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Introduction
The aim of this thesis is to analyse the properties of equilibria of a dynamical

system describing a subcircuit of a neural population model adapted from the
article Hahn et al., 2022. Specifically, presented are proofs of the existence and
uniqueness of an equilibrium point and a limited analysis of its stability dependent
on a bifurcation parameter g.

We considered a system of three ordinary differential equations (ode), with
each variable representing the mean activity of a distinct neural population, and
a reduced system of two ode’s corresponding to one population being silenced.

Motivation and Background

The cited article numerically investigated the computational properties of a
microcircuit in the mouse visual cortex, comprising of two layers with four dis-
tinct neuron cell types – their connectivity diagram shown in Figure 1(a). The
vertices of the graph represent distinct neural populations in two layers, namely
the excitatory population of pyramidal neurons and four types of inhibitory pop-
ulations, discernable by an expression of a characteristic protein. The presently
analysed subcircuit, depicted in Figure 1(b), consists only of one excitatory class
(pyr) and two inhibitory populations (pv, sst).1

(a) The studied mouse visual
cortex microcircuit. Hahn

et al., 2022 (CC BY).

(b) Presently
analysed

subcircuit.
Modified, from
Hahn et al.,
2022 (CC BY).

Figure 1: Connectivity diagrams of the neural population model

The connectivity is represented naturally via a 8×8 or 3×3 matrix respectively,
with each connection weighted proportional to its strength, and signed according
to the signalling population being excitatory or inhibitory.

1PYR stands for pyramidal neurons, PV stands for parvalbumin, SST for somatostatin
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1. Neurons, models
For appreciation of the subsequent mathematical treatment of the system,

this chapter provides a brief overview of some of the themes in computational
neuroscience.

1.1 Basics of neural physiology and circuits

In simplest terms, a neuron (Figure 1.1) is a cell which utilises the difference in
electric potential across its membrane to transmit information to other connected
cells . It does not do so continuously – rather a short impulse is triggered in the
cell’s body when the difference in potential reaches a certain threshold. This
impulse, called the action potential, then travels down the axon, to the axon
terminal, where it causes a discharge of neurotransmitters into the synapse be-
tween its membrane and the post-synaptic cell’s. These neurotransmitters then
act on the post-synaptic cell’s receptors interweaved in its membrane, to bring
its membrane potential closer or farther from the threshold, depending on the
pre-synaptic neuron being excitatory or inhibitory respectively. (Bear et al.,
2020)

Figure 1.1: Scheme of neuron. Adapted, with permission from Livshin, 2022.

Such connections between neurons may be conceptualized as a weighted edge
in a directed graph, with the sign of the weight determined by the pre-synaptic
neuron’s membership to either class. The strength of such a connection between
neurons serves as a basis for the values in the connectivity matrix C defined in
later text.

The activity of excitatory neurons – in present case pyramidal neurons – is
believed to carry the signal being transmitted in neural circuits. This view is sup-
ported by the contrast in connectivity patterns with inhibitory neurons, which
are usually connected only to local cells, whereas pyramidal neurons typically
project to more distant areas. While there are only a few meaningfully distin-
guishable subtypes of excitary neurons, there is pronounced variability in the
family of inhibitory interneurons (Buzsáki, 2006). They are differentiated usu-
ally by their morphology, connectivity pattern or a characteristic expression of
a protein, however a widely accepted classification is still lacking (DeFelipe et al.,
2013).

Most of the spotlight has historically been focused on the excitatory class –
as illustrated by their alternate label principal cells, however this paradigm has
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shifted to acknowledge the significance of the inhibitory class, namely that the
diversity of cortical functions is provided by inhibition (Buzsáki, 2006).

Despite this, canonical past and present neural microcircuit models only con-
sider one inhibitory population (Dayan and Abbott, 2005; Potjans and Diesmann, 2014;
Mejias and Longtin, 2014), with a contemporary trend for incorporating higher dif-
ferentiation or heterogeneity (Hahn et al., 2022; Zhang et al., 2020).

This is due to past experimental limitations and subsequent lack of data,
however recent applications of the selective optogenetic1 silencing of individual
interneuron classes (Tremblay et al., 2016) allowed meaningful development of mod-
els incorporating diversity among inhibitory interneurons.

