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eling results based on Kubo-Greenwood formalism and ab-initio simulations are
presented to help validate the measurement results and predict the appearance of
the topologically protected surface states. Despite excellent quality of the sam-
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The epitaxial graphene grown by intercalation of graphitized silicon carbide of-
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I Introduction
Topology, a branch of mathematics exploring continuous transformation of spaces,
usually deals with questions rather detached from everyday life, such as ’how can
you define the holes in a torus or sphere’ [1]? Yet it has experienced a dramatic
growth in interest in the last two decades, best reflected by the 2016 nomination of
the Nobel prize in physics [2, 3]. The award went for discoveries in the topological
classification of matter. Different states of matter, besides the traditional gas,
liquid, etc., can be additionally classified by topological invariants such as Chern
numbers. They are topological in the sense that they are invariant under small
deformations of the Hamiltonian [4].

Figure 1.1: Topologically distinct classification of matter. A regular semicon-
ductor with a gap at all values of the momentum and electrons (blue arrows)
symbolically revolving around the red nucleus (a). Magnetic field induces edge
states carrying current (b). Quantum spin Hall effect exhibits counterpropagating
fully polarised currents with spin-up and spin-down electrons (c). It also features
the signature linearly dispersing Dirac cones (blue and red lines) with massless
fermions moving at relativistic speeds. [5].

Topological insulator (TI) is a distinct phase of matter first predicted just
less than two decades ago [6]. In this class of materials strong spin-orbit cou-
pling inverts the energy bands at the vicinity of the band-gap to create Dirac-like
metallic conducting states at the edge or surface (in 2D or 3D case, respectively)
of a bulk insulator. It is analogous to the quantum spin Hall effect, just that it
is maintained by the spin-orbit coupling of the very material itself. The regular,
quantum Hall and the related quantum spin Hall cases are sketched in fig. 1.1.
These metallic states in TIs are topologically protected against small perturba-
tions by the time-reversal symmetry and exhibit many interesting properties that
are of great scientific and practical use. For example, owing to the strict distinc-
tion of the possible spin currents, backscattering in TIs would require a spin-flip
which is energetically costly. Thus, owing to the forbidden backscattering and
U-turns [7], the current flow in TIs would be disipationless, opening possibilities
for next generation ultra-low energy consumption electronics. For scientists, on
the other hand, TIs could serve as tabletop setups for relativistic experiments
owing to charge carriers moving at ≈ c/300, such as in graphene [8, 9]. Further-
more, TIs in contact with other materials can open doors to explore rather exotic
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states of matter such as electron-monopole composites called dyons or Majorana
fermnions which are their own antiparticles [10]. TI states have been first proven
to exist in HgTe [11] and later extended for other materials like BiSb [12].

However, the requirement of strong spin-orbit coupling limits the choice of
suitable materials to those with high atomic numbers like Bi, Sb, Hg, Te. On the
other hand, it was predicted in 2011 that TI phase is also possible in materials
without any intrinsic spin-orbit coupling. Instead, the band inversion is achieved
and topologically protected by the presence of mirror symmetry with respect to
certain crystallographic plane of the crystal lattice instead of the time-reversal
symmetry. This phase of matter is therefore titled Crystalline Topological Insu-
lator (CTI) [13]. These states of matter were first predicted for SnTe material
class and also related semiconductors PbTe and PbSe [14]. However, the topo-
logical states would be difficult to observe in pure SnTe due to low occupation
of surface states. Since breaking the crystalline symmetry is easy by means of
strain engineering, pressure or application of in-plane magnetic field, the band
structure of CTIs could be in principle continuously tuned and have applications
in thermoelectrics, infrared detection and tunable electronics [14].

Materials with conical conducting Dirac states and nontrivial topology are a
relatively new and promptly emerging class, where new materials are proposed
and subject of intensive scientific research. This dissertation is aimed at
exploring the general fundamental properties of several Dirac materials
with topologically nontrivial states - lead tin salts and graphene.
The particular goals are:

• investigate the optical properties of these materials using non-destructive
spectroscopic ellipsometry and magneto-optical spectroscopy;

• develop and test a theoretical framework able to predict and explain the
properties of the magneto-optical response;

• characterize the band structure of bulk and surface electrons.
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II Dirac materials
The main feature connecting all materials investigated in this thesis is the so-
called Dirac states. They are a natural outcome of the Dirac equation that aims
to explore relativistic effects of moving electrons in the framework of quantum
mechanics. Therefore, an introduction to this topic will be given in the next
sections. Afterwards, the general properties of the investigated materials will be
presented.

2.1 The Dirac equation
The standard Schrödinger equation does not deal with relativistic effects. In
relativistic physics, the total energy of a particle is related to both the momentum
p and the rest mass m0:

E2
total = (m0c

2)2 + (pc)2, (2.1)

where c is the speed of light. Purely algebraically, the energy then would be just
the square root of the previous expression:

Etotal =
√︂
m2

0c
4 + p2c2, (2.2)

which could be expanded into

Etotal = m0c
2
√︄

1 + p2

m2
0c

2 ≈ m0c
2⏞ ⏟⏟ ⏞

Rest mass energy

+ p2

2m0⏞ ⏟⏟ ⏞
Kinetic energy

− p4

8m3
0c

2 + ...⏞ ⏟⏟ ⏞
Relativistic corrections

. (2.3)

Paul Dirac took a different approach and was looking for a systematic method
to examine relativistic effects up to the first order. He found an expression that
made it especially easy to take the root. This turned out to be possible if it was
a linear combination of the momentum and the rest mass:

m2
0c

4 + p2c2 = (cα⃗ · p⃗+ βm0c
2)2. (2.4)

To exclude the mixture between different terms, the newly introduced coefficient
β and vector α⃗ must satisfy

α2
x = α2

y = α2
z = β2 = 1, (2.5)

and they must also mutually anticommute:

αiαj + αjαi = 0 for i ̸= j; (2.6)

αiβ + βαi for all i. (2.7)
It turns out that α and β satisfying the above conditions are matrices:

α⃗ =
(︄

0 σ⃗
σ⃗ 0

)︄
(2.8)

and
β =

(︄
I2x2 0
0 −I2x2

)︄
, (2.9)
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where σ⃗ = {σx, σy, σz} is a symbolic notation of a vector composed of the usual
2x2 Pauli spin matrices:

σx =
(︄

0 1
1 0

)︄
, σy =

(︄
0 −i
i 0

)︄
, σx =

(︄
1 0
0 −1

)︄
, (2.10)

and I2x2 are 2x2 identity matrices. Thus, the resulting equation is four-dimensional
at the end.

2.1.1 The Dirac Hamiltonian

Having established what the square of the energy is, it is trivial to get its root;
having established the expression for the energy, it is straightforward to adapt it
to the quantum Hamiltonian:

EDirac = cα⃗ · p⃗+ βm0c
2 → ĤDirac. (2.11)

In explicit form, it reads

ĤDirac =

⎛⎜⎜⎜⎝
m0c

2 0 pzc (px − ipy)c
0 m0c

2 (px + ipy)c −pzc
pzc (px − ipy)c −m0c

2 0
c(px + ipy) −pzc 0 −m0c

2

⎞⎟⎟⎟⎠ (2.12)

with eigen energies
Eeig(p) = ±

√︂
(m0c2)2 + (pc)2, (2.13)

just as expected. The dispersion relation is, in general, non-parabolic. There is
a gap of 2m0c

2 separating the two branches (fig. 2.1).
The general solution is of the form

Ψ(r⃗, t) = ψ(r⃗)e−Et/h̄, (2.14)
where Ψ(r⃗, t) is, in general, a four-component wave function and ψ(r⃗) are free-
particle (plane-wave) solutions:

ψ(r⃗) = upe
ip⃗·r⃗/h̄. (2.15)

up is a four-component vector satisfying[︂
cα⃗ · p⃗+ βm0c

2
]︂

= Eup. (2.16)
The above equation can be written in a 2x2 matrix form:(︄

m0c
2 cσ⃗ · p⃗

cσ⃗ · p⃗ −m0c
2

)︄
= Eup, (2.17)

which means that up can be expressed as a vector composed of 2 two-component
vectors Φ and χ:

up =
(︄

Φ
χ

)︄
. (2.18)

Equation 2.17 can be interpreted and solved in two ways:
• p⃗ = 0, m0 ̸= 0, describing a particle at its rest frame;

• m0 = 0, p⃗ ̸= 0, describing a massless particle moving at relativistic speeds.
Interestingly, the Dirac equation allows negative energies to exist, predicting the
existence of particle and antiparticle pairs such as electrons and positrons [15, 16].

6



2.1.2 General particle solutions of the Dirac Hamiltonian

For positive energies, the appropriate general solution is

Φ =
(︄

1
0

)︄
,

(︄
0
1

)︄
, (2.19)

describing a spin-1/2 particle propagating forward in time with an energy equal
to the rest mass energy. The full four-component solution is

up =

⎛⎜⎜⎜⎝
1
0

cpz/(E +m0c
2)

c(px + ipy)/(E +m0c
2)

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

0
1

c(px − ipy)/(E +m0c
2)

−cpz/(E +m0c
2)

⎞⎟⎟⎟⎠ . (2.20)

For negative energies, the solutions is

χ =
(︄

1
0

)︄
,

(︄
0
1

)︄
, (2.21)

or the full component version:

up =

⎛⎜⎜⎜⎝
−cpz/(|E| +m0c

2)
−c(px + ipy)/(|E| +m0c

2)
1
0

⎞⎟⎟⎟⎠ ,
⎛⎜⎜⎜⎝

−c(px − ipy)/(|E| +m0c
2)

cpz/(|E| +m0c
2)

0
1

⎞⎟⎟⎟⎠ , (2.22)

describing spin-1/2 particle moving backwards in time. Thus, the wave function
components Φ and χ correspond to the particle and anti-particle components and
are in general called spinors.

In the non-relativistic limit, when the speed of the particle is much lower
than the speed of light, the dispersion closely resembles parabolic with the same
gap of 2m0c

2 (fig. 2.1):

Enon−rel(p) ≈ ±
(︄
m0c

2 + p⃗2

2m0

)︄
. (2.23)

Since m0c
2 > p⃗2/2m0, the Ψ component dominates while χ becomes redundant.

The eigenfunctions correspond to those of a free particle, just with a spin eigen-

function
(︄

1
0

)︄
for ms = h̄/2 or

(︄
0
1

)︄
for ms = −h̄/2. For positive energies, the

upper component Ψ is called the major component and the lower component χ
is called the minor component [15].

2.1.3 Ultra-relativistic massless Dirac fermions

When the particle mass is negligible, m0 = 0, the ultra-relativistic regime
applies, in which the energy dispersion simplifies to

Erel(p) ≈ ±c|p|. (2.24)

The particles move effectively at the speed of light. The signature shape of
the ultra-relativistic dispersion is conic and gapless, with positive and negative

7



Figure 2.1: Relativistic energy dispersion: full model, non-relativistic and ultra-
relativistic approximations. The full and non-relativistic models include a forbid-
den gap equal to 2m0c

2. The non-relativistic approximation gives the parabolic
dispersion while the ultra-relativistic approximation gives rise to the gapless chi-
ral Dirac cones intersecting at the origin.

energy dispersion lines touching at the origin (fig. 2.1). The fermions are said to
be massless Dirac fermions.

The eigenvalue problem can be expressed by removing the rest mass m0 from
eq. 2.17 and taking into account the naming convention of the eigen functions
introduced in eq. 2.18: (︄

0 cσ⃗ · p⃗
cσ⃗ · p⃗ 0

)︄(︄
Φ
χ

)︄
= E

(︄
Φ
χ

)︄
. (2.25)

The solutions are then
EΦ = cσ⃗ · p⃗χ, (2.26)
Eχ = cσ⃗ · p⃗Φ. (2.27)

They can be decoupled by taking these linear combinations of the newly defined
two-component spinors:

NR = χ+ Φ, (2.28)
NL = χ− Φ, (2.29)

leading to
ENR = cσ⃗ · p⃗NR, (2.30)
ENL = −cσ⃗ · p⃗NL. (2.31)

We know that in the ultra-relativistic regime, Erel ≈ ±c|p|, therefore, we can
further simplify to

σ⃗ · p⃗
|p⃗|

NL = −NL, (2.32)

σ⃗ · p⃗
|p⃗|

NR = NR. (2.33)
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The term with σ⃗ · p⃗ can be explicitly written as

σ⃗ · p⃗ =
(︄

pz px − ipy

px + ipy pz

)︄
, (2.34)

and its eigenvalues are ±|p⃗|. The operator 1
2

σ⃗·p⃗
|p⃗| is known as the helicity oper-

ator and it is clear from the above equation that its eigenvalues are ±1/2: it
is the spin operator projected in the direction of motion of the particle momen-
tum. Therefore, NR corresponds to solutions with negative helicity (right-handed
particle) and NL to positive helicity (left-handed particle) [16].

2.2 PbX materials and their properties
2.2.1 PbX (X=Sn, Se, Te) parent compounds

The lead chalcogenides or lead salts PbX (where X = Sn, Se or Te) are members
of IV-VI semiconductors. They are the parent compounds of PbSnSe material
investigated in this thesis. Hence, PbSnSe naturally inherits many of their prop-
erties. Therefore, it is worthwhile to properly introduce them, which is the main
purpose of this chapter. This part of the thesis is closely related to the article on
the same topic [17].

2.2.1.1 General features
Lead salts exhibit narrow band gaps in the order of 0.3 meV at room tempera-
ture. Compared with the usual III–V compounds, these IV–VI chalcogens present
atypical electronic and transport properties: high carrier mobilities, high dielec-
tric constants and positive temperature coefficients. These properties make the
IV–VI compounds particularly useful electro-optical devices in the range of 3–30
um, corresponding to the medium and far infrared spectral region [18].

These materials have been known and intensively investigated for over 60
years. Their thermoelectric properties were extensively studied in both the USA
and the Soviet Union for military and space applications in the 1950’s and early
1960’s. For instance, the Radioisotope Thermoelectric Generator based on PbTe
thermoelectric generator was used in NASA’s Apollo-12 mission. Fueled by the
Pu-238 isotope, it provided 73 W of power for lunar surface experiments for nearly
eight years [19].

Thus, owing to their narrow bandgap at room temperature, lead
salts found use primarily in thermoelectric heat to power generation,
IR detection, and as IR light sources in diodes and lasers.

As an example of another family of materials, HgCdTe has been the predom-
inant material of choice for IR detection given its high performance to date. On
the other hand, the cost of HgCdTe photodetector devices remains extremely high
due to expensive molecular beam epitaxy growth involved in device fabrication.
PbTe is a promising material candidate because of its superior chemical stability
and the ease of film deposition [20]. PbTe is especially suitable for thermoelectric
power generation at high temperatures [21] owing to its high thermoelectric effi-
ciency (expressed as the figure of merit - FoM) surpassing 1.5 at 800 Kelvins [22].
Moreover, since both modern thermal engines and electronics alike still waste a
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considerable amount of power in a form of heat, thermoelectric heat-to-power gen-
eration is an attractive option for robust and environmentally friendly renewable
energy production [23].

As another example, 2D materials such as boron nitride, transition metal
dichalcogenides and black phosphorus are investigated for applications in high-
performance electronic devices in field-effect transistors (FETs). Candidate 2D
materials have to satisfy three requirements: a moderate electronic band gap, high
carrier mobility and excellent electrode-channel contacts. The direct narrow gaps
make PbX important in FETs, both from predicted and experimentally verified
improvements in performance [24, 25]. Two-dimensional PbS nanosheets could
be used in solar cells [26]. In the PbX family, the effects of quantum confinement
are expected to be strong due to the low effective masses of the electrons and
holes [27].

2.2.1.2 Structural properties
All three lead salts are polar semiconductors. The crystals are bonded via elec-
trostatic forces between the anions. The ionicity is indicated both by well-defined
reststrahlen reflectivity bands, as well as the effective charge present on the
ions [28]:

e∗ = (ϵ0 − ϵ∞)(3/[ϵ∞ + 2])vt(πM/N), (2.35)
where ϵ0 is the static and ϵ∞ is the high-frequency dielectric constants, vt is the
transverse optical phonon frequency, M is the reduced mass of a PbX ion pair, N
is the number of PbX units per unit volume. For a completely ionic compound,
the effective charge on the ions would be 2e, where e is the electron charge.
Taking experimentally measured quantities, the e∗ values for the PbX family
are between 0.5-0.7. For comparison, although LiF is expected to be completely
ionic, its e∗ = 0.82e [28]. Thus, lead salts exhibit a strong ionic contribution to
the bonding.

Figure 2.2: PbSe crystall structure (a, modified from [29]). The first Brillouin
zone of PbX material family only showing one pair out of 4 equivalent val-
leys/Fermi pockets at the L point (b, from [28]). The exact band structure
calculated for PbSe parent compound can be seen in fig. 4.39 on page 96.

The PbX family has the sodium chloride, or rocksalt structure at ambient
temperature and pressure (fig. 2.2). The crystal lattice is of the face-centered
cubic (FCC) type and the space group is Fm3m. The lattice basis consists of one
atom of lead and X, respectively. The unit cube is formed out of eight lead and
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eight X atoms. In terms of the customary lattice constant a, the positions of the
ions in the unit cell are:

Pb : (000);
(︂

a
2

a
20
)︂

;
(︂

a
20a

2

)︂
;
(︂
0a

2
a
2

)︂
;

X :
(︂

a
2

a
2

a
2

)︂
;
(︂
00a

2

)︂
;
(︂
0a

20
)︂

;
(︂

a
200

)︂
.

(2.36)

For an adequate description, the basis consisting of lead at (0,0,0) and X at
(a/2,a/2,a/2) can be associated with the lattice point (0,0,0). The PbX lattice
may also be considered as a simple cubic lattice in which lead ions and X ions
occupy alternate lattice points. The number of PbX units in each unit cube of
volume a3 is four. Various sources and numerous theoretical calculations consis-
tently report lattice constants of approximately 6 Å for PbX family [28, 30–32].
Explicit lattice constants for each distinct compound obtained from experimental
and theoretical approaches are summarized in table 2.1.

Table 2.1: PbX lattice parameters at 299 K

Compound Lattice constant (Å)
PbS 5.94
PbSe 6.12-6.13
PbTe 6.46-6.48

Taken from [28, 30–32].

2.2.1.3 Mechanical and thermal properties
Even though the thermal performance does not have a direct connection with this
thesis, it is one of the main features of this material class. The most important
thermal parameters are listed in table 2.2.

Thermoelectric performance is quantified by the figure of merit (FoM) ZT =
σS2T/κ. Here, σ is the electric conductivity, S is the Seebeck coefficient, T
is the temperature and κ is thermal conductivity. Figure of merit is a strong
function of doping and temperature. For the highest quality PbTe compounds,
it reaches 1.4-1.5 [19]. PbSe was long thought to be much inferior to PbTe
due to the smaller band gap and higher thermal conductivity expected from the
lighter PbSe compared with PbTe. Nonetheless, with appropriate doping (for
example, Na as it provides high hole concentration but does not interfere with
PbSe valence bands), it can be an excellent thermoelectric material, comparable
in performance to PbTe. Several other strategies to increase the FoM, such as
alloying, nanostructuring and band modification, have been proposed. Being a
more abundant material than Te, Se could be a cheaper alternative [32].

2.2.1.4 Electronic and optical properties
The general features of the band structures of the three compounds are similar.
There are eight equivalent L points each at the center of a hexagonal Brillouin
zone face, at its intersection with a [111] direction. The six equivalent X points are
each at the center of a square zone face at its intersection with an [001] direction.
The Gamma point is at the zone center [28]. There is a direct gap between the
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Table 2.2: PbX lattice thermal and mechanical parameters at room temperature

Parameter Unit PbS PbSe PbTe
Density ρ (g cm−3) - 8.27 8.18
Seebeck coefficient S (µV/K) - 281
Debye temperature Θ @ 25 K (K) 159 144 128
Debye temperature Θ @ 300 K (K) - 191 163
Longitudinal speed of sound vL (m/s) - 3220 2900
Transversal speed of sound vT (m/s) - 1760 1600
Grüneisen parameter1 γ (arb.u.) - 1.65 1.45
Longitudinal optical
phonon energy h̄ωLP

(eV) 0.0263 0.0165 0.0136

Transversal optical
honon energy h̄ωLP

(eV) 0.0083 0.0055 0.0040

Heat capacity Cp @ 25 K (cal mole−1 deg−1) 2.81 8.44 4.24
Heat capacity Cp @ 240 K (cal mole−1 deg−1) 11.6 11.9 12.0
Bulk modulus B (MBar) - X X
Pressure coefficient B′ (arb.u.) - 3.6-4.6 3.9-4.3
Linear expansion
coefficient a @ 30 K (10−6K−1) 7.54 7.56 9.02

Linear expansion
coefficient a @ 300 K (10−6K−1) 20.27 19.40 19.80

Taken from [30, 32].
Comments: 1Acoustic phonon Grüneisen parameter is a measure of anharmonic
nature of lattice vibration.

L points. In each case, the valence band maximum and the conduction band
minimum both occur at the L point. The bandgap is in the order of 0.3-0.4 eV at
room temperature but falls down by half at cryogenic temperatures [28, 33](see
table 2.3).

Table 2.3: PbX bandgaps at different temperatures

Temperature PbS PbSe PbTe
4.2 K 0.286 0.165 0.190
77 K 0.280-0.307 0.150-0.176 0.200-0.217

300 K 0.410 0.270 0.310
373 K 0.440 0.310 0.340

Taken from [28, 34].

Properties connected with this gap can only be explained by taking into ac-
count the effective mass anisotropy and the strong nonparabolicity of the bands
around the gap energy [35, 36]. The bands also deviate from Kane models at
energies of relevance for their thermoelectric properties [37]. There is a large
difference in the anisotropy of the effective masses for longitudinal (parallel to
Γ − L) and transverse (perpendicular to the Γ − L) direction between the two
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salts [35, 36].

Table 2.4: PbX mass anisotropy at 4 K

Compound Band mT/m0 mL/m0 K = mL/mT meff/m0

PbS conduction 0.080 0.015 1.3 0.087
valence 0.075 0.015 1.4 0.083

PbSe conduction 0.040 0.070 1.75 0.047
valence 0.034 0.068 2.0 0.041

PbTe conduction 0.024 0.240 10 0.034
valence 0.022 0.310 14 0.032

Taken from [28].
Abbreviations:
m0 is the free electron mass;
K is a mass anisotropy parameter.

The experimental results indicate that the surfaces of constant energy for both
the conduction and valence bands are prolate ellipsoids of revolution (table 2.4).
The centers of the ellipsoids are at L points and the major axes are in [1 1 1]
directions. There are therefore eight equivalent constant energy ellipsoids for the
conduction band states and eight for the valence band states. The ellipsoids can
be represented by the following equation:

E(k) = h̄2

2

(︄
k2

1
mT

+ k2
2

mT

+ k2
3

mL

)︄
. (2.37)

kl, k2, and k3 are the components of the wave vector k along three directions in
k space. k3 lies along a [1 1 1] direction. The equation of the constant energy
surface is determined by the longitudinal and transverse effective masses mL and
mT . The average conductivity effective mass meff used in transport equations
is given by the equation meff = (3mLmT )/(2mL + mT ) for ellipsoidal constant
energy surfaces.

The band gaps have negative pressure coefficients, i.e., they decrease with
increase in pressure, in contrast to what is observed in III-V and II-VI semi-
conductors. Also, PbSe and PbTe provide a case in which the minimum energy
gap of a compound semiconductor increases as the atomic number of the anion
increases [30].

One well-known anomaly of PbX compound family is the unusual positive
temperature coefficient dEg/dT of the direct gap Eg. It is approximately the
same for all three compounds between a temperature range of 80 K and 373 K
with a value of (4.2 − 4.5) × 10−4 eV/K. It is anomalous compared to other
semiconductors usually having negative values. Another anomaly in the sequence
of PbS, PbSe and PbTe is that the value of Eg for PbSe is smaller than for PbTe.
This is contrary to the usual decrease of energy gap with increasing anion atomic
number (e.g., GaP, GaAs, GaSb) [28].

The static and high-frequency dielectric constants, which are know from var-
ious experiments, are summarized in table 2.5.

Carrier concentrations and mobilities of these materials have been extracted
from the Hall coefficient RH measurements. They are notably independent of
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Table 2.5: PbX dielectric constants

Compound ϵ0 ϵ∞

77 K
PbS 184 17.6-19.2
PbSe 227 23.5-26.9
PbTe 428 35.3-38.5

300 K
PbS 172 16.9-17.4
PbSe 206 22.1-23.6
PbTe 380 32.2-33.4

373 K
PbS 162 15.8-16.5
PbSe 200 21.6-22.8
PbTe 371 31.3-32.6

Taken from [28, 34].

temperature over a wide range from 40 K to 300 K, implying that the extrinsic
carrier concentration n(p) = (1/eRH) is independent of temperature as well. PbX
are, in general, not intrinsic at room temperature [28]. Transport parameters are
summarized in table 2.6.

Table 2.6: PbX transport properties

Compound Carrier mobility
µ (cm2/V sec)

Typical carrier concentration
n (1018 cm−3)

77 K 300 K
PbS 6 000-14 000 500-700 0.5-2
PbSe 11 000-16 000 1 000-1 200 0.7-3
PbTe 16 000-20 000 900-1 800 0.5-2

Taken from [28, 32, 34].

It is interesting to note that according to one theoretical study, few-layer
PbX compounds might exhibit several-fold increase in these values. For instance,
electron mobility could spike up to 252 × 103 cm2/V.s for a two-layer case of
PbS [24].

2.2.2 PnSnX (X=Se,Te) compunds

Substituting part of lead (Pb) by tin (Sn) produces a new material family,
PbxSn1−xX. Naturally, it maintains many of the properties of the parent com-
pound class, PbX.
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Figure 2.3: Possible orientations of Pb1−xSnxSe first Brillouin zone: [001] sur-
face (a) and [111] surface (b) together with the constant energy ellipsoids
(from [40, 41]).

