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Introduction
Gregorian chant is a body of monophonic and unaccompanied vocal music con-
sisting of only text and melody. Gregorian Chant has been the preferred music
of the Roman Catholic church since the Early Middle Ages up until today and
has also diversified into concert performances and recordings in the later 20th
century.

Why do we discuss chant melodies together with statistical methods? Since
Gregorian chants were originally an oral tradition, singers had to memorize thou-
sands of melodies. At least until the broader acceptance of staff notation in the
2nd half of the 11th century, only one person, the “cantor”, would likely have
a written approximate sketch of the melody1 available during a performance in
liturgy, if at all. Memorizing numerous melodies prompts the question of how
to remember them effectively. From this perspective, it makes sense to examine
Gregorian chant using statistical methods.

The sketches, and later precisely notated melodies, were gathered in manuscripts
such as graduals or antiphonaries. Each parish, monastery, or other ecclesiastical
institution would be expected to have these liturgical books, and many of them
have survived to this day. However, besides these books used for performance,
we know of a different type of book: the tonary. In tonaries, the repertoire was
structured not in order of performance but according to the relationships be-
tween the melodies themselves, thus offering a window into how the repertoire
was structured to promote better recall. It raises the question of whether there
was any system of melodic units describing the specific chant that helped to
memorize all chants for the whole liturgical year. Certain types of chants are
even limited to a small number of possible melodies. Musicologists have also
observed that specific melodic phrases are frequently repeated (Ferretti [1934],
Helsen [2008], Levy [1970]). This compositional nature of melodies is also ob-
served in monodic liturgical repertoires of other cultures (Nuttall et al. [2019]).
The theory of centonization was developed, which describes the method of com-
position as the assembly of melodic units into a unified entirety, resulting in a final
melody (Ferretti [1934]). However, it is still unclear to what extent established
melodic units were used (Hiley [1993]) and, if so, whether particular rules were
applied to compound them into the final musical composition (Treitler [1975]).
Although Treitler [1975] criticized centonization theory as impractical, we should
not ignore the possibility of the existence of frequently occurring melodic motifs,
even though they may not cover the entire composition. Each occurrence of a
frequently recurring melodic unit could be encoded into a single piece of informa-
tion instead of memorizing all the tones contained within the motif. Each such
melodic unit would thus reduce the amount of information the singer would need
to memorize, which would facilitate the entire process. Therefore, we believe it is
a valid avenue of research to search for such units, which would allow the melody
to be compressed into fewer components needed for memorization. This prob-
lem could be described as a melody segmentation, where the melody parts that
don’t contain any of the frequent melodic motifs will be segmented as single-tone
segments. In contrast, the frequent and strong melodic motifs will be segmented

1This system of notation was called neumatic.
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as one component, including all motif notes. Considering memory efficiency as a
guiding principle for segmentation quality leads to unsupervised methods.

How individual chants are arranged and linked by specific final and initial
melody phrases is closely tied to chant modality. Each Gregorian piece belongs
to one of eight modes, which is an analogy of today’s major (Ionian) or minor
(Aeonian) music scales. Medieval music theory elucidates the modality of chant
by utilizing the melody’s initial and final notes and ranges to classify the mode.
The empirical concept was slightly different, and the given definitions were not
always fulfilled. It was not until the 11th century that modal theory and practical
concept were closely related and interconnected, as melodies were often composed
to be consistent with theory, just as theory was adapted to empirical elements and
observations from oral tradition. The empirical concept, for instance, shows that
chants in books called tonaries were primarily organized according to modes,
forming distinct melodic families. This modal categorization already provides
a system for memorizing chant melodies. Therefore, the question arises as to
whether each mode should have a separate set of frequent melodic units in case
of their existence. It would then be easier to memorize familiar melodic motifs
within each mode separately and be able to combine them correctly, which would
also facilitate the memorization process. Furthermore, it should be then easier
to classify the mode of a chant based on its familiar and frequent melodic motifs.
The chants within one mode are more similar and share more characteristics with
each other than with other chants from other modes. Therefore, it’s essential
to consider and analyze mode behavior while finding the potential best melody
segmentation.

To date, there has been no research on unsupervised segmentation of Gre-
gorian chants. It is not known how such a statistically motivated segmentation
could aid in understanding chant modality, but it is an idea enticing for chant
scholarship. Consequently, no known evaluation score can accurately measure
the quality of chant segmentation. However, there are several similar segmen-
tation problems that many researchers have already explored, and we will build
upon them. In this work, we will mainly focus on Bayesian methods. Although
neural networks can be more powerful, they usually require much more data for
the training process. Furthermore, there is no straightforward way of comput-
ing predicted segmentation probability, which could be essential since there are
no gold data on Gregorian chant segmentations. We only have data on unseg-
mented melodies of two types of chants - antiphons and responsories. Antiphons
are shorter and more straightforward, while responsories are longer and more
complex. We aim to design multiple evaluation metrics that describe the given
problem from different perspectives. Some score functions and observations will
be focused on modality. Others will be exploring our results more generally.
As there is uncertainty in finding the correct melody segmentation, and there is
no certainty that such segmentation even exists, our work focuses primarily on
determining the properties of chants regarding our unsupervised approaches.

In this study, our main objective is to explore the existence of melody segmen-
tation into smaller units. What would such a segmentation look like if it existed?
Is Cornelissen et al. [2020b] right that the segmentation based on the chant’s text
is the optimal approach? Are the potential melody segments associated with
the chant’s mode? These are the specific questions that we will address in our
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research.
The structure of this work is as follows. In Chapter 1, we will provide a

theoretical background that covers the history and musical aspects related to
Gregorian chants. Then we will describe the statistical background in Chapter 2.
Chapter 3 will give an overview of existing research on Gregorian chants and
other unsupervised segmentation tasks that could be applied to this area. In
Chapter 4, we will describe and analyze the datasets used in our work, including
any modifications and filtration. Chapter 5 will define our evaluation metrics
and explain their motivations. Chapter 6 will introduce various models we use
for unsupervised segmentation. In Chapter 7, we will compare the segmentation
results of these models with baselines. Finally, we will conclude by reviewing the
work done and discussing possible future directions for research in this area.
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1. Gregorian Chant
An indispensable part of Roman Catholic Church services was monodic music
called Gregorian chant1. Thousands of chants are still preserved, although a
large part has not survived at all. The music genre is called after Gregory the
Great, pope active in the years 590-604, but his actual merits are unclear. On
the other hand, there are still a lot of further details about Gregorian chants that
are already known. Many of them are described by Hiley [2009], and we will
summarize that work in this chapter, primarily focusing on information related
to our task.

Gregorian chant is a type of liturgical chant sung during Christian services.
The liturgy stands for a cycle of services and feasts, and it encompasses everything
performed in both major types of liturgy: the Mass and the Divine Office. (In
Latin Christian worship, the term Office is used in the context of Office hours;
the detailed difference between Mass and Office will be shown in Section 1.1.)
The purpose of chant within liturgy is to express sacred Latin texts ceremonially
and formally. The way how soloists or choirs sang chants related to the sacred
performance space. There were symbolic significances of most of the details in
Christian worship. The entire ritual, encompassing all its details and symbolism,
as well as the chants with their texts, held greater importance than the meaning
of the texts themselves. The lyrics usually conveyed messages of praise, gratitude,
supplication for God’s mercy, or recollection of significant events in the history
of salvation. The whole cycle of services was quite complicated, especially since
the Roman Emperor Constantine the Great (324-37) declared Christianity as the
state religion. The services took place every day of the year. Each day featured
various services with unique structures and content. But not all days were equally
important. For instance, Sundays were the most important days during the week.
Also, days related to Christ’s life were more important than others. Days of
commemorations of holy men and women were also more significant. But the
complete cycle of services also includes most of the regular days and parts of
their nights.

The position of a chant in liturgy dictates to which genre it belongs: antiphon,
responsory, introit, gradual, etc. Each genre implies a certain form and style,
especially in terms of complexity. Some genres of Masses or Offices have highly
ornamented, perhaps virtuosic melodies. Then the understanding of the chant’s
lyrics is secondary. On the other hand, there are parts of services intoning a
text on a single note with some occasional modifications - usually at the ends
of sentences or verses. This pertains mainly to readings from Bible, prayers, or
psalms. In between these extremes, there are antiphons, one of the Office chant
genres, that are more complex than the single-tone chants, but its melodies are
still not that complicated, so the text is entirely understandable.

Particular texts don’t have to be sung with always the same melody. The
way they are interpreted depends on the liturgical context. Similarly, melodies
can be utilized for more than just one text. Furthermore, some of the melody
phrases are characteristic parts of particular chant genres or of the modes that
each chant is composed in. Some melodic units are therefore repeated more often

1https://www.youtube.com/watch?v=WkjgycIb2J4&ab_channel=TopClassicalMusic
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than others. The mode of a chant can, from the music-theoretical perspective, be
loosely likened to the major and minor tonalities, but it is not all that tonality is.
Section 1.2 describes the modality in more detail. There are also other aspects
of compositional technique. It has been observed that in many melodies, typified
melodic phrases are used. Many chants were formed within a framework that
followed the structure of the text. But also chants followed the melodic move-
ment norms. We will look at the Chant structure in Section 1.3. Nonetheless,
these elements represent merely fragments of the overall composition, while a
large part of the compositional technique is still unexplained. Discovering and
describing the method would help to explain how singers learned, memorized,
and performed thousands of melodies. But what’s more, it would also be crucial
to understanding thousands of melodies and how these melodies were transmit-
ted across generations, especially with inexact notation during the early Middle
Ages, as we will discuss in Section 1.4.

1.1 Mass and Office
Every day, worship took place filled with chants, following the cycle of the Litur-
gical year. The content of worship was affected by seasons, periods, and special
holidays commemorating important events or significant individuals. Services
were performed most of the day and extended into the night. A significant aspect
of these services encompassed prayers and lessons, which are readings from sacred
texts such as the Bible. Additionally, chants of Offices and Masses were part of
services as well. Mass served primarily as an expression of gratitude, comprising
distinct and unique components. On the other hand, the chants of hours of the
Divine Office were more contemplative and exhibited notable similarities among
them. Although there were some local variations, the daily service cycle’s order
of offices and masses was generally consistent across different times and locations.

1.1.1 Mass
The Mass, being the most common form of worship, serves primarily as an expres-
sion of gratitude and a profound encounter with the risen Christ, commemorating
His institution of the Last Supper. Within the structure of the Mass, various ele-
ments such as prayers, lessons, and chants are incorporated. Some chants, namely
Kyrie, Gloria, Credo in unum Deum, Sanctus, Benedictus, Agnus Dei, and Ite
missa est, maintain consistent texts across different days. These are called the
ordinary of mass. Then, there are chants with different prescribed texts for each
day of the liturgical year, collectively called the proper of mass. The mass be-
gins with the introit chant, which text varies depending on the liturgical context,
symbolizing the entrance of the priest and their assistants into the church, pro-
ceeding towards the altar. Other chant genres with adaptable text, such as the
gradual, alleluia, tract, and sequence, are often performed together. But it is not
strictly mandated. Another chant genre without a fixed text is an offertory. Its
role in the Mass is to begin the sequence of the performances leading up to the
communion, wherein devout followers partake in the consumption of bread and
wine. This communion is the most significant aspect and essential part of the
Mass.
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proper chants ordinary chants prayers lessons

1. Introit

2. Kyrie

3. Gloria in excelsis Deo

4. Collect

5. Epistle

6. Gradual

7. Alleluja

8. Tract

9. Sequence

10. Gospel

11. Credo in unum Deum

12. Offertory

13. Secret

14. Preface

15. Sanctus - Benedictus

16. Canon

17. Lord’s Prayer

18. Agnus Dei

19. Communion

20. Postcommunion

21. Ite missa est

Figure 1.1: Table of Mass parts and their order. Both chant types are colored.
Proper chants are green, while ordinary chants are highlighted in blue color.
(Hiley [2009])

1.1.2 Office
The Office, also called the liturgy of hours, consists of a daily cycle of eight
services. The initial Office, known as Vespers, starts the daily service cycle before
nightfall. (Traditionally, the day starts at sunset, not at midnight.) Vespers is
followed by Compline. The Night Office, which is the longest of the hours, takes
place during the night. Before drawn, there is a Lauds office, the most significant
hour of the day. Subsequently, additional office hours Prime, Terce, Sext, and
None, followed.

The Office, similar to the Mass, encompasses chants and prayers. Lessons
are part only of the Night Office. The Office comprises various chant genres,
such as antiphons, responsories, and hymns. These possess musical and melodic
allure, particularly the grand responsories of the Night Office. But still, the
psalm - chant performed similarly to lessons - holds a prominent position among
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the distinctive genres in the Office. Psalms are intertwined with antiphons in a
structured manner: the antiphon is sung, followed by the performance of several
psalms, and finally, the repetition of the initial antiphon. In later times, as musical
notations became more prevalent, psalms were frequently indicated simply as a
differentia at the end of the antiphon’s score sheet. The differentia represents the
concluding melody of the psalm, providing precise instructions on how the entire
psalm should be performed since it is not a complicated chant genre. The exact
number of psalms sung between antiphons is not strictly defined. It depends on
the day’s significance, location, or specific time. Additionally, even the entire
antiphon-psalm-antiphon structure is usually repeated multiple times.

For each day, many antiphons and psalms were required. On a typical day,
a minimum of twenty antiphons were prescribed. The number of responsories
was lower, with at least three or four short responsories and an equal number
of great responsories. The process of assigning specific pieces to particular days
was quite complex. Antiphons, short responsories, and hymns were grouped into
collections associated with each weekday. In addition, 150 psalms from the Book
of Psalms were divided into individual days so that all of them could be sung each
week. The situation became more complex regarding the great responsories of the
Night Office. Sets of great responsories were exclusively designated for Sundays
and feast days, while ordinary weekdays often repeat the great responsories from
the Sunday set. In total, there were approximately 140 distinct antiphons, 30
different great responsories, and eight separate short responsories for the week.
However, each special occasion brought a unique set of musical pieces, replacing
the corresponding items from the regular weekday set, which was a common
occurrence. Overall, there was a repertoire of over 2000 antiphons and over 800
responsories for the whole liturgical year, which the singers – in this case, all clergy
– had to memorize. (And let’s recall that these numbers don’t even include the
hundreds of chants for the Mass.)

1.2 Modality
In the early ninth century, the concept of modes in the context of Gregorian chant,
which are categorizations of pieces preceding, by several hundred years, the major
and minor scales of today, began to be practically used and explained in various
historical records. However, there were significant differences, as eight modes
were used instead of two. A more apt comparison would be with modes used
today, and not only in jazz music, where they serve as a framework for building
melodies and improvising over various chords and harmonic progressions. These
encompass seven scales, all sharing the same number of sharps or flats, i.e., tones.
The only variation lies in the permutation of the scale, which means the starting
note is always distinct. There are other musical cultures using more strict modal
systems, such as Indian ragas, Turkish maqam, or the Indonesian gamelan.

In Gregorian chants, the modes function in a similar manner. There are eight
modes, all defined in medieval theory as octave-size selections on what we know
as white keys on a keyboard. The medieval definition was expressed in terms of a
final tone (d, e, f, or g) and range in relation to the final (either an octave up or
a fifth up and a fourth down). This was a heritage of the tetrachord-based music
theory of antiquity, where four tones filling a perfect fourth were the building

9



Figure 1.2: Example of the antiphon, its psalm starting with the Ps. 35, and
again repeated the antiphon from the beginning. The differentia is a melodic
unit at the end of the psalm. Psalms are usually not part of tonaries. They are
encoded at the end of antiphons as differentiae. (Hiley [2009])
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block: an octave was achieved as two such tetrachords put adjacent to each other
by a tone. Thus, the difference between modes lies in the permutation of the
scale, or rather in the placement of the two semitones of the “white key” scale in
relation to the final note. The eight modes are grouped into four pairs, each with
a different final tone. One mode in each pair is referred to as authentic, while the
other is called plagal, distinguished at least by their respective range of tones. The
exact range is not precisely defined. There is only provided the approximation
based on chant practice containing several exceptions (Hiley [2009, p. 168]). The
names of the modes originated from Byzantine terminology, the oktoechos, but
by the end of the ninth century, other terms inspired by Greek music theory were
also observed, most notably in the Alia musica2 treatise. Table 1.1 provides a
summary of the fundamental properties of all eight modes. It is important to
note that the finalis and range data in the table are based on chant practices,
representing approximations rather than strict rules.

tonaries, Aurelian, etc. Alia musica finalis conventional range
1 protus authentus Dorian D C-c
2 protus plagalis Hypodorian D A-a
3 deuterus authentus Phrygian E D-d
4 deuterus plagalis Hypophrygian E C-c
5 tritus authentus Lydian F F-f
6 tritus plagalis Hypolydian F C-d
7 tetradus authentus Mixolydian G F-f
8 tetradus plagalis Hypomixolydian G C-d

Table 1.1: Summarization of modes and their tonary names, Alia music names,
final tones, and ranges by Hiley [2009]

Figure 1.3: Mode scales with the colored finales. Modes are more complex than
scale definitions, as we will show later in this work.

The modal system plays a crucial role in understanding the significance and
functions of tones in melodies. Each chant was composed in a specific mode, facil-
itating better categorization of chants and aiding in their more accessible learning

2https://www.oxfordreference.com/display/10.1093/oi/authority.
20110803095402443
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and memorization. The organization of individual chants into modes (and their
subcategories) is known most prominently from a category of chant books called
tonaries. Furthermore, in many churches, chants in the repertoire were grouped
according to the mode associated with a particular day. For example, it was quite
common to sing chants of the first mode on the first Sunday, followed by chants
of the second mode on the subsequent Sunday, and so forth (Hiley [2009, p. 169]).

One possible reason for developing modes could be establishing connections
between antiphons and their corresponding psalms, or responsories and associ-
ated verses. It was common practice for each psalm to be sung mainly in a specific
tone assigned to its mode. For each psalm tone (which also means for each mode),
a limited set of possible psalm cadences existed. Therefore antiphons were sec-
ondarily grouped in tonaries by these cadences of related psalms. The grouped
antiphons shared similar melodies, thereby forming distinct melodic families. One
could anticipate the psalm tone and its cadence by learning these melodic groups.
Responsories were slightly more complex, but their verses sung after the lessons in
the Night Office were similarly assigned a specific tone based on the mode. This
is a practical perspective of modality as a principle of repertoire organization,
potentially useful for memory, which had not much to do with the theoretical
perspective until at least the 11th century. The idea that established melodic
units are related to modes, or that each mode could also be expressed as a “glos-
sary” of established melodic units, comes from this empirical perspective.

Despite the attempt at precisely describing the modal theory, it is essential
to note that many chants did not strictly adhere to these rules. Some theories
claim that these are just mistakes of the singers, who couldn’t remember all the
notes the same way and modified some notes a bit. In some cases, attempts were
made to correct the melodies. Additionally, when new chants were composed
for a particular occasion just established, they often aligned more closely with
described modal rules.

1.3 Chant Complexity
As already indicated, the Gregorian chant was built on a complex system that in-
cluded more than just modality. The significant characteristic of chant melodies
also lies in their texts. Chant texts draw inspiration from biblical texts and
Church Fathers’ commentaries. While the chants primarily incorporate para-
phrased or quoted lessons, their meaning deviates slightly from the original lessons.
Chant texts often include additional biblical passages or entirely new individual
thoughts. However, the purpose of chant texts is more about continuing the nar-
rative of the Bible rather than delivering sermons. It is important to note that
each chant is not an isolated component but is interconnected with other chant
texts. For example, responsories often respond to preceding parts of the service,
and so on.

The text of the chants is connected to the melodies in some way. The end
of each textual phrase often corresponds to one of the well-known cadences. As
mentioned earlier, these cadences are closely tied to the chant modes. However,
composers faced the challenge of aligning melodies and texts throughout the entire
chant. In simpler pieces like antiphons or hymns, each text syllable was matched
with a single tone. More complex chants such as responsories, graduals, tracts,
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Figure 1.4: The beginning of the tonary, the differentia example and its list of
antiphons (Tonary of Regino of Prüm).
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Figure 1.5: The beginning of one of Introits, an example of two differentiae and
their lists of antiphons and their melodies that belong to the first mode, protus
authentus (Tonary of Regino of Prüm).
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or offertories featured melismas, melodic passages spanning multiple tones sung
within a single syllable of the text.

Another notable feature of melodies was the use of refrains or repetitions.
Conversely, there were also melodies of a more straightforward character. Ref-
erence books categorize chants based on their level of simplicity. That could
suggest that more complex melodies may have evolved from simpler ones over
centuries. However, it cannot be definitively proven. It is possible that complex
and straightforward pieces were developed and employed approximately simulta-
neously.