1.2 Overview of common modeling approaches

Single neuron models. One of the prevalent simplifications in modeling is
to consider the membrane potential of one neuron as a single variable, hence
ignoring any morphology. Among these so-called single-compartment models are
the praised Hodgin-Huxley model, or the simplified integrate-and-fire family of
models.2

Presumably all the information a given neuron transmits is encoded in the
"all-or-none" action potentials – respectively their timing. Because there is con-
siderable variability in the sequence of spikes generated by a single stimulus, an
alternative approach is to focus on their mean firing rate over some observation
window. There is some ambiguity in the conceptualization of mean firing rate,
however that is beyond the scope of this overview. (Dayan and Abbott, 2005)

Figure 1.2: A scheme of a network, excitatory neurons colored red, inhibitory colored
blue. Mejias and Longtin, 2014 (CC BY).

Network models. A straightforward way to model a network of neurons (as in
Figure 1.2), is to represent each connection in a connectivity matrix and produce
a system of differential equations as large as the number of neurons. In such case
each equation describes the change of a given neuron’s membrane potential or
mean firing rate, depending on the single neuron model chosen.

Computational limitations and analytical unwieldiness motivates factoring
similar neurons into averaging units, which is not without its drawbacks, however
it may also be more suitable for the analysis of higher cortical functions (Wil-
son and Cowan, 1972). Another typical simplification is choosing the connecting

1A combination of optics and genetics, this technique usually uses adenoviruses that encode
photosensitive protein to control specific neurons. By shining light on the target nerve region,
the photosensitive protein encoded by the adenovirus is controlled.(Chen et al., 2022)

2Both decribed mathematically in the language of ordinary differential equations
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strengths only from a few values, often distinguishing only between the excitatory
or inhibitory populations as wholes – as was discussed above.

Both spiking models and firing-rate models (as they are named accordingly)
have their virtues and pitfalls, and together are central tools in the exploration
of networks of neurons. (Dayan and Abbott, 2005)

1.3 A population model of the mouse visual cortex

The authors in Hahn et al., 2022 follow the firing rate model approach, where
all neurons of the distinct populations are averaged into a single unit.3 The con-
nectivity matrix C is constructed from the measurement of synaptic strengths
between individual neuron pairs, however the effective interaction between popu-
lations is dependent on the number of cells, which is not known. Hence an overall
connectivity scaling parameter g was introduced, which may also be interpreted
as the network size.

The description of the population activity in Hahn et al., 2022 is based on the
Wilson-Cowan firing-rate model (Wilson and Cowan, 1972), and is cited as follows:

τr′ = −r + Φ(Icircuit + Iext) + η,

where r is a vector of firing rates, τ is a vector of neuron specific time constant
and Φ is an input-output transfer function.4 The term Icircuit = gCr denotes
inputs across the circuit population, Iext are inputs from an external source, and
η is a Gaussian noise term.

The transfer function Φ has φ(ri) as its i-th element, where the function φ is
defined as

φ(x) = ax

1 − e−x/b
,

for some positive constants a, b. Precise mathematical treatment of this function
is presented in the Appendix (i).

Subcircuit model. As was previously indicated, we have made some modifica-
tions to the cited model for the purpose of this thesis. Most notably, we reduced
the number of equations to three, dropped the Iext and η terms, set τ equal in
all its elements, and put a = b = 1. Less significant is a slight alteration of the
elements in the matrix C to approximating fractions for computational leisure.

We will be analysing the following dynamical system:
τr′ = −r + Φ(gCr),

where the elements of r correspond to the firing rates of the PYR, PV and SST
populations respectively.

The effect of silencing the SST population can be achieved by restricting our
view only to the top 2×2 submatrix of C and the corresponding two equations,
as will be formulated more precisely in subsequent text. We will refer to these
systems as SC and rSC respectively.

