, Kallisto uses Expectation Maximalisation algorithm to 

optimise a likelihood function for RNA-seq. The function it uses is: 

𝐿(𝛼) ∝∏ ∑𝑦𝑓,𝑡
𝑡∈𝑇𝑓∈𝐹

𝛼𝑡
𝑙𝑡
=∏ (∑

𝛼𝑡
𝑙𝑡

𝑡∈𝑒

)

𝑐𝑒

𝑒∈𝐸

 

Where 𝐹 is set of fragments and 𝑇 is set of transcripts, 𝑙𝑡 is effective length of 

given transcript and 𝑦𝑓,𝑡 is a compatibility element, that has the value of 1, if fragment 

𝑓 is compatible with transcript 𝑡, or has value of 0 otherwise. 𝛼𝑡 are the parameters, 

which denote the probabilities of selecting fragments from transcripts. The latter part of 
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the equation describes the likelihood with help of equivalence classes. Here the number 

𝑐𝑒  stands for number of counts in equivalence class 𝑒 . This way it is possible to 

perform the computation on smaller amount of data, as there are usually only hundreds 

of thousands of equivalence classes, but tens of millions fragments. 

To assess the reliability of abundance estimates, Kallisto also performs 

bootstrapping. Bootstrapping is a statistical method, that uses newly generated data 

based on the observed data to estimate properties of the observed dataset. Kallisto 

performs this based on the equivalence class counts. Once the pseudoalignment of the 

N original fragments is completed, N artificial counts are generated. Each count 

belongs to an equivalence class and the probability of a count from a given class being 

sampled is proportional to number of observed fragments belonging to that equivalence 

class. Using the EM algorithm, Kallisto than computes the transcript abundances of the 

new samples. The generated samples are then stored in a compressed file, which can be 

used by other tool, sleuth50 in downstream analysis. 

3.2.2 Salmon 

Salmon32 is second alignment-free tool for estimating transcript abundance. Unlike 

Kallisto, it offers the possibility to quantify mapped reads in the form of SAM/BAM 

file, apart from being able to perform its own version of fast mapping-like procedure, 

called quasimapping. For both procedures, Salmon has to be provided with reference 

transcriptome containing transcripts, that are to be quantified, same as Kallisto. When 

quantifying the mapped reads from SAM/BAM, the reads have to be mapped to the 

same transcriptome, that is provided. Salmon uses dual-phase statistical inference 

procedure, in which a probabilistic model of the sequencing experiment is build. The 

first phase of the procedure estimates initial expression levels and model parameters 

using an online algorithm. The second phase then refines the expression estimates. 

Using this model, Salmon claims to consider information not used by Kallisto in the 

quantification process. With this information Salmon is able to correct for not only 

sequence-specific bias, but also GC-content and positional biases. 

For mapping, similarly to Kallisto, salmon also prepares a data structure, that 

helps it to determine the location of each read. Salmon does this by creating a suffix 

array from the reference transcriptome. Suffix array is a sorted array of suffixes of the 

given text. The suffixes are ordered in alphabetical order and are stored in the form of 

indices referring to the original text, which allows it to be more memory efficient, than 

for example suffix trees, another data structure that can be used for the same tasks. 

Suffix arrays are often used in data compression and text to text comparisons. Apart 

from suffix array salmon also creates a hash table, that maps k-mers of sequence to 

corresponding positions in the suffix array. 

The mapping is than performed in several steps. First, the read is scanned from 

one direction until a k-mer, that is present in the hash table is found. From the hash 

table, the range of all suffixes, that contain the specific k-mer is retrieved. It is an 

interval thanks to the fact, that the suffixes in the suffix array are sorted. Next, starting 

at the end of found k-mer, the longest part of the read, that exactly matches the 

reference suffixes is found. This section is called the maximal matching prefix (MMP). 

After finding a mismatch, salmon skips ahead 1 k-mer and repeats the process, until the 

end of the read is reached. Finally, the set of transcripts, that contain all MMPs found 
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are considered to be the mappings of given read. The output of the mapping step is not 

only list of transcripts, from which the read likely originated from, but also the 

orientation of the read and the positions of the transcripts in reference transcriptome. 

These information are used later during quantification. 