The structure of the antiphons in Office hours is relatively simple. As previ-
ously mentioned, each antiphon is repeated twice, with a psalm sung in between.
The antiphons themselves are generally short, typically consisting of around four
phrases. On regular weekdays, many antiphons are composed even of just two
phrases. Specific melodic phrases are more commonly used than others. They
only had to align with the structure and content of the accompanying text. How-
ever, some of these more familiar melodies may sometimes be slightly modified.

Antiphons and responsories share many similarities but also have some differ-
ences, particularly in melodic richness. A responsory consists of two parts: the
response and the verse. The response initiates the chant, followed by the verse,
and then the second part of the response is repeated at the end. This struc-
ture is reminiscent of antiphons, which frame psalms. Both responsory verses
and psalms employ characteristic tones for recitation and feature final cadences.
Furthermore, responsory verses are divided into two halves, each with its own
distinct structure. For example, each half may have different reciting tones. How-
ever, responsory verses still tend to have more complicated melodies compared to
psalms. Responsory responses are longer than antiphons. They typically consist
of six phrases that are often organized in two-phrase periods. Similarly, there
are certain melodic phrases in responsories that are commonly used, although
they may be modified to accommodate variations in the number of text syllables.
Nevertheless, the final cadences in responsories are generally preserved without
significant alterations.

1.4 Oral Tradition
From its inception, Gregorian chant relied on oral tradition. The earliest chant
books emerged in the late eighth and early ninth centuries but did not include
specific melodic notation. Instead, they featured neumes, symbols indicating the
number of tones per syllable, the melodic direction, and occasionally hints of
rhythm or stress. They encoded just the shape of the melody rather than the
exact pitches, acting thus likely as memory aids. Pitches started being notated
exactly with the advent of staff notation in the mid-11th century. However, these
books still primarily served as teaching aids for chant cantors. Regardless of
the availability of such books, singers throughout the middle ages have had to
learn chants by memory. While many chants have melodies similar to each other,
especially within the “melodic families” found in individual modes, the melodies
are still unique and do require memorization individually.

Historical records of weekly tables were created to outline the responsibilities
of all singers. These tables divided the chants of the week among the performers,
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making it easier to memorize or perform difficult pieces. However, the number
of chants that singers had to learn was still enormous. Additionally, teachers
themselves had to remember melodies before the advent of written notations.
It is reasonable to assume that a sophisticated system existed for learning and
memorizing these melodies. One hypothesis is that the system combines familiar
melodic units according to specific rules, which has been to some extent observed
(Ferretti [1934], Helsen [2008]), but the extent to which this principle applies is
unknown.

The oral tradition seems to have worked well, but not without flaws. In the
ninth century, books of chants for the Proper of the Mass throughout the annual
cycle were developed. Surprisingly, these books were nearly identical. However,
there are differences, and another major unknown in chant scholarship is whether
this diversity can be attributed to mistakes in the cantor’s memory or personal
preferences, and thus essentially chance, or whether it represents some “melodic
dialects” according to the region or ecclesiastical context.

1.5 Digital Chant Representations
Many melodies have already been digitized, especially for the Cantus Database
(Lacoste [2022]). New chant representations had to be able to encode elements
like clefs, text details, barlines, and individual pitches. Two format types have
been proposed for this purpose. The first is the gabc notation, employed mainly
in the GregoBase database by Berten [2013]. However, in this work, the Volpiano
font will be predominantly utilized.

1.5.1 Volpiano Font
The font Volpiano is used to represent Gregorian chants as strings, consisting
mainly of alphanumeric characters and hyphens. The string starts with a clef
sign followed by three hyphens. For instance, the treble key is denoted as 1---.
After the clef sign, characters are used to symbolize specific pitches. Each pitch
can be represented by one of two signs: the first represents the default pitch,
while the second represents liquescent neumes. Liquescent neumes correspond to
specific letter combinations in the text, such as double consonants or diphthongs.
Figure 1.6 illustrates the pitch representations and their liquescent variations.

Additionally, the Volpiano font includes information about the text. A single
hyphen between pitches signifies two separate neumes sung to the same syllable,
while two hyphens indicate the second pitch sung with another syllable. Lastly,
three hyphens indicate the second pitch sung with an entirely new word.

Gregorian chant scores also include several types of barlines. A single barline
is symbolized by ---3, while a double barline is represented by ---4. The double
barline is used, for instance, to denote differentiae in antiphons. Other barlines,
such as middle barlines or commas, are represented using numbers 6 or 7. The
Volpiano font is primarily used for encoding chants in the Cantus database by
Lacoste [2022]. Suppose we convert the gabc notation, primarily used for encoding
chants in the GregoBase database by Berten [2013], into the Volpiano font. In
that case, these bar lines generally have a different meaning. We then refer to
them as pause types.
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Figure 1.6: Pitch representations in Volpiano font, taken from Swanson et al.
[2016]

Figure 1.7: An example of the chant “Gloria haec est omnibus sanctis” taken
from Lacoste [2022]. The first two images display the original notation, while
below them, you can see the same chant represented in today’s notation using
the Volpiano font.
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2. Statistical Background
In this chapter, we will provide a brief overview of the mathematical methods
used in this thesis. These are unsupervised techniques using Bayesian statistics,
as well as those employing neural networks. Additionally, we will briefly describe
the two machine learning classifiers that we use for mode classification.

2.1 Unsupervised Techniques
Unsupervised methods are used in situations where the task is not to predict some
target values but to provide a probabilistic model of a phenomenon represented by
some (presumably large) collection of training data. Nowadays, many tasks have
been successfully solved using models that learn from large amounts of unlabeled
data, commonly referred to as training data, in a particular domain of interest.
These models aim to discover and learn the patterns within the observed data,
enabling them to apply this knowledge to unseen samples.

There are several distinct types of unsupervised tasks, with clustering and
dimensionality reduction being the most common. The unsupervised segmenta-
tion task is a problem based on a probabilistic model about which we have some
assumptions (memory efficiency), and based on this, we define the different distri-
butions in the model and their connections, and training is the process of finding
the parameters of this model so that the probability of the data is maximized
according to the defined model. There are two approaches to consider. The first
approach involves utilizing Bayesian statistics, while the second involves using
neural networks. Neural networks have proven very effective but require large
amounts of learning data. While they introduce more assumptions and may not
be as universal and powerful, Bayesian methods can yield satisfactory results with
less data. Additionally, working explicitly with probabilities of segmentations is
much more accessible within the Bayesian models.

2.1.1 Bayesian Statistics
Bayesian statistics is one of the statistical approaches motivated by providing the
framework that enables belief updates based on available evidence while quanti-
fying uncertainty. This framework combines a prior distribution with a likelihood
function to obtain the posterior distribution. The prior is a distribution specified
before observing any data, and it is an initial belief about model parameters. On
the other hand, the likelihood function gives the probability of our data given spe-
cific parameters. The resulting posterior represents the probability of the model
parameters given the data. The goal is usually to find parameter values with
the highest probability according to the posterior distribution. In other words, it
contains information about how to update the parameters. The formulation of
this framework relies on the utilization of Bayes’ theorem.

P (A|B) = P (B|A) · P (A)
P (B) (2.1)
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In the context of Bayesian statistics, A stands for our data, and B could be
replaced by model parameters θ. Then we can rewrite the equation as:

P (θ|data) = P (data|θ) · P (θ)
P (data) (2.2)

In this context, the term P (data) refers to the marginal likelihood independent
of the specific parameters. This implies that the value of the marginal likelihood
remains constant for every set of parameters. Therefore, we do not need to take
into account its value when updating the model parameters, so we have:

P (θ|data) = P (data|θ) · P (θ)
P (data) ∝ P (data|θ) · P (θ) (2.3)

which gives us:
posterior ∝ likelihood · prior. (2.4)

MacKay [2003] provides more detailed insight into Bayesian inference. How-
ever, the choice of the prior distribution is tied closely to the likelihood function.
Very often, the model manipulation would be more straightforward if the poste-
rior kept the same form as the prior distribution. We call such prior distribution
a conjugate prior to the likelihood function. Table 2.1 shows some examples of
conjugate priors.

Likelihood Conjugate prior Posterior
Bernoulli/Binomial Beta distribution Beta distribution
Poisson/Exponential Gamma distribution Gamma distribution
Multinomial Dirichlet distribution Dirichlet distribution

Table 2.1: Examples of conjugate priors based on Fink [1997]

Bayesian Nonparametric Models

Orbanz and Teh [2010] classify models in Bayesian statistics into two categories.
The first category consists of parametric models, which rely on a fixed number of
parameters. Examples of parametric models include, for instance, hidden Markov
model (HMM) and Linear Regression. These approaches are suitable when we
have prior knowledge about model structure: about the number of hidden states
in the case of HMM, the number of latent variables in latent variable models, or
when we need to specify the number of clusters for clustering problems. These
models operate in an infinite-dimensional parameter space, providing greater flex-
ibility. These models are more relevant for our particular task because we want
to assign probabilities to segmentations of chant melodies while not knowing
even just the size of our vocabulary of melodic units. Their size can thus expand
based on the size of our data. Examples of such models include the infinite HMM,
Dirichlet process, Gaussian process, Beta process, or Pitman-Yor process.

The training process of such a model is not a straightforward task because the
posterior distributions are often intractable. However, there are already several
algorithms searching for the best posterior distribution. This work will focus on
the Gibbs sampling algorithm, one of the Markov chain Monte Carlo procedures
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(MacKay [2003]). The Gibbs sampling algorithm begins by initializing the latent
variables, typically with random or, in some cases, specific initial values. In the
next step, each variable is sampled anew based on the values of the remaining
variables. That means that when sampling a variable’s new value, the algorithm
ignores its old value. The sampling step is iterated until the final distribution is
close to optimal. The order in which variables are sampled is randomly shuffled
in each iteration. After the iterations, the resulting sampled variables are used
to estimate the posterior distribution. Gibbs sampling is thus a natural fit for
sequential models with limited context dependencies, such as n-gram models,
because one can simply iterate over a permutation of the tokens in the sequence.

After training the model, obtaining predictions or answers for our specific task
becomes crucial. Because we work with sequences (of chant segments), the Viterbi
algorithm (Forney [1973]) holds significant importance as a decoding algorithm.
It uses dynamic programming to determine the most likely path in a HMM based
on the provided data. The Viterbi algorithm considers all potential paths that
could be the most probable and finally identifies the best path when it reaches
the end of the sequence. It then retraces its steps from the end to the beginning,
utilizing precomputed paths information to extract the best sequence of states,
as shown in Figure 2.1. Once the model can be interpreted as HMM with states
and probabilities, we can apply the Viterbi algorithm to decode the maximal
likelihood prediction. It is not straightforward to interpret the segmentation as
HMM, but we will deal with the problem in Section 6.1.

Figure 2.1: Pseudocode of the Viterbi algorithm (Zeineldeen [2018]).

Dirichlet Process

Let’s start with the Chinese restaurant motivation of the Dirichlet process. The
structure of the language model based on the Chinese restaurant process consists
of infinite restaurant tables that new customers could choose from. The first
customer chooses any table that is currently empty, so the first customer opens
a new table. Other coming customers either join an opened table shared with
a particular table’s group of customers or open a new table where they will sit
alone for now. Each table serves a particular dish that customers are interested
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in. Each customer is looking for one specific dish, but there could be more tables
serving the dish. Furthermore, the customer can open a new table serving the
dish. This described structure is analogous to the Dirichlet process, where we
have an infinite dimensional random distribution (number of tables and their
customers). When we find in training data a new observation (new customer) of
the specific dish, the customer’s table we expand is chosen randomly proportional
to: {︄ cx,k

α+c
select table k serving dish x

α
α+c
· p(x|H) open a new table,

(2.5)

where x is the customer’s dish, c is the count of all customers in a restaurant,
cx,k is the number of customers sitting at the table with index k serving the dish
x, p(x|H) is the probability of the dish x regarding the base distribution H, and
α is the concentration hyperparameter. The probability of the dish x regarding
the Dirichlet process model Θ is:

p(x|Θ, α) = cx

α + c
+ α

α + c
· p(x|H), (2.6)

where cx stands for the count of all customers of the dish x.

Pitman-Yor Process

The Pitman-Yor process is one of the most robust Bayesian nonparametric mod-
els. As Teh and Jordan [2010] describe, it is a generalization of the Dirichlet
process with two parameters, discount d, and concentration α, where 0 ≤ d < 1
and α > −d. Formally, for the Pitman-Yor process G, we have:

G ∼ PY (d, α, H) (2.7)

where H stands for the base measure. Regarding the Chinese restaurant process
analogy, the Pitman-Yor process provides the more complex system of choosing
a table for the new customer using the discount factor d, so the table is randomly
chosen proportional to:{︄

cx,k−d

α+c
select table k serving dish x

α+d·t
α+c
· p(x|H) open a new table,

(2.8)

where t is the number of all tables with at least one customer. As we can observe,
the discount factor of the Pitman-Yor process forces the model to have more tables
for the particular dish, one with many customers and many sparsely occupied.
Then, the probability of the customer corresponding to the dish x based on the
Pitman-Yor process model Θ is computed as:

p(x|Θ, d, α, H) = cx − d · tx

α + c
+ α + d · t

α + c
· p(x|H), (2.9)

where tx gives the number of tables serving the dish x.

Hierarchical Pitman-Yor Process

In sequential modeling, order is often essential. The Dirichlet process, as well
as the Pitman-Yor process, are bag-of-words models that do not capture the
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sequential context. Therefore, it is necessary to include the context information,
which is done by the hierarchical version of these models. In the context of the
Dirichlet process, suppose we have two levels of tables. The first is based on
the unigram distribution, while the second is based on the bigram distribution,
as shown in Figure 2.2. The unigram tables are used as the base measure for
the bigram distribution. Then, the probability of the dish x with the context h,
concentration α, shorter context h

′ , and the seating assignments Θ is computed
as:

p(x|Θ, α, h) = ch,x

α + ch,·
+ α

α + ch,·
· p(x|Θ, α, h

′), (2.10)

where ch,x stands for the number of customers sitting at the table of dish x with
the context h, and ch,· is the sum of customers over all tables with the context of
h.

Figure 2.2: Seating assignment of the sentence “<bos> a b a a a c <eos>” in the
Chinese restaurant analogy of the Dirichlet process.

To obtain the hierarchical Pitman-Yor process model, we have to again include
the discount factor. Teh and Jordan [2010] define the hierarchical version of the
Pitman-Yor process as:

G0|η, γ, H ∼ PY (η, γ, H)
Gj|d, α, G0 ∼ PY (d, α, G0) for j ∈ J .

(2.11)

Here, G0 represents the shared base measure across all data group models, J
denotes the set of indices for these models, and η and γ are parameters associated
with the base measure model.

Although Teh and Jordan [2010] explain two types of representation of the
Pitman-Yor process, where the first one is known as the stick-breaking construc-
tion, the one based on the Chinese restaurant franchise is the more intuitive
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one, even in the context of hierarchical Pitman-Yor process. Let’s consider the
random variable θji distributed according to Gj. With the Chinese restaurant
analogy, the variable represents the i-th customer in the j-th restaurant. An-
other random variable θ∗

jt corresponds to the j-th restaurant and its t-th table,
which are distributed according to the base model G0. Another set of random
variables, θ∗∗

k , follows the base measure H and can be thought of as dishes in the
restaurant. Then, the njtk denotes the number of customers with dish k at table
t, which is in the restaurant j. The mjk is the number of tables that are placed
in the restaurant j with the dish k. When indices are replaced by ·, it indicates
marginalization over the missing index. The vocabulary size, or the number of
unique dishes, is denoted as K. Then the conditional distributions of hierarchical
Pitman-Yor random variables are as follows:

θji|θj1, ..., θj,i−1, α, d, G0 ∼
mj·∑︂
t=1

njt· − d

α + nj··
· δθ∗

jt
+ α + mj· · d

α + nj··
·G0

θ∗
jt|θ∗

11, ..., θ∗
1m1· , ..., θ∗

j,t−1, γ, η, H ∼
K∑︂

k=1

m·k − η

γ + m··
· δθ∗∗

k
+ γ + K · η

γ + m··
·H.

(2.12)

2.1.2 BERT
Bidirectional Encoder Representations from Transformers, the so-called BERT,
was introduced by Devlin et al. [2019] as a powerful model for natural language
processing tasks. It utilizes a transformer architecture, as depicted in Figure 2.3,
to capture bidirectional context from neighboring inputs. BERT’s strength lies
in its ability to extract representations that very well reflect the semantics of
individual tokens and entire phrases. The training of BERT involves two main
phases. The first one is pre-training, and the second one is fine-tuning. During
pre-training, BERT learns from vast amounts of unlabeled data, which is often
easier to collect. A crucial aspect of pre-training is masked language modeling,
where random input tokens are masked, and the model is trained to predict them
backward accurately. This process helps BERT learn contextual representations
and understand the relationships between tokens, which could be, for instance,
characters or even words. The pre-trained BERT model is further trained on
specific tasks in the fine-tuning phase by adding the additional layer on top of
the pre-trained model. In this phase, we use mostly labeled data, but we don’t
need as much of it as in the masked language modeling part.

2.2 Classifiers
A classification task is a common type of problem in machine learning. The goal
is to accurately predict a class for each data sample. Numerous models have
been developed to tackle such tasks, but we will focus on two of them in this
work. The first model is Naive Bayes, a simple and fast statistical approach that
performs well when dealing with large independent data (Jadhav and Channe
[2016]). On the other hand, we mention Support Vector Machine, which works
well with complex data that may lack structure or may miss some information
(Akkaya and Çolakoğlu [2019]).
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Figure 2.3: Transformer architecture (Vaswani et al. [2017]).

Some classification tasks involve working with text data to make predictions.
One way to represent text as a set of features is through Term Frequency-Inverse
Document Frequency (TF-IDF) (Ramos [2003]). Each document is represented
as a vector, where each value corresponds to a specific term. The value is then
computed as:

term frequency · inverse document frequency. (2.13)

The term frequency measures the occurrence of the term in a particular doc-
ument, while the inverse document frequency represents the importance of the
term across all documents, measured as the inverse frequency of documents con-
taining the specific term. In the context of Gregorian chants, the terms could
refer to melodic units, and the documents could be individual chant melodies.

2.2.1 Naive Bayes
Bishop [2006] describe Naive Bayes as a classification method based on Bayes’
theorem.

P (C|D) = P (D|C) · P (C)
P (D) (2.14)
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Let’s consider C as a specific class and D as a data vector. In Naive Bayes,
P (C) represents the prior distribution of class C, while P (D|C) denotes the prob-
ability of observing the data vector D given that class C, the so-called likelihood.
The goal is to maximize the posterior distribution P (C|D) to determine the pre-
dicted class C. The Naive Bayes method assumes that each feature contributes
independently to the final probability of the potential class, so the feature prob-
abilities could be multiplied together. The model could lead to incorrect results
if the independence assumption is not met. Although Naive Bayes is a simple
model that cannot handle complex features, it is quite efficient, especially when
dealing with high-dimensional inputs.

2.2.2 Support Vector Machine
The Support Vector Machine method, sometimes called Support Vector Classifier
(SVC), is also based on statistical theories. It involves projecting the training data
into an n-dimensional space, where n is a number of features. The aim is to divide
this space into distinct classification classes by so-called support vectors. At the
same time, the model strives to maximize the distance between classification
classes and these support vectors. When dealing with linearly separable classes,
the theory behind the separation is straightforward. However, in cases where
the classes are not linearly separable, the space is transformed into a higher-
dimensional space using so-called kernel functions. The type of kernel function is
one of the SVC hyperparameters. The transformation is the element that allows
the SVC model to handle complex data effectively. (For more on SVMs, see
chapters 6 and 7 of Bishop [2006].)

Figure 2.4: Visualization of SVC with its terminology (Mountrakis et al. [2011]).
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3. Related Works
Various theories have been put forth to tackle the issue of segmenting the Gre-
gorian melody by analyzing chant’s compositional processes. It is still unclear
whether it makes sense to segment melodies and, if so, whether it makes sense to
segment them on the compositional level. Treitler [1975] compares different ap-
proaches and highlights the significant ambiguity surrounding the concrete rules
of compounding specific melodic units into a final melody. They also mentioned
that the inverse procedure could explain repetitive formulas and melodic units,
the repeated performance-composition process. Performers memorized only be-
ginnings and some fixed goals, and the rest was naturally reconstructed by them,
which invented a new chant melody. However, no one has yet tried to solve it
statistically. Also, other tasks are dealt with using unsupervised segmentation.
For instance, we can get inspiration from general melody segmentation, topic seg-
mentation, or Chinese word segmentation topics. On the other hand, researchers
have been dealing with Gregorian chants in recent years, and we discuss and build
on their work as well.