3The cited article has actually been even more lenient, factoring multiple different types of
inhibitory interneurons into a single population

4By the term τr the authors mean a vector, whose elements are the products τiri, where i
spans across population indices.
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2. Analysis of model

2.1 Model description

Consider the system of differential equations:
τr′ = −r + Φ(gCr), (SC)

where r = (r1, r2, r3)⊤, with r1, r2, r3 ≥ 0,

C =
(︂
cij

)︂3,3

i=1,j=1
=

⎛⎜⎝2/3 −5/3 −1/3
30 −3 −1/2
18 −3/2 0

⎞⎟⎠ ,
τ ≥ 0 is a constant and g ≥ 0 is a parameter. The function φ is as defined above
(with a = b = 1), and Φ is defined on R3 by the formula

Φ(x, y, z) = (φ(x), φ(y), φ(z)

At this point it is useful to observe that by a change of coordinates, we are able
to simplify the system somewhat. The matrix C is regular, and we denote the
inverse matrix by D = (︁

dij

)︁3,3
i=1,j=1. By setting x = gCr for x = (x1, x2, x3)⊤ ∈ R3

and applying the substitution technique t = t/g, the system becomes
τDx′ = −1/gDx + Φ(x),

which in turn can be written as
τgx′ = −x + gCΦ(x). (2.1)

It follows from a simple calculation that r1, r2, r3 ≥ 0 if and only if
di1x1 + di2x2 + di3x3 ≥ 0 i = 1, 2, 3. (2.2)

Reduced subcircuit – SST population silenced
We are also interested in the reduced version of the system, namely one with

r = (r1, r2)⊤ and the corresponding sub-matrix C̃ = (︁
cij

)︁2,2
i=1,j=1. This is as if

all connections to and from the SST population were severed, as indicated in
Figure 2.1. Directly analogous to the three-dimensional case, we may set x = gC̃r
and performing the same substitution t = t/g we arrive at the systems

τr′ = −r + Φ̃(gC̃r)
gτx′ = −x + gC̃Φ̃(x),

where we denote Φ̃(x, y) = (φ(x), φ(y))⊤ with conditions r1, r2 ≥ 0,
−9x1 + 5x2 ≥ 0 and − 45x1 + x2 ≥ 0. (2.3)

Figure 2.1: Reduced circuit. Modified, from Hahn et al., 2022 (CC BY)
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Remark. In following text, we will drop the notation with tilde ( ˜ ) in favor of
denoting both connectivity matrices as C and transfer functions as Φ, if it is
either clear from context or the reasoning is directly analogous in both versions.

In view of the above remark, we may rewrite the reduced system as
τr′ = −r + Φ(gCr), (rSC)
gτx′ = −x + gCΦ(x), (2.4)

with the conditions on r and x as stated in (2.3).

2.2 Global existence and uniqueness of solutions

In this section, we present and utilise well-known results from the theory of
ODE’s to prove global existence and uniqueness of the solutions of (SC). Consider
the general form of a system of ordinary differential equations

x′ = f(t,x) (DE)

where Ω ⊂ Rn is open and nonempty, J ⊂ R is a nonempty interval and f :
J × Ω → Rn is given.
Theorem 1 (Vrabie, 2004). Let f : J × Rn → Rn be continuous on J × Rn, and
let us assume that there exist two continuous functions h, k : J → R+ such that

∥f(t,y)∥ ≤ k(t)∥y∥ + h(t),

for each (t,y) ∈ J × Rn. Then, for each (a, ξ) ∈ J × Rn (DE) has at least one
global solution.

We apply this theorem to prove the existence of a global solution of (SC) and
(rSC). First, we perform some estimates:

1
1 − e−x

= e−x

1 − e−x
+ 1 = 1

ex − 1 + 1 ≤ 1
x

+ 1, for x > 0,

which gives
|x|

|1 − e−x|
≤ |x|| 1

x
+ 1| ≤ 1 + |x|, x ̸= 0,

|φ(x)| ≤ 1 + |x|, x ∈ R,

since the left and right hand side is defined for any x.
From this we estimate further:

∥Φ(x, y, z)∥2 ≤ (1 + |x|)2 + (1 + |y|)2 + (1 + |z|)2 ≤
≤ (3 + 2x2) + (3 + 2y2) + (3 + 2z2) =
= 9 + 2(x2 + y2 + z2) = 9 + 2∥(x, y, z)∥2

utilising the Young inequality (e.g. 2|x| ≤ x2/2 + 22/2 ≤ x2 + 2).
This leads to:

∥Φ(x, y, z)∥ ≤ 3 +
√

2∥(x, y, z)∥,

which finally gives the estimate
∥ − γx + CΦ(x)∥ ≤ γ∥x∥ + ||C|| · ∥Φ(x)∥ ≤ γ∥x∥ + ||C||(3 +

√
2∥x∥) ≤

≤ (γ +
√

2||C||)∥x∥ + 3||C||.
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Because the system (2.1) is equivalent to the system (SC), by Theorem 1 we obtain
global existence for any solution of the system (SC).