 

Name Approach Reference used Input data type 
Year 

released 
Citation 

BitSeq Isoform-based Genome Aligned reads 2012 41 

Cufflinks Isoform-based None /Genome Aligned  reads 2010 45 

DEXSeq Exon-based 
Transcript 

reference 
Aligned reads 2012 4 

DiffSplice Isoform-based None Aligned reads 2013 40 

JunctionSeq Exon-based Genome Aligned reads 2016 35 

Kallisto Isoform-based Transcriptome Raw reads 2016 49 

QuasR Exon-based Genome Aligned/Raw reads 2015 46 

Salmon Isoform-based Transcriptome Raw reads 2017 32 

eXpress Isoform-based Transcriptome Aligned reads 2013 44 

featureCount Exon-based Genome Aligned reads 2014 33 

rSeqDiff Isoform-based Transcriptome Raw reads 2013 42 

Table 3.1 Methods overview 

  



25 

 

4 Results 

I have tested three tools used for subgene-level expression analysis, DEXSeq (v. 1.40), 

Kallisto (v. 0.46.2) and Salmon (v. 1.9.0). The tools were chosen because they are of 

the most cited tools in studies related to expression analysis. The data used for this 

testing was set of RNA-seq based expression values of childhood acute lymphoblastic 

leukaemia (ALL) patients. Acute lymphoblastic leukaemia is a type of cancer, where a 

large number of undeveloped lymphoid cells is being produced. It is also the most 

frequent type of childhood cancer51. A number of genetic markers associated with 

different types of ALL has been found, allowing better diagnosis and treatment 

selection. RNA-sequencing plays a key role in detecting fusions of genes, or deletions, 

which can act as drives for development of ALL52. The advantage of using RNA-seq is 

the ability to detect fusions, that have not been previously annotated as clinically 

active. Apart from this, detection of up- or down-regulation of gene expression can 

carry a valid information about mutation in regulatory sequence responsible for the 

change in expression. 

All scripts used for this part of thesis are available on my Bitbucket site 

(https://bitbucket.org/klodaf/kloda_bcl/src/master/). Because of the nature of data used, 

it is not possible to provide the data. 

4.1 Materials and methods 

The data set from 16 ALL samples were provided by Department of Pediatric 

Hematology and Oncology, 2nd Medical Faculty, Charles University and Motol 

University Hospital. 

Reads were sequenced by NextSeq platform (Illumina, USA, San Diego) and 

aligned using TopHat2 (version 2.1.1) to GRCH37.75 Human reference genome. For 

each sample, between 84 - 244 million reads were provided, with mean of 164,690,544 

and median 159,572,607. All files underwent quality control procedure using FastQC 

program. Based on this procedure, mean of base quality across all positions of all reads 

was higher than 30. According to QualiMap software, on average 92% (with median 

92.25%) of reads were successfully aligned to reference genome, with 45.7% of reads 

being duplicates on average (with median 44.12%). 

For each sample, two FASTQ files containing raw paired end reads and single 

BAM file containing aligned reads were provided. Salmon and Kallisto accept raw data 

in form of FASTQ file, while DEXSeq expects already aligned reads in SAM/BAM 

file format, as DEXSeq does not cover mapping of reads. 

4.1.1 Reference 

As a reference, Kallisto and Salmon used human GRCh37.p13 transcriptome provided 

by Ensembl21 in form of FASTA file containing 180253 separate transcripts. DEXSeq 

used human GRCH37 reference genome transcript annotation also from Ensembl, 

quantifying 644359 counting bins (exons, or parts of exons). 

https://bitbucket.org/klodaf/kloda_bcl/src/master/
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4.1.2 Methods 

Each tool (Kallisto, Salmon, DexSeq) was run by a separate R script. The structure of 

all scripts is similar, as each method needs a form of reference and a path to directory 

containing input data. The scripts were written so that they can be easily run with only 

changing the input data path. All methods were run with default setting. 

4.2 Results 

Running time of Kalisto (5.5 hours) and Salmon (71 minutes) was significantly lower, 

than DEXSeq (21.8 hours) and Salmon turned out to be even faster than Kallisto. As 

DexSeq accepts SAM/BAM files as input, the reads had to be mapped using an 

alignment tool. This step was not included in the running time of DexSeq. Based on 

this, it is obvious, that the difference between processing speed of alignment-based 

method and alignment-free methods is truly significant. 

Kallisto and Salmon both provide output in form of tab-delimited table, where 

each row contains a single transcript, its length, number of reads that mapped to this 

transcript and normalized expression of given transcript. The expression is normalized 

to transcripts per kilobase million (TPM) units. This normalization considers length of 

given transcript and sequencing depth of the whole sample similarly to RPKM. The 

computation of TPM is similar to computation of RPKM. To obtain TPM, the number 

of mapped reads is first divided by length of given transcript in kilobases and then by 

“per million” scaling factor. In computation of RPKM those two steps are in the 

opposite order.  