3.1 Gregorian Chants
First, the general theory and historical context of Gregorian chants are most
recently and concisely described in Hiley [2009]. The work includes information
about chant types or mode structures and the chant evolution over centuries. In
connection with the fact that related data began to be collected and the computer
science community focused on Gregorian chants began to emerge, the Chant 21
Python library was created and described by Cornelissen et al. [2020a], which
should help the community to work with chants and their formats.

Also, some research works and experiments have already been done. A sig-
nificant contribution was the work by Cornelissen et al. [2020b], which tried to
classify modes using the chant’s sheet music for both antiphons and responsories.
Melody segmentation is one of their approaches where they used segments for
creating features for the SVC model following the TF-IDF vectorizer. The seg-
mentation approach worked best for them. They considered several possible naive
segmentations - powerful ones seem to be 4-grams, 5-grams, 6-grams, segmenta-
tion by words, and segmentation by syllables. These approaches were even better
than considering final tone and chant ranges, one of the significant mode char-
acteristics from the music-theoretical perspective, thus providing quantitative
evidence that the empirical perspective may explain the phenomenon of chant
modality more comprehensively. For the evaluation, they used data from Cantus
provided by Lacoste [2022], a database of cataloged and, in a portion of cases,
also transcribed Gregorian chants. It is important to mention that the authors
also included differentiae (final melodies of the following psalm) in antiphons for
the mode classification task. That means that their results for antiphons are not
correctly evaluated since they also used additional information about the fur-
ther context, which is related to Introit structure and its modes. Therefore it is
not entirely clear whether their proposed antiphon segmentations are really that
strong or only segmented differentiae are that helpful.
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There is also the Gregorian chant database, the GregoBase described in Berten
[2013], which contains chants in gabc format. For easier manipulation of the
database, there is the Chant21 Python library. As part of the chant transcrip-
tions, there is information about the end of phrases or other pauses and part
separators in scores. That could be beneficial for the task of melody segmenta-
tion.

3.2 Unsupervised Segmentation Tasks
Many other current tasks deal with unsupervised training. Most of them use
Bayesian statistical methods, which have been researched and improved in the
last 20 years. On the other hand, there are also several experiments based
on Bidirectional Encoder Representations from Transformers (BERT) by Devlin
et al. [2019].

3.2.1 Topic Segmentation
One of the most important articles on topic segmentation problems based on the
Bayesian processes was published by Eisenstein and Barzilay [2008]. The work
combines lexical cohesion with the Latent Dirichlet Allocation work described by
Blei et al. [2003].

A few years later, there was an attempt to use BERT and A Robustly Opti-
mized BERT Pretraining Approach (RoBERTa) systems for the topic segmenta-
tion task by Solbiati et al. [2021]. Utterances were input to those systems, and the
systems tried to predict the sequence of ones and zeros, one for the topic bound-
ary and zero for the no-boundary scenario. The segmentation and training are
based on the cosine similarity of two neighboring utterance blocks. The Bayesian
method by Eisenstein and Barzilay [2008] still performs better. Another article
exploring BERT is published by Xing and Carenini [2021]. They researched and
designed a new score function based on utterance pairs.

3.2.2 Word Segmentation
Word segmentation problem has a lot in common with melody segmentation,
especially when we want to segment already transcribed tones. On the other
hand, the word segmentation problem is much more explored.

A major improvement in the word segmentation problem was brought by
utilizing Pitman-Yor process - the Bayesian method generalizing the Chinese
restaurant process. Teh [2006a] described the hierarchical Pitman-Yor language
model (HPYLM), the hierarchical Bayesian model where the structures store
the previous context information of the current word or character. Mochihashi
et al. [2009] used the inspiration of the previous work and trained the nested
hierarchical Pitman-Yor language model (NHPYLM) model using the Blocked
Gibbs Sampling algorithm with Poisson correction to make the algorithm prefer
segments with the most common length. The NHPYLM was combined from word
HPYLM and character HPYLM. The character one was used as a prior for the
word one.
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Also, there were attempts to use the BERT for this task. The article published
by Li et al. [2022] uses discriminative and generative modules. The generative
module trains the model to minimize the distance between two neighboring char-
acters from the same segment and to maximize the distance between two adjacent
characters from different segments. The discriminative module only works with
labels B and I as beginning and inside segment positions, respectively, via the
masked language modeling technique. This model is currently state-of-the-art
in word segmentation tasks, but we suspect training BERT would require larger
datasets than what we have available for chant research.

3.2.3 Melody Segmentation
Researchers have been working on possible melody segmentation approaches for
decades. Lerdahl and Jackendoff [1983] described rules that generate melody
segments. There were also other attempts to solve the task. Pearce et al. [2010]
used Information Dynamics of Music (IDyOM), variable-order Markov model,
to find music context and structure statistically, which had better performance
than previous rule-based methods. A similar approach had Lattner et al. [2015],
except they were experimenting with the Restricted Boltzmann Machine (RBM)
model. There is also the supervised research of melody segmentation by Guan
et al. [2018] considering the convolutional neural networks - conditional random
field (CNN-CRF) model.

Several musically focused articles have experimented with the Pitman-Yor
process as well. One of them is researching the melody segmentation problem
published by Sawada et al. [2020]. They used the motif-level bigram HPYLM
using the note-level HPYLM as a base measure. They did the same thing as
Teh [2006a] and Mochihashi et al. [2009] did for words. They considered several
representations, such as pitch classes, durations, or intervals, where durations
give the best scores. For the final evaluation, they compared nested Pitman-
Yor language model results with segmentations generated by grouping preference
rules and grouping structure described by Lerdahl and Jackendoff [1983] using the
F-measure score. The F-measure was highest for the duration sequence compared
with the grouping structure method, which was 34.2. For us, the result of 29.4 of
the pitch representation compared with the grouping structure method is more
relevant since we do not have information about Gregorian chant note durations.

Another possible scoring function could be the usage of the technique based on
probabilities of misses, false alarms, and disagreements introduced by Beeferman
et al. [1999]. Then the segmentation of our proposed model could be compared
with some manual segmentation, random segmentation, and n-grams, the same
way as did Melucci and Orio [2002].
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4. Datasets
We need a significant amount of data to estimate the parameters of non-trivial
models with a chance of success. The availability of transcriptions of manuscripts
or early printed books is helpful in this regard. We primarily use the Cantus
database (Lacoste [2022]) as a source of data. More data is also available via
the GregoBase database (Berten [2013]). Each of them is structured differently,
and both are focused on slightly different information. However, both need to be
filtered first in order to use them properly.

4.1 Cantus Database
We have decided to use the Cantus for segmentation training and testing pro-
cesses since, so far, the database is the largest digital resource of Gregorian
chants. It contains a wealth of data about the contents of thousands of medieval
manuscripts. The dataset includes several details about each chant. Melodies,
genres, and modes are most crucial of them for the goal of our research. The Can-
tus stores melody information in Volpiano format. However, deeper information
about melodies like final tone, differentiae, or lyrics could also be found there. In
the database, chants are also mapped to their source manuscripts and particular
pages. Moreover, the Cantus provides details regarding the day’s office and the
feast of the year when the chant was performed, along with the liturgical role.

We will follow up on Cornelissen et al. [2020a], who scraped and dumped
this database into the so-called Cantus Corpus dataset. Only less than 10 %
of the cataloged chants have fully transcribed melodies. Therefore Cornelissen
et al. [2020b] conducted filtration of the dataset before they used it for the mode
classification task. We use the same filtration. Initially, they excluded records
without Volpiano melodies, notes, or simple modes. Then, they removed chants
with incomplete lyrics or with an incipit as the full text. Melodies that began
with clef other than G, or those with missing pitches, are also discarded, as well
as those that contain incorrect Volpiano characters or missed word boundaries.
Lastly, they removed duplicated melodies. Also, it is necessary to mention that
Volpiano data contain liquescent neumes, symbols indicating certain consonants
or diphthongs. They do not affect the melody at all. Therefore we are replacing
them with their pitch alternatives since those liquescents would introduce artificial
data sparsity for the segmentation task. In any case, it should be noted that
the Cantus Corpus dataset remains unfiltered. This thesis works with version
0.2, which contains 497,071 chants of 57 genres from 640 sources. However, we
work only with genres of antiphons and responsories, reduced by the described
filtration.

After filtering, 13,865 antiphons remain for our experiments. We follow the
methodology of Cornelissen et al. [2020b] and use a 70:30 training/test split. The
average length of an antiphon chant melody is 59.51 tones. The shortest is three
pitches long, while the longest is compounded from 683 notes. The distribution
of modes across the chants is shown in Table 4.1.

One additional data cleaning issue is that more than 95 % of antiphons are
transcribed including their differentiae. These can significantly impact the re-
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1. Dorian 3. Phrygian 5. Lydian 7. Mixolydian
3,406 950 532 2,137

2. Hypodorian 4. Hypophrygian 6. Hypolydian 8. Hypomixolydian
1,005 1,372 530 3,933

Table 4.1: Number of chants from the antiphon dataset mapped to a particular
mode.

sults of both mode classification and chant segmentation since the differentia is a
submelody of another chant. We keep the antiphon dataset with them since we
want to compare our results with Cornelissen et al. [2020b]. But in order to have
correct results and a straightforward segmentation process, we generated the sec-
ond antiphon dataset, where we discarded all the differentiae from the Volpiano
melody before the filtration process of Cornelissen et al. [2020b]. However, this
has resulted in several new duplicated pieces. Therefore the final dataset without
differentiae comprises 13,551 antiphons, 9,486 for the training dataset, and 4,065
for the testing one. Then, the average antiphon melody length is decreased to
53.97. Also, the mode distribution slightly differs, as seen in Table 4.2.

1. Dorian 3. Phrygian 5. Lydian 7. Mixolydian
3,348 939 522 2,091

2. Hypodorian 4. Hypophrygian 6. Hypolydian 8. Hypomixolydian
979 1,327 513 3,832

Table 4.2: Number of chants from the antiphons-without-differentiae dataset
mapped to a particular mode.

The second genre for which Cantus Corpus v0.2 provides an amount of melodies
that may prove sufficient for training our models are responsories. Overall, there
are 7,031 of them, split into 4,922 for the training set and 2,109 for the testing
set. The average length of a responsory chant is approximately 137.52 tones.
The minimum melody length is five tones, and the maximum is 364 tones. The
distribution of modes can be seen in Table 4.3.

1. Dorian 3. Phrygian 5. Lydian 7. Mixolydian
1,258 679 443 1,307

2. Hypodorian 4. Hypophrygian 6. Hypolydian 8. Hypomixolydian
904 741 227 1,472

Table 4.3: Number of chants from the responsory dataset mapped to a particular
mode.

In addition, for training purposes, the training set of each of these three
datasets is split into two parts. The first part comprises 90 % of the data and is
used for training itself, while the remaining 10 % is reserved for validation.
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4.2 GregoBase Database
GregoBase is the second largest database of Gregorian scores. There are more
than 18,000 chants, which is considerably less than in the Cantus database. How-
ever, it can still be beneficial for our task. The data again contain information
about where the Gregorian pieces were taken from. We could also find their
modes and genres there. However, the most interesting information there is the
melodies, which, unlike transcriptions in Cantus, preserve markings for pauses —
breath marks or barlines. It can be assumed that most melody segments have
not gone through the pause marking. These melodies are also encoded differently,
using gabc format instead of Volpiano.

In this work, we will use the GregoBase Corpus version 0.4 by Cornelissen
et al. [2020a], a dump from the Gregobase database. The corpus contains only
9,174 chants. In order to convert melodies in gabc format to Volpiano, we used
the library by Cornelissen [2020]. Then, we processed the Volpiano format into
a string of Volpiano notes and pauses, without any other additional Volpiano
symbols. We use the special symbol ‘|’ to indicate a pause. We filtered the
data by genre and obtained one phrase dataset of 3,802 antiphons and another
of 495 responsories. As with the previous database, we replaced liquescents with
their original pitch alternatives. It is important to say that the GregoBase tran-
scriptions don’t include differentiae. Then, we don’t need to generate another
antiphon dataset without them.

The antiphon phrase dataset is relatively more extensive than the responsory
one. It contains 20,148 phrases of antiphons, where the average phrase length
is 9.97 of pitches in the range of two to 34 notes. The mode distribution is not
that different from the corpus dataset, as shown in Table 4.4. There are 182 of
antiphons with missing mode information.

1. Dorian 3. Phrygian 5. Lydian 7. Mixolydian
933 250 147 533

2. Hypodorian 4. Hypophrygian 6. Hypolydian 8. Hypomixolydian
282 356 175 944

Table 4.4: Number of chants from the antiphon phrase dataset mapped to a
particular mode.

The responsory phrase dataset contains only 495 responsories with 7948 phrases.
The average phrase length here is 12.02 pitches. The shortest phrase has only
one pitch. The longest one has 63 of them. We can see the mode distribution
in Table 4.5. 125 responsories are not included in the table since their mode is
unknown.

Even though we do not use this dataset for training our models, we still find
it useful. The dataset gives us information about phrasal breaks, so we can
use it to evaluate our model’s ability to predict segments that do not overlay
pause markers. However, we describe this evaluation function in more detail in
Section 5.2.
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1. Dorian 3. Phrygian 5. Lydian 7. Mixolydian
71 27 50 32

2. Hypodorian 4. Hypophrygian 6. Hypolydian 8. Hypomixolydian
62 23 65 40

Table 4.5: Number of chants from the responsory phrase dataset mapped to a
particular mode.
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5. Evaluation Metrics
It is not immediately clear how the quality of segmentation of a corpus of chant
melodies should be measured. In this chapter, we discuss some options: scoring
functions that measure properties of a chant melody segmentation, both in re-
lation to modality and in general. Finally, we will describe a feature extraction
method to extract the most significant melodic units.

5.1 Perplexity
Perplexity is one of the most significant and fundamental evaluation metrics in
probabilistic sequence modeling. It is derived from the cross-entropy of the distri-
bution estimated on the training data and applied to the test data. It measures
how well the distribution estimated on the training data generalizes to the test
data, serving as an indirect indicator of how accurately the estimated distribution
models the given phenomenon, as opposed to merely capturing random patterns
in the training data. Lower perplexity signifies a better fit of the estimated dis-
tribution to the general unknown data, and it indicates that the model is more
confident and accurate in predicting the next segment of the sequence. It indi-
cates how confident the model is in its predicted segmentation. It is computed
as:

perplexity = e
− 1

N

∑︁N

i=1
1

|c̄i| ln(p(c̄i)). (5.1)

Here, N is the number of chants, c̄i represents the segmentation of the chant
with id i, |c̄i| is the number of segments in the chant with id i, and p(c̄i) is the
probability that the model predicts a specific segmentation. However, this metric
cannot be used for models based on neural networks.

5.2 Segmentation Scores
Since we do not have specific knowledge of what the segmentation should look
like, we will analyze the model and its predicted segmentation based on general
characteristics of Gregorian chant, musical principles, and statistical properties.

Vocabulary Size

One important piece of information can be the size of the final vocabulary. We
obtain this by counting the number of unique segments in the final predicted
segmentation. Considering that Gregorian chant is an oral tradition, a smaller
vocabulary size of melodic units might be preferable as it could be easier for
singers to remember. We refer to this number as vocab size.

Average Segment Length

The average segment length correlates with the size of the vocabulary. Due to the
fewer combinations of short segments compared to longer ones, the vocabulary of
short segments tends to be naturally smaller. In the case of small average segment
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lengths, it could support the theory of the absence of strict rules for melodic units.
For instance, if the vocabulary of melodic segments consisted solely of individual
tones and the average vocabulary size was one, it would indicate that the model
could not find any melodic units and segmented the melodies as individual tones.
We refer to this measure as avg seg len and calculate it as the average length
of all predicted segments across all chant melodies. This means we consider
all duplicated melodic units, not just the unique ones, and therefore we do not
calculate the average length of the melodic unit vocabulary but of all segments.

Melody Aligned with Words

Lacoste [2022] provides the text of the chants. Furthermore, as part of the data
filtering and preparation by the Cornelissen et al. [2020b], word-based segments
are also generated. Therefore, we can compare our segmentation with the nat-
ural word-based segmentation. However, the word-based segmentation may not
necessarily be related to the potential correct segmentation. Hence, we could use
a measure of similarity between the word-based segmentation and the predicted
segmentation for analysis and discussion regarding the role of words in this task.
The similarity score is calculated as follows:

maww = 100 · 1
W

N∑︂
i=1

wi. (5.2)

The N is the number of chants, and wi is the number of words in the text of
chant with id i that end on the same tone as any of the segments. The value
of W is the number of all words in the dataset. We have named this measure
the maww score. Similarly to the previous case, note that shorter segments align
more easily with words.

Melody Aligned with Phrases

As mentioned in Section 4.2, the dataset called GregoBase by Berten [2013] con-
sists of annotated scores with pause marks. These pause marks indicate the ends
of phrases where singers should take a breath. In the case of the melodic unit
system, the melodic segments would likely align with these boundaries. We cal-
culate the alignment of segments by phrases in a similar way to the maww score,
except we align them with phrases. The aligned melody score is denoted as mawp
and is calculated as:

mawp = 100 · 1
P

N∑︂
i=1

pi, (5.3)

where N is the number of chants, and pi represents the number of phrases in
the text of the chant with id i that end at the same time as any of the chant’s
segments. The value of P is the number of all phrases in the dataset.

Weighted Unique Final Pitch Count

In modern music theory, the final tone of a musical composition is determined
by its musical scale. Similarly, in Gregorian chant, the final tone of the chant is
related to its mode. A similar system may exist for potential melodic units. For
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this reason, we measure the number of unique final tones in the segments. Chants
with fewer segments are likely to have a small number of unique final tones, so
we consider those with more segments to be more relevant. Therefore, we take
into account the number of unique final tones in each chant, weighted by the
number of segments in the chant, and calculate the average across all segments
of all chants. Let’s denote the number of chants as N , the number of segments
in the chant with id i as si, and the number of unique final tones in the segments
of the chant with id i as fi. Then, for s = ∑︁N

i=1 si, we calculate:

wufpc = 1
s
·

N∑︂
i=1

(si · fi). (5.4)

This result is referred to as the wufpc score. Note that in melodies with shorter
segments, there are more segments. Therefore, when the average segment length
is small, the probability of obtaining a higher wufpc value increases.

Vocabulary Levenshtein

Once we have a vocabulary, it is desirable for the segments to be as distinct as
possible. Otherwise, the vocabulary might consist of two similar melodies with
a small difference, which could be considered as the same unit in the system of
melodic units. Therefore, we define the function vocab levenshtein as follows:

vocab levenshtein = 1
|V |
·

∑︂
l∈L

∑︂
s∈Sl

(1
l
·med(LDl,s)), (5.5)

where |V | is the size of the vocabulary, L is the set of all possible segment lengths
in the data, Sl is the set of all melodic units of length l, med(X) denotes the me-
dian of a set of numbers X, and LDl,s represents the set of Levenshtein distances
between the segment s and all other segments in the vocabulary of length l. If
there is only one segment of length l, it is disregarded in the calculation.

5.3 Mode Scores
Modes can have a significant impact on segmentation. Each mode has its own
characteristics, such as a different range of tones. Therefore, it is possible that
each mode also has its own melodic unit vocabulary or a specific set of rules for
assembling them. Of course, only if there is a melodic unit system.

5.3.1 Mode Classification
The task of mode classification is a problem where we aim to classify chants to
their respective modes. Cornelissen et al. [2020b] addressed this task and found
the approach based on segmentation as the most accurate one. They used simple
melody segmentations, such as n-grams (all segments have the fixed length n) or
segmentations by words or syllables. Therefore, we could measure the quality of
the segmentation as its ability to predict modes as accurately as possible.
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SVC Classification

Cornelissen et al. [2020b] utilized a TF-IDF vectorizer with a maximum of 5000
features to encode the segments. They then applied the SVC model for classifi-
cation. In order to compare our segmentation with their proposals, we use the
same architecture and the same set of hyperparameters. We denote the classifica-
tion results obtained from that pipeline as bacor accuracy and bacor f1, as named
after the primary author of Cornelissen et al. [2020b].