It still needs to be shown that any solution r(t) with the initial condition
(s1, s2, s3) ∈ R3, s1, s2, s3 ≥ 0 stays in this quadrant. Let ri = 0, it then follows
for the derivative

τr′
i = −ri + φ(g(ci1, ci2, ci3) · r) = 0 + φ(g(ci1, ci2, ci3) · r) > 0, i = 1, 2, 3

in other words, the solution r cannot cross into any other quadrant at any point.
Using the previous estimates, it is easy to show the right hand side of (2.1) is

Lipschitz:
∥ − γ(x − y) + C(Φ(x) − Φ(y))∥ ≤ γ∥x − y∥ +

√
2||C|| · (∥x∥ − ∥y∥) ≤

≤ (γ +
√

2||C||)∥x − y∥,

where x,y ∈ R3.
This establishes the uniqueness by virtue of the following theorem.

Theorem 2 (Vrabie, 2004). If f : J × Ω → Rn is locally Lipschitz on Ω, then
(DE) has the uniqueness property.

The proof of global existence and uniqueness of solutions of the simpler system
(rSC) is analogous.

Analysis of the equilibria

Now we provide an argument for the existence and uniqueness of the equilib-
rium point in the reduced model (rSC) for all positive values of parameter g. It
relies largely on the analysis of the asymptotical behavior of functions defined as
the right hand sides of (2.4). In subsequent reasoning, a weaker result considering
g in a positive neighbourhood of 0 will be presented for the system (SC).
Remark. The differential equation (DE) is called autonomous if it is in the form
x′ = f(x). In such case, recall that equilibrium points are such ξ ∈ Ω, for which
f(ξ) = 0.

At this point it is appropriate to establish that if the equation
− ρ+Φ(gC ρ) = 0

is satisfied for some ρ ∈ R3 ∖ {0}, then its elements ρi are necessarily positive,
owing to the positivity of φ, (i = 1, 2, 3).

2.3 Existence and uniqueness of equilibria of the re-
duced circuit (rSC)

By setting the left hand side to zero, rearranging and applying the inverse
matrix D = C−1 we obtain the system of equations:

(d11x1 + d12x2) = gφ(x1)
(d21x1 + d22x2) = gφ(x2),

(2.5)
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where D =
(︂
dij

)︂2,2

i=1,j=1
works out to be

D = 1
48

(︄
−3 5/3
−30 2/3

)︄
.

Substituting numerical values into (2.5) and some rearranging we obtain:
5/3x2 = 48gφ(x1) + 3x1

−30x1 = 48gφ(x2) − 2/3x2.
(2.6)

The aim is to prove the following claim:

Claim 3. The system of equations (2.6) has a solution (x1, x2)⊤ satisfying con-
ditions (2.3).

First, we take advantage of the fact that the right hand sides can be viewed
as a function of one variable. After some fraction manipulation we can define
functions X(y) and Y (x)

Y (x) = 1
5(144gφ(x) + 9x), x ∈ R,

X(y) = 1
45(−72gφ(y) + y), y ∈ R.

(2.7)

It is easy to see that Y is strictly increasing by differentiating
Y ′(x) = 1

5(144gφ′(x) + 9) > 0, x ∈ R,

since we know that φ′ > 0. This means we can consider the inverse function Y −1.
Next we analyse the asymptotic behavior:

lim
x→+∞

Y (x)
x

= lim
x→+∞

144g
5(1 − e−x) + 9

5 = 144g + 9
5 =: 1

αY

,

lim
x→−∞

Y (x)
x

= lim
x→+∞

144g
5(1 − ex) + 9

5 = 9
5 =: 1

βY

,

lim
y→+∞

X(y)
y

= −72g + 1
45 =: αX ,

lim
y→−∞

X(y)
y

= 1
45 =: βX .

