
MASTER THESIS

Jan Kobĺıžek

Group navigation in RTS games using
flow networks over flow field regions

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: Visual Computing and Game
Development

Prague 2023

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank Mgr. Jakub Gemrot, Ph.D. for his advice and help with my
thesis. I would also like to thank my family for their support during my studies.

ii

Title: Group navigation in RTS games using flow networks over flow field regions

Author: Jan Kobĺıžek

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: This thesis explores the challenges of implementing effective navigation
for groups of units in real-time strategy computer games, specifically focusing on
the movement of large numbers of homogeneous units across a two-dimensional
grid-based map.

The thesis presents a pathfinding algorithm that could be used in RTS games.
The algorithm enables the units to utilize multiple paths effectively by modeling
the unit navigation as a flow network problem. The units use precomputed flow
fields during the navigation. This allows for faster pathfinding times by offloading
part of the computation to the preprocessing.

The algorithm’s performance is evaluated against a baseline solution using the A*
algorithm and other existing solutions. Comparative analysis will be conducted
utilizing maps from the Moving AI 2D Pathfinding Benchmark dataset to assess
the efficacy of the proposed solution.

Keywords: pathfinding, group navigation, flow networks, RTS games, flow fields

iii

Contents
Introduction 4

Goals . 5
Thesis Structure . 6

1 Problem Statement 7
1.1 RTS Game Abstraction . 7

1.1.1 Map . 7
1.1.2 Units . 7
1.1.3 Pathfinding Problem . 8

1.2 Objectives . 9

2 Related Work 10
2.1 Representation of the Game World 10

2.1.1 Grid Representation . 10
2.1.2 Waypoint Graph . 10
2.1.3 Navigation Mesh . 10
2.1.4 Hierarchical Representation 11

2.2 Preprocessing . 12
2.2.1 Regional Decomposition 12
2.2.2 Path Precomputation . 14

2.3 Pathfinding . 15
2.3.1 Dijkstra . 15
2.3.2 A* . 16
2.3.3 JPS . 18
2.3.4 Hierarchical Pathfinding 19
2.3.5 Flow Field . 19
2.3.6 Flow Field Tiles . 20
2.3.7 Multi-Agent Pathfinding 20
2.3.8 Planning Based On Flow Networks 21

2.4 Execution . 22
2.4.1 Steering Behaviors . 22
2.4.2 Formations . 23

3 Problem Analysis 24
3.1 Map . 24
3.2 Pathfinding Problem . 24
3.3 Flow . 25
3.4 Flow Graph Algorithm . 27
3.5 Arrival Times . 28

3.5.1 Shortest Path in the Grid 28
3.5.2 Gate Path . 28

3.6 Estimating The Flow . 29
3.6.1 Execution Settings . 29
3.6.2 Dynamic Factors . 30
3.6.3 Flow Function . 32

1

3.6.4 Maximum Possible Flow And No Push Flow 33
3.6.5 Basic Flow Estimate . 34

3.7 Pruning The Solutions . 35

4 Implementation 39
4.1 Existing Solution . 39

4.1.1 Preparation . 40
4.1.2 Pathfinding . 40
4.1.3 Execution . 43

4.2 Observed Problems . 43
4.2.1 Too Early Path Assignment 43
4.2.2 Travel Time Consideration 44
4.2.3 Fluctuating Flow . 44

4.3 Proposed Solution . 44
4.3.1 Preprocessing . 46
4.3.2 Pathfinding . 48
4.3.3 Execution . 49

5 Evaluation 52
5.1 Goals . 52

5.1.1 Comparison To Other Methods 52
5.1.2 Finding Errors . 52
5.1.3 Measuring The Prediction Accuracy 52

5.2 Experiment Setup . 53
5.2.1 Compared Methods . 53
5.2.2 The Problem Set . 54

5.3 Testing Environment . 55
5.3.1 Simulation Setup . 55
5.3.2 Automatic Simulation . 56
5.3.3 Unit Model . 56
5.3.4 Resolving Errors . 57

5.4 Metrics . 58

6 Results 61
6.1 Comparison To Other Algorithms 61

6.1.1 Movement Times . 61
6.1.2 Computation Times . 62
6.1.3 Repathing . 64

6.2 Arrival Times . 65
6.3 Discussion . 66

6.3.1 Performance Differences 66
6.3.2 Problems . 67

7 Future Work 73
7.1 Better Flow Estimation . 73

7.1.1 Overflow . 73
7.1.2 Previous Gate Effects . 75
7.1.3 Flow Function . 75

7.2 Modified Objectives . 76

2

7.2.1 Possible Missing Solutions 76
7.2.2 Increased Cohesion . 76

Conclusion 77

Bibliography 78

List of Figures 82

List of Tables 84

A Attachments 85
A.1 Digital Attachment . 85

A.1.1 Program . 85
A.1.2 Pathfinding Data . 85

A.2 Performance Tables . 85

3

Introduction
This thesis deals with the topic of navigating groups of units in computer games,
specifically in the real-time strategy game genre (RTS): a genre of strategy games
where the state of the game changes in real-time (this differentiates it from turn-
based games). Popular games in this genre include Starcraft, Warcraft, Age of
Empires, and the Command and Conquer series.

In RTS games, the player can command their units to move to a certain goal
location. The units then have to navigate to the goal autonomously. Navigation
in this type of games faces several problems that don’t allow the use of the basic
versions of the common pathfinding algorithms. The units move over a map that
can change during the gameplay. The players can usually construct buildings
obstructing parts of the map or alter the terrain itself (for example, by cutting
down the trees in the Age of Empires series). The units have to be able to react
to these changes, even if the map changes during their movement, and alter their
plans accordingly. The player also expects the units to be responsive to their
commands. Therefore, The pathfinding has to finish quickly or provide the units
with an approximate movement plan, which will be further refined when the units
are already moving.

RTS games are doing pathfinding not only for single units. The player gives
movement orders to armies that can consist of hundreds or even thousands of
units. The best path for a single unit will often not be optimal for a large group
of units, and finding a path for each of the units individually will take too much
time and computing power. The units also collide with one another and may
block each other’s paths. Ideally, the units need to be able to react to such
situations without having to recompute their path.

The games often organize units into groups based on their common movement
targets and proximity to each other. The group of units can then be assigned a
single path. This is often not optimal because the units aren’t allowed to occupy
the same position at a single point in time. This is best visible on maps with a
lot of narrow passages. The units collide with each other and block each other’s
paths. The units often have to wait a long time before their path is clear and
they can pass through the chokepoint. It would often be quicker for a part of
the units to choose a different longer path, where they wouldn’t have to spend as
much time waiting for the other units (Figure 1).

Games attempt to solve this problem in various ways. Age of Empires II, for
example, temporarily decreases the size of the unit colliders so the whole group
can pass through the narrow section without the units blocking each other. The
older Age of Empires I forces the units to recalculate their path if the original
path is blocked by other units (if the other units aren’t moving).

An interesting method to solve this problem was proposed by Jan Pacovský[1].
The proposed algorithm based on flow networks was called a “Flow Graph.” The
map is transformed into a flow network with the nodes representing the choke-
points. The network is then used to find the quickest way of transporting all
the units to the target, utilizing multiple paths. In this thesis, we will build on
Pacovský’s work and improve the Flow Graph algorithm, using flowfields pre-
computed for different regions of the map. This algorithm, called “Regional Flow

4

Units are trying to move through a chokepoint between two buildings. The units
accumulate at the entrance and have to wait until they can pass. It would be quicker
for a part of the units to choose a different path.

Figure 1: Starcraft 2 Narrow Passage Problem (Image Source: Akker et al.[2])

Graph,” will be evaluated against common pathfinding methods and the basic
Flow Graph method.

Goals
The main goal of the thesis is to propose an algorithm that will make the units
effectively utilize multiple paths. This should help us avoid the problem we
illustrated for Starcraft 2.

Our algorithm, called Regional Flow Graph (RFG), should be able to solve or
at least reduce the severity of the common problems from the original algorithm,
namely the units getting carried off their path or a wrong separation of unit
groups. The unit groups using different paths should be able to separate from
each other efficiently, and there shouldn’t be many conflicts between the unit
paths.

The algorithm should compare well to the standard navigation methods and
to the original flow graph algorithm. The most important points of comparison
are the time it takes the units to reach the goal (in-game time) and the time it
takes the program to do the pathfinding.

We will compare the RFG algorithm’s performance to other algorithms (A*,
flow field, flow graph) on various metrics. We will also try to measure various
characteristics of the method. The real performance of the method will be com-
pared to the one predicted by our model.

We will discuss the problems and inaccuracies of our methods. These will

5

point us to future research or directly to the possible improvements to our algo-
rithm.

Thesis Structure
The thesis is separated into several chapters. This section will briefly introduce
the contents and the purpose of these chapters.

1. First, we will introduce the problem of pathfinding in RTS games. We will
define an abstract environment that will be used to run pathfinding requests.
We will also define the objectives that a good pathfinding algorithm should
achieve.

2. The second chapter will go through the literature related to pathfinding
with a focus on pathfinding in RTS games.

3. In the third chapter, we will analyze the problem of navigating a large num-
ber of units across the map. Based on our understanding of the problem,
we will introduce a theoretical model describing the pathfinding problem
and its solutions.

4. The fourth chapter will introduce the Flow Graph algorithm on which we
base our proposed method. We will describe the problems with the original
algorithm and propose a new Regional Flow Graph algorithm that will
attempt to fix them.

5. The fifth chapter will describe the experiments we will run to evaluate our
algorithm. It will also describe the testing environment we created and the
metrics gathered in our tests.

6. The sixth chapter presents the results of the evaluation. It compares the
RFG algorithm’s performance to other methods and describes possible prob-
lems with our method.

7. The seventh chapter describes possible improvements to our algorithm. It
also discusses possible modifications to the algorithm if we want it to achieve
different objectives than those considered in the thesis.

8. The conclusion chapter provides a short discussion of the strengths and
weaknesses of our algorithm and its possible use in RTS games.

6

1. Problem Statement
We want to propose a pathfinding algorithm that could be effectively used in RTS
games. The RTS game genre covers a wide range of different games, each with
different characteristics and requirements. Popular RTS games are proprietary
and not open source. We also don’t want to target any game in particular but
create a pathfinding algorithm relevant to a wider range of games. For this reason,
we will create a testing environment providing an abstraction of an RTS game.

We will select a few objectives that will be used to evaluate the performance
of our algorithms. The selected objectives will represent some of the common
requirements for a good pathfinding algorithm.

1.1 RTS Game Abstraction
We will create a testing environment (simulator) that will provide an RTS game
abstraction. The model of the game provided by the abstraction will be simplified
compared to a real game and will deal only with unit navigation ignoring things
like combat. We will also simulate only one movement order to a single group of
homogeneous units (same size and movement speed).

1.1.1 Map

Figure 1.1: Single tile with
neighbors and distances to them

In our testing environment, we represent the
map as a two-dimensional grid of tiles with uni-
form movement cost. Each tile has a boolean
passability value determining whether it can
be entered by the units (the impassable tiles
are called the walls) and 8 neighbors (4 of
them on the diagonal). For every neighbor, we
can determine its distance (1 for the straight-
direction tiles and 2 for the diagonal tiles) and
whether the unit can move there (the tile must
be passable, and for the diagonal tile, the two
neighbors next to it must be passable as well).
The tile with distances to the neighbors can be
seen in the Figure 1.1. The passability and dis-
tance values do not need to be stored because
they can all be easily computed based on passability values.

1.1.2 Units
The units in RTS computer games can have different collider shapes, with rect-
angle and circle shapes being the most common. Different units may also have
different shapes and sizes. We will use a single type of unit with the shape of a
circle.

The unit can occupy any place on the map where it doesn’t overlap with any
wall tile or other unit. The unit’s position can be specified in real numbers by its

7

The pathfinding problem consists of a map with impassable tiles (black) and passable
tiles (white), homogeneous circular units (red) at their starting positions, and a circular
target (blue)

Figure 1.2: A single pathfinding problem

x,y coordinates.
The unit navigation in RTS games deals with large groups of units representing

whole armies. We will reflect this in our testing environment. An average map
used in our simulator will contain between 1000 and 2000 units. All of the units
on the map represent a single group of units, and their starting positions are in
close proximity to one another.

1.1.3 Pathfinding Problem
In RTS games, the player can select a group of units and order them to move to
any navigable position on the map. The game then creates a plan the units can
use to navigate to their desired position. The units then autonomously follow
the provided plan and are able to react to any dynamic changes that may occur
during their navigation.

In real games, multiple groups of units may navigate to different target lo-
cations simultaneously. The interactions of different unit groups are outside our
work’s scope. We will simulate only one movement order given to a single group
of units. Our simulator represents this single movement order as a pathfinding
problem. The problem is specified by the map, starting positions of the units,
and the target the units should navigate toward (Figure 1.2).

8

The simulator is then provided with a method that will be used to solve the
pathfinding problem. The Regional Flow Graph will be one of the simulator’s
methods, along with methods against which we will compare its performance.
The work of the navigation methods can be divided into three phases.

• Preparation phase - This phase can be used to analyze the map or to con-
struct search structures. At this stage, we know neither the units’ starting
positions nor the movement target. Multiple pathfinding requests will reuse
the structures created at this stage.

• Pathfinding phase - The program receives the starting positions of the units
and the target they should move to. A plan is created for the units to follow.

• Execution phase - The units are following the plan created in the pathfinding
phase and navigating toward the target

The best plan for a single unit may not be the best for hundreds or thousands
of units. The paths used by the individual units may come into conflict. The units
may collide or block each other’s paths. The pathfinding with a large number of
units, therefore, calls for different than standard pathfinding methods.

1.2 Objectives
There are many requirements for a good pathfinding algorithm. These require-
ments may also vary for different games or even different players. One algorithm
could, for example, provide a plan which would result in the units reaching their
target faster but with higher casualties. Some requirements may also be hard to
quantify, e.g., units moving in a natural way.

In our thesis, we will focus on two requirements/metrics that we consider the
most important.

• Finishing time - the time it takes until all units reach the target. The player
presumably wants the units to execute the movement order quickly.

• Pathfinding time - The time it takes for the algorithm to create the plan the
units will follow. Units should react to the player’s order almost instantly.

These two requirements go against each other. Longer pathfinding times would
allow the algorithm to create a better plan resulting in a faster finishing time.
Our pathfinding algorithm should achieve fast times in both of these metrics.
We will compare the performance of our algorithm to the original Flow Graph
algorithm as well as to the A* and flow field methods that are commonly used in
RTS games.

9

2. Related Work
This chapter will introduce common methods used for navigation in RTS games.
First, we will describe the structures used to represent the map. The next three
sections will then give an overview of the methods used in the three navigation
phases (preprocessing, pathfinding, and execution).

2.1 Representation of the Game World
We need to have a structure representing the game world. The pathfinding will
then be performed on this structure. There are many representations possible
for a single map. Each of them will, however, have different characteristics. Our
choice will influence the quality of the paths generated in the pathfinding phase
as well as the time it takes to create a plan.

2.1.1 Grid Representation
The map is seen as a grid of 2D cells. Square cells with 8 possible neighbors (4
diagonal) are the most typical in the RTS genre. Other cell shapes, like hexagons,
are used less often. The chosen shape of the cell influences the performance of the
pathfinding algorithm[3]. The cells can be marked as passable or not passable, or
they can each have a specified movement cost (in our solution, we use the same
cost for all of the passable tiles).

This grid is probably the most natural and the simplest way of representing
an RTS game world. Many games are played directly on the grid, so this repre-
sentation comes out of the box. It is also easy to use because of its regular shape
of tiles and an unchanging number of neighbors. The grid will, however, typically
contain a large number of cells, resulting in a slower pathfinding phase.

2.1.2 Waypoint Graph
In some sense, the grid was a special case of another structure – the waypoint
graph. This structure corresponds to the weighted graph structure known from
discrete mathematics. The nodes in the graph represent positions on the map,
and the nodes with a path between them are connected by an edge with the
weight specifying the length of the path.

The number of nodes in this method is typically significantly lower than in the
grid representations, but their representation is more complex (the number and
the length of the connected edges vary between different nodes). Preprocessing or
manual placement by a designer is usually needed to obtain this structure. The
paths resulting from this method also typically won’t be optimal.

2.1.3 Navigation Mesh
In this method, the walkable areas of the map are covered by a polygon mesh
called navigation mesh, or navmesh[4]. The polygons of the mesh have to be
convex. This means a direct walkable path exists between any two points inside

10

a) Waypoint Graph b) Navigation Mesh

Figure 2.1: Same map is represented using the waypoint graph and a navigation
mesh (Image Source: Tozour [5])

a polygon. Some versions use only triangles or have a limit on the maximum
number of polygon sides.

A single polygon usually covers a large number of tiles making the search
space smaller for the pathfinding algorithms using it. Navmesh can also be used
to represent non-tile-based game worlds. Unlike the waypoint graph, it contains
information about all the walkable parts of the map, and the pathfinding algo-
rithms are able to utilize it (Figure 2.1). This makes the paths found on the
navmesh usually shorter.

The navmesh can be placed manually by the designer or automatically generated[6].
Navmesh isn’t a natural representation of the game world and therefore has to
be recalculated when the map changes.

2.1.4 Hierarchical Representation
Different map representations have different advantages. Less complex ones allow
for quicker pathfinding, but the paths may be far from optimal. More detailed
ones will provide more accurate results, but the computation will take longer.
Hierarchical representations try to combine the advantages of both.

These structures typically consist of several levels, each providing a different
accuracy of the world representation. Higher levels provide less detail, while the
lower levels represent the world as accurately as possible.

The pathfinding is first done on a higher level. The lower levels can then use
this less accurate path during their pathfinding. The path can be used to provide
a better heuristic for the algorithm running on the lower level. The lower level
pathfinding can also just find the paths between the points of the higher level
path.

Our algorithm uses a hierarchical map representation. We use a flow net-
work (a modified version of the waypoint graph) on a higher level and the grid
representation on a lower level.

11

Figure 2.2: Regional decomposition

2.2 Preprocessing
Map preprocessing is performed while the game is loading or during the gameplay
in the background over multiple frames. Because of this, the time constraints for
the computations aren’t too strict. The preprocessing doesn’t react to any of the
player’s orders and lacks some of the information necessary for path creation, like
the positions of the units and the goal.

This step, therefore, usually computes the information that multiple pathfind-
ing requests can later reuse. Or simplifies an otherwise complex pathfinding space.

2.2.1 Regional Decomposition
Regional decomposition is used to divide a map into regions (Figure 2.2). The
regions should correspond to larger open spaces, separated by narrower sections
(chokepoints). The decomposition has various uses. Hierarchical map represen-
tations can use the regions as their higher-level map abstraction, which can be
used to come up with a heuristic for pathfinding. Pathfinding can also be done
directly over the regions.

The borders between the regions correspond to the map’s chokepoints. These
places can be important for the game’s AI. Narrow sections are excellent places to
defend against enemy attacks or place defensive structures. Richoux et al.[7] use
the chokepoints to find the best places for the wall placement. These typically
lie near the chokepoints but not directly at them because they are often on non-
buildable (but walkable) terrain. Oliveira et al.[8] use them in a similar way,
also taking into account the position of the player base and the resources in the
region.

12

from the left: original obstruction map, height map, regional map with the region
borders, map with the gates and regions

Figure 2.3: Water level decomposition process (Image Source: Halldórson[9])

In our algorithm, we use Halldórson’s water level decomposition[9], which
will be introduced in the first subsection. Other regional decompositions will be
introduced in the second subsection.

Water Decomposition

Halldórson’s water level decomposition[9] is an efficient and easy-to-understand
regional decompositions method inspired by rising water. The algorithm works
in several steps (Figure 2.3).

1. First, a height map is created with each grid tile containing a distance to
the nearest wall (obstructed tile). Intuitively, the tiles furthest from the
wall have the lowest elevation level. The algorithm examines tiles at some
radius. If a certain percentage of these tiles is obstructed, the radius is used
as a distance to the wall.
Otherwise, the examined radius gets increased, and the process is repeated
until it returns the distance. By working with a percentage of tiles instead of
returning a distance of the closest obstructed tile, the algorithm effectively
smooths over the obstacle edges and reduces the number of regions gener-
ated in later steps. However, it pays for this improvement in an increased
computational time.

2. The height map is then used to generate regions and gates separating them.
The map is filled with water starting with the tiles at the lowest elevation
(the biggest distance from the walls). When a tile is filled with water, there
are three possibilities.