Naive Bayes Classification

As mentioned in Section 4.2, SVC performs well with complex and unstructured
data. On the other hand, the performance of Naive Bayes is dependent on statis-
tically independent features, so in the case of more complex feature interactions,
Naive Bayes’s performance is worse. Therefore, for classification, we also con-
sider the Naive Bayes model to assess the simplicity and straightforwardness of
the predicted segmentation. In this case, straightforwardness means that single
melodic units in segmentation already indicate the modality of the whole melody
well. It is not necessary to complexly combine features together to be able to
predict the mode correctly. The Naive Bayes model uses features generated by
the TF-IDF vectorizer with the same settings as the previous SVC model. And
again, the goal is to achieve the most accurate prediction of chant modes. The
resulting scores of the classification task using this pipeline are referred to as
nb accuracy and nb f1.

5.3.2 Weighted Top Mode Frequency
For the purpose of analyzing the mode dependence, we are also interested in how
individual melodic units are related to a specific mode. Firstly, we assign a mode
to each melodic element in the vocabulary based on the chants that contain the
element. This means that we go through all the chants and count the occurrences
of each vocabulary item within chants of a particular mode. Then, we select the
mode with the highest number of occurrences as the melodic unit mode. Let’s
denote the mode of melodic unit v as mv. Secondly, we calculate the weighted
average of the ratio of the number of the melodic unit in the assigned mode to
the total number of occurrences of the melodic unit as follows:

wtmf = 100 · 1∑︁
v∈V

∑︁
m∈1,2...,8 nv,m

∑︂
v∈V

nv,mv∑︁
m∈1,2...,8 nv,m

. (5.6)

Here, V represents the vocabulary of melodic elements, and nv,m is the number
of occurrences of melodic unit v in all chants of mode m. This metric is referred
to as wtmf.

5.3.3 Charts
In order to analyze the structure of the chant and the occurrence of segments, we
visualized certain melody and segment properties in charts.
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Density of Unique Segments Chart

Since each mode behaves differently, each may have its own characteristic melodic
units. Therefore, we observe the segments of each mode that are present only
in chants of that specific mode and not in any other chants of different modes.
We refer to such melodic units as unique melodic units or unique segments of the
respective mode. For each mode, we create a chart that visualizes the positions
of these unique melodic units across all chants belonging to that mode. We call
that chart as density of unique segments. The x-axis represents the percentage
position within the melody, indicating whether it is at the melody’s beginning,
middle, or end. The y-axis represents the percentage of melodic segments that
belong exclusively to that mode. We scale each melody into 400 bins. We then
iterate through all the melodies of the mode and increment the value mapped to
the bin by one if the bin corresponds to one of the unique melodic units. Each
of these values is divided by the number of chants in that specific mode (which
is also a number of segments corresponding to a particular bin), yielding the
percentage of unique melodic units for each bin across all chants of the mode.
Each bin represents 0.25 % of the chant, so the 200th bin represents the middle
position. For instance, Figure 5.1 illustrates a situation where at the beginning
of the chants, 16 % of the segments are used only in the particular mode, but
by the end of the first fifth of the chants, it drops to just 8 % of unique melodic
units. Towards the end of our example, chants rarely contain unique segments.

Figure 5.1: Example of the density of unique segments chart.

By analyzing this chart, we would be able to see how much the modes are
related and how uniquely they behave. The chart will show whether the chant’s
beginning or end is more unique than the middle part, which they should be since
they are linked with the mode-specific context chants. We could expect that there
would not be many unique melodic units since the pair of authentic and plagal
modes have many properties in common.
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Average Segment Lengths Chart

We already have a metric for calculating the average segment length across all
chants and their segments. However, we need to find out if the average seg-
ment length is the same for all chant intervals. Some positions may pose more
challenges for segmentation than others. These problematic intervals could sig-
nificantly affect the resulting average segment length score. Therefore, we scale
all chants into 400 bins, similar to the previous chart construction. Instead of as-
signing a count to each bin, we assign a number that represents a sum of segment
lengths that fall within that bin. To obtain an average, we divide each bin num-
ber by the total number of chants used. We calculate these averages separately
for each mode. The resulting numbers are then visualized in a chart, where the
x-axis represents the percentage position of the chants, while the y-axis represents
the average segment length relative to the chant position. Figure 5.2 visualizes
an example chart for chants segmentation, where the average segment length is
nearly five at the beginning, is close to one in the middle, and is approximately
three tones long at the end. Note that the avg seg len would always be lower
than the average of all bin values since longer segments contribute to more bins
than those short ones.

Figure 5.2: Example of the average segment length chart.

Segments Occurrences Chart

Information about the frequencies of melodic units could also be useful. All
melodic units found during segmentation could be used approximately equally.
But also, some melodic units may occur more frequently than others, especially
when considering chants of a specific mode. Therefore, for each mode, we create
a chart that visualizes the occurrence of individual melodic units. We sort the
melodic units in a specific way. As in the wtmf, we select the mode with the
highest number of occurrences among all chants belonging to that mode. Firstly,
we sort the vocabulary elements by their modes, where the first group is assigned
to mode 1, the second to mode 2, and so on. Secondly, we sort the melodic units
in descending order based on their total number of occurrences across all chants
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of all modes. The chart consists of two lines. The gray line represents the total
number of occurrences of melodic units in all chants. The blue line visualizes the
occurrence count of melodic elements only in chants belonging to the mode for
which the chart is being visualized. The example in Figure 5.3 consists of over
14000 melodic units, with the most frequent melodic unit being used more than
250 times. Below the chart, we also marked mode sections separated by the first
filtration procedure.

Figure 5.3: Example of the segments occurrences chart in chants of the mode 8.

In the case of the segments occurring frequently and approximately evenly
in the segmentation, we can discuss a strict melodic unit system without mem-
orization mistakes. Or there could be only segments that are not that frequent,
indicating no melodic units repeated over different chants. In the third case, we
could observe that some of the melodic units are frequent and the rest of them
are rare, which could mean that many melodic units were memorized and tran-
scribed wrongly, but also that there are melodic units that are used by many
chants suggesting the melodic unit system existence. Another property of the
chart describes how segments are shared among different modes. The blue line
being placed only in the section of the respective mode would indicate that each
mode behaves independently with a separate set of segments. But still, we would
expect the blue line to be placed at least in the authentic-plagal mode pair simi-
larly.

5.4 Feature Extraction
Extracting the strongest melodic segments from the model could also be necessary.
They could be compared to other models and, later on, be analyzed in more
detail. There are several ways to extract top melodic units. We are considering
using the SVC model for mode classification, and feature extraction is performed
based on the model’s coefficients. While this approach could return features
with substantial weights, it may also return rarely used segments that are not
of particular interest to us. Instead, we could use a feature extraction approach
based on an additive procedure. It works by starting with an empty set of features
and then trying all possible features to expand the set, selecting the one with
the highest SVC score in mode classification until we have a set of n features.
However, this approach took a significant amount of computational time, and
we could not finish it. Therefore, we will use feature extraction from the weight
coefficients of the SVC model. To address the issue of extracting strong features
that are rarely used, we will first extract 1000 features from the model and then
select the 100 most frequently occurring ones. This way, we hope to extract 100
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intense and frequent features. We refer to these segments as top 100 melodic
units.

In the same way, as we defined the density of unique segments chart, we
describe the density of top segments chart. We again scale all chants into 400
bins, and for each bin, we compute the number of top segments that lay on that
bin. Then we calculate the percentage number of top segments considering all
segments at each bin. Results are visualized in the chart as shown in Figure 5.4,
where the x-axis represents the percentage position of chants, and the y-axis
shows the percentage of top segments over all segments over all chants at the
specific position. Each bin stands for 0.25 % of chant positions. The chart should
imply the percentage of occurrences of the top features, so we can see if we can
describe most segments using these features. But the chart is designed in a way
that longer segments are counted more often in bins than the short ones. If top
features contain mostly short segments, the chart would be more affected by those
not included in the top features. However, we can still observe the position of
top features, which could be expected to be more often at the beginning and end
for linking with the mode-specific context chants.

Figure 5.4: Example of the density of top segments chart.

Additionally, we observe the top segments - modes matrix that visualizes top
segments distribution over modes. Each column stands for one of the top seg-
ments. Each row stands for one of eight modes. Each cell visualizes the occurrence
of a particular segment in a given mode, with each column normalized to sum
to one. Then, cells are colored by the default settings of the Python library by
Hunter [2007]. The color spectrum starts with dark purple and ends with yellow,
so a cell with yellow color means that the cell mode is the most dominant for that
particular segment. The example of the top segments - modes matrix is shown in
Figure 5.5. The matrix should analyze modes regarding the top features. It could
happen that all cells are colored the same, but also, there could be one yellow
cell in each column that would support that each mode behaves independently.
But still, the authentic-plagal mode pair would probably be colored similarly.
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Figure 5.5: Example of the top segments - modes matrix.
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6. Models
This chapter will introduce segmentation models that this work measures and
compares. We will go through the structures of the models as well as the training
and decoding processes. We will also propose an extension of the models, focusing
on a more significant differentiation of the segments regarding modes. First, we
will describe a naive, simple model based on unigrams of segments. Then, we
will describe a model based on the Pitman-Yor process. Finally, we will discuss
a model based on neural networks, specifically a model based on BERT. All of
these models are implemented in the Python programming language.

6.1 Unigram Model
The unigram model consists of its vocabulary, the total number of segments, the
count of occurrences of each segment, and the segment inverted index, which
indicates all chants containing a particular melodic unit. The model’s data struc-
tures are populated from the training dataset in an unsupervised manner during
the training process. The model also has minimum and maximum segment size
information as user-defined hyperparameters. We start with empty data struc-
tures. Then, we define the model’s vocabulary of all possible unique segments in
the training dataset, corresponding to predefined allowed segment sizes. This is
necessary for the Laplacian smoothing we will use in training and decoding pro-
cesses. Then, the model and its data structures are trained in several iterations,
with the number of iterations determined by the user.

Formerly, let’s define the probability of the corpus of chants C as:

p(C) =
∏︂
c∈C

p(c). (6.1)

We are looking for the chant segmentation c̄ = s1...sm for each chant c in the
corpus C. Each of segments s1, ..., sm consists of the natural number of tones
t1...to. Compounding the chant segments s1, ..., sm together gives back the chant
c itself. Then let’s denote the set of all segmented chants as C̄ = {c̄ : c ∈ C}.
Our unigram model Θ consists of three sets of variables. The first one is the
vocabulary V , the set of all allowed segments that occur in the training data.
The second one is the set of variables ns = #{s|∃c̄ ∈ C̄ : s ∈ c̄} for each segment
s ∈ {sc|∃c̄ ∈ C̄ : sc ∈ c̄}. The last variable of the unigram model Θ is the
n = ∑︁

s∈{sc|∃c̄∈C̄:sc∈c̄} ns.

6.1.1 Training and Decoding
In order to train and decode the statistical model of the unsupervised segmenta-
tion task, let’s describe the model as the HMM. Each hidden state corresponds
to a segment, while observations are given by the melody tones. The number
of hidden states is not fixed since we do not know the optimal number of seg-
ments of a particular chant, so we call it infinite HMM. Transition and emission
distributions are then given by the model. In this section, we will describe the
construction of the unigram model solving unsupervised segmentation as HMM.
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First, we assign an initial segmentation to each chant. The unigram model
offers two options for initial segmentation: segmentation based on words or ran-
dom segmentation. Random segmentation is performed by iteratively sampling
the length l of the next segment from a Gaussian distribution l ∼ N (µ, σ2), where
we set µ = 5 and σ = 2. If the sampled length l does not satisfy the minimum
and maximum segment size conditions, it is truncated to meet these requirements.
Since there is no improvement with word-based initial segmentation, we will use
random segmentation. Then, we will train the model using the Blocked Gibbs
sampling algorithm, so as a first step, we will add the initial segmentation of all
chants to the model.

Blocked Gibbs sampling is a variant of the general Gibbs sampling described
in Section 2.1.1, where we sample a block of variables at a time. In this case,
the block is the chant with all its segments, so we sample all chant segments in
one sampling step. Blocked Gibbs sampling removes the segmented melody from
the model, predicts a new melody segmentation based on all other segmented
melodies, and then adds the new melody segmentation back into the model. This
process is done iteratively for all chants, and the order of the chants is different
and random each time. But first, we still need to add all the initial segments to
the model.

As part of the procedure for adding a new segmented chant to the model,
we need to increase the total number of segments by the number of newly pre-
dicted chant segments. Then, for each segment in the segmentation, we need
to increment the count of segment occurrences by one. Finally, we also need
to maintain the information that these segments are included in this particular
chant. Therefore, we must add the chant id to all segments of this chant in the
segment inverted index list.

On the other hand, the removal procedure takes the old chant segmentation
and removes all records related to the chant from the model’s data structures. In
contrast to the previous function, here we need to decrement the total number
of segments by the number of segments in this segmented chant. We also need
to iterate over all chant segments and decrease the count of segment occurrences
for each. Additionally, we need to remove the chant id from the segment inverted
index for each segment.

As part of the training process, we need to segment the chant based on all
other chants and their segmentations. The probability of segment s using Laplace
smoothing is denoted as:

p(s|Θ) = ns + α

n + α · |V |
, (6.2)

where Θ represents the parameters and variables of our model, n is the current
total number of segments, ns is the count of segment occurrences for segment s
across all other chants, and |V | is the size of the vocabulary of all possible allowed
segmentations. The parameter α is a hyperparameter set to α = 1e−14. Ideally,
we want to maximize p(c̄|Θ) for the segmentation c̄ of the chant c. We can rewrite
it as c̄ = sc1, sc2, ..., scm, with m consecutive segments of the chant c. Then we
have:

p(c̄|Θ) =
m∏︂

i=1
p(sci|Θ). (6.3)

We construct a trellis, a graph of possible paths of segmentations and their prob-
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abilities. The graph considers only segments that satisfy the minimum and max-
imum segment size conditions. For decoding the trellis, we use the Viterbi algo-
rithm. At each node, we consider the top k paths to that node. The final node
consists of the k most probable segmentation paths of the entire chant from start
to end. During training, if we segment the chant, we select one of the top k seg-
mentations proportional to the probability distribution of these segmentations,
normalized so that their sum equals one. This means the probability of selecting
segmentation c̄ is its probability p(c̄) divided by the sum of probabilities of all
top k segmentations. On the other hand, during decoding, we do not sample but
instead select the most probable segmentation from the top k final segmentation
paths. This means we choose the segmentation with the highest probability from
the best k final segmentations. In our experiments, we set k = 15.

In the case of very small segment probabilities, all the final k segmentation
probabilities could be rounded to zero, resulting in a uniform distribution and
incorrect sampling. Additionally, we could not select the most probable segmen-
tation path. Therefore, we compute the logarithms of these probabilities during
the training and decoding processes.

6.1.2 Mode Extension
Let’s consider that each mode has its own rules for compounding segments and its
own vocabulary. This would mean each mode has a different set of characteristic
melodic units. If this were true, it would make sense to create a vocabulary of
melodic units for each mode separately. Therefore, we also propose an approach
that extends from the previous model to a model that includes eight vocabularies,
eight total chant counts, etc. Each mode has its own set of data structures. At
the beginning of the training, we divide our training dataset into eight subsets,
each containing chants of only one particular mode. Then we train all the data
structures separately without interdependence.

We know the mode of the chant during training. However, during testing and
decoding, we don’t have such information. Therefore, we first need to predict the
mode and then predict the segmentation using parameters associated with the
chosen mode. When predicting the mode within the model, we want to choose a
mode m that maximizes:

p(m|c̄) = p(c̄|m) · p(m)
p(c̄) ∝ p(c̄|m) · p(m) ∝ p(c̄|m). (6.4)

This equation follows from Bayes’ theorem, where p(c̄) is the same value for
all modes and p(m) = 1

8 is also the same because it is a uniform distribution.
Therefore, we consider all modes of the chant and predict the most probable chant
segmentation in all eight cases. We have eight different probabilities and eight
different chant segmentations. Then we compare these probabilities and select
the mode mc with the most probable segmentation c̄mc . Then the p(mc|c̄mc)
is maximized. If we would consider the c̄mc to be segmented in the context of
another mode, it could not be more probable than the p(mc|c̄mc) since it is more
probable than the most probable segmentation considering another mode. And
also, there is no more probable chant segmentation considering the mode mc since
the c̄mc was chosen as the most probable one.
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The probability that the chant c will be segmented as c̄ is then calculated as
follows:

p(c̄|θ) =
∑︂

m∈{1,...,8}
p(c̄|m), (6.5)

where each of the p(c̄|m) is computed as the product of segment probabilities
associated with mode m.

6.2 Nested Hierarchical Pitman-Yor Language
Model

In this section, we will introduce the model described by articles Mochihashi
et al. [2009], Teh [2006b], Mochihashi and Sumita [2007], and Teh [2006a]. This
work includes the implementation of NHPYLM in the Cython language. Cython
is a programming language similar to Python but supports C data types. The
Cython compiler compiles the code into C and wraps it into an interface so the
generated module can then be easily called and used in Python, just like any other
Python package or module (Behnel et al. [2011]). The main advantage here is
that Cython significantly reduces the overhead of Python, resulting in faster code
execution. Otherwise, if we implemented it in Python, we would be extremely
limited in training and debugging the NHPYLM model.

6.2.1 Model Structure
As we know from the statistical background provided in Section 2.1.1, we have a
distribution G generated from the Pitman-Yor process:

G ∼ PY (d, θ, G0), (6.6)

where d is the discount factor, θ is the concentration, and G0 is the base measure.
We generate a distribution G that resembles the base distribution G0 according to
a given similarity measure θ. Let’s consider the distribution of unigram segments
and denote it as G1 = {p(·)}. Similarly, let’s assume the distribution of bigram
segments conditioned on a context segment s and denote it as G2 = {p(·|s)}.
Both distributions have many similarities. Therefore, we could generate G2 from
the Pitman-Yor process using G1 as the base measure:

G2 ∼ PY (d, θ, G1). (6.7)

This way, we obtain a hierarchical model with the base distribution of unigram
segments G1, which is shared among many distributions of bigram segments given
the context segment G2. Each possible context segment has its distribution. Let’s
call this hierarchical structure the segment hierarchical Pitman-Yor language
model (SHPYLM). The tree-like structure is composed of nodes. In analogy
with a Chinese restaurant, each node contains a dictionary of unique dish keys
and values as a set of tables where the particular dish is served. Each table is
represented by a positive number of customers sitting at the table. In the anal-
ogy, the dish represents the segment we add, remove or observe. Furthermore,
we keep track of the total number of tables and customers, as well as the number
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of customers for each dish. In the case of bigram nodes (the tree layer of depth
two), we also store the context, which is the previous segment of the dish. Then,
we denote c(h) as the total number of customers in the node described by context
h, c(s|h) as the total number of customers in the node of dish segment s, ths as
the number of tables in the node of the context h associated with dish s, and th

as the total number of tables in the node. The final probability of dish segment
s given the context segment h is then calculated as follows:

p(s|h) = c(s|h)− d · ths

θ + c(h) + θ + d · th

θ + c(h) · p(s|h′), (6.8)

where h
′ refers to the shorter context, in our case, the higher layer of the hierar-

chical tree structure. Basically, p(s|h′) is the probability computed from the base
measure of the current Pitman-Yor process.

However, we still do not have the base measure G0 for the distribution G1.
Theoretically, we could use the inverse size of the vocabulary as a uniform distri-
bution of segments if the segment vocabulary were finite. Since we do not know
the segment vocabulary, we would have to consider all possible combinations of
tones, which would give us a countably infinite vocabulary size. Therefore, instead
of that, we will use the tone hierarchical Pitman-Yor language model (THPYLM)
as the base measure G0, the nested HPYLM to the SHPYLM. In this case, the
THPYLM returns the tone ∞-gram model distribution, so its tree hierarchi-
cal structure does not have a defined maximal depth. On the other hand, the
SHPYLM’s final layer contains distributions of bigrams, so its depth is set to two.
The base measure for the THPYLM is the number of all possible tones |T |, which
is known and finite. The probability of a segment s = t1t2...tk with a length of k
and tones t1...tk given predicted from THPYLM is calculated as follows:

p(t1...tk) =
k∏︂

i=1
p(ti|t1...ti−1). (6.9)

Now we almost have the G0 distribution. Each node of the tree structure of
THPYLM stores the same information as the nodes of SHPYLM. However, the
dish corresponds only to the tone, not the segment. Additionally, each node
contains information about stops and passes. The number of stops in a node
identifies the number of customers added to the tree with a context tone length
equal to the depth of the node. The number of passes is the count of passes
through the node when we use this node to get to the target node of the given
context when we start in the root. We will describe the process in more detail in
the following section. Let’s denote the context h = t1...ti−1 for the tone t = ti.
Then, according to Mochihashi and Sumita [2007], since we have an infinite model,
we compute the probability p(ti|t1...ti−1) as:

p(t|h) =
∞∑︂

n=0
p(t|h, n) · p(n|h). (6.10)

The value p(t|h, n) is computed from HPYLM as in Equation 6.8, where the
dish is a tone, and n indicates the depth, i.e., the order of the node (which
represents the size of the context). The probability distribution p(n|h) represents
the probability that the context h has a latent Markov order of n. If we consider
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Figure 6.1: Example of the process of adding segmented chant “<boc> gjkllml
kkjklml kjkl <eoc>” encoded using the Volpiano note symbols into SHPYLM.
Changed values of the SHPYLM are colored red. Note that the sum of dish
customers in G1 distribution corresponds to the number of tables over all G2
distributions. When adding the segment to the node, the dish table is picked or
created new randomly proportionally to the corresponding probability distribu-
tion.

the path from the THPYLM root to the node described by the context h, for the
node of order n on this path, we compute:

p(n|h) = an + α

an + bn + α + β
·

n−1∏︂
i=0

bi + β

ai + bi + α + β
, (6.11)

where ak represents the number of stops in the node of order k that is part of the
context’s node path from the root, bk represents the number of passes through
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the same node, and α and β are hyperparameters. We set them to α = 1 and
β = 1. Since we cannot compute the infinite recursion, we stop the computation
at order n when p(n|h) < ϵ, where in our case, ϵ = 1e− 12.