Slope coefficients αY , βY are set as the reciprocal of the respective limits be-
cause we are interested in the slightly unusual expression of the asymptotes with
respect to the second variable (e.g. x = αY y). This is more suitable since we are
expressing X, Y −1 as functions of y, see Figure 2.2.
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Y−1(y)

X(y)

αY

βY

αX

βX

(a) g small

x

y

Y−1(y)

X(y)

αY

βY

αX

βX

(b) g large
Figure 2.2: Graphs of functions (2.7), with asymptote slopes labeled

Notice the asymptotes all intersect in (0, 0)⊤, βY < βX , and αY > αX for any
g > 0. From the definiton of limits, this means there are s < 0 < r, such that

X(s) > Y −1(s), and X(r) < Y −1(r).

Since both functions are continuous, by the Intermediate Value Theorem there
exists y0 ∈ R such that X(y0) = Y −1(y0), which in turn means the point
(Y −1(y0), y0)⊤ is a solution to the system (2.6).

It remains to see that this point is in the region defined by the inequalities
(2.3). This holds, as was demonstrated for the original system at the beginning
of this section.

2.3.1 Uniqueness of equilibrium
The proof of the uniqueness of the equilibrium is split into two cases dependent

on the value of g.

1. Case of small g: We will show that for small enough g, it holds that
(Y −1 − X)′ > 0. Applying the formula for the derivative of the inverse
function, we can compute:

(Y −1)′(y) = 5
144gφ′(Y −1(y)) + 9 ≥ 5

144g + 9 ,

using the fact that 1 ≥ φ′ ≥ 0. Similarily it can be shown that X ′ ≤ 1/45,
and since the following holds for sufficiently small g:

5
144g + 9 >

1
45 ,

we obtain (Y −1)′ > 1/45 ≥ X ′ for g < 3/2.

2. Case of unbounded g: We will compute the derivative at the intersection
of X and the asymptote of Y −1 as y → −∞. Let y0 denote the horizontal
coordinate of the (unique) point of intersection, and it is our aim to find a
lower bound on g so the conditions

X(y0) = 5
9y0, and X ′(y0) < 0, (2.8)
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are satisfied. It will then follow from the monotonicity of X ′ that X is
injective in the right half-plane bounded by the asymptote, and exploiting
the fact that Y is under its asymptotes, we obtain the uniqueness of the
equilibrium with some condition on g.
Recall that φ(y0) has y0 in the numerator, hence by expanding X(y0) in the
first equation in (2.8), we are able to cancel it out and obtain

−72g
45(1 − e−y0) + 1

45 = 5
9 .

Employing some straightforward arithmetic and rearranging, we compute:
−72g = 24(1 − e−y0)
−3g = 1 − e−y0

−y0 = ln(3g + 1).

Note that these expressions also establish the uniqueness of the intersection,
which is essential.
This we substitute into the formula for φ′ :

gφ′(y0) = g
1 − (3g + 1) + ln(3g + 1)(3g + 1)

(−3g)2

= −3g + ln(3g + 1)(3g + 1)
9g = 1

3(−1 + ln(3g + 1)3g + 1
3g )

= 1
3(h(3g) − 1).

The function h(x) := ln(x + 1)x+1
x

is monotone, concave and continuously
extendable to x = 0 by 1 – facts demonstrated in the Appendix (ii). As
a result, we can implement an estimate of its secant line between points
x = 0 and x = e− 1

h(x) = ln(x+ 1)x+ 1
x

≥ (ln(e) e

e− 1 − 1) x

e− 1 + 1 = x

(e− 1)2 + 1.

Now, we may perform the estimate for X ′(y0):
1
45(−72gφ′(y0) + 1) < 0

−24(h(3g) − 1) + 1 < 0 ⇔ h(3g) > 1 + 1
24

hence it is sufficient that
3g

(e− 1)2 >
1
24 ⇔ 3g > (e− 1)2

24
since the right hand value still clearly lies in the interval (0, e− 1).