• The tile doesn’t have any neighbors filled with water: A new lake is
created with a center at this tile. The lakes correspond to the regions
of the map and are given unique ids

• The tile neighbors one existing lake: The tile is added to the lake (the
region)

• The tile neighbors multiple lakes: The tile is added to one of the lakes
(certain directions are prefered)

13

3. The algorithm finds tiles that neighbor a tile with a different region than
their own. These tiles are marked as gate tiles. We have generated gate
clusters separating the regions.

4. The gate clusters generated in the previous step do not typically form a
straight line. The algorithm selects two gate tiles bordering a wall and
creates a gate as a straight line between them. The tiles around the gate
have their regions reassigned such that the regions are separated by the
gate.

The map with regions and gates can then be further processed into a graph
that gives a simplified representation of the map and can be used to get estimates
for the distances between points on the map.

Other Decompositions

Bidakaew et al.[10] start with the generation of the depth map, just like the water
decomposition. Their algorithm then generates a medial axis for the map and
marks its important points (junctions, endpoints). The depth values on the paths
between two points are analyzed. If there is a local minimum with high enough
depth, a gate is created at the corresponding position. The algorithm can mark
not just gates but also chokepoint areas (when there is a larger plateau near the
local minimum).

Perkins[11] proposed a decomposition algorithm and implemented it as a li-
brary called BWTA (Brood War Terrain Analyzer). It first computes a Voronoi
diagram of line segments from the edges of the obstacles. The diagram is then
pruned to speed up the computation. The algorithm then identifies the region
and chokepoint nodes on the diagram (chokepoints have 2 neighbors). The algo-
rithm then merges nearby regions if the radius (distance to the closest wall) of
the chokepoint between them is close to the radius of one of the regions. Finally,
the narrowest sections of the map near the chokepoints are found and walled off
(marked as gates). Uriarte and Ontañón[12] greatly improve the speed of this
algorithm and implement it as the BWTA 2 library.

Richoux[13] proposes a decomposition algorithm more specific for Starcraft
and implements it in the TAUNT library. His algorithm doesn’t just consider the
walls when identifying regions but also the elevation, buildability, and presence
of resources. This means that two mineral sources should be in separate regions,
but two parts of the map separated by a chokepoint could be considered a single
region.

Yijun et al.[14] decomposes the map into regions using a quad-tree. Each node
of the tree represents a square section of the map and its children four smaller
subsections within it. The section is split into subsections when there is a certain
percentage of obstacles in the section (completely passable or obstructed sections
do not need to be split). The algorithm precomputes distances between the tiles
at the edges of the regions and uses them to speed up the pathfinding.

2.2.2 Path Precomputation
Some map preprocessing methods precompute information that can be used to
speed up the pathfinding phase of the navigation.

14

Uras et al.[15] mark the tiles at the wall corners as subgoals. The subgoals
are connected to each other if they are mutually visible, and their distance is
computed. The path obtained during the planning phase then consists of the
start, goal, and sequence of subgoal nodes.

Botea[16] computes for each of the map tiles the first move direction toward
every other tile. These directions are then stored as a tree of rectangles, where
the rectangles in the leaves encompass only tiles with only one direction.

2.3 Pathfinding
The navigation algorithm has received the unit starting positions and the target
they should move to. A plan is created for the units to follow. The structure of
the plan will depend on the pathfinding method used but is always some structure
describing the path the units should follow toward the target.

Standard pathfinding methods include Dijkstra, A* and its variations, JPS,
various hierarchical methods, and others. These algorithms will be described in
the following subsections.

2.3.1 Dijkstra
Dijkstra’s algorithm[17] is a pathfinding algorithm that used to be popular in
the game development industry but was later, in most cases, replaced by other
algorithms like A*. Dijkstra is an uninformed search algorithm which means it
doesn’t utilize any information about the search space beyond the way it can
traverse it.

The algorithm can be used in situations when we need to explore the entire
search space, such as in the case of the creation of flow fields. The flow field
creation is also where we use Dijkstra’s algorithm in our program.

1 OPEN ← s
2 While !OPEN.Empty:
3 v ← OPEN
4 If v == g:
5 break
6 ForEach neighbor n of node v:
7 If d(n) > d(v) + l(v,n):
8 d(n) = d(v) + l(v,n)
9 OPEN ← n

Pseudocode 1: Dijkstra’s algorithm

The algorithm (Pseudocode 1) runs on a graph with a starting node s and
a goal node g. Each node has a distance h(n), which is set to infinity for all
nodes except s at the beginning. There is also a function l(a,b), which returns
the length of the edge between the nodes a and b. The algorithm maintains a
priority queue OPEN with all the nodes the algorithm encountered but didn’t
close. The nodes in the queue are sorted based on their distance.

15

The algorithm selects the first node from OPEN and closes it. If the selected
node doesn’t belong to the goal, it is closed, and the algorithm inspects all of its
neighbors. For each of the neighbors, it adds it to the OPEN (if it isn’t already
there or isn’t closed) and calculates its distance from the start. If the distance
of the neighbor decreases, the stored distance value is updated, and the selected
node is set as the neighbor node’s predecessor.

If the algorithm reaches the goal, a path is retrieved using the chain of node
predecessors. The algorithm can also terminate if the OPEN queue contains no
more nodes. In such a case, the algorithm determined that the path doesn’t exist.

2.3.2 A*
The A* algorithm[18] can be seen as an informed version of the Dijkstra’s algo-
rithm. The algorithm tries to first expand the nodes in the direction of the target.
This is achieved by using a heuristic function h(v) that estimates the distance
from the node v to the target. Heuristic usually leads to the algorithm exploring
a lower number of nodes. This, however, isn’t always the case and depends on
how well the heuristic estimates the distances.

1 d(n) = d(v) + l(v,n) + h(n)

Pseudocode 2: The modification changing Dijkstra’s algorithm to A*

A* performs its search on a graph, and when using an admissible heuristic, it
is guaranteed to find an optimal path. The graph (or grid) the A* operates on,
however, won’t be a perfect representation of the map, and the path found won’t
typically be optimal.

A* performed directly on the grid is one of the algorithms we compare our
Regional Flow Graph method against. The Regional Flow Graph also uses A* in
one of its steps.

Heuristics

There are two properties we are interested in when it comes to heuristics - ad-
missibility and consistency. A consistent heuristic estimate is always less than
or equal to the estimated distance of any adjacent tile plus the cost of reaching
that adjacent tile. Consistency is an important property because an inconsistent
heuristic may lead to the opening of already closed nodes. Admissible heuristics
always estimate a lower than the real distance. The inadmissible heuristic may
lead to suboptimal paths. Despite this, inadmissible heuristics may be useful
because they are often able to find the path faster (even if it isn’t guaranteed to
be optimal).

The most common heuristic used for A* is the direct distance to the goal
ignoring the obstacles. This can be computed as the Euclidean distance, man-
hattan distance, or octile distance. Better heuristics may be obtained from map
preprocessing.

Goldberg and Harrelson[19], for example, place a number of points called
landmarks on the map. They then precompute the distances from every tile to
these points. The distances can then be used as a heuristic for the A* search.

16

Heuristics can also be obtained by first performing a search on a higher-
level abstraction of the map. These will be mentioned in the [link Hierarchical
Pathfinding]

A* On Grids

When we perform the A* pathfinding on a grid, we are guaranteed the optimal
path. However, in reality, the grid represents an open space for which the path
isn’t optimal. This is because the pathfinding only considers the movements in 8
directions. The agent in the game can reduce the length of the path by moving
at a different angle than one of the 8 allowed directions.

The length of the path can be improved by removing unnecessary points. If
two of the points on the path are mutually visible, the points between them can
be removed. This can yield a shorter path.

An even shorter path can be obtained by using so-called any-angle pathfinding.
These algorithms allow for edges of different lengths and angles. Both nodes at
the end of the edge must be mutually visible.

Nash and Koenig[20] propose an any-angle algorithm called Theta*. When the
neighbor of the currently checked node v is processed. Its distance is estimated
using both the node v as well as parent(v), and both can be set as the neighbor’s
parent. The resulting paths are, on average, 4% shorter than A* paths.

Harabor et al.[21] proposed an algorithm called Anya, which can find optimal
any-angle paths. The algorithm searches over intervals instead of the grid nodes.
An interval is a continuous section of one of the grid’s rows.

The paths computed on a grid have the form of polygonal chains. Such paths
do not look natural, but they can be turned into a smooth spline[22].

A* On Navigation Meshes

The A* is often a part of the pathfinding on the navigation meshes. The A* works
on graphs, so the navmesh must be seen as a graph. This can be done in several
ways. The nodes of the graph may be placed at the centers of the polygons, at
the centers of the edges, or at the vertices. The resulting graph isn’t too different
from a waypoint graph A* can easily use to find a path.

The path obtained using A* can be used directly[4], but it produces a jagged
path and doesn’t have any advantages over the pathfinding on the waypoint
graph.

In newer navmesh pathfinding algorithms, the A* only selects the polygons
the final path should go through. The final path is then found using the funnel
algorithm[23]. This path is optimal within the selected polygons, but there may
still exist a better path going through different polygons.

Demyen and Buro[24] propose an algorithm called TA*, which finds an optimal
path by iterating over different polygon paths. Each of the paths has a length
estimate (smaller than the real length of the path). The real path is then obtained
using the funnel algorithm, and its length is measured. The shortest path so far
and its length are stored. If the estimate of the polygon path length is lower than
the already found path, we know that we have found the optimal path. TRA*
algorithm works in a similar way but reduces the size of the navmeshes graph
representation by removing unnecessary nodes.

17

Left: The exploration in the canonical order, Right: algorithm exploring a map (mod-
ified version - diagonal moves not allowed at obstacle corners)

Figure 2.4: JPS - canonical exploration and jump points (Image Source: Rabin
and Sturtevant[30])

Cui et al.[25] present an algorithm called Polyanyna, a modified version of the
Anya algorithm used on grids. Just like its grid version, it performs a search over
intervals, not nodes. An interval is a continuous section of one of the polygon
edges.

Enemy Units

The length of the path found by the planner often isn’t the only criterion for a
good path. The game worlds often contain enemies which the agent wants to
avoid. Pan[26] estimates the probability of the enemy’s presence at a certain tile
and appropriately increases its movement cost. Bayili and Polat[27] modify the
heuristic function by factoring in the expected damage on the direct path toward
the goal. The paths which resulted in the unit’s death are also pruned.

IDA*

Iterative deepening A* or IDA*[28] modifies the A* algorithm by setting a depth
limit. A node n can only be added to the queue if its distance d(n) is smaller
or equal to the limit. If the algorithm doesn’t manage to find the path within a
specified depth, the limit is increased. The main advantage of IDA* over A* is
that it consumes less memory.

2.3.3 JPS
On uniform cost grids, the A* algorithm generates paths that may differ in the
move order but are of the same length and have the same ending and starting
points. The jump point search algorithm[29] tries to deal with this redundancy
and explore as few of these paths as possible.

For this purpose, the algorithm has pruning rules. JPS specifies a canonical
movement order for a path between two points on the map (Figure 2.4). First,
move diagonally, then straight. When expanding a node, we check for every
neighbor if we are reaching it using a canonical order. If this is the case, we

18

add it to the priority queue. Otherwise, we check if we can reach it using a
canonical order from the node’s parent. If it can be reached, it is ignored (a
different path will be used to add it). When a canonical order cannot reach the
neighbor, we mark the node as a primary jump point (a place where the canonical
movement order may change). Secondary jump points will be the nodes, where
the canonical path changes between the diagonal and cardinal direction while
moving to a primary jump point.

The paths found by the algorithm will be a sequence of jump points between
the start and the target nodes. Each of them can be reached directly from its
predecessor.

JPS+[31] precomputes for every map tile the first jump point node that can be
reached by moving in one of the eight directions. This way, we can immediately
find out all neighboring jump points neighboring any point on the map.

Rabin and Sturtevant[30] improve the JPS+ search by adding a bounding
boxing map preprocessing. For every node and movement direction, it stores a
bounding box encapsulating all the tiles for which the optimal path toward them
starts with the said direction. During the search, we can ignore jump points in
the directions whose bounding boxes don’t contain the goal.

2.3.4 Hierarchical Pathfinding
HPA*[32] optimizes pathfinding by constructing an abstract graph over the grid.
It divides the world into square sectors of a fixed size. For each of them, the
algorithm finds entrances (groups of passable tiles bordering another region) and
places a node at their centers. The nodes neighboring the same sector are then
connected with an edge of the length equal to the length of the path between
them (if such a path exists). During the plan creation, the algorithm uses A* to
find a path on the abstract graph. The grid path is then created by connecting
the centers of the entrances selected by the pathfinding on the abstract graph.

Li et al.[33] improve HPA* by dividing the world into rectangles instead of
squares. Picking them such that their borders contain as many wall tiles as
possible.

Factorio[34] divides the world into 32*32 chunks and, for each chunk, places
an abstract node for each of the components within it. The path is first found
over the nodes and then used as a heuristic for the search directly on the grid.

2.3.5 Flow Field
Flow field is a structure that, for each of the map’s tiles, contains a movement
direction. It is typically constructed by building a distance field that contains
the tile distances to the goal and then retrieving the movement directions as its
gradient.

Flow field navigation is one of the methods against which we compare our
algorithm. Our algorithm also utilizes flowfields.

The flow fields can contain information other than just the direction toward
the goal. Hagelbäck[35] uses different fields describing the target direction, enemy
positions, resource positions, and others. The fields are then combined, and the

19

movement direction is obtained. The combination depends on the unit (workers
should avoid enemies, while the soldiers should attack them).

In another paper, Hagelbäck[36] combines the A* and flow field navigation.
The flowfields are used near enemy units choosing the best direction to attack.
This increases the unit group’s battle performance while using less computation-
ally demanding A* to obtain longer paths.

2.3.6 Flow Field Tiles
Supreme Commander 2 uses an interesting algorithm[37] somewhat reminiscent
of HPA* but using flow fields. The world is divided into 10x10 regions. For each
of them, portals (groups of passable tiles bordering another region) are found,
and distances between them are computed.

When a path is requested, it is first computed using the portals. This is done
for each unit. The search is optimized by attempting to merge different unit
paths together.

For every portal on the path, the region behind it computes a flowfield heading
toward it. Many units typically request a single flow field that can be computed
only once.

The result can be smoothed over by starting the computation of the regional
flowfield not directly from the portal but from another portal further on the path.

The flowfields can be reused from earlier requests or precomputed.

2.3.7 Multi-Agent Pathfinding
The RTS pathfinding, and by extension, our thesis, deals with large numbers of
units. We will encounter situations when another unit blocks the unit’s path or
their two paths cross. There are several multi-agent pathfinding methods that
can be used to deal with this kind of problems.

One area of research that may offer a solution is multi-agent navigation. Silver
proposes an algorithm called Cooperative A* or CA*[38]. CA* works similarly
to the basic A*, but adds another dimension to the search space - the time.
The units compute their path and reserve the cell they are passing through for
a certain period of time. The cell can not be used by another unit at the same
time, and it has to either choose a different route or wait till the cell is freed. The
algorithm solves a wide range of pathfinding problems. The units do not have
to have the same target, origin, or starting time. The search, however, has to
be performed separately for every unit, and adding the time dimension greatly
increases the size of the search space.

Silver[38] offers some improvements. The units can find their path, ignoring
the time dimension and the reservations. The algorithm then does the pathfinding
in the search space with the added time dimension and uses the path that ignores
other agents as a heuristic. The algorithm also limits the depth of this search to
save computational power and returns only the path prefixes. The article calls
this improved algorithm WHCA*.

Erdem et al.[39] define a formal framework that can be used to find a so-
lution to multi-agent pathfinding problems using answer-set programming. The
algorithm receives a description of the problem (the map, each agent’s starting

20

position, and target) and a set of constraints, some of them optional (Can agents
pass through each other? Can they wait?...). The framework allows us to describe
and obtain solutions for a wide range of problems and agent models. However,
pathfinding with even 20 agents takes seconds. The Starcraft 2 screenshot used
in the introduction (link), for example, contains 60 units.

Alborz et al.[40] introduce an algorithm called biased cost pathfinding. The
agents are given a number specifying their priority. Each agent has defined a
biased cost function value for every tile of the map, which increases its cost. The
algorithm works in iterations. Every unit computes its path using A*. Some of
these paths will come into conflict. In such cases, the algorithm increases the
biased cost function values for all units involved in the conflict except for the one
with the highest priority at the tiles near the conflict location. The process is
then repeated again until there are no more conflicts or until a certain time limit
is reached.

All of the algorithms mentioned in this section are able to solve problems of
the multi-agent pathfinding. This includes problems where there are different
goals for different units. Despite this these methods aren’t a good fit for our
problem mainly because of their long pathfinding times. We are also only solving
pathfinding problems with a single goal, which allows us to do optimizations that
cannot be used by the algorithms mentioned in this section.

2.3.8 Planning Based On Flow Networks
Many of the conflicts between the unit’s paths that occur when doing navigation
for multiple units do not have to be resolved in the pathfinding phase. The
execution phase will be able to deal with most of the conflicts. The conflicts that
can not be resolved during the execution typically occur when a large group of
units tries to push through a narrow chokepoint. In such cases, the units have to
either wait or choose a path going through a different chokepoint.

For this reason, there are group pathfinding methods that do not try to prevent
all conflicts between the unit paths. Instead, they try to limit the number of units
passing through some sections of the map and assign alternative paths to parts
of the group.

Akker et al. propose a method that sees the map as a flow network[41]. A
waypoint graph is constructed over the map, with each edge having an assigned
capacity - the number of units that can pass through it per second. The method
supports multiple groups of units with different original positions and different
navigation targets. The pathfinding problem is solved as a multi-commodity flow
problem. The article, however, doesn’t specify how the flow network should be
created nor how the edge capacities can be computed. It also doesn’t evaluate
the method’s performance against the standard pathfinding algorithms like A*.

Jan Pacovský’s Flow Graph method[1], which this thesis is based on, solves the
problem in a similar way, but only for a single unit group and target. It specifies a
method of constructing the flow network, compares the algorithm’s performance
to other navigation algorithms, and achieves better planning speeds. The Flow
Graph method will be described in detail in the Implementation chapter.

21

2.4 Execution
In the execution phase, the units follow the plan supplied by the pathfinding
phase. The execution is called every frame to calculate the unit’s new position.
This is done until the unit reaches its goal. During the execution, the units try
to follow their pre-computed paths and try to avoid collisions with the walls or
other units. The unit movement happens in discrete steps, with a new position
in every frame.

Errors may occur during the execution. The units may get stuck, or their pre-
computed path may be obstructed (maybe someone built a building that blocks
the path). The units have implemented control mechanisms that detect such
situations and solve them (for example, by recalculating the unit’s path).

2.4.1 Steering Behaviors
The units used in our abstract game model use steering behaviors during their
navigation. The steering behaviors[42] direct the unit movement during the exe-
cution. They provide reactive steering based on sensory input from the environ-
ment. The input from the environment is typically limited to the unit’s small
neighborhood. The steering behaviors consider each unit independently, and the
units do not communicate with each other.

The steering works with a physical of the unit model. The unit has size,
position, momentum, and other properties. Different steering behaviors provide
forces that influence the unit’s momentum. Each force represents some primitive
steering behavior, and their combination can create more complicated behaviors.
We will introduce a list of some of the commonly used steering behaviors.

Seek - The unit is trying to move to some target. This can be a point on its
path, a unit it is pursuing, or a direction specified by a flow field.

Separation - The unit should keep a certain distance from other units. Nearby
units, therefore, exert a repulsive force. The closer they are, the greater the
force’s magnitude.

Alignment - The unit is trying to copy the behavior of the nearby units. The
unit tries to have the same momentum as the nearby units.

Cohesion - The unit tries to reach the center of gravity of the nearby units.

Obstacle Avoidance - The unit tries to avoid a collision with the walls. The
force generated depends on the direction toward the wall and its proximity.

Unit Collision Avoidance - The unit tries to avoid collision with other units
and adjusts its movement direction accordingly. There are many methods for
collision avoidance. The notable ones include RVO, ORCA[43], and Clearpath[44]

22

a) Row Formation b) Box Formation

Figure 2.5: Age of Empires 2 formations

2.4.2 Formations
The execution doesn’t always work with individual units. Some methods co-
ordinate the movement of groups of units. A popular way of implementing a
movement of the groups of units is to organize them into formations. The forma-
tions aren’t used in our abstract game model and are mentioned only as one of
the important approaches to group navigation.