Figure 6.2: Example of the process of adding segment “gjkllml” encoded using
the Volpiano note symbols into THPYLM. Changed values of the THPYLM are
colored red. The context lengths are not fixed to 1 as in the case of SHPYLM.
Context lengths are sampled first, so according to our example, we add <bos>
with empty context, g with context <bos>, j with context g, k with context gj,
etc. The last tone’s context length was even sampled to be 7, so the last l tone
has context <bos>gjkllm. When adding the tone to the node, a dish table is
picked or created new randomly proportionally to the corresponding probability
distribution.

The probability distribution of a segment s given by the THPYLM, as de-
scribed in Equation 6.9, assigns lower probabilities to longer segments. This
means the model will prefer shorter segments, especially those containing only
one tone. To address this issue, Mochihashi et al. [2009] introduced the Poisson
correction:

p(t1...tk) = p(t1...tk, k) = p(t1...tk, k|Θ)
p(k|Θ) · Po(k|λ) (6.12)

for a segment t1...tk with k tones. First, we create a probability distribution
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from the THPYLM model Θ as p(t1...tk, k|Θ). Then we divide this probability
by the distribution of the model Θ predicting a segment of length k. Essentially,
we suppress segment lengths that are more probable according to the THPYLM
model. We then use the Poisson distribution:

Po(k|λ) = e−λ λk

k! . (6.13)

The hyperparameter λ and the precomputation of p(k|Θ) are described in detail
in Section 6.2.4 focused on the model’s hyperparameters.

Figure 6.3: Ilustration of the NHPYLM nodes related to the chant segmentation
“ggggh hggfh kjkkhjh gghkk kkjkhg” encoded using the Volpiano note symbols. The
THPYLM shows the nodes related to the hggfh segment (with the < bos > and
< eos > tokens) with sampled context lengths {0, 0, 2, 0, 1, 3, 0}.

6.2.2 Adding and Removing of Customers
We have already defined the structure of the NHPYLM model, which consists
of THPYLM, SHPYLM, and the Poisson correction. The model predicts prob-
abilities of bigram segments based on the training chants added to the model.
Let’s assume we have a segmented training chant. Then we need to add individ-
ual bigram segments to the model. Using the analogy of a Chinese restaurant,
a segment represents a customer, and we are looking for a segment’s table, or
eventually, we create a new one. First, we need to find the SHPYLM node that
represents the first gram of the bigram (the context) and potentially create a
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node if it does not exist. Then we consider the second gram, our segment, as a
dish to which we want to add a new customer. We randomly select an existing
table k for dish s with context h in proportion to:

max(0, chsk − d), (6.14)

where chsk is the number of customers at table k for dish s in the context node
h, and d is the discount factor. Or we create a new table with probability pro-
portional to:

(θ + d · th·) · p(s|h′), (6.15)

where θ is the concentration parameter, th· is the total number of tables in the
context node h (∑︁

s ths), and p(s|h′) is the probability of dish s given the shorter
context, which is based on the base measure distribution. When selecting an
existing table, we increase the number of customers at the table, the total number
of customers for that dish, and the total number of customers in the SHPYLM
node by one. In the case of creating a new table, we follow the same procedure,
but additionally, we increase the number of tables for the dish in the node and
add a new customer for the added table in the parent node for the same segment
represented as the dish, but without the context. We follow the same procedure
as in the bigram node, only in the unigram node. In the case of creating a new
table in the unigram node, we add the segment s to the THPYLM.

In the case of SHPYLM, we add all the segments of the segmented chant.
Similarly, we need to proceed when adding a segment to THPYLM. In THPYLM,
we need to add all the segment tones. In the segment version, we always add
bigrams since SHPYLM has a fixed depth. This means the context is always
another segment preceding the target segment. On the other hand, THPYLM
represents an ∞-gram model, so the tone context should be handled differently.
First, for each tone, we sample the length of the context, and then we add each
segment’s tone with its context to the model, similar to the case of SHPYLM.
When sampling the context length, we consider all possible context lengths: zero,
the number of tones in the segment before the target tone, or any natural number
in that interval. Then, we randomly select a length according to the distribution
proportional to:

p(ti|ti−n...ti−1) · p(n|ti−n...ti−1), (6.16)

for the context length n. The probability p(ti|ti−n...ti−1) is computed similarly to
Equation 6.8, where the dish is the tone ti. The second probability p(n|ti−n...ti−1)
corresponds to Equation 6.11, where h = ti−n...ti−1. We store all the sampled
context lengths of all tones for a specific segment, which we would use in reverse
to remove this segment from THPYLM. After sampling the lengths, for each
tone, we find the node corresponding to the context (the depth of the node is the
same as the context length), and then we add the tone to the node in the same
way as we would add a segment to SHPYLM. We only increase the number of
stops in the current node and increment the number of passes of all parent nodes
up to the root by one. When creating a new table, we need to add a customer for
the tone to the parent node again. We need to add new customers to the parent
nodes as long as we have not reached the root or until no new table is created.
However, when adding new customers due to a new table in any child nodes, we
do not update the number of passes or stops again.
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Removing segments from the model follows the reverse process. We take a
bigram, find its corresponding node in SHPYLM, and remove one customer from
the table of segment dish. The table is randomly selected proportional to chsk, the
number of customers at table k of dish s in context node h. If the table becomes
empty, we need to remove it, and we also need to remove the customer from
the parent node of the same dish segment. However, the node’s total number
of customers, dish customers, and table customers should be decreased by one.
If the table is removed, the number of dish tables and the number of the total
node’s tables must be decreased by one. If we were to remove a table from the
root node, we would need to remove the segment from THPYLM. We take the
sampled context lengths generated during the adding procedure for a specific
segment and remove from THPYLM all the segment tones with these context
lengths. We need to remove the tone customers from the nodes corresponding
to the context, so we randomly select the k-th table of tone t and context h
proportional to chtk and decrease all the counts as in the case of removing a
segment from SHPYLM. Furthermore, we decrease the number of stops in the
node of the given context by one, and all the counts of passes of all parent nodes
would be decreased as well. In the case of an empty table, we need to remove the
customer from the parent node until there is no parent node left or there is no
removed table. We also need to remove information about that table from the
node itself. Passes and stops are only updated when removing the customer from
its original node for the first time, not when removing customers from the parent
nodes due to the removed tables.

6.2.3 Training and Decoding
Similar to the unigram model, the blocked Gibbs sampler, described in Figure 6.4,
is also used to train the NHPYLM model. First, we need to add all initial segmen-
tations of all training chants to the NHPYLM model. The initial segmentation
assumes that each chant has only one segment, which is the chant melody itself.
Then we perform J iterations. In each iteration, we take a random permutation
of chants and, in this order, for each chant, we first remove its segmentation from
the model, then we sample a new segmentation, and finally, we add the new seg-
mentation back to the model. The only question now is how to sample a new
segmentation based on the current state of the NHPYLM model.

Mochihashi et al. [2009] described the Forward-Backward algorithm, which
can also be used for sampling new segments of a chant. The algorithm consists of
two parts: Forward filtering and Backward sampling. Given a sequence of tones
t1...tn, the Forward filtering part precomputes a probability array α[n][k] for the
chant, representing the probability that the final subsequence tn−k+1tn−k+2...tn is
an independent melodic unit. We then marginalize the previous segmentations
and calculate the probability using the recursive equation:

α[n][k] =
n−k∑︂
j=1

p(tn
n−k+1|tn−k

n−k−j+1) · α[n− k][j], (6.17)

where tb
a denotes a subsequence starting at index a and ending at index b as

tata+1...tb. The recursion starts with the value α[0][0] = 1. Equation 6.17 assumes
that the possible segment length could be any positive number. Due to time
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1: for j = 1 · · · J do
2: for s in randperm (s1, · · ·, sD) do
3: if j > 1 then
4: Remove customers of w(s) from Θ
5: end if
6: Draw w(s) according to p(w|s, Θ)
7: Add customers of w(s) to Θ
8: end for
9: Sample hyperparameters of Θ

10: end for

Figure 6.4: Blocked Gibbs sampler of word segmentation task (Mochihashi et al.
[2009]).

complexity considerations, we need to limit the maximum segment length to a
number L = 7. The equation would then look like this:

α[n][k] =
min(L,n−k)∑︂

j=1
p(tn

n−k+1|tn−k
n−k−j+1) · α[n− k][j], (6.18)

where k ∈ {1, 2, ..., L}. We use these probabilities in the Backward sampling part
to sample a new segmentation from the chant’s end. We consider the symbol
<eoc> as the end-of-chant symbol. Let’s denote the number of tones in the chant
as N . Then, we randomly select a length for the final segment k ∈ {1, 2, ..., L}
proportional to:

α[N ][k] · p(< eoc > |tN
N−k+1). (6.19)

The probability of the bigram p(si|si−1) is calculated from the NHPYLM model
using Equation 6.8. Once we have sampled the length ks of the last segment, we
also have the final segment s = tN

N−k+1. We can then further sample randomly
according to the value:

α[n][k] · p(s|tn
n−k+1) (6.20)

for n = N − ks. This selects a sample for the second segment, the predecessor of
the final segment. Equation 6.20 can be generalized to sample all other segment
lengths based on the successor segment until we reach the beginning of the chant.

To decode the segmentation of a given chant, we use the Viterbi algorithm, so
we precompute the array α[n][k] in the same way as in Equation 6.17. Then, we
backwardly decode the chant’s segmentation. Again, we start with the < eoc >
symbol. We consider all allowed segment lengths and select the length k that
returns the highest probability in Equation 6.19. Instead of random selection, we
use the argmax function. Then, according to Equation 6.20, we search for the
length of successively for all segments that returns the highest probability until
we reach the beginning of the chant. The probability of the chant segmentation
c̄ =< boc > sc1, sc2, ..., scm < eoc > predicted by the NHPYLM model Θ is then
calculated as:

p(c̄|Θ) = p(s1| < boc >) · p(< eoc > |sm)
m∏︂

i=2
p(si|si−1) (6.21)
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1: for n = 1 to N do
2: for k = max(1, n− L) to n do
3: Compute α[n][k] according to Equation 6.17
4: end for
5: end for
6: Initialize n← N , i← 0, s0 ←< eoc >
7: while n > 0 do
8: Draw k ∝ p(si|cn

n−k+1, Θ) · α[n][k]
9: Set si ← tn

n−k+1
10: Set n← n− k, igetsi + 1
11: end while
12: Return c̄ = si, si−1, · · ·, s1.

Figure 6.5: Forward-Backward sampling algorithm looking for a segmentation c̄
of chant c (Mochihashi et al. [2009]).

for the beginning symbol of the chant < boc > and the end symbol of the chant
< eoc >. The probability of the bigram p(si|si−1) is calculated from the NHPYLM
model using Equation 6.8.

In Python, small probabilities are rounded to zero. However, preserving infor-
mation about them is important for the sampling and the segmentation compar-
ison. We need to scale the array α[n][k] to prevent underflow. The scaled array
α

′ [n][k] is defined as follows:

α
′ [n][k] = a[n][k]∑︁min(L,n)

knrm=1 a[n][knrm]

a[n][k] =
(︃min(L,n−k)∑︂

j=1
p(tn

n−k+1|tn−k
n−k−j+1) · α′ [n− k][j]

)︃
·

(︃ k∏︂
kscl=2

scale[n− kscl + 1])
)︃

scale[n] =
min(L,n)∑︂
knrm=1

a[n][knrm].

(6.22)

We can rewrite the scaled α
′ [n][k] as:

α
′ [n][k] = α[n][k] ·∏︁n−1

i=1 scale[i](︃∑︁min(L,n)
knrm=1 α[n][knrm]

)︃(︃∏︁n−1
i=1 scale[i]

)︃
= α[n][k]∑︁min(L,n)

knrm=1 α[n][knrm]
.

(6.23)

The advantage of scaling is that we work with high values of probabilities through-
out the training and decoding processes. We also keep all necessary information
because the proportional relationship remains the same when sampling the pre-
vious segment length ending at the n-th position since the scaled α

′ [n][k] is nor-
malized over all possible lengths k. Therefore, we use the α

′ [n][k] in the training
and decoding processes instead of the α[n][k].
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6.2.4 Hyperparameters
The NHPYLM model we described consists of many hyperparameters. Among
them are those that users choose as fixed values, such as the maximum segment
size L set to L = 7, the number of training iterations, or the coefficients for
calculating pass and stop probabilities, α, and β. On the other hand, some
hyperparameters are learned during training and adapted to the training data.
The first is λ for Poisson correction, and the second is the discount factor d with
concentration θ. These hyperparameters are initialized at the beginning by user
and then updated after each training iteration, as shown in Figure 6.4.

The coefficient λ is chosen from a Gamma distribution λ ∝ Gamma(αλ, βλ).
Initially, we set αλ = 6.0 and βλ = 1.2. The selected λ corresponds to the
probability distribution X shown in Figure 6.6. With this setting, the Poisson

Figure 6.6: Probability distribution Gamma(α = 6.0, β = 1.2) (Bognar [2021]).

distribution based on sampled λ favors longer segments. However, λ is updated
at each training iteration. We consider the dictionary of generated melodic units
V seen in segmented chants. Then, λ is sampled from the posterior distribution

p(λ|V ) ∝ p(V |λ) · p(λ)
= Gamma(αλ +

∑︂
s∈V

ts · |s|, βλ +
∑︂
s∈V

ts), (6.24)

where αλ and βλ are the initial hyperparameters, ts is the count of segment
s in the root unigram node, and |s| is the length of segment s. As part of
the Poisson correction, we also use the distribution p(k|Θ), which indicates the
probability that the model Θ generates a segment of length k. Initially, we
use a uniform distribution for all lengths k to have equal probabilities. After
each training iteration, we update this distribution by sampling 20, 000 segments
from the THPYLM model. We start from the beginning-of-segment symbol <
bos > and consider all tones, calculating their probabilities with respect to the
THPYLM model with the given context. The new tone of the segment is sampled
proportionally to these probabilities. We expand the context with the sampled
tone and sample a new one. We continue this process until we sample the end-
of-segment symbol < eos > or until the generated segment reaches the length
L = 7. Then, the distribution of segment length k is calculated as follows:

p(k|Θ) = ck + 1
c + L

, (6.25)

where ck is the count of sampled segments of length k, and c is the total count
of sampled segments (in this case, c = 20, 000). We also use Laplace smoothing
in this calculation.
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Other hyperparameters updated after each training iteration are d and θ.
Each layer of THPYLM and SHPYLM has its own hyperparameter values d and
θ. Initially, we assign them all the same starting values, set as d = 0.5 and
θ = 2.0. Then, we denote u as the context, which can be empty or consist of
one segment in the case of SHPYLM, or it can be empty or contain any natural
number of tones considering the THPYLM. As described by Teh [2006a], we need
to precompute xu, yui, and zuskj as follows:

xu ∼ Beta(θ|u| + 1, cu·· − 1) (6.26)

yui ∼ Bernoulli
(︃

θ|u|

θ|u| + d|u|i

)︃
(6.27)

zuskj ∼ Bernoulli
(︃

j − 1
j − d|u|

)︃
(6.28)

for θ and d given the length of the context, such as the layer depth |u|, the count
of customers cu·· in the node of the context u, and for each natural number i in
the range 1..tu·, where tu· is the count of all tables in the node of the context u.
zuskj is calculated for each customer j of each table of the specific dish s in the
node of the given context u. Then, for each layer at depth m, we sample new
values for dm and θm:

dm ∼ Beta
(︃

am +
∑︂

u:|u|=m,tu·≥2

tu·−1∑︂
i=1

(1− yui),

bm +
∑︂

u,s,k:|u|=m,cusk≥2

cusk−1∑︂
j=1

(1− zuskj)
)︃ (6.29)

θm ∼ Gamma
(︃

αm +
∑︂

u:|u|=m,tu·≥2

tu·−1∑︂
i=1

yui, βm −
∑︂

u:|u|=m,tu·≥2
log xu

)︃
(6.30)

for fixed hyperparameters am, bm, αm, βm, which we set to am = 1, bm = 1, αm =
1, βm = 1. First, we select θs and ds for SHPYLM, and then we follow the same
procedure to select θs and ds for THPYLM. In Equation 6.29, cusk denotes the
count of customers in the node of the context u for dish s and table k.

6.2.5 Mode Extension
Just as we described the extension of the Unigram model based on chant modes
in Section 6.1.2, we propose the same extension for the NHPYLM model. There-
fore, we create eight independent NHPYLM models and wrap them into a single
NHPYLM Modes model, where each NHPYLM model is mapped to one of the
modes. Then we split all training data into eight datasets, each consisting only of
chants belonging to its corresponding mode. We will then train each NHPYLM
separately. When segmenting an unseen chant from the validation or test dataset,
we first need to predict the mode and then segment the chant using the NHPYLM
model of that mode. We choose the mode m for chant c to maximize Equation 6.4
in the same way as in the case of the unigram model modes in the Section 6.1.2.
The probability of segmenting a chant generated by the model is then equivalent
to Equation 6.5, where the probability of segmenting a chant by one of the eight
NHPYLM models is calculated according to Equation 6.21.
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6.3 BERT
Another model that we will address is the model proposed by Li et al. [2022] based
on BERT. They used this model for unsupervised word segmentation. Since they
provided the model’s source code in Python, we will build upon it. We will only
adapt the model to our specific task.

6.3.1 Model Structure
Algorithm 1 proposed by Li et al. [2022] consists of three components: the gen-
erative module, the discriminative module, and the evaluation module. The gen-
erative module measures the distance between adjacent characters. Meanwhile,
the discriminative module predicts explicit segmentation labels B and I for each
character. B denotes the beginning of a word, while I denotes the inside of a
word. In our task, we have tones instead of characters and segments instead of
words. Therefore, one sentence corresponds to one chant.