Since the sufficient conditions for uniqueness presented in 1. and 2. jointly
cover all positive values of g, we have proved the uniqueness claim:

Claim 4. The system of differential equations (2.4) has a unique equilibrium point
for every positive g satisfying conditions (2.3).
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2.4 Existence and uniqueness of equilibria in the full
subcircuit

Since the reasoning in the case of the reduced subcircuit exploits the expression
of the equation as functions of one variable, it does not scale naturally with the
added dimension. The strategy presented here is to make use of the Implicit
Function Theorem to prove existence and uniqueness of the equlibrium at least
locally for small g. This is not meaningless, since small values of g are suggested
to be more biologically significant in mouse V1 cortex (Hahn et al., 2022) .

The following well-known theorem is taken from Rudin, 1976, modified with
present notation.

Theorem 5 (Implicit Function Theorem). Let F = F (x,y) be a Ck-mapping of
an open set E ⊂ Rn+m into Rn, such that F (a, b) = 0 for some point (a, b) ∈ E.

Put Ax = DxF (a, b) and assume that detAx ̸= 0. Similarly denote by
Ay = DyF (a, b).

Then there exist open sets U ⊂ Rn+m and W ⊂ Rm, with (a, b) ∈ U, and
b ∈ W , having the following property:

To every y ∈ W corresponds a unique x, such that
(x,y) ∈ U, and F (x,y) = 0.

If this x is defined to be ψ(y), then ψ is a Ck-mapping of W into Rn, ψ(b) = a,

F (ψ(y),y) = 0 (y ∈ W ), and Dψ(b) = −
(︂
Ax

)︂−1
Ay.

In accordance with the above theorem, denote by F (x, g) the right hand side
of the system (2.1), namely

F (x, g) = −x + gCΦ(x).

This corresponds to a specific value of the parameter g ≥ 0, (which plays the role
of y in the theorem).

It is easy to see that F (0, 0) = 0. We compute the derivative of F with
respect to the first three variables, and evaluate the Jacobian

DxF (x, g) = −1+gC
(︂
DΦ(x)

)︂
= −1+gC

⎛⎜⎝φ
′(x) 0 0
0 φ′(y) 0
0 0 φ′(z)

⎞⎟⎠ , (2.9)

which implies

det DxF (0, 0) = − det1 ̸= 0.

This guarantees the existence of a unique point ξ = ξ(g) for any g in a neighbour-
hood of g = 0, which is more than enough, as we are interested only in positive
values of the parameter.

Next, recall φ(0) = 1, and we calculate

x′
0(0) = −

(︂
− 1

)︂−1
DgF (0, 0) = CΦ(0) =

⎛⎜⎝
∑︁
c1j∑︁
c2j∑︁
c3j

⎞⎟⎠ =

⎛⎜⎝−4/3
53/2
33/2

⎞⎟⎠ =: y,

where ∑︁ is shorthand for ∑︁3
j=1.

12



Since it has already been reasoned that potential equilibrium points must lie
in the desired region, we proved the following:

Claim 6. There exists an ε > 0 such that the system of differential equations (SC)
has a unique equilibrium point ξg ∈ R3 for any value of the parameter g ∈ (0, ε).

The position of this equilibrium point may be estimated as
ξg = gx′

0(0) + o(g) = gy + o(g)

2.5 Analysis of stability

We may now turn our attention to analysing the stability of the dynamical
systems at equilibria using linearization techniques. First, recall the relevant
types of stability of the system (DE), now considered with the essential added
constraint on f being Lipschitz with respect to the variable x.
Definition 1 (Vrabie, 2004). The null solution of (DE) is stable if:

(i) for every a ≥ 0 there exists µ(a) > 0 such that, for every ξ ∈ Ω with
∥ ξ ∥ ≤ µ(a), the unique saturated solution x(·, a, ξ) of the system (DE),
satisfying x(a, a, ξ) = ξ, is defined on [a,+∞), and

(ii) for every a ≥ 0 and every ε > 0 there exists δ(ε, a) ∈ (0, µ(a)] such that, for
each ξ ∈ Ω with ∥ ξ ∥ ≤ δ(ϵ, a), the unique saturated solution x(·, a, ξ) of the
system (DE), satisfying x(a, a, ξ) = x(·, a, ξ) also satisfies ∥x(t, a, ξ)∥ ≤ ε
for every t ∈ [a,+∞).