The formation is an arrangement of units, where each unit receives a relative
position. The units are then trying to maintain this position. The positions
may be fixed and unchanging. It can also just be a preferred position toward
which the unit will receive a steering force. Formations limit conflicts between
the unit paths because the whole formation moves in a single direction. It may
also decrease the computation requirement because the whole formation follows
a single path. The armies throughout history often fought in rigid formations,
and adding them to the game may sometimes add to the game’s realism.

Age of Empires 2 was one of the first games to use formations[45] (Figure
2.5). The player could choose from different formation types, which contained up
to 40 units. The formations differed in their shape and the positions assigned to
different unit types. For example, in the box formation, the ranged units would
be surrounded by the melee units.

The formation’s movement speed was equal to its slowest unit. When passing
through a chokepoint smaller than the formation, the unit collision radius was
turned off. This allowed the formation to pass through without problems but
somewhat decreased the realism.

23

3. Problem Analysis
Before introducing our algorithm, we will introduce a theoretical model of group
pathfinding. We will define the pathfinding problem for group navigation and
analyze its possible solution.

3.1 Map
A map is a grid of squared tiles with a structure as described in the Problem
Statement chapter. The tiles have a region assigned indicated by an integer ID
(there is a special region for all the walls). The region must be connected (except
for the gate region). For any two tiles in the region, there must exist a path
between them consisting of only the 4 straight movements (up, down, left, right)
that doesn’t at any point leave the region.

Definition 1 (neighboring regions). We define a relation between the regions
saying, whether the regions neighbor each other (there exist two tiles of these two
regions that neighbor each other):

RA, RB ∈ R : RA ∼NG
RB

Where R is the set of all regions.

The borders between the regions (tiles that have a neighbor tile of a different
region) are marked as gates. There can be multiple regional decompositions of the
map, but ideally, the regions should border each other at the map’s chokepoints.
We call the locations where the regions neighbor each other the gate.

Definition 2 (gate). The gate is defined by the two regions neighboring it:

G = {RA, RB}

The gate has a length Gl based on the distance between two tiles on its end.

Definition 3 (neighboring gates). We say that the gates neighbor each other
when they share the same region:

G1, G2 ∈ G : G1 ∼NG
G2 ⇔ ∃R ∈ R : G1 ∈ R ∧ G2 ∈ R

3.2 Pathfinding Problem
When a unit moves along a path toward the goal, it passes through a sequence
of gates. We call this sequence the unit’s gateway path:

Definition 4 (gateway path). Gateway path is a sequence of gate

PG = (G1, G2, G3, ...)

To find the gateway path, we need to create a graph based on the decomposi-
tion, with nodes representing the gates and the edges connecting the gates from
the same region.

24

Definition 5 (pathfinding graph). We define a graph Γ = (G, E) where:

• G is the set of all gates

• E = {(G1, G2) : (G1, G2) ⊆ G2 ∧ G1 ̸= G2 ∧ G1 ∼NG
G2} is the set off all

the edges (connections between the gates)

Definition 6 (valid gateway path). For a gateway path to be valid within a graph
Γ there must be an edge between the gates following each other:

V alid(Γ, PG) ⇔ ∀GA, GA+1 ∈ PG : (GA, GA+1) ∈ E

Definition 7 (region path). We can also define a region path as the sequence of
regions through which the unit travels:

PR = (R1, R2, R3...) : R1, R2, R3... ∈ (R)

Definition 8 (valid region path). For the region path to be valid there must exist
a corresponding valid gateway path:

V alid(Γ, PR) ⇔ ∃PG : V alid(Γ, PG)∧(∀GA ∈ PG, ∃RA ∈ PR : RA ∈ GA∧RA+1 ∈ GA)

When the player orders a group of units to move to a certain location a
pathfinding request is sent to the pathfinding algorithm.

Definition 9 (pathfinding request). We define the pathfinding request as a tuple:
Π = (n, o, g, Γ) where:

• n is the number of units

• o is the origin (single 2D point in two-dimensional space approximating the
starting position of the group of units)

• g is the position of the goal (single 2D point).

3.3 Flow
We define a metric called the flow that describes the number of units that pass
through a gate (or through the goal) per second. The flow fluctuates through
time. The flow through the gate G at the time t is written as ΦG(t). We can also
differentiate an outgoing flow (the flow passing through a gate) and an incoming
flow (the flow coming to the gate from its predecessors).

• Φout
G (t) - Flow coming out of the gate G at the time t

• Φin
G (t) - Flow arriving at the gate G at the time t

• Φinto
G1⇒G2(t) - Flow arriving at the gate G2 from the gate G1 at the time t

• Φtoward
G1⇒G2(t) - Flow exiting the gate G1 toward the gate G2 at the time t

• Φin
G (t) = ∑︁

(Gi,G)∈E Φinto
Gi⇒G(t)

25

The incoming flow strongly depends on the outgoing flow from the predecessor
gate and the movement times between our gate and the predecessor gates.

Definition 10 (unobstructed movement time). def:unobstructedMovement] Un-
obstructed movement tG1⇒G2 is the time it would take the units to reach the gate
G2 from the gate G1 if there were no units blocking the way. In the simulation,
there may be units accumulated at the gate blocking the path for the unit. This
effect can be seen in Figure

In our model, we make an assumption that the flow doesn’t change when the
units are traveling between the gates. This is, however, often not true. Execution
problems may occur, which will result in a change in the flow value. If we make
this assumption, we can say: Φinto

G1⇒G2(t) = Φtoward
G1⇒G2(t − tG1⇒G2) where the tG1⇒G2

is the time of unobstructed movement from G1 to G2
If multiple units move toward the goal, we can separate them into groups

based on the gate paths they follow. Each group will have specific times the first
and the last unit reaches the target, a number of units, and flow values at each
gate passed and at the goal. We will call these groups the flow streams.

Definition 11 (flow stream). Flow stream is a tuple s = (n, o, g, PG) where

• n is the number of units in the stream

• o is the origin of the units

• g is the goal the units navigate toward

• PG is the gateway path common for all of the units in the stream

Definition 12 (valid flow stream). The flow stream s is valid for a pathfinding
request Π if the gate path is valid, the origin and the goal neighbor the appro-
priate gates, and the number of units isn’t higher than the total number of units
navigating:

σ(s, Π) ⇔ ((Region(o) ∈ G0) ∧ (Region(g) ∈ Glast) ∧ V alid(Γ, PG) ∧ n ≤ Π.n)

Definition 13 (arrival times). We define tfirst
s and tlast

s for a flow stream s as
the arrival times of the first and last units from the stream.

Definition 14 (solution set). We define a set of all the solutions φ to the pathfind-
ing problem Π. The solution is a set of flow streams.

φ = {S ⊆ S : (∀s1, s2 ∈ S : s1 ̸= s2 ⇒ s1.PG ̸= s2.PG) ∧ (
∑︂
s∈S

s.n = Π.n)}

where S = {s : σ(s, Π)} is a set of all streams valid for a particular pathfinding
request and a graph.

Definition 15 (solution time). The time of the solution tS is the finishing time
of its slowest stream

ForS ∈ φ : tS = Maxs∈S(tlast
s)

where S = {s : σ(s, Π)} is a set of all streams valid for a particular pathfinding
request and a graph.

26

Group pathfinding aims to find the quickest way of moving the units from the
start to the goal. The quickest solution SQ can be selected from all the solution
sets of flow streams.

Definition 16 (quickest solution). SQ is the quickest solution if SQ = MinS∈φ(tS)
where φ is the set of all solutions and tS is the time it takes the solution S to
finish.

3.4 Flow Graph Algorithm
To find the quickest solution to a pathfinding problem, we use the Flow Graph
algorithm. The basic structure of the algorithm is as follows:

1. Construct a flow network where the source represents the units’ starting
position, the sink represents the target, and the other nodes the gates.

2. Propose several sets of paths that the flow streams could use.

3. Find the best solution time that can be achieved by using each of the path
sets. And select the set with the lowest solution time.

4. Assign the units to different paths from the selected set in a way that would
result in the quickest finishing time.

In steps 3) and 4), we need to estimate the finish times of different solutions.
We know that this time is equal to the slowest stream s from the solution tlast

s .
We can estimate this time as:

tlast
s = tfirst

s + tΦ
s

• tfirst
s is the arrival of the first unit

• tΦ
s is the time it takes to transport all units from the stream (after the first

unit arrived)

The methods that could be used to estimate the arrival time tfirst
s will be de-

scribed in the Arrival Times section. The flow time (transport time) tΦ
s using

the Equation (3.1) based on the flow. Estimating the flow itself is a difficult task
which we will tackle in the Estimating The Flow section.

ns =
∫︂ tfirst

s +tΦ
s

tfirst
s

Φin
T,s(t)dt (3.1)

• ns is the number of units in the stream

• Φin
T,s(t) is the flow coming into the target from the stream s at the time t

The steps 2), 3) and 4) also deal with another problem. The set of all the
possible solutions is too large. We have a large number of different combinations,
each with many possible unit assignments. We would like to limit the number
of path combinations proposed in step 2) ideally without losing the combination
used by the optimal solution. In steps 3) and 4) we would also like to be able to

27

determine the best unit assignment and its solution time without going through
all of the possible assignments. Ideally, we should be able to determine the unit
assignment directly from the path combination and the number of units. The
possible ways of reducing the number of examined solutions will be discussed in
the “Pruning The Solutions” section.

3.5 Arrival Times
In the Flow Graph algorithm, we often need to calculate the time the units move
from point A to point B (unobstructed by other units). This estimate should
be performed quickly but be reasonably accurate. The method used for the
estimation can greatly influence the characteristics of our algorithm. If we set
the A as equal to the origin, we call the movement time the arrival time.

The time of the unobstructed movement will mostly depend on the distance
between the two points but also possibly on the distance and shapes of the ob-
stacles. In our estimate, we will only use the distance. And estimate the time
as:

tA⇒B = distance(A, B)
unitSpeed

To estimate the time we then simply need to estimate the distance traveled.
Several methods can be used for this. We will describe the shortest grid path and
the gate path methods.

3.5.1 Shortest Path in the Grid
We will find the shortest path on the grid between the two points and return its
length. Often the path needs to pass through a specific sequence of gates. The
A* pathfinding algorithm can be modified to deal with this requirement.

If we use a path on a grid with eight possible directions, the length of the actual
shortest path may be overestimated. This can be prevented by smoothing the
path over to get a true shortest path. The true shortest path will underestimate
the travel distance taken by the units because not all units will follow the optimal
path. The main problem with this method is that the distances can not be easily
precomputed, and the pathfinding will take longer than with other methods.

3.5.2 Gate Path
The distance can be estimated using the gateways the path will take. For the
flow streams, we even have a gate path already specified. We will sum up the
distances between the gates in the path and then add the distance from the origin
to the first gate and from the last gate to the goal.

This method will be quicker than the previous method because the distances
between the gates can be precomputed. The resulting distance, however, won’t
equal the shortest distance between the two points.

Ideally, we would like our estimate to match the length of the path used by
the units, but different units may take different routes between the two gates.
The route depends on the unit’s original position, target position, other units,

28

and various other factors. We, therefore, have to use simpler estimates like the
shortest distance between the gates or the distance between the gate centers.

Shortest Distance

The distance between the two closest points on the two gates. The estimate given
by this method will always be lower than the distance found by the A* (the A*
path must use two points on the gate, and the distance between them must be
equal to or higher than the gate distance).

Center Distance

The distance between the gate centers. This estimate will overestimate the short-
est distance between the points. There is a path between these points that goals
through the gate centers, but it may not be the shortest path.

Given that the shortest path underestimates the distance traveled by the units
(not all of them can follow the optimal path), this method is the one used in the
implementation.

Weighted Average

This method attempts to combine the two previously mentioned methods (or
some others). By averaging their results (which provide an upper and lower
bound to the length of the shortest path), it tries to get an estimate closer to the
length of the shortest path.

3.6 Estimating The Flow
To get a reasonable estimate of the movement of units, we would like to estimate
the flow going through a gate. We don’t know all the factors that go into the
flow value at a gate, but we can deduce the most important ones.

We can divide these factors into two basic categories

3.6.1 Execution Settings
Execution settings are parameters that are constant in the simulator (speed of
the units, unit size, steering force settings. . .). These parameters can be included
in the flow computation or factored into the formula as constants (but then the
formula would need to be recomputed every time these parameters are changed).

Unit Speed

Slower unit speed will result in lower flow values and vice-versa. But it isn’t
clear if this relation is linear (it may depend on the steering forces set up and the
movement change limitations).

Unit Size

Smaller unit size will result in a higher flow because it is possible to fit a higher
number of units into a gate of the same size.

29

Steering Forces And Turning Speed

Probably very complex and not easily computed dependence. Higher separation
forces result in lower flows and higher steering forces in higher flows, but the
function describing this property will be complex. The effects of local avoidance
or turning and movement change speed will be essentially impossible to predict.

3.6.2 Dynamic Factors
Parameters that either change during the execution or vary between different
gates. The impact of these factors will depend on the execution settings chosen
in the game, and it will be specific to every game.

Incoming Flow

The incoming flow will set the maximum possible value of the outgoing flow.
There may also be other dependencies - a higher flow value may generate more
push toward the gate. We consider only the incoming flow at a specific moment.
The flow that reached the gate previously will be considered in a different variable.

Overflow

The units tend to accumulate at the gates, and they push the units in front of
them forward. A higher amount of accumulated units will generate more push
and (in almost all cases) increase the flow. For example, the flow in Figure 3.2
is 10% higher than the flow in Figure 3.1. It may, however, happen that the
pushing causes units to get into more collisions and possibly decrease the flow,
as observed in the simulation. This can be seen as a problem with the execution.
To measure this, we define an overflow function.

Definition 17 (overflow). We define the overflow as the difference between the
cumulative incoming and outgoing flow at the gate G and time t

OG(t) =
∫︂ t

0
Φin

G (x)dx −
∫︂ t

0
Φout

G (x)dx

Gate Length

Smaller gates will only allow lower flow values, while the larger gates can be
effectively passed even by massive amounts of units. The gate length will almost
certainly set an upper limit on the flow that can pass through the gate.

However, even flows smaller than the maximum may be impacted (for ex-
ample, a lower amount of overflow may be required to push the units through).
Moreover, we do not know if the maximum flow linearly depends on the gate
length. The units near the walls may move slower than the units at the center of
the gate.

30

Figure 3.1: Low Overflow Figure 3.2: High Overflow

Effects Of The Wall Shape

The flow through the gate may be affected by the general shape of the walls near
the gate. The walls forming a funnel (Figure 3.5) will have a higher flow than
a long tunnel with unchanging width (Figure 3.6). Smoother walls (Figure 3.3)
result in a higher flow than rough walls with a lot of bumps and crevices (Figure
3.4). These properties are tough to define and measure, and many of them exist.

Figure 3.3: Smooth Gate Figure 3.4: Rough Walls

Execution Errors

The final flow can be affected by the errors of the execution. These are hard
to predict and may depend on the shape of the map, the choice of execution
algorithm, and the assignment to the flow streams.

We will list examples of the navigation errors we encountered when testing
the navigation

1. The units at the entrance are pushed close to each other, and some of them
collide. This results in the entrance being temporarily blocked (Figure 3.7).

31

Figure 3.5: Funnel Gate Figure 3.6: Straight Gate

2. In Figure 3.8, we can see the units in the ring having their path blocked by
the units above them and being pushed toward the wall.

3. In Figure 3.9, we see two flow streams heading to two different gates. The
stream units are, however, mixed up and have trouble separating. Some of
the units are getting carried off their path by the stream they do not belong
to.

Figure 3.7: Blocked En-
trance

Figure 3.8: Wall Hug-
ging

Figure 3.9: Stream Sep-
aration Error

Prediction of errors shouldn’t be included in the flow computation but should
be considered when implementing the execution part.

3.6.3 Flow Function
We would like to define a function that will help us estimate the flow going
out of a gate at any given moment in time. This will help us determine which
combination of streams will allow us to push the highest flow and achieve the
quickest solution.

This function can be created based on the factors mentioned in the previous
section. We will, however, consider only some of them. The execution errors
and the effects coming from the shape of the walls are too hard to estimate to

32

be helpful. The unit speed, the steering forces set up, and the movement change
speed are static for the whole simulation. Therefore, estimating the flow based on
different separation force values is unnecessary. We are left with three variables
to compute the flow. We can define a flow function based on them.
Definition 18 (flow function). Flow function computes flow going out of the gate
based on the incoming flow, overflow, and the gate’s length

Φout
G (t) = F (Φin

G (t), OG(t), Gl)

We do not know the interactions between the function variables and the exact
function will change with different simulation settings (unit steering forces, speed
of movement change, max unit speed. . .). The function may also ignore some
less important variables.

3.6.4 Maximum Possible Flow And No Push Flow
We will define two values important for flow estimation.
Definition 19 (maximum flow). The maximum flow Φmax

G is the maximum flow
that can be pushed through the gate G.
Definition 20 (no-push flow). The no-push flow Φno−push

G is the maximum flow
that can be pushed through the gate G with no push from the overflow.

These values will not depend on the incoming flow or the momentary overflow
and, for given simulation settings, can be estimated using only the gate length.

To illustrate the expected behavior, we will consider three values of a constant
incoming flow. In real situations, the flow will not be constant.

1. Φin
G ≤ Φno−push

G The outgoing flow should be equal (or almost equal) to the
incoming flow (Figure 3.10).

2. Φno−push
G ≥ Φin

G ≤ Φmax
G The outgoing flow will start at the “no-push level”

as the overflow accumulates, the flow will rise and stabilize at Φin
G . In the

end, when there is no more flow incoming, the flow will decrease and then
quickly fall off after reaching the “no-push” level (Figure 3.11).

3. Φmax
G ≤ Φin

G The outgoing flow will once again start at the “no-push level”
and then rise to and stabilize at Φmax

G . When the incoming flow stops, the
flow should continue to be at the maximum level while there is still enough
overflow and then fall off, similar to the situation in the second case (Figure
3.12).

The time and shape of the transitions are unknown and will depend on the
gate length, the incoming flow, and the execution settings. For example, a higher
incoming flow will probably build up the push more quickly and shorten the t1
transition periods. This effect may even make it worth pushing in a higher than
the maximum flow.

The units do not pass only through one gate, and all of the gates passed will
affect the shape of the resulting flow. Moreover, the incoming flow will not be
constant in these cases. The basic behavior will still be the same. A higher
number of gates that fall into cases 2) and 3) will smooth out and increase the
length of the transitions.

33

Figure 3.10: Low Incoming Flow Figure 3.11: Medium Incoming Flow

Figure 3.12: High Incoming Flow

3.6.5 Basic Flow Estimate
Our implementation (Flow Graph) uses only a rough estimate of the flow going
through an edge. It ignores the overflow effect and assumes a linear relationship
between the gate length and the flow.

Definition 21 (basic flow estimate). We define our basic flow estimate as

Φout
G (t) = F

(︂
Φin

G (t), Gl

)︂
= Min

(︂
Φin

G (t), c · Gl

)︂
The constant c should be chosen such that the flow capacity (Φcap

G = c · Gl) is
somewhere between the no-push and max flow Φno−push

G ≤ Φcap
G ≤ Φmax

G

Ignoring the effects of the overflow will produce inaccuracies. How closely the
estimate matches reality will depend on several factors. The closer the Φno−push

G

and the Φmax
G , are to each other, the more accurate the estimate. Longer transi-

tions between the flow levels and nonlinear effects of the gate length will result
in less accurate modeling.

The main advantage of this model is its simplicity, which can be used to make
some important assumptions. This model may also be used only for an initial
flow estimate, which a more accurate model can further refine.

34

3.7 Pruning The Solutions
We can use the simplicity of the basic flow estimate to reduce the number of
solutions we have to examine. We can show that there exists an optimal solution
with certain characteristics. We can make these characteristics a requirement,
thus reducing the Flow Graph’s search space. We will also be able to compute
the unit numbers and the flows for any selected path combination. To do so we
will have to prove several theorems.

We can define two special types of gates. The joiner and divider gates. The
joiner gates are the gates that are used by two or more streams with different
previous gates. The divider gates are the ones used by streams with different
following gates.