Algorithm 1 Unsupervised Word Segmentation Procedure
Require: Generative Module G, Discriminative Module D, Evaluation Module

E, sequences to be segmented X.
i = 0
while True do

Segment the sequences X with G into Xg

Transform the segmented Xg into “BI” labels
Train D with high confident segmentations in Xg

Segment the sequences X with updated D into Xd

Train G with high confident segmentations in Xd

Evaluate the segmented sequence Xd with E e = E(Xd)
if ei < ei−1 then

Return Di−1

end if
i+ = 1

end while

Within the generative module of the BERT model, the first step is to perform
masked language modeling with a probability of r = 0.12 to mask each tone and
obtain the so-called masked lm loss. Then, the model applies an additional linear
layer and a softmax layer to predict the B or I labels. The softmax prediction is
used to compute the score of the tone labels at position i:

labels score[i] = softmax output[i][0]− softmax output[i][1]. (6.31)

If labels score[i] is a positive number, it is likely that the tone should be labeled as
B. Otherwise, a prediction with the I label is more probable. The next step is to
train the model to learn the vector distance between tones based on the predicted
labels score. The input sequence of tones is copied into 2 ·n−1 copies, where n is
the length of the chant, implying the chant consists of n tones. Let’s split these
copies into two sets. The first would consist of n copies, the second one of n− 1
copies. In the first set, in the i-th copy, the i-th tone is masked. In the second
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set, in the i-th copy, the i-th and (i + 1)-th tones are masked. Then, the vectors
of these sequences are calculated using the BERT model. The vector of the i-th
tone in the i-th copy from the first set is denoted as Hi. So, when we only mask
the i-th tone, we are interested in its vector. Furthermore, let’s denote the vector
of the i-th tone in the i-th copy from the second set as Hi,j, where j = i + 1, and
let’s denote the vector of the (i + 1)-th tone in the i-th copy from the second set
as Hj,i. This is a case where we mask two adjacent tones, and we are interested
in the vector from the first masked tone and then from the second masked tone.
If the tone at position i in the chant and the tone at position j = i + 1 should
belong to the same segment, then the distance between the vectors Hi and Hi,j

should be large. However, if these tones are not strongly connected, then the
vectors Hi and Hi,j should be similar. The distance is therefore defined as:

d[i] = dist(Hi, Hi,j) + dist(Hj, Hj,i)
2 , (6.32)

where dist(a, b) represents the Euclidean distance. We consider the value d as
the prediction and generate the targets by correcting the value of d. We iterate
over each tone i in the chant, and if d[i] > thresholdB and labels score[i] ≥ 0.5,
the target value of the tone i is going to be thresholdB. This means that if
BERT is confident about a tone being labeled as B, but the distance does not
match, we want to retrain it. The same applies to I, so if d[i] < thresholdI and
labels score[i] ≤ −0.5, the target value is thresholdI . Otherwise, the target value
remains d[i]. Then, the generative loss is computed as the mean squared error
loss between the targets and d. The final loss function used for backpropagation
in generative training is a combination of these two losses:

loss = 0.8 ·masked lm loss + 0.2 · generative loss. (6.33)

The discriminative module computes the masked lm loss in the same way as
the generative module. Then, the input sequence of chant tones is again copied
2 · n − 1 times, assuming n to be a length of chant (number of chant melody
tones). We compute d for each tone using Equation 6.32. Then, for each tone
i, target labels are created such that if d[i] ≥ thresholdI , the target is 1, if
d[i] < thresholdB, the target is 0. Otherwise, the target value is −100. The
target 1 encodes the I label, while 0 encodes B. The label −100 is ignored during
training. These targets are used to compute the discriminative loss as the cross-
entropy of an extra linear layer of BERT and its softmax output for predicting
the I and B labels. The final loss of the discriminative module is then calculated
and backpropagated as:

loss = 0.3 ·masked lm loss + 0.7 · discriminative loss. (6.34)

Initially, the model is trained with two epochs using the discriminative module.
It is then iteratively trained for several epochs by iterating the generative and
then the discriminative module. In each iteration, 3200 chants were used for
training. The first 1600 chants are used to train the BERT model using the
generative module. The second 1600 chants are used to train the model using the
discriminative module.
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6.3.2 Pretraining
The training process of Li et al. [2022] used the BERT model pretrained for the
Chinese language provided by Wolf et al. [2019]. This is a crucial and power-
ful part of the training process of the BERT model that we cannot reproduce.
Therefore, we have defined a new model with the same configuration as the Chi-
nese model. We only create a new vocabulary corresponding to the Volpiano
notation’s tone characters. Then, we pretrain the model using masked language
modeling with a masking probability of 0.15 and train it for 40 epochs.
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7. Experiments
In this chapter, we will introduce our experiments and their results. First, we
will introduce some baselines that could be useful for comparison. Then we will
show the results of all score functions applied to our models and compare the
score functions’ results to the baselines. We also consider the best segmentation
of antiphons and responsories to extract and analyze top 100 melodic units. As
the final measurement, we will discuss the experiment of removing segments from
different sides of the chants to observe the importance of the segments positioned
at a specific part of the chants.

Unigram Model Settings

We explored four versions of the unigram model with different settings. The
first one, which we referred to as UM3 5, is a unigram model that allows only
segments of length between three and five tones. Another model, UM1 7, is a
unigram model of segments whose allowed range is from one to seven tones. We
also explored models with the mode extension, which states that each mode has
its own model variables. The model first needs to predict the chant’s mode to
be able to do the segmentation with the most relevant variables. This way, the
segmentation is not affected by mode gold data, so it is done in a proper way.
The unigram model of the allowed segments in the range of three to five that
is based on this extension is referred to as UMM3 5, and the one with a range
of one to seven is referred to as UMM1 7. All these models are trained for 100
iterations with the default settings as it was described in Section 6.1.

NHPYLM Model Settings

This work measures two variants of NHPYLM. The first one is the basic NHPYLM
model trained on 200 iterations with L = 7 maximal segment size, using default
hyperparameters as was described in Section 6.2. This chapter refers to this
model as NHPYLM. The second variant is the NHPYLM with the mode exten-
sion that we refer to as NHPYLMModes model. We trained this model on 20
iterations since it takes much computational time to validate hyperparameters
on the validation dataset. The rest of the hyperparameters are also set the same
way, as in the case of the basic NHPYLM model.

BERT Model Settings

The BERT model is first pretrained on 40 iterations optimizing the masked lan-
guage modeling for each dataset separately. Then, the training process itself
optimizes the pretrained model. In the case of both antiphon datasets, the train-
ing process consists of two initial epochs using the discriminative module and
four epochs of generative-discriminative training. Overall, there were 11 itera-
tions of the generative-discriminative process. Regarding both antiphon datasets,
we set thresholdB = 8.6 and thresholdI = 11.5. In the case of the responsory
dataset, there are also two initial epochs of the discriminative module and four
epochs of the generative-discriminative loop. Because of less data in the re-
sponsory dataset, four epochs mean 5 iterations of the generative-discriminative
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process. In the context of responsories, thresholds are set to thresholdB = 5.5
and thresholdI = 6.5.

7.1 Baselines
In order to discuss the quality of the segmentations predicted by our models, we
also have to measure the baselines of evaluation metrics using some very naive
approaches that we should outperform. The most intuitive approach is randomly
generated segmentation. We use the same segmentation as the one used as the
initial segmentation in the unigram model as described in Section 6.1. So for each
chant, we iteratively generate a random number from the Gaussian distribution
x ∼ N (µ, σ2), for µ = 5 and σ = 2, and then we take the l = min(max(1, n), 7) as
the length of the next segment, if possible. We refer to this baseline segmentation
as Rand.

Cornelissen et al. [2020b] already proposed several segmentations. They con-
cluded that the natural segmentations were the most promising ones. By natural
segmentation, we mean the segmentation generated by the chant text. Accord-
ing to Cornelissen et al. [2020b], antiphons segmented by words showed the best
results. Meanwhile, syllable segmentation was the best for the responsory set of
chants. We consider these segmentations for comparison with our proposals on
the mode classification task as well as on other evaluation metrics we proposed.
Ideally, we would want to defeat those segmentations. Otherwise, we should show
that there is no better segmentation. To be able to compare their proposals with
ours, we have to reevaluate the specific segmentation with the same settings as
they did on all our evaluation functions. For instance, we have to keep liques-
cents. Cornelissen et al. [2020b] measured the experiment five times with different
seeds of splitting the train and test datasets. We can not do that for each model
due to the high computational time. So we evaluate these segmentations only
once and use the same dataset split for all models and baselines as described in
Section 4.1. We denote the original segmentation by words proposed by Cor-
nelissen et al. [2020b] as Words liq, and the segmentation by syllables presented
by them is called Syllables liq. We also measured these two segmentations after
replacing liquescents with their basic tone representations. We call these segmen-
tations Words and Syllables. We also replace liquescents in the same way for the
Rand baseline, the upper bound we will describe below in this section, or any of
the models we proposed. Since Cornelissen et al. [2020b] misused the antiphon
dataset (they also included differentiae - parts of succeeding, eventually preceding
psalms - as part of the antiphon chants), we need to reevaluate other approaches
proposed by them on the third dataset, the antiphon-without-differentiae dataset,
to confirm their statements and results. One of these approaches was n-gram
segmentation, meaning each segment has a fixed length of n as long as possible,
starting at the beginning of the chant. The last segment of each chant adapts to
the chant melody and has a smaller or equal length than n. We take into con-
sideration the 4-gram segmentation as part of the antiphons-without-differentiae
dataset results, and we call it 4gram liq. This segmentation also keeps liques-
cents in order to be able to compare its results with the antiphon experiments of
Cornelissen et al. [2020b].

We already mentioned segmentations that we should or would want to defeat.
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But we still need to figure out the upper boundaries of our evaluation metrics that
we cannot outperform for sure. Even if there is no good or better segmentation
than the one based on the chant text, it is essential to provide some evidence. In
the case of most evaluation functions we defined in Chapter 5, it is not straight-
forward what is the ideal score value - if its value is better to be lower or higher.
On the other hand, in the mode classification task, we know that the higher f1
and accuracy, the better. Therefore, we propose the mode classification approach,
considering all overlapping n-grams as features for n ∈ {1, ..., 7}. In the case of
bacor score or nb score, we remove the TF-IDF vectorizer limit on the features,
which is by default set to be 5000. Therefore, the classification model has all
possible segments of length 1, ..., 7 (e.g., all possible segmentations) of each chant
available. It is not segmentation, so we can not use that as segmentation to solve
our task. On the other hand, we can use this approach to be the upper bound
of the mode classification task using segmentations. We refer to this approach as
NgramOverlap. The only disadvantage is that the model also has a lot of mis-
leading segments. Furthermore, we also measured the same approach for fixed n.
Therefore, we include results of the 6gramOverlap, the set of all possible segments
of length 6 of each chant, as part of the results of the responsory dataset since
the results seem interesting.

7.2 Results
In this section, we will discuss the results of the score functions measuring base-
lines and segmentations generated by our proposed models. First, we will look
at the three dataset’s score values separately. Then, we will discuss the results of
the mode classification tasks in detail. And finally, we will look at the properties
of the best segmentations.

Antiphon Dataset

We measured the scores for this dataset to compare our results with Cornelissen
et al. [2020b]. As we mentioned, the dataset chants contain the differentiae that
are not part of antiphons but part of the psalm corresponding to the particular
antiphon. Furthermore, there is only a limited set of differentiae, while that set
is strongly related to the modes. Table 7.1 shows the scores related to the mode
classification tasks, which is the one that Cornelissen et al. [2020b] was dealing
with. Table 7.2 contains the model perplexity and fundamental segmentation
analysis such as vocabulary size, average segment length, and vocab levenshtein
that were described in Section 5.2. The rest of the value scores, such as wtmf,
maww, mawp and wufpc are shown in Table 7.3.

Regarding the mode classification task based on segmentation, the Rand
model, compared with other approaches or baselines, says that looking for a good
segmentation makes sense. The baseline of Words is quite strong, and retaining
liquescents is detrimental. As Table 7.1 shows, we can reach better performance
similar to the tentative upper bound of NgramOverlap. Moreover, we can get
good results even using the score functions based on the Naive Bayes classifier
when we use the mode extension of our proposed models.
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bacor accuracy bacor f1 nb accuracy nb f1
Rand 87.59 87.39 81.37 82.20
Words liq 94.76 94.71 90.17 90.30
Words 95.22 95.18 91.01 91.10
UM3 5 93.58 93.53 88.15 88.43
UM1 7 94.52 94.47 88.70 89.06
UMM3 5 93.99 93.98 93.03 93.03
UMM1 7 92.69 92.64 83.34 83.01
NHPYLM 95.77 95.75 93.94 94.03
NHPYLMModes 96.03 96.03 96.18 96.18
BERT 89.52 89.39 81.80 82.26
NgramOverlap 96.13 96.11 92.74 92.59

Table 7.1: Antiphon dataset - mode classification scores.

perplexity vocab size avg seg len vocab levenshtein
Rand - 14986 4.28 0.91
Words liq - 11087 3.77 0.91
Words - 9434 3.77 0.90
UM3 5 818.79 2325 4.26 0.99
UM1 7 1517.45 3581 4.96 0.93
UMM3 5 441.70 3143 4.06 0.97
UMM1 7 367.89 3782 3.85 0.92
NHPYLM 25.20 2161 2.44 0.90
NHPYLMModes 28.10 3493 2.78 0.93
BERT - 6300 1.85 0.82

Table 7.2: Antiphon dataset - perplexity, vocabulary size, average segment length,
and vocab levensthein scores.

The perplexity score indicates the statistical quality of the NHPYLM model.
The NHPYLMModes model is slightly less confident, but the score value is still
very promising. The difference of perplexity between those two models could be
caused by the fact that due to the computational time, the NHPYLM model
was trained on the 10 times more training iterations. Eventually, the difference
could be caused by the different random sampling during the training. However,
the perplexity difference is small enough to state that it is not certain which
model is better. Regarding the unigram model, the perplexity of the UM3 5 is
expected to be lower than the perplexity of the UM1 7 model since the UM3 5
model has less possible segments that it works with and considers during training
and predicting processes. Therefore, it is interesting that the UMM1 7 model has
lower perplexity than the UMM3 5 model, so the UMM1 7 seems to be trained
better.

Compared with the baselines of both Rand and Words, we can see that our
proposed models reduce the vocabulary size during training. Hence, the segmen-
tation is better suited to memorization. The vocab size value alone suggests that
segmentation by words is not the perfect approach. The smallest vocab size is
provided again by the NHPYLM model. Even though our models with the mode
extension have eight different vocabularies and different variables for each mode,
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and chants of each mode are trained separately, the vocab size of UMMs and
NHPYLMModes is not eight times bigger than the vocab size of the basic model
variant. It is not twice as big. But the vocabulary is still larger. This means
that each mode can have specific characteristic melodic units, just as there are
melodic units common to all modes.

The score vocab levenshtein provides information about the divergence of
melodic units in the vocabulary, as described in Chapter 5. The higher score,
the more divergent the vocabulary is. The maximal value of vocab levenshtein is
1.00. Most models provide a score greater than 0.90 which is also approximately
the baseline value. The UM3 5 model’s segmentation is trained to be divergent
the most with the vocab lveneshtein to be 0.99, where similar melodic units tend
to be grouped to only one segment representation. On the other hand, the value
of this score function of the BERT model is 0.84. This neural network approach
groups tones that behave similarly regarding the chant melody context. There-
fore, it could easily happen that two different melodic units contain the same
subsegment, which is, for instance, shifted and grouped with more or less differ-
ent tones. In this case, using the common part as a separate melodic unit would
be better. The BERT’s vocabulary divergence is not optimal, and the vocabu-
lary size is almost three times larger than the vocabulary size of the NHPYLM,
despite the lower avg seg len. Therefore, this approach is not suitable for this
task. Note that, in general, the neural network approaches need a large amount
of training data that we can not provide, which could be the main reason for
BERT’s weak performance on our task.

wtmf maww mawp wufpc
Rand 64.61 26.89 37.20 5.82
Words liq 63.00 100.00 - 6.23
Words 61.71 100.00 - 5.73
UM3 5 54.91 32.76 46.83 5.59
UM1 7 57.92 33.10 51.63 5.33
UMM3 5 64.21 34.45 48.23 5.71
UMM1 7 59.90 38.66 56.49 5.85
NHPYLM 49.27 47.87 71.81 7.73
NHPYLMModes 60.50 49.32 67.23 6.27
BERT 48.09 57.75 64.38 6.92

Table 7.3: Antiphon dataset - weighted top mode frequency, melody aligned with
words, melody aligned with phrases, weighted unique final pitch count scores.

The wtmf score gives the knowledge about how frequently melodic units of the
vocabulary occur in its dominant mode. The dominant mode is the one that has
the most occurrences of the particular melodic unit. As we can see from Table 7.3,
it is not a surprise that models based on the mode extension provide higher wtmf
than the model’s basic variant. In the case of the mode extension-based variant,
we force the model to treat each mode separately. On the other hand, all models
and baselines provide a high wtmf score, even the Rand baseline. If all melodic
segments are uniformly distributed over all modes, then the wtmf would be 12.5.
Therefore, most of the melodic units of the vocabulary are used primarily in
chants of its dominant mode, but they also occur, not that frequently, in chants
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of other modes. This is a significant result that demonstrates the existence of
the relation between modality and segmentation. As we can see, the wtmf score
of the Rand method is the highest one, which could be explained by the largest
vocabulary with the most unique and least frequent segments. Note that the
wtmf score is the weighted average over all vocabulary segments, where more
frequent segments impact the value more significantly. We can see that models
based on the mode extension provide similar outcomes, even though each mode
is trained separately without any knowledge of chants belonging to other modes.

Suppose we compare the Rand baseline with proposed models in Table 7.3.
We can notice that segmentations generated by models with better perplexity
or with better mode classification performance are more aligned with words and
phrases (maww, respectively mawp scores). Therefore, the segmentation quality
seems to relate to the word and phrase boundaries. But similarly, on average,
segmentations with shorter segments tend to be aligned with words and phrases
better. On the other hand, approximately 30 % of words do not end at the same
tone as any of the segmentations segments that perform better on the mode
classification task than the segmentation by words. This is true even though
those better segmentations have avg seg len lower than the Words baseline, so
those segments should be aligned with words more easily. Therefore, this is
another indication that the segmentation by words as proposed Cornelissen et al.
[2020b] is not that strong.

The last score we have not discussed is the wufpc score. As we can see, the
value of the weighted unique final pitch count is similar to all baselines and model
segmentations. The difference seems to be caused by the average segment length
value kept in the avg seg len score. The lower the avg seg len, the more segments
are predicted in the chants and the more final segment pitches the chants have.
Therefore, this score is useless for now in measuring the segmentation quality.

Antiphons-Without-Differentiae Dataset

In the previous section, we discussed the results of the antiphon dataset con-
taining differentiae. This dataset was used by Cornelissen et al. [2020b] for their
experiments. Based on those experiments, they concluded that natural segmen-
tation is the strongest one. However, their results from the antiphon dataset are
irrelevant to the mode classification task based on chant melodies because they
used information indicating the antiphonal context of psalms and their modes. In
this section, we are going to discuss reevaluated results of the corrected antiphon
dataset of Words liq and 4gram liq that Cornelissen et al. [2020b] proposed and
concluded that segmentation by words is better than the 4-gram segmentation.
We compare these baseline segmentations and their scores of our scoring function
with our proposed approaches in Tables 7.4, 7.5 and 7.6.

Table 7.4 shows that the conclusion that “natural” segmentation is better
because it leads to better mode classification results by Cornelissen et al. [2020b]
based on their approaches is wrong since the 4gram liq has a higher score of
the mode classification task. Compared with Table 7.1, the Words liq’s score
decreased by almost 5 %. This means that differentiae segmented by words are
strong, but not the segmentation itself. The performance of the unigram models
on the mode classification task again is not that good. Meanwhile, the NHPYLM
model again performs the best, especially the one with the mode extension. But
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bacor accuracy bacor f1 nb accuracy nb f1
Rand 81.70 81.08 75.33 76.68
Words liq 90.28 90.16 86.57 86.84
Words 90.53 90.38 86.72 86.98
4gram liq 91.27 91.14 83.25 83.62
UM3 5 90.11 90.00 84.50 84.94
UM1 7 89.84 89.69 84.99 85.50
UMM3 5 89.82 89.77 87.43 87.40
UMM1 7 88.12 87.91 76.21 75.92
NHPYLM 92.99 92.90 91.07 91.31
NHPYLMModes 94.02 94.01 93.58 93.59
BERT 87.28 87.11 79.46 80.02
NgramOverlap 94.69 94.65 90.14 89.95

Table 7.4: Antiphons-without-differentiae dataset - mode classification scores.

the upper bound model NgramOverlap indicates that there still could be an
improvement in the segmentation prediction. Section 7.2.1 will discuss our results
of the mode classification task based on segmentation in more detail.

perplexity vocab size avg seg len vocab levenshtein
Rand - 14281 4.26 0.91
Words liq - 10780 3.63 0.91
Words - 9201 3.63 0.90
4gram liq - 4211 3.89 1.00
UM3 5 825.84 2270 4.25 0.99
UM1 7 1511.34 3407 4.83 0.93
UMM3 5 525.07 3122 4.01 0.98
UMM1 7 401.23 3731 3.58 0.92
NHPYLM 26.10 2353 2.34 0.90
NHPYLMModes 31.08 3317 2.69 0.93
BERT - 6654 1.97 0.84

Table 7.5: Antiphons-without-differentiae dataset - perplexity, vocabulary size,
average segment length, and vocab levensthein scores.