2.2.2.1 Crystal structure
It was known early on that when the amount of introduced tin, x, is between 0
and 0.33-0.43, the new material retains the rocksalt structure. The lattice
constant, on the other hand, changes linearly with the changing composition, as
noticed by Krebs and other researchers in the late 60s [38, 39]. According to
them, the change can be described by a linear law, with the lattice constant a0
decreasing with increasing Sn content:

a0(Å) = 6.12 − 0.12 · x. (2.38)
Apart from the difference in the lattice constant, the direct and k spaces

otherwise hold the same parameters as the parent class PbX. Although changing
the composition and consequently lattice structure inevitably does reflect in the
change of the band structure, the gap remains direct and located at the L
point.

Of particular importance is the first Brillouin zone, especially its orientation.
The fcc crystal lattice contains 8 facets with L points. Thus, PbSnX material
family has 4 equivalent valleys. This is crucial information for correctly
interpreting optical experiments as well as theoretical results (e.g. interpreting
carrier density, light absorption intensity and their multiplication factors).

The crystalline orientation can be controlled by preparing (either by growth,
deposition or other methods) the material on an appropriately oriented substrate.
There are two most prominent orientations for this material class, namely [001]
and [111]. The [001] surface has the bandgap along the Γ̄ − X̄ linecuts, while
the [111] surface has it at one Γ̄ point and three M̄ points (fig. 2.3). The L
point is longitudinal to the surface whereas the other points are oblique to it,
see fig. 2.3 [40, 41]. They corresponding valleys are referred to as the longitudinal
and oblique, respectively.
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Figure 2.4: The orientation of the constant energy ellipsoids in PbSnX first Bril-
louin zone. The longitudinal valleys (a) are perpendicular while oblique valleys
(b) are tilted 70.5 degrees to the [111] direction. At [001] surface, all valleys are
tilted by 53 degrees (c). Circles below the ellipsoids mark the 2D cross-section
surface around which the electrons would move in cyclotron motion under the
applied magnetic field (from [41]).

2.2.2.2 Band closing and inversion
With the increasing interest in the PbSnX materials, another alluring feature was
discovered. The unusual characteristic in PbSnX is the closing and re-opening of
the band gap depending on the amount of tin and on temperature. In particular,
for PbSnSe which is investigated in this thesis, the dependence of the bandgap
can be described by the following formula [39]:

Eg(eV) = 0.13 + (4.5 × 10−4)T − 0.89 · x. (2.39)
Experimental data and their fit to this model are shown in figure 2.5. The

closing of the gap can be achieved by composition, temperature, as well
as pressure. Negative values signify the band inversion first proposed for
PbxSn1−xTe as early as 1966 [42].

The valence band edge is an L+
6 state and the conduction band edge is an

L−
6 state. With increasing Sn composition, the energy gap initially decreases

as these L6 states approach each other. At some intermediate composition, the
gap goes to zero (closes), and then reappears. Yet this time, valence band is
the L−

6 state while the conduction band is L+
6 . The L6 bands have only a two-

fold spin degeneracy. Therefore, their crossover does not result in a semimetal
but in a semiconductor with the valence and conduction bands interchanged [42].
According to early experiments, the critical concentration of Sn at which the band
closes is between approximately x = 0.2 − 0.3, depending on temperature [39].
At the time of these experiments, there was no notion of topological states, the
main feature of PbSnX material family. It was partially correctly assumed that
band inversion arises because of relativistic effects in Pb and Sn (referring to the
conical shape of the bands upon closing of the gap) [39, 42].

As for applications, the PbSnX compound family is used for similar purposes
as the parent compound family PbX, namely, IR generation and detection. The
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Figure 2.5: Pb1−xSnxSe band gap dependency on the amount of introduced tin
and temperature; experimental data (scattered points) and fit to (2.39) formula
(lines) (from [39]).

added benefit is undoubtedly the ability to adjust the band struc-
ture by simply changing the stoichiometric composition, temperature,
pressure or strain. As an example, laser action has been demonstrated in Pb-
SnTe [42]. For applications to optical switching with a CO2 lasers, Fabry-Perot
cavity switching was observed in PbSnSe [43]. Owing to their strong absorption
of more than 2500 cm−1 and a relatively low Auger recombination probability,
using the modern thin layer engineering technology has the potential to make
high temperature lase operations possible in the mid-infrared and terahertz re-
gions [44, 45]. At cryogenic temperatures, PbSnX in combination with quantum
well structures could be used to detect various gasses [46] or generate THz radi-
ation [47].
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2.3 Monolayer graphene
The thesis part about graphene is based on [48]. As the current electronics in-
dustry is approaching its limits in terms of speed, size and bandwidth, graphene
stands as a solid candidate for the basis of the next-generation devices. Its most
alluring properties are high electron mobility surpassing 10 000 cm2V−1s−1 (or
even tenfold higher in suspended graphene devices or graphene placed on h-
BN) [49–51], carrier density tuning by an external electric field [49, 52], pico-
and femtosecond timescales of carrier heating and cooling [53] etc. Graphene
can be used as a transparent electrode enhancing the effectiveness of transparent
conductors for future flexible devices [54, 55] or power conversion efficiency for
solar cells [56].

Figure 2.6: Brillouin zones of two graphene layers rotated by θ (a). Energy bands
along the direction crossing K1 and K2 (b). A minigap ∆ opens at IA [57].

Graphene offers the possibility to fine-tune the van Hove singularities, some-
thing unattainable in other regular materials except changing EF by doping or
gating. The singularities are related to the joint density of states (jDOS) which
is defined as

jDOS(ω) = 1
4π3

�
δ[Ec(k⃗) − Ev(k⃗) − h̄ω]dk⃗, (2.40)

where Ec and Ev are the conduction and valence band energies [58]. It can be
alternatively expressed not through the integral over k space but over energy in
terms of a constant energy surface Sk:

jDOS(ω) ∝
� dSk

∇k⃗(EC − EV ) . (2.41)

The singularities arise where the jDOS diverge, i.e. where EC − EV is constant.
This drastically increases the light-matter interaction. In 2D materials such as
graphene, this is determined by the curvature of the energy bands. The joint
density of states is warped by twisting graphene multilayers with respect to each
other as new states emerge at the crossing points of the sublattices of the two
layers (fig. 2.6). Twisting is also observable as Moiré patterns in AFM pictures
[57–59].

2.3.1 Graphene crystal structure

Structurally, graphene is composed entirely of carbon atoms arranged in a hon-
eycomb lattice. It consists of two interpenetrating triangular sublattices. A unit
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cell consists of 2 carbon atoms A and B. Each atom has one s and three p or-
bitals [60, 61]. The lattice vectors can be defined as [8]

a⃗1 = a

2
(︂
3,

√
3
)︂
, a⃗2 = a

2
(︂
3,−

√
3
)︂

(2.42)

with interatomic distance a ≈ 1.42Å. It follows that the Brillouin zone is also
hexagonal (fig. 2.7), with the reciprocal lattice vectors

b⃗1 = 2π
3a
(︂
1,

√
3
)︂
, b⃗2 = 2π

3a
(︂
1,−

√
3
)︂

(2.43)

Figure 2.7: Graphene honeycomb lattice is consisting entirely of carbon atoms
arranged out of two interpenetrating triangular lattices (a). A unit cell consists
of one atom from each. The reciprocal lattice is also hexagonal (b) [8].

2.3.2 Graphene Hamiltonian

The first band model was developed for the graphite parent material [9]. It
contains 4 valence electrons with wavefunctions of the form

1√
3

(ψe(2s) +
√

2ψe(σi2p)) (i = 1, 2, 3), (2.44)

with ψe(2s) the (2s) wave function for carbon. ψe(σi2p) are the (2p) wavefunc-
tions with axes in the directions of σi joining the graphite atom to its 3 in-plane
neighbors. The last electron is considered to be in 2pz state. Only this electron
outside the co-planar bonds contributes to conductivity. It hybridizes to form π
valence and π∗ conduction bands. A tight-binding approximation is used. Ac-
cording to it, the electrons can only jump between the nearest- and second-nearest
neighbors, and the corresponding Hamiltonian is [8]

H = −t
∑︂

⟨i,j⟩,σ
(a†

σ,ibσ,j + h.c.) − t′
∑︂

⟨⟨i,j⟩⟩,σ
(a†

σ,iaσ,j + b†
σ,ibσ,j + h.c.). (2.45)

In these units, h̄ = 1. aσ,i annihilates and a†
σ,i creates electrons with spins σ =↑

and σ =↓, respectively, and the nearest-neighbor hopping energy is t ≈ 2.8 eV.
The above Hamiltonian suggests the following band dispersion [9]:

E± = ±t
√︂

3 + f(k⃗) − t′f(k⃗), (2.46)
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where
f(k⃗) = 2 cos

(︂√
3kya

)︂
+ 4 cos

(︄√
3

2 kya

)︄
cos

(︃3
2kxa

)︃
, (2.47)

with a = 1.24Å carbon interatomic distance and the next-nearest neighbor jump-
ing distance t′ = −0.2t. It is responsible for the electron-hole asymmetry. In the
vicinity of K and K’ points, Dirac-like cones appear (fig. 2.8), which can be seen
upon expanding the full dispersion around those points by k⃗ = K⃗ + q⃗, with q⃗
measured relative to K and K’ points, q⃗ ≪ K⃗ [8, 9]:

E± ≈ ±vF |q⃗| +O[(q/K)2]. (2.48)

The velocity parameter, also called the Fermi velocity,

vF = 3at
2 ≈ 106 m/s = c

300 (2.49)

is independent on energy. Thus, graphene essentially provides ground for
tabletop relativistic physics experiments.

Figure 2.8: Graphene dispersion in the tight-binding approximation over the
entire Brillouin zone. Note the gapless Dirac-like cones at K and K’ points [61].

The dynamical conductivity is given by the Kubo-Greenwood formula [62, 63]:

σ(ω, k) ∼ σ0 = e2

4h̄ . (2.50)

It is valid for kv ≪ kbT ≪ h̄ω, where T is temperature and kb is the Boltzmann
constant. Remarkably, it is independent of any parameter of graphene, only de-
fined by fundamental physical constants. It is worth noting that Suneya et al.
came to an interesting generalized conclusion about the honeycomb lattices [60].
Starting from a general 2D honeycomb lattice with Dirac-like Hamiltonian, they
derived the same linear dispersion condition around the K and K’ points with
E = ±γ|k⃗|. In the self-consistent Born approximation, at EF = 0, they got a
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slightly different result σ(ω = 0) = e2/(π2h̄), even with broadening effects taken
into account. Thus the linear dispersion and optical conductivity inde-
pendent of the material parameters seems to be the general property
of honeycomb lattices.

From the electromagnetic boundary conditions, the transmittivity of a single
graphene sheet is [63]

T = 1(︂
1 + πα

2

)︂2 ≈ 1 − πα ≈ 97.7%, (2.51)

where
α = e2

h̄c
≈ 1

137 (2.52)

is the fine structure constant independent of any graphene parameter. This was
demonstrated experimentally. In other words, the absorption of a single graphene
layer is 2.3%. For bilayer graphene, the absorption is 2πα ≈ 4.6% in the visible
range. The optical properties of graphene being defined by the fundamental
constants is related to its 2D nature and zero energy gap, and does not directly
involve the chiral properties of Dirac fermions [64].
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III Experimental methods

3.1 Spectroscopic ellipsometry
In the broadest sense, ellipsometry is an experimental technique to measure the
parameters of the ellipse of light polarisation, hence the name. Interaction with
matter (for instance, reflection) changes the polarisation state of light. Applying a
model reasonably describing the physical processes upon interaction, it is possible
to determine the optical properties of that material if the parameters of the
light beam are known. Ellipsometry is thus a non-contact, non-invasive and
non-destructive method. This makes it especially popular in solid state physics,
semiconductor industry and biophysics.

3.1.1 The main ellipsometric parameter ρ

One of the physical quantities describing light polarisation is the time-dependent
vector of its electric field E⃗. The main quantity that the ellipsometry measures is
the complex ratio ρ between the two orthogonal projections of this field reflected
from the material, E⃗R. In terms of the Cartesian coordinate system, the electrical
field can be separated into independent components parallel and perpendicular
to the plane of incidence Ep and Es. The parameter ρ then measures the ratio of
their complex reflection coefficients R̃p and R̃s:

ρ = R̃p

R̃s

= Ep

Es

eiϕp

eiϕs
= tan(Ψ)ei∆. (3.1)

The angle between the projections of the amplitude is Ψ, while the phase
difference is ∆. In order to understand this method better, we need to first
recount how the ellipse of polarisation is characterized.

3.1.2 Ellipse of polarisation

The ellipse of polarisation describes the trajectory of the electric field vec-
tor which it traverses during one cycle at a fixed plane in space. Its two most
important parameters are:

• the azimuth θ illustrating how much the major axis of the ellipse is tilted
with respect to the x axis; it can take values between −π/2 and π/2. For
linearly polarised light, this parameter would simply state the angle of po-
larisation;

• the ellipticity or eccentricity ϵ detailing how close the trajectory is to
that of an ideal circle; can take values from −π/4 to ±π/4. Zero value
means linear polarisation. When the ellipse is traced in a clockwise direc-
tion (positive ellipticity), it defines the right-handed circular polarisation,
and left-handed circular polarisation (negative ellipticity) in the counter-
clockwise direction.

Any electric field vector can be decomposed into two orthogonal components.
Two important bases are widely used:
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Figure 3.1: Ellipse of polarisation depicting the general trajectory of the electric
field of polarised light. The main parameters are: major half-axis a, minor half-
axis b, azimuth angle θ and ellipticity/eccentricity ϵ = arctan (b/a). The intensity
of this beam is proportional to (a2 + b2).

• The Cartesian basis, or linear polarisation, offering a direct geometrical
interpretation of the polarisation state. In this representation, the basis
vectors are

Ex =
(︄

1
0

)︄
, Ey =

(︄
0
1

)︄
(3.2)

;

• The circular basis with left- and right-handed polarisations LCP and
RCP, the basis vectors being

ELCP = 1√
2

(︄
1

−i

)︄
, ERCP = 1√

2

(︄
1
i

)︄
(3.3)

.

The transformation between the two basis takes this form:

Txy→LR = 1√
2

(︄
1 1

−i i

)︄
. (3.4)

In the case of circular polarisation, the azimuth is related to the phase difference
of the circular basis fields:

θ = δL − δR

2 , (3.5)

while the ellipticity is related to the difference of their amplitudes:

tan ϵ = EL + ER

EL − ER

. (3.6)

3.1.3 Jones formalism

Jones’ mathematical framework is used to describe the polarisation state of a
perfectly polarised coherent light and its transformation by linear optical el-
ements. Since any absorption introduces depolarisation, Jones formalism is only
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suitable for transparent/reflective materials. Its strength is the simplicity (de-
scribing light and optical elements by simple 2D vectors and 2x2 matrices) and
that it deals with the electric field directly. It quantifies the phase informa-
tion and thus can describe interference.

The Jones vector J describes the polarisation state of light and is obtained
by factoring out the axial and time dependencies of the monochromatic plane
wave:

E⃗(r⃗, t) =
(︄
Ex(z, t)
Ey(z, t)

)︄
=
(︄
Ex0e

i(kz−ωt+ϕx)

Ey0e
i(kz−ωt+ϕy)

)︄
=
(︄
Ex0e

iϕx

Ey0e
iϕy

)︄
⏞ ⏟⏟ ⏞

J

ei(kz−ωt). (3.7)

It is a complex number conveying information about the amplitude and phase
of each orthogonal projection. The norm of J is thus equal to unity. Conse-
quently, Jones vectors should be normalized to unit intensity so that they take
the following form:

J = 1√︂
E2

x0 + E2
y0

(︄
eiϕx

eiϕy

)︄
. (3.8)

Jones vectors of the few most basic states of light are listed in table 3.1. Linear
polarisations can be axially rotated by some angle θ using the rotation matrix
R(θ):

R(θ) =
(︄

cos θ − sin θ
sin θ cos θ

)︄
(3.9)

Table 3.1: Jones vectors in Cartesian coordinates

polarisation Corresponding Jones vector

Linear x polarisation Jx

(︄
1
0

)︄

Linear y polarisation Jy

(︄
0
1

)︄

Linear polarisation
rotated by θ degrees J θ

R(θ)Jx =
(︄

cos θ
sin θ

)︄

Circular right-handed
polarisation JCRP

1√
2

(︄
1

+i

)︄

Circular left-handed
polarisation JCLP

1√
2

(︄
1

−i

)︄

Elliptical polarisation
(ellipticity ϵ) J ell

ϵ

(︄
cos ϵ

sin(ϵ)e±i π
2

)︄

Elliptical polarisation
(angle θ and ellipticity ϵ) J ell

θ,ϵ

R(θ)J ell
ϵ =

(︄
cos θ cos ϵ∓ i sin θ sin ϵ
sin θ cos ϵ± i cos θ sin ϵ

)︄
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Jones vectors are transformed by Jones matrices M representing various
optical elements that are changing the polarisation of the light: mirrors, wave-
plates, poralisers etc. They are described by simple 2x2 matrices linearly altering
J ’s components:

J = MJ0. (3.10)
Jones matrices for several usual optical elements are listed in table 3.2. In the
reflection configuration, the matrix elements of MR are the Fresnel amplitude
reflection coefficients rij:

MR =
(︄
rss rsp

rps rpp

)︄
. (3.11)

Matrix elements rsp and rps are the cross-polarisation coefficients.

Table 3.2: Jones matrices of popular optical elements

Optical element Corresponding Jones matrix

x-polariser P x

(︄
1 0
0 0

)︄

y-polariser P y

(︄
0 0
0 1

)︄

Linear polariser P θ

(polarizes at an angle θ)
R(−θ)P xR(θ)=

(︄
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)︄

P θ ≈
(small angle approximation)

(︄
1 θ
θ 0

)︄

Phase retarder Cδ

(introduces phase delay δx/y)

(︄
eiδx 1
1 eiδy

)︄

Optically active material Aθ

(rotates polarisation by θ)
R(θ)

Generalized sample S
(wiht its own Ψ and ∆)

S =
(︄

sin Ψei∆ 0
0 cos Ψ

)︄

Right circular polariser 1
2

(︄
1 i

−i 1

)︄

Left circular polariser 1
2

(︄
1 −i
i 1

)︄

Owing to their linearity, the overall effect of optical elements present in the
system can be expressed as a single matrix, hiding the inner workings of a poten-
tially complicated system:

J = M 1M 2...Mn⏞ ⏟⏟ ⏞
M

J0. (3.12)

For instance, the overall effect of crossing two polarisers is zero transmittivity,
just as expected:

M crossed = P yP x =
(︄

0 0
0 1

)︄(︄
1 0
0 0

)︄
=
(︄

0 0
0 0

)︄
; (3.13)
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Uncrossing them ever so slightly by a small angle θ results in the well-known
Malus’ law:

Muncrossed(θ) = P yP x(θ) ≈
(︄

0 0
0 1

)︄(︄
1 θ
θ 0

)︄
=
(︄

0 0
θ 0

)︄
, (3.14)

and because (︄
Ex

Ey

)︄
=
(︄

0
θEx

)︄
, (3.15)

the measured intensity is I ∝ |E2| ≈ θ2Iin.

3.1.4 Stokes vectors

The Jones formalism is incapable of dealing with partially, randomly polarised
or unpolarised light. To handle that, a more powerful mathematical apparatus is
required.

A more general state of light is described by a four Stokes parameters
{S}. The drawback is that Stokes vectors describe the intensity rather than
the underlying electric field. They are, on the other hand, directly measurable.
They do not keep the track of the phase and cannot describe interference. Stokes
vectors are applicable to incoherent light.

Stokes parameters characterize the unpolarised, partially and completely po-
larised beams. To introduce Stokes vectors, assume an experimental setup with
four independent light intensity detectors and four different filters in front of each:

• a netural density filter (affecting all polarisations) measuring I0,

• horizontal polariser measuring Ihor,

• linear polariser rotated by 45◦ degrees measuring I+45,

• right circular polariser measuring IRCP .

The output of these measurements can be grouped into an abstract four-dimensional
Stokes vector:⎛⎜⎜⎜⎝

S0
S1
S2
S3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
I0
Q
U
V

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
I0

2Ihor − I0
2I+45 − I0
2IRCP − I0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
Ihor + Iver

Ihor − Iver

I+45 − I−45
IRCP − ILCP

⎞⎟⎟⎟⎠ . (3.16)

The Stokes vector is always normalised so that I0 = 1. The meaning of each
coefficient is as follows:

• S0, or I0, measures total irradiance,

• S1, or Q, measures the ratio of horizontally to vertically polarised light,

• S2, or U , measures the ratio of light transmitted by +45◦ polariser to that
transmitted by a +135◦ polariser,
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• S3, or V , measures the ratio of RCP to LCP light.

S can be directly related to the electric field components averaged over a
suitable interval. Expressions in terms of the linear and circular polarisation
basis are listed in table 3.3.

Table 3.3: Stokes coefficients in linear (x, y) and circular (L,R) basis

Linear Circular
I0 = |Ex|2 + |Ey|2, I0 = |EL|2 + |ER|2,
I1 = |Ex|2 − |Ey|2, I1 = 2ℜ(E∗

LER),
I2 = 2ℜ(ExE

∗
y), I2 = −2ℑ(E∗

LER),
I3 = −2ℑ(ExE

∗
y), I3 = |ER|2 − |EL|2,

The Stokes vector expresses light polarisation in terms of known polarisations
yet keeps the ability to describe partially or completely unpolarised light via the
I0 term. Therefore, the degree of polarisation p can be defined:

p =

√︂
I2

1 + I2
2 + I2

3

I0
. (3.17)

Its value would be 0 for a completely unpolarised, 1 for a perfectly polarised (be it
linear, circular or elliptical) and intermediate values for partially polarised light.
The relation between the Stokes parameters and the ellipse of polarisation are
summarised in table 3.4. A few sample Stokes vectors are listed in table 3.5.

Table 3.4: Relation between the Stokes vector and the ellipse of polarisation [66]

Stokes parameters polarisation ellipse
S1 = S0 cos 2ϵ cos 2θ; θ = 1

2 arctan
(︂

S2
S1

)︂
;

S2 = S0 cos 2ϵ sin 2θ; ϵ = 1
2 arcsin

(︂
S3
S0

)︂
;

S3 = S0 sin 2ϵ;

Table 3.5: Sample Stokes vectors

Horizontally polarised Vertically polarised RCP LCP Unpolarised⎛⎜⎜⎜⎝
1
1
0
0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
−1
0
0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
0
0
1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
0
0

−1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1
0
0
0

⎞⎟⎟⎟⎠

3.1.5 Poincaré sphere

Disregarding the unpolarised portion of the intensity, I0, the three remaining
Stokes vector components can be parametrized and expressed in 3D coordinates
of a unit (normalized) sphere representing all polarisation states:

• its poles represent the left/right circular polarisations;
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Figure 3.2: Poincaré sphere and its relation to the parameters of the polarisation
ellipse (a). The meaning of the cardinal points and the poles (b). From [67].

• the cardinal points of the equator represent the linear horizontal/vertical
and +45◦/+135◦ polarisation pairs;

• intermediate equatorial points represent tilted linear polarisation;

• all other points represent elliptical polarisations.

Relation between this Poincaré sphere and the Stokes vector is described in
table 3.6.

Table 3.6: Relation between the Poincaré sphere and Stokes vector

I = S0;
2θ = arctan S2

S1
;

2ϵ = arctan S3√
S2

1+S2
2
;

3.1.6 Muller matrices

Just like the Jones matrices describe how optical elements change Jones vectors,
Mueller matrices represent the effect of optical elements on Stokes vectors. Being
able to handle information about unpolarised light, they can represent various
real-life objects such as absorbing materials. They are 4 × 4 matrices and a few
basic of them are listed in table 3.7. Describing linear transformation, multiple
optical elements can be combined into a single Muller matrix just like in eq. 3.12.

The Jones and Muller representations are related (on a condition that the
sample does not depolarize the incident light beam, of course). The Muller matrix
can then be obtained from the Jones matrix via this transformation [68]:

MJ→M = A (J ⊗ J∗) A−1, (3.18)
where ⊗ denotes the tensor product and

A =

⎛⎜⎜⎜⎝
1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎞⎟⎟⎟⎠ . (3.19)
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Table 3.7: Sample Muller matrices

Horizontal polariser Vertical polariser RCP LCP

1
2

⎛⎜⎜⎜⎝
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ 1
2

⎛⎜⎜⎜⎝
1 −1 0 0

−1 1 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ 1
2

⎛⎜⎜⎜⎝
1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞⎟⎟⎟⎠ 1
2

⎛⎜⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎞⎟⎟⎟⎠
Quarter wave plate
(fast axis vertical)

Quarter wave plate
(fast axis horizontal)

Half wave plate/
ideal mirror⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠

For isotropic samples, in which rsp = rps = 0, the normalized Jones-Muller matrix
simplifies to

MJ→M =

⎛⎜⎜⎜⎝
1 −N 0 0

−N 1 0 0
0 0 C S
0 0 −S C

⎞⎟⎟⎟⎠ , (3.20)

where the parameters N,S,C are given by:

N = cos (2Ψ), (3.21)

S = sin (2Ψ) sin ∆, (3.22)

C = sin (2Ψ) cos ∆, (3.23)
and the main ellipsometric parameter

ρ = C + iS

1 +N
. (3.24)

Its components can then be easily determined [69]:

Ψ = 1
2 arctan

(︄√
C2 + S2

N

)︄
, (3.25)

and
∆ = arctan

(︃
S

C

)︃
. (3.26)

Since N2+S2+C2 = 1, this means that for isotropic sample, only two parameters
are needed to fully specify M .

For birefringent samples, rsp ̸= rps ̸= 0. The off-diagonal elements of M no
longer equal zero. As long as the sample is not depolarizing, equation 3.20 still
applies. Yet, six elements are required to specify M as ρ is actually split into ρps

and ρsp, with the appropriate coefficients Csp, Cps, Ssp and Sps, respectively [68].
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3.1.7 Experimentally measured ellipsometric quantities

The main ellipsometric parameter ρ is never measured directly. Instead, it is
usually a function of particular parameters directly available in the experiment,
and must be recalculated from them.