Theorem 1 (The Quickest Stream Takes The Shortest Path). Every solution
will be a set of flow streams, each with a unique gate path. Choose the shortest of
these paths (the quickest one for the units to go through) and call the associated
stream the quickest stream. There exists a quickest solution, where the quickest
stream takes the shortest path at every divider gate (from the paths taken by the
outgoing streams, not all the possible paths):

Proof. By contradiction. Suppose there is a stream coming from the divider
gate that takes a path shorter than the quickest stream. Let’s call this stream
soth and the quickest stream sq, the time it took to navigate the previous part of
their path as t1

oth and t1
q and the times for the rest of the path as t2

oth and t2
q.

toth = t1
oth + t2

oth ∧ tq = t1
q + t2

q

toth ≥ tq ∧ t2
oth ≤ t2

q

This means that t1
oth ≥ t1

q we can we can define a path tnew combining the
first path from the quickest stream sq and the second one from the other stream
soth where:

t1
new = t1

q ∧ t2
new = t2

other ∧ tnew = t1
new + t2

new

From This we know tnew ≤ tq ≤ toth

Given a divider gate G and a previous joiner gate GJ (where the soth and the
sq were joined or the origin). The characteristics of the original can be easily
simulated with the new set of streams.

We can define four new streams s1, s2, s3, s4 where the s1 copies the path of
the sq, s2 copies the soth, the s3 copies the first part of soth and the second part
of sq, and s4 uses the two shorter paths and achieving the time tnew. We assign
the flows:

ΦG,s3(t) = Min(ΦG,soth
, ΦG,sq(t))

ΦG,s4(t) = ΦG,s3(t) + (1 − sgn(ΦG,s3(t)) · Max(ΦG,soth
, ΦG,sq(t))

ΦG,s1(t) = ΦG,sq − ΦG,s4(t)
ΦG,s2(t) = ΦG,soth

− ΦG,s4(t)

In this case, s4 is the quickest stream and it utilizes the quickest path at the
gate G and the solution time is equal to the solution with sq and soth

35

This doesn’t mean that there aren’t quickest solutions that do not have this
characteristic, but there will always be a solution just as fast, where this is the
case. it also doesn’t mean that the stream takes the quickest possible path on
the map, just that its path is shorter than the paths of the other streams.

Theorem 2 (The Quickest Stream Saturates Its Path). There exists a quickest
solution where the quickest stream saturates its path and has a constant flow:

Proof. Take the path of the quickest flow and the solution time tS. The quickest
stream sq can transport at most n = Φcap

Gmin
· (tSq − tSq ,o⇒g) where tSq is the time

of the quickest solution, tSq ,o⇒g the time of the unobstructed movement from the
origin to the goal (along the quickest stream path) and Φcap

Gmin
the minimum gate

capacity on the path.
Say that the flow is lower than Φcap

Gmin
(t) at some time t. Then the flow can

be safely increased. If there are no other streams at a gate where this occurs, it
is trivial. When there are other streams, some of their units can be assigned to
the quickest stream. By doing this, the solution time will either improve or stay
the same.

If the flow is higher, the units will accumulate at the lowest capacity gate,
and the outgoing flow will still be Φcap

Gmin
(t). Setting the initial flow already at

Φcap
Gmin

(t) changes nothing.

Other Saturating Streams

If the flow in the quickest stream is constant and saturating, we can do the same
for the other streams. We can think of the graph with the quickest stream as a
graph where the quickest stream’s flow reduced the capacities of the gates passed.
The next quickest stream will have the same properties on this modified graph.
We, therefore, know that all the streams have a constant flow value, and they
saturate at least one gate on their path (possibly together with other quicker
streams).

We do not have a method of finding the path the quickest stream uses. Setting
it simply to the quickest path available isn’t valid (we only know that it takes
the quickest path of all the streams at every divider gate, not the quickest path,
period). Despite this, considering the solutions where the quickest stream uses
the quickest path first could be a good heuristic.

In the Flow Graph algorithm, we construct the set of paths used by the
streams by adding augmenting paths. This is also a good heuristic for finding
reasonable solutions. But the solution found using the method has no guarantee
of being optional.

The gate flow for a particular flow stream must be constant between the first
unit and the last unit arrival and zero otherwise, with the same flow at every gate.
We can define a constant Φs and times tstart

G,s and tend
G,s when this flow happens.

36

The first unit should arrive as quickly as possible. The last unit arrival can
be computed from the first unit arrival using the stream’s flow:

tfirst
s = distance(s, o, g)

unitSpeed

tlast
s = tfirst

s + n

Φs

All the flow streams should arrive at the same time (if not, it is possible to
take a few units from the slowest stream and add them to the quickest stream,
this will decrease the flow time). We, therefore, have:

∀s ∈ SQ : tSQ
= tlast

s

From this, we can also compute the first and the last unit times not just for
the goal, but also for all of the gates. This will assume a constant flow for all the
sections of the stream. If the real flow is higher, the result will not worsen, but
the last unit time may be quicker than the estimate.

• tfirst
G,s = distance(s,o,G)

unitSpeed

• tlast
G,s = tS − distance(s,G,g)

unitSpeed
For constant flows

• tlast
G,s ≤ tS − distance(s,G,g)

unitSpeed
For non-increasing flows

Theorem 3 (Edges With A Flow In Both Directions). An optimal solution can-
not contain an edge with flow streams heading in both directions. Otherwise,
removing these flows could improve the time (or at least not worsen it).

Proof. Let us have two streams with flows Φx, Φy along an edge (Gx, Gy) of
length l where the Φx goes through Gx first and Φy in the opposite direction.
The lengths of the two streams can be described as lx = lx1 + l + lx2 where lx1 is
the length of the path until the edge and the lx2 after the edge, and ly = ly1+l+ly2.
Define Φmin = Min(Φx, Φy). We can assume that Φx ≥ Φy ∧Φy = Φmin (WLOG).

Now Φx can be modified to use its original path until Gx and the Φy associated
path from there on. The flow value will be set to Φmin. The Φy can be modified
in a similar way. Another stream copying the path of the original Φx with the
flow set to Φx − Φmin is needed.

The lengths of the new streams are l1 = lx1 + ly2, l2 = ly1 + lx2 and l3 = lx.
The number of units transported using the original streams for a time t can be
computed as:

n1 = Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· Φx + Max

(︄
t − ly1 + l + ly2

unitSpeed
, 0
)︄

· Φy

And the number of units transported using the new streams n2:

n2 = Max

(︄
t − lx1 + ly2

unitSpeed
, 0
)︄

· Φy + Max

(︄
t − ly1 + lx2

unitSpeed
, 0
)︄

· Φy

+ Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· (Φx − Φy)

37

We can rewrite n1 as

n1 = Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· Φy + Max

(︄
t − ly1 + l + ly2

unitSpeed
, 0
)︄

· Φy

+ Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· (Φx − Φy)

We need to show for l, lx1, lx2, ly1, ly2, Φx, Φy, unitSpeed ≥ 0 that:

n1 ≤ n2

Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· Φy + Max

(︄
t − ly1 + l + ly2

unitSpeed
, 0
)︄

· Φy ≤

Max

(︄
t − lx1 + ly2

unitSpeed
, 0
)︄

· Φy + Max

(︄
t − ly1 + lx2

unitSpeed
, 0
)︄

· Φy

We know that (otherwise the two streams wouldn’t exist):

Max

(︄
t − lx1 + l + lx2

unitSpeed
, 0
)︄

· Φy + Max

(︄
t − ly1 + l + ly2

unitSpeed
, 0
)︄

· Φy =

2t − ly1 + ly1 + lx1 + lx2 + 2l

unitSpeed

We also know:

2t− ly1 + ly1 + lx1 + lx2 + 2l

unitSpeed
≤ Max

(︄
t − lx1 + ly2

unitSpeed
, 0
)︄

·Φy+Max

(︄
t − ly1 + lx2

unitSpeed
, 0
)︄

This way we show n1 ≤ n2 and the solution using the new streams is equal or
better to the original

Additional Flow

Our solution may send higher flow values than specified by the selected solution.
This will not worsen the time of the solution (the additional flow will not block
the other streams), but it may improve the last unit times for the gates where
this flow is present. Based on the basic flow estimate, the solution time shouldn’t
change, and the flow entering the target should be the same as the one specified
by the solution. In reality, however, the higher flow will cause overflow at certain
gates, possibly improving the solution time.

For the solution to be correct, the flow should be equal or lower to the one
specified by the solution, and the times at the gates should be equal or quicker
than the solution.

38

4. Implementation
Our algorithm is an improved version of the Flow Graph algorithm by Jan Pa-
covský. We will introduce the original algorithm in the first section of this chapter.
The second section will discuss problems with the original algorithm. The third
section will describe our algorithm - Regional Flow Graph.

4.1 Existing Solution
Our method is largely based on an existing method proposed by Jan Pacovský
called the Flow Graph. Following is a pseudocode of the algorithm (Pseu-
docode 3). During the preparation phase, the algorithm constructs a flow network
representing the map. In the pathfinding phase, it finds a set of paths that can be
run concurrently. In the execution phase, the units follow their assigned paths.
Each of these steps will be described in detail in the following subsections.

1 Preparation
2 WaterDecomposition()
3 CreatePartialFlowGraph()
4

5 Pathfinding
6 FinishFlowGraph(target, units)
7

8 solutions
9 concurrentPaths

10 While AugmentingPathExists:
11 path ← FindTheShortestPath()
12 SaturatePath(path)
13 If BidirectionalFlow:
14 solutions.Add(concurrentPaths)
15 concurrentPaths.Add(path)
16 concurrentPaths ← MutatePaths(concurrentPaths)
17 Else:
18 concurrentPaths.Add(path)
19

20 solutions.Add(concurrentPaths)
21

22 quickestSolution ← SelectQuickestSolution(solution)
23 unitCounts ← AssignUnitCounts(quickestSolution, units.Count())
24 assignment ← AssignUnits(unitCounts, units)
25

26 Execution
27 EveryFrame:
28 SteerToward(furthestVisiblePathPoint)

Pseudocode 3: Flow Graph

39

4.1.1 Preparation
The method views the map as a flow network, with the unit starting position as
a source and the target as a sink. The edges of the network contain two numbers,
one indicates the length of the edge, another one its capacity.

In the preparation phase, we can not yet create the whole network because
the starting positions of the units and the position of the target aren’t yet known.
For this reason, we will only create part of the network without the source and
sink. We will call this a partial graph. To construct this network, the map first
has to be decomposed into a set of regions separated by gates (the gates are
placed at the chokepoints). The algorithm uses the water decomposition by Kári
Halldórsson (Water Decomposition) for this purpose, but other decomposition
algorithms could be used as well.

The nodes of the network are placed at the positions of the gates. Two nodes
are then connected with an edge if both of the gates associated with them neighbor
a common region. The edge has two gates associated with it, these are the gates
belonging to the nodes at both ends of the edge. The capacity of the edge is set
to the length of the smaller from the two gates associated with it. The length of
the edge is equal to the distance between the centers of the two gates.

4.1.2 Pathfinding
During the pathfinding phase, the Flow Graph algorithm generates a set of paths
that can be used simultaneously by the units during the execution. We will
call such a set of paths concurrent paths. These will be generated by adding
augmenting paths and fixing possible problems with bi-directional flows at the
edges along the way. Our method will generate multiple sets of concurrent paths
the best set of concurrent paths will then be selected during the unit assignment.

Once we have selected the set of paths to be used, we will assign units to it.
First, we will determine the unit counts for individual paths based on their length
and flow assigned to them. Then the algorithm assigns units to the paths.

Finishing The Network

The flow network is still missing the source and sink nodes. The sink is added
at the place of the target and connected by edges to the gates neighboring the
target’s region. The edge capacities are set to equal the length of the gates.
The edge lengths are the distances between the target and the gate centers. The
source is added in a similar way.

Adding Paths

Now that the flow network is finished, we have to find the paths the units will use.
We will do this by using the augmenting paths. We will find the shortest path in
the network and push a saturating flow through it. We store the saturated path
and its flow and continue by adding new augmenting paths. In the end, we won’t
be able to find any augmenting path and have a set of paths our units can use.

40

Upper Left: Network with the capacity and length of the edges. Lower Left: Illustration
of our method, which repeatedly searches for the shortest path, saturates it. In the
case of a bi-directional flow, it mutates the paths. First, it finds the blue, then the
yellow, the green, and at last, the red path. Right: Mutation of the paths and removal
of the bi-directional flow. Three paths are created instead of two, and the total flow is
the same as before the mutation.

Figure 4.1: Path Mutation (Image Source: Jan Pacovský [1])

Bi-Directional Flow

The solution has one problem, the augmenting path may use edges that already
have a flow in the opposite direction. We will say that the edge has a bi-directional
flow (there are paths that push flow in both directions). Such a situation isn’t
uncommon in maximum flow problems, but it does alter the paths the flow uses.
The stored paths can, therefore, not be used.

Before adding a path that would cause a bi-directional flow, we create a copy
of the working set of concurrent paths and add it to the finished sets. We then
add the new path to the working set and remove the bi-directional flow by what
the algorithm calls path mutations.

Mutations

Mutation is a process used to alter the paths within the working sets in a way
that eliminates the bi-directional flow. The process of a path mutation can be
seen in Figure 4.1.

We will say that the existing flow is flowing in a positive direction (or positive
flow). The flow added by the new path going in the opposite direction will be
called negative flow.

We take a look at the newly added path and find its first section with the
negative flow. For this section, the algorithm finds the paths with the positive
flow using it. From the subsets of these paths with a combined flow higher than
the negative flow, we select the one with the minimal flow.

The paths from the selected subset will be mutated. Because the subset has
a higher combined flow than the negative flow, one of them is randomly selected
only for a partial mutation.

At the end of the process, the newly added path is removed from the set. If
any of the new paths added during the mutation resulted in a bi-directional flow,

41

the mutations would be for them as well.

Full Mutation will create two new paths, both will have the same flow as the
mutated path. For both the mutated and newly added path, we will call the part
before the bi-directional flow segment the head and the part after it the tail.

The first path will be the concatenation of the mutated path’s head and the
added path’s tail. The second path will be a concatenation of the added path’s
head and the mutated path’s tail. The mutated path is removed from the set.

Partial Mutation will create the same two paths as in the case of the full
mutation, but with a reduced flow. The flow of these two paths (Φm) will be:

Φm = Φp − (Φc − Φn)

Where Φc is the combined flow of the subset of paths selected for mutation, Φp is
the flow of the partially mutated path, and Φn is the negative flow. The partially
mutated path won’t be removed. Its flow will only be reduced to Φp − Φm

Unit Assignment

From the previous step, we got several sets of concurrent paths. For every set,
we will compute the time it will take to transport all of the units to the target.
We will then select the set which will have the quickest finishing time.

We will then assign unit counts to the paths from the set. A heuristic function
will be used to assign the individual units to the paths based on their position.

Finishing Times of a set of concurrent paths can be estimated by first ordering
paths by length. Each of them will have a transit time (the time it takes a unit
to move from the start to the target using the path) and a capacity (the number
of units it can transport per second). We will define the transit of a path p with
a transit time tp and capacity c at the time t as:

Tp(t) = Max((t − tp) · c, 0)

The total transit of the concurrent path set P will be defined as:

TP (t) =
∑︂
p∈P

Tp(t)

We need to find the time when the total transit is equal to the number units.
To do this, we can start adding the based on their transit time. When a new
path with transit time tp is added, we can check the total transit at that time
TP (tp). If the transit is greater than the number of units, the path isn’t used,
and the finishing time is lower than tp otherwise, we continue by adding another
path. We remember the transit times of the added paths and their capacities.

When we get all the paths we check the last added path and its transit time
tl. At this point of time, the units weren’t all yet transported. The number of
remaining units is n = N − TP (tl) where N is the total number of units at the
start. Let C be the capacity of the selected paths, we can compute the finish
time tf as:

tf = tl + n

C

42

Unit Numbers Once we have selected a combination path and found out its
finishing time tf we can determine, what number of units should be assigned to
each path. The number of units assigned to the path p with the capacity cp and
transit time tp can be calculated as:

np = cp · (tf − tp)

Assignment Heuristic We have found the paths and determined the number
of units for each of them, but we still need to select the individual units to
be assigned to the paths. For this purpose, the algorithm uses an assignment
heuristic.

The paths differ in at least one gate, and each of the gates has a certain
number of units assigned. The algorithm finds the first combination of gates
where the paths differ. Each of these gates has a certain number of units it
should be assigned. Let’s call this number nG for the gate G. For each gate G,
we find the nG closest units. For each of the units, we find out how many gates
have it among their closest units. There are two cases:

1. No gate - the unit isn’t assigned to any gate yet.

2. One or more gates - the unit will be assigned to the closest gate from the
set

After the assignment, there may still be some unassigned units. In this case,
the process is repeated - with just the unassigned units.

4.1.3 Execution
Each of the units has a path assigned to it. The path is a sequence of points on
the map leading to the target. The unit receives a steering force in the direction
of the furthest visible point on the path.

4.2 Observed Problems
When testing the flow graph method, we observed some problems that negatively
impact its performance. Some of the encountered problems can be seen in Figure
4.2 and will be further described in the following subsections.

4.2.1 Too Early Path Assignment
The unit assignment to the paths happens during the planning phase when the
units are at their starting positions. This is too early. Units could travel a
considerable distance before they reach a point where their paths diverge. During
this travel, the units from different groups may get mixed up, and they will be
harder to separate. Moreover, their position at the start may not be related to
their position at the gate.

For these reasons, we think that the assignment should happen during the
execution phase and at the last possible moment (at the point where the paths
diverge).

43

Different problems in one image. The green units were trapped by the others and are
trying to return to their path using a long route. The yellow units are separating from
the red and blue ones, but the separation isn’t smooth, and the flow fluctuates. Part
of the yellow units is at the end of units going through the chokepoint, which shouldn’t
happen as their path is longer than the one used by the red units. The end should be
made up of the red units.

Figure 4.2: Flow Graph Navigation Problems

4.2.2 Travel Time Consideration
Different streams will start arriving at the target at different times. These travel
times depend on the length of the path the stream uses. Flow Graph considers
the number of units to be assigned to the individual paths, but not so much which
units. There are situations where the units using the longest path are placed at
the back of the group and have to wait for the units placed before them. This
can increase the finish time. The units with the longest path should be placed in
front of the group to allow for a timely finish.

4.2.3 Fluctuating Flow
Our model assigns a flow value to each of the concurrent paths. During the
execution, these paths should therefore have at least a similar flow. This, however,
doesn’t happen, and the flow can fluctuate widely.

4.3 Proposed Solution
We created a new, improved version of the existing Flow Graph algorithm, which
we will call the “Regional Flow Graph”. Our proposed solution should fix the
problems with the flow stream separation, provide an alternative to the path
recalculation, better navigate through regions with small obstacles, and reduce
both the movement and planning times.

The basic structure of the algorithm is similar to the original, with a few
changes that can be seen in Pseudocode 4. The red-colored steps were added to

44

the original algorithm, and the orange-colored ones were modified.
In the preparation phase, we use our improved version of the water decom-

position. We also precompute regional flowfields. For every region and a gate
neighboring it, we create a flowfield storing direction toward the said gate.

In the pathfinding phase, we work the same way as the original algorithm up
until the point where it assigns the paths to the units. We do not assign units
immediately. Instead, the units receive all of the selected paths, and they pick
their path at the gates where the paths diverge. Such gates are called divider
gates and are also generated in the pathfinding phase. RFG also uses a different
path format than the original algorithm, called the regional path. It doesn’t store
all points on the path, instead storing a gate the units should move to for each
region.

During the execution, the units use the regional paths object for their navi-
gation. This allows them to switch between different paths at the divider gates
or when they get pushed off their path by other units.

1 Preparation
2 ImprovedWaterDecomposition()
3 CreatePartialFlowGraph()
4 GenerateRegionalFlowFields()
5

6 Pathfinding
7 FinishFlowGraph(target, units)
8

9 solutions
10 concurrentPaths
11 While AugmentingPathExists:
12 path ← FindTheShortestPath()
13 SaturatePath(path)
14 If BidirectionalFlow:
15 solutions.Add(concurrentPaths)
16 concurrentPaths.Add(path)
17 concurrentPaths = MutatePaths(concurrentPaths)
18 Else:
19 concurrentPaths.Add(path)
20

21 solutions.Add(concurrentPaths)
22

23 quickestSolution ← SelectQuickestSolution(solution)
24 unitCounts ← AssignUnitCounts(quickestSolution, units.Count())
25 regionalPaths ← CreateRegionalPaths(unitCounts)
26 regionalPaths.CreateDividerGates()
27

28 Execution
29 EveryFrame:
30 regionalPaths.ExecuteRegionalPath()

Pseudocode 4: Regional Flow Graph

45

Figure 4.3: Redundant
gate

Figure 4.4: Multiple re-
gions enclosed

Figure 4.5: Three point
border

4.3.1 Preprocessing
Our method divides the map into a set of regions separated by gates using a
modified version of the water decomposition algorithm. A partial Flow Graph
is constructed over the map (Flow Graph without a source and sink). We also
precompute regional flow fields for every combination of a region and a gate
neighboring it. The flow field stores movement directions toward the gate for all
of the region’s tiles.