Because the output of both tools is the same, direct comparison between these 

two methods is possible. Despite having the exact same reference file, results provided 

by Salmon contain 167,268 transcripts, whereas Kallisto provides estimated expression 

of all 180,253 transcripts provided. In defaults setting, all transcripts, that are 

sequentially identical to another transcript are removed by Salmon during index 

creation. 

Results of both methods can be seen in Figure 4.1. Results from both methods 

were highly correlated (average correlation coefficient is 0.99). Each dot in the graph 

represents a single transcript. The scales are transformed by common logarithm, 

because of large number of low values. To perform log transformation, transcripts with 

zero value from at least one method have been removed. Mean value of number of 

transcripts removed this way for a single sample is 80,729. Majority of removed 

transcripts had estimated expression value 0 in results provided by both tools, the 

average is 60,040 of such transcripts per sample. Interestingly, Salmon had identified 

significantly more transcripts as non-expressed, despite these transcripts having a 

positive value in results provided by Kallisto. On average 16,978 of such transcripts 

per sample has been found. On the other hand, only 3710 transcripts on average have 

been estimated to have zero counts by Kallisto, where Salmon had estimated a different 

value. The average values have been computed as arithmetic mean. As can be seen 

from the graph, the results differ more in smaller values. Further differential analysis is 

necessary in order to determine importance of these differences. 
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Figure 4.1. Comparison of expression levels estimate by Kallisto and Salmon 

To compare DEXSeq results with the other tools, it would be best to have the 

expression estimates transformed to a common level, for example to gene-level 

expression, as it is not possible to determine transcipt-level expression from exon-level 

expression and vice versa. To provide a comparison of both approaches, I present 

estimated values for gene NRAS (Ensembl ID: ENSG00000213281). The gene is a 

member of the Ras gene family and codes the NRAS enzyme. This is a gene composed 

of 7 exons and has only 1 annotated transcript, which is composed of all 7 exons 

present. Thanks to that, the transcript-level estimate provided by Kallisto and Salmon 

can be expected to have the same value as the expression values for all 7 exons 

summed. Results of this comparison can be seen in Figure 4.2. Each histogram 

represents a single sample. The values are in reads mapped to the given transcript, or 

exons. 

 

 
Figure 4.2. Histograms of expression values for NRAS gene by tools 
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It is visible, that both isoform-based tools offer more similar results and that the 

values provided by DEXSeq differ from those provided by Kallisto and Salmon, 

mostly yielding slightly larger values that the two isoform-based tools. To allow 

quantitative comparison, I have computed means of difference between each pair of 

tools. The mean difference of values between Kallisto and Salmon is 206.3125 reads, 

with median of 89.50, mean difference between Kallisto and DEXSeq is 432.1875 

reads, median 345.5 and mean difference between Salmon and DEXSeq is 619.5 reads, 

with median 423.5. As the values differ significantly between samples, the numerical 

values of overall averages are not very informative, but it illustrates the difference 

between tools. 

As final comparison, a density graph describing the distribution of values 

produced by all method is provided in Figure 4.3. It is obvious, that the distributions 

are quite similar, with Salmon and Kallisto showing grater similarity. Unfortunately, it 

is impossible to objectively evaluate precision of each tool due to the lack of known 

ground truth. 

 
Figure 4.3. Density plot of result values 
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Conclusion 

Expression analysis is an important step in number of different experiments. Even 

despite its importance, a single best approach for analysis of related data has not been 

decided. Analysis of exon and isoform expression both offer an additional level of 

information compared to gene expression analysis, which may be helpful in many 

fields of study, but may not be necessary in others. Additionally, measuring expression 

on level of individual transcripts introduces greater uncertainty in the analysis of 

sequencing data, but apparently this setback has been well handled with the usage of 

statistical models. 

The range of tools currently available for expression analysis is quite large and 

none has been proven to perform significantly better than the others. Development of 

so-called “alignment-free” tools such as Kallisto or Salmon offers the opportunity to 

significantly reduce running time needed for the analysis. However, the older and 

proven alignment-based approaches remain as a viable option for many experiments. 

By testing three selected tools, I have illustrated, that even despite each tool being 

different, the results are quite similar. The greatest difference between selected tools 

has proven to be the time necessary for the analysis, in which the alignment-free are 

decisively superior. 
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Attachments 

kallisto_analysis.R 

R script that performs analysis using Kallisto 

DEXSeq_analysis.R 

R script that performs analysis using DEXSeq 

salmon_analysis.R 

R script that performs analysis using Salmon 

comparison.R 

R script used to produce all comparison between results created by Kallisto, Salmon 

and DEXSeq. Produces all graphs present in Results section of this thesis. 