Since ellipsometry deals with polarised light, it requires polarizing optical
elements like polariser, analyzer, phase modulator and others. In typical optical
experiments, these elements can be rotated at arbitrary angles according to the
goal of the measurement. Let the angle of polariser, analyser, compensator and
others be P,A,C, ..., respectively. Therefore, ρ is the function of the angles of
those elements:

ρ = f(P,A,C, ...). (3.27)
Which optical elements are used exactly depends on the design of a particular
ellipsometer. There are many types of ellipsometers, each with its own advantages
and drawbacks (fig. 3.3):

• the nulling ellipsometer, the first historical approach in ellipsometry,
uses crossed polariser and analyzer with a compensator between them. The
compensator is rotated so that it distinguishes the signal. Although being
accurate with low systematic errors, it is slow to operate as it works on
single wavelengths;

• phase modulation ellipsometers can operate at high modulation rates,
in the order of tens of kHz, and can be used for a rapid acquisition of data.
They, however, also operate at single wavelengths and require intensive light
sources in order to achieve a satisfactory signal-to-noise ratio;

• Rotating polariser/analyzer/compensator ellipsometers use the same
mathematical approach of Fourier transform as in FTIR spectrometers.
They periodically modulate the polarisation state by continuously rotating
certain optical elements. This encodes the polarisation-related signal in
time domain which can be decomposed into frequency-dependent compo-
nents during analysis. This allows obtaining data for a broad range of light
spectrum in a single measurement cycle. These are the prevalent designs of
modern ellipsometers and will be described in more detail.

Rotating polariser (RPE) and rotating analyzer ellipsometers (RAE)
only have polariser and analyzer, one of which is made to rotate at a constant
angular velocity, modulating the light (fig. 3.3). The two configurations are math-
ematically equivalent. The Jones matrices are arranged as follows:

Eout = AR(A)SR(−P )P Ein, (3.28)

with E representing the electric field Jones vectors at the ellipsometer input
and output, and P and A represent the polariser and analyzer, each turned at
arbitrary angles P and A. The sample is represented by S. The general formula
for detected intensity with arbitrary angles of all polarizing optical elements is

IRP E/RAE ∝ E∗
outEout ∝ 1−N cos (2P )+(cos (2P )−N) cos (2A)+C sin (2P ) sin (2A).

(3.29)
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Figure 3.3: Block diagram of various ellipsometer configurations [70].

The parameters N and C are defined as in eqs. 3.21 and 3.23. In the case of
analyzer rotating at a constant speed, A = ωt and P = const. It is vice versa in
the case of rotating polariser (then it is A = const and P = ωt). The signal can
be decomposed into harmonic sine and cosine components. Their amplitudes are
a and b:

I = I0(1 + a cos 2ωt+ b sin 2ωt). (3.30)
The double frequency appearing in the parenthesis represents the fact that when
one polarizing elements (analyzer) rotates with respect to another (polariser),
the crossing happens twice per full cycle. The normalized values of the frequency
coefficients are [68, 71, 72]:

α = a

DC
= cos (2P ) −N

1 −N cos (2P ) , β = b

DC
= C sin (2P )

1 −N cos (2P ) . (3.31)

For a specific case of P = 45◦, the coefficients simplify to

α = −N, β = C. (3.32)

Thus, the N and C parameters can be directly extracted. In a more general
case, the trigonometric double-angle formulas can be used to invert eqs. 3.31 and
recover the ellipsometric angles:

tan Ψ =
√︄

1 + α

1 − α
| tanP |, cos ∆ = β√

1 − α2
. (3.33)

Data processing is therefore done in a strict sequence in RAE/RPE ellipsometry:
first, α and β are extracted by Fourier-transforming the raw experimental data.
Then, formulas 3.33 are applied to extract the final ellipsometric quantities Ψ
and ∆. However, RAE design suffers from large errors in ∆ when it is near 0◦ or
180◦. The S parameter is not measured, which is equivalent to saying that ∆ is
limited to [0◦ : 180◦] rather than the full range.
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The limitations of RPE and RAE are overcome by introducing a rotat-
ing compensator between the polariser and the sample instead. The com-
pensator can be a waveplate, for instance. The Jones formalism representation
becomes [71]:

Eout = AR(A)R(−C)CR(C)SR(−P )P Ein, (3.34)
with C representing the compensator and R(±C) an arbitrary rotation at an
angle C that it introduces. The compensator introduces a phase delay δ:

C =
(︄
e−iδ 0

0 1

)︄
. (3.35)

With the compensator rotating at a constant angular speed C = ωt, the light
is continuously changing its states between linear and left- and right-circular
polarisations, with intermediate elliptical polarisations in between. Placing a
rotating compensator next to stationary polariser and analyzer introduces 2ω
and 4ω harmonic components into a signal, α2, α4, β2 and β4:

I = I0(1 + α2 cos 2ωt+ β2 sin 2ωt+ α4 cos 4ωt+ β4 sin 4ωt). (3.36)

Data analysis flow is analogous to RPE/RAE: Fourier analysis first extracts the
amplitudes and those are then inverted to yield the resulting ellipsometric angles.
The general expressions in RCE case are complicated. For illustrative purposes,
only a special case will be considered here, in which the angles are chosen so that
P = 0◦ and A = 45◦. The Fourier coefficients of the detected light intensity then
are [72]:

α2 = 0, β2 ∝ S sin δ, α4 ∝ N(1 − cos δ), β4 ∝ C(1 − cos δ). (3.37)
For an ideal retarder, the phase retardance δ = 90◦, and the above equations
above simplify further to simple statements of equality between the measured
and calculated coefficients. Therefore, the RCE is able to directly measure N , C
and S, as well as the full range of Ψ and ∆.

More advanced ellipsometer designs employ several rotating elements, such
as dual rotating compensators placed before and after the sample, allowing
to capture all the 16 components of the full Muller matrix. Their design and
analysis complexity increases with the added elements and is beyond the scope
of this introductory chapter. Moreover, some designs are proprietary and patent-
protected.

3.1.8 Ellipsometric data analysis

The goal of an ellipsometric experiment is to determine the structural and optical
properties of the sample being examined. So far we have learned how the Jones
or Muller matrix coefficients, and subsequently, the main ellipsometric parameter
ρ can be recovered.

In the case of a single semi-infinite, isotropic and homogeneous material serv-
ing as a substrate, and a ideal single interface between it and the semi-infinite sur-
rounding ambient, the Fresnel coefficients for the p and s polarizartions are [73]:
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Figure 3.4: The iterative process of ellipsometry data processing.

rp = ñs cos θi − ña cos θt

ñs cos θi + ña cos θt

, (3.38)

rs = ña cos θi − ñs cos θt

ña cos θi + ñs cos θt

, (3.39)

with ñs and ña representing the complex refractive indices ñ = (n − ik) of the
sample and ambient, respectively, and θi and θt representing the incident and
transmitted angles. The latter are related by the well-known Snell’s law.

If the angles are known, the measured ellipsometric parameters can be inverted
and recalculated into the complex optical parameters of the reflecting substrate
medium ϵs:

ϵs = ñ2
s = ϵa sin2 θi

⎡⎣1 + tan2 θi

(︄
1 − ρ

1 + ρ

)︄2
⎤⎦ . (3.40)

For real samples with layered structure, a more complex description is used.
It is based on Yeh’s, or transfer matrix formalism. Each layer’s transfer ma-
trix is obtained by solving the wave equation in the medium. The exact de-
scription depends on whether the layer is isotropic or birefringent, its thickness
and other features. In a multi-layer case, recovery of the optical constants is
not as straightforward and the simple formula 3.40 cannot be applied directly.
The spectrally-dependent optical constants are then described by parametrized
mathematical functions and fit so that the final output, the simulated ρ, would
match the measured one over the entire available spectral range. It is an iterative
process (fig. 3.4). In order to increase its robustness, several strategies can be
employed:

• the acquisition time can be increased in order to maximize the signal-to-
noise ratio. This requirement is rather easily fulfilled as modern RCE ex-
hibit angular frequencies in the order of tens of Hz, obtaining hundreds and
thousands of independent measurements in the course of minutes;

• the same sample can be measured at several angles of incidence, providing
more data points for fitting as the angle of incidence can be set precisely.
This is called the Variable Angle Spectroscopic Ellipsometry, or VASE.

33



3.2 Magneto-optical spectroscopy
The ellipsometric techniques described earlier deal with samples without any ex-
ternal electromagnetic fields besides the probing beam. Introducing an additional
external field modifies the light and sample interaction based on its properties.
In the broadest sense, this upgraded technique is called the magneto-optical
spectroscopy. A particular subset of this technique was used in this research
and will be described in the following chapters.

3.2.1 Classical cyclotron resonance

Magnetic field influences the movement of electrons. In the classical theory of
electromagnetism, electrons do experience the Lorentz force just like any other
charged particles, which makes them move in circular orbits in a plane perpen-
dicular to the field direction (if the field and velocity vectors are perpendicular,
see fig. 3.5). This periodic rotating movement of charged particles in a uniform

Figure 3.5: The classical Larmor rotation of an electron in a homogeneous exter-
nal magnetic field [74].

magnetic field is called the cyclotron resonance. The parameters of this motion
are easily calculated by equating the magnitudes of the centrifugal and Lorentz
forces:

evB = mv2

r
, (3.41)

from which the radius of the orbit (also called the cyclotron radius or Larmor
radius), r, and its cyclotron frequency ωc can be extracted:

r = mv

eB
, (3.42)

ωc = eB

m
. (3.43)

3.2.2 Classical Hall effect

If an external magnetic field is applied perpendicular to a steadily flowing current,
charge carriers experience the Lorentz force. It causes a buildup of charges at
the sides of the sample slab, which in turn induces the electric field. This is the
essence of the classical Hall effect. Its quantitative properties can be seen by
analyzing the equations of motion:

meff
dv
dt = −e(E⃗ + [v⃗ × B⃗]) − meff

τ
v⃗, (3.44)
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the last term being the phenomenological scattering term. These equations even-
tually lead to the magneto-conductivity tensor, which in case of a thin two-
dimensional sample is:

σ̂ = σ0

1 + (ωcτ)2

(︄
1 +ωcτ

−ωcτ 1

)︄
, (3.45)

where σ0 = ne2τ/meff is the Drude conductivity. It can be alternatively ex-
pressed in terms of resistivity:

ρ̂ = σ̂−1 = 1
σ0

(︄
1 −ωcτ

+ωcτ 1

)︄
. (3.46)

The off-diagonal term ρxy is related to the Hall resistivity RH :

ρxy = −ωcτ

σ0
= B

−1
ne⏞⏟⏟⏞
RH

= BRH . (3.47)

The Hall effect thus allows to experimentally determine the concentration and the
sign of the charge carriers. Nowadays, it is used in applications such as magnetic
field sensors etc.

3.2.3 Landau quantization

The picture becomes more complex in the framework of the quantum mechanics.
The electron orbits become quantized, which in turn gives rise to the quantization
of other properties. An additional set of quantized electron energy levels appear,
giving rise to a rich variety of transitions between them in the IR part of the
spectrum. This in turn offers yet another tool to explore the electronic properties
of materials.

The effect of a static external magnetic field on the quantum system consisting
of a single charged particle is introduced via the Peierls substitution of the
canonical momentum operator:

p⃗ → (p⃗− eA⃗), (3.48)

with the actual magnetic field B⃗ and the magnetic vector potential A⃗ related by
B⃗ = ∇ × A⃗.

Many options exist for the choice of the gauge. Although the sample is both
rotationally and translationally invariant, there isn’t a gauge satisfying both con-
ditions:

• the gauge of the form A⃗ = B(−y, 0, 0) preserves the translational invariance
along the x axis, and A⃗ = B(0, x, 0) preserves it along the y axis. It is the
simplest and allows adding a potential V (r⃗) with little modification.

• the rotationally symmetrical gauge is A⃗ = B/2(−y, x, 0) is used in writing
the wavefunctions in fractional quantum Hall effect. Its ground state is
localised, giving an example of a coherent wavepacket.
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The chosen gauge is then put into the appropriate equations of motion. From
here on, both the semiclassical and fully quantum models can be used. Both give
the same quantitative results in terms of the energy spectra and the radiuses of
the ground state:

• in the semiclassical approach, the Bohr-Sommerfeld quantization rule is
used, stating that the motion of a particle is constrained to discrete values:�

(mv⃗ − eA⃗) dr⃗ = (n+ γ)h, (3.49)

where the quantum correction because of the so-called Berry’s phase γ =
1/2;

• in the fully quantum model, proper quantum operators are introduced into
the standard Schrödinger equation which is then solved either directly or
by use of the usual creation and annihilation operators.

We will briefly overview the results of the fully quantum theory here using the
Landau gauge A⃗ = (−By, 0, 0) for simplicity. The momentum operator can be
split into its Cartesian components:

(p⃗− eA⃗)2 = (px + eBy)2 + p2
y + p2

z. (3.50)

Substituting it into the Hamiltonian without the potential, it can be separated
into two parts, one describing the electron motion in the z direction and another
in the xy plane:

• in z direction, electron behaves as a free particle and its movement is unaf-
fected:

Ez(kz) = h̄2k2
z

2meff
(3.51)

and the wavefunction is

Ψ(z) = exp(±ikzz). (3.52)

• the xy plane is where the change happens. The wavefunction can be ex-
pressed as

Ψ(x, y) = f(x) exp(±ikyy), (3.53)
where f(x) is the wavefunction of a harmonic oscillator (a Gaussian) shifted
from its equilibrium position by

x0 = h̄ky

meffωc

. (3.54)

The frequency of this oscillator is ωc (the same as given by the classical limit)
and the eigenvalues are those of the usual quantum harmonic oscillator, an
infinite ladder of equidistantly-spaced Landau levels (fig. 3.7 (a)):

Ex,y(B,N) = h̄ωc

(︃
N + 1

2

)︃
, (3.55)

with the level index N = 0, 1, 2, .... The splitting of electron energy in the
presence of external magnetic field is called Landau quantization.
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Therefore, the total energy spectrum of electrons in a constant external magnetic
field in a three-dimensional space is

E(B,N, kz) = Ex,y(B,N) + Ez(kz) = h̄ωc

(︃
N + 1

2

)︃
+ h̄2k2

z

2meff
, (3.56)

being unconstrained in one coordinate and constrained in the others, the total en-
ergy spectra forms a set of energy bands (fig. 3.7 (b)). They can be further refined
by including the Zeeman splitting, giving an additional energy contribution

∆E(B) = ±1
2geffµBB (3.57)

for spin-up and spind-down electroncs, respectively. Here, µB is the Bohr mag-
neton and geff is the effective Landé g-factor.

The radius of an electron orbit of the N-th level is

r(N) =
√
N + 1

√︄
h̄

eB⏞ ⏟⏟ ⏞
lb

, (3.58)

where the quantity lb is called the magnetic length. It is the radius of the
Landau ground state, and more importantly, the lowest radius of a circular orbit
in a magnetic field allowed by the uncertainty principle.

Figure 3.6: Quantization of electron orbits in real and k spaces ((a) and (b)).
The orbital radiuses are described by eq. 3.58 in real space.

The number of available states (degeneracy) for a given Landau level can
be estimated in either the real or k spaces since quantization exhibits itself in
both (fig. 3.6). r(N) can be used in a purely geometrical calculation by comparing
its corresponding orbital area to the overall area of the sample S:

g2D = S

SN+1 − SN

= S

π(r2
N+1 − r2

N) = S

2πl2b
= SB⏞⏟⏟⏞

Φ

e

h⏞⏟⏟⏞
Φ0

= Φ
Φ0
, (3.59)

where Φ denotes the magnetic flux. The quantity Φ0, defined purely by the
fundamental physical constants, is the magnetic flux quantum and determines
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the lowest portion by which the magnetic flux through a current-carrying loop
can be changed. Thus, the degeneracy is the same for all Landau levels. For N
Landau levels present in the system, the degeneracy is then N(Φ/Φ0).

The quantity describing the amount of available energy levels at a particular
energy is the density of states (DOS). To obtain the 3D DOS, we note that the
electron is free to move in the z direction while constrained in xy. Therefore, we
scan over all affected two-dimensional cases for each unconstrained 1D case:

g3D(E) = 2
� E

0
gxy(Exy)gz(E − Exy)dExy. (3.60)

In the z direction, the DOS is that of a one-dimensional free particle (fig. 3.8, (b)):

gz(E) = 1
2π

√︄
2meff

h̄2E
. (3.61)

If the movement was unconstrained (i.e. the magnetic field is off), the DOS in
the xy plane would be that of a free two-dimensional particle:

gxy(E) = meff

2πh̄2 , (3.62)

which would bring us to the well-known DOS of a free particle:

g3D(E) = 1
2π2

(︃2meff

h̄2

)︃3/2 √
E. (3.63)

However, in the presence of magnetic field, the DOS in the xy plane is equal to
a series of Landau levels described by eq. 3.59. Since the levels are distributed
equidistantly, their energy-dependent degeneracy consists of a series of δ func-
tions separated by h̄ωc (fig. 3.8, (a)), and the resulting three-dimensional DOS
is (fig. 3.8, (c))

g3D(E,B) = 1
4π2

(︃2meff

h̄2

)︃(3/2)
h̄ωc

Nmax∑︂
N=0

1√
E − EN

. (3.64)

One can estimate the conditions required for the Landau quantization to be ob-
servable:

• regarding the temperature, the energy quantization is required to be
greater than the thermal excitations of the environment: h̄ωc ≫ kBT . In
other words, this requires strong magnetic fields and/or very low tempera-
tures (in the order of a few Kelvins);

• in terms of scattering of electrons, real samples are imperfect and include
impurities. If the duration of the scattering event is τ , then, according to the
uncertainty principle, the associated energy broadening is ∆E = h̄τ . For
the Landau quantization to be greater, this translates to ωcτ = µB ≫ 1.
Therefore, exceptionally pure samples or high enough fields are needed.
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Figure 3.7: Energy spectrum of electron in an external magnetic field pointing
along z direction: appearance of quantized Landau levels in two-dimensional case
(a) and the resulting full three-dimensional dispersion (b).

Figure 3.8: Qualitative decomposition of DoS along all directions in a sample.
DoS in the xy plane consisting of equidistantly distributed δ functions separated
by h̄ωc (a). One-dimensional free particle DoS in the z direction (b). The resul-
tant three-dimensional DoS with the magnetic field on (c). Dashed line marks
the DoS of a free particle (magnetic field off).
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3.2.4 Quantum Hall effect

At very high magnetic fields, when the Landau quantization becomes substantial,
the Hall conductivity σxy (or resistivity ρxy, see fig. 3.9) becomes quantized as
the magnetic field is swept. This is the quantum Hall effect:

σxy = ν
e2

h
. (3.65)

ν is called the filling factor and is defined as ν = Ne/NΦ, where Ne = N(Φ/Φ0)
is the number of electrons in Landau levels (the same as degeneracy) and NΦ =
Φ/Φ0 is the number of enclosed magnetic flux quanta. When ν is an integer
number, this is the integer quantum Hall effect. Also possible is the fractional
quantum Hall effect, in which ν < 1.

Figure 3.9: Resistivity plateaus observed in the integer quantum Hall effect of
the two-dimensional electron gas [4].

To understand the mechanism of the quantum Hall effect, it is necessary
to include a more realistic density of states of the 2D electron gas under the
magnetic field. They are always broadened by impurities and temperature. When
the highest Landau level is completely filled the Fermi energy and the chemical
potential must be in the gap between this and the higher level (fig. 3.10, a).
There are no more allowed states for the electrons to move in the vicinity, and
the sample longitudinal conductivity σxx is zero. This happens when

ne = ν
2eB
h
, (3.66)

where ne is the electron concentration and ν is an integer number. On the other
hand, if the level is half-filled, there are enough states just above the chemical
potential, and the sample exhibits high longitudinal conductivity ρxx (fig. 3.10, b).
This happens when

ne =
(︃
ν + 1

2

)︃ 2eB
h
. (3.67)

When the magnetic field is low and the Landau levels are densely packed, the
overall DOS overlaps and forms an oscillatory pattern (fig. 3.11, a). As the field is
swept, the oscillations shift, and the DOS around the Fermi energy EF oscillates
together, causing the electrical properties of the sample to oscillate as well. This
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Figure 3.10: The effect of realistic Landau level density of states on the electronic
properties when the highest level is completely (a) and partially (b) filled.

gives rise to Shubnikov–de Haas oscillations of the conductivity. They are
periodic in B, with the periodicity

∆
(︃ 1
B

)︃
= 2e
nh
. (3.68)

At high magnetic fields, level separation becomes unambiguous. In order
to understand the appearance of the Hall plateaus in either Hall conductivity
or resistivity, inclusion of the localised and delocalised Landau level states is
necessary. Close to the DOS peaks, the electrons are delocalised. At the tails,
there exist the localised tail states, which do not contribute to the conduction.
The boundary between these two states is called the mobility edge. Due to
impurities and the irregularity of the dopant concentration in a real sample,
the regions of filled Landau levels exist as separate ’puddles’. As the field is
changed, their size changes because the position of the Fermi energy/chemical
potential with respect to the closest Landau levels changes. Once in the localised
states, those islands interconnect so that the current can flow, contributing to
conductivity. As the Fermi energy starts approaching the next Landau level over
the localised states, the puddles of occupied Landau levels change once again,
becoming disconnected and thus making the conductivity stay constant.

Figure 3.11: Densely packed Landau level density of states, giving rise to
Shubnikov-de Haas oscillations (a). At high magnetic fields, the levels are well-
separated. This is the quantum Hall effect regime (b).
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3.2.5 FTIR Landau level spectroscopy

The middle and deep IR wavelengths are where vibratory molecular transitions
take place. It is said that this region contains the vibratory ’fingerprints’ of chemi-
cal elements. This allows examining the composition of chemical compounds from
gases to organics [75, 76]. In the context of solid state physics, it allows to probe
spectral properties in the vicinity of the bandgap of narrow-gapped materials.
Combined with an external magnetic field, it enforces Landau quantization of
the charge carriers, making possible to directly probe the properties of the band
structure. This is the essence of the Landau level spectroscopy.

In straightforward implementation, spectroscopic measurements would be per-
formed by selecting a narrow spectral window with a monochromator and reg-
istering the signal with a single detector. This made the process rather slow if
a wide spectral region was to be measured. The advent of CCD detectors and
use of diffractive elements made an instantaneous acquisition of an entire spectra
possible. This is especially applicable for VIS spectral region which is nowadays
readily measured using pocket-sized consumer level spectrometers [77, 78].

For IR wavelengths, however, another measurement concept proved the most
efficient. It employs modulating the beam in spatial domain and registering the
resulting signal with a single detector. The beam is guided using reflective optical
elements that introduce minimum loss and no dispersion. All these factors mean
that the entire beam and all of its spectral components are detected at all times,
greatly improving the Signal-to-Noise Ratio (SNR) and acquisition speed (the
latter determined purely by modulation period). For physicists, these are known
as Fellgett’s and Jacquinot’s advantages.

Figure 3.12: Essential parts of a FTIR spectrometer based on Michelson in-
terferometer (a, based on [79]). The length of one of the arms is modulated
harmonically (denoted by the x). An example of real data obtainable using this
technique: stacked magneto-transmission graph of Bi2Se3 topological insulator
plotted for selectad values of magnetic field with Landau level indices (based
on [80]).

The most popular experimental setup is based on the Michelson interferom-
eter. The modulation is applied by changing the length of one of its arms in
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a harmonic fashion (fig. 3.12). This enforces interference between the spectral
components of the beam, and the registered intensity I at the position of the
moving arm x is

I(x) = S(ν) cos (2πνx), (3.69)
where the quantity called the wavenumber ν = 1/λ is introduced and λ is the
wavelength. S(ν) is the intensity of the monochromatic line located at a par-
ticular ν. Consequently, the acquired signal is called the interferogram. It
requires Fourier-transforming it to recover the spectrum. A complete process
flow requires some other intermediate operations such as apodisation (to sup-
press spectral leakage), phase correction (to convert a complex-valued spectrum
to real-valued) etc. [81]. This functionality is provided by default by the software
of modern devices.
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IV PbSnSe material

4.1 Topological Hamiltonian
A general introduction to Landau quantization was given in previous sections.
In this part, both a thorough theoretical framework will be developed as well
as real experiments will be discussed and interpreted for a particular material
investigated in this thesis, the lead tin salts.

In order to estimate the precise transition energies and thus be ready to in-
terpret the experimental data, the theory needs to be adapted to a particular
material, taking their physical properties of interest such as their atomic struc-
ture into account. Only then can we obtain the exact density of states, energies
of the conduction and the valence bands etc. In other words, what is eventually
needed is a suitable model Hamiltonian.

Here we are going to review the Hamiltonians derived explicitly for lead salts
as well as other closely related materials, each having their own advantages but
dealing with different subsets of the phenomena. Afterwards, we are going to
propose our own model Hamiltonian bridging the strong parts of those examples
so that it would contain both the essential physics and topological information.

4.1.1 Hamiltonian for lead salts

The first quantum mechanical models to properly describe the properties of the
lead salts were developed as early as 1960s [82], taking the symmetries around
L point into account. Understandably, the notion of the non-trivial topological
states of matter did not exist back then nor in the early 90s [83], and the Hamil-
tonians to be presented here only deal with the ordinary energy bands. These
models were developed on the basis of the k⃗ ·p⃗ theory. It expands the Hamiltonian
in the powers of k round the chosen Brillouin zone point (the L point). It then
includes the lowest conduction and the highest valence bands exactly, but the
other remaining bands are taken into account in approximation to higher order
k terms.

4.1.1.1 Symmetries of the lead salts
When the spin-orbit interaction is excluded, the Bloch functions at the L point of
the NaCl lattice are single-group nondegenerate representations of the group D3d

if the spin is neglected, and which transform like L±
1 , L±

2 . The double degenerate
representations transform like L±

3 . Because of inversion symmetry, there will be
an even (+) and odd (-) representation for each class.