Regional decomposition

The regional decomposition should divide the map into a set of regions divided
by gates. The original algorithm used the water decomposition by Halldórson
for this purpose. This decomposition algorithm has several problems, which will
be described in the first subsection. Our improvements to the algorithm will be
introduced in the second subsection.

Water Decomposition Problems The water decomposition uses a depth map
specifying the distance to the nearest wall. A parameter has to be supplied to
the algorithm specifying the intended sensitivity.

A low value of the parameter will mean that a huge number of regions will be
created because of small differences in the shape of the walls. While a high value
may cause the algorithm to ignore some obstacles altogether.

Different maps require different parameter values for a good decomposition,
but the value can not be easily determined automatically. For this reason, the
parameter had to be set manually in the experiment run by the original algo-
rithm’s author. A good decomposition algorithm wouldn’t need such changes,
or they would be done automatically because the characteristics of the map may
change during the gameplay.

Even with a lower sensitivity to the obstacles, the algorithm may create gates
in places where they aren’t necessary because it was a meeting point of two
“lakes”. this effect can be seen in Figure 4.3. When a depth at the gate isn’t
significantly lower than at the centers of one of the nearby regions, they probably
shouldn’t be separated.

When the wall sensitivity parameter is set to a higher value than 1, the region
borders may appear in unexpected places because the algorithm ignores smaller

46

a) Halldórson b) Our Modification

Figure 4.6: Water decomposition comparison

obstacles. Triple borders (or even higher) may appear in the open space as seen
in Figure 4.5. The algorithm creates gates between two points near the walls, but
in this case, they wouldn’t exist.

Sometimes the algorithm creates regions not separated by gates. This can
create situations when one area surrounded by gates contains multiple regions,
as can be seen in Figure 4.4.

Our Modification We created an improved version of the water decomposition
algorithm (Figure 4.6) for the purpose of our navigation algorithm. The changes
made to the algorithm can be seen in Pseudocode 5. The red-colored steps were
added to the original algorithm, and the orange-colored ones were modified.

1 CreateDepthMap()
2 BuildRegionsMap()
3 MergeNearbyRegions()
4 RemoveTripleBorderPoints()
5 DetectGateTiles()
6 CreateGates()
7 CleanAroundTheGates()

Pseudocode 5: Improved Water Decomposition

1. Depth Map - Our version of the algorithm uses the Euclidean distance
instead of the Manhattan distance when measuring the distance to the walls.

2. Merging Regions - We merge nearby regions if the depth at their bor-
der doesn’t differ from the depth at the region centers significantly enough.
The merging is done until there are no regions satisfying the merging cri-
teria. The merging allows us to set a wall sensitivity parameter to a lower
value. There are now two criteria required for a region separation, and the
regions created because of smaller irregularities in the obstacle shape will

47

be merged. Chokepoints with thinner walls around them will, however, still
be detected. The merging also often solves the problem of the borders not
being separated by gates or triple borders in open space.
The improvement caused by the merging also effectively removes the need
to manually set the sensitivity parameter. Manual tweaking may produce
better decomposition. The decomposition with the default parameter is,
however, typically good enough.

3. Triple Border Points - Sometimes, the regional decomposition creates
triple border points in the open space. This is a problem for the gate
creation step (as the endpoints aren’t near the walls). These points are
snapped to the nearest wall, which enables the algorithm to correctly create
the gates.

4. Cleaning Around the Gates - The algorithm also cleans the regions
around the gates such that one side of the gate contains only the tiles of a
single region and the other the tiles of the other region.

Regional Flow Fields

We precompute a regional flow field for every combination of a region and a gate
neighboring it.

1. We create a distance field with distances toward the gate for all of the
tiles in the region. The distance field used for the flowfield computation
is initialized with 0 at the gate center and progressively increasing values
towards both ends of the gate. The distance increase helps to guide the
units toward the center of the gate. The higher the increase, the stronger
the push.

2. The flow field is then computed as a gradient of the distance field. The flow
field stores the movement direction that would result in the shortest path
toward the gate.

When we have constructed all of the regional flow fields, we can obtain a move-
ment direction by specifying the unit’s positions, the region it is in, and the target
gate.

4.3.2 Pathfinding
The plan is created in the same way as in the original Flow Graph algorithm up
until the point where the paths are created and assigned to the units.

Our algorithm doesn’t use the simple paths from the A* algorithm but a
structure called the regional path. The units also aren’t assigned their path
during the planning. Instead, a divider gate object is created for every gate
where different flow streams separate, which will separate the units during the
execution.

48

Divider Gates

A divider gate is an object placed at a gate that divides its flow between several
goal gates. The division happens directly at the gate, which removes the problems
with the mixups of different streams during the execution and reduces the flow
fluctuations.

The divider gate needs to have information about the flow streams that use it,
the number of units assigned, their flow, and the goal gate. The units are assigned
to the streams proportionally based on the flow of the stream until the target
number of units is reached. The gate is divided into sections, each corresponding
to one of the streams. The size of these sections at the beginning is proportional
to their share of the total flow going through the gate and is adjusted during
the execution. The sections are ordered based on the dot product between the
direction of the gate and the direction toward the goal gate.

Regional Paths

A regional path is a structure storing a sequence of gates leading to the region
with the target. For every region on the path except the final one, it also specifies
a gate the units should navigate towards. For the final region, the regional path
contains a path from the final gate to the target (in a standard A* format).

Because the units do not know which path they will use during the navigation,
they have a list of all the regional paths created during the pathfinding phase.
To use the paths, they also need the regional flow fields. And also a dictionary
of the divider gates to enable the assignment to different paths.

4.3.3 Execution
The units get their steering direction from the regional paths object. The object
also manages the unit’s interaction with the divider gates.

Regional Paths

The process of obtaining a steering force from a regional path is slightly more
complicated than obtaining it from a regular path. The process of doing so is
shown in Pseudocode 6.

1 If CurrentRegionOnthePath:
2 UseRegionalFlowFields
3 Else If InFinalRegion:
4 FollowFinalPath
5 Else:
6 If OtherPathContainsCurrentRegion:
7 SwitchPaths
8 Else:
9 Repath

Pseudocode 6: Regional Path Navigation

49

Flow Graph Regional Flow Graph

Figure 4.7: Flow Stream Separation Comparison

The unit has one of the paths assigned to it, which it uses during navigation.
To obtain the steering force, it checks its current region. If its path contains this
region, it gets the region’s target gate. The steering direction is then obtained
from the appropriate regional flow field.

When navigating in the final region, the standard path-following navigation
is used to execute the final path.

It may happen that the unit enters a region not used by the path. In such
a case, it checks if there exists another path containing this region. If this is
the case, it switches to the other path. We call this the soft re-path. If no such
path exists, a standard hard re-path is done - the whole path to the target is
recalculated.

Soft re-paths are preferred over hard re-paths because there is no need for
recalculation. The soft re-paths also reduce the problem of the units getting
carried away by another flow stream. When they enter another region, they
automatically switch to the other stream, while in the original solution, they
often travel great lengths to return to their original stream, which can greatly
increase the finishing times.

Divider Gate

The divider gate is split into sections, each corresponding to one of the streams.
When a unit arrives at the gate, it enters one of these sections. The unit is
then assigned to the corresponding stream. This ensures a cleaner separation
performed directly at the gate. The resulting improvement can be seen in Figure
4.7

The sizes of the sections are updated when the unit passes through. The size
of the section used is decreased while the size of the other sections increases. This
modification is done so that the streams are always assigned the fraction of units
proportional to their share of the flow. The size of the section used by the unit
is modified as:

50

s = s − Φt − Φs

Φt

· Min(Max(1
n + 10 , 0.01), s · 0.25)

• s is the relative size of the section (1 being the size of the gate)

• Φt the total flow through the gate

• Φs flow through the section

• n the number of units that passed through the section so far.

The flow values used in the computation are the ones assigned to the different
streams passing through the gate modified by a factor, which decreases their
value when they have only a few units left. The flow value reaches zero when the
stream has no units.

51

5. Evaluation
This chapter will describe the experiments we ran using our simulator and their
results. We need to evaluate the performance of our algorithm (Regional Flow
Graph). Our algorithm will be compared against the standard pathfinding al-
gorithms (A*, flow field) as well as against the original Flow Graph algorithm.
We will also try to evaluate how closely our algorithm adheres to its predicted
behavior and possibly improve our predictions to match reality more closely. The
chapter will also describe the problems the algorithm encountered on some of the
maps.

5.1 Goals
The experiments are run with several goals in mind. These goals will be intro-
duced in this section.

5.1.1 Comparison To Other Methods
We would like to compare the performance of the proposed method against other
pathfinding methods. Their quality will be measured on different metrics. The
most important ones are:

1. Finishing Time - the time it took all of the units to reach the target
(measured in the in-game time)

2. Pathfinding Time - the time it took to compute the plan for the units to
follow.

The algorithms will be compared on a set of maps with a wide range of
characteristics to find out their performance in different circumstances.

On some maps, the methods will also be compared manually in the graphical
mode because the navigation time isn’t the only thing important for an algorithm.
In a real application, it is often not a problem if the units navigate slightly longer,
but a chaotic or otherwise unnatural behavior of the units can be a bigger issue.

5.1.2 Finding Errors
The theoretical analysis of the algorithm isn’t typically enough to predict the
algorithm’s behavior. Some problems and errors in the algorithm can only be
discovered by thorough testing. The pathfinding experiments, where the algo-
rithm won’t perform well, will be looked at in graphic mode. We will document
the problem, describe its causes, and, if possible, come up with solutions.

5.1.3 Measuring The Prediction Accuracy
Our method allows us to get an estimate of the times of the unit arrivals to
the goal and the gates on the paths. We would like to compare the predicted
times to the real times measured during the execution. If the predicted times are

52

inaccurate, we will investigate the reasons for these errors and try to correct the
algorithm.

5.2 Experiment Setup
This section will describe the specifics of the experiments we are running. The
pathfinding methods used, the pathfinding problems used, and the metrics mea-
sured.

5.2.1 Compared Methods
We will measure the performance of four pathfinding methods - A*, flow field,
Jan Pacovský’s Flow Graph, and our method, the Regional Flow Graph. Some of
these methods can have different variations and run with different settings. We
will have to describe the specifics of the algorithms used in this thesis.

A*

The path is computed as described in the Related Work chapter, but in our
implementation, we increase the cost of the tiles next to the walls. This helps to
reduce the wall hugging the A* is often prone to. The result is a sequence of tiles
(or their positions) the unit should pass on its way toward the target.

When following the path during the execution, the unit navigates to the fur-
thest point on the path visible from its position. Finding the furthest point on
the path visible from the position of the unit can be a time-consuming task. For
this reason, the furthest visible point isn’t updated every frame but is recomputed
only after a certain period of time. In our implementation, we set this period to
5 seconds. The length of this period is calculated based on the distance from the
current position of the unit and the previously computed point. The length then
receives a random modification (to avoid a large number of recomputations at a
similar time).

Computing a path for each unit will be very time-consuming if we are trying
to find a path for a large number of units (the unit numbers in the experiments
are typically between 1000 and 2000). We should reuse the paths if possible. The
path for a unit is only computed if there already isn’t another path visible from
the unit starting position. Otherwise, another unit’s path is used. The path can
be used because the unit steers to the furthest visible point on the path, and we
are guaranteed that the first point is visible.

Flow Field

Standard flow field navigation method as described in the Related Work section.
A distance field is built by performing a breadth-first search from the target
position. This field is then used to get a direction vector toward the goal. The
direction is a gradient of the distance field (in some other implementations, it is
the direction to the tile with the lowest distance). The flow field is the same for
all of the units and is therefore constructed only once.

53

The execution phase uses the constructed flow field to find the movement
direction. For each of the tiles we can retrieve a movement vector from the
corresponding flow field cell. The unit isn’t typically positioned exactly at the
center of the tile. For this reason, the resulting movement vector isn’t simply the
direction stored in the unit’s tile but a combination of the directions stored in
the nearest 4 tiles. The directions are weighted based on the distance between
the unit and the corresponding tile.

Flow Graph Methods

The Flow Graph and Regional Flow Graph methods work as described in the
Implementation chapter. Both of these methods use simple paths that work
exactly the same way as in the A* method. RFG also uses flow fields. Like
the flow field method, the units obtain their movement direction as a weighted
average of nearby tiles.

5.2.2 The Problem Set
The algorithms will be evaluated on a set of 200 pathfinding problems, each of
them specified by a map, starting positions of the units, and the position and
size of the target. 100 of these pathfinding problems were run on custom-created
maps, the other 100 on maps from existing RTS games.

Each of these 200 experiments will be run using all of the 4 pathfinding meth-
ods. There will be 10 runs for each of the methods, and the results will be
averaged. This is because the navigation can be somewhat non-deterministic,
and we should try to minimize the effect of luck in the runs. The slight non-
determinism comes from the unit model we are using, and more information can
be found in the Unit Movement Randomness section.

Custom Maps

We created 23 custom maps and specified 100 pathfinding problems on them.
Part of the maps are designed to be simple to test some of the algorithm’s

characteristics while being able to ignore other aspects of pathfinding (Figure
5.1). These include maps with a single path with different gate sizes and shapes
(constant size, decreasing size, rough walls, funnel shape, etc.). Another portion
of the simple maps are those with different alternative paths, where the division
should be simple.

Other custom maps are designed to test some potentially problematic scenar-
ios (Figure 5.2). Weird region shapes like regular rectangles or concentric circles
could throw off the regional decomposition. Large gate sizes could throw off the
distance estimation (as it always uses gate centers). Some maps have many flow
streams passing through a single central region.

RTS Maps

The other half of the experiments use maps selected from the “Moving AI” reposi-
tory. We selected only RTS game maps (Figure 5.3). Artificially created maps, or
those from non-RTS games, weren’t used. The purpose of this selection is to test

54

the algorithm on maps from real RTS games and hopefully find problems that
wouldn’t occur on simpler custom-created maps. We selected 33 maps from Star-
craft and 21 maps from Warcraft 3 and created 61 and 39 pathfinding problems
for them, respectively.

Figure 5.1: Simple Cus-
tom Map

Figure 5.2: Problematic
Custom Map

Figure 5.3: Starcraft
Map

5.3 Testing Environment
We created a pathfinding simulator in the Unity game engine to allow us to run the
experiments. The simulator is capable of running a large number of pathfinding
requests on various maps using different navigation methods. This chapter will
describe its internal functions and the navigation methods it implements.

The main purpose of the simulator is to simulate the unit navigation. For
this purpose, it provides a model of a unit common for all of the pathfinding
algorithms (the algorithm can only change the direction of the seek force). This
allows for a fair comparison between the algorithms.

The simulator manages the map and stores information about the passability,
position of the target, and units. It can also store a decomposition of the map
into disjunct regions with gates in between them.

The program allows us to load different experiments. Each of the experiments
has an obstruction map, unit start positions, target position, and a target size
specified. A list of experiments can be run automatically, each of them multiple
times with different pathfinding algorithms.

5.3.1 Simulation Setup
To test the navigation algorithms thoroughly, we need to be able to easily create,
load, and run a large number of pathfinding problems/experiments. A single
pathfinding problem is specified by two textures, the map texture and the unit
start texture, and an integer describing the size of the pathfinding target. These
can be easily created and combined (different unit start textures for the same
map texture).

The map texture (Figure 5.4) describes which map tiles are obstructed and
which are freely passable. Each pixel corresponds to a single tile; a black pixel
means that the tile is obstructed, while passable tiles have a different color.

55

Figure 5.4: Map Texture Figure 5.5: Unit Start Texture

The texture also specifies information for the warmup. The warmup is a
series of pathfinding requests performed before the “real request.” A start point
and an endpoint are specified, and a plan is created for them using a specified
algorithm, but no unit movement is performed. The purpose of this computation
is to simulate the algorithm in the actual game, where the pathfinding request is
typically performed after some other request was already executed before it. The
starting positions are marked as green, and the target positions as blue pixels,
and the pathfinding is done for every pair.

The unit start texture (Figure 5.5) describes the starting positions of the
units. A white pixel in the texture means that the corresponding tile contains
a unit at the start of the experiment. This allows the user to specify starting
positions for a large number of units very quickly. The texture also contains the
position of the target (the position the units should move towards) marked by a
green pixel.

A single map texture is often reused for different simulation setups with dif-
ferent unit and target positions.

5.3.2 Automatic Simulation
The simulator can automatically run a large number of experiments. The ex-
periments can be specified by a list of simulation setups, a list of pathfinding
methods, and a number of simulations. For every combination of a pathfinding
method and a simulation setup, a number of simulations specified is performed.

The results of the simulation can be saved into a text file. The name of the
simulation setup specifies the folder, and the name and the number of the run
are combined into the name of the resulting text file.

5.3.3 Unit Model
The simulator provides a common model of a unit for all of the pathfinding
methods. The purpose of this model is to make the method comparison more
fair.

56

Each unit is moved across the map by a number of steering forces. The
unit separation and the unit avoidance forces help it to avoid other units. The
wall repulsion and turning force move it from the walls, and the alignment force
makes it mimic the movement of nearby units. These forces are independent of
the pathfinding method used. The only force that is influenced by the method is
the seek force, which forces the unit to move toward the goal.

The combination of the forces influences the movement direction and speed of
the unit. The speed has a maximum value (common for all of the units), and if
it is surpassed, it is scaled down. The new position of the unit is then computed
using the movement direction, speed, and time from the previous update. The
new position of the unit can not make the unit share space with a wall or another
unit. If such a problem occurs, the unit is forced to stop its movement.

Unit Movement Randomness

The movement of the units may vary between different runs of the experiments,
resulting in different finishing times. This is because the unit’s movement isn’t
deterministic. The effect of randomness on the run performance is typically small.
for example, in some of the runs, the flow stream separation may work slightly
better than in others. The unit model has two main sources of randomness:

Wall Repulsion Force - the unit casts rays around itself. When a ray hits a
wall, the unit receives a repulsion force based on the distance to the wall and the
direction of the ray. The directions of the rays the unit cast receive a random
offset every frame. Randomness helps resolve some situations where the unit may
get stuck but make the unit’s movement non-deterministic.

Path Following - When the units follow a path (normal path, sequence of
positions), they try to navigate to the furthest visible point on the path. The
unit doesn’t update the seek target every frame but only after a certain period.
This period receives a random offset to make the units do these calculations in
different frames.

5.3.4 Resolving Errors
When moving through the map, the units may get stuck or be unable to see any
point on their path. The simulator provides methods of dealing with the most
common problems.

Repath

If a unit isn’t able to move according to the plan computed in the pathfinding
phase, it needs a way of finding a path to the target. We will call the units
which are not able to follow the plan lost. If any unit becomes lost, a new path
is computed between its current position and the target using an A* algorithm.
This is called a repath.

Repathing can only occur with certain algorithms. As the flow field has a
movement direction for any position on the map (if there is a path between it
and the target), it can not trigger a repath.

57

Failure

There are situations in which units may get stuck and unable to move to the
goal. The simulator has a time limit for the execution (in the game time), which
is currently set at 5000s. If this limit is surpassed, the experiment run fails, and
the information about the failure is written into the file with the results.

5.4 Metrics
For each algorithm, a number of metrics will be collected and analyzed. One
metric can be used to measure different aspects of the algorithm. Despite this,
we can still divide the metrics into several categories by their purpose or the thing
they are measuring.

Performance Evaluation

These metrics are used to evaluate the performance of the algorithm. Both in
terms of the speed of the plan creation as well as the time it takes the units to
reach their target.

• Preparation time (time spent preprocessing the map without knowing the
target or unit position). The preparation is done before any movement
request, and its length isn’t too important. A long preparation could, how-
ever, be problematic for maps that often change during the game because
this would force a new map analysis.

• Pathfinding time (time spent finding the path for the units). The creation
of the plan for the units to follow shouldn’t take too long. The units com-
manded by the player should be able to react to a request to move to a
certain position almost instantaneously.