Results in Table 7.5 are similar to Table 7.2 as well as the Table 7.6 is similar
to Table 7.3. The behavior of baselines and models are similar on both antiphon
datasets. In the previous section, we discussed their properties and their relations
to evaluation functions in detail. The antiphons-without-differentiae dataset ap-
pears to be a bit complex and not that straightforward to be trained on. Models
are again able to decrease the vocabulary size. The vocabulary seems divergent
enough except for the BERT model, which is unsuitable even for this dataset. On
the other hand, the NHPYLM also has the most promising results on the segmen-
tation of the antiphons-without-differentiae dataset, especially the model variant
based on the mode extension. Baseline segmentations and those generated by the
proposed models indicate that each mode has some characteristic melodic units
used primarily in the specific mode. Still, many segments are shared among all
modes. Results discussed till now already suggested that word segmentation is
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wtmf maww mawp wufpc
Rand 63.39 27.37 37.44 5.79
Words liq 61.50 100.00 - 6.22
Words 60.09 100.00 - 5.72
4gram liq 55.05 29.51 - 6.36
UM3 5 52.79 32.39 48.79 5.58
UM1 7 52.44 31.07 52.44 5.38
UMM3 5 60.75 34.29 51.26 5.61
UMM1 7 54.91 37.74 58.13 6.00
NHPYLM 49.63 46.78 71.59 7.72
NHPYLMModes 55.99 47.78 67.91 6.28
BERT 47.71 52.74 62.84 7.19

Table 7.6: Antiphons-without-differentiae dataset - weighted top mode frequency,
melody aligned with words, melody aligned with phrases, weighted unique final
pitch count scores.

not probably the best approach, which is supported by the maww score measured
on this dataset, where approximately 70 % of words do not end at the tone where
ends any of 4gram liq segments. On the other hand, the same as considering
the previous incorrect dataset, the maww increase on segmentation with better
performance on perplexity and mode classification scores. The mawp also seems
related to the segmentation quality. Note that it is still not clear whether the
best segmentation should be aligned with 100 % of the phrases.

Responsory Dataset

The third dataset consists of longer and more complex chants than antiphons.
Responsories do not contain differentiae, so we do not need to remove them.
Therefore, we can directly follow up on the Cornelissen et al. [2020b]. In this
case, they concluded that the segmentation by syllables is the most promising
one. So we will take that as a baseline, which we also do with the syllable
segmentation after removing liquescents, and we will compare these results with
our methods. Results of all value evaluation scores are listed in Tables 7.7, 7.8,
7.9. The results of baselines and models are similar to those evaluated on both
antiphon datasets.

As in the previous evaluation of antiphon datasets, in the context of the mode
classification, the unigram model cannot beat the natural segmentation (in this
case, the one based on syllables). On the other hand, NHPYLM and NHPYLM-
Modes again give better performance. Furthermore, considering the overlapping
n-grams of fixed n = 6 6gramOverlap, we get better bacor accuracy and ba-
cor f1 score than the NgramOverlap which consists not only the same features
as 6gramOverlap does but also all other overlapping n-grams for n ∈ {1, ..., 7}.
That could indicate that responsories contain powerful and important segments
of six tones. However, the nb accuracy and nb f1 scores of the 6gramOverlap
are significantly lower than those scores of NgramOverlap. Therefore, if there
are such strong segments, selecting them for the mode prediction is probably not
straightforward. We will discuss the detailed results of the mode classification
task in Section 7.2.1.
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bacor accuracy bacor f1 nb accuracy nb f1
Rand 82.12 81.93 75.11 76.09
Syllables liq 92.70 92.68 89.81 89.95
Syllables 93.27 93.25 89.43 89.55
UM3 5 92.18 92.13 84.73 84.89
UM1 7 92.41 92.38 86.39 86.59
UMM3 5 91.18 91.18 90.61 90.62
UMM1 7 89.47 89.45 79.66 78.94
NHPYLM 93.12 93.12 91.13 91.23
NHPYLMModes 94.22 94.22 94.22 94.21
BERT 87.43 87.37 75.91 76.49
NgramOverlap 94.31 94.30 93.22 93.20
6gramOverlap 95.21 95.20 91.99 91.92

Table 7.7: Responsory dataset - mode classification scores.

perplexity vocab size avg seg len vocab levenshtein
Rand - 16839 4.37 0.91
Syllables liq - 7342 2.92 0.90
Syllables - 6907 2.92 0.90
UM3 5 978.36 2625 4.44 0.99
UM1 7 1972.99 4443 5.22 0.94
UMM3 5 523.54 3336 4.16 0.98
UMM1 7 475.59 4447 4.11 0.94
NHPYLM 22.92 2676 2.68 0.92
NHPYLMModes 24.99 4170 2.93 0.93
BERT - 4862 1.42 0.76

Table 7.8: Responsory dataset - perplexity, vocabulary size, average segment
length, and vocab levensthein scores.

wtmf maww mawp wufpc
Rand 57.59 26.22 27.20 7.11
Syllables liq 49.75 100.00 - 9.22
Syllables 49.37 100.00 - 7.63
UM3 5 47.49 35.31 39.37 7.03
UM1 7 52.94 36.29 44.60 6.89
UMM3 5 56.93 38.23 43.27 7.05
UMM1 7 56.29 41.30 54.67 7.23
NHPYLM 46.15 55.49 76.52 8.84
NHPYLMModes 53.96 54.06 68.80 7.53
BERT 41.04 69.23 81.04 8.43

Table 7.9: Responsory dataset - weighted top mode frequency, melody aligned
with words, melody aligned with phrases, weighted unique final pitch count scores.

Tables 7.1 to 7.9 show that our proposed models work on both chant types sim-
ilarly. Scores are even more similar, comparing the responsory with the antiphon-
without-differentiae dataset instead of the antiphon dataset used by Cornelissen
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et al. [2020b]. Again all models learn to decrease the number of melodic units
in the vocabulary. At the same time, scores such as perplexity, maww, mawp,
avg seg len, and those based on the mode classification correlate together. For
the same reason as in the discussion of the antiphon dataset, responsorial seg-
ments are primarily used in one particular mode but can also be shared with other
modes. Furthermore, regarding values of the vocab levenshtein, avg seg len, and
mode classification tasks, BERT is unsuitable even for the responsory dataset.

7.2.1 Natural Segmentation Is Not Ideal
Considering the antiphon chants, differentiae segmented in the proper way strongly
affect mode classification results. Differentiae are mapped to the separated text
that does not relate to the text of the rest of the melody. Therefore, when we
segment by words, we for sure find the differentia melodic units. These melodic
units have a strong modal identity, which caused that Cornelissen et al. [2020b]
measured word segmentation of antiphons as the approach with the best mode
classification score. Replacing liquescents with their original tone representations,
we would get an even better score. However, we proposed a method that, on the
antiphon dataset, has a better mode classification score. This indicates that Cor-
nelissen et al. [2020b] conclusion of segmentation by natural units being the best
is not correct. Furthermore, if we remove differentiae, which should not be consid-
ered as part of antiphon melodies, the mode classification score of segmentation
by words is decreased by almost 5 %. Using the antiphons-without-differentiae
dataset, the 4gram liq segmentation, also proposed by Cornelissen et al. [2020b],
outperforms the segmentation by words.

Considering the antiphon dataset, the same as the Cornelissen et al. [2020b]
used, we provide the state-of-the-art of mode classification task. On the other
hand, this dataset is not relevant for us anymore since differentiae strongly affect
the dataset. Therefore, for the rest of the work, we consider only the results
of the antiphons-without-differentiae and responsory datasets, where we provide
the state-of-the-art on the mode classification task as well. In the case of the
antiphons-without-differentiae, the best approach so far is overlapping n-grams
of n ∈ {1, .., 7} collected together with the accuracy of 94.69 % and f1 score
94.65 %. Meanwhile, in the case of responsories, overlapping 6-grams offered the
best results with an accuracy of 95.21 % and f1 score of 95.20 %.

The goal of this work is not to find the optimal approach to the mode clas-
sification task. As discussed in Section 5.3.1, we hypothesize that correctly pre-
dicting a chant mode based on melody segmentation is one possible measure of
segmentation quality. The assumptions seem to be correct because there are
other evaluation functions, such as perplexity or mawp, whose improvement cor-
relates with an improvement in the mode classification scores, as could be seen
in Figure 7.1. Furthermore, it is not straightforward what is the potential of
segments as features to classify modes. As discussed in the baseline section,
we use the NgramOverlap as the upper bound of the mode classification task
using chant’s segments as features. That is a good indicator that there is a po-
tential to find better segmentation than baselines Rand and those proposed by
Cornelissen et al. [2020b] (Words liq, Syllables liq or 4gram liq). On the other
hand, the NgramOverlap approach is not segmentation, and it is not certain that
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any segmentation could reach a similar accuracy and f1 score on mode classifi-
cation. However, segmentations generated by NHPYLM models, especially the
NHPYLMModes model, are already very close to these upper bound values.

Figure 7.1: Charts visualizing correlation between bacor accuracy, bacor f1,
nb accuracy, nb f1, perplexity and mawp. Perplexity values are normalized to
be in the range of 0 and 100, so each perplexity value is divided by the highest
one, and the result is multiplied by 100. Scores of antiphons-without-differentiae
dataset are shown on the left. The right chart visualizes the correlation of re-
sponsory dataset scores.

7.2.2 The Importance of the Beginning, Middle, and End
of the Chant

Regarding and analyzing Tables 7.1 to 7.9, the most promising segmentations
of Gregorian chants are provided by the NHPYLMModes model and eventually
the NHPYLM model. They have the best score on mode classification, the best
perplexity, the highest mawp score, and other score functions that analyze these
segmentations positively. In this section, we will look at the segment properties of
segmentations provided by these two models considering both relevant datasets,
antiphons-without-differentiae, and responsories.

The segmentation of both NHPYLM and NHPYLMModes has an average
segment length of 2.34, and 2.69, respectively, in the case of the antiphons-
without-differentiae. Regarding the responsory datasets, the avg seg len value
of NHPYLM is 2.68, and the NHPYLMModes’s avg seg len is evaluated to be
2.93. If we compare these numbers to avg seg len of other approaches, the values
of both NHPYLM variants are lower. That could be caused simply by the shorter
segments that were discovered. But it could also be caused by many single-tone
segments not associated with neighboring tones. In the second case, the segmen-
tation would contain a lot of single tones whose frequencies could also significantly
impact the TF-IDF vectorizer that gives vector features we use as direct inputs
for SVC or Naive Bayes classifiers. The NgramOverlap approach has the same
problem when considering that there are also included all segments of length
1. That could be theoretically the reason for the improvement of bacor accuracy
and bacor f1 scores using the NHPYLM variants or evaluating the NgramOverlap
comparing with the rest of models and baselines. Therefore, we did the experi-
ment again with the binary settings of TF-IDF, so term frequency is either 0 (the
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chant does not contain the segment) or 1 (the segment is included at least once
in the segmented chant). But there were no significant differences in results, so
the count of segments, especially the count of single-tone segments, does not par-
ticularly affect the performance. To observe the distribution of segment lengths
over chants, we consider the chart of average segment lengths described in Sec-
tion 5.3.3. Figures 7.2 and 7.3 show the average segment length distribution over
all chants of the particular mode of segmentations generated by the NHPYLM
and NHPYLMModes models respectively of the antiphons-without-differentiae
dataset. Then, Figures 7.4 and 7.5 display the average segment length charts of
segmentations provided by the same models, the NHPYLM and the NHPYLM-
Modes models respectively, this time on the responsory dataset.

Remember that longer segments contribute to more bins in the chart than
short ones. As we can see, it is not that common that the average segmentation
length is as low as the avg seg len values. That could be caused by single-tones
or generally small segments that lay among segments with a larger length that
wasn’t grouped together since the compounded melodic unit is not as typical in
data as those separated parts. That may be due to the memorization mistakes
mentioned in Chapter 2. However, it could also be caused by an inability to find
segmentation because none would exist. In the second case, the predicted strong
segments would be familiar melodic units that singers had easy to memorize, and
they accidentally customized different melodies over the years to include these
simple and common melodic segments (similarly as described Treitler [1975]).
However, charts show us that grouping tones into segments at the end of chants
is easier. In the case of the antiphon-without-differentiae dataset, also segments at
the beginning tend to be longer, especially when considering the NHPYLMModes
model.

Modality and the Sharing of Segments

At the beginning of Section 7.2, while commenting on the tables, we mentioned
several reasons why we believe there are melodic units that are shared among
multiple modes, but at the same time, there are melodic units that are predom-
inantly used in chants belonging to a single mode. Are there also melodic units
that are used only by one mode? We call these melodic units unique segments.
In order to analyze the relation of modes and their segments, we look at the table
of numbers of shared and distinct segments of each mode pair. Furthermore, we
explore the vocabulary sizes of all modes separately and look at their number
of vocabulary unique segments. Figure 7.6 shows the results of the antiphons-
without-differentiae dataset, while Figure 7.7 analyzes the responsory dataset.
The number of shared and distinct segments between two modes correlates with
the mode distribution over the dataset. Furthermore, all four pairs of related au-
thentic and plagal modes (Section 1.2) also share more segments than most other
pairs. The behavior of the segmentations examined in terms of shared segments,
distinct segments, and vocabulary size is similar in both the NHPYLM and NH-
PYLMModes models. On the other hand, the matrix of unique segment numbers
is different. The NHPYLMModes model generates more unique segments for the
particular mode that do not occur in any other modes. The significant difference
is mainly in the modes whose records do not contain many chants, unlike the
1 or 8 modes. However, both models NHPYLM and NHPYLMModes generate
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Figure 7.2: Antiphons-without-differentiae dataset - average segment length dis-
tribution charts for each mode separately of chant segmentation provided by NH-
PYLM model. Each mode behaves differently, which could be caused by different
mode properties as well as by not optimally trained the model regarding some
of the modes. Usually, however, beginnings and primarily ends are, on average,
longer than segments in the middle.
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Figure 7.3: Antiphons-without-differentiae dataset - average segment length dis-
tribution charts for each mode separately of chant segmentation provided by
NHPYLMModes model. All modes behave similarly than in the case of the NH-
PYLM model, which could indicate that the NHPYLMModes model is trained
better.
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Figure 7.4: Responsory dataset - average segment length distribution charts for
each mode separately of chant segmentation provided by NHPYLM model. In
responsories, only the final segments are long. Unlike the antiphons, the begin-
ning of chants is not that interesting. On the other hand, the final segments of
responsories are, on average, longer than the final segments of antiphons.
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Figure 7.5: Responsory dataset - average segment length distribution charts for
each mode separately of chant segmentation provided by NHPYLMModes model.
The model finds longer segments at the beginning and in the middle of chants
than in the case of the NHPYLM model.
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Figure 7.6: Antiphons-without-differentiae dataset - matrix of shared segments
between two modes, matrix of distinct segments between two modes, sizes of vo-
cabularies of segments occurred in chants of the specific mode, and the number
of unique segments of the particular mode. The top matrices analyze the seg-
mentation generated by the NHPYLM model. The bottom matrices analyze the
segmentation generated by the NHPYLMModes model. In shared segments and
distinct segments matrices, we cannot measure that value between the two same
modes, so the values on the diagonal are filled to be zero.

approximately 10−50 % of mode vocabulary segments to be unique segments. In
Figures 7.8 and 7.9, we show the density of unique segments (Section 5.3.3) over
the chant of each mode separately of the antiphons-without-differentiae dataset.
Figures 7.10 and 7.11 display the same for the responsory dataset. Charts of
both datasets indicate that unique segments are placed mainly at the beginning
of chants. Antiphons seem to have also one more peak of unique segments oc-
currences in the second half of the chant. On the other hand, each mode has a
slightly different curve. That could relate to different mode structures or indicate
that the model is not trained enough for some modes. The responsory dataset
is a little bit more complex. But in both datasets, the NHPYLMModes model
provides more confident peaks and curves than the NHPYLM model.

We already measured the sizes of vocabularies. However, we still do not know
anything about the frequency of the segments. Some melodic units could be
used more often than others, or all melodic units could be used approximately
uniformly. We analyze it using the last chart described in Section 5.3.3, the
segmetns occurrences chart. Furthermore, these charts provide a lookup into

75



Figure 7.7: Responsory dataset - matrix of shared segments between two modes,
matrix of distinct segments between two modes, sizes of vocabularies of segments
occurred in chants of the specific mode, and the number of unique segments of the
particular mode. The top matrices analyze the segmentation generated by the
NHPYLM model. The bottom matrices analyze the segmentation generated by
the NHPYLMModes model. In shared segments and distinct segments matrices,
we cannot measure that value between the two same modes, so the values on the
diagonal are filled to be zero.

wtmf score. More precisely, it shows how other modes use melodic units belonging
mainly to one given mode. Figures 7.12 and 7.13 provide charts of segments
occurrences for each mode as it was described in Section 5.3.3, where these two
chart sets are measured on the antiphons-without-differentiae dataset using the
segmentation by NHPYLM, and NHPYLMModes respectively. Figures 7.14 and
7.15 give the same charts for the responsory dataset.

The first observation is that authentic modes with the same final tone fre-
quently share strong melodic units with their plagal variants (mode 1 with mode
2, mode 3 with mode 4, etc.). On the other hand, many strong melodic units
are used primarily by its dominant mode. We can also notice a few powerful
melodic units of the vocabulary that are used very often. The rest of the melodic
segments are rarely used. So there are far fewer relevant melodic units than those
found in the vocabulary using the NHPYLM or NHPYLMModes models.
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Figure 7.8: Antiphons-without-differentiae dataset - density of unique segments
regarding each mode separately of the segmentation provided by the NHPYLM
model. Each mode has a different chart curve, but we can notice that unique
segments are placed mostly at the beginning.

77



Figure 7.9: Antiphons-without-differentiae dataset - density of unique segments
regarding each mode separately of the segmentation provided by the NHPYLM-
Modes model. Charts show that NHPYLMModes found more unique segments
than the NHPYLM model.
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Figure 7.10: Responsory dataset - density of unique segments regarding each
mode separately of the segmentation provided the by the NHPYLM model.
Modes 2 and 5 have also a lot of unique segments at the beginning. The rest
of modes does not contain many of unique segments.
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Figure 7.11: Responsory dataset - density of unique segments regarding each
mode separately of the segmentation provided by the NHPYLMModes model.
As the antiphons-without-differentiae dataset showed, the NHPYLMModes finds
more unique segments than the NHPYLM model, but still, there is no common
structure of the distribution of the unique segments over single modes.
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Figure 7.12: Antiphons-without-differentiae dataset - segments occurrences charts
of each mode evaluated on the NHPYLM’s segmentation. Note that the gray line
is always common for all modes. Only the blue one differs. For instance, the
seventh chart says that mode 7 uses segments associated with mode 7 and those
associated with mode 8 similarly often. On the other hand, the eighth chart
indicates that mode 8 primarily uses segments associated with mode 8 and only
a few segments associated with mode 7. However, the model finds characteristic
segments primarily of only four modes, the most frequent ones in the dataset.
Many segments are shared not only among authentic-plagal mode pair.
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Figure 7.13: Antiphons-without-differentiae dataset - segments occurrences charts
of each mode evaluated on the NHPYLMModes’s segmentation. As peaks show,
the model is able to find characteristic segments of all eight modes. Similarly to
the NHPYLM model, there are a few frequent segments of each mode and many
rare ones.
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Figure 7.14: Responsory dataset - segments occurrences charts of each mode
evaluated on the NHPYLM’s segmentation. The behavior of the responsory and
antiphon datasets is the same. In the case of the responsory dataset, NHPYLM
model finds characteristic segments of most of the modes, which was an issue in
the NHPYLM experiment of the antiphons-without-differentiae dataset.
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Figure 7.15: Responsory dataset - segments occurrences charts of each mode
evaluated on the NHPYLMModes’s segmentation. The numbers of characteristic
segments of all modes are more even than in the case of the NHPYLM model.
Again, there are few important melodic units, but also there are many rare seg-
ments that are not that interesting in the context of the memorization process.
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7.2.3 The Impact of Modality Knowledge on Segmenta-
tion Process

As we can see from Tables 7.4 and 7.7, NHYPLMModes has similarly good accu-
racy and f1 scores using Naive Bayes (nb accuracy, nb f1), as the prediction given
by SVC (bacor accuracy, bacor f1). This suggests that the segmentation by the
NHPYLMModes model is also very well structured, and the difference between
mode structures and their segments is not that complex. We can notice that the
mode extension in the case of NHPYLM is a non-trivial improvement. This gives
us another argument to support the theory that each mode has its own rules,
properties, and structures of segments.