Definition 2 (Vrabie, 2004). The null solution of (DE) is asymptotically stable if it
is stable and, for every a > 0 and µ(a) > 0 in definition 1 can be chosen such that,
for each ξ ∈ Ω with ∥ ξ ∥ ≤ µ(a), the unique saturated solution x(·, a, ξ) of the
system (DE), which satisfies x(a, a, ξ) = ξ, also satisfies limt→+∞ ∥x(t, a, ξ)∥ = 0.

We remark that a saturated solution of an (DE) is such that cannot be ex-
tended to a larger domain.

2.5.1 Stability of the subcircuits
Remark. Even though the systems we are considering (2.1) and (2.4) both have the
factor gτ > 0 on the left hand side, this only scales the spectrum of their respective
linearization matrix, hence we can consider the further simplified equations

x′ = −x + gCΦ(x). (sSC)

Furthermore, the following reasoning is parallel in both the full and reduced
circuit analysis, which we will exploit later.

Put F (x) the right hand side of (sSC). Owing to (2.9), we have already once
computed the Jacobian matrix DF .

13



Referencing the estimate from Taylor expansion of φ′ established in the ap-
pendix (2.11), we derive the matrix version for DΦ:

DΦ(x) =

⎛⎜⎝φ
′(x) 0 0
0 φ′(y) 0
0 0 φ′(z)

⎞⎟⎠ =

⎛⎜⎝
1
2 + x

6 + o(x) 0 0
0 1

2 + y
6 + o(y) 0

0 0 1
2 + z

6 + o(z)

⎞⎟⎠
= 1

2 1+1
6 diag(x, y, z) + diag(o(x), o(y), o(z))

= 1
2 1+1

6 diag(x) + O(x),

where diag(x, . . . ) denotes the diagonal matrix with elements in their respective
order, and O(x) is the generic error matrix.

Combining this with the estimate on the location of the equilibirum point
formulated in Claim 6, we obtain for the full subcircuit:

DF (ξg) = −1+gC
(︂
DΦ(ξg)

)︂
= −1+gC

(︂
1
2 1+1

6 diag(ξg) + O(ξg)
)︂

= −1+gC(1
2 1+1

6 diag(gy + o(g)) + O(gy + o(g))
)︂

= −1+gC(1
2 1+1

6 diag(gy)
)︂

+ gO(gy)

= −1+1
2gC + 1

6g
2C diag(y) + O(g2),

where O(g) = O(g, . . . ). Evaluating the matrix multiplication of the third term
is straightforward and yields

1
6C diag(y) =

⎛⎜⎝−4/21 −265/36 −11/12
−20/3 −53/4 −11/8

−4 −53/8 0

⎞⎟⎠ =: B,

hence overall we have arrived at the formula
DF (ξg) = −1+1

2gC + g2B + O(g2). (2.10)

Due to the definition of y, the corresponding matrix B will not simply be the
top right submatrix in the case of the reduced circuit, nevertheless, the derivation
of the analogous formula is clearly possible. It should be also noted that the
expression (2.10) and evaluation of the matrix B is not necessary for the following
argument.

The following theorem is applied to obtain the stability result, leveraging the
subsequent simple lemma.
Definition 3 (Vrabie, 2004). The matrix A is hurwitzian if all the roots of the
characteristic equation det(A− λ1) = 0 have strictly negative real parts.

Theorem 7 (Vrabie, 2004). Let Ω be a neighbourhood of 0 ∈ Rn. If f : Ω → Rn

is a function of class C1 with f(0) = 0 and whose Jacobian matrix A = Df(0) is
hurwitzian, then the null solution of the system (DE) is asymptotically stable.

Lemma 8. Let A be a matrix and σ(A) its spectrum. It then holds that

σ(A− 1) = σ(A) − 1

Proof. Derivation is straightforward from the definition of spectrum:

A− λ1 = A± 1−λ1 = (A− 1) − (λ− 1)1,

hence λ ∈ σ(A), if and only if (λ− 1) ∈ σ(A− 1).

14



We are now in the position to prove the stability, as is formulated in the claim:

Claim 9. There exists ε > 0 such that the systems (sSC) have unique asymptoti-
cally stable equilibria for g ∈ (0, ε).