• Movement time (the time it takes all the units to reach the target). The
most important metric for the algorithm’s performance is measured using
the in-game time.

• 90% movement time (the time it takes for 90% of the units to reach the
target). The movement time can be influenced by a single unit getting lost,
stuck, or carried away from its path. This metric reduces the influence of
such events.

Moreover, we would also like to know how many times the plan failed and the
unit had to readjust. For this, we have two metrics:

• The number of hard re-paths (unit had to recompute its path to the goal).
A high number of re-paths can be a problem as a new path has to be created
for each of the units doing a re-path. This can significantly slow down the
execution.

• The number of soft re-paths (unit had to use an existing path intended
for different units). A higher number of soft re-paths isn’t as problematic

58

because the unit simply switches to another already created plan. It can,
however, lead to a wrong number of units being assigned to a flow stream
or be a signal of other potential problems.

Arrival Times

We would like to gather the times (from the start of the experiment) each unit
arrived at certain important milestones on their path. These include the target
and each of the gates the unit passes through. We will not just gather the times
but also the ID of the unit, the object (gate or target), and the ID of the flow
stream of the unit.

The arrival times aren’t that useful on their own, but they can be used for
further analysis and to compute other metrics. Following is a list of metrics that
can be derived from the arrival times.

• Movement times from predecessor gates are based on the first few units
from the stream. Are we predicting the time it takes to move between the
two gates correctly?

• First unit arrival times for each of the incoming streams. These can be
compared to the predicted arrival times.

• The total number of units passing through the gate, both for the whole
gate and individual streams. The streams have a certain number of units
assigned, but this can change in the case of re-pathing.

• Outgoing and incoming flow. This is the number of units arriving each
second in the case of the incoming flow. The incoming flow can be computed
from the outgoing flow heading to the gate from the predecessor gates offset
by the movement time from the said predecessor gate. The outgoing and
incoming flows can also be computed for individual streams and, in the case
of the outgoing flow, used to check the correct functioning of the divider
gates.

• Overflow. The number of units accumulated at the gate at any point in
time. It can be computed from the incoming and outgoing estimates by the
map analysis.

Travel Distances

The travel distances are recorded any time a unit passes through a gate or arrives
at the target. The distance is the total distance the unit traveled from the start
(not just from the previous gate). And just as with the arrival times, we don’t
gather only the distances but also the unit ID, the gate, and the ID of the flow
stream the unit belongs to.

From these distances, we can also get the length of the path units used be-
tween two neighboring gates. These can be compared to those predicted by our
algorithm.

59

Figure 5.6: Movement Map Figure 5.7: Stuck Map

Unit Paths

We would like to visualize the paths the units use during their movement. This
would allow us to quickly gauge the different paths used by the units, what portion
of the units are using the path, and also, to some extent, the places where the
units accumulate.

For each of the tiles, a float number is stored, measuring the usage of the
tile by the units. Every second, the units record their positions. Each of these
positions has 4 nearby tiles. The number stored in the tile is increased based
on the distance between the tile center and the recorded position. The numeral
values can be visualized using a logarithmic color scale and displayed as an image
called the movement map (Figure 5.6). The movement maps are generated for all
pathfinding problems and methods (single map for all the runs) and are available
as a part of the Digital Attachment.

Units Getting Stuck

It could be important to identify the places the units find problematic. We
identify these places by the units getting stuck there. We say that the unit is
stuck if, during the last second, it moves slower than 25

For each of the units, we will record the time it spent stuck. We will also
visualize the places where the units are getting stuck with the same method used
to visualize the paths producing a stuck map (Figure 5.7). This time, units
increase the values stored in the tile only if they are stuck. The stuck maps are
generated for all pathfinding problems and methods (single map for all the runs)
and are available as a part of the Digital Attachment.

Some of the places where the units are getting stuck are predictable (like the
chokepoint entrances) and don’t represent a problem or error. In some cases,
however, a real problem could be identified.

60

6. Results
Our algorithm was compared to three alternative pathfinding algorithms using a
number of different metrics. We also tried to investigate the experiments where
the algorithm didn’t perform well and describe the problems and their causes,
and possibly suggest solutions.

Overall the algorithm performed better in terms of the time it took for it to
find a plan as well as in terms of the overall movement times. This, however,
required a longer map preparation. A more detailed comparison of our algorithm
to the other methods will be made in the first section of this chapter.

The second chapter will focus on the arrival times and the reasons for the
differences between the real arrival times and predicted ones. The third chapter
will discuss the reasons for the performance differences and the problems our
method faced.

6.1 Comparison To Other Algorithms
There isn’t any singular measure of the quality of an algorithm. The results of
the comparison in different metrics will be described in the subsections of this
section.

6.1.1 Movement Times
The most important metric for the pathfinding algorithm’s performance is the
time it took before all of the units reached the goal. Each of the experiments had
10 runs for each of the methods. We will get the median from these runs, which
will eliminate the lucky and unlucky runs and give us a better understanding of
the algorithm’s performance.

To easily compare the different algorithms, we computed the relative perfor-
mance of the algorithms - a ratio between the time of the algorithm and the
time of the best method. These ratios can be seen in Table A.1 located in the
Attachments. The relative performances are highlighted using a color scale, with
the red color being the worst and the green being the best. Table 6.1 displays the
average relative ratios for different groups of experiments (based on the source of
their map).

We can see that, in general, our method achieves the best finishing times.
In fact, it is the best method (sometimes jointly) 121 times out of 200, and its
average relative performance is 1.03. The flow field is the second-best method

Flow Field A* Flow Graph RFG
Custom Maps 1.0864 1.168 1.168 1.030
Starcraft Maps 1.212 1.356 1.104 1.029
Warcraft 3 Maps 1.095 1.254 1.189 1.046
All Maps 1.1265 1.242 1.152 1.030

Table 6.1: Relative finish times (mean)

61

Flow Fields A* Flow Graph RFG
Custom Maps 1.098 1.181 1.104 1.014
Starcraft Maps 1.231 1.376 1.05 1.014
Warcraft 3 Maps 1.11 1.268 1.07 1.017
All Maps 1.141 1.258 1.081 1.014

Table 6.2: Relative 90% finish times (mean)

achieving an average of 1.126. The original Flow Graph method is third, with
performance only slightly worse than the flow field, but in one experiment, it isn’t
able to finish at all. The A* achieves by far the worst time and is, on average,
25% slower than the best method.

The origin of the map didn’t seem to have had a significant impact on our
algorithm’s performance. Despite a relatively good performance on average, there
were experiments where our method performed significantly worse than the oth-
ers. The reasons for it vary, and they will be described in the problems section
of this chapter.

We also measured the times it took for 90% of the units to reach the target.
This significantly reduced the impact of a few units getting lost, carried off their
path, or stuck along the way. The relative times can be seen in Table A.2 in the
Attachments. The mean relative performance in different groups of pathfinding
problems is displayed in Table 6.2. We can see that the performance of the Flow
Graph methods significantly improved. The average relative performance of the
original method was 1.08, and our method achieved 1.014. The performance of
the other two methods didn’t change much. This means that both of the Flow
Graph methods have a problem with single units getting stuck or carried off
their path. The problem was, however, significantly reduced in the regional Flow
Graph method (though not completely so).

6.1.2 Computation Times
The navigation is performed in three stages, and for each, we can measure the
time it takes to calculate.

Preparation

First is the preparation phase, where the analysis of the map is performed. The A*
and flow field methods do not perform any analysis. The Flow Graph decomposes
the map and computes the distances between the gates. The Regional Flow Graph
does the same, but on top of that creates flow fields for each region and a gate
neighboring it.

Table 6.3 shows us that the preparation times of the Flow Graph are, on
average, about three times quicker than those of the Regional Flow Graph. The
preparation times and their ratio, however, very much depend on the map. This
can be seen in Figure 6.1. If the map contains big regions with a lot of gates,
the Regional Flow Graph is slower. This is because it needs to compute a large
number of big flow fields.

The preparation for Regional Flow Graph on 512x512 maps usually takes 3
to 5 seconds. But in some extreme cases may reach almost 9 seconds. This speed

62

128x128 Maps 256x256 Maps 512x512 Maps

Figure 6.1: Preparation times on different map sizes

Flow Fields A* Flow Graph RFG
All Maps 0ms 0ms 794ms 2150ms
128x128 0ms 0ms 31ms 90ms
256x256 0ms 0ms 219ms 807ms
512x512 0ms 0ms 1690ms 4344ms

Table 6.3: Average Preparation Times

probably isn’t efficient enough for a frequently changing map and can only be used
for a less frequent map analysis. However, our implementation of the preparation
isn’t optimized with ECS, so the algorithm could probably be modified for better
performance.

Pathfinding

When the units receive a movement request, they should be able to react quickly
and start moving. This is why the navigation methods should have quick pathfind-
ing. Table 6.4 displays the average pathfinding times for different map sizes.

We can see that our method performed by far the best. Creating the plan took,
on average, just 8.3ms. This fast pathfinding was enabled by the map analysis
done in the preparation phase. The pathfinding times also didn’t increase too
much with the map size. This is because pathfinding is not performed over the
tiles but the regions. Therefore, the pathfinding times depend not on the map

Flow Fields A* Flow Graph RFG
All Maps 345ms 63.8 71ms 8.4ms
128x128 23.8ms 7.7ms 11.7ms 2.3ms
256x256 137ms 35ms 31.2ms 7.1ms
512x512 683ms 131ms 117ms 11.5ms

Table 6.4: Average Pathfinding Times

63

128x128 Maps 256x256 Maps 512x512 Maps

Figure 6.2: Pathfinding times on different map sizes

Flow Fields A* Flow Graph RFG
More Than 10 Repaths 0 43 50 20
More Than 100 Repaths 0 1 6 5

Table 6.5: Maps By Repath Numbers

size but on the map complexity.
The original Flow Graph method, which on average took 71ms to create a plan,

could be modified to achieve similar speed, but it would make its preparation just
as slow as the one used by our method. Out of the two standard methods, the
A* was significantly faster, completing the pathfinding in 64ms on average. The
flow field took significantly longer because it needed to go through all of the tiles.
On average, the plan creation took 345ms.

Execution

A good navigation method should be able to run smoothly during its execution
phase. All of our methods were able to achieve this for the most part.

The only problems happened when a large number of forced repaths were
triggered in a short period of time. This resulted in a drop in the FPS. These
drops happened for all of the methods except for the flow field, which doesn’t do
repaths.

6.1.3 Repathing
The repathing is used by 3 methods - A*, Flow Graph, and Regional Flow Graph.
In our method, we tried to decrease the number of repaths by changing them into
soft repaths, which don’t require path recalculation. We succeeded in doing so,
but at the same time introduced a new situation where the repathing is triggered.
This problem can be seen in Figure 6.10. Because of this problem, the number
of maps with a high number of repaths didn’t decrease much compared to the
original Flow Graph algorithm, as can be seen in Table 6.5. Because the reason
for the repaths is different, they occurred in different pathfinding problems. In the
attachments, we provide a table with the number of repaths for all pathfinding

64

Q0 Q1 Q2 Q3 Q4
Relative Difference -37% -9.8% -5.3% -1.9% +25.4%
Absolute Difference Q0 Q1 Q2 Q3 Q4

Table 6.6: Arrival Prediction Errors

Figure 6.3: Distance to the first gate using: the source node (left), the closest
unit (right)

problems (Table A.3). This table also includes the number of soft repaths in a
separate column.

6.2 Arrival Times
Our algorithm needs to estimate the time the units reach the target using the
RFG method. We would like our estimate to be as close to reality as possible.
This is the reason why we measured the arrival times for all of the experiments.
We compared them to the predicted arrival times. The comparison can be seen
in Table 6.6. It displays the absolute as well as a percentage difference between
the predicted and real times. The negative values mean that the units were faster
than predicted. The table displayed quartile values. The values for individual
units are in the digital attachment. The arrival times of RFG were usually quicker
than the predicted times, except for the experiments where we ran into problems.

We also evaluated the estimates for the arrival times at the gates to get a
better picture of the reasons for the prediction errors. The median difference
between the real and predicted times was 8.3s or 9.7%, with the real arrivals
being quicker. The main reason for this difference was a wrong estimate of the
arrival times at the first gate on the path. In our method, we represent the units
as a single source node placed units’ center of gravity. Many units will, however,
be significantly closer to their first gate than the source point, resulting in a
quicker arrival time (Figure 6.3). The median difference between the real and
predicted first gate arrival times was 10.7s.

The arrival estimates improved when we adjusted for the wrong prediction at
the first gates. The median difference was 2.7s or 3%, and the real arrival times

65

were slower. The average deviation was 6.2s. We are still determining the reason
why the real arrival times were slower than the predicted ones. It may have been
caused by execution errors, units near the walls not moving at full speed, or some
other factors.

6.3 Discussion
In this section, we will describe the reasons for the performance differences be-
tween the algorithms. We will also describe, analyze and try to propose solutions
for the errors that occur in our algorithm.

6.3.1 Performance Differences
We should describe the reasons for the differences in the finish times of the dif-
ferent methods.

The most important reason for the better performance of our method is the
separation of the units into different unit streams and, thus, better utilization of
different paths. The differences between the methods in this regard can be seen
in the movement maps (Figure 6.4).

The A* uses only a single path, and we can see the units gathering at the
entrances to the chokepoints. There they have to wait for the units in front of
them to pass through, slowing down the navigation. The flow field is somewhat
better as it can sometimes utilize multiple paths. This is because the units always
use the shortest path to the target. When they gather up at a chokepoint, for
some of the units at the side of the group, an alternative path may become shorter,
and they will use it. The flow field will therefore be usually equal to or faster
than the A*.

Both the Flow Graph and the Regional Flow Graph are capable of effectively
using the alternative paths. In this regard, there isn’t much difference between
them. The Regional Flow Graph should, however, be better at sending the ap-
propriate flows at the right times.

The next important factor influencing the speed of the methods is the naviga-
tion errors. The different groups of units may have a hard time separating from
each other, blocking each other’s way and causing delays. Some units may also
be carried off their path by the units belonging to a different group. They may
then have to travel long distances to get back to the path assigned to them by
the planning.

These navigation errors don’t happen with the A* and flow field methods
because they do not separate the units into different groups. We can see them
visualized on the movement maps of the Flow Graph and Regional Flow Graph
methods. The main paths used by the units are seen in orange and yellow.
Between them (and sometimes also in other places) are the areas painted green.
These are the travel paths of the units that weren’t separating effectively or are
trying to return to their path using sometimes unorthodox routes.

If we compare the movement graphs of the Flow Graph and Regional Flow
Graph method, we can clearly see that these navigation eros occur more frequently
when the Flow Graph is used. They still occur when using the Regional Flow

66

A* Flow Field

Flow Graph Regional Flow Graph

Figure 6.4: Comparison Of Movement Maps From Different Methods

Graph, just less frequently. We can see this from the cleaner separation between
the different paths.

6.3.2 Problems
When running the Regional Flow Graph algorithm, we saw that in some exper-
iments, its performance was significantly worse than in others. We ran these
experiments in the visual mode and investigated why this happened.

We found some problems and inadequacies in our algorithm. This section will
try to describe, explain, and, when possible, propose solutions to these problems.

Streams Crossing

In Figure 6.5, we can see the yellow units trying to reach gate A, while the red
units are heading towards gate B. The units from these two streams mix up with
each other, some may get carried away by a different stream, or their path may

67

Figure 6.5: Streams Crossing

be blocked for a significant amount of time. This situation increases the finishing
time significantly.

The problem occurs because the method doesn’t check if the unit paths cross
each other. It also doesn’t generate all the possible path combinations (because
the number of these combinations is very high), which would contain a non-
crossing set of paths faster or equal to those used.

Possible Solution - When we find the combination of paths to use, we can
check if they cross each other in any of the regions. If this is the case, the paths
can be modified to remove the crossing. In this example, the yellow units would
go through gate B and the red units through gate A.

Divider Gate Stream Assignment

In Figure 6.7, the green units are heading to the right gate, and the blue ones
are heading to the left. Their paths cross, which causes problems and increases
the length of the simulation. The assignment of the units at the gate needs to be
corrected. The streams should be switched.

The problem occurs when the target gates are located “behind” the divider
gate. This is because the segment of the gate the stream received is based on a
dot product between the gate direction and a direction to the target gate. The
gate direction is the direction between the start and end of the gate. The dot
product starts decreasing when the target gate is located “behind” the divider
gate, which results in an incorrect segment assignment.

Possible Solution - The divider gate stream assignment shouldn’t be based on
a dot product. The angle between the direction toward the target gate and the
divider gate should be considered instead.

68

Figure 6.6: Divider Gate - Wrong Stream Assignment

Figure 6.7: Divider Gate - Wrong Stream Assignment

69

Figure 6.8: Exit Blocked By A Different Flow Stream

Wrong Creation Of Gates

The gates at the region the green units pass through weren’t created at the
right places. They weren’t placed in the narrowest section, which led to a wrong
estimation of the flow. At the location the red arrow is pointing to, a gate wasn’t
created at all (Figure 6.7).

The problem typically occurs in places with thin or small obstacles, which
may be ignored by the decomposition.

Possible Solution - The decomposition can be modified to be more sensitive
to small obstacles. This will, however, result in a creation of a large number of
gates, often created because of a small irregularity in the shape of the walls. We
have to essentially weigh between specificity and sensitivity. In our case, we got
some false negatives. Alternatively, the decomposition can be created manually
by a designer.

Units Blocking An Exit

The blue units are trying to leave a narrow passage, but the exit is blocked by the
yellow and green units (Figure 6.8). This gets most of the units stuck, delaying
the time of their arrival at the target and making the estimates of our algorithm
wrong.

Possible Solution - Remains an open problem.

Nearby Entrances

In Figure 6.9, we can see that the red units were pushed off their path by the
green units, and now they are blocking each other’s path. This leads to significant
delays, chaos, weird movements, and isolated units.

The entrances to the passages used by these two unit groups were close to
each other, which led to them getting in each other’s way.

70

Figure 6.9: Units Pushed Off Their Path

Figure 6.10: Unnecessary Repaths

The problem of the units getting caught up in a different stream has been
improved compared to the original method, but it still occurs.

Possible Solution - We couldn’t find a good solution. The problem occurs
when the incoming flow is significantly greater than the gate capacity. The units
then accumulate at the entrance and may block the path to another group of
units (which then pushes some of them off the path).

Unnecessary Repaths

Part of the units is pushed to region R (Figure 6.10), which doesn’t lie on their
regional path. A repath is triggered for every unit that enters the region R.
This slows the algorithm down significantly (hundreds of paths may have to be
calculated in a short period of time).

71

Possible Solution - When units enter a region that doesn’t lie on any of the
regional paths, the algorithm should check if it neighbors any of the regions on
its path. If this is the case, a direction should be assigned to the region leading
towards the region the units were pushed from.

72

7. Future Work
The Regional Flow Graph method runs into the problems mentioned in the Re-
sults chapter, which may negatively impact its performance. These should be
fixed if possible. The results chapter already suggested some solutions When we
are selecting the best solution, we need to be able to estimate the finishing time
and be able to assign the units in the best way possible. To do this, we need to
accurately estimate the flow going through the gates. Our method uses the basic
flow estimate. A better estimate could, however, be created based on the flow
data. RFG is optimized for the finishing and pathfinding times, but this may
result in a subpar performance in other areas. A good algorithm should be also
optimized for other objectives and will be often made to fit a particular game.
We will discuss possible modifications for modified or additional objectives.

7.1 Better Flow Estimation
In our method, we estimate the capacity c for each gate, which depends linearly
on the gate’s width. At any point in time, we can have n units trying to enter the
gate. The flow going through the gate will be Min(c, n). In the “Problem Anal-
ysis” section, we discussed that estimating the flow may be more complicated.
We would like to find out the quality of our estimate and inspect other factors
influencing the flow values.

We will observe the flow’s behavior on a few simple maps. This is done because
we would like to limit the factors that could influence the flow. We also won’t be
able to obtain correct measurements of some metrics on the real game maps. This
is because we use an assumption that Φinto

G1⇒G2(t) = ΦG1 ⇒ G2
toward(t − tG1⇒G2)

where the tG1⇒G2 is the time of unobstructed movement from G1 to G2. The
assumption is, however, broken even by the smallest pathfinding problems (like
wall hugging).