Again, it is essential to emphasize that in the case of NHPYLMModes or
UMMs, we do not use any unallowed data, such as mode gold data of testing
dataset, and so on. The unsupervised process, as well as the mode classification,
is completely clean. During the testing, the model first predicts the mode using
Bayes’ theorem with segmentation probabilities provided by all eight submodels,
as described in Section 6.2.5. Then the most probable segmentation generated
by the submodel of the predicted mode is returned. How good is the internal
mode classifier of the NHPYLMModes model? As we can see in Table 7.10, the
ability of the model to predict the mode based on chant is similarly good as the
bacor accuracy, bacor f1, nb accuracy, and nb f1 scores of the NHPYLMModes’
segmentation. The internal model itself is robust enough to predict modes. It

accuracy (%)
antiphons-without-differentiae 93.48
responsories 94.12

Table 7.10: Accuracies of internal mode classifiers of NHPYLMModes model on
the testing dataset of both antiphons-without-differentiae and responsories.

only prepares the segmentation that could be easier processed by SVC and Naive
Bayes classifiers. This is another argument to support that each mode and its
segmentations work differently. Mistakes of the NHPYLMModes internal mode
classifier are shown in the confusion matrices in Figure 7.16. The model is con-
fused by pairs of authentic and its plagal modes that share many properties, such
as final tones, etc.

To verify that the reason for better results of NHPYLMModes is because
each mode was trained with a separate NHPYLM model and not just a prod-
uct of having eight times as many parameters, we ran five more experiments for
both datasets. We shuffled the training chants’ correct modes with a random
seed and used these pre-generated mode labels to assign the chants to their NH-
PYLM submodels. The experiment results are listed in Table 7.11 for antiphons,
and Table 7.12 contains results for those experiments measured on responsories.
Mode classification scores are suddenly worse by more than 1 % than the basic
NHPYLM variant. This means that the fake NHPYLMModes model trained on
shuffled gold data confuses the SVC and Naive Bayes classifiers. Furthermore, the
scores of our shuffled experiments are even worse than nature segments proposed
by Cornelissen et al. [2020b]. We can conclude that the improving factor of the
NHPYLMModes model is the submodel separation.
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Figure 7.16: Confusion matrices of the NHPYLMModes internal mode classi-
fier on the antiphons-without-differentiae dataset (left) and responsory dataset
(right).

bacor accuracy bacor f1 nb accuracy nb f1
seed=0 90.41 90.31 86.49 86.80
seed=1 90.55 90.46 85.31 85.75
seed=2 90.36 90.25 85.95 86.38
seed=3 90.80 90.71 86.77 87.09
seed=4 91.54 91.48 85.98 86.41
NHPYLM 92.99 92.90 91.07 91.31
NHPYLMModes 94.02 94.01 93.58 93.59

Table 7.11: Antiphons-without-differentiae dataset - mode classification scores of
segmentations generated by fake NHPYLMModes using the shuffled mode labels
on five different random seeds. Compared with the NHPYLM model with bacor f1
score of 92.90, and the NHPYLMModes model trained on true mode labels with
bacor f1 score of 94.01, random mode labels only confuse the segmentation.

bacor accuracy bacor f1 nb accuracy nb f1
seed=0 91.51 91.51 87.91 88.07
seed=1 91.51 91.49 88.24 88.35
seed=2 91.23 91.24 88.19 88.34
seed=3 91.37 91.37 88.62 88.78
seed=4 90.23 90.16 88.15 88.40
NHPYLM 93.12 93.12 91.13 91.23
NHPYLMModes 94.22 94.22 94.22 94.21

Table 7.12: Responsory dataset - mode classification scores of segmentations
generated by fake NHPYLMModes using the shuffled mode labels on five different
random seeds. Results are, on average, better than scores of the antiphons-
without-differentiae shuffled experiment, but they are still not able to outperform
the NHPYLM model nor the NHPYLMModes trained on the correct mode labels.

As we can see, the conditional non-parametric Bayesian model itself is a better
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mode classifier than the SVC classifier combined with the TF-IDF vectorizer. At
the same time, we see that the segmentation of each mode behaves differently,
i.e., each mode has such a different segmentation behavior that the model is able
to recognize the mode of a new incoming chant purely by taking the most likely
submodel that segments the melody most confidently. Thus, the knowledge of
the mode helps in segmentation, and singers could use the information for better
memorization of chant melodies.

7.3 Top Features
In this section, we will extract features and analyze their properties. We use
the extraction method introduced in Section 5.4. From the discussions in pre-
vious sections, considering all our approaches, the NHPYLMModes provides the
strongest segmentation. It performs best on the mode classification task and has
the most confident and consistent segment properties over all modes listed in
charts in Section 7.2.2. Also, the rest of the value score functions describe the
segmentation provided by the NHPYLMModes as good segmentation. So we will
use this segmentation to extract the top 100 features of both antiphons-without-
differentiae and responsory datasets. Those extracted segments of the antiphons-
without-differentiae dataset are listed in Table 7.13. Table 7.14 shows the top
100 features extracted from the responsory dataset. Segments are encoded into
Volpiano notation as described in Section 1.5.1. There are short melodic units
that occur many times in chants, but probably, they do not help to classify the
mode that much. On the other hand, tables also consist of longer segments. Fur-
thermore, on average, the top 100 segments of responsories are longer than those
of antiphons.

g k h f d l hg e gh gg
fe fed gf efg j ff hh fg df c
ghg kk kj lk ll i fgh cd m hk
dc hgfg ed kjh ghgf cdd fgg dd fh fghg
hgh fd efgfedd hhg hjhgg dcd fghhgg ggg jk kkjh
ee fedd jkl fghhg kjhg hgg cdf kkj hgf hj
lml hkh de fghh lm fgf jh fefg ddcfg kkl
hghg hgfgg cdfedd gfed ccd ghgg hjhg ghk hhgg efgfed
fdc defg lkj gfg cddd ki jklk fef eg dee
kh fedcd jkhg fhk ffg efgg klk hkhg ghgfg lll

Table 7.13: Antiphons-without-differentiae dataset - top 100 features encoded in
Volpiano tone notation. Features are ordered by their occurrence counts in the
training dataset row by row from left to right. We can see the short segments as
the most frequent ones, but also, some of the longer segments showed up to be
important for the mode classification task.

We tested the strength of these segments by evaluating the mode classification
scores on the chant segmentations, keeping only the top 100 features from Tables
7.13 and 7.14. The rest of the segments are removed for this evaluation purpose.
The settings of the SVC used by Cornelissen et al. [2020b] that we use the same
for bacor accuracy and bacor f1 score evaluation also use the hyperparameter
tuning. The improvement of SVC performance is negligible. Moreover, the time
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f g h k d e l gh j hjkjhg
hg gf kj c fe kl gg hjhghhg hk ghg
kk fg hhg cd i lm hh fed efg df
dd hkhghhg ed fgh dc jklkj defefed ff kkj ll
jk fd hgh fh nm jh fghg ghgfggf ffe fgf
m jkl ghgg klk cdf hgfg hjh dcd gfgh hkghg
ef efd cdd hghg eed hgfghg defed hgf ghkj hghgfgg
efgfggf gfg efed ln fgfe hjkjhgg hih gghg fdf lk
ghhg llk hkh hgg efedefd fghh egfffe fhk lkk efede
fghghhg dfd hkk ggg defedcd kjhghg ggf gfed gff klkj

Table 7.14: Responsory dataset - top 100 features encoded in Volpiano tone nota-
tion. We can notice that responsories have, on average, longer top 100 segments
than antiphons. Another observation is that the top 100 features tables of both
chant genres share 59 segments.

complexity is increased. Therefore, in this case, we ignore the tuning process.
The final results of mode classification scores of chants segmentation with reduced
segments are listed in Table 7.15.

bacor accuracy bacor f1 nb accuracy nb f1
reduced antiphons 93.68 93.65 93.58 93.56
reduced responsories 94.12 94.12 94.22 94.22
full antiphons 94.02 94.01 93.58 93.59
full responsories 94.22 94.22 94.22 94.21

Table 7.15: Mode classification scores on chants segmentation originally generated
by NHPYLMModes model, that their segments are reduced so the segmentation
consists of only top 100 features from Tables 7.13 and 7.14 in case of antiphons-
without-differentiae and responsory dataset respectively.

As we can see, scores of segmentation reduced on 100 segments is almost as
good as the segmentation with all segments from the original vocabulary. There-
fore, modes possess certain characteristic melodic units or their combinations that
need to be identified in order to classify modes more accurately. Furthermore,
memorizing 100 melodic units would not be that challenging anymore, so the
existence of some compressing system is possible. Based on the information pro-
vided in Table 7.15, it is evident that these segments and their combinations are
characteristic features for some of the modes. Also, charts in Figures 7.12 to 7.15
indicate that most of the vocabulary melodic units are rarely used in chants, and
only a few are used very frequently. In order to visualize the percentage represen-
tation of top 100 segments in our best segmentation by NHPYLMModes model,
and to observe the positions of these segments over all chants considering the
specific mode, we generated charts of densities of top segments that are shown in
Figures 7.17 and 7.18 of antiphons-without-differentiae and responsory datasets
respectively.

Some of the modes have similar patterns. For instance, top segments occur
more at the beginnings and endings than in the middle. Charts also show that
these top segments occur very often in chants. Note that longer segments affect
curves more significantly than shorter segments since longer segments are included
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Figure 7.17: Antiphon-without-differentiae dataset - density of top segments over
chants for each mode separately on segmentation provided by NHPYLMModes
model. Charts show that there are no particular positions of top segments. On
the other hand, top segments occur very often.
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Figure 7.18: Responsory dataset - density of top segments over chants for each
mode separately on segmentation provided by NHPYLMModes model. The top
features of responsories are placed mostly at the end of chants, but they are also
frequent in the rest of the melody positions.
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in more chart bins (Section 5.3.3). But many of the top extracted features are
short. Moreover, those short segments are the most frequent ones, where each of
them influences a smaller area in the chart than those longer ones that are not
frequent nor strong. Therefore, charts do not precisely tell the absolute frequency
of all top segments occurrences over all segments.

The last analysis of the top segments we provide in this work examines the
segment’s dominant mode. Figure 7.19 contains two matrices of the top segments
- modes analysis described in Section 5.4. The top one corresponds to our best
segmentation of the antiphon-without-differentiae testing dataset. The bottom
one corresponds to the responsory testing dataset. Each row corresponds to one
of the modes: the top one is mode 8, the one below is mode 7, and in descending
order from top to bottom row of mode 1. Each column is mapped to one of the top
100 features in the same order as segments are listed in Tables 7.13 for antiphons,
and 7.14 for responsories, row by row. So the first ten columns of Figure 7.19 are
mapped to the segments in the first row of Tables 7.13, or 7.14, in the same order.
The following ten columns of Figure 7.19 are mapped to the second row in the
same order, etc. In general, segments of length one, two, or three are more likely
shared among all modes. On the other hand, longer segments are characteristic
mostly for one specific mode.

Figure 7.19: Occurence matrix of top features regarding modes. The top matrix
corresponds to the segmentation of the antiphons-without-differentiae dataset.
The bottom matrix corresponds to the segmentation of the responsory dataset.
Both segmentations were generated by the NHPYLMModes model. We can see
that all modes use the short top segments. On the other hand, those longer ones
are used mostly in one specific mode.

7.4 Trimming Experiments
So far, there is much evidence that segments from the beginnings and ends of
chants are more important in some way than those in the middle. Therefore,
we do the trimming experiment on our best segmentations generated by the
NHPYLMModes model. We remove an even number k of segments from chant
segmentation, and we measure the resulting segmentation’s bacor accuracy and
bacor f1 scores, again without the parameter tuning. We want to measure the
importance and strength of these marginal segments. We include four types of
segment removal, and we compare them together. The first is the baseline of
randomly removed k segments from the segmentation. Then we remove k seg-
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ments from the left side of the chant, which is the beginning, and we also examine
segment removal from the right side - the end of chants. The last approach re-
moves segments from both sides. The first half of the segments are removed
from the beginning, while the rest are removed from the end of the chant, which
is the reason for k to be an even number. Results of the antiphons-without-
differentiae experiment are visualized in Figure 7.20, where we removed zero to
twelve segments. Figure 7.21 visualizes the results of the responsory experiment
that includes segment removals of zero to thirty segments.

Figure 7.20: Antiphons-without-differentiae dataset - trimmed experiment on
the segmentation provided by NHPYLMModes model. The left chart shows the
bacor accuracy, and the right chart shows the bacor f1 scores. The combination
of beginning and final segments is stronger than segments from only one chant
side.

Figure 7.21: Responsory dataset - trimmed experiment on the segmentation pro-
vided by NHPYLMModes model. The left chart shows the bacor accuracy, and
the right chart shows the bacor f1 scores. As in the case of antiphons, the com-
bination of the responsory beginning and final segments is also stronger than
segments from the beginning or segments from the end of chants. Surprisingly,
the combination is similarly strong as randomly chosen segments, which are also
better than segments from only one side of the chant. Note that the first 6 ran-
dom segments were the weakest ones.
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The results show that antiphons have more informative beginnings than end-
ings, which cannot be said with certainty about responsories. Let’s compare
removing segments from the front or the end of the chant with a random baseline
where we randomly select segments to remove. We find that the random removal
of segments affects the results more significantly. Removing segments from both
sides at the same time (when the number of removed segments is still the same
as considering other approaches) is the most influential in both dataset cases.
The combination of beginning and ending segments could be crucial for mode
classification. On the other hand, it could be possibly explained by the fact that
when we remove the segment only from one side, the mode could still be predicted
using information from the other side.
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Conclusions and Future Work
Gregorian chant, as an oral tradition, was performed by singers who learned thou-
sands of melodies for the entire liturgical year. There are hypotheses suggesting
that one of the possible ways how singers could remember the repertoire is based
on the melody segmentation and its melodic units. Therefore, in this work, we
dealt with the unsupervised segmentation of Gregorian chants of the two most
frequent genres of chants - antiphons and responsories. We were looking for a
system of melodic units that would simplify chant melodies’ memorization and
could also relate to chant modes. We designed several evaluation functions and
visualizations to analyze predicted segmentations. Some of the score functions
and metrics were focused on modal properties, while others observed statistical
aspects of the model and its segmentation. Then, we introduced three segmenta-
tion models we used in this work. The first was a baseline unigram model. The
second was the NHPYLM model based on Pitman-Yor processes which showed
up to perform best on this task. On the other hand, the third one, based on
BERT, is unsuitable for our task, either for the complex structure of chants or
for the small amount of training data. The best invention of this work was the
extension of the NHPYLM model that trains each mode separately. Here we
summarize our findings.

Natural segmentation by words or syllables is not ideal. Our work
partially follows up on the article by Cornelissen et al. [2020b], which says that
the best segmentation is the one that is based on natural units such as words
or syllables. We showed that they had used the antiphon data incorrectly, and
their results needed to be reevaluated. Furthermore, Tables 7.1 to 7.9 show that
we found the segmentation with not only a higher mode classification score than
the segmentation based on natural units but also with other properties that in-
dicate that our segmentation is more fitting to the Gregorian chant context. Our
proposed segmentation also gives a mode classification score very close to our pro-
posed upper bound for segmentation-based mode classification, i.e., overlapping
n-grams. Considering this overlapping n-grams approach, we set the state-of-the-
art on the mode classification task.

The beginnings and ends of chants have stronger modal identity
than the segments in the middle. Based on Figures 7.2 to 7.5 we discovered
that segments at the beginning and especially at the end of chants have on average
longer segments. This means that the tones at the beginning and the end are
more related to each other, and therefore the resulting segments of these tones
are more stable. As Figures 7.8 to 7.11 show, there are more unique melodic units
that are used only by one mode at the beginning of chants than in the middle
or at the end. These unique segments determine the mode of the chant melody.
We can also notice that in the context of the average segment length and the
segment uniqueness, each mode behaves differently, which could be caused by the
small amount of training data, but also by the different rules and properties of
single modes. However, combining the results of these two types of charts, the
beginning and ending segments have a stronger modal identity than the rest of the
chant. This is also supported by the trimmed experiment visualized in Figures
7.20 and 7.21. This observation lends further weight to the view of modality
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as a phenomenon primarily of performance practice rather than medieval music
theory.

Many segments are shared among all modes, but there are also seg-
ments that are used by only one mode. We also analyzed that many melodic
units are shared among all modes, especially when considering the authentic-
plagal mode pairs, as shown in Figures 7.6, 7.7 and 7.12 to 7.15. But still, based
on the wtmf score from Tables 7.3, 7.6 and 7.9, melodic units are used primarily
by one particular mode. Furthermore, as Figures 7.6 to 7.11 show, some of the
melodic units are used only by one specific mode. Again, this can be taken to
imply that modality is not necessarily a principle governing the entire melody,
but more detailed musicological work is necessary.

Conditional NHPYLM model generates the segmentation that gives
the state-of-the-art performance on the mode classification task based
on the melody segmentation. We proposed the mode extension of the NHPYLM
model that contains eight separated NHPYLM submodels trained individually.
Tables 7.1 to 7.9 show that each NHPYLM submodel is trained separately well
to segment the chant, but based on the Table 7.10 and Figure 7.16, these eight
submodels are also trained well to recognize chants that belong to the mode of
the particular submodel. The internal mode classifier of the extended NHPYLM
model is more accurate than any of the previously proposed methods by us or
Cornelissen et al. [2020b]. In case all modes have the same segmentation prop-
erties, the internal mode classifier would be random. Therefore, each mode has
its own independent segmentation properties that allow training each NHPYLM
submodel to be able to recognize the chant of the submodel’s mode. Therefore,
the behavior in a way of compounding a single tone into segments of each mode is
unique. Applying the TF-IDF vectorizer with the SVC classifier on the predicted
segmentation using the extended NHPYLM model, we reach the state-of-the-art
on the mode classification task based on melody segmentation.

There are only a few frequent segments and a lot of occasional ones.
Charts in Figures 7.12 to 7.15 imply that the segmentation contains only a few
frequent segments, but most of the vocabulary segments have occurred rarely. As
part of this work, we listed the top 100 extracted segments encoded in Volpiano
notation for both types of chants in Tables 7.13 and 7.14. From Figures 7.17
and 7.18, it could be seen that we chose frequent segments. Antiphons share
59 of top segments with responsories. Therefore, it is possible that the base
melodic units strongly indicative of mode don’t relate to a particular chant genre.
However, based on Table 7.15, these top segments are powerful enough to obtain
similar scores in the mode classification task as the original segmentation that
uses all segments from the actual vocabulary. Compressing melodies with these
100 segments is efficient despite the large number of occurrences of single-tone
segments. On the other hand, it still does not seem practical for singers to think
of melodies in this way during the learning process.

Modality and segmentation are closely related because if we use a model where
we assume that each mode segmentation behaves differently, we get better per-
formance on mode classification. Also, peaks of average segment length, density
of unique segments, or segment occurrences charts exhibit greater clarity and
confidence of all modes. Hence, the mode-dependent model also learns properties
of modes whose chants are less frequent in the dataset. Furthermore, each mode
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has its unique segments but also shares segments with others. It’s not surprising
that the beginnings and endings of chants have a stronger modal identity than the
rest since chants are linked by these segments together in the repertoire. The seg-
mentation we found contains many single-tone or rare segments, indicating that
it cannot be directly segmented into fixed melodic units. Therefore we demon-
strate another perspective showing that centonization is likely not a good model
of chant melody. We know that the mode of the chant influences the melody
segmentation. We also know that melodies contain a lot of commonly repeated
melodic units, and the vocabulary of those frequent melodic units is not that
large. This could mean that these frequent melodic units just settled down natu-
rally over time because they were well remembered and sung, and similar melodic
units were transformed into them. On the other hand, these melodic units are
too short for that. But also, it could be caused by segment development and
modification over the years, so the segmentation contains a lot of similar but still
different melodic units. Alternatively, considering that we found relatively small
melodic units that strongly determine the chant modes, the Gregorian chant tra-
dition could be based on a system of particular grammar and its rewriting rules,
where we found terminals and their most frequently used compounds. Based on
our observations, we are not able to provide a precise explanation of the chant
learning and memorization processes, but as we discussed in the introduction,
the work does not have the goal of finding breakthrough discovery in the area of
the Gregorian chant methodology. A further meaning of our measurements has
to be found in close collaboration with chant scholars and experts on medieval
music theory.

In future work, the statistical independence of modes and their segmentations
needs to be proven. We also haven’t analyzed the explicit efficiency of compressing
chant melodies by memorizing top segments. In other words, if each of the top
segments were replaced by one sign indicating the segment, how much data that
singers had to memorize would be reduced? Furthermore, it is not clear how
top segments evolved over the centuries and whether those not frequent segments
are similar to those in the list of top 100 features. It is essential to design a
segmentation model that considers similar melodic units as one and measure its
performance. It is also worth analyzing melodies as a result of some grammar
and its rewriting rules on the top segments proposed by us.

Given the overall rough agreement between existing musicological knowledge
and the behavior of our segmentation models, we believe that this is a viable
avenue of digital chant research, but a closer collaboration with chant experts is
needed to design models. Although there are still many unanswered questions,
our work has described not only why it is worth addressing this topic but also in
which direction it is intriguing to proceed further.
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