Proof. The existence and uniqueness of the equilibria for all g ∈ (0, ε′), with
ε′ > 0, has already been established. From (2.10) and the lemma above we obtain
the formula

σ
(︂
DF (ξg)

)︂
= σ(1

2gC + O(g)) − 1,

and recalling the definition of O, jointly with
g||C|| ≥ max{|λ|;λ ∈ σ(gC)},

yields the existence of M > 0, such that
Reλ < −1 +Mg.

Hence there exists some ε ∈ (0, ε′), such that the spectrum of the Jacobian
matrix DF (ξg) has strictly negative real parts for g ∈ (0, ε).

As was argued, the above line of reasoning will work identically for the reduced
system, hence we can likewise expect stability for small g.
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Conclusion
We proved asymptotic stability of equilibria in the systems (SC) and (rSC) for

small values of g. A less limited stability result would likely demand an estimate
on the location of equilibria as well as a more detailed analysis of the function φ.

The mathematical treatment presented is consistent with the literature (Osto-
jic, 2014; Hahn et al., 2022), where stability for small synaptic couplings is observed.
However, the result is likely too weak to be of biological significance, as there is no
estimate provided for the size of the neighbourhood where stability is guaranteed.
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Appendix
This chapter establishes several simple, but useful facts.

(i) Properties of φ:
We define the continuous function φ : R → R as

φ(x) =

⎧⎪⎨⎪⎩
x

1 − e−x
, x ∈ R∖ {0}

1, x = 0.

It is clear that φ is nonnegative for x ≥ 0, and both numerator and denom-
inator change sign for x < 0, hence φ is nonnegative for all x ∈ R.
The estimate φ(x) ≥ x, x ∈ R is obtained by the computation:

x

1 − e−x
− x = xe−x

1 − e−x
= φ(x)e−x ≥ 0, x ̸= 0.

and since φ(0) = 1, the result is valid for all x ∈ R.
We show that φ is strictly increasing by differentiating

φ′(x) = 1 − e−x − xe−x

(1 − e−x)2 = 1 − (1 + x)e−x

(1 − e−x)2 , x ̸= 0.

Utilising the estimate ex > 1 + x, x ∈ R ∖ {0}, we show for the numerator
of the fraction

1 − (1 + x)e−x > 1 − exe−x = 0.

Furthermore, it holds that φ′(0) = limx→0 φ
′(x) = 1/2, hence we obtain

φ′(x) > 0 for all x ∈ R.
Next, we show φ′ ≤ 1:
(1 − e−x)2 = 1 − 2e−x + e−2x = 1 − e−x + (e−x − 1)e−x ≥ 1 − e−x − xe−x,

and finally, differentiating a second time we compute

φ′′(x) = xe−x

(1 − e−x)2 + 2xe−2x

(1 − e−x)3 − 2e−x

(1 − e−x)2

= x(1 − e−x)e−x

(1 − e−x)3 + 2xe−2x

(1 − e−x)3 − 2(1 − e−x)e−x

(1 − e−x)3

= xe−x + xe−2x − 2(1 − ex)e−x

(1 − e−x)3

and evaluate the limit by expanding e−x = 1 − x+ x2

2 + o(x2), as follows

lim
x→0

φ′′(x) =
2x− 3x2 + x3

2 + 2x3 − 2x+ 3x2 − 2x3 − x3

6 + o(x3)
x3 + o(x3) = 1/6.

Now, we may estimate φ′ via Taylor expansion at zero:
φ′(ξ) = φ′(0) + φ′′(0)ξ + o(ξ) = 1

2 + ξ
6 + o(ξ). (2.11)

(ii) Properties of h(x):
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The function is continuously extendable to 0 by its limit:

lim
x↘0

ln(x+ 1)x+ 1
x

= 1

Straightforward differentiation shows monotonicity:
1

x+ 1 · x+ 1
x

+ ln(x+ 1)x− x− 1
x2 = x− ln(x+ 1)

x2 > 0, for x > 0.

After differentiating again we assert concavity, likewise for x > 0:

− 1
x2 − 1

(x+ 1)x2 + 2ln(x+ 1)
x3

?
< 0

x+ x

x+ 1 − 2 ln(x+ 1) ?
> 0. (2.12)

This holds, as verified by the computation

(x+ x

x+ 1)′ = 1 + 1
x+ 1 >

2
x+ 1 = (2 ln(x+ 1))′,

combined with the fact that (2.12) is equal to zero for x = 0.
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