7.1.1 Overflow
Overflow measures the number of units accumulated at the gate’s entrance. The
accumulated units could be pushing the units in front of them into the gate. This
could decrease the spaces between the units and thus increase the flow.

To investigate the influence of the overflow, we used the “Decreasing Gate Size
Map”. This map contains four gates, each with a lower width than the previous
one. These decreases allow us to simulate an overflow increasing at a roughly
linear rate.

We will measure the flow and overflow values at the third gate. This gate has
a width of 11 and an estimated capacity of 13.3 units/s. If the estimate used by
our method is correct, we should see a constant flow independent of the overflow
values. The measured values can be seen in Image 7.1.

We see that the overflow builds up steadily, then reaches a peak and decreases.
The peak corresponds to the time when there are no incoming units from the
previous gate.

73

Figure 7.1: Flow And Overflow Relation

74

Figure 7.2: Influence Of Previous Gates

The flow quickly builds without any overflow. The first overflow occurs at the
4 seconds where the flow reaches 14.5 units/s. The overflow seems to increase the
flow, but each increase of overflow offers diminishing returns. The flow eventually
plateaus at 16 units/s. The flow falls off when the overflow starts decreasing. The
decrease from a reduced overflow seems to be more significant during the falloff.

Our capacity estimate seems lower than it should be, and the real flow exceeds
it by about 20%. The rectangular shape, the predicted flow would have, seems to
match the real flow reasonably well but ignores the transitions at the beginning
and the end.

7.1.2 Previous Gate Effects
The flow values going through a gate may be influenced by the gates the units
used before. We will investigate this effect on the “Constant Gates” map. The
map consists of four gates of the same size placed right after each other. The
gates have a width of 9 and an estimated capacity of 10.9 units/s. Our estimate
would assume the same flow constant flows through all of the gates.

The flows measured at each of the gates can be seen in Image 7.2. The
previous gates really seem to influence the flow. Units traverse the first gate
roughly 3s faster than the fourth gate. The flow builds up slower at the later
gates and reaches lower peak values. The differences are caused by different
incoming flows, which then also influence the overflows at the individual gates.

Our estimate doesn’t deal with these situations too well. Especially if we have
short flows with longer transitions.

7.1.3 Flow Function
We would like to estimate the flow function (Definition 18) so we could get better
estimates of the flow going through the gates and the finishing times of the

75

solution.
We obtained combinations of four metrics - flow, incoming flow, overflow, and

gate width. The values of the metrics were gathered only on a few selected maps,
where we could guarantee them being reasonably accurate. We then tried to find
the function that would predict the outgoing flow based on the other 3 metrics
using curve fitting. The flow function was then estimated as:

Φout
G (t) =

(︃
Gl −

√︂
Gl

)︃(︄
a + b ∗ S

(︄
OG(t)

Gl

)︄)︄

Where S is the sigmoid function, and parameters a = 1.35, b = 0.7
The function is specific to our unit model and couldn’t be used for other

models. The estimate is based only on a few maps and probably isn’t too accurate.
We can reasonably assume that the flow doesn’t depend on the gate’s width

linearly and that the overflow increases the flow but with diminishing returns.
And investigating the characteristics of the flow further could be worthwhile.

7.2 Modified Objectives
We identified two main modified requirements that may be useful for different
games. One wants to improve the finishing times at the cost of the pathfinding
time. The other one wants to increase the cohesion of the unit groups.

7.2.1 Possible Missing Solutions
The algorithm doesn’t generate all the sets of concurrent paths. The algorithm
generates these sets in a way that is likely to produce the optimal or nearly op-
timal set. However, this isn’t always the case, and the best set of paths can be
missing. Finding the flow by adding augmenting paths is only a heuristic. An-
other solution could examine a higher number of concurrent paths to get to more
optimal solutions. However, this would probably require a longer pathfinding
phase.

7.2.2 Increased Cohesion
Our algorithm optimizes for a quick finishing time. To achieve it, we often divide
the units into small groups, often numbering in single digits. This doesn’t look
natural. Moreover, small groups of units are vulnerable to possible enemy attacks,
which would make our method unusable in real RTS games. The algorithm could
be improved by specifying a minimum number of units assigned to a flow stream
or a maximum number of streams the solution can use.

76

Conclusion
The goal of the thesis was to create a pathfinding algorithm that could be effec-
tively used in RTS games. We proposed a pathfinding method called the Regional
Flow Graph. We implemented the method in the Unity game engine and evalu-
ated its performance against existing pathfinding algorithms in our custom testing
environment.

Our method achieved good results in terms of the metrics we deemed the most
important. We achieved a significant improvement compared to existing methods
in terms of the pathfinding speed and the time the units spent navigating to their
target. These improvements were, however, paid for by a longer preprocessing
time. This would make it a good fit for games where the environment doesn’t
change frequently but a worse one for highly dynamic changes.

Despite achieving quicker finishing times, our method still has several prob-
lems which wouldn’t make it a good fit for a real-life application. The units
often behave in strange ways. Their paths get into conflicts which could break
the player’s immersion. The algorithm also doesn’t consider the potential enemy
presence on the map and often separates the units into small groups. This would
make the units vulnerable during their navigation.

Overall, our method shows some potential for use in RTS games but still
requires modifications and improvements to be truly viable.

77

Bibliography
[1] Jan Pacovský. Navigation of units in video games using flow networks.

Master’s thesis, Charles University, Faculty of Mathematics and Physics,
Prague, 2019.

[2] Marjan van den Akker, Roland Geraerts, Han Hoogeveen, and Corien Prins.
Pathfinding challenges with large groups, Jan 2011.

[3] Yngvi Björnsson, Markus Enzenberger, Robert Holte, Jonathan Schaeffer,
and Peter Yap. Comparison of different grid abstractions for pathfinding on
maps. IJCAI, 2003.

[4] Greg Snook. Simplified 3D movement and pathfinding using navigation
meshes. Game programming gems, 1(1):288–304, 2000.

[5] Paul Tozour. Fixing pathfinding once and for all. Retrieved September,
10:2010, 2008.

[6] Paul Tozour and I S Austin. Building a near-optimal navigation mesh. AI
game programming wisdom, 1:298–304, 2002.

[7] Florian Richoux, Alberto Uriarte, and Santiago Ontanón. Walling in strategy
games via constraint optimization. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, volume 10,
pages 52–58, 2014.

[8] Caio Freitas de Oliveira and Charles Andrye Galvao Madeira. Creating
efficient walls using potential fields in real-time strategy games. In 2015
IEEE Conference on Computational Intelligence and Games (CIG), pages
138–145, 2015.

[9] Kári Halldórsson and Yngvi Björnsson. Automated decomposition of game
maps. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, volume 11, pages 122–127, 2015.

[10] Wittaya Bidakaew, Pavadee Sompagdee, Sukanya Ratanotayanon, and
Pongsagon Vichitvejpaisal. RTS terrain analysis: An axial-based approach
for improving chokepoint detection method. In 2016 8th International Con-
ference on Knowledge and Smart Technology (KST), pages 228–233, 2016.

[11] Luke Perkins. Terrain analysis in real-time strategy games: An integrated
approach to choke point detection and region decomposition. In Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, volume 6, pages 168–173, 2010.

[12] Alberto Uriarte and Santiago Ontanón. Improving terrain analysis and ap-
plications to rts game ai. In Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment, volume 12, pages 15–20,
2016.

78

[13] Florian Richoux. Terrain analysis in StarCraft 1 and 2 as combinatorial
optimization. In 2022 IEEE Congress on Evolutionary Computation (CEC),
pages 1–8, 2022.

[14] Zhou Yijun, Xi Jiadong, and Luo Chen. A fast bi-directional a* algo-
rithm based on quad-tree decomposition and hierarchical map. IEEE Access,
9:102877–102885, 2021.

[15] Tansel Uras, Sven Koenig, and Carlos Hernández. Subgoal graphs for opti-
mal pathfinding in eight-neighbor grids. In Proceedings of the International
Conference on Automated Planning and Scheduling, volume 23, pages 224–
232, 2013.

[16] Adi Botea. Ultra-fast optimal pathfinding without runtime search. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, volume 7, pages 122–127, 2011.

[17] Edsger W Dijkstra. A note on two problems in connexion with graphs. In
Edsger Wybe Dijkstra: His Life, Work, and Legacy, pages 287–290. 2022.

[18] Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for
the heuristic determination of minimum cost paths. IEEE transactions on
Systems Science and Cybernetics, 4(2):100–107, 1968.

[19] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A
search meets graph theory. In SODA, volume 5, pages 156–165, 2005.

[20] Alex Nash and Sven Koenig. Theta* for any-angle pathfinding. Game AI
Pro, 2:161–171, 2015.

[21] Daniel Harabor and Alban Grastien. An optimal any-angle pathfinding al-
gorithm. In Proceedings of the International Conference on Automated Plan-
ning and Scheduling, volume 23, pages 308–311, 2013.

[22] Xiang Xu and Kun Zou. Smooth path algorithm based on a* in games. In
Advances in Computer Science, Environment, Ecoinformatics, and Educa-
tion: International Conference, CSEE 2011, Wuhan, China, August 21-22,
2011. Proceedings, Part I, pages 15–21, 2011.

[23] Xiao Cui and Hao Shi. An overview of pathfinding in navigation mesh.
International Journal of Computer Science and Network Security, 12(12):48–
51, December 2012.

[24] Douglas Demyen and Michael Buro. Efficient triangulation-based pathfind-
ing. In Aaai, volume 6, pages 942–947, 2006.

[25] Michael Cui, Daniel Damir Harabor, Alban Grastien, and Canberra Data61.
Compromise-free pathfinding on a navigation mesh. In IJCAI, pages 496–
502, 2017.

[26] Hao Pan. Pathfinding and map feature learning in RTS games with partial
observability. 2021.

79

[27] Serhat Bayili and Faruk Polat. Limited-Damage a*: A path search algorithm
that considers damage as a feasibility criterion. Knowledge-Based Systems,
24(4):501–512, 2011.

[28] Richard E Korf. Depth-first iterative-deepening: An optimal admissible tree
search. Artif. Intell., 27(1):97–109, 1985.

[29] Daniel Harabor and Alban Grastien. Online graph pruning for pathfinding on
grid maps. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 25, pages 1114–1119, 2011.

[30] Steve Rabin and Nathan Sturtevant. Combining bounding boxes and JPS to
prune grid pathfinding. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016.

[31] Daniel Harabor and Alban Grastien. Improving jump point search. In
Proceedings of the International Conference on Automated Planning and
Scheduling, volume 24, pages 128–135, 2014.

[32] Adi Botea, Martin Müller, and Jonathan Schaeffer. Near optimal hierarchical
path-finding. J. Game Dev., 1(1):1–30, 2004.

[33] Yan Li, Lan-Ming Su, and Wen-Liang Li. Hierarchical path-finding based on
decision tree. In Rough Sets and Knowledge Technology: 7th International
Conference, RSKT 2012, Chengdu, China, August 17-20, 2012. Proceedings
7, pages 248–256, 2012.

[34] Factorio - new pathfinding algorithm.

[35] Johan Hagelbäck. Potential-field based navigation in starcraft. In 2012 IEEE
Conference on Computational Intelligence and Games (CIG), pages 388–393,
2012.

[36] Johan Hagelbäck. Hybrid pathfinding in StarCraft. IEEE Trans. Comput.
Intell. AI Games, 8(4):319–324, 2015.

[37] Elijah Emerson. Crowd pathfinding and steering using flow field tiles. In
Game AI Pro 360: Guide to Movement and Pathfinding, pages 67–76. CRC
Press, 2019.

[38] David Silver. Cooperative pathfinding. In Proceedings of the aaai confer-
ence on artificial intelligence and interactive digital entertainment, volume 1,
pages 117–122, 2005.

[39] Esra Erdem, Doga Kisa, Umut Oztok, and Peter Schüller. A general formal
framework for pathfinding problems with multiple agents. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 27, 2013.

[40] Alborz Geramifard, Pirooz Chubak, and Vadim Bulitko. Biased cost
pathfinding. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, volume 2, pages 112–114, 2006.

80

[41] J M Akker, Roland Geraerts, Han Hoogeveen, and Corien Prins. Path plan-
ning for groups using column generation. In International Conference on
Motion in Games, pages 94–105. Springer, 2010.

[42] Craig W Reynolds and Others. Steering behaviors for autonomous charac-
ters. In Game developers conference, volume 1999, pages 763–782, 1999.

[43] Ben Sunshine-Hill. RVO and ORCA: How they really work. In Game AI
Pro 360: Guide to Movement and Pathfinding, pages 245–256. CRC Press,
2019.

[44] Stephen J Guy, Jatin Chhugani, Changkyu Kim, Nadathur Satish, Ming Lin,
Dinesh Manocha, and Pradeep Dubey. Clearpath: highly parallel collision
avoidance for multi-agent simulation. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation, pages 177–187,
2009.

[45] Austin Grossman and Matt Pritchard. Ensemble studios’: Age of empires
II: The age of kings. In Postmortems from game developer, pages 115–126.
Focal Press, 2013.

81

List of Figures
1 Starcraft 2 Narrow Passage Problem (Image Source: Akker et al.[2]) 5

1.1 Single tile with neighbors and distances to them 7
1.2 A single pathfinding problem . 8

2.1 Same map is represented using the waypoint graph and a naviga-
tion mesh (Image Source: Tozour [5]) 11

2.2 Regional decomposition . 12
2.3 Water level decomposition process (Image Source: Halldórson[9]) . 13
2.4 JPS - canonical exploration and jump points (Image Source: Rabin

and Sturtevant[30]) . 18
2.5 Age of Empires 2 formations . 23

3.1 Low Overflow . 31
3.2 High Overflow . 31
3.3 Smooth Gate . 31
3.4 Rough Walls . 31
3.5 Funnel Gate . 32
3.6 Straight Gate . 32
3.7 Blocked Entrance . 32
3.8 Wall Hugging . 32
3.9 Stream Separation Error . 32
3.10 Low Incoming Flow . 34
3.11 Medium Incoming Flow . 34
3.12 High Incoming Flow . 34

4.1 Path Mutation (Image Source: Jan Pacovský [1]) 41
4.2 Flow Graph Navigation Problems 44
4.3 Redundant gate . 46
4.4 Multiple regions enclosed . 46
4.5 Three point border . 46
4.6 Water decomposition comparison 47
4.7 Flow Stream Separation Comparison 50

5.1 Simple Custom Map . 55
5.2 Problematic Custom Map . 55
5.3 Starcraft Map . 55
5.4 Map Texture . 56
5.5 Unit Start Texture . 56
5.6 Movement Map . 60
5.7 Stuck Map . 60

6.1 Preparation times on different map sizes 63
6.2 Pathfinding times on different map sizes 64
6.3 Distance to the first gate using: the source node (left), the closest

unit (right) . 65
6.4 Comparison Of Movement Maps From Different Methods 67

82

6.5 Streams Crossing . 68
6.6 Divider Gate - Wrong Stream Assignment 69
6.7 Divider Gate - Wrong Stream Assignment 69
6.8 Exit Blocked By A Different Flow Stream 70
6.9 Units Pushed Off Their Path . 71
6.10 Unnecessary Repaths . 71

7.1 Flow And Overflow Relation . 74
7.2 Influence Of Previous Gates . 75

83

List of Tables
6.1 Relative finish times (mean) . 61
6.2 Relative 90% finish times (mean) 62
6.3 Average Preparation Times . 63
6.4 Average Pathfinding Times . 63
6.5 Maps By Repath Numbers . 64
6.6 Arrival Prediction Errors . 65

A.1 Relative finish times . 86
A.2 Relative 90% finish times . 87
A.3 Repaths with different methods 88

84

A. Attachments
A.1 Digital Attachment
The electronic attachment contains the Unity project implementing the simulator
and different pathfinding methods. It also contains the results of the experiments.

A.1.1 Program
• Unity project with all the source codes and the pathfinding problems (maps,

unit positions...)

• User manual with instructions for a simulation setup

• Auto-generated documentation

A.1.2 Pathfinding Data
• Movement maps and stuck maps for all the problems and methods (a single

map for all the runs with averaged values)

• Performance tables with information about the finishing, pathfinding, and
preparation times. Also contains a table with the data about the repaths.

• The offsets of the real gate arrival compared to the predicted ones

• Data used to estimate the flow function

• Flows - graphs of the flow coming to the target for different methods -
comparison between the predicted values and the real ones

• Runs - data about the results of the individual runs

• Target Arrival Times - table comparing the real arrival times at the target
and predicted ones.

A.2 Performance Tables

85

ID FF FG A* RFG
1 1 1.02 1.02 1.05
2 1.04 1.06 1.06 1
3 1.14 1.12 1.13 1
4 1 1.22 1.5 1.23
5 1 1.09 1.09 1.03
6 1.06 1.27 1.15 1
7 1 1.03 1.03 1.01
8 1 1.3 1.06 1.15
9 1.22 1.69 1.25 1
10 1.1 1.4 1.14 1
11 1.24 1.15 1.26 1
12 1 1.21 1.26 1.44
13 1 1.15 1.15 1.26
14 1 1.16 1.15 1.23
15 1.07 1.1 1.2 1
16 1 1.78 1.16 1.3
17 1.13 1 1.21 1
18 1 1.08 1.12 1
19 1 1.13 1.15 1.05
20 1.14 1.35 1.21 1
21 1.1 1 1.2 1.01
22 1.01 1.02 1.02 1
23 1.01 1.02 1.02 1
24 1.01 1.02 1.04 1
25 1 1.01 1.01 1
26 1.01 1.01 1.01 1
27 1 1.5 1.18 1.06
28 1.07 1.13 1.29 1
29 1 1.46 1.68 1.17
30 1 1.97 1.44 1.17
31 1 1.01 1.01 1
32 1 1.01 1.01 1
33 1 1.01 1.03 1
34 1 1 1 1.01
35 1 1 1 1.01
36 1.28 1.27 1.41 1
37 1.11 1.23 1.12 1
38 1.12 1.13 1.45 1
39 1.08 1.15 1.14 1
40 1 1.7 1.09 1.14
41 1 1.33 1.04 1.06
42 1.03 1.01 1 1.02
43 1.01 1.01 1 1
44 1.01 1 1 1
45 1.17 1.77 1.21 1
46 1.06 1.86 1.08 1
47 1.07 1.23 1.18 1
48 1 1.92 1.06 1
49 1.19 1.11 1.2 1
50 1 1.01 1.02 1.02
51 1 1.07 1 1.02
52 1.11 1.12 1.1 1
53 1.13 1.13 1.13 1
54 1 1.11 1.21 1.06
55 1.06 1 1.09 1.01
56 1 1.02 1.06 1.07
57 1 1.17 1.21 1
58 1.09 1.04 1.18 1
59 1.06 1.02 1.3 1
60 1 1.08 1.04 1.08
61 1 1.03 1.1 1.06
62 1.08 1 1.12 1.01
63 1.1 1.36 1.1 1
64 1 1.02 1.03 1.01
65 1 1.03 1.02 1.01
66 1.01 1.02 1.04 1
67 1.01 1.01 1.01 1

ID FF FG A* RFG
68 1.15 1.05 1.14 1
69 1.39 1.33 1.4 1
70 1.59 1.51 1.66 1
71 1.78 F 1.99 1
72 1.24 1 1.25 1.01
73 1.01 1.01 1.02 1
74 1 1.35 1.28 1
75 1.16 1.17 1.16 1
76 1.42 1.06 1.44 1
77 1.28 1 1.33 1.07
78 1.24 1 1.4 1
79 1.01 1 1.02 1
80 1.01 1 1.02 1.01
81 1 1.01 1.01 1.02
82 1 1 1 1
83 1 1 1.01 1
84 1.19 1.31 1.33 1
85 1.16 1.14 1.24 1
86 1.03 1 1.04 1.01
87 1.05 1.01 1.38 1
88 1.04 1.04 1.09 1
89 1 1 1 1.01
90 1.04 1.07 1.04 1
91 1.27 1.3 1.29 1
92 1.02 1 1 1.02
93 1.01 1.04 1 1.01
94 1.1 1.3 1.17 1
95 1.94 1.03 2.09 1
96 1.24 1.08 1.26 1
97 1 1 1.06 1.01
98 1 1.09 1.23 1.03
99 1 1.17 1.23 1
100 1.14 2.08 1.25 1
101 1.05 1.14 1.09 1
102 1.21 1 1.4 1.02
103 1.11 1.07 1.47 1
104 1.04 1.2 1.07 1
105 1 1.76 1.65 1.13
106 1.12 1.01 1.15 1
107 1.09 1.12 1.23 1
108 1 1.01 1.04 1.01
109 1.03 1.07 1.04 1
110 1.19 1 1.23 1
111 1.03 1.09 1.03 1
112 1.3 1.01 1.42 1
113 1.23 1 1.27 1
114 1.17 1 1.19 1
115 1 1.06 1.25 1.06
116 1 1.01 1.02 1
117 1.21 1.16 1.62 1
118 1.6 1.02 1.51 1
119 1.16 1 1.64 1.01
120 1.37 1 1.6 1.42
121 1.07 1.03 1.37 1
122 1.15 1 1.17 1.01
123 1.19 1 1.23 1.01
124 1.3 1.22 1.55 1
125 1.02 1 1.1 1.03
126 1 1.02 1.02 1.02
127 1.11 1.05 1.2 1
128 1 1.14 1.05 1
129 1.03 1.06 1.05 1
130 1 1.03 1.05 1.05
131 1.14 1.37 1.36 1
132 2.15 1.09 2.34 1
133 1 1.08 1.02 1.01
134 1.32 1.16 1.44 1