When the spin-orbit interaction is included, the states around the L point
have L±

6 or L±
4,5 symmetry. The L6 states are doubly-degenerate while L4 and

L−5 are singly degenerate, yet have twofold Kramers degeneracy at each L point,
which is preserved at all points in the Brillouin zone of the NaCl type of crystal
lattice. The spin-orbit coupling also mixes L±

6 -symmetrical states originating
from different single-group states (representations of the group D3d describing
the transformation properties of the Bloch functions in a crystal). This mixing
allows coupling of the longitudinal and transverse components of the momentum
matrix elements, thus resulting in spherical or nearly spherical bands from k⃗ · p⃗
interaction of a single pair of levels at the L point [82].
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According to the Mitchell and Wallis notation, the band-edge periodic func-
tions for the valence bands V ± at the L point exhibit the L±

61 symmetry [83]:

V + = i cos θ+R ↑ + sin θ+S+ ↓, (4.1)

V − = i cos θ+R ↓ + sin θ+S− ↑ . (4.2)
The conduction states C±, however, have different symmetry. In case of PbSe, it
is L−

62 in Bernick and Kleimann notation and L−
61 in Mitchell-Wallis notation:

C+ = i cos θ−Z ↑ + sin θ−X+ ↓, (4.3)

C− = i cos θ−Z ↓ + sin θ−X− ↑ . (4.4)
The parameters cos θ± and sin θ± are given by different combinations of energy
gaps and spin-orbit energies. The positive and negative subscripts ± denote the
partners of a Kramers pair and do not correspond to pure spin states. The spin
functions ↑ and ↓ correspond to the eigenstates of σz in the atomic coordinate
system. It is oriented so that z lies along the [111] axis of the valley, x along
[112] and y along [110]. Furthermore, R is isotropic (it is an atomic s state), X±
and Z transform like the atomic p functions with mz = ±1 and mz = 0, and S±
transform like the atomic d functions with mz = ±1 [82].

4.1.1.2 Topologically trivial lead salts in magnetic field
The standard eigenvalue problem is solving the Schrödinger equation with the
external magnetic field present:(︃ 1

2m0
p⃗2 + V0(r⃗) +HSO

)︃
Ψ = EΨ, (4.5)

where V0(r⃗) is the periodic potential of the lattice, HSO is the spin-orbit interac-
tion term, p⃗ is the momentum which in the presence of external magnetic field is
augmented with the vector potential A⃗, p⃗ → P⃗ = p⃗+ eA⃗.

In a simplified treatment by Bauer [83], the solutions are sought in the form

Ψ =
∑︂

l

fl(r⃗)ul(r⃗), (4.6)

where fl are slowly varying envelope functions and ul(r⃗) are periodic Luttinger-
Kohn (L-K) functions at the band extrema, which for the lead salts in the L
point. The summation runs over the energy bands. At the band edges, the L-K
functions satisfy the eigenvalue problem∑︂

l

Hl′lfl = Ef ′
l , l

′ = 1, 2, ..., (4.7)

where l′ runs over the energy bands. The explicit expression of the Hl′l up to the
second order in P⃗ is

Hl′l =
(︃
ϵl0 + 1

2m0
P 2
)︃
σl′l + 1

m2
0

3∑︂
αβ=1

Aαβ
l′l PαPβ + 1

m0
π⃗l′l · P⃗ + µBB⃗ · σ⃗l′l, (4.8)
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where l′ and l are band indices, α and β are the Cartesian coordinates, ϵl0 are
the band-edge energies and π⃗l′l = ⟨ul′ | π⃗ |ul⟩ are the matrix elements of

π⃗ = p⃗+ h̄

4m0c2 (σ⃗ × ∇V0), (4.9)

and σl′l = ⟨ul′ | σ⃗ |ul⟩ with σ⃗ being the Pauli spin operators, B⃗ the magnetic field
and µB the Bohr magneton.

Owing to the symmetries, for two conduction and two valence bands, the
corresponding Hamiltonian is

Hl′l =

⎛⎜⎜⎜⎜⎜⎝
V̂

+ 1
2g

+
t µBBx vlPz

√
2vtP−

1
2g

+
t µBBx V̂

− √
2vtP+ −vlPz

vlPz

√
2vtP− Ĉ

+ 1
2g

−
t µBBx√

2vtP+ −vlPz
1
2g

−
t µBBx Ĉ

−

⎞⎟⎟⎟⎟⎟⎠ , (4.10)

with
V̂

± = −Eg

2 −
P 2

x + P 2
y

2m+
t

− P 2
z

2m+
l

± 1
2g

+
l µBB

+
z , (4.11)

Ĉ
± = +Eg

2 +
P 2

x + P 2
y

2m−
t

+ P 2
z

2m−
l

± 1
2g

+
l µBB

+
z , (4.12)

where µB is the Bohr magneton and m±
l , m±

t , g±
l , g±

t denote the far-band con-
tributions to the effective masses and the spin g-values, vl, vt are combinations
of the P⃗ · π⃗ matrix elements with sin θ± and cos θ±, and P± = (Px ± Py)/

√
2.

The subscripts ± refer to the valence and conduction bands while t/l refer to
the transverse and longitudinal projections [83]. The Hamiltonian derived by
Mitchell and Wallis share similar expressions [82].

4.1.2 Hamiltonian for Bi2Se3 topological insulators

Zhang and Liu succeeded in developing an early Hamiltonian applicable to topo-
logical insulators [84, 85]. Originally, it was developed for Bi2Se3 family of two-
compound materials which are stoichiometric crystals with well-defined electronic
structures and simple surface states, making them describable by modest theo-
retical models. Even though Bi2Se3 exhibits Dirac cones at the Γ point (unlike
the L point in the case of the lead salts), this Hamiltonian deserves attention as
an historical example of the first successful Hamiltonian for topological insula-
tors. Moreover, we will show that under certain assumptions, this Hamiltonian
is highly adaptive and can be connected to the lead salts as well.

4.1.2.1 The main interacting orbitals

As the band structure is determined by the outmost orbitals, only they can be
considered. The electronic configuration of Bi is 6s26p3 and that of Se is 4s24p4,
therefore, only p orbitals are sufficient to be examined. The same applies to lead
tin salts as the outmost orbitals of both Pb, Sn and Se are of p type.

In the case of bismuth selenide, there are 5 atoms per quintuple layer, each
atom having 3 p orbitals (px, py, pz), there are 15 orbitals in total. This is how they
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Figure 4.1: Evolution of p orbitals in Bi2Se3 topological insulator: hybridization
of Bi and Se orbitals (I), formation of bonding and anti-bonding states (II), crystal
field splitting (III), addition of the spin-orbit interaction which finally gives rise
to band inversion, a signature feature of topological insulators (IV). From [85].

interact and give rise to the observed energy band structure (each step pictured
in fig. 4.1):

• the strongest coupling is between Bi and Se layers, causing level repul-
sion (I);

• because of the inversion symmetry, they then form the bonding and anti-
bonding orbitals (II);

• as a result of the layered crystal structure (unequivalence between z and x
or y directions), there is an energy splitting between pz and pxy orbitals,
referred to as the ’crystal field splitting’;

• the spin-orbit interaction (SOC) couples the orbital angular momentum to
spin and causes additional level repulsion of the two pairs of P1+

− and P2+
−

orbitals with the opposite parity, finally inverting the bands and generating
the signature feature of topological insulators.

Therefore, at the end, in order to capture the essential physics of topological
insulators, it is sufficient to only analyze the two pairs of inverted band or-
bitals. They are twice degenerate because of spin and form the basis of this four-
band model Hamiltonian. Subsequently, they are labeled |P1+

−,+1/2⟩ = |Se ↓⟩,
|P2−

+,+1/2⟩ = |Bi ↑⟩, |P1+
−,−1/2⟩ = |Se ↑⟩ and |P2−

+,−1/2⟩ = |Bi ↓⟩.
Of course, one can include additional basis vectors which describe couplings

with other orbitals as well. In Liu’s article, the eight-band Hamiltonian is derived
for quantitative analysis [85]. Understandably, the model becomes more complex,
with over 26 parameters which have to be meticulously tuned in order to achieve a
good correspondence to reality. On the other hand, the general four-band model
is sufficient to describe the main physics of topological insulators, namely the
band inversion, in the low energy and long-wavelength regime.
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4.1.2.2 Four-band Hamiltonian
Having resolved the basis (two bands corresponding to the valence and conduction
band twice degenerate because of spin), the exact form of the Hamiltonian can
be derived in several ways, both leading to the same result:

• from symmetry principles, or theory of invariants. It takes into account two-
fold, three-fold and other rotational symmetries R2, R3, ... along different
directions, inversion P , and time-reversal symmetry T present in the lattice.
Any 4 × 4 Hamiltonian can be expanded by Dirac Γ matrices:

Ĥeff = ϵ(k⃗)I4x4 +
∑︂

i

di(k⃗)Γi +
∑︂
ij

dij(k⃗)Γij, (4.13)

where I4x4 is the 4x4 identity matrix and Γi(i = 1, ..., 5) are the five Dirac
Γ matrices. They satisfy Γi,Γj = 2δij and their ten commutators are Γij =
[Γi,Γj]/2i. Taking the symmetries of the system into account, the effective
Hamiltonian up to O(k3) is

Heff = H0 +H3, (4.14)

where H0 preserves the in-plane rotation symmetry along the z direction
and H3 breaks it down to the threefold rotation symmetry:

H0 = ϵ(k⃗) +M(k⃗)Γ5 +B(kz)Γ4kz + A(k2
x + k2

y)(Γ1ky − Γ2kx), (4.15)

and
H3 = R1Γ3(k3

x − 3kxk
2
y) +R2Γ4(3k2

xky − k3
y), (4.16)

where ϵ(k⃗) = C0 + C1k
2
z + C2(k2

x + k2
y), M(k⃗) = M0 +m1k

2
z +M2(k2

x + k2
y),

A(k2
x + k2

y) = A0 + A2(k2
x + k2

y) and B(kz) = B0 +B2k
2
z .

• from k⃗ · p⃗ theory, which expands the Hamiltonian in the powers of k in the
vicinity of a chosen Brillouin zone point (Γ in case of Bi2Se3 and L in case
of lead tin salts as these are the points exhibiting the Dirac cones). It uses
the wave function around those points as the zeroth-order wave function
and treats H ′ˆ = h̄/m0k⃗ · p⃗ as perturbation. p is the momentum operator
and k is regarded as a small parameter for the perturbation procedure.

The two descriptions are equivalent and the corresponding Hamiltonians Hsymm

and Hk⃗·p⃗ can be exchanged with the aid of this transformation [85]:

Hk⃗·p⃗ = U1HsymmU
†
1 , (4.17)

where U is

U =

⎛⎜⎜⎜⎝
1 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 i

⎞⎟⎟⎟⎠ . (4.18)

The immediate result is the explicit expression of the Hamiltonian which can be
straightforwardly applied for the bulk states:

H = Hbulk = ϵ(k⃗)I4×4 +

⎛⎜⎜⎜⎜⎝
M(k⃗) A(k)k+ 0 −B(kz)kz

A(k)k− −M(k⃗) b(kz)kz 0
0 B(kz)kz M(k⃗) A(k)k−

−B(kz)kz 0 A(k)k+ −M(k⃗)

⎞⎟⎟⎟⎟⎠ , (4.19)
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where ϵ(k⃗) = C0 + C1k
2
z + C2k

2, I4×4 is the 4 × 4 identity matrix, M(k⃗) =
M0 + M1k

2
z + M2k

2, B(kz) = B0 + B2k
2
z , A(k) = A0 + A2k

2, k± = kx ± iky and
k2 = k2

x + k2
y.

To describe the surface states, we note that kx and ky are still good quantum
numbers but kz is not [84]. The Hamiltonian (4.14) in the subspace z > 0 is
divided into two parts, one with all kz-dependent terms and the rest:

Ĥ = ˜︂H0 + ˜︂H1, (4.20)

where ˜︂H0 = ˜︁ϵ(kz) + ˜︂M(kz)Γ5 +B0Γ4kz, (4.21)˜︂H1 = C2(k2
x + k2

y) +M2(k2
x + k2

y)Γ5 + A0(Γ1ky − Γ2kx) +H3. (4.22)

In these equations, ˜︁ϵ(kz) = C0 + C1k
2
z and ˜︂M(kz) = M0 +M1k

2
z . The eigenvalue

equation is obtained by replacing kz with −i∂z:

˜︂H0(kz → −i∂z)Ψ(z) = EΨ(z), (4.23)

which allows to find the one-dimensional eigenfunctions Ψkx,ky(z) [84]. The Hamil-
tonian Ĥ0 is then block diagonal with the eigenstates

Ψ↑(z) =
(︄
ψ0
0⃗2

)︄
,Ψ↓(z) =

(︄
0⃗2
ψ0

)︄
, (4.24)

0⃗2 being the two-component zero vector. Ψ↑(z) and Ψ↓(z) are related by the time-
reversal operation. For surface states, ψ0(z) should be localized at the surface
and satisfy the eigen equation

(˜︁ϵ(−i∂z) + ˜︂M(−i∂z)τ3 − iB0τ2∂z)ψ0(z) = Eψ0(z), (4.25)

where τ are the Pauli matrices. The wavefunction at the Γ point is then ψ0 =
ϕeλz, where

ψ0 =
⎧⎨⎩a(eλ1z − eλ2z)ϕ+, B0/M1 > 0,
a(e−λ1z − e−λ2z)ϕ−, B0/M1 < 0.

(4.26)

In the above expressions, a definition τϕ± = ±ϕ± was introduced. The surface
states Hamiltonian gives rise to helical spin textures, similarly to how helicity
was an outcome of the Dirac Hamiltonian (fig. 4.2).
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Figure 4.2: Three-dimensional plot of the spin texture of the surface states at the
Γ point in momentum space. Left-handed helicity of the conduction band and
right-handed helicity of the valence band is apparent [85].

4.2 Dirac Hamiltonian for topological insulators
Although derived from different principles and driven by different goals, all pre-
viously mentioned Hamiltonians share the same structure. In fact, they are all
Dirac-like. Let’s see how we could translate the original Dirac Hamiltonian de-
scribing a free particle to describe the topological semiconductor physics. The
Dirac Hamiltonian already exhibits most of the features needed for this purpose:

• a forbidden gap;

• a universal dispersion model capable of describing both the usual parabolic
energy bands in the case of ordinary materials as well as the linear Dirac
cones of ultra-relativistic particles.

It should therefore be possible to apply it to ordinary semiconductors by:

• replacing the gap of 2m0c
2 (originating from the existence of the rest energy

mass) with the standard semiconductor gap Eg. For convenience, we will
adopt the notion of the half gap ∆ = Eg/2 to replace m0c

2;

• similarly to how the free electron mass m0 is replaced by the effective mass
meff to reflect the effect of the periodic crystal and keep the potential term
V out of the Schrödinger equation, the speed of light c can be replaced by
its effective value in the material, the Fermi velocity vF ;

• the momentum p can be replaced by the wave-vector owing to the quantum-
mechanical relation p = h̄k.

The Dirac Hamiltonian then takes the following form:

ĤDirac =

⎛⎜⎜⎜⎝
∆ 0 h̄vFkz h̄vFk−
0 ∆ h̄vFk+ −h̄vFkz

h̄vFkz h̄vFk− −∆ 0
h̄vFk+ −h̄vFkz 0 −∆

⎞⎟⎟⎟⎠ , (4.27)
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where we also adopted the notion k± = kx ± iky. The basis functions ψ obviously
describe the valence and conduction bands V and C, each doubly degenerate
because of spin:

ψ =

⎛⎜⎜⎜⎝
|C↑⟩
|C↓⟩
|V↑⟩
|V↓⟩

⎞⎟⎟⎟⎠ . (4.28)

The eigen energies are then

Eeig(k⃗) = EC,V (k⃗) = ±
√︂

∆2 + h̄2v2
Fk

2. (4.29)

This general Dirac Hamiltonian, however, so far does not include any information
related to the topology. Comparing this Dirac Hamiltonian to Liu’s (eq. 4.19),
we can deduce the meaning of its coefficients:

• M0,1,2 is related to the curvature of the bands. In particular, for small
values of M1,2, the band gap approaches 2M0; we can therefore conclude
that ∆ := M0. Strictly speaking this is valid only for strong coupling
between bands with only one extreme (at k = 0).

• A0,1,2 and B0,1,2 are related to the in-plane and out-of-plane effective speeds
of electrons vx,y and vz, allowing to include the effects of anisotropy;

• C0,1,2 is related to the effective masses in xy and z directions. It causes
asymmetry between the electron and hole bands. C0 acts as the general
calibration of the zero energy. For convenience, we want to keep it at the
middle of the gap, therefore setting C0 := 0.

We notice that the two Hamiltonians could be consolidated if we further simplied
4.19 by neglecting k3 terms. This essentially means that we are neglecting the
shape of the bands further away from the chosen point of interest in the Brillouin
zone. The meaning of the remaining coefficients then is:

• M2 describes the band inversion and topology. We will define it asM := M2.
It is called the diagonal dispersive term. As long as the material is in
the ordinary insulator state, the conduction band lies below and the va-
lence band lies above the band gap. When the gap closes and reopens in
the topological insulator regime, the conduction and valence bands flip, but
a model without M is unable to describe this correctly. The only available
approach is to empirically change the bandgap into negative (fig. 4.3, (a)).
The M parameter allows to leave the fundamental parameter of a semicon-
ductor - its bandgap - unchanged (fig. 4.3, (b)). In order to keep the band
gap positive (only real values of energy are detectable experimentally), M
should be negative for topologically nontrivial phases by convention.
Therefore, the sign of M serves as a measure of the topological regime of
the system:

– the material is an ordinary insulator when M > 0;
– in topological regime with inverted energy bands, M < 0 (fig. 4.3, (b)).
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Figure 4.3: Meaning of the diagonal dipersive term M : in ordinary insulator,
the valence band lies above the conduction band. In the topological phase, these
bands flip, but a general Dirac Hamiltonian is unable to describe band inversion.
The only way to introduce it is by meddling with the value of the bandgap (a).
The band topology is captured by the sign of M (b), preserving the bandgap.

• the only remaining asymmetry term is C2. If there was a difference between
the electron and hole masses, the transitions |N⟩ → |N + 1⟩ and |N + 1⟩ →
|N⟩ would exhibit different energies. We therefore name it the electron-
hole asymmetry term and set C := C2;

• with only linear off-diagonal terms remaining, vx,y := A0/h̄ and vz := B0/h̄.
In the absence of anisotropy, vF := A0/h̄.

We therefore adopt the following general isotropic (rotationally symmetric)
4 × 4 Hamiltonian to describe bulk topological insulators. It can be thought of
as the Dirac Hamiltonian with the added band inversion and asymmetry terms:⎛⎜⎜⎜⎝

∆ +Mk2 + Ck2 h̄vFk+ 0 −h̄vFkz

h̄vFk− −∆ −Mk2 + Ck2 h̄vFkz 0
0 h̄vFkz ∆ +Mk2 + Ck2 h̄vFk−

−h̄vFkz 0 h̄vFk+ −∆ −Mk2 + Ck2

⎞⎟⎟⎟⎠ .
(4.30)

This Hamiltonian could in principle be derived using the k⃗ · p⃗ theory around L
point. In fact, it could be derived around any other point k0⃗ of the Brillouin
zone, but keeping the terms up to quadratic in the diagonal and linear in the
off-diagonal elements would eventually lead to the same expressions as eqs. 4.27
and 4.30.

It is easy to determine its eigen energy dispersion by adding M to the ∆ term
and C term in front:

EC,V (k⃗) = Ck2 ±
√︂

(∆ +Mk2)2 + h̄2v2
Fk

2. (4.31)

4.2.1 Topological Dirac Hamiltonian in magnetic field

We introduce the magnetic field via the usual Peierls substitution k⃗ → q⃗ := k⃗+ eA⃗
h̄

,
where A⃗ is the vector potential. B = ∇ × A⃗ and B = (0, 0, Bz). We introduce
the standard creation and annihilation operators a and a† to study the formation
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of Landau levels:
a = lB√

2
q⃗−, a

† = lB√
2
q⃗+, (4.32)

obeying the well-known commutation relation:

[a, a†] = 1. (4.33)

Their eigenvalues are
a |n⟩ =

√
n |n− 1⟩ , (4.34)

a† |n⟩ =
√
n+ 1 |n+ 1⟩ (4.35)

with the number state eigenvalue

a†a = n. (4.36)

lB in eq. 4.32 stands for the magnetic length:

lB =
√︄
h̄

eB
. (4.37)

The magnetic field only affects particle motion in the xy plane but leaves it
unaffected in the z direction. Therefore, we can decompose q⃗ into its Cartesian
components. We first invert eqs. 4.32 in order to recover qx,y:

qx = 1√
2l2B

(a† + a), qy = −i√
2l2B

(a† − a) (4.38)

and then use them and the commutation relation 4.33 to decompose

q2 = q2
x + q2

y + q2
z = 2

l2B

(︃1
2 + a†a

)︃
+ q2

z . (4.39)

The topological Hamiltonian thus changes into

ĤB(q⃗) =

⎛⎜⎜⎜⎜⎜⎜⎝
∆ +Mq + Cq

√
2h̄vF

lB
a† 0 −h̄vF qz√

2h̄vF

lB
a −∆ −Mq + Cq h̄vF qz 0

0 h̄vF qz ∆ +Mq + Cq

√
2h̄vF

lB
a

−h̄vF qz 0
√

2h̄vF

lB
a† −∆ −Mq + Cq

⎞⎟⎟⎟⎟⎟⎟⎠
(4.40)

where we marked the decomposed diagonal elements as

Mq = 2M
l2B

(︃1
2 + a†a

)︃
+Mq2

z (4.41)

and
Cq = 2C

l2B

(︃1
2 + a†a

)︃
+ Cq2

z . (4.42)
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4.2.2 Hamiltonian with kz = 0

Special consideration has to be paid for the case when the electron motion along
the applied magnetic field can be neglected (kz = 0). In such case, the full Hamil-
tonian 4.40 reduces to the block-diagonal form, two 2D Dirac-like Hamiltonians
h and h∗:

H(kz = 0) =
(︄
h(a†, a) 0

0 h∗(a†, a)

)︄
(4.43)

where h Hamiltonian, for instance, is

h(a†, a) =
⎛⎝∆ + 2

l2
b
(C +M)(a†a+ 1

2)
√

2vF h̄
lb

A0a
†

√
2vF h̄
lb

a† −∆ + 2
l2
b
(C −M)(a†a+ 1

2)

⎞⎠ (4.44)

To find the solution, these wavefunctions are chosen:

ΨN ̸=0 =
(︄

c1 |N⟩
c2 |N − 1⟩

)︄
,ΨN=0 =

(︄
|0⟩
0

)︄
, (4.45)

providing the following solution:

EN,α = +M
l2b

+ 2C
l2b
N + β

⌜⃓⃓⎷(︄C
l2b

+ ∆ + 2M
l2b
N

)︄2

+ 2A
2
0
l2b
N (4.46)

and
E0,e↓ = ∆ + C +M

l2b
. (4.47)

The wavefunctions for h∗ Hamiltonian are

ΨN ̸=0 =
(︄
c1 |N − 1⟩
c2 |N⟩

)︄
,ΨN=0 =

(︄
0

|0⟩

)︄
, (4.48)

and the solutions are

EN,α = −M

l2b
+ 2C

l2b
N + β

⌜⃓⃓⎷(︄C
l2b

− ∆ − 2M
l2b
N

)︄2

+ 2A
2
0
l2b
N (4.49)

and
E0,h↓ = −∆ + C +M

l2b
. (4.50)

β = +1 stands for electrons and β = −1 for holes. Note that these solutions
imply a full polarisation of the ground states. Also worth noting is that
the two diagonal sub-blocks h and h∗ can be exchanged by the time reversal
operation [86].

4.2.3 General Hamiltonian (k ̸= 0)

The general solutions are sought in the form

ΨN =

⎛⎜⎜⎜⎝
c1 |N⟩
c2 |N − 1⟩
c3 |N − 1⟩
c4 |N⟩

⎞⎟⎟⎟⎠ , (4.51)
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which transforms the Hamiltonian into

ĤB(q⃗) =

⎛⎜⎜⎜⎝
D1 a 0 −h̄vFkz

a D2 h̄vFkz 0
0 h̄vFkz D3 a

−h̄vFkz 0 a D4

⎞⎟⎟⎟⎠ , (4.52)

where
a =

√
2h̄vF

lb

√
N, (4.53)

and the diagonal components D1,2,3,4 are:

D1 = +A+B + C + E0, (4.54)

D2 = −A+B − C + E0, (4.55)
D3 = +A−B − C + E0, (4.56)
D4 = −A−B + C + E0. (4.57)

In the above equations, we have grouped the variables as follows:

A =
(︄

∆ +Mk2
z + 2M

l2B
N

)︄
, (4.58)

B = M

l2B
, (4.59)

C = C

l2B
, (4.60)

E0 =
(︄
Ck2

z + 2C
l2B
N

)︄
. (4.61)

The energy spectrum of quasiparticles described by the above Hamiltonian is
En = E0 + ϵn, where ϵn is the spectrum of the following matrix:

H =

⎛⎜⎜⎜⎝
A+B + C a 0 −h̄vFkz

a −A+B − C h̄vFkz 0
0 h̄vFkz A−B − C a

−h̄vFkz 0 a −A−B + C

⎞⎟⎟⎟⎠ . (4.62)

Getting the eigenvalues of the above equation, or HΨ = λΨ, is equivalent to
solving det(H − λI) = 0 with I being the identity matrix. This implies the
characteristic equation

λ4 − 2λ2
[︂
B2 + A2 + C2 + a2 + (h̄vFkz)2

]︂
− λ · 4ABC+

+
[︂
A2 +B2 − C2 + a2 + (h̄vFkz)2

]︂2
+ 4(a2C2 − A2B2 − a2B2) = 0.

(4.63)

It can only be reduced to biquadratic form and provide simple solutions for special
cases A = 0, or B = 0, or C = 0. For general case with all nonvanishing terms,
one should solve the equation of the 4th order. This can be done with Wolfram
Mathematica software package, for instance.
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Here we will use the liberty and mention in advance that we did not detect
any secondary transition bands with different bending in our experiments. This
implies that C = 0. In this case, a solution can be found, and it reads

EB(N) = α
M

l2B
+ β

⌜⃓⃓⎷(︄∆ + 2M
l2B

N +Mk2
z

)︄2

+ 2h̄2v2
F

l2B
N + h̄2v2

Fk
2
z , (4.64)

where β = +1 corresponds to the conduction and β = −1 to the valence band,
and α = ±1 corresponds to the spin splitting.

The solutions for the ground states, on the other hand, are possible to find in
the most general form described by eq. 4.40. For these states N = 0, because by
definition |N ≤ 0⟩ = 0, the ansatz solution has to be modified:

ΨN=0 =

⎛⎜⎜⎜⎝
c1 |N⟩

0
0

c4 |N⟩

⎞⎟⎟⎟⎠ . (4.65)

Note that this again implies a full spin-polarisation of the ground states. For
electrons, E0 is fully polarised as |↓⟩ level while for holes it is fully |↑⟩ state. The
corresponding Hamiltonian is simplified to a 2x2 matrix:

ĤB|N=0(q⃗) =
⎛⎝∆ + M

l2B
+Mk2

z + C
l2B

+ Ck2
z −h̄vFkz

−h̄vFkz −∆ − M
l2B

−Mk2
z + C

l2B
+ Ck2

z

⎞⎠ .
(4.66)

Its eigenenergies are

EN=0(kz) = C

l2B
+ Ck2

z ±

⌜⃓⃓⎷(︄∆ + M

l2B
+Mk2

z

)︄2

+ h̄2v2
Fk

2
z . (4.67)

4.2.4 Topological dispersion summary

To summarize, we have got the following dispersion formulas in the case of
electron-hole asymmetry absence (C = 0):

EB(N) = α
M

l2B
+ β

⌜⃓⃓⎷(︄∆ + 2M
l2B

N +Mk2
z

)︄2

+ 2h̄2v2
F

l2B
N + h̄2v2

Fk
2
z , (4.68)

where β = +1 stands for valence and β = −1 for conduction bands, and α = ±1
for the spin projections. For holes in the fully polarised ground state

Eh
N=0(B) = +

⌜⃓⃓⎷(︄∆ + M

l2b
+Mk2

z

)︄2

+ h̄2v2
Fk

2
z , (4.69)

while for the electrons

Ee
N=0(B) = −

⌜⃓⃓⎷(︄∆ + M

l2b
+Mk2

z

)︄2

+ h̄2v2
Fk

2
z . (4.70)
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4.2.5 Selection rules

The selection rules for the transitions between the LLs within the topological
Hamiltonian can be analyzed using the perturbation and linear response the-
ories [86], where the power absorbed by the system is analyzed via the Fermi
golden rule:

P (ω) = 2πω
∑︂
α,β

|Fαβ|2(fβ − fα)δ(Eα − Eβ − h̄ω), (4.71)

describing the rate of single-electron transitions β → α, applied to a single-
particle Hamiltonian H0 with eigenstates Eα,β, occupational factors fα,β, and
matrix element of perturbation between these states Fαβ, with a monochromatic
perturbation. The vector potential is

Ax = −Bzy + cEx

iω
e−iωt + c.c., Ay = Az = 0, (4.72)

with Ex being the electric field amplitude and ’c.c.’ the complex conjungate. The
perturbation corresponding to this potential is

Fe = ieEx

ω
vx, v⃗ = 1

h̄

∂Hk

∂k⃗

⃓⃓⃓⃓
⃓
k⃗→π⃗

, (4.73)

with π⃗ denoting the Peierls substitution k⃗ → π⃗ = −i∇+(e/h̄c)A⃗ [86]. At kz = 0,
the nonvanishing matrix elements of Fe impose these selection rules:

n, s → n± 1, s, (4.74)

where s denotes the spin degree of freedom [86]. Moreover, if similar matrix ele-
ment analysis is also carried within with the Kubo-Greenwood formalism (which
will be used for theoretical spectral modeling further in the thesis) for the circu-
larly polarised light in the view of h, h∗ nomenclature [80, 86],

• in h Hamiltonian, N → N − 1 transitions are dominant and active in left
circular polarisation σ+,

• in h∗ Hamiltonian, M → N + 1 transitions are dominant, active in right
circular polarisation σ−.
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4.3 PbSnSe sample preparation
The recent advances and goals of any solid state material production process
aims to prepare the purest monocrystalline layers with controlled composition
and geometric structure. There are a few widely used techniques for that.

4.3.1 Molecular beam epitaxy

Molecular beam epitaxy uses evaporated focused molecular beams of the source
materials directed to the substrate where they are deposited. It enables the
growth of high-purity thin films, especially for III-V compound heterostructures.
It achieves a perfect control of stoichiometry and doping profile, as well as struc-
ture changes on the scale of atomic layers [87]. The source materials are heated
to sublimation point in Knudsen effusion cells (K-cells). They contain ultra-high
purity elements in solid form such as elemental 99.999% bismuth, selenium etc.
The ultra high vacuum ensures the transport of high purity materials to the sur-
face. The growth process it precisely monitored. The latter is provided in-situ
during growth by reflection high-energy electron diffraction (RHEED) using low
angle of incidence. Film properties are deduced from the registered diffraction
pattern. A simplified scheme of the growth reactor is shown in fig. 4.4. For more
uniform growth, substrate can be continuously rotated. The source materials and
substrate must have the same crystal structure and similar symmetry, as well as
similar lattice parameters differing no more than 10% [88]. All these factors make
the molecular beam epitaxy the most technically challenging and demanding [89].

Figure 4.4: A simplified molecular beam epitaxy reactor system [89].

4.3.2 How wall epitaxy

In hot wall epitaxy, layers are grown as close as possible to thermodynamical
equilibrium. This makes it very applicable for materials with Van der Waals
binding character, for instance, organic epilayers [90]. The difference in epitaxial
growth for inorganic and organic materials manifests in different bonding. The
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inorganic materials are first physisorbed and then chemisorbed on the growing
surface. Organic materials are only physisorbed as no chemical bonds are formed
between the molecules [90]. This method was used for preparation of high quality
IV-VI films with carrier concentrations much lower than in the bulk since the
1980s [91]. The hot wall epitaxy belongs to the thermal evaporation class of
material growth techniques. It is a vacuum layer deposition technique where
the source material is first evaporated, then transported and deposited onto the
substrate [91]. The hot wall is the region of the growth reactor between source
and substrate. It guarantees a nearly uniform and isotropic flux of the molecules
onto the substrate surface, as well as high vapor pressures. The advantage of
such closed system is the minimization of source material losses, which might be
crucial for materials not available commercially [90].

Figure 4.5: A simplified hot wall epitaxy reactor scheme [91].

4.3.3 Chemical vapor deposition

In this technique, the source materials are deposited owing to a chemical reac-
tion between the precursors in a gas phase and a solid substrate that is typ-
ically heated. The solid films are formed by a heterogeneous reaction occur-
ring at the substrate surface. It is synonymously said that the deposition is
surface-mediated [92]. The reacting compounds can be either the original reagent
chemicals fed to the system or short-lived intermediate species created in the
high temperature gas phase [92]. The vapor, once transported to the substrate
via fluid flow or diffusion, must remain there long enough so that it can react.
The deposited atoms or molecules are migrating across the surface and can be
trapped (and thus fixed in place) by impurities, atomic vacancies, lattice edges
etc. Volatile byproducts must desorb from the surface to make space and are
removed by a gas flow. Most CVD setups are oriented horizontally to control the
gas flow. The system requires an inlfux of energy as the most important aspects
are thermally driven. This is achieved by heating the substrate or plasma energy
transfer to the reactants [92]. CVD is widely used to deposit materials in various
forms from metals, semiconductor crystals, to coatings and polymers [93]. It is
widely used in semiconductor industry to produce thin films.
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Figure 4.6: A simplified scheme of a chemical vapor deposition system [92].

4.3.4 Pb1−xSnxSe sample production

The samples were produced by prof. Akihiro Ishida from Shizuoka university in
Japan. They were grown using the hot wall epitaxy on a (111)-oriented BaF2
substrate, weakly doped by bismuth to ensure n-type conductivity. The tem-
perature of the substrate was 350◦C, and the temperature of the PbSnSe source
550◦C. Six samples were prepared, which we labelled A, B, C, D, E and F. The
thickness of the epilayers ranged from 1 to 2.55 µm (table 4.1) while their lateral
size measured about 1 cm (fig. 4.7). The X-ray diffraction analysis confirmed the
(111) orientation of all PbSnSe layers (fig. 4.8). The nominal concentration of
tin was chosen x = 0.20, 0.25 and 0.33. With this tin content, the samples are
expected to have an inverted band structure at liquid helium temperatures. At
chosen tin concentrations, the samples are still away from the crossover from the
rocksalt to orthorhombic phase happening at x ≈ 0.4 [94]. The carrier concen-
tration was checked by Hall resistivity measurements at room temperature, and
deduced from RH = 1/en relation.

Table 4.1: Pb1−xSnxSe sample nominal and measured parameters.

Sample x d (µm) ρ (Ωcm) µ (cm2/V.s) n (1018cm−3)
A 0.20 0.8 no data 720 10
B 0.20 0.7 no data 580 9
C 0.25 2.5 0.0037 1200 1.4
D 0.25 2.55 0.0013 970 5
E 0.33 2.5 0.0021 1200 2.5
F 0.33 1 no data 350 11

The stoichiometric composition of samples D and F was checked by Energy
Dispersive X-ray Analysis (EDX). This technique allows to determine the elemen-
tal composition of a specimen owing to the fingerprint response of the constituent
atoms during the X-ray induced transitions in the inner atomic shells [96–98].
Two random spots were chosen on each sample and their elemental composition
analyzed with Tescan Mira FEG SEM. A sample image of one spot is shown
in fig. 4.9. EDX provided a detailed information about the concentration of each
constituent of the samples. In order to calculate the Sn content x, its overall rela-

60



Figure 4.7: Photography of a few manufactured PbSnSe samples in a containment
box.

tive stoichiometric part had to be normalized to the combined amount of Pb+Sn.
Both samples show a slight deviation form the nominal composition in the order
of a few percent (table 4.2).

Table 4.2: Raw relative elemental composition of samples D and F obtained using
XRD analysis

Sample Pb (%) Sn (%) Se (%) xSn(%) overall xSn(%) xnominal(%)
D 41.0 11.2 47.9 21.4±2 21.9 25

40.8 11.8 47.4 22.4±2
F 34.1 17.5 48.4 33.9±2 33.7 33

34.3 17.3 48.4 33.5±2
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Figure 4.8: X-ray 2-Θ diffraction analysis of our PbSnSe samples. It confirms
both the substrate and PbSnSe layers to be grown in (111) orientation. Almost all
patterns exhibit several peaks instead of one, which might be due to presence of
interference from the interface layers. Also, a different phase might have formed
at the interface between BaF2(111) substrate and PbSnSe film. Samples A, B
and F (a) were analyzed by Akihiro Ishida from Shizuoka university in Japan,
samples C, D and E (b) by Petr Cejpek from he Department of Condensed Matter
Physics, Charles University.
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Figure 4.9: SEM picture acquired when performing EDX analysis of one spot of
sample D. Secondary electrons originating from surface regions (a), backscattered
electrons from deeper regions of the sample (b) [95].

4.3.5 Optical constants characterisation

To characterize the optical properties of the investigated samples, their response
was probed using the spectroscopic ellipsometry at room temperature in the pho-
ton range between 0.7 to 6.4 eV. Spectral dependency of the complete Mueller
matrix of samples C, D, F was evaluated at several angles of incidence ranging
from 55 deg to 75 deg with 5 degree step. This allowed to obtain a confident eval-
uation of the complex dielectric function ϵ = ϵ1 + iϵ2 that was parametrized by a
sum of several K-K consistent Lorentz oscillators. To obtain the best fit, 5 oscilla-
tors were considered, resulting in excellent correspondence between the measured
and modeled ellipsometric quantities (fig. 4.10). Each oscillator is defined by its
amplitude A, broadening γ and central energy E0:

ϵLor(h̄ω) = A

E2
0 − (h̄ω)2 − ih̄ωγ

, (4.75)

and the explicit parameters for each oscillator are laid out in table 4.3. The
additional term centered at 0 eV with zero broadening was used to account for
the IR transitions unobservable directly. Because of the spectral limitations of the
spectrometer, the absorption edge (the so-called E0 transition) cannot registered
directly.

The choice of oscillators that produced the best fit is not arbitrary but related
to the well-known critical energies of the PbSe material family. They arise because
of Van Hove singularities of the critical points (CPs) in the joint density of states.
There are several spectral structures, historically mostly detected in reflectivity or
second derivative of ϵ2 measurements [34, 99–101]. Employing the band structure
models, these were assigned to specific atomic transitions [18, 24, 30, 33, 35–
37, 99, 102] (fig. 4.11):

• the very first E0 ≈ 0.2−0.3 eV transition corresponds to the direct gap of
the material between L+

6 in the valence and L−
6 in the conduction band [33].
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This transition L(5 → 6) is related to M0 symmetry of the CP [30, 102].
This peak is known to shift down in energy with decreasing temperature
because of the closing gap [34]. Unfortunately, this particular energy was
unattainable with our spectrometer, and is therefore not estimated;

• the shoulder at E1 ≈ 1.6 eV arises because of several transitions smeared
together: M1 symmetry L(5 → 7), M0 symmetry ∑︁(5 → 6) and L(4 →
6) [30, 33, 102], formed by transitions between s-Pb valence states and p-Pb
and a few of p-anion conduction states [18]. Notably, it has been interpreted
as a transition between L+

6 upper and L−
6 upper [101]. Our model comprises 2

oscillators in this region, #1 and #2;

• the main peak E2 ≈ 2.7−3 eV is related toM1 symmetry transition∑︁(5 →
7) and M2 symmetry transition ∆(5 → 6) [30, 33, 101, 102], corresponding
to interband transitions between p-anion (some form s-Pb) valence states
and p-Pb and p-anion conduction states [18]. It is represented by oscillator
#3;

• E3 ≈ 3.8 − 4.2 eV peak is related to M2 symmetry transition ∆(4 → 6)
and M1 symmetry transition ∑︁(4 → 7) [30, 33, 101, 102] between p-anion
valence states and p-anion conduction states [18]. It is modeled by oscillator
#4;

• the oscillator #5 just above 7 eV is most likely related to higher energy
transitions around Γ, X [102].

Although the analysis of how the critical energies depend on the substitute ma-
terial concentration x is mostly performed only for E0, or the gap, our results
allow to see the evolution of other critical energies E1 −E5, shown in fig. 4.12. A
positive as well as negative peaking is present at x = 0.25 in all critical energies.
Nonetheless, to understand their origin, explicit theoretical modeling of the band
structure should be performed.
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Figure 4.10: Raw experimental ellipsometric angles and the best-matching model
for sample C.

Table 4.3: Parameters of Lorentz oscillators producing the best-matching dielec-
tric function ϵ.

Sample x Parameters MSE
C 0.25 Apole = 0.8055, γpole = 0, Epole = 0; 1.726

A1 = 14.0928, γ1 = 1.7312, E1 = 1.681;
A2 = 7.1031, γ2 = 0.8874, E2 = 2.251;
A3 = 12.1319, γ3 = 0.9718, E3 = 2.665;
A4 = 1.8372, γ4 = 3.6849, E4 = 4.323;
A5 = 1.4789, γ5 = 2.3355, E5 = 7.364;

D 0.22 Apole = 0.7067, γpole = 0, Epole = 0; 1.927
(nominal A1 = 14.1130, γ1 = 1.7367, E1 = 1.693;
0.25) A2 = 7.4672, γ2 = 0.8915, E2 = 2.273;

A3 = 11.6116, γ3 = 0.9487, E3 = 2.671;
A4 = 1.6557, γ4 = 3.4775, E4 = 4.379;
A5 = 1.4150, γ5 = 2.2201, E5 = 7.308;

E 0.33 Apole = 0.7800, γpole = 0, Epole = 0; 1.951
A1 = 13.7238, γ1 = 1.6918, E1 = 1.699;
A2 = 7.7200, γ2 = 0.8618, E2 = 2.281;
A3 = 13.4748, γ3 = 0.9416, E3 = 2.680;
A4 = 1.9357, γ4 = 3.5233, E4 = 4.328;
A5 = 1.4884, γ5 = 2.4854, E5 = 7.357;
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Figure 4.11: (a) Real and imaginary part of the dielectric function ϵ1 and ϵ2 of
sample C, D and E providing the best match of ellipsometric data and model.
(b) Critical points observable in ϵ2 and the associated transitions in the energy
band gap (from [102]).
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Figure 4.12: Oscillator energy (corresponding to the critical energies) dependency
on tin concentration. E2, E3 and E4 all exhibit the same trend and only E2 is
shown in (a) for brevity.
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4.4 Landau level spectroscopy of PbSnSe samples
4.4.1 Measuring magneto-optical response of PbSnSe samples

The optical response of PbSnSe samples was probed in the middle infrared spec-
tral region using magneto-transmission technique. These measurements were
performed in the National High Magnetic Field Laboratory in CNRS Greno-
ble, France. The unpolarised radiation from a globar source was directed to the
sample using a waveguide (fig. 4.13). The sample was placed in a dewar with
liquid helium, where it was kept in the helium exchange gas below the λ point at
2 K. For fields below 13 T, a superconductive coil was used, while for fields above
13 T - a resistive coil. We used the Faraday configuration, in which the surface
of the sample was perpendicular to the wave vector of incident light. Several
mm2 of the sample surface were illuminated. The FTIR spectrometer contained
the globar source. The composite bolometer detector was placed just below the
sample in the same dewar. The sample holder housed both the sample and the
reference BaF2 which could be rotated and each placed in the light path. They
were both measured at each magnetic field, allowing us to remove the response
of the substrate material from the signal as well as to correct for the bolometer
response.

Figure 4.13: A general setup for the middle infrared magnetotransmission mea-
surements.

The detected raw signal was normalized to the reference signal. It was ac-
quired at B = 0 at 1) the beginning and 2) the end of measurements. The
intermediate values were linearly interpolated in-between. This was required to
account for the changing conditions (such as the changing helium level) over the
entire measurement time which took up to 5 hours with the resistive coil mea-
surements above 13 T. The resulting signal TB/T0 corresponds to a magnetic
field-induced transmission and is thus called the magneto-transmission.

The resulting signal exhibits modulation starting from fields as low as 2 T
(depending on the sample), indicating excellent quality of the samples. The raw
data of all samples is presented in figs. 4.14 and 4.15. The stacked plots on the
left side facilitate noticing the smallest changes in the signal. The 2D false color
maps on the right side help to easily notice the overall grouping of peaks and
valleys. These are related to magnetic field induced excitations. they follow a
sub-linear dependence on B and can be straightforwardly interpreted as bulk
transitions of interband Landau levels. Sample C exhibited the most pronounced
modulation with the onset at merely 2 T. Up to 10 individual transitions can be
distinguished in the magneto-optical response of this particular sample. In most
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other samples, any modulation did not become noticeable before reaching higher
fields such as 5 T (sample D) or even 10 T (samples A or B).
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Figure 4.14: Magneto-transmission spectra of samples A-C acquired up to 33 T.
Stacked spectra showing data every 1 T step (a, c, e). False color maps of
magneto-absorbance AB = − lnTB/T0 (b, d, f). The white lines separate the
areas of the data collected using a superconducting and resistive coil. The down-
wards bending of the low-field curves of sample B is a measurement artifact.
Importantly, it does not affect the locations of the Landau level excitations ener-
gies, and thus does not influence further analysis. Sample C exhibited the most
pronounced modulation starting at 2 T.
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Figure 4.15: Magneto-transmission spectra of samples D-F acquired up to 33 T.
Stacked spectra showing data every 1 T step (a, c, e). False color maps of
magneto-absorbance AB = − lnTB/T0 (b, d, f). The white lines separate the
areas of the data collected using a superconducting and resistive coil.
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4.4.2 Magnetotransmission analysis

For further analysis, one needs to read out the precise excitation energies. The
raw magnetotransmission spectra feature pronounced Fabry-Pérot interference
patterns appearing in the transmission spectra of epilayers and related to their
thicknesses (fig. 4.16). To get rid of those and to bring out the smallest changes
in the spectra, one could calculate the differential spectra equivalent to a back-
ward derivative TB/TB−δB. However, in reality, neither maxima nor minima in
these signals correspond to real excitation energies. Each transition probability
depends on the joint density of states which depends on the resonance energy E0:
jDOS ∝ 1/

√
E − E0 (fig. 4.17, a). The jDOS is additionally washed out by broad-

ening (fig. 4.17, b). The absorption AB depends on the optical conductivity σB,
which in turn depends on jDOS. The transmission, in the simplest form, can be
related solely to absorption: TB ≈ 1 − AB; it is accordingly dependent on the
joint density of states: TB ∝ 1 − jDOS. Thus, the transmission minima do not
correspond to the exact excitation energies, neither the maxima of the differential
signal (fig. 4.17, c). The real excitation energies lie in between. We better asso-
ciated them with the inflection points in regions with negative slope. To locate
them, we looked for peaks in the following modified spectra:

Tinflection = −d (TB/TB−δB)
dE , (4.76)

where we first applied a gentle Savitzky-Golay filter on raw signals to minimize
noise and later occurrence of false peaks. An example experimental inflection
point array is shown in fig. 4.18. We then manually picked the energy- and
magnetic field-dependent peak positions and discarded those not following any
pattern (remaining noise and artifacts). The remaining peaks were associated
with the excitation energies of interband Landau transitions. All points follow-
ing the (presumably) same field-dependent curve were grouped. This way, we
acquired a set of independent vectors holding the resonant energies of separate
transitions. The exact Landau levels from which these transitions originate are so
far unknown. With an appropriate model, these could be assigned to particular
indices and material properties can be recovered.

Therefore, a typical magneto-transmission data processing workflow is as fol-
lows:

• recalculate raw experiment data to inflection point map;

• associate peaks in this map with real transition energies;

• group points belonging to the same yet unknown transition bands;

• use an appropriate physical model to determine the exact Landau level
indices and sample parameters.

When the electron motion along the applied magnetic field is neglected (kz =
0), the topological Hamiltonian provides the following LL spectra:

EN,α,β = α
M

l2b
+ β

⌜⃓⃓⎷(︄∆ + 2M
l2b
N

)︄2

+ 2v
2
F h̄

2

l2b
N, (4.77)
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Figure 4.16: Fabry-Pérot interference observed in raw magnetotransmission spec-
tra TB/T0, especially below 100 meV, 150 meV and 200 meV. This map is plotted
in grayscale for easier visual inspection.

and for the ground states, owing to their full spin-polarisation:

Econduction↑ = ∆ + M

l2b
, (4.78)

Evalence↓ = −∆ − M

l2b
, (4.79)

where the level index N = 1, 2, 3, .., α = ±1 corresponds to the spin up and down,
and β = 1 corresponds to the conduction while β = −1 to the valence bands.
Because of the spin-polarisation and selection rules, the dominant transitions are
N → N − 1 for h and N → N + 1 for h∗ Hamiltonians (table 4.4). To get the
transition energies, we take the energy difference between the electron and hole
bands. This removes the first ’ballast’ term αM/l2b . The remaining part under
the square root is the same for both Hamiltonians, as well as electrons and holes,
only the level indices N differ. If we denote this square root term by r(N), then
transition energies for h Hamiltonian are

∆EN = EN,+1,+1 − EN,+1,−1 = r(N) + r(N + 1), (4.80)

Figure 4.17: Idealized model of the joint density of states (a) and broadening (b)
influence on the transmission signal (c). Because of these real-world effects, one
cannot straightforwardly associate neither the minima nor maxima with the real
excitation energies (dashed lines).
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Figure 4.18: Inflection point spectra of sample C used to read out the exact
Landau level excitation energies. Spectra stacked every 1 T (a) and 2D map (b).
The white lines separate the areas of the data collected using a superconducting
and resistive coil.

while for h∗ Hamiltonian

∆E∗
N ′ = EN ′,−1,+1 − EN ′,−1,−1 = r(N ′) + r(N ′ − 1). (4.81)

But since N ′ = N + 1, this transforms to

∆E∗
N ′ = r(N + 1) + r(N) = ∆EN . (4.82)

The transitions for both Hamiltonians are thus symmetrical, and their energies
are the same for 0 ↔ 1, 1 ↔ 2, 2 ↔ 3, ... transitions:

h̄ωN =

⌜⃓⃓⎷(︄∆ + 2M
l2b
N

)︄2

+ 2v
2
F h̄

2

l2b
N +

⌜⃓⃓⎷(︄∆ + 2M
l2b

(N + 1)
)︄2

+ 2v
2
F h̄

2

l2b
(N + 1),

(4.83)
where N = 0, 1, 2, ... . This greatly simplifies Landau level analysis as a single
formula can be applied to all grouped transition bands. There is no need to
additionally distinguishing their origin.

Table 4.4: Dominant transitions allowed by the topological Hamiltonians.

h h∗

h → e h → e
1 → 0 0 → 1
2 → 1 1 → 2
3 → 2 2 → 3
... → ... ... → ...

Now, the grouped transition bands can be fit to formula 4.83, interacting
Landau levels and material parameters ∆ (or Eg = 2∆), vF and M determined.
We want to emphasize that no secondary, weaker transitions or line splittings
could be identified in either sample spectra. Other research groups reported
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observing those and assigned them to electrons originating from the longitudinal
and oblique valleys of the lead tin salts [40, 41, 103]. Both exhibit the same ∆
(since the material is the same) but different vF . Their values are recovered by
fitting the two data sets independently to equation 4.83. On the other hand,
no Fermi velocity anisotropy could be observed in our samples. This conclusion
agrees with a relatively low anisotropy of the electronic bands at the L point in
PbSe (that can be expressed in terms of the anisotropic effective masses [104,
105]), which further decreases upon incorporation of Sn [40]. This is in contrast
to some other lead-salt compounds, such as PbSnTe, in which the anisotropy is
profound [106, 107], thus giving rise to well-resolved splitting of interband inter-
LL resonances due to oblique and longitudinal valleys.

Dealing with each curve separately underconstrains the fit. Even though
the exact level indices are unknown, one can with certainty assume that the
neighboring transition bands originate from Landau levels differing by one. This
is especially easy for higher transition bands which are densely packed close to
each other. Therefore, handling a group of neighboring transition bands stabilizes
the fit. Various N combinations are put to formula 4.83 and parameters ∆, vF ,
M are varied. The N combination achieving the best fit to the transition curves
(the lowest RMSE, or Root Mean Squared Error) is chosen.

Figure 4.19: Assumed interband Landau transition level combinations of grouped
sample F excitation points.

Including the ground transition might be ambiguous as both the surface states
and cyclotron resonances typically emerge at similar low energies. They might
have been ascribed to interband transition bands in previous steps. In such cases,
it proved appropriate to first fit all higher transitions and acquire a set of material
parameters; then include the potential ground transition and check if it does not
drastically change neither these parameters nor the quality of fit. A sketch of
grouped inflection points of sample F is shown in fig 4.19).