ID FF FG A* RFG
135 1.96 1.02 1.97 1
136 1 1.82 2.66 1.18
137 1.26 1.26 1.34 1
138 1 1.03 1.49 1.04
139 1 1.08 1.41 1.01
140 1.01 1.1 1.2 1
141 1.24 1.02 1.3 1
142 1.11 1 1.32 1.01
143 1.54 1.32 1.55 1
144 1.48 1.01 1.57 1
145 1.14 1.01 1.3 1
146 2.05 1.03 1.01 1
147 1.49 1 1.41 1.02
148 1.08 1.13 1.21 1
149 1.12 1.2 1.21 1
150 1 1.4 1.25 1
151 1.69 1.03 2.59 1
152 1.94 1.16 2.02 1
153 1 1.28 1.02 1.08
154 1.12 1 1.45 1
155 1 1.12 1 1.15
156 1 1.01 1.02 1.01
157 1 1.17 1.03 1
158 2.01 1.06 2.03 1
159 1.05 1.03 1.14 1
160 1.13 1.1 1.2 1
161 1.13 1 1.14 1.01
162 1.08 1.33 1.17 1
163 1 1.09 1.02 1.02
164 1.05 1.17 1.56 1
165 1.06 1.09 1.21 1
166 1 1.19 1.04 1.1
167 1 1.23 1.88 1.23
168 1.12 1.11 1.76 1
169 1.01 1 1.04 1
170 1 1.21 1 1.12
171 1 1.24 1.07 1.01
172 1.03 1.08 1.03 1
173 1 1.22 1.01 1.01
174 1.06 1.13 1.08 1
175 1.08 1.12 1.1 1
176 1.09 1.04 1.1 1
177 1.84 1 1.83 1.02
178 1 1.16 1.18 1.11
178 1 1.04 1.07 1.04
180 1 1.17 1.09 1.05
181 1 1.2 1.03 1
182 1 1.15 1.13 1.18
183 1.02 1.02 1.06 1
184 1.07 1.3 1.05 1
185 1 1.14 1.07 1.14
186 1.01 1.01 1 1.05
187 1 1.79 1.13 1.51
188 1.23 1.09 1.33 1
189 1 1.63 1.26 1.04
190 1 1.24 1.21 1.12
191 1 1.04 1.05 1.03
192 1.01 2.01 1.04 1
193 1.06 1.12 1.11 1
194 1.07 1 1.35 1.02
195 1.37 1.33 2.17 1
196 1.09 1.06 1.19 1
197 1.43 1.11 1.63 1
198 1.09 1.15 1.12 1
199 1 1.26 1.4 1.01
200 1.85 1.1 2.34 1

Pathfinding methods : Flow Field, Flow Graph, A*, Regional Flow Graph
Map sources : blue = Custom, white = Starcraft, green = Warcraft 3

Table A.1: Relative finish times

86

ID FF FG A* RFG
1 1 1.02 1.01 1.05
2 1.04 1.05 1.05 1
3 1.12 1.09 1.1 1
4 1 1.08 1.47 1.04
5 1 1.05 1.09 1.03
6 1.07 1.07 1.17 1
7 1.02 1 1.06 1.02
8 1.03 1.21 1.1 1
9 1.35 1.64 1.39 1
10 1.12 1.23 1.16 1
11 1.36 1.05 1.39 1
12 1.07 1.16 1.35 1
13 1.02 1.05 1.16 1
14 1 1.1 1.09 1.06
15 1.07 1 1.2 1
16 1 1.57 1.16 1.26
17 1.17 1 1.26 1
18 1.05 1 1.17 1.02
19 1 1.01 1.17 1
20 1.14 1.01 1.22 1
21 1.09 1 1.2 1
22 1 1.02 1.02 1
23 1.01 1.02 1.02 1
24 1.01 1.02 1.04 1
25 1 1.01 1.01 1
26 1.01 1.01 1.01 1
27 1 1.36 1.18 1.05
28 1.08 1.03 1.3 1
29 1 1.26 1.5 1.08
30 1 1.92 1.46 1.17
31 1 1.01 1.01 1
32 1 1.01 1.01 1
33 1 1.01 1.03 1
34 1 1 1 1
35 1 1 1 1
36 1.26 1.08 1.4 1
37 1.12 1.04 1.14 1
38 1.11 1.03 1.45 1
39 1.08 1.03 1.14 1
40 1 1.59 1.1 1.06
41 1 1.05 1.05 1
42 1.02 1.01 1 1.02
43 1.01 1 1 1.01
44 1.01 1.01 1 1
45 1.28 1.8 1.33 1
46 1.19 1.9 1.22 1
47 1.09 1.08 1.2 1
48 1.1 2 1.16 1
49 1.19 1.04 1.21 1
50 1 1.01 1.02 1.01
51 1 1.01 1 1.02
52 1.1 1.03 1.09 1
53 1.12 1.07 1.13 1
54 1.03 1 1.23 1.04
55 1.05 1 1.09 1.01
56 1.01 1 1.07 1
57 1 1.02 1.22 1.01
58 1.08 1.05 1.19 1
59 1.09 1.03 1.34 1
60 1 1.1 1.04 1.09
61 1 1.02 1.08 1.04
62 1.09 1 1.15 1.01
63 1.13 1.02 1.13 1
64 1 1.02 1.02 1.01
65 1 1.02 1.01 1
66 1.01 1.02 1.04 1
67 1.01 1 1 1

ID FF FG A* RFG
68 1.14 1.03 1.13 1
69 1.35 1.1 1.37 1
70 1.57 1.32 1.63 1
71 1.72 F 1.95 1
72 1.38 1 1.38 1.01
73 1.01 1 1.02 1
74 1 1.14 1.31 1.03
75 1.22 1.07 1.23 1
76 1.45 1.09 1.47 1
77 1.29 1 1.33 1.04
78 1.23 1.01 1.4 1
79 1.01 1 1.02 1
80 1 1 1.02 1.01
81 1 1.01 1.01 1.01
82 1 1 1 1
83 1 1 1.02 1
84 1.18 1 1.34 1
85 1.17 1 1.26 1
86 1.02 1 1.03 1
87 1.02 1 1.37 1.01
88 1.2 1 1.27 1.01
89 1 1 1 1.01
90 1.03 1.07 1.04 1
91 1.26 1.29 1.29 1
92 1.01 1 1 1.02
93 1.01 1.04 1 1.01
94 1.11 1 1.19 1
95 1.91 1.01 2.06 1
96 1.24 1 1.27 1
97 1.07 1.01 1.13 1
98 1.08 1 1.31 1.09
99 1.01 1.07 1.23 1
100 1.13 1.85 1.21 1
101 1.05 1.12 1.09 1
102 1.18 1 1.38 1.01
103 1.21 1.07 1.5 1
104 1.05 1.04 1.05 1
105 1 1.62 1.68 1.04
106 1.15 1 1.17 1.01
107 1.11 1.02 1.25 1
108 1 1.01 1.04 1
109 1.05 1.01 1.06 1
110 1.2 1 1.24 1.01
111 1.03 1.08 1.04 1
112 1.28 1 1.4 1
113 1.25 1 1.28 1
114 1.17 1 1.2 1
115 1.01 1.01 1.26 1
116 1 1.01 1.03 1
117 1.21 1.04 1.65 1
118 1.65 1.01 1.56 1
119 1.17 1 1.64 1.01
120 1.42 1 1.66 1.38
121 1.05 1 1.35 1
122 1.17 1 1.18 1.01
123 1.18 1 1.22 1
124 1.43 1.23 1.66 1
125 1.03 1 1.11 1.03
126 1 1.02 1.02 1.02
127 1.17 1 1.24 1.01
128 1 1.04 1.04 1
129 1.03 1.02 1.05 1
130 1 1.03 1.05 1.04
131 1.12 1.05 1.2 1
132 2.21 1.1 2.45 1
133 1 1.01 1.02 1.01
134 1.34 1.08 1.47 1

ID FF FG A* RFG
135 2.14 1.04 2.14 1
136 1 1.68 2.59 1.12
137 1.26 1.01 1.33 1
138 1 1.03 1.52 1.03
139 1 1 1.41 1.01
140 1.04 1.03 1.22 1
141 1.24 1.01 1.29 1
142 1.29 1.01 1.56 1
143 1.51 1.05 1.52 1
144 1.46 1 1.54 1
145 1.14 1.01 1.32 1
146 2.02 1.07 1.18 1
147 1.42 1 1.35 1.01
148 1.16 1.06 1.27 1
149 1.18 1.05 1.27 1
150 1.07 1.03 1.32 1
151 1.6 1 2.56 1
152 2.02 1.08 2.11 1
153 1.03 1 1.04 1.09
154 1.14 1 1.51 1
155 1.03 1.07 1.02 1
156 1 1.01 1.02 1.01
157 1 1.05 1.03 1
158 2.01 1.03 2.03 1
159 1.06 1.04 1.16 1
160 1.14 1.02 1.2 1
161 1.2 1.04 1.21 1
162 1.09 1.02 1.18 1
163 1.04 1.01 1.05 1
164 1 1.03 1.51 1
165 1.07 1.02 1.21 1
166 1.03 1.12 1.06 1
167 1 1.03 1.83 1.14
168 1.07 1 1.68 1
169 1.03 1 1.06 1.02
170 1.03 1 1.03 1.06
171 1 1.03 1.06 1.01
172 1.04 1.01 1.03 1
173 1.01 1.01 1.01 1
174 1.07 1 1.09 1
175 1.1 1.02 1.11 1
176 1.08 1.05 1.09 1
177 1.88 1.01 1.89 1
178 1 1.05 1.07 1.05
178 1 1.01 1.15 1.01
180 1 1.04 1.09 1.04
181 1.02 1.03 1.04 1
182 1.02 1 1.16 1.08
183 1.13 1 1.17 1.1
184 1.07 1.06 1.06 1
185 1 1.04 1.06 1.03
186 1 1.01 1.01 1.04
187 1 1.4 1.15 1
188 1.32 1.03 1.43 1
189 1 1.2 1.27 1.07
190 1.09 1.18 1.33 1
191 1 1.03 1.04 1.01
192 1.08 1.81 1.1 1
193 1.07 1.03 1.12 1
194 1.04 1.01 1.35 1
195 1.31 1.17 2.19 1
196 1.09 1.01 1.18 1
197 1.58 1.12 1.83 1
198 1.12 1 1.16 1
199 1 1.08 1.32 1.02
200 1.82 1.07 2.3 1

Pathfinding methods : Flow Field, Flow Graph, A*, Regional Flow Graph
Map sources : blue = Custom, white = Starcraft, green = Warcraft 3

Table A.2: Relative 90% finish times

87

ID FG A* RFG RFGS
1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0.8 0 0 19.7
5 5.1 0 0 0
6 4.8 0 74.2 0
7 0 0 16.8 0
8 4.1 0 0 154
9 96 0.2 0 38.2
10 2.5 0 0 3.4
11 30.2 65.2 0 31.6
12 13.8 0 0 112.2
13 7.3 0 0 17.1
14 1.3 1.6 0 3.5
15 1.9 17.6 1.1 0.8
16 19.5 1.6 0 88.5
17 3.8 0 0 2.2
18 2.7 1.4 0 23.4
19 7.8 1.7 0 6.5
20 1.7 1 0 30.4
21 0 8.9 0 0
22 0 0 0 0
23 0 0 0 0
24 0 0 0 0
25 0 0 0 0
26 0 1 0 0
27 108.1 1.7 0 1802.1
28 8.5 2.8 1.8 59.6
29 100.3 19.3 206.2 1241.3
30 388.9 83.3 0 432.2
31 0 0 0 0
32 0 0 0 0
33 0 0 0 0
34 0 0 0 0
35 0 0 0 0
36 14.7 0 0 2.1
37 1.9 0 0 1.1
38 6.3 1 0 0
39 1.7 0 0 0
40 18.4 0 0 46
41 6 0 0 0.9
42 0 0 0 0
43 0.4 0.9 0 0
44 2.7 10.2 0 0
45 399.5 0 0 7.2
46 211.2 0 0 2.6
47 17 0.1 0 0.8
48 616.5 5.9 0.9 499.7
49 3.2 0 0 0
50 0 0 0 0
51 0.6 0 0 0
52 4.4 11.4 0 0
53 7.6 0.9 0 0
54 0 0 0 0
55 0 0 0 0
56 0 0 0 0
57 1 8.1 0 1.4
58 0 0 0 0
59 0 1.1 0 0
60 0 0 0 0
61 0 0 0 0
62 0 0.4 31.3 0
63 0.2 19.1 0 0
64 0 0 0 0
65 0.8 3.7 0 0
66 3.2 11.3 0 0
67 0 0 0 0

ID FG A* RFG RFGS
68 0.2 0 0 0
69 9.1 0 0 0
70 23 0 0 0
71 F 0.1 0 0.1
72 2.5 0 0 2.3
73 0 0 0 0
74 3 0 0 0.1
75 0.5 1.4 2.7 0
76 0.4 0.2 0 0
77 0 0 0 0
78 0 0.6 0 0.1
79 0 0 0 0
80 0 0 0 0
81 0 0 0 0
82 0 0 0 0
83 0.5 1 0 0
84 0 0.2 0 0
85 0 0.3 0 0
86 0 0 0 0.7
87 0 0 0 0
88 0 0.1 0 29
89 0 0 0 0
90 0 0 0 1.8
91 0 0 0 1
92 0 0 0 0
93 0 0.5 0 1.4
94 0.8 0 0 2.2
95 0.1 0 0.2 0
96 0 0 0 0
97 0.1 0.3 26.7 15.8
98 11.2 1.2 402.7 266
99 14.2 9.4 41.8 46.7
100 26.3 14.7 278.9 89.7
101 12.8 12.3 0 0
102 6.5 12.1 0 8.4
103 9 10.7 23.8 1.1
104 8.9 6.7 0 0
105 26.6 24 0 61.2
106 6 7.9 0 0
107 6.8 2.2 0 0
108 0.2 1.6 0 0
109 4.1 22.3 0 5.7
110 24.1 33.9 7.1 0
111 9.4 11.8 0 1.6
112 15.1 15 0 0
113 6.9 2.2 0 1.6
114 0.3 0.1 0 1.2
115 5.3 4 0 9.7
116 6.7 2.2 0.3 0
117 2.7 10.6 0 76.1
118 12.1 10.4 1.1 0
119 52.3 39.4 0 56.3
120 0.5 0 0 129.1
121 13 31.2 0 0
122 30.4 30 0 0
123 1 1 94.3 0
124 4.9 49.1 0 16.2
125 3.7 0.1 0 205.5
126 1.7 3.1 0 0
127 13.9 26.7 88.3 82.6
128 22.4 30.4 0 0
129 32 0 0 0
130 0 0.1 0 0
131 2.6 2.1 0 0.8
132 12.7 9.8 0 4.3
133 0 0.1 0 0
134 34.3 7.9 0 5.8

ID FG A* RFG RFGS
135 28.1 7.8 0.1 230.8
136 30 62.6 39.8 106.6
137 9.3 0.6 0 0
138 0.3 0.9 0 1.1
139 4.2 34.1 0 0.1
140 0.6 12.8 0 0.4
141 0.8 4.4 0 5.6
142 7.1 24.2 0 183.4
143 11.7 13.1 0 57.1
144 0 3.5 0 0.3
145 2.7 0 0.1 0
146 0.7 0.1 0 0.2
147 0 0 0 0
148 3 2.7 36.2 3.1
149 11.8 3 0 6.6
150 37.2 3 1.2 214.2
151 1.2 5 0 0
152 1.1 8.1 6.3 21
153 30.9 15 0 193.1
154 0.1 2.7 1.2 0
155 5.5 10.3 0 55.6
156 0.7 0.2 0 0
157 36.4 1 0 22.2
158 5.5 3.2 17.9 0
159 1.6 3.9 0 0.6
160 5.3 9.2 0 0
161 16.3 19.2 0 92.8
162 4 0.2 0 1.6
163 1 0 0 2.5
164 1 8.9 0 0
165 0.4 32.7 0 0
166 2.2 0 0 0
167 44.3 29.4 83.5 213.7
168 3.6 20.3 8.1 0.7
169 1.5 17.6 0 0.5
170 2.8 2.1 231.1 412.1
171 6.4 0 0 0
172 16.9 1.8 62.9 0
173 2.5 4.6 143.5 0
174 0.6 8.9 56.1 0
175 2.4 2.3 0 0.1
176 0.6 0.4 0 0
177 1.6 2.2 0 0.2
178 2.6 15.1 0 0
178 0 11.5 0 0
180 7.3 0.3 0 0
181 14.1 0 25.7 190.2
182 9.3 2.3 0 105.2
183 1.3 1.4 0 0
184 5 0.3 0 0
185 25.8 0.6 0 215.5
186 27.5 24.8 0 0
187 39.1 0.1 0 0.2
188 9.9 7.4 0 12.8
189 25.2 9.9 0 122.7
190 13.4 97.2 0 14.5
191 0 0 0 0
192 66.4 0.3 0 0.4
193 0.9 3.3 0 45
194 0 0.6 0 0
195 85.2 26.8 0 0
196 5.2 0 0 0
197 66.8 9 0 74
198 2 0 0 3.5
199 16.2 6.2 0 82.8
200 4.4 124 0 0

Flow Graph Repaths, A* Repaths, Regional Flow Graph Repaths, Regional Flow
Graph Soft Repaths

Table A.3: Repaths with different methods

88

	Introduction
	Goals
	Thesis Structure

	Problem Statement
	RTS Game Abstraction
	Map
	Units
	Pathfinding Problem

	Objectives

	Related Work
	Representation of the Game World
	Grid Representation
	Waypoint Graph
	Navigation Mesh
	Hierarchical Representation

	Preprocessing
	Regional Decomposition
	Path Precomputation

	Pathfinding
	Dijkstra
	A*
	JPS
	Hierarchical Pathfinding
	Flow Field
	Flow Field Tiles
	Multi-Agent Pathfinding
	Planning Based On Flow Networks

	Execution
	Steering Behaviors
	Formations

	Problem Analysis
	Map
	Pathfinding Problem
	Flow
	Flow Graph Algorithm
	Arrival Times
	Shortest Path in the Grid
	Gate Path

	Estimating The Flow
	Execution Settings
	Dynamic Factors
	Flow Function
	Maximum Possible Flow And No Push Flow
	Basic Flow Estimate

	Pruning The Solutions

	Implementation
	Existing Solution
	Preparation
	Pathfinding
	Execution

	Observed Problems
	Too Early Path Assignment
	Travel Time Consideration
	Fluctuating Flow

	Proposed Solution
	Preprocessing
	Pathfinding
	Execution

	Evaluation
	Goals
	Comparison To Other Methods
	Finding Errors
	Measuring The Prediction Accuracy

	Experiment Setup
	Compared Methods
	The Problem Set

	Testing Environment
	Simulation Setup
	Automatic Simulation
	Unit Model
	Resolving Errors

	Metrics

	Results
	Comparison To Other Algorithms
	Movement Times
	Computation Times
	Repathing

	Arrival Times
	Discussion
	Performance Differences
	Problems

	Future Work
	Better Flow Estimation
	Overflow
	Previous Gate Effects
	Flow Function

	Modified Objectives
	Possible Missing Solutions
	Increased Cohesion

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Attachments
	Digital Attachment
	Program
	Pathfinding Data

	Performance Tables