Very good agreement was reached between this simple theory and experimen-
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Figure 4.20: Grouped fan diagrams containing experimentally detected interband
Landau level excitations (symbols) and best-fit dispersion curves (solid lines) with
origin level indices of all samples A to F. For samples A, C and F, both the lowest
and highest interband transitions were observed experimentally. For others, the
ground transition could only be deduced from the best-fit parameters ∆, vF and
M using eq. 4.83. The fit of sample A ground transition is imperfect due to a very
low number of points, which did not provide enough weight for this particular
transition. The color coding was chosen only to facilitate the identification of the
corresponding transitions and is consistent across all subfigures.
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Figure 4.21: Fan diagram of inter-LL transition bands for sample C (a). Some
data points were obtained using the superconductive (squares), others - resistive
(circles) coils. Solid lines correspond to the best-matching theoretical lines with
these parameters: 2∆ = 55 meV, vF = 4.4 × 105 m/s and M = −20eVÅ. This
subfigure was copied from fig. 4.20 (c). Interacting Landau levels were determined
and their spectra plotted in (b) for kz = 0. Cyan and violet bands correspond to
α = +1 and α = −1 LL series. Blue line marks the field-dependent Fermi energy
assuming that the number of electrons is independent of field. The vertical arrows
indicate the interband inter-LL excitations active in dipole-dipole approximation.
The dashed line marks the transition forbidden due to band filling in turn enforced
by EF dependency on field. The color coding was chosen only to facilitate the
identification of the corresponding transitions.

tal data, as illustrated in fig. 4.20 for all samples. For samples A, C and F, both
the lowest and highest interband transitions were observed experimentally. For
others, the ground transition could only be deduced from the best-fit parameters
∆, vF and M using eq. 4.83. The fit of sample A ground transition is imperfect
due to a very low number of points, which did not provide enough weight for this
particular transition. Figure 4.21 additionally shows a detailed Landau energy
band diagram for sample C. It explains the origin of each transition and how they
are affected by another fundamental material parameter, the Fermi energy. The
same analysis was carried out for all samples but is omitted here.

An excellent match with the experimental data corroborated the validity of
our model. Both the positions and field dependency was reproduced well using
only three parameters ∆, vF and M that are summarized in table 4.5 and fig-
ure 4.22. The gap, or 2∆, increases roughly linearly or weakly parabolically with
tin content. The same behavior is observed for the absolute value of the pa-
rameter |M |. This parameter was fit freely without constraints, and its negative
value indicates the topological regime of the material at measured temperatures.
The difference in the extracted band gap for samples with presumably the same
tin concentration points towards a variation of x as compared to the declared
nominal values. This is in line with the EDX results mentioned before. The de-
duced Fermi velocity parameters show a weak tendency to decrease with x. Such
behavior is perfectly in line with previous studies [103, 105, 108, 109].
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Table 4.5: Fitted parameters of the bulk

Sample Sn content 2∆ (meV) vF (m/s) M (eVÅ2)
A 0.20 34 ± 6 (4.5 ± 0.1) × 105 -12 ± 5
B 0.20 42 ± 8 (4.3 ± 0.1) × 105 -15 ± 1
C 0.25 55 ± 2 (4.4 ± 0.1) × 105 -20 ± 2
D 0.25 60 ± 10 (4.4 ± 0.1) × 105 -19 ± 5
E 0.33 42 ± 7 (4.5 ± 0.1) × 105 -19 ± 4
F 0.33 104 ± 5 (4.2 ± 0.1) × 105 -24 ± 1

The characteristic shape of the dispersion bands can be described by a di-
mensionless parameter η. It compares the influence of the relativistic part in the
Hamiltonian:

η = 4|M |∆
h̄v2

F

. (4.84)

For η = 1, the bands would be strictly parabolic, that is E±(k⃗) = ±(∆ + |M |k2).
In such case, the entire LL spectrum as well as the magneto-optical response
would scale linearly with B. As an example, this occurs at the Γ point of the
well known Bi2Se3 topological insulator. For all our investigated samples, we
obtained η < 1. This implies subparabolic profiles of bands, and consistently
with our experiments, magneto-optical excitations following a sublinear depen-
dence in B. An extrapolation of bandstructure parameters as a function of the
tin content (fig. 4.22) suggests that the condition η = 1 might be achieved at
concentrations between x = (0.35, 0.45) (fig. 4.23).
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Figure 4.22: Band-structure parameters extracted from the magneto-optical data
as a function of the nominal tin concentration: (a) energy band gap Eg = 2∆,
(b) velocity parameter vF , and (c) inversion parameter M . The symbols con-
nected by dashed lines indicate the band gap and velocity parameter values ex-
tracted from [40, 109].

Figure 4.23: Measured values of η parameter describing the shape of the disper-
sion bands and its extrapolation to η = 1 condition.

79



4.5 Carrier density calculations
The analysis and subsequent simulations of the observed LL spectra involves the
precise knowledge of the carrier concentration in the samples, and how it behaves
under magnetic field.

4.5.1 Carrier concentration at B=0

Let’s start with the simpler case of absent magnetic field. All electrons fill up the
k-space from the bottom to the highest allowed level, which, at zero temperature,
is the Fermi level. The total number of electrons in 3D space, with spin included,
is then

n = 2
(2π)3

� kF

0
d3k. (4.85)

Since in the absence of magnetic field, all directions are equivalent, we can assume
the Fermi surface to be spherical. The volume of that sphere is

Figure 4.24: Fermi sphere in the k-space marking the highest level up to which
the electrons are filled.

Vk = 4
3πk

3, (4.86)

and the volume element is
dVk = 4πk2dk. (4.87)

We can then express the carrier density in terms of the Fermi radius kF :

n = 1
4π3

� kF

0
4πk2dk = 1

π2

� kF

0
k2dk = 1

π2
k3

F

3 N, (4.88)

where N is added phenomenologically to reflect the number of equivalent valleys.
This is the most general formula where various dispersion models only come
in via the Fermi radius kF .

4.5.1.1 Parabolic dispersion
For parabolic dispersion, the Fermi level energy is described by the well-known
textbook formula

EF = h̄2k2

2m , (4.89)

and inverting it yields

k =
√︄

2EFm

h̄2 . (4.90)
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Substituting it into equation 4.88, we get

n = N

3π2h̄3 (2mEF ) 3
2 . (4.91)

Now, if the concentration of carriers is known, we can invert the above equation
to extract the Fermi energy dependency:

EF = 1
2m

(︄
3π2h̄3n

N

)︄ 2
3

. (4.92)

4.5.1.2 Relativistic dispersion
In such systems, there is an additional relativistic dispersion term:

E =
√︄(︃

Eg

2

)︃2
+ h̄2k2v2

F . (4.93)

For small k, this additional term is negligible and the dispersion is similar to
parabolic. The main difference arises at high values of k, where this term domi-

Figure 4.25: Differences between classical (parabolic) and relativistic solid state
matter energy dispersion models.

nates and turns the dispersion linear:

E(k ≫ 0) = h̄kvF . (4.94)

Returning to the full model, we can extract k by squaring the full equation:

kF =

√︂
E2

F − ∆2

h̄vF

. (4.95)

Inserting it back to eq. 4.88, the carrier concentration is then

n = N

3π2
(E2

F − ∆2)
3
2

h̄3v3
F

. (4.96)

If this quantity is known, then we can deduce the dependency of the Fermi energy:

EF =

⌜⃓⃓⃓
⎷(︄3π2h̄3v3

Fn

N

)︄ 2
3

+ ∆2. (4.97)
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4.5.1.3 Relativistic dispersion with weak M parameter
Including the M term, the full dispersion in the topological regime is

E =
√︂

(∆ +Mk2
F )2 + h̄2v2

Fk
2
F . (4.98)

This is a quadratic equation in terms of k2:(︂
M2

)︂
⏞ ⏟⏟ ⏞

a

k4 +
(︂
2∆M + h̄2v2

F

)︂
⏞ ⏟⏟ ⏞

b

k2 +
(︂
∆2 − E2

F

)︂
⏞ ⏟⏟ ⏞

c

= 0, (4.99)

having a textbook solution

k2
F = −b+

√
b2 − 4ac

2a . (4.100)

which can be further numerically processed by taking its root to get kF . It
can then be put back to the main dispersion formula 4.88 to get the carrier
concentration. This process can be repeated with several initial guess values of
EF using the simple arithmetic formulas above until a target n is reached. This
way, one can numerically estimate EF .

Table 4.6: Initial carrier concentrations and EF values at B = 0.

Sample n0 (1018 cm−3) EF (meV)
A 9 120
B 10 119
C 14 66
D 5 146
E 2.5 79
F 11 120

Because of convention, M is negative in the topological regime. This puts a
limitation on the analytical formula. It can be solved as long as M is small so
that b term remains positive. This also explains the limitation to the + solution
only in the quadratic solution formula 4.100. It is because −b alone is negative
while k2

F must be positive.

4.5.2 Carrier concentration at B ̸= 0

At non-zero magnetic field, the most general rule to count the total number of
carriers would be to sum over all possible states, taking the orbital filling factors
into account:

n =
�
g(E)f(E)dE, (4.101)

where f(E) is the Fermi distribution function and g(E) is the density of states.
At absolute zero, the Fermi function becomes a step function (fig. 4.26), changing
the integration limits and simplifying the expression:

n ≈
� µ

0
g(E)dE. (4.102)
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Figure 4.26: Fermi distribution at ideal zero and finite temperatures.

The temperature during the experiments was kept barely above zero, so it is a
reasonable approximation to adopt such a step-like Fermi distribution for sub-
sequent analysis. In the context of Landau levels, it can be simplified further.
In our model, only kz = 0 states are active. At some given magnetic field B,
there is a set of possible kz = 0 values, each dispersing according to whatever
the dispersion model is valid. Electrons fill all those possible states up to the
limiting Fermi level (fig. 4.27). Therefore, each Landau level is taking up some
∆kz interval in the kz space. We can then relate the carrier concentration to this
filling factor:

n ∼
∑︂

∆kz
eB

h⏞⏟⏟⏞
degeneracy

, (4.103)

the full expression being

n = N
∑︂
↑,↓

∆kz
eB

h̄

1
(2π)2 = N

eB

h̄

1
(2π)2

∑︂
↑,↓

∆kz. (4.104)

This is a universal formula and ↑, ↓ represents summing over spin up and down.
And just like eq. 4.88, it is able to include any dispersion via ∆kz term(s). It will
be used to determine the Fermi energy at varying magnetic fields for the same
sample. Since the sample remains the same and the carriers cannot escape from
it, we assume that their concentration does not change. What can be reasonably
expected?

• Landau levels disperse with magnetic field while their degeneracy remains
constant. Thus, the EF will change to adapt to varying availability of
energy levels;

• At the highest magnetic fields, all carriers tend to be pressed to the lowest
Landau level. In order to accomodate them, EF converges to this lowest
level;

• Solutions with and without B should converge to each other at the lowest
fields.
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Figure 4.27: Set of dispersing Landau levels up to the limiting Fermi energy.

4.5.2.1 Parabolic dispersion
At kz = 0, each level has certain (for the moment arbitrary) energy EN . The
dispersion is then

Ez = EN + h̄2k2
z

2m∗ , (4.105)

and inversion is straightforward:

kz = ±
√︄

2m∗

h̄
(Ez − EN). (4.106)

Because of a common prefactor and symmetry, ∆kz = 2kz, and the full expression
becomes ∑︂

↑,↓
∆kz =

√︄
8m∗

h̄

∑︂
↑,↓

√︂
EF − EN . (4.107)

This expression suggests an efficient algorithm for calculating ∑︁∆kz numerically.
For instance, one can first calculate energy differences (EF − EN) for multiple
levels and only continue with the positive terms.

It is a good sanity check to use the fitted parameters of the samples with
this simplest model. We do not expect it to be valid inside the investigated
material, but it has to provide reasonable results converging with those at B = 0.
The introduced magnetic field would manifest by an additional splitting via the
Zeeman effect for the two spin orientations:

E↑,↓(B,N) = h̄eB

m∗

(︃
N + 1

2

)︃
±gµBB⏞ ⏟⏟ ⏞

Zeeman term

, (4.108)

where gapprox2 is the Landé g factor and µB = eh̄/2me ≈ 9.274 · 10−24JT−1 is
the Bohr magneton. We took sample C as a reference (m∗ ≈ 0.05me), resulting in
EF |B=0 = 36 meV. In the dispersion model, we also included the polarisation of
the ground levels. The result is a perfect match between all calculated EF values,
as well as the characteristic monotonously increasing EF at high B (fig. 4.28),
just as expected.
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Figure 4.28: Parabolic Landau level dispersion model using sample C parameters.
Left graph - zoomed in version, right graph - up to 100 T. There is an excellent
agreement between the analytical and best fit EF at the lowest fields. At high
fields, EF approaches the ground level as there is no other available level for the
carriers. It becomes highly degenerate.

4.5.2.2 Relativistic dispersion
In this case, we follow the convention of the half band-gap, and will mark it ∆N

to reflect that at the moment, it can be an arbitrary bandgap of any Landau
level:

E =
√︂

∆2
N + h̄2v2

Fk
2
z , (4.109)

and inversion yields ∑︂
↑,↓

∆kz = 2
h̄vF

∑︂
↑,↓

√︂
E2

F − ∆2
N . (4.110)

This formula once again suggests an efficient method for numerical calculations -
first calculate an array of (E2

F − ∆2
N) and then continue only with positive ones.

4.5.2.3 Relativistic dispersion in topological regime
The full formula with M term is too complicated to be tackled analytically:

EN,α,β = α
M

l2b
+ β

⌜⃓⃓⎷(︄∆ +Mk2
z + 2M

l2b
N

)︄2

+ 2v
2
F h̄

2

l2b
N + h̄2v2

Fk
2
z , (4.111)

with fully polarised ground levels

EN=0 = ±

⌜⃓⃓⎷(︄∆ + M

l2b
+Mk2

z

)︄
+ h̄2v2

Fk
2
z . (4.112)

To get around with a numerical solution, one can define a grid fine enough for kz

and another grid of N going reasonably high. N must be no less than the highest
Landau level available at a given magnetic field in order to account for all possible
carriers. A trial EF value is used and fed to the full formula. For each N , a kz

grid is used to calculate the energy. It is discarded beyond EF . Summing up the
obtained ∆kz segments from all available N , carrier concentration is calculated
for this initial EF . If it is too low or too high than the target, it is adjusted and
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the process repeats. One could say that we numerically fit the EF to the value
producing the best match to the target sample initial concentration n0. To make
the algorithm as simple as possible, we actually minimized the squared difference
between the trial n and target n0.

Let us now pay attention to the influence of M . In its absence, there is a
symmetry between h and h∗ Hamiltonians, and their energy levels are identical.
The ground levels are equivalent to the nominal ∆ of the material and are constant
over B. In fig. 4.29, we are showing all these possible scenarios taking sample
C parameters as a reference. Nonzero M values give rise to difference between
the two Hamiltonians. It fundamentally changes the dispersion of the ground
levels. For positive values of M , the ground levels of both Hamiltonians diverge
from each other. This does not essentially change the expected behavior of EF

- it would simply asimptotically converge towards this particular ground level.
For negative M , however, both bulk levels converge linearly. There exists a point
where the lowest levels of h and h∗ Hamiltonians cross at 0 meV (∼95 T predicted
for sample C, albeit currently inaccessible experimentally; see fig. 4.30), and then
the only physically available Landau level for carriers is the ground level from the
other h∗ Hamiltonian.

This crossing brings about many unusual effects. For instance, it is respon-
sible for the Quantum Spin Hall Effect in HgTe quantum wells [11], or negative
longitudinal magnetoresistance in Pb1−xSnxSe [110]. In other cases, an avoided
crossing is observed where the spectal lines split instead of becoming degener-
ate due to the breaking of bulk inversion symmetry, but also likely mediated by
electron-electron interactions [111], or due to spin-orbital mixing [112]. Overall,
this (anti)crossing of the bulk zeroth-mode Landau levels is a charac-
teristic feature for all topological (crystalline) insulators. The field at
which the crossing occurs, also called the critical field BC , can be estimated
from the crossing condition for the kz = 0 ground states, Econd↑ = Eval↓:

BC = − h̄∆
eM

. (4.113)

The calculated critical fields for all our samples are summarized in table 4.7. It
is apparent that they are all much above the magnetic fields achievable in our
experiments. In this manner, the fascinating effects associated with the bulk
band crossing could not be registered.

Table 4.7: Predicted BC values for the bulk ground state Landau levels crossing.

Sample BC (T)
A 82.3
B 50.5
C 95.3
D 103.9
E 56.4
F 142.6

Comparing the most general analytical relativistic dispersion 4.109 and a full
explicit topological dispersion 4.111, one might be tempted to check how well
would 4.109 hold with our assumption that only kz = 0 states are active in all
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Figure 4.29: Influence of M parameter on the kz = 0 Landau level spectra zoomed
to experimentally achievable magnetic fields. With M = 0, both h and h∗ Hamil-
tonians are identical, and ground levels do not disperse. Any other M value gives
rise to the asymmetry. Although the higher levels change a little, it considerably
alters the slope of the ground levels.

Figure 4.30: Ground bulk Landau levels kz = 0 crossing for M < 0. This is
a characteristic feature for all topological insulators. In this example, we took
sample C parameters as a referece. The crossing is predicted to occur at a critical
magnetic field of ∼95 T.

these transitions. Also, it does not explicitly include M . On the other hand, we
can include it via the expression of ∆N , taking it from the topological Hamilto-
nian. The energy formulas read:

∆N(kz = 0) = α
M

l2b
+ β

⌜⃓⃓⎷(︄∆ + 2M
l2b
N

)︄2

+ 2v
2
F h̄

2

l2b
N, (4.114)

and for the ground states, owing to their full spin-polarisation:

Econduction↑ = ∆ + M

l2b
, (4.115)

Evalence↓ = −∆ − M

l2b
, (4.116)
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where α = ±1 corresponds to the spin up and down, and β = 1 corresponds to
the conduction and β = −1 to the valence bands. Just a reminder, owing to the
absence of the electron-hole symmetry and selection rules for both Hamiltonians,
in kz = 0 case, we can include the ground level polarisation by restricting the N
grids for both Hamiltonians (table 4.8). For kz = 0 case, there is no additional

Table 4.8: Allowed Landau level N grids for h and h∗ Hamiltonians for kz = 0.

Hamiltonian Allowed N grid
h [0, 1, 2, ...]
h∗ [1, 2, ...]

struggle to sum and fit over all kz grid. This part of the calculations is thus
removed. Accordingly, one can first numerically calculate the energies for a given
field and a grid of N , then put these to the analytical expression 4.110, which
is much easier and faster to fit. As formula 4.109 is basically formula 4.111
with M = 0, and parameter M is in the order of -20 meVÅ in our samples, the
resulting EF should not be too different. The results indeed show a small overall
difference between the two calculations. The simplified relativistic model exhibits
a correct anticrossing and converges towards the full correct model (fig. 4.31). The
deviation from the full model is in the order of a few percent on average, as can
be seen in fig. 4.32.

Figure 4.31: Best fit EF values and their comparison to the full explicit topolog-
ical and simplified relativistic models. Left side - zoomed in to experimentally
accessible fields, right side - model up to 500 T. Although there is a slight devia-
tion between the two EF dispersion models at first, they converge at higher fields.
Both models correctly account for the anticrossing at a critical magnetic field.
At the highest fields, because of absence of any other available Landau levels, all
carriers accumulate on the ground level, which asimptotically raises EF .

The goal of calculating the magnetic field-dependent Fermi energy is to achieve
the best match of our model with the experiment. To achieve that, we had to
tune the electron densities. We have chosen to adjust it to the reference point,
the appearance of the lowest bulk interband inter-LL excitation. To do that, we
calculated an array of EF starting from 100% nominal concentration going down
every 5-10% (see fig. 4.33 for example). Those Fermi energies were then used in
our model and magneto-optical repsonse spectra were calculated for each case.
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Figure 4.32: Relative difference between EF from the full topological and simpli-
fied relativistic models. Although the deviation exhibits a few abrupt jumps up
to almost 4% in experimentally achievable magnetic fields, it is around merely
1% on average, and eventually converges to 0.

The final n was chosen so that the lowest bulk transition appears like observed
experimentally. A few sample inflection point maps obtained with different n are
shown in figure 4.34. The resulting electron densities are in general smaller than
nominal, measured by Hall conductivity at room temperature, by a factor of 2.
We attribute this to sample aging (storage and handling). Only sample F was an
exception and we had to consider n by an order of magnitude smaller than the
initial n0.

Figure 4.33: A few obtained Fermi energy dependencies on the magnetic field for
sample C around the optimal value of 55%.
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Table 4.9: Tuned carrier concentrations.

Sample n0 (1018 cm−3) ratio n/n0 (%)
A 10 35-40
B 9 30
C 1.4 55-60
D 5 75
E 2.5 100
F 11 2.5

Figure 4.34: Several inflection point maps for sample B with Fermi energies
calculated for several carrier concentrations. n = 0.5 · n0 produces the onset of
the lowest interband transition below 15 T, which is too high; similarly, n = 0.2·n0
produces it just a bit too low, at 7 T. n = 0.3 ·n0 gives the best match at roughly
10 T. The colorbar is for amplitude estimation of the simulated colormaps only.
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4.6 Theoretical modeling
4.6.1 Kubo-Greenwood formalism

Now that we have deduced the bulk parameters of the investigated PbSnSe sam-
ples in the topological regime (indicated by M < 0), it is in our interest to develop
an effective model to theoretically replicate experiment data, and explore the in-
fluence of broadening, as well as check the validity of EF calculations. This was
done in the framework of the Kubo-Greenwood formalism. The adapted formula
describes the interaction of light and LLs induced by an external magnetic field.
It expresses the optical conductivity σ in terms of the left- and right-circularly
polarised light ±:

σ±
ω,B = 2iG0N

l2Bω

∑︂
n,m,kz

(fm − fn)| ⟨m| v̂± |n⟩ |2

En − Em − h̄ω + iγ
, (4.117)

where G0 = e2/(2πh̄) is the quantum of conduction, N = 4 is the valley degen-
eracy and γ is the broadening parameter. LL occupation is given by the Fermi
distribution function f . Indices m,n run over all available initial and final LLs,
including the states with nonzero kz momenta. The velocity operator is given by

v̂± = v̂x ± iv̂y, (4.118)

its components in turn are defined by

h̄v̂x = ∂Ĥ

∂kx

, h̄v̂y = ∂Ĥ

∂ky

. (4.119)

To calculate the transition energies En,m and velocity operator matrix elements
⟨m| v̂± |n⟩ for all kz contributions and keep all features of the full topological
insulator model, we have essentially numerically diagonalized the full 4.52 Hamil-
tonian with C = 0.

The quality of simulation is influenced by the grid of k. We have chosen
to limit its maximal value to 1.25 nm−1 and the grid step ∆k = 0.0025 nm−1.
ϵ∞ = 20 was chosen based on reported values from literature [28, 34]. Its role is
to account for the spectral tails of transitions outside of the measured spectral
range and not computed explicitly. Based on the fitted band parameters, for the
lowest fields, the number of transitions that had to be included in the simulation
ranged roughly from 20 to 200, depending on the sample. Further optimisation
is possible by adaptively adjusting the computed Landau levels. The higher the
field, the fewer available levels.

For a given magnetic field B, an independent 4x4 Hamiltonian was computed
for each Landau level N and kz element. To exploit the computational paral-
lelism, those Hamiltonians were put as diagonal sub-elements of a single matrix
of zeros. Diagonalizing it returned both the eigenvectors (for calculating the ma-
trix elements ⟨m| v̂± |n⟩) and the eigenvalues (transition energies). This allowed
efficient computation of all possible transition permutations, including forbidden
ones. To discard those, level occupancies (determined by the field-dependent EF )
were applied. Furthermore, the velocity operator matrices contain a lot of vanish-
ing elements, which makes the resulting matrices very sparse, only containing a
few hundreds of elements. Besides, these terms are frequency-independent. This
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Figure 4.35: Parallelized and vectorized algorithm for fast and efficient computa-
tion of magneto-optical response σ±. It makes possible to use the full topologi-
cal insulator Hamiltonian on an average consumer computer with computational
times within 15-20 minutes.

was exploited and the computation could be performed for the entire spectra in a
vectorised manner in a single step. Upon next iteration, a different kz element is
used and σ iteratively updated for the entire spectra (fig. 4.35). Thus, an efficient
algorithm employing the full general topological Hamiltonian was developed. It
takes about 15-20 minutes to return the spectra at experimentally recorded fields
and spectral range with 0.25 meV step on an average consumer computer. A few
raw values of modeled σ are shown in fig. 4.36.

Optical conductivity is recalculated into the dielectric function, where we
account for the uncomputed higher transition by including ϵ∞:

ϵp,m(E) = ϵ∞ + i
σp,m

ϵ0E/h̄
. (4.120)

From ϵ, the absorption and reflectivity coefficients A and R can be calculated:

Ap,m = ℑ(√ϵp,m)E
h̄c
, Rp,m =

⃓⃓⃓⃓
⃓⃓
√
ϵp,m − 1

√
ϵp,m + 1

⃓⃓⃓⃓
⃓⃓
2

. (4.121)

In a volumetric piece of a bulk material, the intensity of transmitted light would
be

IT = (1 −R)2e−Ad, (4.122)
but due to multiple reflections inside the thin film, there appears an additional
modulation:

IT = (1 −R)2e−Ad × [1 +R2e−2Ad +R4e−4d + ...] = (1 −Rp,m)2e−Ad

1 −R2
p,me

−2Ad
. (4.123)

To get the transmission in an unpolarised light, the average of the two polarisa-
tions is calculated: TB = (T σ+

B +T σ−
B )/2. To model the magnetotransmission, the
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Figure 4.36: Modeled σ using the Kubo-Greenwood formula 4.117 for a few broad-
ening scenarios: constant (a) and linear on energy (b). For small γ, σ becomes
essentially a series of overlapping jDOS corresponding to each LL.

reference spectra was modeled at B = 1 T, below the onset of any experimentally
observed LL transitions.

The Kubo-Greenwood formula allows to include the effect of broadening via
γ. So it is another adjustable parameter in our model. The simplest choice—a
parameter independent of the energy and magnetic field—led to acceptable re-
sults (fig. 4.37). A value of γ = 2 meV was chosen, consistent with the onset of
observed of LL quantisation at 2 T. The agreement could be further improved by
taking an energy-dependent broadening increasing linearly: γ = γ0 + κh̄ω with
γ0 meV and κ = 0.0125. This choice resembles the empirical rule deduced for in-
terband inter-LL excitations in graphene [113, 114]. Notably, for relatively weak
disorder, the width of excitations is not entirely determined by the γ parameter.
The pronounced high energy tail of interband inter-LL excitations appears due
to excitations at nonzero kz momenta. Moreover, even though the electron-hole
asymmetry was not directly evidenced in our data, it may still influence the width
of transitions. This latter contribution would be roughly equal to the difference
between the cyclotron energies of electrons and holes.

There is a fairly good agreement between the experiment and the model at
higher photon energies, both for the shape and intensity of modulation. At lower
energies, a certain deviation may be observed in the range corresponding to the
excitations of electrons from the valence band to the vicinity of the Fermi energy
in the conduction band. The relatively pronounced maximum in the theoretical
TB/T0 spectra (around 120 meV in fig. 4.37) is not observed experimentally. It

93



Figure 4.37: Relative magneto-transmission spectra TB/T0 at selected values of
the applied magnetic field compared to those calculated using the linear-response
theory (4.117) for sample C. To calculate TB and T0, the Landau levels up to the
index 20 and 200 were included, respectively. The contribution of excitation at
nonzero momenta were taken into account up to kz = 1.25 nm−1. Two cases have
been considered to account for the disorder in the system: γ = 2 meV (red curve)
and γ = 0.05 meV + 0.0125 h̄ω(blue curve).

appears in the calculated spectra as a result of B-induced splitting of the inter-
band absorption edge for opposite circular polarisation of the incident light. In
our experimental data, this feature seems to be smeared out due to the inho-
mogeneity of the electron density (fluctuation of the Fermi energy) across the
explored sample. The overall matching of experiment and the model is shown
also in figure 4.38.
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Figure 4.38: Experiment (a) and theoretical (b) map of magnetotransmission
for sample C. White area in the upper left corner (at the highest fields) marks
the highest Landau levels up to N = 200. Modeling higher order levels proved
impractical in terms of computation time. There, the magneto-optical response
is represented mostly by ϵ∞.

4.6.2 ϵ modeling using WIEN2k

The aim of this section is to verify the band structure parameters ∆, vF ,M deter-
mined earlier. They should be accessible via first-principles ab-initio calculations.
Essentially, the idea is to solve the general many-body problem of electrons in a
solid. The Hamiltonian of such a system can be described by

Htotal = T⏞⏟⏟⏞
kinetic
energy

+ Uen⏞⏟⏟⏞
electron-nucleus
potential energy

+ Uee⏞⏟⏟⏞
electron-electron
potential energy

+ EH⏞⏟⏟⏞
Hartree
energy

+ Exc⏞⏟⏟⏞
exchange-correlation

energy

. (4.124)

This problem with 3N variables (coordinates of each interacting electron) is sim-
plified in the electron density functional theory (DFT). It reformulates the
many-body problem in effectively a single-particle fashion [115]. The Hohenberg-
Kohn theorem asserts that the density of any system determines all ground-state
properties of the system. In this case the total ground state energy of a many-
electron system is a functional of the density n(r⃗). The total energy of a system
can therefore be deduced using the electron density functional [116]. In DFT, it
is postulated that the correct ground energies can be recovered upon the choice
of a suitable functional depending on n(r⃗) = (Ψ, ψ∗(r⃗)ψ(r⃗)Ψ), where Ψ is the
many-body ground state wavefunction and ψ(r⃗) is an appropriate field operator.
This functional is universal, applicable to an arbitrary number of particles and
the potential v(r⃗) [117]. The effort is thus refocused on finding this functional.
Many approximations are available, from general-purpose to specific systems.
They require to choose the exchange-correlation (XC) term with its energy de-
fined as EXC =

�
ϵXC(r⃗)d3r. One well-known XC functional is the local density

approximation (LDA), where the XC energy depends only on the electron den-
sity ρ and is suitable for homogeneous materials. In another generalized gradient
approximation functional GGA suited for less homogeneous materials, it also
depends on its first derivative ∇ρ. The interacting many-body system of elec-
trons is mapped onto a non-interacting system of quasiparticles, characterized
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Figure 4.39: The energy band structure of PbSe alloy calculated with Wien2K
along the most important k points. The Fermi energy was arbitrarily set to
zero. The gap is located at Γ which is also zoomed in (b). Our simulation gives
the value between 250-300 meV, which agrees reasonably well with experimental
values.

by Kohn and Sham (KS) orbitals with a specific KS energy [118]. We used the
WIEN2k package solving these equations using the linearized augmented plane
wave (LAPW) method with localised orbitals, or LAPW+lo. It applies different
optimized wavefunctions belonging to the atomic spheres and the interstitial (i.e.
empty) region [119]. WIEN2k features the possibility to use an arbitrary num-
ber of local orbitals, which allows an accurate calculation of all states, from the
low-lying occupied semi-core to the high-lying unoccupied states. In the Born-
Oppenheimer approximation, the nuclei are considered to be at rest [118]. As
a by-product, the KS orbitals/energies yield the PbSe parent compound band
structure sketched in fig. 4.39, in agreement with other reports [28, 30, 31, 33].

The optical response of the material can be determined from its band struc-
ture. Direct transitions conserving k⃗ use the independent-particle approximation.
The transition probabilities are given by the square of the momentum matrix el-
ements between the occupied and empty states M = ⟨n′k⃗|A · p |nk⃗⟩, where A
is the vector potential. The matrix elements determine the probability of opti-
cal transitions using dipole selection rules as well as clearly distinguishes allowed
and forbidden transitions. The Kubo formula allows expressing the optical re-
sponse in terms of the joint density of states, the first approximation to spectral
optical properties such as absorption. It can be done if i) the matrix elements
are k-independent and ii) band index-independent. The vector potential A holds
the information about light polarisation. The formula used in 4.117 deals with
circularly-polarised light and its interaction with LLs. The optics module of
WIEN2k, on the other hand, expresses the optical response in terms of the per-
mittivity in linear basis at zero magnetic field. This changes the normalization
factors and summation - it now runs over the energy bands instead of LLSs, and
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Figure 4.40: The final simulation result - the physical quantities such as the
permittivity - depend on the k space sampling grid. Convergence tests between
F and P symmetries for PbSe revealed 1 000 points (a) to be insufficient. Only
starting from 10 000 points results become trustworthy. An example obtained
using 50 000 points is shown in (b).

over all components of the momentum vector k⃗ [120]. It calculates the imaginary
part of the permittivity ϵ2 while the real part ϵ1 is obtained via the Kramers-
Kronig relationship [118].

To obtain the optical properties, the k space has to be sampled with a certain
grid. Besides that, both F and P symmetries have to ultimately reproduce the
same physical properties. Convergence tests show 1 000 k points to be insufficient
while 10 000-50 000 generated practically identical results (fig. 4.40).

The broadening is included by smearing the entire spectra via the Lorentz or
Gaussian oscillator, and is purely a post-processing step in WIEN2k. On the other
hand, it could be in principle included as the broadening parameter γ in Kubo
formula, as it is done in eq. 4.117. The weakest broadening produced spectral
features that were not observable experimentally, with all critical energies clearly
visible as shoulders, kinks or peaks in the spectra (fig. 4.41). To better reproduce
the experimentally registered ϵ, the broadening had to be increased severalfold,
to about 50 meV and higher (fig. 4.41).

The program employs crystal symmetries that allow reducing the computation
time. For PbSe, the so-called F symmetry is readily available, in which the user
only describes the 2 base atom species (lead and selenium). The full primitive
cell is then mimicked via the help of symmetries in calculations. On the other
hand, one can also define the entire primitive cell entirely manually. This requires
populating it with 8 atoms instead of just 2, which inevitably results in longer
computation times. This expense allows to simulate the quasi-random lead tin
selenide alloy by replacing Pb atoms in the unit cell. The downside of WIEN2k
is that once this cell is defined, the material is considered to be a perfect periodic
crystal in all directions. It is thus incapable of directly simulating a random alloy.
To bring the simulation closer to reality, we have replaced 1× Pb atom out of
4× with 1× Sn atom, and this was done for all 4× Pb positions. In other words,
4 semi-random crystal configurations were tested: with 1st lead atom replaced,
with 2nd lead atom replaced, and so on. This effectively simulated an array of
quasi-periodic Pb0.75Sn0.25Se alloys. Different spatial configurations of tin do not
change most of the critical energies such as E1 or E4 and E5 and higher (fig. 4.42).

To better simulate the random nature of the alloy, a supercell concept can be
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Figure 4.41: Broadening is an entirely post-processing step in WIEN2k. Lowest
values produced a too sharp spectra (violet color). On the other hand, all critical
energies are visible as sharp features: the absorption edge - the gap E0, shoulder
at E1 = 1.6 eV, the main peak E2 ≈ 2.7 − 3 eV, here clearly separated into two
atomic transitions etc. Only starting from 50 meV the spectra became smeared
enough to better reproduce experimentally registered ϵ2.

applied. Instead of a single unit cell, a bigger cell is defined, in which several lead
atoms could be replaced. The bigger the cell, the better the quasi-randomness,
with the expense of significantly higher computation load (fig. 4.43). Therefore,
the recipe would be the following: first, calculate an array of ϵ for all possible Sn
atom positions (in the case of a single cell, 4 independent permutations are avail-
able; in the case of 2× supercell elongated in one direction 8∗7 = 56 permutations
etc.). A real random alloy should exhibit a mix of these optical responses, and
to reflect this, the final permittivity should be averaged. This, however, becomes
computationally too demanding for a general-purpose consumer computer. Such
a calculation was performed on a supercomputer in Ostrava, the IT4i cluster, but
only the DOS were calculated (fig. 4.44). As with many DFT calculations, it
under-estimates the band gap, which is a known (and commonly fixed with the
so-called scissor operator) issue of ab-initio calculations [118]. In the calculated
DOS spectra, it is roughly 100-150 meV. Overall, all calculated DOS spectra re-
produce the same spectral structures. The DOS of the quasi-random supercells
exhibit little to no change among each other (different Se atoms replaced) neither
at the gap nor other spectral regions. In comparison, the gap of a pure PbSe
alloy seems to be wider (yellow curve). All other spectral features of the super-
cells are shifted to lower energies. Because of the convention used in WIEN2k,
the zero energy represents the Fermi level. Therefore, negative energies represent
occupied and positive energies represent empty states.
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Figure 4.42: ϵ2 for a quasi-periodic Pb0.75Sn0.25Se compound compared to an
experiment (green line). Different spatial tin configurations do not change critical
energies E1, E4, E5 and higher.

Figure 4.43: The supercell concept. Original PbSe unit cell (a) and its expansions
in x (b), y (c) and z (d) directions. Supercell made out of 2 × 2 × 2 unit cells to
imitate a quasi-random alloy such as Pb1−xSnxSe (d).
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Figure 4.44: Density of states calculation of the regular primitive cell (7.5 meV
broadening) and 8× supercell (2× in each direction). The supercell DOS were
divided by 8 for easier comparison. All three curves reproduce the same spectral
features such as the gap between 100 and 150 meV. Replacing different Se atoms
produce very little change in the DOS but narrows the gap and shifts all spectral
features to lower energies.
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4.7 Search for surface states
The most salient feature of topological insulators is the conically dispersing Dirac-
like surface states. It is thus in our interest to seek for any of their signatures
in measured data. The primary question naturally becomes, where would they
be expected? The general topological Hamiltonian is applicable to the entire
material. To make it valid for the surface states, only a few modifications are
required. We can quickly get the surface states dispersion formulas by excluding
those terms that relate them to the bulk, i.e. the bandgap ∆ and M . For the
simplified case of kz = 0, they read

E2D(B,N) = ±
√︂

2h̄ev2
FBN, (4.125)

and because of the electron-hole symmetry discussed in the chapter about the
Hamiltonian for the bulk, the same simplifying rules apply. The excitations follow
the standard electric-dipole selection rules in isotropic systems: N → N ± 1. All
transitions of the surface states can be encompassed by

h̄ωB(N) = E2D(B,N) + E2D(B,N + 1), (4.126)

with N = 0, 1, 2, 3, ... .
When the quantum limit of electrons in a conical band is approached, the

fundamental cyclotron resonance (CR) mode emerges in the optical response.
This mode comprises excitations of electrons among the n = 0 and 1 levels and
becomes - in terms of the integral strength and absolute absorption -the most
pronounced line in the transmission spectrum. This simple empirical rule can be
justified using the standard linear-response theory. Therefore, we focused on this
particular excitation in order to find a magneto-optical signature of the surface
states in PbSnSe. We applied high magnetic fields to the samples to drive surface
electrons close to their quantum limit. At the same time, their fundamental CR
mode is expected to move above the reststrahlen band of BaF2. Hence, it should
be traceable using the infrared magnetotransmission technique. One can estimate
at what energies these transitions should occur. The CR excitations of the bulk
for kz = 0 case are described by ∆E = Eval,±

N±1 − Eval,±
N , and for the ground CR

transition in particular

h̄ωB = Eval
1 − Eval

0 =

⌜⃓⃓⎷(︄∆ + 2M
l2b

)︄2

+ 2v2
F h̄eB − ∆. (4.127)

For the ground surface state transition,

h̄ωB = vF

√
2h̄eB. (4.128)

The latter fact is illustrated in Fig. 4.45. The LL spectra of bulk and surface
electrons, expected for sample C, are shown in panel (a), along with the estimated
Fermi energy. In panel (b), we present a false-color plot of magneto-absorbance
of sample C overlaid with the expected energies of bulk and surface inter-LL
resonances. The panel (b) shows that the fundamental CR mode of surface elec-
trons should be accompanied by two bulk resonances at nearby energies – the
fundamental bulk CR mode and the lowest bulk interband inter-LL transition.
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These three excitations are marked by green, cyan and black vertical arrows in
Fig. 4.45a. The same color-coding is used for curves in Figs. 4.45b. The dotted
parts of the theoretical curves indicate the magnetic fields at which the final-
state Landau level is occupied, and therefore, the transition should not appear
due to Pauli blocking. Here we considered the bulk Fermi energy to determine
the occupation of the surface LLs.

To explore the magneto-optical response in detail, the differential magneto-
transmission spectra, TB/TB−δB, were analyzed (Fig. 4.47a-f). As discussed in
the Sec. 4.4.2, the impact of a weakly field-dependent Fabry-Pérot interference
pattern is partly suppressed in the differential spectra and we may better fol-
low individual inter-LL resonances. Each transition manifested as a minimum
in the relative magneto-transmission, TB/T0, is now expected to be seen as a
derivative-like feature (a maximum followed by a minimum) in the differential
spectra TB/TB−δB. To facilitate our analysis, the theoretically expected positions
of the three lowest excitations are marked by vertical arrows in Fig. 4.47a-f, using
the color-coding introduced in Fig. 4.45. The transparent arrows correspond to
excitations blocked by the occupation effect. Again, we assume here that the
occupation of the surface LLs is given by the bulk Fermi energy. Following these
assumptions, the fundamental CR mode of surface electrons should be observable
above the reststrahlen band of BaF2 in all explored epilayers, except sample D.

Because of the volume of the bulk compared to the surface area, the surface
state excitations are naturally expected to be weaker. The question is, just how
much? We estimated their strength using a simple transfer-matrix method based
on Yeh’s formalism [121] similar to what was done for graphene multilayers [122].
In this method, the orthogonal input and output polarisations are related via the
transform, (︄

aN+1
bN+1

)︄
= M

(︄
a1
b1

)︄
(4.129)

with the master transfer matrix

M = D1→2P (d1)D2→3P (d2)...P (dN)DN→N+1, (4.130)

The interface and propagation matrices Dm→n and P (∆z) are derived from field
boundary conditions:

P (∆z) =
(︄
e−ikz∆z 0

0 eikz∆z

)︄
, (4.131)

Dm→n,pol = 1
2

(︄
1 + ηpol + ξpol 1 − ηpol − ζpolξpol

1 − ηpol + ζpolξpol 1 + ηpol − ξpol

)︄
(4.132)

with η, ξ, ζpol representing either the s or p polarisation pol. These quantities are
defined as follows: ζs = +1 for s polarisation and ζp = −1 for p polarisation,
while

ηp = ϵ1k2z

ϵ2k1z

, ξp = σk2z

ϵ0ϵ2ω
, (4.133)

and
ηs = k2z

k1z

, ξp = σµ0ω

k1z

, (4.134)

with µ0 the vacuum permeability. Because of the spin polarisation of the ground
state, one component of the circular optical conductivity was considered inactive,
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setting σ1 = 0. The other component σ2 was calculated via the Kubo-Greenwod
ofrmula. The transmittance is defined by the M11 matrix component:

t = 1
M11

. (4.135)

In experiment, to describe unpolarised light, again an average of the two resulting
polarisations was used to keep the model correct. The PbSnSe epilayer was
modeled as a dielectric slab with a thickness d and a refractive index of nP bSnSe =
5. The optical response of the surface/interface states was described by the 2D
dynamical magnetoconductivity. It comprised a single mode at h̄ω = EN=1

2D , with
the broadening parameter γ = 2 meV extracted from the bulk response, and the
integral strength corresponding to the fourfold degeneracy. We assumed that this
mode emerges when the bulk Fermi energy drops below the n = 1 LL of surface
electrons. The substrate was represented by a dielectric slab with a thickness of
500 µm and a refractive index of nBaF2 = 1.4. The calculated differential spectra
(cyan dotted lines) were then plotted along with experimental data for sample
C in fig. 4.45 together with the explicit Landau level structure for the bulk and
surface states. The experiment data and predicted Landau level transitions for
all samples are plotted in fig. 4.46. The inflection point in the calculated curves
matches the energy of the fundamental CR mode of surface electrons, marked
by vertical cyan arrows. When the fundamental CR mode is Pauli blocked, the
arrows are transparent. Due to the interference effect, the calculated amplitude
of the surface CR mode varies with the thickness of the epilayers. Nevertheless,
the theoretically expected signal clearly exceeds the noise level for all investigated
samples. For the sake of completeness, let us note that the strength of the CR
mode is much lower as compared to free-standing graphene [114]. The difference
in the velocity parameters reduces the strength roughly by a factor of four, further
reduction occurs due to PbSnSe bulk slab and BaF2 substrate. It is the so-
called dielectric effect which suppresses the strength of the response due to a
surrounding dielectric material. In the case of graphene sample, this happens
from one side (bottom of the sample) where graphene interfaces with the SiC
substrate (for instance, the same effect has been observed in graphene grown on
4H SiC, see [123]). This reduces the total strength of transitions.

From the experimental viewpoint, the differential spectra measured on sam-
ples C and F reveal no signatures attributable to the signal from the surface states.
For other samples, certain features develop just above the reststrahlen band of
BaF2. Nevertheless, their position, amplitude and shape do not correspond to the
expectations for surface electrons. The relatively pronounced minimum observed
for samples A and E (around h̄ω ≈ 100 meV at 30 T) is most likely due to bulk
interband inter-LL excitations (n = 0 → 1). Their position seems to be slightly
overestimated in the bulk data modelling (black vertical arrows). The shape –
a minimum instead of derivative-like profile – may suggest the presence of some
additional weaker excitations. However, there is no solid argument connecting
them with the surface states. Below we discuss three different scenarios that
allow us to explain why no clear signatures of surface electrons were found in
the magneto-optical response: (i) an occupation effect, (ii) disorder and (iii) too
simplistic theoretical modelling.

(i) The occupation of surface states, or in other words the distribution of elec-
trons among the surface LLs, may differ considerably from the one expected from
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Figure 4.45: Part (a): Landau level spectrum of surface and bulk states and
the expected Fermi energy in sample C as a function of B. The dashed and
solid lines used for the LLs reflect the spin parameter α = −1 and 1, respec-
tively. The vertical arrows show three inter-LL excitations with lowest energies
expected in the spectrum: the bulk interband 0 → 1 transition, and fundamental
CR resonances of bulk and surface electrons. Part (b): False-color plot of rel-
ative magneto-absorbance measured on sample C compared to the theoretically
expected positions of bulk (black and green) and surface (dark cyan) inter-LL
resonances. The dotted lines correspond to the values of the magnetic field at
which the transitions are not active due to occupation of the final-state LL (Pauli
blocking). The vertical white line separates the data measured at low magnetic
fields using a superconducting coil from the high-field data obtained with a resis-
tive coil.
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Figure 4.46: Experimental magneto-transmission maps with predicted bulk (black
lines), bulk cyclotron resonance (green lines) and surface (cyan lines) Landau
level transitions for all samples A-F. The dotted lines correspond to the values
of the magnetic field at which the transitions are not active due to occupation
of the final-state LL (Pauli blocking). The vertical white line separates the data
measured at low magnetic fields using a superconducting coil from the high-field
data obtained with a resistive coil.
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the position of the bulk Fermi energy. The band bending close to the surface or
interface of bulk crystals is a well-established phenomenon, often discussed in the
context of topological (crystalline) insulators and other narrow-gap semiconduc-
tors. For instance, it might affect the emergence of the surface states because
of existence of several well-defined surface transport channels with different mo-
bilities and thicknesses due to strong bulk confinement [124]. ARPES, another
technique of choice for directly probing the TIs bandstructure, is also affected,
and can show distorted results [125]. This effect is governed by standard rules
of electrostatics, and it may lead to the appearance of both depletion or accu-
mulation of bulk electrons near the surface/interface [126]. The latter possibility
could explain the lack of signatures of surface states in our data. Nevertheless, for
the investigated samples with relatively large electron doping, and consequently
large density of positively charged defects, a relatively narrow depletion layer
and only a weak band-bending effect are expected. The penetration depth of the
surface states can be estimated from the topological Hamiltonian eigenfunctions
Ψ ∼ eΛαz. The real part of Λα is the inverse localisation length, or alternatively,
the penetration depth of surface states into the bulk dα [127]:

dα=−1 = h̄vF

Eg

. (4.136)

The estimated d values for our samples are presented in table 4.10.

Table 4.10: Estimated thicknesses of the surface states

Sample dpenetration (nm) Ratio to sample thickness (%)
A 19.8 2.5
B 24.6 3.5
C 10.5 0.4
D 9.7 0.4
E 16.1 0.6
F 5.3 0.5

(ii) The topological protection makes surface states robust against the opening
of a band gap, but they still remain sensitive to disorder, which is ubiquitous in
a random alloy (note that Sn atoms do not replace Pb atoms in any periodic or
regular manner). In magneto-optical experiments on 2D systems, the strength of
disorder is directly reflected by the widths of inter-LL excitations. In our rule-of-
thumb model for the fundamental CR mode of surface electrons, we considered the
characteristic broadening equal to that of bulk states. In this way, we might have
neglected additional sources of disorder, such as the surface/interface roughness
or surface point defects. In fact, our transfer-matrix simulations suggest that an
increase of γ by a factor of 3–5 brings the calculated magneto-optical signal of
the surface states down to the experimental noise level. Disorder in the surface
states thus may represent a plausible explanation of the apparently missing signal
from the surface electrons.

(iii) The accuracy of the existing theoretical models represents another pos-
sible explanation. Clearly, there is no apparent reason to question their general
validity [14, 128], notably, when they are convincingly corroborated by various
experimental studies [94]. At the same time, however, it is not obvious to what
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extent these models account for the surface states quantitatively; strictly speak-
ing, the concept of band structure does not even apply to a random alloy, which
Pb1−xSnxSe is. Cushioning such fundamental doubts, the dispersion of the sur-
face states does not need to have its Dirac point in the midgap position (reflecting
the weak but present electron-hole asymmetry at the L point). This would effec-
tively correspond to a higher Fermi level for the surface states, thus pushing the
quantum limit to larger magnetic fields and making the fundamental CR mode
of surface electrons hardly observable in our experiments. In addition, one may
expect a certain deviation from the linearity of the conical band on the surface,
which is not included in the simplest model [128]. The fundamental CR mode
of surface electrons could thus have a lower energy and stay hidden within the
reststrahlen band of the BaF2 substrate even in the highest magnetic fields ap-
plied in our experiments. Hybridization of surface and bulk states is another
possible effect. Sticking strictly to the standard theoretical model [128], the bulk
and surface states are truly eigenstates of a semiinfinite crystal, and they do not
mix with each other. At the same time, the discrete surface LLs coexist—apart
from the interval in between zero-mode levels—with the quasicontinuum of bulk
electronic states, and one may speculate about mechanisms that mediate their
coupling. The hybridization of surface and bulk states (such as the one taking
place in type-II surface states of the (001) projection [128]) may represent an
explanation—an alternative to plain disorder—for spectrally broad features ob-
served above the reststrahlen band of BaF2 in the differential spectra of the A,
B, D, and E samples.
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Figure 4.47: Differential magneto-transmission spectra, TB/TB−δB, plotted for all
explored samples A, B, C, D, E, and F in parts (a)-(f), respectively, using the
difference δB = 1 T. The spectra are shifted vertically, with the offset scaling
linearly with B. The energies of three excitations having the lowest energy in
the quantum limit of bulk and surface states are marked by the vertical arrows
(cf. Fig. 4.45b): green – the bulk fundamental CR mode, dark cyan – the funda-
mental CR mode of surface electrons and black – the lowest interband inter-LL
transition (n = 0 →1). Transitions are expected to emerge in the spectra (follow-
ing the occupation effect) when transparent arrows change into solid ones. The
dotted cyan line is the theoretically expected response, the differential magneto-
transmission, due to the fundamental CR of surface electrons, calculated using
the transfer-matrix method, see the text. Neither bulk inter-LL resonances, nor
the presence of the reststrahlen band, are included in this model for simplicity.

108



V Epitaxial graphene
We now turn the attention to another material investigated in this thesis, graphene.
The introduction its most general properties was given in the introductory chap-
ter 2.3. In this part, we will concentrate on the experimental data performed
on graphene manufactured in a particular, cost-effective manner, the epitaxial
graphene.

5.1 Graphene manufacturing methods
The thesis part about graphene is based on [48]. Graphene is a single atomic
sheet of graphite. The first extraction of a real graphene sample is attributed to
Novoselov in 2005, when it was cleaved from graphite using a sticky tape [129,
130]. Naturally, this method is not suitable for high-scale production due to a
small footprint. On the other hand, exfoliated graphene provides the highest qual-
ity in terms of physical parameters [131–133]. Chemical vapor deposition (CVD)
allows growing graphene multilayers on various surfaces [134–136] but sometimes
requires additional steps to transfer graphene from the growth substrate to the
application substrate.

In this regard, graphitization of the top layers of silicon carbide by annealing
is an easy and cheap shortcut to help pass these limitations for mass production of
multi- and especially monolayers. SiC starts to decompose at 1150◦C and above.
Si atoms sublimate at the surface while C atoms forms stable bonds staying
below the surface, forming epitaxial layers of graphite/graphene. This technique
is called the sublimation growth/thermal decomposition [137].

The lowest graphitized layer is covalently bonded to the substrate surface
(fig. 5.1 (a)). Its atomic arrangement identical to graphene [137]. The bonding
reduces the electron mobility and does not allow to develop the linear dispersion.
Furthermore, chemical potential strongly depends on temperature, most probably
due to strong substrate-graphene phonon coupling [138]. Intercalation of the
interface layer by hydrogen (fig. 5.1 (b)) is an already proven method to suppress
these bonds and produce the so-called quasi-freestanding monolayers having all
of the graphene properties [139]. In order to utilize graphene in industrial mass
production of multilayered devices as transparent electrode, it is convenient to
know its optical properties in the broadest spectral range possible.

Figure 5.1: Annealed SiC with carbon atoms at the surface, held together by
strong covalent bonds (a). Intercalation of the interface by hydrogen lifts off this
layer from the substrate, forming true atomically flat sheet of graphene (b).

The graphitization is faster on the C-face but it also makes it difficult to ensure
the growth of a single layer as usually multilayers are grown. Graphitization
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is slower and easier to control on the Si-face [140] because of more precisely
controlled sublimation growth. A fixed orientation exists on SiC(0001) for the
grown graphene layers while this is not the case for SiC(0001̄). Therefore, many
prefer to grow graphene on the Si-face [137]. To the best of our knowledge,
previous spectroscopic ellipsometry studies on graphene were focused on 3C-SiC
and 4H-SiC allotropes [141–144]. There are only a few reports presenting optical
properties of graphene grown on 6H-SiC in a limited spectral range [143, 145]. 6H-
SiC is widely used in commercial device fabrication and could serve as the basis
for graphene-based circuits and optoelectronic devices. Hence we examined the
quasi-freestanding monolayer graphene obtained by the intercalation of Si-face
6H-SiC.

5.2 Graphene sample preparation and analysis
The investigated epitaxial quasi-freestanding monolayer graphene sample was pre-
pared by annealing of 0.5 mm thick Si-face 6H-SiC at graphitization temperature
of 1450◦C and argon atmosphere. The quasi-freestanding graphene layer was ob-
tained by hydrogen intercalation of a single layer of (0001) 6H-Si. The surface
quality and morphology were measured by atomic force microscopy (AFM). Op-
tical properties were investigated using a combination of J. A. Woollam’s spectro-
scopic ellipsometers RC2 and V-VASE in order to cover to cover a broad spectral
range. The RC2 ellipsometer allowed us to measure the Mueller matrix ellip-
sometry and unpolarised transmission data in the range from 0.7 to 5.5 eV. The
transmission data served as an additional input allowing to account for the fea-
tures near the SiC band gap such as the absorption edge, absorption tail etc. The
V-VASE ellipsometer allowed to acquire experimental data in the IR region down
to 0.150 eV. All measurements were preformed at room temperature under sev-
eral angles of incidence ranging from 45 to 75 degrees. The light beam diameter
was approx. 3 mm, yielding the average optical response from such an area. J.
A. Woollam’s ‘CompleteEASE’ software was used for advanced data processing.
Obtained optical properties were compared to CVD grown graphene on silicon
using standard approach.

5.3 SiC and graphitized SiC surface morphology
According to AFM measurements, the average width and height of SiC terraces
of both sample and reference right after cleaving and an initial hydrogen etching
is 1.243 µm and 0.75 nm (half unit cell; Fig. 5.2 (a)). This is caused by sur-
face orientation not matching the nominally on-axis oriented SiC wafers. Typical
step heights are 1 or 0.5 of a 6H unit cell [137]. It indicates a miscut angle of
0.03-0.04 degrees. Graphitization at temperatures above 1200◦C promotes an
additional microscopic surface restructuring, forming more steps. These steps
tend to bunch together, and terraces become wider and higher on average. The
final terrace morphology thus changes. Step bunching is a well-known phe-
nomenon [137, 143, 146]. Sample surface area was about 5 × 5 mm, and in
order to ensure statistically reliable surface morphology data of the graphitized
hydrogen-intercalated sample, we have performed AFM measurements on 5 dif-
ferent places on the sample, each 20 × 20 µm: one in the centre and other four
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at every corner. The height of the terraces was estimated along the horizontal
scanning direction so that any possible sample drift artifacts would be eliminated.
According to the data, terraces became 1.4 nm high and 1.8 µm wide on average
after bunching (Fig. 5.2 (b)). The terrace height was used as one of the input
parameters for the ellipsometric data processing.

Figure 5.2: False color 2D AFM scan maps and selected profiles of intercalated
reference SiC sample (a) and substrate + graphene sample (b). Only single pro-
files along the directions of the white arrows are shown for brevity. In (b), hori-
zontal lines correspond to measurement artifacts. This complicated the baseline
correction, distorting vertical distances in the subset on the right. To evaluate
the precise average terrace height, raw uncorrected data at multiple spots were
analyzed.

5.4 Spectroscopic ellipsometry data analysis
The reference bare SiC substrate and the graphitized sample, both prepared under
the same conditions, were investigated. Prior to the graphitized sample, the
optical properties of the bare substrate were characterized. Its optical response
was then used as an input when fitting the dataset obtained on the graphitized
sample. This decreased the set of parameters to be fit at once.

The reference SiC substrate was modelled as a bulk birefringent material. Its
ordinary and extraordinary axes were modeled independently. Its permittivity
was described by a sum of oscillators fulfilling the Kramers-Kronig relations. All
substrate oscillators were chosen to be of Cody-Lorentz type as it allows to model
a broad Lorentzian line shape with zero absorption below a defined absorption
edge energy Eg. The definition of Cody-Lorentz oscillator is

ϵC−L = ϵ1 + iϵ2, (5.1)
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Table 5.1: Cody-Lorentz oscillator parameters for describing the reference 6H-
SiC substrate dispersion.

Oscillator A γ E0 Eg Ep Et Eu

# (arb.u.) (eV) (eV) (eV) (eV) (eV) (eV)
ordinary axis:

ϵ∞ = 1
1 112.930 0.851 7.403 2.939 5.725 0.0526 0.0598
2 4.850 12.095 12.207 2.939 14.304 0 0.0200

extra-ordinary axis:
ϵ∞ = 1.371

1 60.907 0.581 7.202 2.929 3.333 0 0.187
2 56.422 0.122 5.371 2.929 15 0 0.154

The imaginary term in region 0 < E ≤ (Eg + Et) is

ϵ2(E) = E1

E
exp

(︃
E − Eg − Et

Eu

)︃
, (5.2)

while in the other region E > (Eg + Et) it is

ϵ2(E) =G(E) · L(E) =
(E − Eg)2

(E − Eg)2 + E2
p

· AE0γE

(E2 − E2
0)2 + γ2E2 .

(5.3)

In the above equation, G(E) represents the near-bandgap function and Cody
absorption behavior while L(E) is the Lorentz function. Here, E1 = (Egn +
Etn)G(Egn +Etn)L(Egn +Etn). Parameters A, γ and E0 characterize a Lorentzian
absorption peak. Ep describes absorption transition from Lorentzian to Cody
behavior and Et absorption transition from Cody to Urbach behavior. The ab-
sorption edge is described by Eg. The real part is analytically related via the
Kramers-Kronig integral

ϵ1 = 2
π
P

� ∞

0

E ′ϵ2(E ′)
E ′2 − E2 dE ′. (5.4)

Several independent oscillators were required for each optical axis. The optical
absorption edge energy parameter Eg was shared among all of them. The fitting
procedure used all of the experimental data (ellipsometric quantities Ψ and ∆ at
multiple angles of incidence and IR optical transmission) simultaneously, resulting
in the best set of oscillator parameters (amplitudes, energies and broadenings).
The explicit parameters that gave the best match with experimental ellipsometry
data are listed in table 5.1. The resulting permittivity follows the spectral trends
reported in other studies on 6H SiC [147–152], and the absorption edge energy
fitted to 2.93 eV.

Because the SiC substrate was polished from both sides and is transparent in
almost the entire measured spectral range, backreflections from the back side of
the substrate were observed, thus complicating data processing. The combination
of the uniaxial anisotropy and reflections from the backside of the SiC substrate
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is responsible for the interference pattern below the SiC bandgap. This is also
visible in graphene sample - see (Fig. 5.3 (a) and (b)).

The thicknesses of the surface terrace steps in all investigated samples esti-
mated by the AFM measurement were in the order of several nm, much lower
than the wavelength of the probing radiation. Light is thus unable to distinguish
the exact structure of layers so thin. The terraces are hence treated as a separate
surface roughness layer on top of the sample. It uses the Bruggemann Effective
Medium Approximation (EMA) to describe the mixing of the optical response of
the surrounding materials [153, 154]. It was composed of 50% air and 50% un-
derlying SiC. Its initial thickness was set to the step height fas measured by the
AFM. A reasonable fit was achieved and the interference pattern in the spectra
of ellipsometeric parameters was reproduced well (not shown here).

Figure 5.3: Comparison of experimental data and modelled spectra of the SiC
substrate and graphene at 55 deg. of incidence. The main ellipsometric angles
∆ (a) and Ψ (b) are provided. They exhibit oscillations induced by backside
reflections. Transmission data of SiC substrate and SiC substrate + graphene
sample (c).

Several model structures have been proposed to describe graphene sample.
The thickness of monolayer graphene is taken as an interlayer spacing in graphite,
e.g. 0.35 nm. In this case, it is much smaller than the height of the terrace steps
(1.4 nm). We have evaluated various approaches to model the sample structure
and to best fit the experimental data. The simplest models treated the structure
as stratified layers of substrate and graphene with a potential additional surface
roughness component. These approaches failed to deliver physically meaningful
optical properties or did not fit to realistic layer thicknesses. Similar results and
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numerically unstable fits were obtained for more complicated model structures
consisting of substrate, void layer and graphene, which supposed to reflect the
terrace structure of the top layers.

Figure 5.4: Schematic sketch of the chosen model structure used for the
parametrization of optical properties of graphene layer.

Due to the atomic thickness of graphene and low terrace height, the light ex-
periences an averaged refractive index of all involved materials at the surface. To
maximally reflect the graphene layer structure with thin terrace steps, we have
chosen model structure consisting of the SiC substrate covered with a Brugge-
mann EMA layer composed of 3 materials – the underlying SiC, graphene and air,
as depicted in Fig. 5.4. The inclusion of air reflects the surface roughness. The op-
tical properties of this layer are adjusted via the volume ratios of its components.
The volume ratios of graphene, vgraphene, and interpenetrating air/substrate, vair
and vsubstrate, range from 0 to 100% and are coupled. For low terrace angles they
can be related to the total thickness ttotal (in nm) of the top layer in the following
way:

vgraphene + vair + vsubstrate = 100%. (5.5)
The air and substrate filling factors/ratios in the EMA model are the same ac-
cording to a simple geometric argument:

vair = vsubstrate, (5.6)
estimated as

vair/substrate = (ttotal − 0.35)
ttotal

· 1
2 · 100%. (5.7)

The initial thickness ttotal of the top EMA layer was set to the step height as mea-
sured by AFM. Both its thickness and compositional parameters were varied in
the fitting procedure to account for the variation in the step height or intercalated
graphene coverage inhomogeneity throughout the sample.

In this thesis, a reliable Model Dielectric Function (MDF) of graphene over
the entire investigated spectral range is proposed. The MDF is composed of
several Kramers-Kronig consistent oscillator terms:

ϵ = ϵ∞ + ϵL1 + ϵG + ϵL2, (5.8)

where ϵ = ϵ1 + iϵ2. L stands for Lorentz and G for Gaussian oscillators. Adapted
variants of these were used in this work. The Lorentz oscillator is defined as

ϵLorentz(E) = AγE0

E2
0 − E2 − iEγ

, (5.9)
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Table 5.2: Fitted parameters of spectral dispersion of optical properties of quasi-
freestanding graphene monolayer on 6H-SiC.

Oscillator type Amp (arb.u.) γ (eV) E0 (eV)
ϵ∞ 2.259

Lorentz1 16588.6 3.1482 0.001
Gaussian 4.8 4.6778 4.121
Lorentz2 11.7 0.7369 4.581

while the Gaussian oscillator as

ϵGaussian(E) =A
[︃
Γ
(︃
E − E0

σ

)︃
+ Γ

(︃
E + E0

σ

)︃]︃
+

i · A
[︄
exp

(︄
−
(︃
E − E0

σ

)︃2)︄
− exp

(︄
−
(︃
E + E0

σ

)︃2)︄]︄ (5.10)

with
σ = γ

2
√︂

ln(2)
. (5.11)

Here A stands for the amplitude, γ is the broadening parameter and E0 is the
central energy. The Γ function is a convergence series that produces a Kramers-
Kronig consistent line shape for ϵ1. The term L1 qualitatively describes the
permittivity in the lowest energy range that is affected by interference oscillations.
We thus do not assign a deep physical interpretation to the fitted parameters
of these oscillators. They serve purely to provide the spectral dependence of
the MDF. Information about electronic parameters such as relaxation time etc.
could be obtained by other more suitable experimental techniques, e.g., electronic
transport measurements or Landau level spectroscopy.

The parameters of these dispersion terms were fit simultaneously with the ttotal
and volume ratios to the ellipsometric experimental data and optical transmission
(see Fig. 5.3). The fit with the mean square error of 14.9 was achieved and the
final step height was fitted to be 1.68 nm, close to the initial value of 1.4 nm.
Resulting model spectrum of the ellipsometric angle ∆ is also included in Fig. 5.3 a
for comparison. Experimental and model spectra of the ellipsometric angles ∆
and Ψ are shown in Fig. 5.3 (a), and transmittance in Fig. 5.3 (b). The resulting
spectral dependence of the dielectric function of monolayer graphene compared
to several spectra taken from literature is shown in Fig. 5.5. Included in the
comparison is the CVD graphene grown on Si substrate. Its dielectric function
was determined similarly by spectroscopic ellipsometry.

The fitted spectral dependence of monolayer graphene permittivity (shown in
Fig. 5.5) clearly exhibits a narrow peak located at 4.56 eV. This energy corre-
sponds to the critical point associated with the van Hove singularity in the joint
density of states. It is related to the interband transitions between π − π∗ hy-
bridized orbitals in the vicinity of the M point of the graphene Brillouin zone.
Several reports have shown that in multilayer graphene systems, the position and
appearance of multiple van Hove singularities can be tailored by twisting indi-
vidual graphene layers, dramatically increasing light-matter interaction [57, 59?
].
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Figure 5.5: Real (a) and imaginary (b) parts of the epitaxial graphene dielectric
function compared to literature spectra. Exfoliated graphene constants by Weber
et al. are taken from [133] and CVD graphene by Kravets et al. from [132].

The main peak of the investigated sample is comparably as narrow as in ex-
foliated graphene, yet blue-shifted as in CVD graphene. When comparing the
optical properties of the investigated sample with exfoliated graphene, one can
see that the transition energy near the M point in the investigated sample is
slightly increased, which might be the consequence of changes induced in the lat-
tice during graphitization and step bunching. However, carbon covalent sp bonds
are known to be very strong and robust, rendering this option unlikely. In the
single-particle picture, the maximum of the absorption is theoretically expected
around 5.1-5.2 eV [155]. Depending on the substrate and doping, the Coulomb
interaction in graphene may remain, to a great extent, unscreened. This allows
the charge interaction to take place. When excitonic effects and electron-electron
interaction are taken into account [57, 132, 155? ], they suppress and red-shift
the peak which is observable in pristine exfoliated and CVD graphene samples.
In a freestanding graphene, the shift has a well-defined value of ∼ 600 meV, down
to 4.5-4.6 eV [132, 155–157]. For bilayer graphene, the red-shift is even stronger,

116



Figure 5.6: The imaginary part of the dielectric function in the region of the 4.5
eV peak for several polymorphs of SiC (a) and for the C face 4H SiC annealed at
various temperatures complemented by the spectra of annealed graphene obtained
in this work (b). The dielectric functions of SiC polymorphs were taken from [141]
and that of intercalated at different temperatures from [144].

∼ 800 meV in [158]. The peak shifts further with increasing number of layers,
eventually reaching the known graphite value of 4.5 eV. Apparently, the peak
position also depends on the polymorph of the SiC substrate, as was indicated
in a report examining epitaxial graphene grown on Si-face 3C and Si-/C-face 4H.
There is a clear indication showing that the peak in ϵ2 tends to shift below 4.5 eV
in C-face and to higher energy in Si-face case (Fig. 5.6 (a), [141]). Besides that,
there is an inverse dependence between the substrate annealing temperature and
the peak position, as was shown by examining graphene produced on C-face 4H
substrate (Fig. 5.6 (b), [144]). In this regard, our findings would be consistent
with the reports, in particular concerning the Si-face on which the graphene was
grown. On the other hand, intercalation should suppress bonding with the sub-
strate. The blue-shift might be related to the effect of intercalation itself. As a
matter of fact, the charge carriers present in the substrate may lead to screening
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Figure 5.7: Real part of the optical conductivity of epitaxial graphene and its
comparison with other types of graphene. The conductivity of exfoliated grpahene
by Weber et al. was calculated from [133] and that of CVD graphene by Kravets
et al. from [132].

between graphene and the substrate material. The distinction is evident when
comparing insulating and conducting substrates such as silicon/quartz vs cop-
per. In samples with metallic substrates, the shift of the peak, as compared to
the single-particle prediction, is weaker, yielding the peak energy of 4.8-4.9 eV.
Screening also affects the peak shape: without any, the peak is asymmetric with
higher value below the critical point; with a high degree of screening, the peak be-
comes more symmetric [135, 159]. The sharpness of the peak thus confirms good
quality of the sample. Even though intercalation reduces bonding between the
layers, hydrogen atoms close to graphene might induce electrostatic interactions
and doping of graphene layer, resulting in the blue-shift.

To make better comparison with literature in terms of optical conductivity, we
calculated the real part of sheet optical conductivity. How to relate the 3D (bulk)
and 2D (sheet) cases? For a bulk material, doubling its volume by increasing
the thickness would accordingly double the total resistance. Similarly, if a bulk
resistance is normalised to some volume element, say m3, then some chosen thin
layer t would exhibit

R2D = 1
t
R3D. (5.12)

Inverting the above relation, we can express it in terms of the conductivity:

σ2D = tσ3D. (5.13)

It reveals an additional fundamental feature of graphene. Namely, it should
exhibit a universal value of conductivity σ0 = e2/2h at IR energies [62, 63].
In Fig. 5.7, we compare the resulting optical conductivity with two cases from
literature, exfoliated [133] and CVD graphene [134], as well as the CVD sample.
Apart from higher conductivity values at UV energies arising from interband
transitions, the conductivity of the investigated sample approaches unity and
closely resembles exfoliated graphene at energies below 3 eV.
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To summarize, the overall spectral dependence of the dielectric function from
infrared to visible energies, narrowness and the magnitude of the main peak, and
approaching the universal value of optical conductivity at IR energies allows us to
conclude that annealing and intercalation of the (0001) surface of 6H-SiC allows
to produce large-area excellent quality graphene monolayers. The investigated
sample is very close to those prepared by exfoliation from the optical point of
view. The spectral dependence of optical constants can be utilized in theoretical
design of nano optoelectronic devices with graphene working in a broad spectral
range.
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Summary and conclusions
This thesis dealt with investigating the fundamental optical and magneto-optical
properties of Dirac materials using spectroscopic techniques such as ellipsometry
and Landau level spectroscopy. This allowed to probe their magneto-optical
response in a nondestructive, contactless manner.

1) The first material was the lead tin salt PbSn1−xSex with a predicted non-
trivial topological states under certain stoichiometric ratio and temperature con-
ditions. A simple four-band theoretical model was presented to describe the main
features of a system with massive Dirac states. It is able to characterize a given
material with only 3 parameters capturing the fundamental solid-state crystal
parameters such as the width of the bandgap, Fermi velocity and the diagonal
dispersive term M that characterizes the topological regime (trivial or non-trivial,
determined solely by its sign). The model was applied to IR measurement data
of a series of PbSn1−xSex samples with different content of Sn. It allowed to
determine the dependency of these essential physical parameters on the doping.
It showed that interesting physical effects connected to the crossing of the bulk
energy bands should manifest at fields between 50-150 T. This was beyond the
achievable magnetic fields and mostly available in pulsed field experiments at the
time.

An efficient and accurate algorithm was developed to simulate the infrared
magneto-optical transmission of such a system. It allowed to investigate the in-
fluence of the broadening. The best match with observed experimental data was
found with the broadening increasing linearly with the field, similar to an empir-
ical rule deduced for interband Landau level excitations in graphene. The model
also allowed to cross-check the carrier density values against those measured us-
ing electric transport technique, and in turn, determine the bulk Fermi energy
dependence on sample parameters and magnetic field.

According to the extracted band structure parameters and our model, the
surface states, if any, would be present at similar energies like the bulk states in
most of the spectral region. They would only be clearly distinct at the lowest
levels around the ground transitions of the bulk and the Reststrahlen band. A
detailed examination of the magneto-optical spectra did not reveal any signs
of the surface states, in contrast to other reports with similar materials under
similar conditions. This result was attributed to a different occupation of the
surface states (essentially, a band bending at the surface interface), disorder and
finally, not perfect applicability of the proposed model to a random alloy which
Pb1−xSn1−xSe is.

2) Graphene was another investigated material. Owing to its potential im-
pact to the electronics industry, it is important to identify a reliable and cheap
manufacturing method for mass production. Graphitization of the top layers of
SiC can offer such a bridge between desired sample quality and ease of manufac-
turing. Using spectroscopic ellipsometry, we have developed a geometrical model
to describe a thin graphene layer positioned over a stepped bulk surface. We
have also provided an effective Model Dielectric Function to describe the optical
response over the entire visible and near-IR spectral region using three physical
oscillators. The intercalation of the top layers of graphitized SiC can provide ma-
terial with optical properties closest to that of an exfoliated graphene. Namely,
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its narrowness and position of the main absorption peak are unrivaled compared
to another popular CVD graphene.

Proposed further steps:
Dirac-like and nontrivial topological states of matter remain an interesting

field of physics providing a playground for unusual spectral, electric and magnetic
field dependencies of their physical parameters. The investigation presented in
this thesis shows that both bulk and non-trivial states are, ironically, non-trivial
to observe, even under conditions where they were reported by others. Therefore,
to proceed with the research into those states, higher magnetic fields are required.
This aspect is constantly pushed forward by institutions such as EMFL, and the
required magnetic fields could be achieved in routine experiments in foreseeable
future. On the other hand, another proposed approach is to try out a wider range
of PbSn1−xSex stoichiometric configurations, such as x > 0.33, which might bring
about the required conditions for the bulk (anti)crossing and surface states to
appear even under the currently available experimental conditions. Band closure
and reopening could be enforced by varying the ambient temperature for a given
stoichiometric ratio (see for example fig. 2.5). All of these effects should manifest
as features in observable IR spectra.

The conclusions of this thesis are the following:

• A four-band topological Hamiltonian was derived and allowed to describe
all the essential features of the energy band structure in three parameters:
gap, Fermi velocity and quadratic diagonal term M . The analysis allowed
to extract these parameters as well as carrier concentration and the bulk
Fermi energy with high precision for an array of Pb1−xSnxSe samples with
different tin content.

• Using band structure parameters and optical modelling, optimal conditions
for unambiguous observation of the topologically protected surface states
were determined. The window proved to be rather narrow, requiring mag-
netic fields of at least 20 T and a limited spectral range just above the
reststrahlen band, between 75-100 meV. At higher energies, surface states
overlap with the bulk states and become difficult to distinguish.

• Early onset of observable interband Landau level transitions at fields as low
as 2 T indicated an excellent quality of the samples. Even these excellent
conditions did not guarantee the appearance of the surface states, however.
Their absence was attributed to i) different occupation factors than the
bulk, ii) disorder in the surface states and iii) accuracy of theoretical models.

• A parametrised model dielectric function to describe epitaxial quasi-free-
standing monolayer graphene on Si-face 6H-SiC permittivity has been pro-
vided over a spectral region from 0.150 to 5.5 eV.

• Its features, especially the narrowness and position of the main absorption
peak located at 4.5 eV, suggests the optical properties of this graphene to
be superior to those of CVD graphene, and also closest to the best quality
exfoliated graphene.
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M. Paillet, A.-A. Zahab, P. Landois, S. Juillaguet, S. Schöche, M. Schu-
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imental test for effective medium approximations (EMAs), A&A 628 A63
(2019).

[155] L. Yang, J. Deslippe, C.-H. Park, M. L. Cohen, S. G. Louie, Excitonic
Effects on the Optical Response of Graphene and Bilayer Graphene, Phys.
Rev. Lett. 103, 186802 (2009).

[156] K. F. Mak, J. Shan, T. F. Heinz, Seeing Many-Body Effects in Single-
and Few-Layer Graphene: Observation of Two-Dimensional Saddle-Point
Excitons, Phys. Rev. Lett. 106, 046401 (2011).

[157] Do.-H. Chae, T. Utikal, S. Weisenburger, H. Giessen, K. v. Klitzing, M. Lip-
pitz, J. Smet, Excitonic Fano Resonance in Free-Standing Graphene, Nano
Lett. 11(3), 1379-1382 (2011).

[158] Y.-C. Chang, C.-H. Liu, C.-H. Liu, Z. Zhong, T. B. Norris, Extracting the
complex optical conductivity of mono- and bilayer graphene by ellipsometry,
Appl. Phys. Lett. 140, 261909 (2014).

[159] P. K. Gogoi, I. Santoso, S. Saha, S. Wang, A. H. C. Neto, K. P. Loh, T.
Venkatesan, A. Rusydi, Optical conductivity study of screening of many-
body effects in graphene interfaces, Europhys. Lett. 99, 67009 (2012).

133



List of publications

Articles directly related to this thesis
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